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ABSTRACT: Despite recent advances in molecular simulation technologies,
analysis of high-molecular-weight structures is still challenging. Here, we
propose an automated model reduction procedure aiming to enable modular
analysis of these structures. It employs a component mode synthesis for the
reduction of finite element protein models. Reduced models may consist of real
biological subunits or artificial partitions whose dynamics is described using the
degrees of freedom at the substructural interfaces and a small set of dominant
vibrational modes only. Notably, the proper number of dominant modes is
automatically determined using a novel estimator for eigenvalue errors without
calculating the reference eigensolutions of the full model. The performance of
the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL
and an electron density map of a ribosome.

1. INTRODUCTION

Supramolecular proteins and their assemblies participate actively
in many cellular functions.1 While molecular dynamics (MD)
simulations provide important insights into the conformational
dynamics of these proteins in atomic details,2 the size of the
target molecule and the physical time scale of its motion that can
be simulated often limit the applicability of this method.3 Hence,
normal mode analysis (NMA) has been widely used instead,
which seeks natural frequencies and corresponding mode shapes
of a molecular structure near its equilibrium conformational state
by approximating the atomic energy landscape as a simple
harmonic potential.4−7 Its popularity stems from the fact that it is
not necessary to calculate the entire number of modes and
frequencies in practice because only a small set of low-frequency
vibrational modes dominates the biologically important
collective functional motions.
Classical atomistic NMA based on full8 or simplified atomic

potentials4,9−11 is, however, still computationally demanding, as
it requires the second derivative of the potential field about an
equilibrium state to be calculated, which also needs to be found
first using the energy minimization process. For this reason,
much simpler, coarse-grained representations of protein
structures have been proposed following pioneering works by
Go̅9 and Tirion,12 including the elastic network model (ENM)12

and its variants13−16 as well as the finite element (FE) model.17,18

ENM is arguably the most popular coarse-grained approach,
where proteins are modeled as a network of representative
atoms, usually α carbons, connected by linear elastic springs to
their neighbors within a cutoff distance.12,19 Despite its

simplicity, ENM has proven to be successful in calculating
dynamic properties of protein structures such as low-frequency
normal modes, thermal fluctuations in equilibrium,20,21 and
conformational transition pathways.19 FE model is another
popular approach to coarse-graining whose solution accuracy is
comparable to that of ENM.17 It treats proteins as elastic,
continuous media enclosed by the molecular surface with
homogeneous, isotropic material properties. The FE modeling
approach has a distinct advantage over ENM in that it explicitly
models the molecular surface, which becomes essential for
problems in which the effects of external mechanical forces or the
surrounding medium must be taken into account, for example,
when simulating the indentation of viral capsids,22 calculating
surface electrostatics,23 and computing solvent-damping ef-
fects,24 although it requires effort to construct defect-free
molecular surfaces unless it is automated.18,25

Nevertheless, analysis of high-molecular-weight protein
assemblies is challenging even with these coarse-grained
modeling approaches. This is partly because we need to model
the entire structure of protein assemblies as a whole for analysis
without exploiting the intrinsic modularity of their structure. It
would be ideal if we could calculate the dynamics of the whole
assembly structure using the known properties of individual
protein components or by computing them without building a
full assembly model. In fact, this type of analysis has been widely
used already in many engineering fields in a process termed

Received: April 8, 2015
Published: August 18, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 4260 DOI: 10.1021/acs.jctc.5b00329
J. Chem. Theory Comput. 2015, 11, 4260−4272

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.5b00329


component mode synthesis (CMS),26−30 which is a popular
model reduction technique. To illustrate, the structure of an
aircraft can be treated as an assembly of the fuselage and wings
whose computational models can be constructed independently
except at the shared boundaries interfacing the components.
These structural components are generally called substructures
in CMS. Since their structural information is transmitted to one
another through the interfaces only, each component model
effectively reduces with dominant substructural modes to its
boundaries and therefore the dynamics of the entire aircraft can
be calculated using the reduced models of the fuselage and wings,
enabling efficient modular analysis and design. For these reasons,
CMS is well-suited to build reduced models of supramolecular
protein complexes that are the functionally programmed
aggregation of smaller biological subunits in nature. In addition,
model reduction of proteins to their interacting molecular
surfaces would be useful when analyzing, for example,
interactions between constituting units.
CMS, although developed for FE models originally, can be

