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We presented in Ko et al. (2016) an MITC4+ shell element that shows a much improved convergence
behavior when compared to the widely used MITC4 (Dvorkin and Bathe, 1984) shell element.
However, the element does still not show optimal convergence behavior when used in distorted meshes
in the analysis of some shell problems. In the present paper, we establish a new MITC4+ shell element
which shows significantly improved and indeed an almost optimal convergence behavior. In this new
continuummechanics-based shell element, the shear locking is alleviated using the well-known assumed
transverse shear strain field of the original MITC4 shell element and the membrane locking is alleviated
using a new assumed membrane strain field. The new MITC4+ shell element passes all basic tests: the
isotropy, zero energy mode and patch tests. The excellent performance of the shell element is demon-
strated through convergence studies in the solution of well-selected behavior-encompassing shell bench-
mark problems.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the finite element analysis of shell structures, the
development of ‘‘ideal” shell finite elements that satisfy the ellip-
ticity, consistency and inf-sup conditions have been pursued with
high interest [3–6]. Such shell elements should not contain an
adjustable numerical factor, pass the basic tests (the isotropy, zero
energy mode and patch tests) as well as show uniformly optimal
convergence behavior for any shell problem solved with uniform
(regular) or distorted meshes regardless of the asymptotic category
of the problem (with membrane-dominated, bending-dominated,
or mixed shell behavior). Of course, the category of a shell problem
depends on the shell geometry, loading and boundary conditions
[6–8].

The major obstacles in the development of shell finite elements
are shear and membrane locking. To alleviate the locking behav-
iors, the MITC (Mixed Interpolation of Tensorial Components)
method was established to obtain various quadrilateral and
triangular shell finite elements [1–3,9–18]. Of particular interest
are 4-node continuum mechanics based elements, and here the
convergence behavior of the 4-node MITC element (MITC4) [2] is
observed to be close to uniformly optimal in the solution of many
problems when uniformmeshes are used due to the effective treat-
ment of shear locking. The MITC4 shell element is widely used in
engineering practice, but since membrane locking is not treated
in the element formulation, the solution accuracy can deteriorate
when curved geometries are solved with distorted meshes [1,19].

In Ref. [1], we presented an improved MITC4 shell element,
named the MITC4+ element, which showed better convergence
behavior, however not an optimal or ideal behavior when distorted
meshes are used in the solution of doubly-curved shells.

There have been several attempts to alleviate the membrane
locking of 4-node continuum mechanics based shell finite ele-
ments. The method of reduced integration [20–22] can greatly alle-
viate membrane locking as well as shear locking, but the elements
suffer from rank deficiency and do not properly represent physical
rigid body modes, needing undesirable stabilization and displace-
ment projection techniques. The method of assumed strains
[1,12,23–25] was applied to the membrane strains (in-plane
strains evaluated at the mid-surface) to alleviate membrane
locking.

In these developments, the assumed membrane strain field pro-
posed by Choi and Paik is very interesting [23]. The field greatly
eliminates membrane locking of 4-node continuum mechanics
based shell elements, but the element fails the membrane patch
test. In a subsequent development, Cho and Roh successfully
applied the assumed membrane strain field and developed a
4-node exact geometry shell element [24], and Kulikov and
Plotnikova developed a methodology to overcome locking in a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2016.11.004&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2016.11.004
mailto:phillseung@kaist.edu
http://dx.doi.org/10.1016/j.compstruc.2016.11.004
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


Y. Ko et al. / Computers and Structures 182 (2017) 404–418 405
4-node exact geometry shell element [25]. Geometry exact shell
elements are formulated using mathematical shell models with
the exact representation of shell mid-surfaces [6,7,24–26], and
thus membrane locking can be investigated with relative ease.
However, in continuummechanics based shell finite elements, cur-
vatures do not explicitly appear in the element formulations,
which makes it difficult to identify how to alleviate locking and
thus formulate a generally applicable element for any shell geom-
etry and boundary conditions.

Our objective in this paper is to give an effective 4-node contin-
uum mechanics based shell element, in which shear and mem-
brane locking are greatly reduced by employing the MITC
method. The shear locking is resolved using the well-known
assumed transverse shear strain field of the original MITC4 shell
element [2], and we focus on the development of a new assumed
membrane strain field to alleviate membrane locking. Doing so,
we first extract the membrane strains in the shell element formu-
lation with the strains represented in terms of characteristic geom-
etry and displacement vectors. We then start with the membrane
strain field proposed by Choi and Paik [23], adopt the idea of Kuli-
kov and Plotnikova [25], and reach the new element formulation to
also alleviate membrane locking. The resulting shell element, the
new MITC4+ element, passes all basic tests and shows excellent
convergence behavior in the analysis of various difficult well-
chosen shell problems even when using distorted meshes. The ele-
ment shows a significantly better convergence behavior than the
MITC4+ shell element previously published [1].

