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A novel iterative reduced-order modeling method is proposed, which is based on the recently developed
algebraic dynamic condensation method. The algebraic substructuring technique is employed to improve
the reduction efficiency, and the initial reduced model is calculated using the substructural stiffness con-
densation and the interface boundary reduction procedures. Then, the initial reduced model is iteratively
updated using the iterative substructural inertial effect condensation procedure until the solutions con-
verge. The iterative formulation of the reduced model is represented simply with small submatrix oper-
ations to avoid huge computational cost induced by the iterative procedure resulting from the very large
global transformation matrix. To verify the performance of the proposed method, we consider several
large structural problems, and compare the numerical results to those of the iterated improved reduced
system (IIRS) method, a widely used reduced-order modeling method.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction Guyan, IRS, and IIRS methods, there have been several studies
While computational resources have been greatly improved, the
demand for dynamic analysis of large and complex structural sys-
tems, which are modeled using the finite element (FE) method, has
increased even more rapidly. Because dynamic analysis using glo-
bal size matrices can be very time-consuming work, dynamic con-
densation methods [1–11] have been widely used for several
decades. The reduced-order models obtained via dynamic conden-
sation methods are very important in a number of research fields,
including structural health monitoring, structural design optimiza-
tion, multi-body dynamics, FE model updating, and experimental-
FE model correlation [12–22].

The pioneering work for dynamic condensation methods is the
static condensation method proposed by Guyan [2] and Irons [3] in
the 1960 s. In 1989, O’Callahan [5] developed the improved
reduced system (IRS) method employing the newly derived trans-
formation matrix. This is calculated by adding the extra term con-
taining inertial effect to Guyan’s transformation matrix [2]. Since
then, there have been considerable efforts to improve the solution
accuracy of the IRS method. Friswell [7] developed the iterative IRS
transformation matrix, and proposed the iterated IRS (IIRS)
method. After that, Xia and Lin [8] proposed the modified IIRS
transformation matrix, and improved the convergence speed of
the IIRS method. To improve the computational efficiency of the
[23–28] employing physical domain based substructuring, which
is a key concept of the component mode synthesis (CMS) methods
[29–37].

Because the formulations of the IRS and IIRS methods are sim-
ple and produce accurate reduced models, those methods have
been widely used. However, the IRS and IIRS methods have a crit-
ical limitation to handle very large FE models with hundreds of
thousands of degrees of freedom (DOFs). This is because the part
of the transformation matrix corresponding to the truncated DOFs
is highly populated, which induces huge computational cost. Con-
sidering the recent trend of increase in the size of FE models, it is
very important to overcome this limitation of the IRS and IIRS
methods.

Recently, to resolve the limitation of the IRS method, we devel-
oped a very efficient and accurate method, which is named ‘‘alge-
braic dynamic condensation method” [1], exploiting the algebraic
substructuring technique [38–43]. It was reported that the alge-
braic dynamic condensation method could handle a very large FE
model with hundreds of thousands of DOFs, which could not be
solved using the IRS method, and that the performance of this
method was much superior to the IRS method in terms of both
the solution accuracy and computational efficiency.

In this study, as an extension of the algebraic dynamic conden-
sation method [1], a new iterative reduced-order modeling method
is proposed. Using the algebraic substructuring technique [38], the
global mass and stiffness matrices are automatically partitioned
into small submatrices. To construct an initial reduced model,
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http://dx.doi.org/10.1016/j.compstruc.2016.12.011
mailto:phillseung@kaist.edu
http://dx.doi.org/10.1016/j.compstruc.2016.12.011
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


420 S.-H. Boo, P.-S. Lee / Computers and Structures 182 (2017) 419–429
the substructural stiffness is condensed into the interface bound-
ary, and the interface boundary is reduced using the dominant
interface normal modes. Then, the initial reduced model is itera-
tively updated until satisfying the designated error tolerance
through the iterative substructural inertial effect condensation
procedure. To reduce computational cost, the formulation of the
iterative reduced model is expressed by simple multiplications
and summations of small submatrices. The performance of the pro-
posed method is verified considering several large structural FE
models. It is observed that the computational efficiency of the pro-
posed method is much superior to that of the IIRS method, with
more accurate solutions. Furthermore, the proposed method can
handle large FE models that the IIRS method cannot handle.

In the following sections, the formulation of the IIRS method is
reviewed briefly, and the proposed method is derived. We then
evaluate the performance of the proposed method compared to
that of the IIRS method using several structural problems. Finally,
conclusions are drawn.

2. Iterated IRS (IIRS) method

In structural dynamics, the equations of motion for un-damped
free vibration without damping are given by

Mg €ug þ Kgug ¼ 0; ð1Þ
where Mg and Kg are the global mass and stiffness matrices, respec-
tively, and ug is the global displacement vector. In the IIRS method,
before reducing the global system, the global matrices and vector
are separated as

Mg ¼
Mt Mtr

MT
tr Mr

� �
; Kg ¼

Kt Ktr

KT
tr Kr

� �
; ug ¼

ut

ur

� �
; ð2Þ

in which the subscripts t and r denote the truncated and retained
DOFs, respectively, and the subscript tr denotes the coupled DOFs
between t and r.