applied to any other protein models because it is in principle a
matrix projection technique. For instance, CMS has been
successfully combined with ENM to develop a hierarchical
decomposition and analysis protocol for large protein dynam-
ics.7,31 Despite its computational efficiency demonstrated in the
previous work, ENM-based model reduction methods suffer
from the fact that they require the boundary residues (or their
representative atoms) between substructures to be chosen, and
the selection criterion for this affects the accuracy of the
solution.7 If the chosen number of boundary residues is either
too small or large, then the entire assembly becomes more
flexible or stiffer than it really is, respectively. Moreover, one
drawback of using CMS is that we need to choose the proper
number of substructural modes to be used, which determines the
reliability of the reducedmodel. Validating the reducedmodel via
direct comparison of its solution with the reference one is not
practical because it requires building and analyzing the full
assembly model, rendering it necessary to use an accurate error
estimator without calculating the reference full model solution.
To overcome these limitations, here we propose an automated

FE-based model reduction method as a first step toward modular
analysis of supramolecular protein assemblies. The three-
dimensional FE models can be constructed in an unsupervised
manner for any available protein structures given in terms of the
atomic coordinates (PDB, http://www.pdb.org/) or the electron
density maps (EMDB, http://www.emdatabank.org/). The
Craig−Bampton (CB) method,27 which is the most popular
CMS method, is used to build a reduced FE model whose
substructures can be any components of an assembly, including
real biological subunits, user-defined subdomains, and even
random partitions. Unlike ENM, the shared boundaries of the
substructures are uniquely defined in the FE model without
introducing any free parameter. Most importantly, the proposed
method employs a novel error estimator32,33 that evaluates the
accuracy of the eigenvalues obtained using the reduced model
precisely without prior knowledge on the eigenvalues of the
unreduced full model, enabling fine control over the reliability of
the reduced model. The entire procedure has been fully
automated so that the reduced model is iteratively refined until
we obtain the solution within a user-defined error tolerance. We
evaluate the proposed method by analyzing 50 structures and
present, in particular, the results of two biologically important
and extensively investigated molecular machines, GroEL and
ribosome, in more detail.

2. METHODS
2.1. Finite Element Model. FE model construction begins

with computing the molecular surface of protein structures.
When high-resolution atomic coordinates are available, as in
Figure 1A, the solvent-excluded surface (Figure 1B), which is

conventionally used as the molecular surface, can be computed
by rolling a probe over the van der Waals surface of atoms.17,34

Here, we use a freely available program, MSMS, version 2.6.134

(http://mgltools.scripps.edu/packages/MSMS/), with the
probe radius of 1.5 Å representing the size of a single water
molecule to calculate the triangulated molecular surfaces. For
structures provided as electron density maps, the molecular
surface is defined as a contour surface whose density level is
determined so that the volume enclosed by the contour surface
matches with the expected molecular volume.18 UCSF Chimera,
version 1.8.135 (http://www.cgl.ucsf.edu/chimera/), is used to
obtain the contour surfaces of these structures.
Discretized molecular surfaces obtained using these programs

often possess some defects including holes, self-intersecting
triangles, isolated fragments, and nonmanifolds that must be
repaired before generating the three-dimensional volumetric
mesh. This mesh cleanup is accomplished automatically using a
carefully designed set of mesh-repairing filters freely available in
MeshLab, version 1.3.336 (http://meshlab.sourceforge.net/),
followed by generation of the three-dimensional volumetric
model with four-node tetrahedral elements (Figure 1C) using
the commercially available FE analysis program ADINA, version
9.0.4 (ADINA R&D, Inc., Watertown, MA, USA). To build a
reduced model later, as described in the next section, each
tetrahedron is labeled according to the component to which it
belongs, which can be a real biological subunit (Figure 1D), a
user-defined subdomain, or a randomly partitioned substructure.

2.2. Component Mode Synthesis: Craig−Bampton
Method. The equation of motion for FE protein models in
vacuum can be written asM(d2x/dt2) + Kx = 0 when no external
force is applied, where M is the mass matrix, K is the stiffness
matrix, x denotes the displacement vector, and t represents time.