In the following sections, the formulation of the MITC4 shell
element is briefly reviewed and then the formulation of the new
MITC4+ shell element is presented. The performance of the new
shell element is illustrated through the basic tests as well as the
established convergence tests.
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1

: Tying points

s

)(A
2. The MITC4 shell finite element

In this section, we briefly review the formulation of the MITC4
shell element.

The geometry of a standard 4-node continuummechanics based
quadrilateral shell finite element is interpolated using [1–3]

xðr; s; tÞ ¼
X4
i¼1

hiðr; sÞxi þ t
2

X4
i¼1

aihiðr; sÞVi
n; ð1Þ

where hiðr; sÞ is the two-dimensional interpolation function of the
standard isoparametric procedure corresponding to node i;xi is
the position vector of node i in the global Cartesian coordinate sys-

tem, and ai and Vi
n denote the shell thickness and the director vector

at the node, respectively, see Fig. 1.
Fig. 1. A standard 4-node quadrilateral continuum mechanics based shell finite
element.
It is useful to note the following representation of interpolation
function hiðr; sÞ:

hiðr; sÞ ¼ 1
4
ð1þ nirÞð1þ gisÞ with i ¼ 1; 2; 3; 4;

n1 n2 n3 n4½ � ¼ 1 �1 �1 1½ �;
g1 g2 g3 g4½ � ¼ 1 1 �1 �1½ �;

ð2Þ

in which ni and gi are permuted together.
The corresponding displacement interpolation of the element is

uðr; s; tÞ ¼
X4
i¼1

hiðr; sÞui þ t
2

X4
i¼1

aihiðr; sÞð�Vi
2ai þ Vi

1biÞ; ð3Þ

in which ui is the nodal displacement vector in the global Cartesian

coordinate system, Vi
1 and Vi

2 are unit vectors orthogonal to Vi
n and

to each other, and ai and bi are the rotations of the director vector

Vi
n about Vi

1 and Vi
2, respectively, at node i.

The linear terms of the displacement-based covariant strain
components are given by

eij ¼ 1
2
ðgi � u;j þ gj � u;iÞ; ð4Þ

in which

gi ¼
@x
@ri

; u;i ¼ @u
@ri

with r1 ¼ r; r2 ¼ s; r3 ¼ t: ð5Þ

For the MITC4 shell element, the covariant in-plane strain compo-
nents are calculated using Eqs. (1)–(3) without any modification.
The transverse shear strain field is based on assuming constant
covariant transverse shear strain conditions along the edges, see
Ref. [2]

~ert ¼ 1
2
ð1þ sÞeðAÞrt þ 1

2
ð1� sÞeðBÞrt ;

~est ¼ 1
2
ð1þ rÞeðCÞst þ 1

2
ð1� rÞeðDÞst ;

where the tying points are shown in Fig. 2 [1,9].
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Fig. 2. Tying positions (A)–(D) for the assumed transverse shear strain field of the
MITC4 shell element. The constant transverse shear strain conditions are imposed
along its edges.



Fig. 3. Representative vectors for the element geometry. (a) Two in-plane vectors xr and xs , and the plane P with normal vector n. (b) Two in-plane vectors mr and ms . (c)
Distortion vector xd . (d) Four edge vectors x1
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Fig. 4. Tying positions (A)–(E) for the assumed membrane shear strain field.
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3. The new MITC4+ shell element

We present in this section the formulation of the new MITC4+
shell element. The covariant membrane strains are represented
using characteristic geometry and displacement vectors.
3.1. Covariant membrane strains and characteristic vectors

We can write the covariant in-plane strain components in Eq.
(4) as

eij ¼ emij þ t eb1ij þ t2eb2ij with i; j ¼ 1; 2; ð7aÞ
emij ¼ 1
2

@xm

@ri
� @um

@rj
þ @xm

@rj
� @um

@ri

� �
; ð7bÞ

eb1ij ¼ 1
2

@xm

@ri
� @ub

@rj
þ @xm

@rj
� @ub

@ri
þ @xb

@ri
� @um

@rj
þ @xb

@rj
� @um

@ri

� �
; ð7cÞ

eb2ij ¼ 1
2

@xb

@ri
� @ub

@rj
þ @xb

@rj
� @ub

@ri

� �
; ð7dÞ

with

xm ¼
X4
i¼1

hiðr; sÞxi; xb ¼ 1
2

X4
i¼1

aihiðr; sÞVi
n; ð8aÞ

um ¼
X4
i¼1

hiðr; sÞui; ub ¼ 1
2

X4
i¼1

aihiðr; sÞ ð�Vi
2ai þ Vi

1biÞ: ð8bÞ

The first term emij in Eq. (7a) is the covariant in-plane membrane
strain at the shell mid-surface (t ¼ 0), and the remaining terms
are the covariant in-plane strains due to bending. The in-plane
membrane strain, see Eq. (7b), can in general induce locking and
it is this term that we modify as described below; we leave the
other terms in Eq. (7a) as they are and evaluate them using the dis-
placement formulation.

