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SUMMARY

In this study, we propose an effective method to estimate the reliability of finite element models reduced by
the automated multi-level substructuring (AMLS) method. The proposed error estimation method can accu-
rately predict relative eigenvalue errors in reduced finite element models. A new, enhanced transformation
matrix for the AMLS method is derived from the original transformation matrix by properly considering
the contribution of residual substructural modes. The enhanced transformation matrix is an important pre-
requisite to develop the error estimation method. Adopting the basic concept of the error estimation method
recently developed for the Craig-Bampton method, an error estimation method is developed for the AMLS
method. Through various numerical examples, we demonstrate the accuracy of the proposed error estimation
method and explore its computational efficiency. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

These days, we frequently deal with finite element (FE) models with more than millions of degrees
of freedom (DOFs) for analysis of ships, automobiles, and aircraft. Despite continuing advances in
computing power, computational cost has continued to rise because of the rapidly increasing size
of FE models used in engineering. For these reasons, it is crucial to reduce the computational time,
and with that goal, various reduced-order modeling techniques have been developed since the 1960s
[1-13].

Component mode synthesis (CMS) is one of the popular reduced-order modeling techniques (for
example, references [6—12]) in structural dynamics. In CMS methods, an original (global) FE model
is partitioned into several substructural models, substructural eigenvalue problems are solved, and a
reduced FE model is constructed using dominant substructural modes. In this way, the large original
FE model can be effectively approximated by a much smaller reduced model. CMS methods have
been widely used to obtain effective reduced models for use in multi-body dynamics, structural
health monitoring, structural design optimization, and real-time control of dynamic systems.

Since the 1990s, the automated multi-level substructuring (AMLS) method became popular
because it offered great computational efficiency, along with recursive partitioning and matrix-
reordering processes. The original idea of the AMLS method was developed in applied mathematics
[14-17]. However, in the structural dynamics community, a well-defined formulation of the AMLS
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method has recently been proposed that borrows from the basic concept of the Craig-Bampton (CB)
method [7, 17].

Although various studies have been performed over the last several decades to improve CMS
methods, several issues remain to be solved. One important issue is how to evaluate the reliability of
reduced models. To handle this, various error estimation methods have been proposed [13, 18-21].
In general, relative eigenvalue errors are used for the reliability evaluation of reduced models. How-
ever, basically, it is difficult to estimate relative eigenvalue errors because the exact eigenvalues are
unknown. Recently, a promising error estimation method was developed for the CB method [1]. The
method provides accurate estimation of the relative eigenvalue errors in FE models reduced by the
CB method.

The objective of this study is to develop an accurate error estimation method for the AMLS
method. Because the AMLS method is based on the CB method [18], the concept of error estimation
method developed for the CB method [1] can be also employed for the AMLS method. However,
an important prerequisite is the need to obtain an enhanced transformation matrix for the AMLS
method, based on consideration of the contribution of residual substructural modes. This is the
major difficulty in development of the error estimation method for the AMLS method because of
the relatively complicated architecture of the AMLS method. In this study, we derive the enhanced
transformation matrix and using it, propose an error estimation method for the AMLS method. The
proposed method presents excellent error estimation performance without heavy computation.

In the following sections, the original AMLS formulation is briefly reviewed, and the enhanced
transformation matrix for the AMLS method is derived. We then propose an error estimation method
for the AMLS method and evaluate the performance and computational efficiency of this new
method through various numerical examples.

2. ORIGINAL FORMULATION OF THE AMLS METHOD

In structural dynamics, the free-vibration linear equations of motion for an undamped global (non-
partitioned) structure can be expressed as

M, i, + Ky ug = 0, (1)

where Mg and K are the global mass and stiffness matrices, respectively, and u, is the global
displacement vector. The subscript g denotes the global structure, and () = d?( )/dt?, where ¢ is
the time variable.

In CMS methods, the FE model of the global structure is partitioned into small substructural FE
models as shown in Figure 1(a), and then various interface handling techniques are used. Because
the AMLS method proposed by Bennighof [17, 23] is based on the CB method [7], the substructures
are connected with a fixed interface boundary (Figure 1(b)).

In the AMLS method, interior DOFs are considered bottom-level substructures and interface
DOFs are considered higher-level substructures, or the highest level substructure. The substructural
relationship is defined using the terms ancestors and descendants. Higher-level substructures are

Q2

Figure 1. Partitioned structural model and interface handling in the automated multi-level substructuring
method: (a) partitioned structure and (b) interface boundary treatment.
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Figure 2. Substructural tree diagrams: (a) substructural levels 0 and 1 and (b) substructural levels 0, 1, and 2.

called ‘ancestors’, and lower-level substructures are called ‘descendants’. Figure 2 shows substruc-
tural tree diagrams that define the substructural relationships for two different partitioned types. In
this study, the formulation of the AMLS method is based on previous work [24].