Figure 1. Structure and FEmodels of hemoglobin. (A) Atomic structure
(PDB ID: 1A3N), (B) solvent-excluded surface, (C) original FE model,
and (D) partitioned FE model consisting of four substructures. Each
substructure corresponds to a chain of hemoglobin. Scale bar represents
10 Å.
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For harmonic motions, the displacement vector can be defined as
x = φ exp(iωt) with the imaginary i, where ω represents natural
frequency and φ is corresponding mode shape. These natural
frequencies and normal modes can be obtained by solving the
following eigenvalue problem, which is referred to as NMA

φ φλΚ Μ= =i N( ) ( ) with 1, 2, ...,i i i (1)

whereN is the total number of degrees of freedom (DOFs) in the
FE model and λi = ωi

2.
To construct the reduced FE model, we here employ the CB

method, the most popular CMS method. In the CB method, the
mass and stiffness matrices and the displacement vector of a FE
model consisting of Ns substructures can be rewritten as
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in whichMs
(k) and Ks

(k) are the mass and stiffness matrices of the
kth substructure, respectively, and xs

(k) is the corresponding
substructural displacement vector. Subscripts s, b, and c denote
substructural, interface boundary, and coupling quantities,
respectively. The substructural displacement vector can be
expressed as xs = Φsqs, where Φs is a block diagonal matrix
storing the substructural normal modes and qs denotes the vector
of generalized coordinates. Φs can be calculated by solving the
eigenvalue problem of each substructure, Ks

(k)Φs
(k) =

Ms
(k)Φs

(k)Λs
(k) (k = 1, 2, ..., Ns), where Λs

(k) stores the eigenvalues
of the kth substructure on its diagonal. Then, the displacement
vector becomes
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where T0 is the transformation matrix of the CBmethod and Ib is
an identity matrix of interface boundary. Here,Φs and qs can be
further decomposed into their dominant and residual modes as

Φ Φ Φ= =
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q[ ],s d r s
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where subscripts d and r represent dominant and residual
quantities, respectively. It is noteworthy that the low-frequency
normal modes of substructures usually form the dominant modes
and that this number is significantly smaller than the number of
residual modes (Nd ≪Nr) in practice. By neglecting the residual

modes in eqs 3 and 4, we can approximate the displacement
vector and the transformation matrix as
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where overbar (−) denotes approximated quantities throughout
the article.
Then, the eigenvalue problem can be written using T̅0 as

φ φλΚ̅ ̅ = ̅ ̅ ̅ =i NM( ) ( ) with 1, 2, ...,i i iCB CB CB CB CB (6a)

Μ̅ = ̅ ̅ ̅ = ̅ ̅M T T K T KT,T T
CB 0 0 CB 0 0 (6b)

where M̅CB and K̅CB are the reduced mass and stiffness matrices,
respectively, and λi̅ and (φ̅CB)i correspond to the eigenvalue and
eigenvector of the reduced system, respectively. NCB is the total
number of DOFs in the reduced model, which is much smaller
thanN because we use the dominant modes only to construct the
reduced model (NCB ≪ N). Finally, the eigenvectors of the
original FE model without reduction can be recovered using

φ φ φ≈ ̅ = ̅ ̅T( ) ( ) ( )i i i0 CB (7)

satisfying mass-orthonormality and stiffness-orthogonality con-
ditions for the original mass (M) and stiffness (K) matrices.

2.3. Estimation of Eigenvalue Errors. To evaluate the
reliability of reduced models, the following equations are
generally used

ξ
λ λ

λ
=

̅ −
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φ φχ Μ= ̅( ) ( )ij i
T

j (8b)

in which ξi denotes the relative eigenvalue error of the ith mode
and χij represents the cross-orthogonality check between the ith
reference eigenvector and the jth approximated eigenvector,
which becomes close to 1 when their correlations are high. The
cross-orthogonality check is also well-known as the overlap
parameter.37 Ideally, the accuracy of the reduced model using the
CB method can be evaluated exactly using eq 8 if the reference
eigensolutions are available. However, this method cannot be
practically used because we would like to avoid calculating the
reference eigensolutions in any case. Hence, we adopt a recently
developed error estimator32,33 that demonstrates the precise
estimation of eigenvalue errors without any knowledge of the
reference eigenvalues, which is briefly described below.
The eigenvalue problem of the original FE model in eq 1 can

be rewritten as
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and the reference eigenvalues and eigenvectors can be expressed
using their approximated ones and the corresponding errors as

