A simplified error estimator for the CB method and its application to error control

Seung-Hwan Boo a, Jin-Gyun Kim b, Phill-Seung Lee a,⇑

⇑Corresponding author.
E-mail address: philseung@kaist.edu (P.S. Lee).

Article info
Article history:
Received 17 July 2015
Accepted 4 November 2015

Keywords:
Structural dynamics
Finite element method
Model reduction
Component mode synthesis
Craig–Bampton method
Error estimation

Abstract
In this paper, we simplify the error estimation technique developed for the Craig–Bampton (CB) method (Kim et al., 2014). The original formulation is simplified by neglecting insignificant terms, a new error estimator is obtained, and thus computational cost is significantly reduced with negligible accuracy loss. In addition, the contribution of a specific substructure to a relative eigenvalue error can be estimated using the new formulation, in which the estimated relative eigenvalue error is represented by a simple summation of the substructural errors estimated. Therefore, the new formulation can be employed for error control by using the detailed errors estimated for a certain substructure. Through various numerical examples, we verify the accuracy and computational efficiency of the new formulation, and demonstrate an error control strategy.

1. Introduction
In 1960s, component mode synthesis (CMS) was first presented by Hurty [2]. In the decades since then, various CMS methods have been developed [3–15]. The CMS methods have generally been employed to solve large and complex structural vibration problems efficiently, and their applications have been extended to new areas of research such as multi-body dynamics, structural health monitoring, structural design optimization, and real-time control of dynamic systems [16–19].

In CMS methods, one research issue is how to evaluate the reliability of eigensolutions obtained from the reduced model, when the exact eigensolutions are unknown. To handle this problem, several a priori and a posteriori error estimation methods have been developed [20–23]. Of special interest here, Elssl and Voss [21] developed an upper bound of the relative eigenvalue error for the automated multi-level substructuring (AMLS) method [24–26]. Since it is an a priori method and a scalar operation technique, it requires almost no computational cost. However, although it gives the tendency of the relative eigenvalue error as an upper bound, its estimation capability is not adequate for practical use in engineering problems.

Recently, an accurate error estimator was developed for the CB method using an enhanced transformation matrix derived considering the residual mode effect [1]. Its estimation accuracy and computational efficiency were tested with various structural finite element (FE) models (within 5000 DOFs). However, since the original formulation requires full matrix operations, its computational cost may become severe in problems with very large DOFs.

In order to improve its computational efficiency, we here propose a newly formulated error estimator extending the previous work [1]. First, the original formulation is simplified at the component matrix level and some higher order terms are neglected. Then, we newly define a simplified error estimator, in which the contribution of a specific substructure to a relative eigenvalue error can be calculated and the summation of the substructural eigenvalue errors is equal to the total eigenvalue error estimated. Consequently, using the simplified error estimator, we provide two important advantages (reduction of computational cost and capability to estimate substructural errors) with negligible loss of accuracy.

In particular, using the second feature, we can identify the substructural distribution of relative eigenvalue errors, which makes it possible to handle locally fluctuated eigenvalue errors by adjusting the number of substructural modes selected. It is important to note that the concept of the substructural error mentioned here nicely matches with the key idea of the component mode synthesis (CMS). That is, a whole model is the summation of its substructural models.

In the following sections, the CB method, the enhanced transformation matrix, and the previous error estimation method are
briefly reviewed. We then derive the simplified error estimator, and propose an error control strategy. Finally, the performance of the error estimator is tested using a variety of numerical examples.

2. Craig–Bampton method

In this section, we briefly introduce the formulation of the CB method, see Refs. [1–5] for detailed derivations.

Let us consider a global finite element model partitioned into \(n \) substructures fixed to its boundary interface, see Fig. 1. In the CB method, the equations of motion for free vibration are given

\[
\mathbf{M}_s \ddot{\mathbf{u}}_s + \mathbf{K}_s \mathbf{u}_s = \mathbf{0},
\]

where \(\mathbf{M} \) and \(\mathbf{K} \) are mass and stiffness matrices, respectively, \(\mathbf{u} \) is the displacement vector, and \((\cdot) = \frac{d^2}{dt^2} \) with time variable \(t \). The subscripts \(g \) denotes the global structural quantities, and the subscripts \(s \) and \(b \) denote the substructural and interface boundary quantities, respectively. The subscript \(c \) denotes the coupled quantities between substructures and interface boundary. Note that \(\mathbf{M}_b \) and \(\mathbf{K}_b \) are the block-diagonal mass and stiffness matrices that consist of substructural mass and stiffness matrices, \(\mathbf{M}_i \) and \(\mathbf{K}_i \) (for \(i = 1, 2, \ldots, n \)).