After partitioning the global structure into Ny substructures, Equation (1) is reordered as

_Ml - _Kl 7
M, = M; M; ; . Kg = Ki K; ;
sym. sym. '
L MNs_ L KN‘Y—
T
u=| w |, fori,j=1,2,---, Nyandi # j, (2)

in which the diagonal component matrices M; and K; are the mass and stiffness matrices of the
i substructure, the off-diagonal component matrices M; ; and K; ; are the mass and stiffness
matrices of the i™ substructure coupled with the j™ substructure, and u; is the displacement vector
of the i substructure. When the iand j™ substructures are not coupled to each other, M;, jand
K;, ; are zero matrices.

Invoking the harmonic response with frequency w in Equation (1), the generalized eigenvalue
problem for the global structure is defined as

Kg((pg)lz A’lMg((og)l fOI‘i=1,2,~--,Ng, (3)

in which A; (= a)iz) and (@, ); are the eigenvalues and eigenvectors, respectively, N is the
number of DOFs in the global structural FE model. Note that A; is the square of the i natural
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frequency w; and that (¢, ); is the corresponding mass normalized eigenvector. Those satisfy mass-
orthonormality and stiffness-orthogonality conditions as follows:

(0 ) Mg(@,); = 8ij fori,j = 1,2, -+, Ng, (4a)

(0)] Kg(0,)j = Aj8j fori,j = 1,2, -+, Ny, (4b)

where §;; is the Kronecker delta (6;; = 1 if i = j, otherwise §;; = 0).
Using the eigenvectors obtained from Equation (3), the global displacement vector ug is
defined as

u, = ®eq,, 5

where @ is the global eigenvector matrix that contains all the eigenvectors (¢,); and qg is the
corresponding generalized coordinate vector.
In the AMLS method, the global displacement vector ug is expressed by

Ny
ug = Ton, with To=TOT® ... TV = [TT®, (6)

i=1
where the transformation matrix Ty is given by sequentially multiplying the substructural trans-
formation matrices T® from T to TWs) and n, is the generalized coordinate vector for the

partitioned structure. The subscript p denotes the partitioned structure.
Because of the recursive transformation procedure used in the AMLS method, the i incompletely

transformed mass and stiffness matrices, I\A/I(l) and K(i), are defined by

NI — (Tu)T(z) Tm) "M, (TmT(z) .. T(i)) and

: (N
~ N\ T .
K(l) — (T(I)T(2) _,.T(l)) Kg (T(I)T(Z)--- T(z)) , for i=1,2,---,(Ng—1).
In Equation (7), the i™ transformation matrix T® is given by

I, 0| 0

e

TO=0j® W, Y, e Y| e slel e
010! I ®)

fori=1,2,--,N,, j=i+Li+2,---, N,

s

in which ®; and W¥; ; are the eigenvector matrix of the i™ substructure and the constraint mode
matrix to couple the i and j™ substructures, respectively. The eigenvector matrix ®; can be
decomposed into the dominant term <I>fl and residual term @7 . The superscripts ¢ and r denote the
dominant and residual terms, respectively.

The eigenvector matrix ®; in Equation (8) is calculated from the following substructural
eigenvalue problems

~ (0)

KV @, = A MV with K =K M =M, for i=1,2, -, Ny, (9)

Kl

where A; is the eigenvalue matrix for the i™ substructure and 1\7[?_1) and IA(?_I) are the diag-
onal component mass and stiffness matrices of the i ‘hAsubstructure in the (i — 1)™ incompletely
transformed mass and stiffness matrices, MU~ and K¢~V defined in Equation (7). It is impor-
tant to note that in order to obtain the i™ eigenvector matrix ®;, we use the (i — 1) incompletely
transformed mass and stiffness matrices.
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The constraint mode matrix ¥;, ; in Equation (8) is defined by

AG—D\ "1 /AG—1 A (0
v, = —(&K7) (&) win K =K,

fori:1’23”'aNSyj:i+l’ i+2’ Tty NS?

(10)

in which K

(-1 . . . . . .
;  1s the off-diagonal component matrix to couple the i and j™substructures in

i,
the (i — 1) incompletely transformed stiffness matrix K™ Note that when the i and j
substructures are not coupled to each other, ¥; ; is a zero matrix.