φ φ φλ λ δλ δ= ̅ + = ̅ +, ( ) ( ) ( )i i i i i i (10)

where δλi and (δφ)i are the eigenvalue and eigenvector errors of
the ith mode, respectively. If we consider the effect of residual
modes,32 then the approximated eigenvector (φ̅)i can be defined
as follows
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where T̅r is the additional transformation matrix due to the effect
of residual modes and Frs is called the residual flexibility of
substructures. Due to compensation of the residual modes, (φ̅)i
in eq 11 is much more accurate than the one defined in the
original CBmethod as in eq 7. Then, the relative eigenvalue error
becomes
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Since λi̅ is always larger than λi in the CB method,38 the left-
hand side in eq 13 is the relative eigenvalue error in eq 8a.
Consequently, eq 13 is another expression of the relative
eigenvalue error. If we assume that the approximated eigenvector
(φ̅)i is sufficiently close to the reference one (φ)i, i.e., (φ)i ≈

Figure 2. Automated model reduction procedure for FE protein models. In this study, we use Nl = 200, Nd = 20, ΔNd = 20, and ηtol = 0.1.
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(φ̅)i, then the last term of the right-hand side in eq 13 is much
smaller than other terms, and it can be negligible. Then, an
estimator for the relative eigenvalue error, ηi is defined as
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Note that the approximated eigenvalue λi̅ that can be calculated
using the reduced model is used in eqs 14 and 15 instead of the
reference eigenvalue λi in eq 13. Derivation details and other
characteristics of the error estimator can be found in refs 32 and
33.
2.4. Automated Model Reduction and Solution

Procedure. By combining unsupervised FE model generation
and the error estimator for eigenvalues, we develop an automated
procedure for FE-based model reduction and NMA of
supramolecular protein assemblies (Figure 2). This procedure
determines the proper number of substructural modes to be used
iteratively based on the estimated eigenvalue errors. Initially, Nd
substructural modes in total are distributed to each substructure
in proportion to its number of DOFs in order to build a reduced
model, which is used to compute Nl lowest normal-mode
solutions of the entire structure. Then, the relative eigenvalue
errors (ηi) are calculated for each mode and compared with a
predefined value of error tolerance (ηtol). If all of the relative
eigenvalue errors are smaller than the given error tolerance, then
we stop the analysis and process the results. Otherwise, we
increase the number of substructural modes by ΔNd and repeat
the process until the estimated errors do not exceed the

tolerance. We use Nl = 200, Nd = 20, ΔNd = 20, and ηtol = 0.1 in
this study.

3. RESULTS AND DISCUSSION

Here, we analyze, using the proposed method, a set of 50
structures including GroEL and ribosome that are actively
involved in protein folding39 and synthesis,40 respectively.
First, we consider the apo wild-type chaperonin GroEL from

Escherichia coli, whose structure is determined by X-ray
crystallography at 2.9 Å resolution (Protein Data Bank ID:
1XCK).39 The complex is composed of two coaxial rings,
consisting of seven identical subunits each, stacked back to back.
Two rings are connected by equatorial domains of each subunit
where ATP binds that are connected via intermediate domains to
apical domains that contain the binding sites for co-chaperonin
GroES.
Next, a eukaryotic ribosome (80S) is analyzed that consists of

two biological subunits: the large (60S) and small (40S)
ribosomal subunits. Ribosomes produce a polypeptide chain by
connecting, in the large subunit, amino acids delivered by transfer
RNA (tRNA) in the order that is encoded in messenger RNA
(mRNA) and decoded by the small ribosomal subunit. We use
the structure obtained using cryo-electron microcopy at a
resolution of 5.57 Å (Electron Microscopy Data Bank ID: EMD-
2239)40 to demonstrate the general applicability of the proposed
method, although its corresponding crystal structure at a higher
resolution is also available. We evaluate the normal modes and
the derived results at α carbon atoms for protein residues and
phosphorus atoms for RNA residues.
The remaining 48 structures are chosen to cover a broad range

of protein size and topology. The number of residues ranges from
76 to 11 568, whereas the molecular weight varies from 8.6 kDa
to 2.3 MDa (Table S1). Principal component analysis for the
three-dimensional coordinates of these structures confirms the
diversity of their shape as well (Figure S2).