Using Eq. (2) in Eqs. (8a) and (8b), we obtain the following
relations:
@xm

@r
¼xr þ sxd;

@xm

@s
¼xsþ rxd;

@um

@r
¼ur þ sud;

@um

@s
¼usþ rud;

with

xr ¼ 1
4

X4
i¼1

nixi; xs ¼ 1
4

X4
i¼1

gixi; xd ¼ 1
4

X4
i¼1

nigixi;

ur ¼ 1
4

X4
i¼1

niui; us ¼ 1
4

X4
i¼1

giui; ud ¼ 1
4

X4
i¼1

nigiui

ð9Þ

in which the characteristic geometry vectors xr;xs and xd arise nat-
urally from the nodal point positions, see Fig. 3, and the correspond-
ing displacement vectors are ur;us and ud. Note that the geometry
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Fig. 7. Distorted mesh patterns for (a) N ¼ 4 and (b) N ¼ 8.
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vector xd connects the centers of two diagonal lines in the element
geometry.

The two vectors xr and xs form the plane P with the normal vec-
tor n

n ¼ xr � xs

kxr � xsk ; ð10Þ

as shown in Fig. 3(a). For an arbitrarily distorted shell element, the
plane P is the only flat surface that can be defined by equally
accounting for the geometry of each nodal point, as required for
passing the isotropy test. Since the two in-plane vectors, xr and
xs, are not orthogonal, it is convenient to define their dual basis vec-
tors, mr and ms on the plane P, such that

mri � xrj ¼ dij; mri � n ¼ 0 with r1 ¼ r; r2 ¼ s; ð11Þ
as shown in Fig. 3(b).

Since membrane locking occurs due to out-of-plane distortions
of the element geometry, the ‘distortion vector’ xd, shown in Fig. 3
(c), is of particular interest. The length of the distortion vector
becomes nonzero for both in-plane and out-of-plane distortions
of the element geometry. The distortion vector can be decomposed
into in-plane and out-of-plane components using the geometry
vectors (xr , xs and n):

xd ¼ ðxd �mrÞxr þ ðxd �msÞxs þ ðxd � nÞn; ð12Þ
in which the dual basis vectors mr and ms ‘measure’ the distortion
in the direction of in-plane vectors xr and xs, the values mr � xd and
ms � xd are the corresponding in-plane distortions, and xd � n corre-
sponds to the out-of-plane distortion.

In addition, the ‘edge vectors’ which lie along the element edges
are

x1
e ¼ x2 � x1

2
¼ �xr � xd ¼ � @xm

@r
ð0;1Þ;

x2
e ¼ x3 � x2

2
¼ �xs þ xd ¼ � @xm

@s
ð�1;0Þ;

x3
e ¼ x4 � x3

2
¼ xr � xd ¼ @xm

@r
ð0;�1Þ;

x4
e ¼ x1 � x4

2
¼ xs þ xd ¼ @xm

@s
ð1; 0Þ;

ð13Þ

see Fig. 3(d). The edge vectors form the corresponding edge strains,

emrrð0;1Þ ¼ x1
e � u1

e ; emrrð0;�1Þ ¼ x3
e � u3

e ; emssð1;0Þ ¼ x4
e � u4

e ;

emssð�1;0Þ ¼ x2
e � u2

e ; ð14Þ
in which each strain contains only two nodal displacements.

In the original displacement-based element formulation, the
displacements at the four nodes give the ‘rr’- and ‘ss’- membrane
strains. However, constraints arise from the condition that the
membrane strains should vanish in pure bending situations. The
use of the edge strains in Eq. (14) is important to establish an
improved behavior in bending-dominated problems [1,23–25,27].

The membrane strains in Eq. (7b) can be expressed using the
characteristic geometry and displacement vectors

emrr ¼ emrr
��
con: þ emrr

��
lin: � sþ emrs

��
bil: � s2;

emss ¼ emss
��
con: þ emss

��
lin: � r þ emrs

��
bil: � r2;

emrs ¼ emrs
��
con: þ

1
2
emrr

��
lin: � r þ

1
2
emss

��
lin: � sþ emrs

��
bil: � rs

ð15Þ

with

emrr
��
con: ¼ xr � ur; emss

��
con: ¼ xs � us; emrs

��
con: ¼

1
2
ðxr � us þ xs � urÞ;

emrr
��
lin: ¼ xr � ud þ xd � ur; emss

��
lin: ¼ xs � ud þ xd � us; emrs

��
bil: ¼ xd � ud:

ð16Þ
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Fig. 8. Convergence curves for the fully clamped square plate problem with (a) the regular and (b) distorted meshes shown in Fig. 7. The bold line represents the optimal
convergence rate.
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in which the subscripts ‘con.’, ‘lin.’ and ‘bil.’ denote constant, linear
and bilinear terms, respectively.