The global eigenvalue problem is defined by

Kgug ¼ kMgug ; ð3Þ
and its partitioned form is expressed as

Kt Ktr

KT
tr Kr

� �
ut

ur

� �
¼ k

Mt Mtr

MT
tr Mr

� �
ut

ur

� �
; ð4Þ

in which k denotes the eigenvalue of the global system.
Expanding the first row in Eq. (4), the truncated DOFs vector ut

is written as

ut ¼ �K�1
t Ktrur þ kK�1

t ðMtrur þMtutÞ: ð5Þ
Assuming a transformation matrix T between ut and ur; the trun-
cated DOFs vector ut is rewritten as
ut ¼ Tur: ð6Þ
Substituting Eq. (6) into ut in the right-hand side of the Eq. (5), the
following equation is obtained

ut ¼ ½�K�1
t Ktr þ kK�1

t ðMtr þMtTÞ�ur ; ð7Þ
and from the relation ut ¼ Tur in Eq. (6), the transformation matrix
T can be defined as

T ¼ Ts þ kK�1
t ðMtr þMtTÞ with Ts ¼ �K�1

t Ktr: ð8Þ
Using the transformation matrix T in Eq. (8), the global displace-
ment vector ug is represented by

ug ¼
ut

ur

� �
¼ T

Ir

� �
ur ¼ ðTG þ kTaÞur with TG ¼ Ts

Ir

� �
;

Ta ¼ K�1
t ðMtr þMtTÞ

0

" #
;

ð9Þ
where TG is the Guyan transformation matrix [2], which is some-
times called the ‘‘static condensation matrix”, kTa is an additional
transformation matrix containing the inertial effects of the trun-
cated DOFs, and Ir is the identity matrix for the retained DOFs.

Considering only TG in Eq. (9), the global displacement vector ug

is approximated as

ug � �ug ¼ TGur ; ð10Þ
and applying Eq. (10) into Eq. (3), the following reduced eigenvalue
problem is obtained

�KGur ¼ �k �MGur with �MG ¼ TT
GMgTG; �KG ¼ TT

GKgTG; ð11Þ
in which �MG and �KG are the reduced mass and stiffness matrices in
the Guyan reduction, and �k is the approximated eigenvalue.

Pre-multiplying �M�1
G to Eq. (11), we can obtain the following

equation

�kur ¼ HGur with HG ¼ �M�1
G

�KG: ð12Þ
In Eq. (9), using �k instead of k; and considering the relation
�kur ¼ HGur in Eq. (12), the approximated global displacement vec-
tor �ug is redefined as

�ug ¼ T1ur with T1 ¼ T
Ir

� �
; T ¼ Ts þ K�1

t ðMtr þMtTÞHG: ð13Þ

Note that it is not possible to directly calculate the transformation
matrix T1; because the matrix T is implicit in the formulation.
Therefore, an iterative scheme needs to be employed to calculate
the transformation matrix T1.

Employing an iterative scheme, we can define an iterative

transformation matrix TðkÞ
1 as

TðkÞ
1 ¼ TðkÞ

Ir

" #
with TðkÞ ¼TsþK�1

t ðMtr þMtT
ðk�1ÞÞHðk�1Þ for kP2;

ð14Þ
in which

Hðk�1Þ ¼ð �Mðk�1ÞÞ�1 �Kðk�1Þ; �Mðk�1Þ ¼ðTðk�1Þ
1 ÞTMgT

ðk�1Þ
1 ; �Kðk�1Þ ¼ðTðk�1Þ

1 ÞTKgT
ðk�1Þ
1 ;

ð15aÞ

Tð1Þ ¼ Ts;H
ð1Þ ¼ HG;T

ðkÞ
1 ¼ TG; �Mð1Þ ¼ �MG; �Kð1Þ ¼ �KG; ð15bÞ

where the superscript k denotes the k th iteration, and when k ¼ 2;

TðkÞ
1 is equivalent to the transformation matrix of the improved

reduce system (IRS) method [5].