The eigenvalue problem for the global structure is defined as

\[
\mathbf{K}_s(\varphi_s) = \lambda_i \mathbf{M}_b(\varphi_s), \quad \text{for} \ i = 1, 2, \ldots, N_g,
\]

where \(\lambda_i \) and \(\varphi_s \) are the eigenvalue and eigenvector corresponding to the \(i \)th global mode, and \(N_g \) is the number of DOFs in the global FE model. Note that \(\varphi_s \) is the mass-normalized eigenvector, and \(\lambda_i \) and \(\varphi_b \) satisfy mass-orthonormality and stiffness-orthogonality conditions.

Using the eigenvectors obtained from Eq. (3), the global displacement vector \(\mathbf{u}_s \) is expressed by

\[
\mathbf{u}_s = \Phi_s \mathbf{q}_s,
\]

with \(\Phi_s = [(\varphi_s)_1 \quad (\varphi_s)_2 \quad \ldots \quad (\varphi_s)_{N_g}] \), \(\mathbf{q}_s = [q_1 \quad q_2 \quad \ldots \quad q_{N_g}] \) for \(i = 1, 2, \ldots, N_g \),

where \(\Phi_s \) is the global eigenvector matrix that contains the eigenvectors \(\varphi_s \), and \(\mathbf{q}_s \) is the generalized coordinate vector that contains the generalized coordinates \(q_i \) corresponding to \(\varphi_s \).

Then, the transformation matrix \(\mathbf{T}_0 \) is constructed by combination of the fixed-interface normal modes \(\Phi \) and interface-constraint modes \(\Psi \) as

\[
\mathbf{T}_0 = [\Phi \quad \Psi],
\]

with

\[
\Phi = [\Phi_1 \quad \Phi_2 \quad \ldots \quad \Phi_n], \quad \Psi = [\Psi_1 \quad \Psi_2 \quad \ldots \quad \Psi_n], \quad \Phi_i = [\Phi_i^\ell \quad \Phi_i^r], \quad \Psi_i = -\mathbf{K}_i^{-1}\mathbf{I}_b,
\]

where \(\Phi_i \) is the block-diagonal eigenvector matrix that consists of substructural eigenvectors, and it is decomposed into \(\Phi_i^\ell \) and \(\Phi_i^r \) that are the eigenvector matrices corresponding to the dominant and residual substructural modes, respectively. Here, \(\Psi_i \) is the constraint modes matrix and \(\mathbf{I}_b \) is an identity matrix for the interface boundary. The superscripts \(d \) and \(r \) denote the dominant and residual terms, respectively.

Then, \(\Phi_s \) is obtained using the following substructural eigenvalue problems

\[
\mathbf{K}_i^0 \Phi_i^d = \Lambda_i^0 \Phi_i^d, \quad \Phi_i^r = [\Phi_i^d \quad \Phi_i^r] \quad \text{for} \ i = 1, 2, \ldots, n,
\]

where \(\Phi_i^d \) and \(\Lambda_i^0 \) are the substructural eigenvector and eigenvalue matrices corresponding to the \(i \)th substructure, respectively. The substructural eigenvector matrix \(\Phi_i^d \) is decomposed into the dominant term \(\Phi_i^d \) and residual term \(\Phi_i^r \).

The constraint mode matrix \(\Psi_i \) in Eq. (6) is defined by

\[
\Psi_i = \begin{bmatrix} \Psi_i^d \\ \Psi_i^r \end{bmatrix} \quad \text{with} \quad \Psi_i^d = -(\mathbf{K}_i^0)^{-1}\mathbf{I}_b \quad \text{for} \ i = 1, 2, \ldots, n,
\]

in which \(\Psi_i^d \) is the constraint mode matrix of the \(i \)th substructure, and \(\mathbf{K}_i^0 \) is the stiffness matrix of the \(i \)th substructure coupled with the interface boundary. Here, \((\mathbf{K}_i^0)^{-1} \) is computed using the Cholesky factorization of \(\mathbf{K}_i^0 \).