3.2. Construction of the assumed membrane strain field

The following five strain components obtained at tying points
are used to construct the assumedmembrane strain field [1,23–25]

emðAÞ
rr ¼ emrrð0;1Þ ¼ emrr

��
con: þ emrr

��
lin: þ emrs

��
bil:;

emðBÞ
rr ¼ emrrð0;�1Þ ¼ emrr

��
con: � emrr

��
lin: þ emrs

��
bil:;

emðCÞ
ss ¼ emssð1;0Þ ¼ emss

��
con: þ emss

��
lin: þ emrs

��
bil:;

emðDÞ
ss ¼ emssð�1;0Þ ¼ emss

��
con: � emss

��
lin: þ emrs

��
bil:;

emðEÞ
rs ¼ emrsð0;0Þ ¼ emrs

��
con:;

ð17Þ

which are effective to reduce membrane locking. The tying points
(A)–(E) as well as the corresponding strain components are shown
in Fig. 4.

We are particularly interested in the assumed membrane strain
field proposed by Choi and Paik [23], which was subsequently
applied to an exact geometry shell element by Cho and Roh [24]
�emrr ¼
1
2
ðemðAÞ

rr þemðBÞ
rr Þþ1

2
ðemðAÞ

rr �emðBÞ
rr Þ � s¼ðemrr

��
con:þemrs

��
bil:Þþemrr

��
lin: � s;

�emss ¼
1
2
ðemðCÞ

ss þemðDÞ
ss Þþ1

2
ðemðCÞ

ss �emðDÞ
ss Þ � r¼ðemss

��
con:þemrs

��
bil:Þþemss

��
lin: � r;

�emrs ¼ emðEÞ
rs ¼ emrs

��
con::

ð18Þ
We add linear terms in the covariant in-plane shear strain in
Eq. (18) and obtain the following assumed membrane strain field

êmrr ¼ �emrr ; êmss ¼ �emss ; êmrs ¼ �emrs þ
1
2
emrr

��
lin: � r þ

1
2
emss

��
lin: � s; ð19Þ

which is necessary for the shell element to pass the patch test. Then,
the five sampled strains in Eq. (17) are used to assume the mem-
brane strain field to be one order lower than implicitly given in
the original displacement-based element.

Comparing the strain field in Eq. (19) with the strain field of the
displacement-based element (given in Eq. (15)), we can identify
the following relations

emrr ¼ êmrr � emrs
��
bil: þ emrs

��
bil: � s2;

emss ¼ êmss � emrs
��
bil: þ emrs

��
bil: � r2; emrs ¼ êmrs þ emrs

��
bil: � rs; ð20Þ
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and we can see that the strain components added to the strain field
in Eq. (19) (to complete the strain field of the displacement-based
element) cause membrane locking. It is important to note that all
the added strain components contain the same term,
emrs

��
bil: ¼ xd � ud (given in Eq. (16)).

In order to establish an appropriate value for emrs
��
bil:, we adopt

the idea of Kulikov and Plotnikova [25]. The assumed membrane
strain field is constructed by the linear combination of the five
strain coefficients in Eq. (18) such as to keep the improved bending
performance with the membrane locking alleviated

~emrs
��
bil: ¼ B1 � ðemrr

��
con: þ emrs

��
bil:Þ þ B2 � ðemss

��
con: þ emrs

��
bil:Þ

þ B3 � emrs
��
con: þ B4 � emrr

��
lin: þ B5 � emss

��
lin:; ð21Þ

where the constants (B1;B2;B3;B4 and B5) need to be determined.
Note that the five strain coefficients can be easily obtained from
the sampled strain components in Eq. (17).

To pass the membrane patch tests, the new membrane strain
field should satisfy the following condition:

~emrs
��
bil: ¼ emrs

��
bil: when the element geometry is flat ðxd � n ¼ 0Þ

ð22Þ
for arbitrary in-plane deformation modes in the flat geometry.

For a flat element geometry with xd � n ¼ 0 in the plane P
defined in Eq. (10), the distortion vector in Eq. (12) becomes

xd ¼ ðxd �mrÞxr þ ðxd �msÞxs: ð23Þ
Solving Eq. (22) for arbitrary in-plane modes with Eq. (23), the five
constants in Eq. (21) are determined, see Appendix A,
B1 ¼ c2r =d; B2 ¼ c2s =d; B3 ¼ 2crcs=d; B4 ¼ �cr=d; B5 ¼ �cs=d;

ð24Þ
with

cr ¼ xd �mr ; cs ¼ xd �ms;

d ¼ c2r þ c2s � 1 ¼ ðx2
e �msÞðx4

e �msÞ þ ðx3
e �mrÞðx1

e �mrÞ þ 1;

in which cr and cs denote the in-plane distortions in Eq. (23) and d
measures the distortion of pairs of edges within the element and is
only equal to zero when the element is extremely distorted. Hence
we assume in the following that d is not zero.