In order to make the reduced-order model using the AMLS method, a small number of domi-
nant modes are used selectively. Neglecting the residual modes ®; in Equation (8), the dominant
transformation matrix T¢ is defined by

an

where W i,j are the substructural component matrices of multi-level constraint modes [17, 23, 24].
Note that in the AMLS method, the substructural modes of the highest-level substructure are not
truncated for static completeness (References [17, 24]). Therefore, Tg is the Ny X N p matrix, in
which N, is the number of DOFs in the reduced model. N, is calculated by adding the number of
dominant modes N4 and the number of DOFs in the highest substructure Ny, (N p = Ng + Npy;

Ns—1
with Ny = > Nl.d, where Nid is the number of dominant modes of the i substructure).

i=1
Using the obtained dominant transformation matrix, the global displacement vector ug in
Equation (6) can be approximated by

ug ~ iy = Tyil, with T = Tg, (12)

where Ty is the reduced transformation matrix of the original AMLS method and 7 p is the
corresponding generalized coordinate vector. The overbar (™) denotes approximated quantities.
Using Ty in Equation (12), the reduced mass and stiffness matrices are defined as

M, = T¢MT, and K, = TZ K, T, (13)
and then the final reduced eigenvalue problem is given by
Ky (@,)i = AiMp(@,)i for i =1,2,-+, Np, (14)

where A; and (¢ p)i are the approximated eigenvalues and eigenvectors, respectively. Using the
eigenvectors calculated in Equation (14), n , is defined as

1, = 9,4, (15)

in which ® p 1s the approximated eigenvector matrix that contains all the approximate eigenvectors
(¢,)i and q,, is the corresponding generalized coordinate vector.

Substituting n, = ®,q, in Equation (15) into Equation (12), the approximated global
displacement vector u, can be rewritten as

i, =To®,q,. (16)
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932 S.H. BOO, J. G. KIM AND P. S. LEE

The global displacement vector in Equation 5 can be approximated as
U & g = B, q,. (17)
Comparing Equations (16) and (17), the following relations are obtained
@, =To®por (¢,)i =To(@,):. (18)

In this paper, the original AMLS formulation is presented without any consideration of computa-
tional strategy. The formulation details of the multi-level computing strategy and the computational
efficiency can be found elsewhere [17, 23, 24].

3. ENHANCED TRANSFORMATION MATRIX

As explained in the previous section, the reduced transformation matrix Ty is constructed retaining
only the dominant substructural modes in the AMLS method. However, when the remaining residual
substructural modes are considered, it is possible to enhance the reduced transformation matrix Ty.
In order to derive the enhanced transformation matrix, it is necessary to decompose the original
AMLS transformation matrix Ty into dominant and residual parts.

After sequentially multiplying the substructural transformation matrices as in Equation (6), the
obtained transformation matrix T¢ can be represented in terms of substructural component matrices
as follows (for a detailed derivation, see Reference [24]),

C @,

To fori=1,2,---,Ng,j=1+1,i4+2, -, Ng. (19

I
&
=
»

To = V@ with ¥ = IV, |.¢= ®; : (20)

I DN,

where W is the multi-level constraint mode matrix, V7 i,j are the substructural component matrices
located in the upper triangular part of \i1, and @ is the eigenvector matrix that contains all the
substructural eigenvector matrices. Note that in Equation (20), ¥ and ® are N ¢ X Ng matrices.

The multi-level constraint mode matrix W is obtained by sequentially multiplying the substruc-
tural constraint mode matrices W@

Nl 10| 0
A i ) e
Y=]]¥" with w9 =|0 1%, ¥, v,
- 0ol T | Q1)

for i=1,2,---,(N,-1), j=i+lLi+2,--, N

50

in which w® is N/ ¢ X Ng matrix. Note that ¥ Jooks similar to T® in Equation (8), except for
the identity matrix in its i'" diagonal component.
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DOI: 10.1002/nme



ERROR ESTIMATION FOR THE AMLS METHOD 933

In Equation (20), the eigenvector matrix ¢ extracted from the original transformation matrix T
can be represented by

(@ @]

=}

(22)

in which <I>ld and @ contain the dominant and residual modes in the i substructure, respectively.
After reordering the eigenvector matrix @ in Equation (22), the dominant and residual parts can
be divided in the reordered matrix ®

®=[®, @] with

KX o
@ 0 (038 0
d)d = d (Dr =
@y, ' 0 q)rv -2 '
0 o Q)
L (I);V\ L 0 B

in which ®; and ®, are the eigenvector matrices corresponding to the dominant and residual

substructural modes, respectively. Note that ®; and ®, are N, x N, and Ny x N, matrices,
Ns—1
respectively (N, = Y. N/, where N/ is the number of residual modes of the i substructure).
i=1
Using ® = [®,; ®, ] instead of ® in Equation (20), the original transformation matrix Ty can
be decomposed into dominant and residual parts as follows

To = [T¢ T} ] with TS = W&, T) = ¥é,, (24)
and the global displacement vector u, in Equation (6) can be rewritten
d g
uy, =Ton, =[T¢ T} | [ ;’] (25)
Np
in which the generalized coordinate vectors for the partitioned structure n , is also decomposed into
dominant and residual parts, n‘; and n’,, corresponding to ®4 and ®,.