Thus, using the transformation matrix TðkÞ
1 in Eq. (14), the

reduced mass and stiffness matrices in the IIRS method are
obtained by

�Mg ¼ ðTðkÞ
1 ÞTMgðTðkÞ

1 Þ; �Kg ¼ ðTðkÞ
1 ÞTKgðTðkÞ

1 Þ; ð16Þ
and the reduced eigenvalue problem is given by

�Kgð �uÞi ¼ �ki �Mgð �uÞi for i ¼ 1;2; � � � ;Nr; ð17Þ
where �ki and ð�uÞi are the approximated eigenvalues and eigenvec-
tors in the IIRS method, respectively, and Nr is the number of the
retained DOFs. Herein, the ith approximated global eigenvector

ð�ugÞi can be calculated by ð�ugÞi ¼ TðkÞ
1

�ui.
It is important to note that, when a large size FE model (over

105 DOFs) is considered, the IIRS method could induce a huge
computational cost due to a highly populated matrix T in
Eq. (13) requiring large computer memory, which is updated
through the iterative procedure to construct the iterative
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transformation matrix TðkÞ
1 : Furthermore, the computational cost to

calculate the �Mg and �Kg in Eq. (16) might become high, because
three matrices of global DOFs size, Mg and Kg (Ng � Ng matrices),

and TðkÞ
1 (Ng � Nr matrix), should be handled in the computation.

These facts will be investigated using numerical examples in
Section 4.
3. Iterative algebraic dynamic condensation method

In this section, we present a new efficient iterative model
reduction algorithm, named the iterative algebraic dynamic con-
densation method. Based on the algebraic dynamic condensation
method [1], an iterative substructural inertial effect condensation
procedure is newly derived.
Fig. 1. Algebraic substructuring procedure: (a) original large sparse matrix, (b) permuted
defined).
3.1. Algebraic substructuring

As shown in Fig. 1, the original global mass and stiffness matri-
ces of the structural FE model are generally large sparse matrices.
Using algebraic substructuring [38], the global matrices are
automatically permuted. Then, from the algebraic perspective,
the permuted matrices can be partitioned into many submatrices
corresponding to the substructures and the interface boundary.

Note that, because the matrix permutation is just a simple
renumbering process in FE models, the physical characteristic of
the original FE models is not altered.

Considering the global mass and stiffness matrices, Mg and Kg ;

partitioned into n substructures and the interface boundary by
the algebraic substructuring, the global eigenvalue problem is
represented by
matrix, (c) partitioned matrix (eight substructures and the interface boundary are
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Ks Kc

KT
c Kb

� �
us

ub

� �
¼ k

Ms Mc

MT
c Mb

� �
us

ub

� �
; ð18Þ

where the subscripts s and b present the substructural and interface
boundary terms, respectively, and the subscript c presents the cou-
pled terms between s and b.

In Eq. (18), the component matrices Ms; Ks; Mc; and Kc are rep-
resented in a submatrix form as

Ms ¼
Ms

1 0

. .
.

0 Ms
n

2
664

3
775; Ks ¼

Ks
1 0

. .
.

0 Ks
n

2
664

3
775;Mc ¼

Mc
1

..

.

Mc
n

2
664

3
775; Kc ¼

Kc
1

..

.

Kc
n

2
664

3
775;
ð19Þ

where Ms
i and Ks

i are the substructural mass and stiffness matrices
corresponding to the ith substructure, respectively. Mc

i and Kc
i are

the coupled mass and stiffness matrices between the ith substruc-
ture and the interface boundary, respectively.

3.2. Substructural stiffness condensation

Expanding the first row in Eq. (18), the substructural displace-
ment vector us is expressed by

us ¼ �ðKs � kMsÞ�1ðKc � kMcÞub

¼ ½�K�1
s Kc þ kK�1

s ðMc þMsWcÞ þ oðk2Þ þ oðk3Þ þ � � ��ub; ð20Þ
and neglecting the terms with the unknown global eigenvalue k; the
substructural displacement vector us can be approximated by the
interface displacement vector ub

us � �us ¼ Wcub with Wc ¼ �K�1
s Kc; ð21Þ

where Wc denotes the constraint mode matrix [30] to couple the
substructures with the interface boundary.

Then, the global displacement vector ug is approximated by
using �us in Eq. (21)

ug � �ug ¼
�us

ub

� �
¼ Wub with W ¼ Wc

Ib

� �
; ð22Þ

in which W is the interface constraint mode matrix [30], and is rep-
resented in a submatrix form as

W ¼

Wc
1

..

.

Wc
n

Ib

2
66664

3
77775 with Wc

i ¼ �ðKs
i Þ�1Kc

i for i ¼ 1;2; � � � ; n; ð23Þ

where Wc
i denotes the constraint mode matrix to couple the ith sub-

structure with the interface boundary, and Ib denotes the identity
matrix for the interface boundary.

Conducting the Rayleigh-Ritz analysis with W in Eq. (22), the
following reduced eigenvalue problem is given by

K̂bub ¼ k̂M̂bub with M̂b ¼ WTMgW; K̂b ¼ WTKgW; ð24Þ
in which M̂b and K̂b are the reduced mass and stiffness matrices,
and those are Nb � Nb matrices (Nb is the number of DOFs in the
interface boundary). Here, k̂ is the approximated eigenvalue of the
reduced system, which is constructed using the substructural stiff-
ness condensation.