Then, the assumed membrane strain term for ~emrs
��
bil: is given by

~emrs
��
bil: ¼

cr
d

crðemrr
��
con: þ emrs

��
bil:Þ � emrr

��
lin:

h i

þ cs
d

csðemss
��
con: þ emrs

��
bil:Þ � emss

��
lin:

h i
þ 2crcs

d
emrs

��
con:: ð25Þ

Substituting this assumed strain term into all added strain compo-
nents in Eq. (20), we finally obtain the new assumed membrane
strain field for the 4-node continuum mechanics based shell
element,

~emrr ¼ êmrr � ~emrs
��
bil: þ ~emrs

��
bil: � s2; ~emss ¼ êmss � ~emrs

��
bil: þ ~emrs

��
bil: � r2;

~emrs ¼ êmrs þ ~emrs
��
bil: � rs: ð26Þ

For an efficient implementation in computer codes, the assumed
strain field in Eq. (26) can be rewritten as

~emrr ¼
1
2
ð1�2aAþ sþ2aA � s2ÞemðAÞ

rr þ1
2
ð1�2aB� sþ2aB � s2ÞemðBÞ

rr

þaCð�1þ s2ÞemðCÞ
ss þaDð�1þ s2ÞemðDÞ

ss þaEð�1þ s2ÞemðEÞ
rs ; ð27aÞ
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~emss ¼ aAð�1þ r2ÞemðAÞ
rr þ aBð�1þ r2ÞemðBÞ

rr þ 1
2
ð1� 2aC þ r

þ 2aC � r2ÞemðCÞ
ss þ 1

2
ð1� 2aD � r þ 2aD � r2ÞemðDÞ

ss

þ aEð�1þ r2ÞemðEÞ
rs ; ð27bÞ

~emrs ¼
1
4
ðr þ 4aA � rsÞemðAÞ

rr þ 1
4
ð�r þ 4aB � rsÞemðBÞ

rr þ 1
4
ðsþ 4aC

� rsÞemðCÞ
ss þ 1

4
ð�sþ 4aD � rsÞemðDÞ

ss þ ð1þ aE � rsÞemðEÞ
rs ; ð27cÞ

with

aA ¼ crðcr � 1Þ
2d

; aB ¼ crðcr þ 1Þ
2d

; aC ¼ csðcs � 1Þ
2d

;

aD ¼ csðcs þ 1Þ
2d

; aE ¼ 2crcs
d

:

We note that the membrane part of the new MITC4+ shell element
is identical to that of the displacement-based element when the ele-
ment geometry is flat. That is, in two-dimensional plane stress
problems, both shell elements always yield the identical solutions.
We also note that the computational cost of the new MITC4+ shell
element is only somewhat higher than that of the original MITC4
shell element.

In the numerical solutions, we use 2� 2� 2 Gauss integration
over the element domain for all shell elements considered.

In this section, we have developed the formulation of a new
generally applicable continuum mechanics based shell element.
We illustrate the excellent performance of the new MITC4+ shell
element in the next sections.

4. Basic numerical tests

We note that the element formulation does not include any
numerical factor, and consider next the isotropy, zero energy mode
and patch tests.

The spatially isotropic behavior is an important requirement for
any shell element. The element behavior should not depend on the
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Fig. 11. Convergence curves for the free cylindrical shell problem with (a) the regular and (b) distorted meshes. The bold line represents the optimal convergence rate.
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sequence of node numbering, i.e. on the element orientation
[1,3,15–18]. The element passes the test of spatial isotropy.

In the zero energy mode test, the number of zero eigenvalues of
the stiffness matrix of a single unsupported element are counted
[1–3,9–18]. For the new element only the six zero eigenvalues cor-
responding to the six rigid body modes are obtained. That is, the
element passes the zero energy mode test.

We perform three patch tests: the membrane, bending and
shearing patch tests, see Refs. [1–3,9–18] for the patch tests. The
mesh geometry is shown in Fig. 5. The patch of elements is sub-
jected to the minimum number of constrains to prevent rigid body
motions and the nodal point forces on the boundary corresponding
to the constant stress states are applied. The patch tests are passed
if the correct values of constant stress fields are calculated at any
location within the mesh. The element passes the membrane,
bending and shearing patch tests.
5. Convergence studies

In this section, we perform convergence studies using appropri-
ate and well-established benchmark problems to study the behav-
ior of shell elements: a clamped square plate problem, and
cylindrical, hyperboloid and spherical shell problems [1,5–11,13,
14–17,24,26,28–32]. We note that the chosen problems are
behavior-encompassing, in that the typical shell behaviors encoun-
tered in shell analyses are considered.

We measure the solution errors in an appropriate norm consid-
ering membrane and bending-dominated shell problems with var-
ious curvatures, thicknesses, and boundary conditions.

To measure the error in the finite element solution, we use the
s-norm proposed by Hiller and Bathe [29]

ku� uhk2s ¼
Z
X
DeTDsdX with De ¼ e� eh;Ds ¼ s� sh; ð28Þ

where u is the exact solution, uh is the solution of the finite element
discretization, and e and s are the strain and stress vectors. This is a
proper norm for investigating whether a finite element formulation
satisfies the consistency and inf-sup conditions [3–5,13–18,29,30].

