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Abstract

In this paper, we present an effective new component mode synthesis (CMS) method based on the concept of the automated
multi-level substructuring (AMLS) method. Herein, the original transformation matrix of the AMLS method is enhanced by
considering the residual mode effect, and the resulting unknown eigenvalue in the formulation is approximated by employing
the idea of the improved reduced system (IRS) method. Using the newly defined transformation matrix, we develop an enhanced
AMLS method by which original finite element (FE) models can be more precisely approximated by reduced models, and their
solution accuracy is significantly improved. The formulation details of the enhanced AMLS method is presented, and its accuracy
and computational cost is investigated through numerical examples.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

While computation capability has increased rapidly, the demand for large scale finite element (FE) models has
increased even more rapidly. Therefore, it has always been an important issue to reduce computational cost. A variety
of model reduction methods have been developed and widely used in many engineering fields [1–12]. The focus in
model reduction is on reducing computational cost with the least possible loss in accuracy.

Within the structural dynamics community, component mode synthesis (CMS) is a popular and effective finite
element (FE) model reduction method [5–12]. In CMS methods, an original (global) FE model is partitioned into
smaller substructures, substructural eigenvalue problems are solved, and a reduced model constructed by retaining
only dominant substructural modes is used for calculations, instead of the much larger original FE model. For this
reason, CMS methods can significantly reduce overall computational cost required for many applications (e.g., con-
troller design for multi-body dynamics systems, structural health monitoring, structural design optimization, model
identification).
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In the 1990s, the automated multi-level substructuring (AMLS) method, a computer-aided CMS method, was pro-
posed in the field of applied mathematics [13–16]. Due to its computational efficiency, involving recursive partitioning
and matrix reordering processes, the AMLS method has become popular for reduced-order modeling. Recently, Ben-
nighof and Lehoucq [17] proposed a well-defined formulation of the AMLS method based on the concept of the
Craig–Bampton (CB) method [6,17]. The AMLS method has been also used as a solver of eigenvalue problems in
many commercial FE software.

In the original CB and AMLS methods, a transformation matrix is constructed by retaining only dominant sub-
structural modes. Using the transformation matrix, original FE models can be transformed into reduced models, which
approximate the original models. With this procedure, residual substructural modes are simply truncated without fur-
ther consideration. However, when the residual mode effect is considered, the accuracy of the original transformation
matrix can be improved. That is, the original (global) models can be more precisely approximated. This approach
has been used for flexibility based CMS methods, in which, unlike for the CB and AMLS methods, substructures are
connected with a free interface [7,10–12].

In this study, we derive a new transformation matrix for the AMLS method enhanced by considering the residual
mode effect. One difficulty is the fact that the enhanced transformation matrix contains an unknown eigenvalue. In
order to approximate the unknown eigenvalue, we adopt O’Callahan’s idea, which was originally proposed to develop
the improved reduced system (IRS) method by improving Guyan reduction [18]. Finally, the enhanced transformation
matrix is defined without the unknown eigenvalue, and by using the newly defined transformation matrix, an enhanced
AMLS method is proposed. The reduced FE models obtained from the enhanced AMLS methods have the same size
as those obtained from the original AMLS method. However, compared to the original AMLS method, the enhanced
AMLS method can provide significantly improved reduced-order models.

In the following sections, we present the general framework of CMS methods in Section 2, and briefly review
the original AMLS method in Section 3. In Section 4, the formulation details of the enhanced AMLS method are
presented, and its performance and computational cost are tested in Sections 5 and 6, respectively. The conclusions
are given in Section 7.

2. Component mode synthesis

In this section, the general framework of component mode synthesis (CMS) is briefly presented. In structural
dynamics, the linear dynamics equations of a global (non-partitioned) FE model can be expressed as

Mg üg + Kgug = fg, (1)

where Mg and Kg are the global mass and stiffness matrices, respectively, and ug and fg are the global displacement
and force vectors, respectively. Subscript g denotes the global structure.