3.1. Reduced Models. The molecular surface of GroEL is
constructed by computing the solvent-excluded surface of the

Figure 3. Structure and FE models of bacterial chaperonin GroEL. (A) Atomic structure (PDB ID: 1XCK), (B) solvent-excluded surface, (C) original
FE model, and (D−F) partitioned FE models. Each substructure corresponds to one of two rings in the two-substructure model (D), two subunits
stacked across the rings in the seven-substructure model (E), and a single subunit in the 14-substructure model (F). Scale bar represents 20 Å.
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crystal structure (Figure 3A,B). The initially obtained molecular
surface consists of 63 028 triangles, which subsequently reduces
to 19 954 triangular faces using the quadric edge collapse
decimation41 available in MeshLab. The corresponding three-
dimensional volumetric mesh is then generated for the entire
structure that is composed of 84 111 tetrahedral elements and
18 665 nodal points using ADINA (Figure 3C). Finally, we build
three reduced models of GroEL: the two-substructure model,
where the entire structure is partitioned into two rings (Figure
3D), the seven-substructure model, where each substructure
consists of two subunits stacked across the rings (Figure 3E), and
the 14-substructure model, where each subunit corresponds to
one substructure (Figure 3F). The number of interface boundary
nodes increases naturally with the number of substructures so
that there exist 232, 1757, and 1865 nodes at the interfaces of the
two-, seven-, and 14-substructure models, respectively.
The FE-based modeling approach can be applied also to a

molecular structure given as electron densities, which, in general,
better represents the native conformational states of molecules.

To illustrate, we construct the FE model of a ribosome from its
electron density map (Figure 4B), even though its crystal
structure at a higher resolution is available as well. Here, we used
the contour level of 33 800 to calculate the molecular surface so
that the molecular weight of the model becomes the expected
one for a ribosome (3305 MDa) assuming an average protein
mass density of 1.35 g/cm3.42 The final FE model for the entire
structure is composed of 62 411 tetrahedral elements and 14 906
nodal points (Figure 4C), which reduces subsequently to the
two-substructure model consisting of two ribosomal subunits,
40S and 60S (Figure 4D), the four-substructure model, where
each ribosomal subunit is divided into ribosomal proteins and
RNAs (Figure 4E), and finally the eight-substructure model
obtained by subdividing RNAs in the four-substructure model
into 18S rRNA, 28S rRNA, 5S rRNA, 5.8S rRNA, tRNA in the E-
site, and short rRNAs40 (Figure 4F). The resulting interface
boundaries of the two-, four-, and eight-substructure models have
498, 6061, and 6430 nodes, respectively. For the remaining 48
structures, three reduced models consisting of two, four, and

Figure 4. Structure and FEmodels of a ribosome. (A) Atomic structure (EMDB ID: 2239), (B) contour surface from electron densities, (C) original FE
model, and (D−F) partitioned FE models. (D) The two-substructure model consists of 40S (green) and 60S (red) ribosomal subunits that are divided
into ribosomal proteins (green and red) and RNAs (blue and yellow) in (E) the four-substructure model. (F) The eight-substructure model is obtained
by subdividing RNAs in the four-substructure model into 18S rRNA (blue), 28S rRNA (yellow), 5S rRNA (gray), 5.8S rRNA (cyan), tRNA in the E-site
(orange), and short rRNAs (purple). Scale bar represents 20 Å.

Figure 5. Number of DOFs used in the reduced FE models of (A) GroEL and (B) ribosome with respect to those in the original FE models.
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eight arbitrary partitions are constructed for each structure using
a freely available mesh-partitioning program, METIS, version
5.1.043 (http://glaros.dtc.umn.edu/gkhome/metis/metis/
overview/).
Reduced models are constructed for all of the substructural FE

models with the aim of providing the 200 lowest normal modes
accurately within the error tolerance of 10%. In general, the DOF
reduction rate decreases with the number of substructures due to
the increase of boundary nodes (Figure S3). Reduced models of
GroEL use 1.6% (the two-substructure model), 9.8% (the seven-
substructure model), and 10.4% (the 14-substructure model) of
DOFs of the original model, whereas 1.5% (the two-substructure
model), 41.1% (the four-substructure model), and 43.6% (the
eight-substructure model) of DOFs remain in ribosome’s
reduced models (Figure 5). Relatively large numbers of interface
DOFs in the ribosome’s reduced models are due to highly
complex RNA conformations that lead to widely spread interface
regions. Note that interface reduction techniques44−47 may be
employed to reduce the interface DOFs without compromising
solution accuracy, although this is beyond the scope of this study.