In addition, using Eqs. (19) and (23), the reduced matrices M̂b

and K̂b in Eq. (24) can be effectively calculated at the submatrix
level through the following submatrix operations

M̂b ¼Mbþ
Xn

i¼1

ðMc
i ÞTWc

i þ
Xn

i¼1

ðWc
i ÞTM̂c

i with M̂c
i ¼Mc

i þMiW
c
i ; ð25aÞ
K̂b ¼ Kb þ
Xn
i¼1

ðKc
i ÞTWc

i : ð25bÞ
3.3. Interface boundary reduction

After solving the reduced eigenvalue problem in Eq. (24), the
interface eigenvector matrix Ub is calculated, and the interface dis-
placement vector ub is expressed as

ub ¼ Ubqb ¼ ½Ud
b Ur

b�
qd
b

qr
b

2
4

3
5; ð26Þ

where Ub is decomposed into Ud
b and Ur

b; the eigenvector matrices
corresponding to the dominant and residual interface normal
modes, respectively, and qd

b and qr
b are their generalized coordinate

vectors.
Considering only the dominant terms Ud

b and qd
b; the reduced

interface displacement vector �ub is obtained as

ub � �ub ¼ Ud
bq

d
b: ð27Þ

Applying Eq. (27) into Eq. (24) and pre-multiplying ðUd
bÞ

T
; the eigen-

value problem for the reduced interface boundary is given by

�Kbqd
b ¼ �k �Mbqd

b with �Mb ¼ ðUd
bÞ

T
M̂bðUd

bÞ; �Kb ¼ ðUd
bÞ

T
K̂bðUd

bÞ;
ð28Þ

in which �Mb and �Kb denote the mass and stiffness matrices for the
reduced interface boundary, respectively, and �k is the approximated
eigenvalue obtained from the above eigenvalue problem. Herein, �Mb

and �Kb are �Nb � �Nb matrices, where �Nb is the number of the domi-
nant interface normal modes selected.

3.4. Iterative substructural inertial effect condensation

In Eq. (20), considering the first order term of k; the approxi-
mated substructural displacement vector �us in Eq. (21) can be
expressed more precisely

�us ¼ Wcub þ kK�1
s ðMcub þMsWcubÞ: ð29Þ

From the relation �us ¼ Wcub in Eq. (21), the term Wcub in the right-
hand side of Eq. (29) can be replaced with �us as follow

�us ¼ Wcub þ kK�1
s ðMcub þMs�usÞ: ð30Þ

Using �ub (¼ Ud
bq

d
b) in Eq. (27) instead of ub; and using �k instead of k;

the following equation is obtained

�us ¼ �Wcqd
b þ �kK�1

s ð �Mcqd
b þMs�usÞ with �Wc ¼ WcU

d
b;

�Mc ¼ McU
d
b:

ð31Þ
Let us assume a transformation matrix H between �us and qd

b: The
approximated substructural displacement vector �us can be repre-
sented by

�us ¼ Hqd
b: ð32Þ

Thus, �us in the right-hand side of Eq. (31) can be replaced with Hqd
b

as follows

�us ¼ ½ �Wc þ �kK�1
s ð �Mc þMsHÞ�qd

b: ð33Þ
From Eqs. (32) and (33), the transformation matrixH can be defined
by

H ¼ �Wc þ �kK�1
s ð �Mc þMsHÞ: ð34Þ
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Using Eqs. (27), (32) and (34), the approximated global displace-
ment vector �ug in Eq. (22) is redefined as

�ug ¼
�us

�ub

� �
¼ Tqd

b; ð35aÞ

with T ¼ H

Ud
b

� �
¼ �Wþ �kWa; �W ¼

�Wc

Ud
b

" #
; Wa ¼ K�1

s ð �Mc þMsHÞ
0

" #
;

ð35bÞ
where T is a newly defined interface constraint mode matrix com-
pensating the substructural inertial effects by �kWa; and �W is the
reduced interface constraint mode matrix.

Pre-multiplying �M�1
b in Eq. (28), we obtain the following

relation

�kqd
b ¼ Hbqd

b with Hb ¼ �M�1
b

�Kb; ð36Þ
and using this relationship, the transformation matrix H in Eq. (34)
can be rewritten as

H ¼ �Wc þ K�1
s ð �Mc þMsHÞHb; ð37Þ

in which the transformation matrix H cannot be directly calculated
due to its implicit form, and thus it should be calculated using an
iterative procedure.

Employing the iterative scheme of the IIRS method [7], the iter-
ative transformation matrix HðkÞ can be defined as

HðkÞ ¼ �WcþK�1
s ð �McþMsH

ðk�1ÞÞHðk�1Þ
b forkP2;Hð1Þ ¼ �Wc;H

ð1Þ
b ¼Hb;

ð38Þ
where superscript k denotes the kth iteration. Therefore, the itera-

tive transformation matrix TðkÞ can be defined as

TðkÞ ¼ HðkÞ

Ud
b

" #
¼ �Wþ Eðk�1Þ for k P 2; ð39Þ

in which

Eðk�1Þ ¼ Bðk�1Þ

0

" #
with Bðk�1Þ ¼ K�1

s ð �Mc þMsH
ðk�1ÞÞHðk�1Þ

b ; ð40aÞ

Tð1Þ ¼ �W: ð40bÞ

Note that, when k ¼ 2; TðkÞ is equivalent to the transformation
matrix of the algebraic dynamic condensation method [1].