Since many good benchmark shell problems designed to detect
locking have no analytical solution, an accurate finite element
solution using a very fine mesh uref is used to replace the exact
solution u. Hence the s-norm in Eq. (28) is modified to be
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kuref �uhk2s ¼
Z
Xref

DeTDsdXref withDe¼ eref �eh; Ds¼ sref �sh:

ð29Þ
To study the solution convergence of shell finite elements
with decreasing shell thicknesses, we use the normalized relative
error Eh

Eh ¼ kuref � uhk2s
kuref k2s

: ð30Þ

The theoretical convergence behavior, which corresponds to the
optimal convergence, is given by

Eh ffi Chk
; ð31Þ

in which C is a constant independent of the shell thickness and h is
the element size. For 4-node shell elements, k ¼ 2.

In this study, well-converged reference solutions calculated
using fine regular meshes of the MITC9 shell elements are used.
The MITC9 shell element is known to satisfy the ellipticity and
consistency conditions and to show good convergence behaviors
[3–6,10,13,28–30].

In each of the problem analyses we give the results obtained
using the classical MITC4 shell element, the previously published
and the new MITC4+ shell elements, and we show how the results
change as the thickness of the shell decreases. Also, uniformly reg-
ular and distorted meshes are used.

5.1. Fully clamped square plate problem

The plate bending problem [1,5,11,14–17,30,31] shown in Fig. 6
is considered. A square plate of dimensions 2L� 2L and uniform
thickness t is subjected to a uniform pressure. Utilizing the sym-
metry condition, only a one-quarter model is considered, with
the following boundary conditions: ux ¼ hy ¼ 0 along BC,
uy ¼ hx ¼ 0 along DC and ux ¼ uy ¼ uz ¼ hx ¼ hy ¼ 0 along AB and
AD. In addition to the regular mesh in Fig. 6, we consider the same
plate bending problem with distorted meshes shown in Fig. 7.
Then, when we use an N � N element mesh, each edge is dis-
cretized in the following ratio: L1:L2:L3: . . .LN = 1:2:3: . . .N.

Fig. 8 gives the convergence curves of the three shell elements.
A 72 � 72 element mesh of MITC9 shell elements is used to obtain
the reference solution. We use N � N element meshes (N ¼ 4, 8, 16,
32, and 64) to calculate the solutions. The element size in the con-
vergence curves is h ¼ L=N. The performance of the elements is
uniformly optimal in both the regular and distorted meshes. Note
that membrane locking is inherently not present in this plate bend-
ing problem.

5.2. Cylindrical shell problems

We consider the cylindrical shell of length 2L, radius R and uni-
form thickness t as shown in Fig. 9(a), see Refs. [1,5–7,15–17,26,
28]. The loading is a smoothly varying pressure pðhÞ
pðhÞ ¼ p0 cosð2hÞ; ð32Þ
see Fig. 9(b).

This shell structure shows two different asymptotic behaviors
depending on the boundary conditions at its ends: bending-
dominated behavior when both ends are free and membrane-
dominated behavior when both ends are clamped.

Using symmetry, only the region ABCD in Fig. 9(a) is modeled.
For the membrane-dominated case, the clamped boundary condi-
tion is imposed: uz ¼ b ¼ 0 along AB, uy ¼ b ¼ 0 along DC, and
ux ¼ a ¼ 0 along BC, and ux ¼ uy ¼ uz ¼ a ¼ b ¼ 0 along AD. For
the bending-dominated case, the free boundary condition is
imposed: uz ¼ b ¼ 0 along AB, uy ¼ b ¼ 0 along DC, and
ux ¼ a ¼ 0 along BC. When using the clamped boundary condition,
the regular mesh is graded with a boundary layer of width 2

ffiffi
t

p
, see

Refs. [1,6,28] for details. In the free boundary condition, the graded
mesh with a boundary layer of width 0:5

ffiffi
t

p
is considered [1,6]. We

also perform the convergence studies with the distorted meshes
shown in Fig. 9(c).

Fig. 10 gives the convergence curves in the solution of the
clamped cylindrical shell problems. The reference solutions are cal-
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Fig. 13. Convergence curves for the clamped hyperboloid shell problem with (a) the graded regular and (b) distorted meshes. The bold line represents the optimal
convergence rate.
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culated using a 72 � 72 element mesh of MITC9 shell elements.
The solutions are obtained with N � N element meshes (N ¼ 4, 8,
16, 32, and 64). The element size is h ¼ L=N. In this problem, all
shell elements present similarly good convergence behaviors.

Fig. 11 shows the convergence curves for the free cylindrical
shell problems. Note that, in the regular meshes, all 4-node shell
elements have a flat geometry, and thus membrane locking does
not occur. However, in the distorted meshes, the element geometry
is not flat, which induces membrane locking. In those cases, the
performance of the MITC4 shell element severely deteriorates.
The new MITC4+ shell element shows an excellent performance.