Using the transformation matrix \(\mathbf{T}_0 \) in Eq. (5), the global displacement vector \(\mathbf{u}_s \) is expressed by

\[
\mathbf{u}_s = \begin{bmatrix} \mathbf{u}_s^r \\ \mathbf{u}_s^d \end{bmatrix} = \mathbf{T}_0 \mathbf{u} \quad \text{with} \quad \mathbf{T}_0 = \begin{bmatrix} \Phi^d \quad \Phi^r \quad \Psi_1 \quad \ldots \quad \Psi_n \\ 0 \quad 0 \quad \mathbf{I}_b \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} \mathbf{q}_s^d \\ \mathbf{q}_s^r \end{bmatrix},
\]

in which \(\mathbf{q}_s^d \) and \(\mathbf{q}_s^r \) are the generalized coordinate vectors corresponding to the dominant and residual substructural modes, respectively.

Neglecting the residual terms in \(\mathbf{T}_0 \) in Eq. (9), the global displacement vector \(\mathbf{u}_s \) is approximated by

![Fig. 1. Interface handling in the CB method: (a) partitioned structure and (b) fixed interface boundary treatment.](image-url)
Thus, in Eq. (16), the off-diagonal component matrices \(U^d \) of the reduced CB method could be obtained as \(\tilde{M} = T_s^T M_s T_0, \quad K = T_s^T K_s T_0, \) and then the reduced eigenvalue problem in the CB method is given by

\[
K \Phi = \lambda M \Phi,
\]

where \(\lambda_i \) and \(\Phi_i \) are the approximated eigenvalues and eigenvectors, respectively, and \(N \) is the number of DOFs in the reduced model \((N = N_q + N_b)\). Here, \(N_q \) and \(N_b \) are the numbers of dominant substructural modes and interface boundary DOFs, respectively.

Using the eigenvectors obtained from the reduced eigenvalue problem in Eq. (12), \(\mathbf{u} \) is defined as

\[
\mathbf{u} = \Phi \mathbf{q},
\]

where \(\Phi \) is the approximated eigenvector matrix that contains all the approximated eigenvectors \(\{\Phi_i\}\), and \(\mathbf{q} \) is the corresponding generalized coordinate vector.

In the CB method, the reduced transformation matrix \(T_0 \), the approximated global eigenvector matrix \(\Phi_s \), defined as

\[
\Phi_s = T_0 \Phi, \quad \{\Phi_s\}_i = T_0 \Phi_i,
\]

is defined as

\[
\]

3. Simplified error estimator

This section briefly reviews the enhanced transformation matrices that are the key ingredient of the error estimator; then we summarize the original error estimator for the CB method [1], and derive a simplified error estimator.

3.1. Enhanced transformation matrix

Substituting Eq. (9) into Eq. (1) and pre-multiplying \(T_0^T \), the transformed equations of motion considering all the substructural modes are obtained as follows:

\[
M \mathbf{u}' + K \mathbf{u} = \mathbf{0},
\]

\[
\tilde{M} = T_s^T M_s T_0 = \begin{bmatrix} I_s & 0 & \Phi_s^T M_c \\ 0 & I_s & \Phi_s^T M_c \\ \Phi_s^T & \Phi_s^T & M_c \end{bmatrix},
\]

\[
K = T_s^T K_s T_0 = \begin{bmatrix} \Lambda_s^d & 0 & 0 \\ 0 & \Lambda_s^d & 0 \\ 0 & 0 & K_b \end{bmatrix},
\]

where the component matrices are defined by

\[
F_s^d = (\Phi_s^T)^T M_s (\Phi_s^T), \quad F_s = (\Phi_s^T)^T M_c (\Phi_s^T),
\]

\[
M_b = M_b + M_c \Psi_c + \Psi_c^T M_c, \quad M_c = M_c + M_c \Psi_c,
\]

\[
\Lambda_s^d = (\Phi_s^T)^T K_s (\Phi_s), \quad \Lambda_s^d = (\Phi_s^T)^T K_c (\Phi_s), \quad K_b = K_b + K_c \Psi_c.
\]

Note that the dominant and residual eigenvector matrices, \(\Phi_d \) and \(\Phi_r \), are orthogonal for the mass matrix \(M_c \) and stiffness matrix \(K_c \).