Considering a free harmonic vibration (fg = 0), from Eq. (1), the following eigenvalue problem of the global
model is obtained

Kg(ϕg)i = λi Mg(ϕg)i , i = 1, 2, . . . , Ng, with ug = 8gqg, (2)

in which λi and (ϕg)i are the global eigenvalue and eigenvector, respectively, and 8g and qg are the global eigenvec-
tor matrix and its generalized coordinate vector, respectively. Ng is the number of DOFs in the global structure. Note
that λi is the square of the i th natural frequency (ωi ).

In CMS methods, the global structure is partitioned into substructures as shown in Fig. 1(a), and the eigenvalue
analyses of individual substructures are carried out to obtain the dominant substructural modes. Using the dominant
substructural modes, the global mass and stiffness matrices in Eq. (2) can be approximated using reduced mass and
stiffness matrices.

The eigenvalue problem of the reduced model (reduced eigenvalue problem) is defined as

K̄p(ϕ̄p)i = λ̄i M̄p(ϕ̄p)i , i = 1, 2, . . . , N̄p, with η̄p = 8̄pq̄p, (3)

where M̄p and K̄p are the reduced mass and stiffness matrices, respectively, and λ̄i and (ϕ̄p)i are the approximated
eigenvalue and eigenvector, respectively. The approximated eigenvector matrix 8̄p and its generalized coordinate
vector q̄p are used to define the approximated global displacement vector η̄p. The subscript p denotes the partitioned
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Fig. 1. Partitioned structural model and interface handling in the AMLS method: (a) Partitioned structure, (b) Interface boundary treatment.

structure and an overbar (¯) denotes the approximated quantities. The number of DOFs in the reduced model, or the
size of the reduced model, is indicated by N̄p.

Note that, while the formulation details and reduced-order modeling techniques may differ considerably among
various CMS methods, the general frameworks are similar.

3. Original AMLS method

Since the AMLS method proposed by Bennighof and his coworkers [17,19,20] is based on the Craig–Bampton
(CB) method [6], substructures are connected at a fixed interface boundary, see Fig. 1(b). However, unlike for
the CB method, the interface boundary DOFs are also considered as substructures in the AMLS method. The
interior DOFs are considered as the bottom level substructures and the interface boundary DOFs are considered
as the higher level substructures or highest level substructures. Fig. 2 shows two different partitioned types and
the corresponding substructure tree diagrams. The AMLS formulation from previous work [19–21] is used in this
paper.

After partitioning a global model into Ns substructures, the mass and stiffness matrices in Eq. (1) are rearranged
as

Mg =


M1

. . .

Mi Mi, j

sym.
. . .

MNs

 , Kg =


K1

. . .

Ki Ki, j

sym.
. . .

KNs

 ,

ug =


u1
...

ui
...

uNs

 , fg =


f1
...

fi
...

fNs

 for i, j = 1, 2, . . . , Ns and i ≠ j, (4)

where the diagonal component matrices Mi and Ki are the mass and stiffness matrices of the i th substructure, the
off-diagonal component matrices Mi, j and Ki, j are the coupling matrices of the i th and j th substructures, and ui and
fi are the displacement and force vectors of the i th substructure, respectively. When the i th and j th substructures are
not coupled to each other, Mi, j and Ki, j are zero matrices.

In the AMLS method, the global displacement vector ug can be expressed by

ug = T0 ηp with T0 = T(1)T(2)
· · · T(Ns ) =

Ns
i=1

T(i), (5)

where the transformation matrix T0 is given by sequentially multiplying the substructural transformation matrices T(i)

from T(1) to T(Ns ), and ηp is the generalized coordinate vector of the partitioned structure.
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Fig. 2. Substructure tree diagram: (a) Substructural levels 0 and 1, (b) Substructural levels 0, 1 and 2.

Due to the recursive transformation procedures in the AMLS method, the i th incompletely transformed mass and
stiffness matrices, M̂(i ) and K̂(i), are defined by

M̂(i )
=


T(1)T(2)

· · · T(i)
 T

Mg


T(1)T(2)

· · · T(i)


and

K̂(i)
=


T(1)T(2)

· · · T(i)
 T

Kg


T(1)T(2)

· · · T(i)


, for i = 1, 2, . . . , Ns − 1.