Substituting Equation (25) into Equation (1) and invoking the harmonic response, the following
equations are obtained

(Kp = AMp)n, = 0 with M, = (To)" M, (To). K, = (To)" K, (To), (26)
and then,
Ay —AMgq —AMy, } [Tlf,]

=0, 27
[ ML A, —AM,, || 0" @7

in which the component matrices are defined by

T

Aa=(T§) K (TE). Ar=(T5) K (T5). (28a)

Mg = (T8) Mg (T4). My = (T8) My (T)). My, = (T5) M, (T;). 28)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:927-950
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934 S.H. BOO, J. G. KIM AND P. S. LEE

Note that Equation (26) presents the exact equations of motion that contain all the substructural
modes. Using the second row in Equation (27), the following relation is obtained

0, = A(A; — AMy) " MG, (29)
Substituting Equation (29) into Equation (25), the global displacement vector ug is represented by
ug = [T§ +AT5 (A, = AM,)"'M7, | v, (30)

We use T = U @, (in Equation (24)) and My, (in Equation (28b)) in Equation (30), and obtain

~ o~ AT
ug =Tin? + AW F. ¥ MTén?, @31
with
ﬁ‘r = <I)r(Ar_/err)_uI)Zw’ (32)

where F, denotes the residual flexibility of substructures.
Using Taylor expansion, the residual flexibility matrix F, can be rewritten as

F, =@, (A, —AM,,) @]
(33)
= &, A 0T L AN M AR FOMH) O3 4+
Substituting Equation (33) into Equation (31) and truncating terms higher than order of A, the global
displacement vector ug is approximated by

ug ~ g = Timd, Ty=To+ AT, (34a)
M,T¢, F,=®,A '@, (34b)
where T Is an enhanced transformation matrix and F,s is the 0™-order term of the residual
flexibility F,.

In Equation (34b), F,s can be indirectly calculated by subtracting the dominant flexibility from
the full flexibility
CE

-
Fo= @A 0] = P : (35)

0 Fy
0

Pl = (f{l("—l))_l - (o) (Af’)_l (<1>§’)Tfor i= 1,2, (Ns—1),  (36)

in which (IA(I(’_I)) ~Land (®)(A?) =" (®%) T are the full and dominant flexibility matrices for the
i substructure. .

To construct the enhanced transformation matrix Ty, F, needs to be additionally calculated using
Equations (35) and (36). However, F,; is simply calculated by reusing (IA(Z(’_I)) —1, already calcu-
lated in Equation (10), and the dominant substructural eigensolutions A;i and <I>;i, already obtained
from Equation (9). Therefore, not much additional cost for computation is required.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:927-950
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Using the enhanced transformation matrix Ty, the i™ approximated global eigenvector (@g)i is
more accurately represented by

(@g)i = T1(@,); with Ty = To + AT, (37)

Note that the enhanced transformation matrix T is more precise than the original transformation
matrix To. Therefore, T could be adopted to improve the original AMLS method. However, in this
case, the unknown eigenvector A contained in T; would need to be properly handled.

4. ERROR ESTIMATION METHOD

In this section, we present an error estimation method to precisely evaluate the relative eigenvalue
errors in the AMLS method when the exact global eigenvalues A; are unknown. The basic procedure
is similar to the error estimation method recently developed for the CB method [22].

In CMS methods, the following relative eigenvalue error is generally used to evaluate the
reliability of reduced FE models

Y
P = = — — 17
§ by (38)

in which &; denotes the relative eigenvalue error for the i mode and the exact global eigenvalue A;
is obtained from the eigenvalue problem of the global FE model by solving Equation (3).
From the global eigenvalue problem in Equation (3), the following equation is given

1
A’_(‘pg);TKg(‘pg)l = ((pg)iTMg((pg)iﬂ (39)

where the exact global eigensolutions 4; and (g,); satisfy the mass-orthonormality and stiffness-
orthogonality conditions.

Here, the exact global eigenvector (¢,); in Equation (39) can be approximated using the
enhanced transformation matrix T; described in Equation (37)

@0)i ~T1(@,)i = [To+ LT, | ()i (40)

Using Equation (40) in Equation (39), the following equation is obtained

%—1 ~ (@) [2LTEM T, — 2T KT, — LTI K, T, + AT M T, ] (6,)i.  (41)
in which the left-hand side of Equation (41) is the relative eigenvalue error &; (Equation (38)). This
implies that the relative eigenvalue error can be calculated by the right-hand side of Equation (41).
However, the right-hand side of Equation (41) contains unknowns A;, which must be properly
handled first. ~

We assume that the approximated eigenvalue A; is very close to the exact eigenvalue A; in
Equation (41). We then use A; instead of A;, and Equation (41) is approximated as