Thus, in Eq. (16), the off-diagonal component matrices

\[
((\Phi_d^T)M_c(\Phi_r^T), (\Phi_d^T)M_c(\Phi_r^T), (\Phi_d^T)K_c(\Phi_r^T) \text{ and } (\Phi_d^T)K_c(\Phi_r^T))
\]

become zero matrices.

Using \((\cdot) = d^2()/dt^2 = -\lambda \), Eq. (15) is rewritten as

\[
\begin{bmatrix}
\Lambda_s^d - \lambda I_s^d & 0 & -\lambda (\Phi_s^T)^T M_c \\
0 & \Lambda_s^d - \lambda I_s^d & -\lambda (\Phi_s^T)^T M_c \\
-\lambda (\Phi_s^T)^T M_c & -\lambda (\Phi_s^T)^T M_c & K_b - \lambda I_b
\end{bmatrix} \begin{bmatrix} q_s^d \n q_s \n u_b \end{bmatrix} = \mathbf{0}.
\]

From the second row in Eq. (18), \(q_s^d \) can be defined

\[
q_s^d = \lambda (\Lambda_s^d - \lambda I_s^d)^{-1}(\Phi_s^T)^T M_s u_b,
\]

Using Eq. (19) into Eq. (9) and neglecting higher order terms of \(\lambda \), the global displacement vector \(u_s \) is approximated by

\[
\mathbf{u}_s \approx \mathbf{u}_s = T_1 \mathbf{u} \quad \text{with} \quad T_1 = T_0 + \lambda T_0.
\]

In Eq. (20), the additional transformation matrix \(T_1 \) is given by

\[
T_1 = \begin{bmatrix} 0 & F_s & M_b \\
0 & 0 & 0 \end{bmatrix}
\]

with \(F_s = (\Phi_s^T)(\Lambda_s^d)^{-1}(\Phi_s)^T = K_s - (\Phi_s^T)(\Lambda_s^d)^{-1}(\Phi_s)^T \),

where \(F_s \) is the static term of the residual flexibility matrix \([1] \), and \(K_s^{-1} \) and \((\Phi_s^T)(\Lambda_s^d)^{-1}(\Phi_s)^T \) are the full and dominant flexibility matrices for substructures, respectively.

It is important to note that the term \(T_0 \) in the enhanced transformation matrix contains the effect of the residual substructural modes \(\Phi_r \). However, in the original transformation matrix of the CB method \(T_0 \), the residual substructural modes are simply truncated without any consideration. For this reason, the enhanced transformation matrix \(T_1 \) can more accurately approximate the global displacement vector. The enhanced transformation matrix is essential for developing the error estimation method. However, \(T_1 \) could not be used to construct the reduced model without a proper treatment because it contains the unknown \(\lambda \) [27,28].

3.2. Original error estimator

In CMS methods, to verify the reliability of reduced models, the relative eigenvalue error could be employed

\[
\zeta_i = \frac{\lambda_i - \lambda_i^d}{\lambda_i^d},
\]

where \(\lambda_i \) denotes the relative eigenvalue error for the 1th global mode, and the exact global eigenvalue \(\lambda_i \) and approximated eigenvalue \(\lambda_i^d \) are calculated from Eqs. (5) and (12), respectively.

From the eigenvalue problem in Eq. (5), the following relation is obtained

\[
\frac{1}{\lambda_i^d} (\Phi_d)_{i}^T K_s (\Phi_d)_{i} = (\Phi_d)_{i}^T M_s (\Phi_d)_{i},
\]

where the exact global eigensolutions, \(\lambda_i \) and \((\Phi_d)_{i} \), satisfy the mass-orthonormality and stiffness orthogonality conditions.