3.2. Performance of the Error Estimator. Using a
sufficiently large, but not too large, number of modes for each
substructure is important to obtain an accurate solution
efficiently. As described earlier, we develop an automated
procedure to achieve a target precision of a normal-mode
solution in an iterative manner using an accurate error estimator.
We evaluate the performance of the error estimator used in this
study by comparing the estimated relative errors of eigenvalues
(ηi) with the exact ones (ξi) for the results of GroEL and
ribosome.
For GroEL and ribosome, the estimated relative eigenvalue

errors are surprisingly well-matched with the exact ones over the
frequency range with correlation coefficients greater than 0.8
(Figure 6). In particular, estimated and exact error curves are
nearly identical in the low-frequency range. This property
renders the proposed estimator useful when a small set of lowest
normal modes is of interest and importance, which is the case in
many applications, including calculating thermal fluctuations in
equilibrium, predicting conformational transition pathways, and

Figure 6. Comparison between the exact and estimated relative eigenvalue errors using the proposed error estimator calculated for the reduced models
of (A−C) GroEL and (D−F) ribosome. CorrCoef denotes the correlation coefficient between the exact and estimated relative eigenvalue error curves.
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fitting a high-resolution crystal structure flexibly into a lower-
resolution electron microscopy structure.
Accurate error estimation without knowing or calculating the

eigenvalues of the original, unreduced protein model enables us
to develop an automated procedure that iteratively determines a
sufficient number of modes for each substructure, checks the
solution accuracy of the reduced models, and performs analysis
without manual intervention until the solution converges within
the error tolerance. Usually, eigenvalue errors jump at a certain
mode number when insufficient numbers of modes are used for
reduced models, after which point the solution becomes
unreliable (Figure 7). The proposed procedure systematically
increases the number of substructural modes until the estimated
errors are below the desired error tolerance within the range of
eigenvalues of interest. For example, 110 and 110 substructural
modes are necessary for the two-substructure GroEL model to
obtain a solution satisfying the error tolerance of 0.1, whereas 136
and 84 substructural modes are required for the ribosome model.
It is noteworthy that the low-frequency eigenvalues are still
accurate even when significantly smaller numbers of modes are
used, suggesting that we may use a higher error tolerance in
practice because these low-frequency modes are the primary
contributors.
Results for the other structures show that the estimated

eigenvalue errors are not dependent on the molecular weight, the

molecular shape, or the number of substructures, which
demonstrates the applicability of the proposed error estimation
scheme to any protein structure (Figures S1 and S2).

3.3. Eigensolutions. As already noted, eigenvalues and
eigenvectors are computed for each reduced model so that the
maximum relative error in eigenvalues does not exceed 0.1.
Eigenvalues increase almost linearly at low frequencies
corresponding to non-rigid-body normal modes (Figure 8).
Eigenvalues of the reduced models are almost identical to those
of the original model at the lowest normal modes below mode
120, and they begin to deviate from them slowly thereafter. The
maximum relative eigenvalue errors of the two-substructure
models for GroEL and ribosome are 0.036 and 0.040,
respectively, which are lower than the predefined error tolerance,
set to 0.1 here.
The accuracy of the eigenvalues computed using the reduced

models indicates that the calculated eigenvectors are accurate as
well regardless of the level of model reduction. The reduced
models can reproduce biologically important functional motions
of proteins as the original, unreduced models predict. For
example, GroEL together with GroES shows a highly dynamic
reaction cycle to assist protein folding where significant
conformational changes are involved in each functional step.
Upon ATP binding, GroEL exhibits a large structural change,
particularly in the apical domain required to bring in a partially

Figure 7. Convergence of eigensolutions for the two-substructure reduced model of (A) GroEL and (B) ribosome. The number of dominant
substructural modes increases incrementally until the estimated relative eigenvalue errors become smaller than the error tolerance.