Finally, the reduced mass and stiffness matrices for the kth iter-
ation are obtained by

~MðkÞ
b ¼ðTðkÞÞTMgT

ðkÞ ¼ �Mbþ �WTMgE
ðk�1ÞþðEðk�1ÞÞTMg

�WþðEðk�1ÞÞTMgE
ðk�1Þ;

ð41aÞ

~KðkÞ
b ¼ ðTðkÞÞTKgT

ðkÞ ¼ �Kb þ �WTKgE
ðk�1Þ þ ðEðk�1ÞÞTKg

�Wþ ðEðk�1ÞÞTKgE
ðk�1Þ;

ð41bÞ
in which

�WTMgE
ðk�1Þ ¼ ðUd

bÞ
T
M̂T

cB
ðk�1Þ; ðEðk�1ÞÞTMgE

ðk�1Þ ¼ ðBðk�1ÞÞTMsB
ðk�1Þ;

ð42aÞ

�WTKgE
ðk�1Þ ¼ 0; ðEðk�1ÞÞTKgE

ðk�1Þ ¼ ðBðk�1ÞÞTKsB
ðk�1Þ; ð42bÞ

~Mð1Þ
b ¼ �Mb; ~Kð1Þ

b ¼ �Kb; ð42cÞ

in which ~Mð1Þ
b and ~Kð1Þ

b are the initial reduced mass and stiffness
matrices.
In Eq. (38), the matrix Hðk�1Þ
b in HðkÞ is calculated using the fol-

lowing equation

Hðk�1Þ
b ¼ ð ~Mðk�1Þ

b Þ�1 ~Kðk�1Þ
b for k P 2; ð43Þ

where ~Mðk�1Þ
b and ~Kðk�1Þ

b are the reduced mass and stiffness matrices
for the ðk� 1Þth iteration, respectively.

The matrices M̂c and Bðk�1Þ in Eq. (42) are represented in a sub-
matrix form as

M̂c ¼

M̂c
1

M̂c
2

..

.

M̂c
n

2
666664

3
777775; B

ðk�1Þ ¼

Bðk�1Þ
1

Bðk�1Þ
2

..

.

Bðk�1Þ
n

2
666664

3
777775 with Bðk�1Þ

i ¼ðKs
i Þ�1ðMc

i þMiH
ðk�1Þ
i ÞHðk�1Þ

b :

ð44Þ

Using the submatrix forms of Ms and Ks in Eq. (19), and M̂c and

Bðk�1Þ in Eq. (44), the iterative reduced matrices of the proposed
method are finally obtained in a submatrix form as follows:

~MðkÞ
b ¼ �Mb þ R1 þ RT

1 þ R2; ~KðkÞ
b ¼ �Kb þ R3; ð45Þ

with

R1¼
Xn
i¼1

ðUd
bÞ

T ðM̂c
i Þ

T
Bðk�1Þ
i ;R2¼

Xn
i¼1

ðBðk�1Þ
i ÞTMs

iB
ðk�1Þ
i ;R3¼

Xn
i¼1

ðBðk�1Þ
i ÞTKs

iB
ðk�1Þ
i ;

ð46Þ

in which ~MðkÞ
b and ~KðkÞ

b are �Nb � �Nb matrices.
The strength of the proposed method is that, the iterative

reduced matrices are efficiently calculated through simple multi-
plications and summations of very small submatrices without con-
sidering the global transformation matrix, which may incur huge
computational cost due to the iterative updated procedure of large
matrices. In addition, the computer memory utilized during the
iterative procedure can be reduced, thanks to the compact formu-
lation developed.

Then, the approximated eigensolutions are calculated from the
following reduced eigenvalue problem

~KðkÞ
b ð �uÞi ¼ �ki ~M

ðkÞ
b ð�uÞi for i ¼ 1;2; � � � ; �Nb; ð47Þ

where �ki and ð�uÞi are the approximated eigenvalues and eigenvec-
tors, respectively.

The approximated global eigenvectors are calculated by

ð�ugÞi ¼ TðkÞ �ui for i ¼ 1;2; � � � ; �Nb; ð48Þ
in which

TðkÞ ¼

TðkÞ
1

TðkÞ
2

..

.

TðkÞ
n

Ud
b

2
666666664

3
777777775

with TðkÞ
i ¼ Wc

iU
d
b þ Bðk�1Þ

i for i ¼ 1;2; � � � ;n: ð49Þ

The computational procedure of the iterative algebraic dynamic
condensation is described in Fig. 2.