The exact global eigenvector \((\Phi_d)_{i} \) can be approximated using the enhanced transformation matrix \(T_1 \),

\[
(\Phi_d)_{i} \approx T_1 \Phi_d = T_0 + \lambda_i T_0 \Phi_d
\]

Using Eq. (24) in Eq. (23), the following equation is obtained

\[
\frac{1}{\lambda_i} \Phi_d^T T_0 + \lambda_i T_0 \Phi_d \approx \Phi_d^T T_0 + \lambda_i T_0 \Phi_d \approx \Phi_d^T T_0 + \lambda_i T_0 \Phi_d.
\]
and its expansion results in
\[
\frac{1}{\lambda_i} \phi_i^T K \Phi \phi_i + \phi_i^T [T]_i K T_0 + T_i^T K_0 T_0 + \lambda_i T_i^T K T_0 \phi_i = \\
\approx \phi_i^T M \phi_i + \phi_i^T [\lambda_i T_i^T M T_i + \lambda_i T_i^T M T_0 + \lambda_i T_i^T M T_0 - T_i^T K_0 T_0] \phi_i.
\tag{26}
\]

Since \(\phi_i^T K \phi_i = \lambda_i \) and \(\phi_i^T M \phi_i = 1 \), Eq. (26) is rewritten as
\[
\frac{\lambda_i}{\lambda_i} - 1 \approx 2 \phi_i^T T_0 \left[\lambda_i M_0 - K_0 T_0 \phi_i + \phi_i^T T_0 \left[\lambda_i M_0 - \lambda_i K_0 T_0 \phi_i \right] \right].
\tag{27}
\]

In Eq. (27), the scalar terms \(\phi_i^T T_i^T M_i T_i \phi_i \) and \(\phi_i^T T_i^T K_i T_i \phi_i \) are equal to \(\phi_i^T T_0 \left[\lambda_i M_0 - \lambda_i K_0 T_0 \phi_i \right] \phi_i \), and \(\phi_i^T T_i^T M_i T_i \phi_i \), respectively. Therefore, Eq. (27) becomes
\[
\frac{\lambda_i}{\lambda_i} - 1 \approx 2 \phi_i^T T_0 \left[\lambda_i M_0 - K_0 T_0 \phi_i + \phi_i^T T_0 \left[\lambda_i M_0 - \lambda_i K_0 T_0 \phi_i \right] \phi_i \right]
\tag{28}
\]
in which the left side is the relative eigenvalue error \(\xi_i \) in Eq. (22).

Using \(\lambda_i \) instead of unknown \(\lambda_i \) in Eq. (28), the relative eigenvalue error \(\xi_i \) could be approximated as
\[
\frac{\lambda_i}{\lambda_i} - 1 \approx \eta_i
\tag{29}
\]
with \(\eta_i = 2 \phi_i^T T_0 \left[\lambda_i M_0 - K_0 T_0 \phi_i + \phi_i^T T_0 \left[\lambda_i M_0 - \lambda_i K_0 T_0 \phi_i \right] \phi_i \right] \phi_i \).

In addition, substituting \(T_s \) into \(T_i^T K_i T_s \) in Eq. (30), we have the following relation:
\[
T_i^T M_s T_0 = T_i^T K_i T_0.
\tag{33}
\]

Using Eqs. (32) and (33), Eq. (30) is rewritten as
\[
\eta_i = \lambda_i \phi_i^T \begin{bmatrix} 0 & 0 \\ 0 & A_0 \end{bmatrix} \phi_i + \lambda_i^2 \phi_i^T M_i T_i \phi_i.
\tag{34}
\]
The approximated eigenvector \(\phi_i \) in Eq. (34) can be partitioned as
\[
\phi_i = \begin{bmatrix} \phi_{i,0} \\ \phi_{i,b} \end{bmatrix},
\tag{35}
\]
where \(\phi_{i,0} \) and \(\phi_{i,b} \) are the substructural and interface boundary terms of the approximated eigenvector \(\phi_i \), respectively.

Neglecting the second order term of \(\lambda_i \) and using Eq. (35), Eq. (34) can be approximated as
\[
\eta_i \approx \mu_i \phi_i^T \begin{bmatrix} A_0 & \phi_{i,b} \end{bmatrix} \phi_{i,b},
\tag{36}
\]
where \(\mu_i \) is a new error estimator. Note that, since \(\phi_{i,0} \) and \(A_0 \) are \(N_s \times 1 \) vector and \(N_b \times N_s \) matrix, we do not need to handle the matrices of global DOF size.