&~ (9,)] [2MiTEMT, —2Tg KT, — A, TI KT, + AITIM T, | (9,)i. (42)

Using T¢(= To) in Equation (24) and T, in Equation (34b), TYM,T, and TYK,T, in
Equation (42) are expressed as

~T ~

TIM, T, = ®IM,F,;M;®, withM, = ¥ M,WV, (43a)
- - ~ - ~ AT N
TIK, T, = ®TK,F, M, @, withK, = ¥ K, W. (43b)
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:927-950
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In Equation (43b), it is ident~iﬁed that (I>gl~(gFrs = 0in Tg KgTr, because <I>g; and F,; have a
orthogonality for the matrix Kg. Thus, Equation (43b) becomes

TIK,T, = 0. (44)

Substituting T, in Equation (34b) into T,TKgTr in Equation (42), the following equation is
obtained

TTK, T, = ®TM,F, ;K F, ;M ®,, (45)
and because F, sf(gFrs = F;¢, we have the following relation:
TIM, T, = TTK,T,. (46)

Using Equations (44) and (46), Equation (42) is rewritten as

N = - N
E~(9,), [MTEMT, + 7T/ M,T, | (@,):. (47)
Q7
A
Q Q,
Q- oL
B
Q, Q,
Y _V_I |
< >
(a)
Ql} QG Q7
_ |
X ! | [
Q, Q,
QIO | \ i
| - T—a,
B __QIZ QS QZ
911 Qg
vy ¥ | | Q,
|l »|
= gl
(b)

Figure 3. Rectangular plate problem: (a) partition type A and (b) partition type B.
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In Equation (47), neglecting the second-order term of A; and using Equation (43a), we can define
an error estimator y; as follows

- - T - . ~
wi=Ai(¢,); AFAT(@,); withA = ®TM,. (48)

Note that A can be calculated during the recursive transformation procedure of the mass matrix M
described in Equation (7).
In Equation 48, because of the symmetry of F, ¢ matrix, it can be decomposed into three parts

F,s =F; +F, +FT, (49)

in which F; and F,, are the diagonal and upper triangular parts of F,, respectively.
Substituting Equation (49) into Equation (48), the error estimator ; for the i relative eigenvalue
error is redefined as

wi=Ai(¢,) E(@,),, E=E; +E;+E} withE, = AF,A7T.E, = AF,A7,  (50)

Table I. Retained substructural mode numbers N l.d for the rectangular
plate problem with partition type A.

Substructural level ~ Substructural number Nid Casel Case?2

Level 1 3 N{ 3 5
6 Ng 3 5

Level 2 1 N{ 6 10
2 Ng 6 10

4 Ng 6 10

5 Ng 6 10

Ny 30 50

Level 0 is not listed here.

Table II. Retained substructural mode numbers N id for the rectangular
plate problem with partition type B.

Substructural level ~ Substructural number N9  Case 1  Case 2

Level 1 9 Ng 10 13
d
12 NG 4 5
Level 2 7 Ng 5 7
8 Ng 9 12
d
10 Nld A 6 10
11 NE 3 5
Level 3 3 N¢ 5 5
N¢ 3
Level 4 1 N ld 4 6
2 N§ 2 3
4 Ng 3 4
5 N& 1 2
Ny 55 75

Level 0 is not listed here.
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938 S.H. BOO, J. G. KIM AND P. S. LEE

where E, E;, and E, are N p X N p matrices. Therefore, we do not need to handle the matrices of
global DOF size.

Here, E; and E, in Equation (50) can be expressed in a substructural component matrix form
as follows

Ng Ns
E ;= AF{AL . E7 ;=) A FAL forij= 1,2, N, (51)
k=1 k=1

in which subscripts 7, j, and k denote the i™, j®, and k" substructural quantities, respectively.
Thus, E in Equation (50) can be efficiently calculated through Equation (51).

In reduced models, lower modes are more accurately approximated than higher modes. For this
reason, we can expect that, in general, the error estimation accuracy is better in lower modes. We
also note that the proposed error estimator (; is not an upper or lower bound for the exact relative
eigenvalue error &;. Further studies are necessary to obtain a guaranteed upper bound.

It is possible to expect that the computational cost of the proposed error estimation method is not
high because it only requires to calculate F,;, A, and E matrices. The detailed computational cost
breakdown is presented in Section 6.
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Figure 4. Exact and estimated relative eigenvalue errors for the rectangular plate problem with partition type
A: (a)Ng = 30 and (b)Ny = 50.
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It is important to note that in this study, we only focused on the model reduction error. That is,
the discretization error in original FE models was not considered, because the discretization error
and its estimation methods have been well studied [25-27].