4. Numerical examples

To demonstrate the performance of the proposed method, we
conduct numerical tests with practical structural FE models: a rect-
angular plate, a stiffened plate, a semi-submersible rig, and a barge
ship. The numerical results are compared to those of the IIRS
method, and to verify the accuracy of the reduced models obtained
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using the proposed and IIRS methods, the following relative eigen-
value error is employed

ni ¼
ki � ki
ki

; ð50Þ

in which ni and ki denote the relative eigenvalue error for the i th

mode and the exact global eigenvalue, that are obtained from the
original FE model, respectively, and �ki denotes the approximated
eigenvalue for the ith mode obtained from the reduced eigenvalue
problem in Eq. (47).

The MITC shell finite elements [44–46] are used for the FE mod-
eling. A free boundary condition is applied to all FE models, and we
use the material property of a typical mild steel, with Young’s
modulus E = 206 GPa, Poisson’s ratio t ¼ 0:3, and density
q ¼ 7;850 kg=m3. MATLAB is used for implementation of the
numerical procedures, and a personal computer (Intel core (TM)
i7-3770, 3.40 GHz CPU, and 32 GB RAM) is used for computation.

In the IIRS method, the retained DOFs are selected considering
the ratio of the diagonal entries of mass and stiffness matrices
[10]. In the proposed method, METIS [47], an efficient matrix
Fig. 2. Computational procedure of the iterativ
reordering and partitioning software package, is used for algebraic
substructuring, and to select the dominant interface normal modes
[30], we use the frequency cut-off technique [30]. We assign the
error tolerance 10�4 as a strict criterion to ensure the accuracy of
the reduced models in the engineering perspective, and observe
the iteration counts to satisfy the assigned error tolerance.

4.1. Rectangular plate problem

As shown in Fig. 3, a rectangular plate is modeled using a
60� 36 mesh (11,285 DOFs). For the IIRS and proposed methods,
we consider reduced models of the same size, Nr ¼ 100 and
�Nb ¼ 100. For the proposed method, the global matrices are parti-
tioned into 16 substructures and the interface boundary using
algebraic substructuring. We investigate the iteration counts of
both methods, until the relative eigenvalue errors corresponding
to 1st–20th modes satisfy the error tolerance.

Fig. 4 shows the relative eigenvalue errors obtained by the IIRS
and proposed methods. The IIRS method cannot give solutions
satisfying the error tolerance even by the 10th iteration. However,
e algebraic dynamic condensation method.



Table 1
Relative eigenvalue errors for the rectangular plate problem in Fig. 4.

Mode number IIRS Proposed
10th iteration 5th iteration

1 1.83717E�06 9.26733E�11
2 4.29073E�06 2.55235E�10
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with the proposed method, the desired solutions are obtained by
the 5th iteration. Table 1 and Table 2 show the relative eigenvalue
errors and the specific computational costs; when the iteration
counts for the IIRS and proposed methods are 10 and 5, respec-
tively. The numerical results show that the proposed method con-
structs more accurate reduced models than the IIRS method, with
Fig. 3. Rectangular plate problem (60 � 36 mesh, 11,285 DOFs, length L ¼ 20 m;

width B ¼ 12 m; thickness t ¼ 0:025 m).

Fig. 4. Relative eigenvalue errors for the rectangular plate problem, when
Nr ¼ �Nb ¼ 100: (a) 1st, 2nd, and 10th iterations by the IIRS method, (b) 1st, 2nd, and
5th iterations by the proposed method.

3 2.85734E�04 1.49123E�09
4 6.41667E�05 4.26750E�09
5 2.58734E�04 1.83683E�08
6 1.38521E�03 5.57216E�07
7 2.33068E�03 1.68671E�07
8 1.39510E�03 3.08088E�07
9 3.53615E�03 8.13839E�07
10 3.71868E�03 6.91319E�07
11 4.67691E�03 6.49403E�06
12 1.94286E�03 5.87819E�06
13 5.67465E�03 1.34455E�05
14 4.18013E�03 3.80472E�06
15 6.02451E�03 3.14492E�05
16 6.35450E�03 1.59214E�05
17 7.74027E�03 1.59703E�05
18 9.08663E�03 9.30836E�05
19 5.56733E�03 6.95991E�06
20 2.19049E�02 2.82683E�05

Table 2
Specific computational costs for the rectangular plate problem, corresponding to 10th

iteration by the IIRS method and 5th iteration by the proposed method.

Methods Items Computation times

[sec] Ratio [%]

IIRS Transformation procedure 195.94 71.47
Iterative transformation procedure 78.09 28.48
Reduced eigenvalue problem 0.12 0.05
Total 274.15 100.00

Proposed Algebraic substructuring 0.05 0.02
Substructural stiffness condensation 0.63 0.23
Interface boundary reduction 0.48 0.18
Substructural inertial effect condensation 0.25 0.09
Iterative transformation procedure 3.56 1.30
Reduced eigenvalue problem 0.12 0.04
Total 5.09 1.86
much less computational cost. Therefore, we can easily identify
that the proposed method is superior to the IIRS method regarding
solution accuracy and computational efficiency.