The new error estimator \(\mu_i \) could be more efficiently described in a substructural component matrix form. The matrices \(M_i \) and \(F_{n_s} \) parts of \(A_0 \) are represented as
\[
\begin{bmatrix} M_0 \end{bmatrix}, \quad F_{n_s} = \begin{bmatrix} F_{n_s}^{(1)} \\ \vdots \\ F_{n_s}^{(k)} \end{bmatrix},
\tag{37}
\]
with \(F_{n_s}^{(k)} = (K^{(k)})^{-1} - (\Phi_{n_s}^{(k)})^{-1} \left(\Phi_{n_s}^{(k)} \right)^T \) for \(k = 1, 2, \ldots, n \).

Due to symmetry, \(F_{n_s}^{(k)} \) in Eq. (38) can be decomposed into three parts
\[
F_{n_s}^{(k)} = F_{n_s}^{(k)} + F_{n_s}^{(k)} + F_{n_s}^{(k)} \left(F_{n_s}^{(k)} \right)^T
\tag{39}
\]
in which \(F_{n_s}^{(k)} \) and \(F_{n_s}^{(k)} \) are the diagonal and upper triangular parts of \(F_{n_s}^{(k)} \), respectively.

Finally, using Eqs. (36), (38) and (39), the new error estimator \(\mu_i \) for the \(i \)th relative eigenvalue error is redefined by
\[
\mu_i = \sum_{k=1}^{n} \mu_i^{(k)}, \quad \mu_i^{(k)} = \epsilon_i^{(k)} + 2 \epsilon_i^{(k)} \cdot
\tag{40}
\]
with \(\epsilon_i^{(k)} = \lambda_i \phi_{i,b}^T M_{e,i}^{(k)} F_{a,i}^{(k)} M_{e,i}^{(k)}(\phi_{i,b}) \), \(\epsilon_i^{(k)} = \lambda_i (\phi_{i,b})^T M_{e,i}^{(k)} F_{a,i}^{(k)} M_{e,i}^{(k)}(\phi_{i,b}) \).

where \(\mu_i^{(k)} \) is the estimated substructural error corresponding to the \(k \)th substructure for \(i \)th relative eigenvalue error, and the new error estimator \(\mu_i \) is simply obtained by a summation of the substructural errors estimated.

In Eq. (40), there is no need to calculate the matrix \(T_s \) that is a prerequisite of the original error estimation method, and it only requires substructural component matrices such as \(M_{e,i}^{(k)} \) and \(F_{a,i}^{(k)} \).
Therefore, it is easy to identify that Eq. (40) is much more computationally efficient than the original error estimation method in Eq. (29). Details of the computational cost are presented in Section 4.

In addition, it is important to note that the estimated substructural error $\mu_{i}^{(k)}$ in Eq. (40) provides the contribution of the kth substructure to the ith relative eigenvalue error. Using this feature, we propose an error control strategy to improve effectively the accuracy of the global modes having relatively large errors. This strategy will be presented in Section 5.

4. Numerical examples

In this section, to investigate the performance of the new error estimator, we consider three practical engineering problems involving a stiffened plate, a cargo hold structure, and a semi-submersible rig.

All FE (Finite Element) models are constructed using the 4-node MITC shell element [30–32], and the free boundary condition is imposed. Here, we use the material property of a mild steel, so that Young's modulus E, Poisson's ratio ν, and density ρ are 206 GPa, 0.3, and 7850 kg/m3, respectively. The frequency cut-off method is employed to select the dominant substructural modes [3]. All the code implementations are done using MATLAB in a personal computer (Intel core (TM) i7-3770, 3.40 GHz CPU, 32 GB RAM).