(6)

In Eq. (6), T(i) is given by

T(i)
=

 I 0 0

0 8i 9 i,i+1 · · · 9 i, j · · · 9 i,Ns

0 0 I

 , 8i =


8d
i 8r

i


,

9 i, j = −(K̂(i−1)
i )−1 (K̂(i−1)

i, j ) with K̂(0)
1, j = K1, j , for i = 1, 2, . . . , Ns and j = i + 1, i + 2, . . . , Ns, (7)

in which 8i and 9 i, j are the eigenvector matrix of the i th substructure and the constraint mode matrix to couple the

i th and j th substructures, respectively, and K̂(i−1)
i and K̂(i−1)

i, j are the diagonal and off-diagonal component stiffness

matrices of the i th substructure in the (i − 1)th incompletely transformed stiffness matrix K̂(i−1) defined in Eq. (6).
When the i th and j th substructures are not coupled to each other, 9 i, j is a zero matrix.

It is important to note that the eigenvector matrix 8i in Eq. (7) contains the dominant term 8d
i and the residual

term 8r
i . The superscripts d and r denote the dominant and residual terms, respectively.

The eigenvector matrix 8i in Eq. (7) is calculated after solving the following substructural eigenvalue problems

K̂(i−1)
i 8i = 3i M̂(i−1)

i 8i with K̂(0)
1 = K1, M̂(0)

1 = M1 for i = 1, 2, . . . , Ns, (8)

where 3i is the eigenvalue matrix for the i th substructure, and M̂(i−1)
i is the diagonal component mass matrix of

M̂(i−1) defined in Eq. (6). It should be noted that, to obtain the i th eigenvector matrix 8i , the (i − 1)th incompletely
transformed mass and stiffness matrices are used.
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Neglecting the residual modes 8r
i in Eq. (7), the dominant transformation matrix Td

0 is defined by

Td
0 =



8d
1

. . .

8d
i 9̂ i, j8

d
i 9̂ i,Ns 8Ns

0
. . .

8d
Ns−1

0 8Ns


, (9)

where 9̂ i, j are the substructural component matrices of multi-level constraint modes [17,19,20]. Note that, in the
highest level substructure, substructural modes are not truncated in the AMLS method [17]. Therefore, Td

0 is an

Ng × N̄p rectangular matrix (N̄p = Nd + NNs , Nd =
Ns−1

i=1 N d
i ), in which, N̄p is the number of DOFs in the

reduced model that is a summation of the numbers of dominant modes (Nd) and of the DOFs of the highest level
substructure (NNs ). The number of dominant modes in the i th substructure is denoted by N d

i .

The global displacement vector ug in Eq. (5) can be approximated by

ug ≈ ūg = T̄0η̄p with T̄0 = Td
0 , (10)

where T̄0 is the reduced transformation matrix in the original AMLS method.

Using Eq. (10) in Eq. (1), we finally obtain the reduced equations of motion

M̄p ¨̄ηp + K̄pη̄p = f̄p,

M̄p = T̄T
0 MgT̄0, K̄p = T̄T

0 KgT̄0, f̄p = T̄T
0 fg. (11)

Note that, since M̄p and K̄p are N̄p × N̄p matrices calculated using the dominant modes only, these are much smaller
than the global mass and stiffness matrices. Using these reduced matrices, approximated eigensolutions can easily be
calculated in the reduced eigenvalue problem, see Eq. (3).

In this section, the AMLS formulation was presented without any consideration of computing strategy. The for-
mulation details for the multi-level computing strategy and the computational efficiency are presented elsewhere
[17,19].

4. Enhanced AMLS method

In the original AMLS method, the reduced transformation matrix T̄0 can be constructed retaining dominant modes
only. However, when residual modes are appropriately considered, the reduced transformation matrix T̄0 can be
enhanced.

The transformation matrix T0 defined in Eq. (5) can be represented as

T0 = 9̂8 with 9̂ =



I
. . .

I 9̂ i, j

0
. . .

I

 , 8 =


81

. . . 0
8i

0
. . .