5. NUMERICAL EXAMPLES

In order to evaluate the performance and the computational efficiency of the proposed method, we
here provide solutions to five numerical problems: rectangular plate, cylindrical solid, bench corner
structure, turbine blade, and stiffened plate problems. For finite element modeling, the four-node
Mixed Interpolation of Tensorial Components (MITC) shell (e.g., References [28—33]) and eight-
node brick elements are used. The frequency cut-off method is employed to select the dominant
substructural modes [7].

The relative eigenvalue errors estimated by the proposed error estimation method are compared
with the exact relative eigenvalue errors. Furthermore, the estimated relative eigenvalue errors are
also compared with those calculated by the previous error estimation method developed by Elssel
and Voss [19],
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Figure 5. Exact and estimated relative eigenvalue errors for the rectangular plate problem with partition type
B: (a)Ng = 55 and (b)Ny = 75.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:927-950
DOI: 10.1002/nme



940 S.H. BOO, J. G. KIM AND P. S. LEE

i = l£[ 1+L —1 (52)
i lk—xi )

k=0

where Ay is the smallest residual eigenvalue on level k and p denotes the number of substructural
level. The advantage of this error estimation method is the fact that almost no computational cost
is required.

5.1. Rectangular plate problem

A rectangular plate shown in Figure 3 is considered. Length L is 20.0 m, width B is 12.0 m,
and thickness / is 0.08 m. Young’s modulus E is 206 GPa, Poisson’s ratio v is 0.33, density p is
7850 kg/m?3, and no boundary condition is imposed.

The plate structure is modeled by 20 x 12 meshes of the four-node MITC shell finite elements
and the number of total DOFs used is 1365. We consider two different partition types in Figure 3(a)
and (b):

e Partition type A: The global structure is partitioned into seven substructures and three substruc-
tural levels (levels 0, 1, and 2); Figure 3(a). Retaining 30 and 50 substructural modes (Ngy = 30
and Ny = 50), two numerical cases are considered.

e Partition type B: As shown in Figure 3(b), the number of substructures is 13 and the number
of substructural levels is five (levels 0, 1, 2, 3, and 4). We retain 55 and 75 substructural modes
for two numerical cases (Ngy = 55 and Ny = 75).

The numbers of retained substructural modes Nid in both partition types are listed in Tables I and II.

Figures 4 and 5 show the exact and estimated relative eigenvalue errors in the partition types A and
B, respectively. It is observed that the proposed error estimation method outperforms the previous
method by Elssel and Voss [19]. The proposed error estimation method very accurately estimates the

Table III. Exact and estimated eigenvalue errors in the rectangular plate problem in

Figure 3(a).
Mode number Exact Estimated (Elssel and Voss)  Estimated (Present)
1 1.42398E-04 3.47402E-03 1.41198E-04
2 4.84836E-06 3.72228E-03 4.84277E-06
3 1.14861E-03 1.91922E-02 7.45688E-04
4 6.15067E-04 2.69247E-02 7.05708E-04
5 2.32190E-03 2.90519E-02 2.31991E-03
6 3.84152E-03 4.62201E-02 3.84068E-03
7 2.59851E-04 6.38626E-02 2.64026E-04
8 7.99567E-03 9.70397E-02 7.83034E-03
9 9.85326E-03 1.20514E-01 9.80659E-03
10 1.44761E-02 1.81358E-01 1.34670E-02
11 6.99459E-03 2.19472E-01 6.78935E-03
12 1.06231E-02 2.54143E-01 9.48957E-03
13 7.65496E-03 2.88715E-01 6.92046E-03
14 1.93441E-02 3.66750E-01 1.71415E-02
15 2.81629E-02 4.58426E-01 2.43915E-02
16 4.95217E-02 5.18720E-01 4.54262E-02
17 3.45418E-02 5.32115E-01 3.46392E-02
18 2.44904E-02 8.20276E-01 2.20948E-02
19 9.76902E-02 1.13291E4-00 8.02794E-02
20 1.72710E-01 1.33925E+-00 1.43464E-01
21 1.47041E-01 1.61401E4-00 1.48564E-01
22 6.47085E-02 1.67060E+-00 5.87691E-02
23 1.06602E-01 1.82959E+-00 6.84897E-02
24 1.02452E-01 2.22575E4-00 1.01068E-01

Copyright © 2015 John Wiley & Sons, Ltd.
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Figure 6. Cylindrical solid problem.

Table IV. Retained substructural mode numbers N l.d for the cylindrical
solid problem.