Figure 8. Lowest 200 eigenvalues excluding rigid-body modes obtained using the original and reduced FE models for (A) GroEL and (B) ribosome.
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folded peptide chain and bind GroES.48,49 This functional
movement appears in the tenthmode of the original model that is
also well-reproduced using all of the reduced models (Figures 9A
and S4A). For ribosomes, the ratchet-like rotation of the small
40S subunit relative to the large 60S subunit is a well-known
functional motion important to translocation of tRNAs.50−52

The reduced models as well as the original model predict this
ratchet-like movement well in their second mode (Figures 9B
and S4B).
Next, we calculate the cross-correlation maps to further

investigate the accuracy of eigensolutions obtained using the
reduced models. The cross-correlation map contains the
correlation coefficients between thermal fluctuations of residues
measured at α carbon positions. The correlation coefficient
between residues i and j is given as Cij = ⟨ΔriTΔrj⟩/(⟨ΔriTΔri⟩⟨
ΔrjTΔrj⟩)1/2. Δri and Δrj represent the fluctuation vectors from
the mean α carbon positions and ⟨ΔriTΔrj⟩ = kBT∑k(φik

Tφjk/λk),
where φik and φjk are the eigenvectors of residues i and j,
respectively, corresponding tomode k, kB denotes the Boltzmann
constant, and T is the temperature, set to be 300 K here.
In the cross-correlation maps of GroEL and ribosome (Figure

10), the upper-left triangle represents the cross-correlation values

obtained from the eigenvectors of the original structure, whereas
the lower-right triangle is used to store those of the reduced
models. Correlations between residues in their dynamic motion
obtained using the reduced models are not distinguishable from
those obtained using the original model for both GroEL and
ribosome (Figures 10 and S5). We can observe, in the map of
GroEL, a highly correlated group of 14 clusters on the diagonal,
each of which corresponds to a GroEL subunit (Figure 10A).
This result indicates that the conformational dynamics of GroEL
can be well-described as relative motions between the subunits
about their interfaces. In addition, these clusters show the highest
positive correlations with their nearest neighbors in the same
ring, whereas the highest negative correlations are shown
between the subunits in the opposite rings, implying positive
cooperativity within a ring and negative cooperativity between
rings.53,54 Similarly, a highly correlated group of four clusters is
observed in the map of ribosome (Figure 10B) corresponding to
ribosomal proteins and RNAs in the large (60S) and small (40S)
subunits. Clusters in the same subunit are positively correlated,
whereas those in the different subunits are negatively correlated,
as expected from the ratchet-like rotation between the subunits.

Figure 9. Representative normal modes of (A) GroEL (mode 10 obtained using the 14-substructure model) and (B) ribosome (mode 2 obtained using
the four-substructure model).

Figure 10.Cross-correlation maps of the original FEmodel (upper-left triangle) and the reduced FEmodel (lower-right triangle) of (A) GroEL and (B)
ribosome. Each axis represents residue numbers.
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The high accuracy in the cross-correlation maps obtained
using the reduced models indicates that the lowest normal
modes, dominant contributors to dynamic correlations, are
predicted precisely. This is confirmed by mode overlap for both
the GroEL and ribosome models regardless of the number of
substructures used in the analysis. Mode overlap between the ith
eigenvector of the original model (φi) and the jth eigenvector of
the reduced model (φ̅j) is defined as Pi,j =φi·φ̅j/|φi||φ̅j|. In a low-
frequency range, the nonzero mode overlap values appear
diagonally (Figure 11). This means that the eigenvectors
obtained using the reduced models are almost identical to

those obtained using the original model. Slight spreads in the
mode overlap matrices are observed only at the high-frequency
modes and increase a little with the number of substructures.
It is not surprising that the derived properties from normal-

mode solutions can be accurately predicted as well because we
can calculate the eigenvalues and eigenvectors with high
precision, which is also tunable. For example, the equilibrium
thermal fluctuation is such a property that provides fundamental
insight into the conformational dynamics and that is usually
investigated by calculating the root-mean-square fluctuation
(RMSF) amplitudes at the residue level, given as (⟨ΔriTΔri⟩)1/2 =

Figure 11.Mode overlap between the eigenvectors obtained using the original and reduced FE models of (A−C) GroEL and (D−F) ribosome. Each
axis represents mode numbers.
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(kBT ∑k(φik
Tφik)/λk)

1/2 for residue i. Here, we calculate RMSFs
using 200 lowest normal modes at the α carbon positions of
residues for both GroEL and ribosome. As expected, nearly

identical RMSF profiles are obtained using all of the reduced
models with correlation coefficients greater than 0.99 (Figure
12). It is worthwhile to mention that FE models provide

Figure 12.Comparison of RMSF profiles computed using the original and reduced FEmodels for (A) GroEL and (B) ribosome. CorrCoef denotes the
correlation coefficient between RMSF profiles obtained using the original and reduced models.