5.3. Hyperboloid shell problems

Here, the hyperboloid shell shown in Fig. 12(a) is considered,
see Refs. [1,5,6,13,14–17,26,29]. The mid-surface of the shell struc-
ture is given by

x2 þ z2 ¼ 1þ y2; y 2 ½�1; 1 �: ð33Þ
As for the cylindrical shell problems, a smoothly varying pressure in
Eq. (32) is applied.

A bending-dominated behavior is obtained with free ends and a
membrane-dominated behavior is given with clamped ends, simi-
lar to the cases of the cylindrical shell.

Due to symmetry, only one-eighth of the structure correspond-
ing to the shaded region ABCD in Fig. 12(a) is modeled for the anal-
ysis. For the membrane-dominated case, the clamped boundary
condition is imposed: uz ¼ b ¼ 0 along BC, ux ¼ b ¼ 0 along AD,
uy ¼ a ¼ 0 along DC, and ux ¼ uy ¼ uz ¼ a ¼ b ¼ 0 along AB. For
the bending-dominated case, the free boundary condition is
imposed: uz ¼ b ¼ 0 along BC, ux ¼ b ¼ 0 along AD, and
uy ¼ a ¼ 0 along DC.

In both cases, a 72 � 72 element mesh of MITC9 shell elements
is used to obtain the reference solutions. The solutions are calcu-
lated using N � N element meshes (N ¼ 4, 8, 16, 32 and 64). The
element size is h ¼ L=N. For the clamped boundary condition, the
regular mesh graded in a boundary layer of width 6

ffiffi
t

p
shown in

Fig. 12(b) is considered, see Refs. [1,6,13,14–17,29]. For the free
boundary condition, the regular mesh is graded in a boundary layer
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Fig. 14. Convergence curves for the free hyperboloid shell problem with (a) the regular and (b) distorted meshes. The bold line represents the optimal convergence rate.

414 Y. Ko et al. / Computers and Structures 182 (2017) 404–418
of width 0:5
ffiffi
t

p
[1,6,13,14,29]. We also perform the convergence

studies with the distorted meshes shown in Fig. 12(c).
Fig. 13 shows the good convergence behavior of all elements in

the solution of the clamped hyperboloid shell problem. Fig. 14
shows the convergence curves for the solution of the free hyper-
boloid shell problem. While all shell elements behave well when
using the regular meshes, the convergence behavior of the MITC4
and previously published MITC4+ shell elements deteriorate when
using the distorted meshes. However, the new MITC4+ shell ele-
ment shows an almost uniformly optimal and thus ideal conver-
gence behavior.

5.4. Spherical shell problems

Finally, the spherical shell of radius R shown in Fig. 15(a) is con-
sidered. The spherical shell has 18� circular cutouts at its top and
bottom. The varying pressure in Eq. (32) with the azimuthal angle
h is applied. The problem geometry is as in Refs. [6,10,11,24,32] but
a different loading and different boundary conditions are used.
A bending-dominated behavior is obtained with free ends and a
membrane-dominated behavior is given with clamped ends, simi-
lar to the cylindrical and hyperboloid shell problems.

Utilizing the symmetry, only one-eighth of the structure corre-
sponding to the shaded region ABCD in Fig. 15(a) is modeled for the
analysis. For the membrane-dominated case, the clamped bound-
ary condition is imposed: ux ¼ b ¼ 0 along BC, uy ¼ b ¼ 0 along
AD, uz ¼ a ¼ 0 along AB, and ux ¼ uy ¼ uz ¼ a ¼ b ¼ 0 along DC.
For the bending-dominated case, the free boundary condition is
imposed: ux ¼ b ¼ 0 along BC, uy ¼ b ¼ 0 along AD, and
uz ¼ a ¼ 0 along AB. In the free boundary condition, we found by
numerical experiments a boundary layer of angle ul ¼ 15� and
hence we use the regular mesh graded in that boundary layer
shown in Fig. 15(b). We also perform the convergence studies with
the distorted meshes shown in Fig. 15(c).

Fig. 16 presents the convergence curves in the solution of the
clamped spherical shell problem. The reference solutions are
calculated using a 72 � 72 element mesh of MITC9 shell elements.
The solutions are obtained with N � N element meshes (N ¼ 4, 8,
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16, 32, and 64). The element size is h ¼ L=N with L ¼ R. All shell
elements present similarly good convergence behaviors.