Substructural level ~ Substructural number N¢  Case 1 Case 2

Level 1 3 N 12 20
6 N 10 12

Level 2 1 NE 13 26
2 Ng 13 26

4 N 1 18

5 Ng 11 18

Ny 70 120

Level 0 is not listed here.

relative eigenvalue errors in the reduced FE models. Table III lists the exact and estimated relative
eigenvalue errors, corresponding to Figure 3(a). It is observed that the present error estimator p;
provides slightly larger (upper) values for the exact relative eigenvalue error &;, except for 4th, 7th,
17th, and 21st modes, in the numerical cases considered. As mentioned in the previous section, the
proposed error estimation method gives more accurate error estimations for lower modes.
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5.2. Cylindrical solid problem

Let us consider a cylindrical solid problem with free boundary at both ends as shown in Figure 6.
Lengths L and L, are 0.16 and 0.24 m, respectively, and the radii R;, R», and R3 are 0.08, 0.12,
and 0.16 m, respectively. Young’s modulus E is 76 GPa, Poisson’s ratio v is 0.33, density p is
2796 kg/m3.

The cylindrical structure is modeled using eight-node brick elements, and the number of total
DOFs used is 1740. As shown in Figure 6, the global structure is partitioned into seven substructures,
and the number of substructural levels is three (levels 0, 1, and 2). Two different numbers of retained
substructural modes (N; = 70 and N; = 120) are considered, as listed in Table I'V.

Figure 7 shows the exact and estimated relative eigenvalue errors in the two numerical cases.
It is observed that the performance of the present error estimation method is much more accurate
than the error estimation method by Elssel and Voss [19]. For lower modes, the estimated relative
eigenvalue errors are more accurate.

5.3. Bench corner structure problem

A bench corner structure in container ships is considered. This structure is a critical part with a
high risk of fatigue cracking caused by structural vibration in ships. Lengths L and L, are 4.0 and

Relative eigenvalue error
-
o
T
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. —— Estimated (Present)
10‘ Il Il Il l
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(a) Mode number
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Relative eigenvalue error
-
o
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107 | 7
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Figure 7. Exact and estimated relative eigenvalue errors for the cylindrical solid problem: (a)Ngy = 70 and
(b)Ng = 120.
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Figure 8. Bench corner structure problem.

Table V. Retained substructural mode numbers Nl.“' for the bench
corner structure problem.

Substructural level ~ Substructural number Nid Casel Case?2

Level | 5 Nd 7 11
8 Ng 8 10
Level 2 3 N¢ 5 6
4 Ng 11 14
6 N¢ 2 7
d
7 NS 1 18
Level 3 1 Ng 9
d
2 N$ 2 5
Ny 50 80

Level 0 is not listed here.

1.0 m, and heights H; and H; are 2.0 and 1.0 m. Width B is 1.0 m, and thickness 4 is 0.025 m.
Young’s modulus E is 210 GPa, Poisson’s ratio v is 0.30, and density p is 7850 kg /m?>.

For finite element modeling, the four-node MITC shell finite elements (FEs) are used, and 3508
DOFs are considered for this problem. The FE model is partitioned into nine substructures with
four substructural levels (levels 0, 1, 2, and 3), as shown in Figure 8. We retain 50 and 80 dominant
substructural modes (N; = 50 and N; = 80), and in the two numerical cases, the numbers of
dominant substructural modes Nid contained in the reduced FE models are listed in Table V. The
exact and estimated relative eigenvalue errors are plotted in Figure 9. The present error estimation
method consistently provides a very accurate estimation of the relative eigenvalue errors.

5.4. Turbine blade problem

Here, we consider a turbine blade problem as shown in Figure 10. The turbine blade is fully fixed
at x = 0. Length and thickness are 35 m and 0.05 m, respectively, Young’s modulus E is 210 GPa,
Poisson’s ratio v is 0.3, and density p is 7800 kg/m>. The detailed geometry has been described

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:927-950
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Figure 9. Exact and estimated relative eigenvalue errors for the bench corner structure problem: (a)Ng; = 50
and (b)Ng; = 80.

[34]. We use 10300 shell finite elements and 10100 nodes (51308 DOFs). The global structure
is partitioned into 19 substructures, and we here consider three substructural levels (0, 1, and 2)
(Figure 10).

Two different numbers of retained substructural modes (N; = 300 and N; = 500) are consid-
ered, and the numbers of dominant substructural modes Nid contained in the reduced FE models
are listed in Table VI. Figure 11 shows that the present error estimation method very accurately
estimates the relative eigenvalue errors. As expected, the accuracy of the error estimation method is
better in lower modes.

5.5. Stiffened plate problem

As shown in Figure 12, a stiffened plate, an important structural unit of ships, is considered. Length
L and breadth B are 78.0 m and 44.0 m, respectively, and the stiffener spacing is 2.0 m. The stiffener
is composed of a vertical web of height 0.05 m and a flange of breadth 0.02 m, and the thickness is
0.019 m. Young’s modulus E, Poisson’s ratio v and density p are 206 GPa, 0.3, and 7850k g/m?>,
respectively.
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Figure 11. Exact and estimated relative eigenvalue errors for the turbine blade problem: (a)N; = 300 and
(b)N,; = 500.