We also investigate the convergence characteristic of the pro-
posed method compared to the IIRS method. Fig. 5 shows the con-
vergence of relative eigenvalue errors corresponding to the 9th and
10th modes with respect to the iteration counts. The relative eigen-
value errors at each iteration are listed in Table 3. In Fig. 5, the
solutions obtained by the IIRS method converge slowly with each
iteration, and the solutions are saturated at the relative eigenvalue
error of 10�3: On the other hand, the solutions obtained by the pro-
posed method converge very quickly at the 2nd iteration. After that,
the solution accuracies are saturated near the relative eigenvalue
error of 10�7:We can identify that the convergence of the proposed
method is faster than that of the IIRS method. Note that, as the size
of the reduced models increases, the saturation happens at more
accurate solutions in both methods.

4.2. Stiffened plate problem

A stiffened plate, which has 8,580 shell finite elements and
52,662 DOFs, is considered as shown in Fig. 6. We consider reduced
models of the same size, Nr ¼ 300 and �Nb ¼ 300, for both methods.



Fig. 5. Convergence of the relative eigenvalue errors corresponding to 9th and 10th

modes for the rectangular plate problem.
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The global mass and stiffness matrices are partitioned into 64 sub-
structures using the proposed method. The iteration procedure is
conducted until the relative eigenvalue errors corresponding to
1st–50th modes satisfy the error tolerance.
Table 3
Relative eigenvalue errors corresponding to 9th and 10th modes with respect to the iterati

Iteration counts IIRS
Mode No.

9 10

1 1.61947E+00 1.24922
2 1.18145E�01 1.34452
3 1.62017E�02 2.86258
4 9.02742E�03 1.13916
5 7.17427E�03 8.36240
6 5.94566E�03 6.58967
7 5.07348E�03 5.45980
8 4.42352E�03 4.69048
9 3.92458E�03 4.13548
10 3.53612E�03 3.71872

Fig. 6. Stiffened plate problem (8,580 shell elements, 52,662 DOFs, length L ¼
Fig. 7 presents the relative eigenvalue errors obtained using the
IIRS and proposed methods. The values of the relative eigenvalue
errors corresponding to the 31th–50th global modes are listed in
Table 4, and the specific computational costs are described in
Table 5, when the iteration counts for the IIRS and proposed meth-
ods are 10 and 4. It is observed that the proposed method can pro-
vide reduced models satisfying the error tolerance with fewer
iterations and at less computational cost than with the IIRS
method.
4.3. Semi-submersible rig problem

Let us consider a semi-submersible rig structure using 16,800
shell finite elements as shown in Fig. 8. The total number of DOFs
is 102,054. The iteration procedure is stopped when the relative
eigenvalue errors corresponding to 1st–70th modes are within the
error tolerance designated.

Unfortunately, with the IIRS method, the matrix TðkÞ
1 in Eq. (14)

is an almost fully populated matrix and requires a great deal of
computer memory. For this reason, we fail to obtain reduced mod-
els of any size. Using the proposed method, the global mass and
stiffness matrices are partitioned into 128 substructures, and two
numerical cases, �Nb ¼ 350 and �Nb ¼ 600, are considered, as shown
in Fig. 9. For the first numerical case, the reduced model satisfying
the error tolerance is obtained at the 5th iteration, and for the sec-
on counts for the rectangular plate problem.

Proposed
Mode No.

9 10

E+00 5.17449E�02 2.56102E�02
E�01 1.46515E�05 7.25138E�06
E�02 2.82130E�06 1.74850E�06
E�02 1.36496E�06 1.04684E�06
E�03 8.13464E�07 6.91348E�07
E�03 5.53511E�07 4.88093E�07
E�03 4.08237E�07 3.63435E�07
E�03 3.18380E�07 2.82000E�07
E�03 2.57491E�07 2.27717E�07
E�03 2.13464E�07 1.89763E�07

26 m; breadth B ¼ 6 m; stiffener spacing S ¼ 2 m; thickness t ¼ 0:019 m).



Table 4
Relative eigenvalue errors corresponding to the 31th–50th global modes for the
stiffened structure problem in Fig. 7.