4.1. Stiffened plate problem

Here, we consider a stiffened plate, an important component of ships (see Fig. 2). Length L, breadth B, and stiffener spacing S are 26.0 m, 6.0 m, and 2.0 m, respectively. The stiffener is composed of a vertical web of height 0.05 m and a flange of breadth 0.02 m, and the thickness t is 0.019 m. The number of DOFs is 52662 and the global structure is partitioned into 18 substructures. For two numerical cases, we use 60 and 200 dominant substructural modes ($N_d = 60$ and $N_d = 200$).

The exact and estimated relative eigenvalue errors calculated by the previous (original) and present formulations are plotted in Fig. 3 for the two numerical cases. The estimated relative eigenvalue errors are also compared with those calculated by the error estimation method developed by Elssel and Voss [21],

$$\mu_i = \frac{\lambda_i}{|\lambda_i - \lambda_r|},$$

where λ_r is the smallest residual eigenvalue of substructures.

Table 1 lists the exact and estimated relative eigenvalue errors corresponding to Fig. 3(a). This clearly shows that the accuracy of the present formulation is very similar to its original formulation. Table 2 shows the details of computational cost corresponding to Fig. 3(a). Compared to the computation time required for the CB method, the original formulation requires 35.85% of additional computation time. On the other hand, the present formulation only requires 2.27% of additional computation time.

Although the error estimation method developed by Elssel and Voss gives the tendency of the relative eigenvalue error as an upper bound, its estimation capability is not adequate for practical use in engineering problems. However, it requires almost no computational cost, because it is an a priori method and a scalar operation technique.

Fig. 2. Stiffened plate problem.
Considering symmetric partitioning, the computational cost for the present error estimator could be reduced more. As shown in Fig. 2, the substructures 1, 2, 3, 4, 5, and 6 are symmetric with the other substructures. Thus, it is necessary to calculate the residual flexibility F_{rs} and substructural error l_i only for the substructures 1, 2, 3, 4, 5, and 6. The computational cost for the present error estimator, considering symmetric partitioning, is also presented in Table 2.

4.2. Cargo hold structure problem

Here, a cargo hold structure of an oil carrier is considered (shown in Fig. 4). The height H, breadth B, length L, and thickness t are 30.0 m, 50.0 m, 87.0 m, and 0.025 m, respectively. We use 26761 shell elements and 26228 nodes for finite element modeling. The number of total DOFs is 157368, and the global structure is partitioned into 36 substructures. Two different retained substructural mode cases, $N_d = 80$ and $N_d = 290$, are considered here.

Fig. 5 shows the exact and estimated relative eigenvalue errors calculated by the previous and present formulations in the two.
numerical cases. The required computational costs corresponding to Fig. 5(a) are presented in Table 3. Note that the computational cost of the original error estimator in Eq.(29) is not small when the number of DOFs is over 150000. The numerical results demonstrate the solution accuracy and computational efficiency of the present error estimation method.

4.3. Semi-submersible rig problem

We consider a semi-submersible rig problem. Breadth B and column width C are 80.0 m and 20.0 m, respectively. Heights H_1 and H_2 are 50.0 m and 15.0 m, respectively, and length L and thickness t are 110.0 m and 0.018 m, respectively. The structure is modeled using 16800 shell elements and 17009 nodes. The number of total DOFs is 105054. The global structure is partitioned into 28 substructures, see Fig. 6. Here, two different retained substructural mode cases, $N_d = 54$ and $N_d = 160$, are considered. The estimating accuracy and computational efficiency of the present error estimator are verified in Fig. 7 and Table 4. The computational cost is reduced a lot using the new error estimator.
5. Error control strategy

In this section, using the estimated substructural errors $\mu_i^{(k)}$ in Eq. (40), we suggest an error control strategy to improve the accuracy of the global modes having relatively large errors. In this strategy, it is important to calculate the substructural contributions to the selected global modes, and the substructural contribution is defined as

$$\psi_i^{(k)} = \frac{\mu_i^{(k)}}{\mu_i} \times 100 \%,$$

(42)

where $\psi_i^{(k)}$ is the substructural contribution of the kth substructure to the ith global mode.

The error control strategy is simple. For the global modes of interest, the substructural contributions $\psi_i^{(k)}$ are calculated using Eq. (42). The target substructures that contain high contributions are identified, and additional substructural modes are retained only for the target substructures to construct a more precisely reduced model. The detailed procedure of the error control strategy is described in Fig. 8. Using this strategy, we can improve the accuracy of the selected global modes, resulting in an effective reduced model of small DOFs with desired accuracy.