Fig. 17 shows the convergence curves for the free spherical shell
problem. In the regular meshes, all elements perform equally and
very well. However, in the distorted meshes, the convergence
behaviors of the MITC4 and previously published MITC4+ shell ele-
ments deteriorate. On the other hand, the new MITC4+ shell ele-
ment also then shows an excellent performance.
6. Concluding remarks

In this study, we developed a new MITC4+ continuum
mechanics-based shell element using the MITC approach to allevi-
ate shear and membrane locking. The shear locking is alleviated by
using the interpolations of the classical MITC4 element formula-
tion. The membrane locking is alleviated by the use of characteris-
tic geometry and displacement vectors and using a new MITC
interpolation on the membrane strains. The new MITC4+ shell ele-
ment does not contain an adjustable numerical factor, passes all
basic tests and shows in an appropriate norm excellent perfor-
mance in the solution of membrane and bending-dominated prob-
lems even when significantly distorted meshes are used. Indeed, in
the difficult to solve elliptic and hyperboloid shell analysis prob-
lems the element shows an almost ideal behavior.
The new MITC4+ shell element displays a significantly better
behavior than the earlier published MITC4+ shell element, and is
computationally more effective. The element is identical to the
original MITC4 shell element for a flat geometry and hence the
membrane behavior is well preserved. Finally we should note that
the given MITC schemes are also applicable in the formulation of
solid-shell [32] and 3D-shell elements [33] and in nonlinear anal-
ysis [3,34].
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Appendix A. Derivation of the constants in Eq. (24)

Our objective is to determine the constants in Eq. (24).
The term emrs

��
bil: ¼ xd � ud should become zero in the following

deformation mode

ur ¼ ar ; us ¼ as; ud ¼ 0; ðA:1Þ
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Fig. 16. Convergence curves for the clamped spherical shell problem with (a) the regular and (b) distorted meshes. The bold line represents the optimal convergence rate.
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in which ar and as are arbitrary constant vectors placed in the plane
P. From the condition in Eq. (22), the assumed membrane strain in
Eq. (21) also should be zero,

~emrs
��
bil: ¼ 0 ðA:2Þ

in the deformation mode of Eq. (A.1).
Using Eq. (A.1) in Eq. (16), the five strain coefficients in Eq. (18)

become

ðemrr
��
con: þ emrs

��
bil:Þ ¼ xr � ar; ðemss

��
con: þ emrs

��
bil:Þ ¼ xs � as;

emrs
��
con: ¼

1
2
ðxr � as þ xs � arÞ;

emrr
��
lin: ¼ xd � ar ; emss

��
lin: ¼ xd � as:

ðA:3Þ

Substituting Eqs. (A.2) and (A.3) into Eq. (21), the following equa-
tion is obtained

ðB1 �xr þB3 �xs=2þB4 �xdÞ �ar þðB3 �xr=2þB2 �xsþB5 �xdÞ �as ¼0

ðA:4Þ
for arbitrary constant vectors ar and as,
and thus

B1 � xr þ B3 � xs=2þ B4 � xd ¼ 0; B3 � xr=2þ B2 � xs þ B5 � xd ¼ 0:

ðA:5Þ
Comparing Eq. (A.5) with Eq. (23), we can easily identify

B1 ¼ c2r =d; B2 ¼ c2s =d; B3 ¼ 2crcs=d; B4 ¼ �cr=d; B5 ¼ �cs=d

ðA:6Þ
with cr ¼ xd �mr; cs ¼ xd �ms and a constant d.

We then obtain

~emrs
��
bil: ¼

c2r
d

emrr
��
con: þ emrs

��
bil:

� �
þ c2s

d
emss

��
con: þ emrs

��
bil:

� �

þ 2crcs
d

emrs
��
con: �

cr
d
emrr

��
lin: �

cs
d
emss

��
lin:: ðA:7Þ

We can identify that emrs
��
bil: ¼ xd � xd in the following deformation

mode

ur ¼ 0; us ¼ 0; ud ¼ xd; ðA:8Þ
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Fig. 17. Convergence curves for the free spherical shell problem with (a) the graded regular and (b) distorted meshes. The bold line represents the optimal convergence rate.
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and from the condition in Eq. (22), the following equation should be
satisfied for this deformation mode

~emrs
��
bil: ¼ xd � xd: ðA:9Þ

Using Eq. (A.8) in Eq. (16), the five strain coefficients in Eq. (18)
become

emrr
��
con:þemrs

��
bil:

� �
¼xd �xd; ðemss

��
con:þemrs

��
bil:Þ¼xd �xd; emrs

��
con: ¼0;

emrr
��
lin: ¼xr �xd; emss

��
lin: ¼xs �xd:

ðA:10Þ
Substituting Eqs. (A.9) and (A.10) into Eq. (A.7), the constant d is
determined

d ¼ c2r þ c2s � 1; ðA:11Þ
which can be rewritten as

d¼ðcr þ1Þðcr �1Þþðcsþ1Þðcs�1Þþ1
¼ ½ðxdþxrÞ �mr �½ðxd�xrÞ �mr �þ ½ðxdþxsÞ �ms�½ðxd�xsÞ �ms�þ1:

ðA:12Þ
Using Eq. (13) in Eq. (A.12), the constant d becomes

d ¼ ðx2
e �msÞðx4

e �msÞ þ ðx3
e �mrÞðx1

e �mrÞ þ 1 ðA:13Þ

and the constants in Eq. (24) are finally obtained from Eq. (A.7).
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