Figure 13.Normalized computation time to calculate 200 lowest normal modes using the reduced FE models as a function of the number of (A) DOFs
and (B) substructures.
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eigensolutions that are comparable to those obtained using more
commonly used ENMs.17 To illustrate, RMSFs computed using
the FE models for protein structures considered in this study
show high correlations (>0.8) with those calculated using
Gaussian network and anisotropy network models (Figures S6−
S8).
Naturally the accuracy of eigensolutions obtained using the

reduced model decreases with the level of error tolerance that we
set. We tested error tolerances of 20, 30, and 50% in addition to
the default 10% and observed deterioration in the computed
eigenvalues and eigenvectors with these increased tolerances, as
expected. In particular, increasingly wider spreads at higher
frequencies in the mode overlap matrix appear, suggesting that
the predicted normal modes at higher frequencies are becoming
less accurate with the elevation of the tolerance (Figures S9 and
S10). Nonetheless, the low-frequency normal modes are almost
insensitive to the change in the tolerance. As a result, RMSF
profiles obtained using various error tolerance levels remain
almost identical to one another (Figure S11). Therefore,
significantly reduced substructural models might be used in
practice as far as low-frequency normal modes of the entire
structure are concerned.
3.4. Computational Efficiency. Here, we investigate the

proposed method in terms of computation time. We construct
two-, four-, eight-, 16-, and 32-substructure reduced models with
random partitions for every protein structure in this study and
measure the computation time to calculate 200 lowest
eigenvalues and eigenvectors with Nd = 200. While the
computation time obviously increases with the number of
DOFs of the model, the rate of increase is independent of the
level of model reduction (Figure 13A). More importantly, the
computation time is significantly decreasing with the number of
substructures used in the reduced model (Figure 13B). For
example, using a 32-substructure reduced model is almost 100
times faster than using a two-substructure model, indicating the
efficiency of CMS methods with a so-called divide-and-conquer
strategy. Although these results are obtained using randomly
partitioned reduced models for convenience, the same results
will be obtained even when we use the reduced models
partitioned with biologically relevant subunits. Furthermore, it
is important to note that the type of substructures (biological
subunit or random partition) hardly affects the eigensolutions, as
demonstrated for GroEL and ribosome (Figures S14 and S15).
Hence, the use of random partitions will be an attractive and
desirable option to build a reduced model in practice. For
instance, each substructure in the two-substructure reduced
models of GroEL and ribosome can be further divided into
random partitions with additional but negligibly small meshing
efforts, which will reduce the computation time significantly.
Note that, in this work, we use the CBmethod because it is the

most popular and highly verified CMS method. However, there
exist many other CMS methods29,30,55−57 as alternatives to the
CB method that offer ample opportunities for us to improve the
proposed method even further. Nevertheless, this requires the
development of an accurate and efficient error estimator
corresponding to the alternative CMS method to be used,
which is an essential prerequisite for automated procedures.

4. CONCLUSIONS
We present our effort toward modular analysis of supramolecular
protein assemblies by developing an unsupervised model
reduction procedure for FE-based protein models. The dynamics
of each constituent substructure is described only using a small

number of dominant vibrational modes and the boundary DOFs
shared by neighboring substructures, enabled by employing the
CB method and a powerful estimator of eigenvalue errors.
Results for a comprehensive set of structures demonstrate the
excellent performance of the proposed method with tunable
accuracy, which is also applicable to any other modeling
approach, such as ENM. Furthermore, our method is expected
to be useful in many other problems, including, for example,
protein−protein interactions, where individual proteins can be
reduced to the interacting boundary models, protein−solvent
interactions, where solvent-excluded protein surfaces may
include the effect of a surrounding water box via similar model
reduction, and analysis of viral capsids, where their unique
symmetries can be further utilized.
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