The number of DOFs is 1004088, and the global structure is automatically partitioned into 1023
substructures with 10 substructural levels using METIS [35], which is an efficient mesh partition-
ing software package. For two numerical cases, we use 2200 and 5450 dominant substructural
modes (Ngy = 2200 and N; = 5450). The exact and estimated relative eigenvalue errors are
plotted in Figure 13 for the two numerical cases. This clearly shows the accuracy of the proposed
error estimator.

6. COMPUTATIONAL COST

In this work, a sparse matrix computation with MATLAB (MathWorks, Natick, MA, USA) is used
in a personal computer (Intel core (TM) i7-3770, 3.40 GHz CPU, 32 GB RAM). To investigate
the computational cost for the proposed error estimator p; in Equation (50), we calculate the
computational cost breakdown for F,, A, and E matrices.

In the turbine blade problem, we investigate the computational cost required for the proposed error
estimator. Table VII lists the breakdown of computational cost for estimating relative eigenvalue
errors of 250 modes in the turbine blade problem (N; = 300) The results show that compared with
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Figure 12
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Figure 13. Exact and estimated relative eigenvalue errors for the stiffened plate problem: (a) N; = 2200 and
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the computation time of the AMLS method, 7.91% of additional computation time is required to
calculate the relative eigenvalue errors in 250 global modes

Table VIII shows the details of computational cost when N; = 5450 for the stiffened plate
problem. Compared with the computation time required for the AMLS method, the present
error estimation method requires 7.77% of additional computation time to calculate the relative
eigenvalue errors of 1400 global modes

We here present the computational costs for the FE models with 51308 and 1004088 DOFs.
However, additional tests will be required to consider FE models with more than several millions of
DOFs. For this work, much more effective implementations and high-performance computers will
be necessary.

Here, we also compare the computational costs of the present and of the Elssel and Voss
error estimation methods. Table IX presents normalized computation times for the relative eigen-
value errors in the five FE models considered in this study. The computation times are nor-
malized by the total computation time of the AMLS method. Numerical results show that the
present error estimation method is more expensive than the Elssel and Voss method. Note that
the Elssel and Voss method is an a priori method, but the present method is an a posteriori
method.

Table VII. Computational cost breakdown for the present error estimation method. Turbine blade problem,

N4z = 300.
Computation times
Items Related equations [sec] Ratio [%]
AMLS Transformation procedures 13 46.55 99.30
Solution of the reduced 14 0.33 0.70
eigenvalue problem
Total — 46.88 100.00
Error estimation Calculation of the residual 36 0.55 1.17
flexibility matrix Fy¢
Construction of A and E matrices 48, 51 2.36 5.03
Calculation error estimator  ; 50 0.80 1.71
Total — 3.71 7.91

Table VIII. Computational cost breakdown for the present error estimation method. Stiffened
plate problem, Ny = 5450.

Computation times

Items Related equations [sec] Ratio [%]

AMLS Transformation procedures 13 3355.02 96.74

Solution of the reduced 14 113.21 3.26

eigenvalue problem

Total — 3468.23 100.00
Error estimation  Calculation of the residual 36 36.37 1.05

flexibility matrix Fy¢

Construction of A and E matrices 48, 51 227.31 6.55

Calculation error estimator it ; 50 5.83 0.17

Total — 269.51 7.77
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Table IX. Computational costs of the present and of the Elssel and Voss error estimation

methods.
Normalized

The number of DOFs computation time

Wi calculated Ng Np  Elssel and Voss  Present
Rectangular plate
(Ng = 30) 24 1365 215 0.001121 0.09107
Cylindrical solid
(Ng =170) 24 1740 250 0.000682 0.08974
Bench corner structure
(Ng = 50) 24 3508 147 0.000297 0.03367
Turbine blade
(Ng = 300) 250 51308 1500 0.000020 0.07911
Stiffened plate
(Ng = 5450) 1400 1004088 7796 0.000001 0.07771

The computation times are normalized by the computation time of the AMLS method.

7. CONCLUSIONS

In this study, we proposed an error estimation method to accurately estimate the relative eigen-
value errors in structural FE models reduced by the AMLS method. To develop the error estimation
method for the AMLS method, in this study, an enhanced transformation matrix was newly devel-
oped that considered the residual mode effect. This enhanced transformation matrix makes it
possible to more accurately approximate the global eigenvectors. Using the enhanced transformation
matrix, we then derived the error estimation method for the AMLS method.

The excellent performance of the proposed error estimation method was demonstrated through
various numerical examples. The computational efficiency of the proposed method was also studied
for the FE models considered in this study. In future work, it will be valuable to improve the com-
putational efficiency of the error estimation method considering FE models with more than several
millions of DOFs.
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