The error control strategy is tested with the semi-submersible rig problem considering the case of $N_d = 54$, see Figs. 6 and 7(a). We assign the error tolerance 10^{-2}, and it is observed that the 28th–32th global modes are out of the error tolerance, see Fig. 9(a). Fig. 10 and Table 5 show the substructural contributions $\psi_i^{(k)}$ to the 28th–32th global modes, and it is identified that the substructures 2, 4, 5, 13, 14, 16, 18, 19, 27, and 28 have relatively high contributions to the 28th–32th global modes. Thus, we designate those substructures as target substructures. Note that, in Fig. 10, the substructural contributions are plotted only for substructures 1–14 due to the geometrically symmetric condition.

To improve the accuracy of the global modes out of the error tolerance, for the selected target substructures, additional substructural modes are retained in the reduced model (2 additional...
modes for the target substructures 2, 5, 16 and 19, and 1 additional mode for the other target substructures). Fig. 9(b) shows the result after applying the proposed error control strategy, and it is identify that the relative eigenvalue errors out of the error tolerance are effectively controlled by the proposed strategy. In Fig. 9(b), it can be seen that to satisfy the error tolerance, the pure frequency cut-off method requires 86 additional substructural modes without any strategy, while the proposed strategy requires only 14 additional substructural modes. Thus, it can be concluded that the proposed error control strategy is very effective for constructing an improved reduced model that has better accuracy with fewer substructural modes.

Note that, the relative eigenvalue errors corresponding to the 8th, 9th, 13th, and 14th global modes become also more accurate than before because the selected target substructures also have high contributions for those global modes.

It is important to note that, in this study, we only focused on the model reduction error. That is, the discretization error in original FE models was not considered. The discretization error and its estimation methods have been well studied [33–35].

6. Conclusions

In this study, we proposed a simplified error estimator for the CB method. The simplified formulation was derived by neglecting insignificant terms in the original formulation. The error estimator can be represented in the substructural component matrix level to improve computational efficiency. An important feature of the new error estimator lies in the fact that the estimated relative eigenvalue error is simple to calculate using summation of the substructural errors estimated. The substructural errors represent the contributions of individual substructures to the relative eigenvalue errors. Using this feature, we proposed an error control strategy to improve the accuracy of reduced models efficiently. Through various numerical examples, we demonstrated the accuracy and computational efficiency of the simplified error estimator, and a new error control strategy for it.

In future work, it would be valuable to develop an error estimator applicable to the CB method using the interface reduction technique and the iterative mode selection algorithms to construct accurate reduced-order models.

Acknowledgements

This work was supported by the Climate Change Research Hub of KAIST (No. N01150026), and the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20134030200300).

References

Table 5

<table>
<thead>
<tr>
<th>Substructural numbers</th>
<th>Substructural contributions $\psi_i^{(k)}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\psi_{28}^{(1)}$</td>
</tr>
<tr>
<td>1, 15</td>
<td>3.41</td>
</tr>
<tr>
<td>2, 16</td>
<td>2.22</td>
</tr>
<tr>
<td>3, 17</td>
<td>0.92</td>
</tr>
<tr>
<td>4, 18</td>
<td>36.84</td>
</tr>
<tr>
<td>5, 19</td>
<td>2.40</td>
</tr>
<tr>
<td>6, 20</td>
<td>3.57</td>
</tr>
<tr>
<td>7, 21</td>
<td>0.10</td>
</tr>
<tr>
<td>8, 22</td>
<td>0.00</td>
</tr>
<tr>
<td>9, 23</td>
<td>0.00</td>
</tr>
<tr>
<td>10, 24</td>
<td>0.12</td>
</tr>
<tr>
<td>11, 25</td>
<td>0.00</td>
</tr>
<tr>
<td>12, 26</td>
<td>0.00</td>
</tr>
<tr>
<td>13, 27</td>
<td>0.00</td>
</tr>
<tr>
<td>14, 28</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fig. 10. Substructural contributions to the 28th–32th global mode errors for the semi-submersible rig problem in Fig. 7(a).