Mode number IIRS Proposed
10th iteration 4th iteration
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ond numerical case, the tolerance is satisfied at the 3rd iteration.
Table 6 shows the computational costs, when �Nb ¼ 350. The IIRS
method is unable to solve large FE models, but the proposed
method provides reduced models with relatively accurate solu-
tions and lower computational cost.
31 5.63361E�04 3.21188E�06
32 2.20046E�03 2.21368E�06
33 1.13481E�03 6.24921E�06
34 2.17261E�03 8.51955E�07
35 2.43465E�03 8.12732E�07
36 6.77522E�04 1.30282E�05
37 1.87634E�03 1.17182E�06
38 6.91542E�04 8.34432E�06
39 1.47968E�03 1.22617E�05
40 1.11207E�03 1.86428E�05
41 3.25655E�03 1.72035E�06
42 8.58681E�04 1.45410E�05
43 1.51598E�03 1.56174E�05
44 2.20489E�03 3.58203E�06
45 1.26197E�03 3.39884E�05
46 2.31364E�03 1.41170E�05
47 9.98438E�04 2.70284E�05
48 1.65159E�03 2.74856E�05
49 3.46007E�03 9.76741E�06
50 2.51780E�03 2.82249E�06
4.4. Barge ship problem

Finally, we consider a barge ship, as shown in Fig. 10. The FE
model is constructed with 26,688 shell finite elements and
26,228 nodes, and the number of DOFs is 157,368. In this problem,
the IIRS method also does not work. The error tolerance is given for
the relative eigenvalue errors corresponding to the 1st–50th modes.

To construct the reduced model, the global mass and stiffness
matrices are partitioned into 128 substructures, and two numerical
cases are considered: �Nb ¼ 300 and �Nb ¼ 500: For the two cases
considered, we obtain the desired reduced models after the 5th

and 4th iterations, respectively, as shown in Fig. 11. Table 7 pre-
sents the computational cost when �Nb ¼ 300. The results show that
the proposed method can handle large FE models with excellent
solution accuracy and computational efficiency, compared to the
IIRS method.
Fig. 7. Relative eigenvalue errors for the stiffened plate problem, when
Nr ¼ �Nb ¼ 300: (a) 1st, 2nd, and 10th iterations by the IIRS method, (b) 1st, 2nd, and
4th iterations by the proposed method.

Table 5
Specific computational costs for the stiffened structure problem, corresponding to the
10th iteration by the IIRS method and 4th iteration by the proposed method.

Methods Items Computation times

[sec] Ratio [%]

IIRS Transformation procedure 3813.72 62.84
Iterative transformation procedure 2254.95 37.15
Reduced eigenvalue problem 0.62 0.01
Total 6069.29 100.00

Proposed Algebraic substructuring 0.52 0.01
Substructural stiffness condensation 11.07 0.18
Interface boundary reduction 17.3 0.29
Substructural inertial effect condensation 5.56 0.09
Iterative transformation procedure 54.02 0.89
Reduced eigenvalue problem 0.62 0.01
Total 89.09 1.47

Fig. 8. Semi-submersible rig problem (16,800 shell elements, 102,054 DOFs, length
L ¼ 110 m; breadth B ¼ 80 m; column width C ¼ 20 m; height H1 ¼ 50 m; height
H2 ¼ 15 m; thickness t ¼ 0:018 m).



Fig. 9. Relative eigenvalue errors by the proposed method for the semi-submersible
rig problem: (a) 1st, 2nd, and 5th iterations when �Nb ¼ 350; (b) 1st, 2nd, and 3rd

iterations when �Nb ¼ 600.

Table 6
Computational costs for the semi-submersible rig problem when �Nb ¼ 350.

Items Iteration counts Computation times
[sec]

IIRS – N/A
Proposed 5 247.07

Fig. 10. Barge ship problem (26,688 shell elements, 157,368 DOFs, length
L ¼ 140 m; breadth B ¼ 12 m; height H ¼ 37 m; thickness t ¼ 0:025 m).

Fig. 11. Relative eigenvalue errors by the proposed method for the barge ship
problem: (a) 1st, 2nd, and 5th iterations when �Nb ¼ 300; (b) 1st, 2nd, and 4th iterations
when �Nb ¼ 500.

Table 7
Computational costs for the barge ship problem when �Nb ¼ 300.

Items Iteration counts Computation times
[sec]

IIRS – N/A
Proposed 5 443.36
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5. Conclusions

In this study, we developed the iterative algebraic dynamic con-
densation method. For the computing efficiency, the algebraic sub-
structuring technique was employed. Using the procedures of the
substructural stiffness condensation and the interface boundary
reduction, the initial reduced model was calculated, and then, the
iterative substructural inertial effect condensation was performed
to find the final reduced model that satisfied the designated error
tolerance. To verify the performance of the proposed method, sev-
eral large structural FE models were tested. The numerical results
showed that the proposed method outperformed the IIRS method
in regards to solution accuracy and computational efficiency. Of
particular significance, was that the proposed method could handle
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large FE models that could not be handled at all using the IIRS
method. Moreover, the computational efficiency of the proposed
method was much superior to that of the IIRS method. This is
because the formulation of the proposed method was expressed
very efficiently with many small submatrices that were easier to
compute.

In future work, it would be valuable to develop a more efficient
iterative algebraic dynamic condensation method to solve FE mod-
els with more than several millions of DOFs. For this, it should be
investigated whether the multi-level algebraic substructuring can
be used with the proposed method.
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