8Ns

 ,

for i = 1, 2, . . . , Ns and j = i + 1, i + 2, . . . , Ns, (12)

where 9̂ is the multi-level constraint mode matrix, and 8 is the eigenvector matrix that contains all the substructural
eigenvector matrices. Note that 9̂ and 8 are Ng × Ng matrices.
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The multi-level constraint mode matrix 9̂ is given by sequentially multiplying the substructural constraint mode
matrices 9(i)

9̂ =

Ns−1
i=1

9(i) with 9(i)
=

 I 0 0

0 I 9 i,i+1 · · · 9 i, j · · · 9 i,Ns

0 0 I

 ,

for i = 1, 2, . . . , Ns − 1 and j = i + 1, i + 2, . . . , Ns, (13)

in which 9(i) is Ng × Ng matrix. Note that 9(i) looks similar to T(i) in Eq. (7), except for the identity matrix in its
i th diagonal component.

In Eq. (12), the substructural eigenvector matrices 8i in the eigenvector matrix 8 can be represented by

8 =



[8d
1 8r

1]

. . . 0
[8d

i 8r
i ] 0

. . .

0 [8d
Ns−1 8r

Ns−1]

0 8Ns


, (14)

in which 8d
i and 8r

i contain the dominant and residual modes in the i th substructure, respectively.

After reordering the eigenvector matrix 8 in Eq. (14), the reordered matrix 8̂ can be decomposed into dominant
and residual parts

8̂ = [8d 8r ] with

8d =



8d
1

8d
2 0

. . .

8d
Ns−2

0 8d
Ns−1

8Ns


, 8r =



8r
1

8r
2 0

. . .

0 8r
Ns−2

8r
Ns−1

0


, (15)

in which 8d and 8r are the eigenvector matrices corresponding to dominant and residual substructural modes, re-
spectively; 8d and 8r are Ng × N̄p and Ng × Nr matrices, respectively, in which the total number of residual modes
Nr =

Ns−1
i=1 N r

i and N r
i is the number of residual modes in the i th substructure.

Using Eq. (15) in Eq. (12), the global displacement vector ug in Eq. (5) can be rewritten as

ug = T0ηp =

Td

0 Tr
0

 
ηd

p
ηr

p


with Td

0 = 9̂ 8d , Tr
0 = 9̂ 8r . (16)

Substituting Eq. (16) into Eq. (1) and considering a free harmonic vibration (fg = 0), we can obtain the following
equations

Kp − λMp

ηp = 0, (17a)

Mp = (T0)
T Mg (T0), Kp = (T0)

T Kg (T0), (17b)

Kp − λMp =


3̂d −λMdr

−λMT
dr 3̂r


, (17c)
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in which the component matrices are defined by

3̂d = 3d − λMdd , 3̂r = 3r − λMrr , (18a)

3d = (Td
0)T Kg(Td

0), 3r = (Tr
0)

T Kg(Tr
0), (18b)

Mdd = (Td
0)T Mg(Td

0), Mdr = (Td
0)T Mg(Tr

0), Mrr = (Tr
0)

T Mg(Tr
0). (18c)

Then, Eq. (17a) can be rewritten in a component matrix form
3̂d −λMdr

−λMT
dr 3̂r

 
ηd

p

ηr
p


= 0. (19)

Using the second row in Eq. (19), the following relation is obtained

ηr
p = λ3̂

−1
r MT

drη
d
p. (20)

Substituting Eq. (20) into Eq. (16), the global displacement vector ug can be represented by

ug =


Td

0 + λ Tr
0 3̂

−1
r MT

dr


ηd

p. (21)

Using Tr
0 = 9̂8r (see Eq. (16)) and Mdr = (Td

0)T Mg(Tr
0) (see Eq. (18c)) in Eq. (21), we obtain

ug = Td
0η

d
p + λ 9̂ F̂r 9̂T MgTd

0η
d
p, (22)

with

F̂r = 8r 3̂
−1
r 8T

r = 8r [3r − λMrr ]−1 8T
r , (23)

where F̂r is the residual flexibility of substructures.
Using Taylor expansion, F̂r can be written as

F̂r = 8r [3r − λMrr ] −1 8T
r

= 8r3
−1
r 8T

r + λ3−1
r Mrr3

−1
r 8T

r + O(λ2) + O (λ3) + · · · . (24)

Using Eq. (24) in Eq. (22), and truncating terms of higher order than λ, we can obtain the approximated global
displacement vector ūg as follows:

ug ≈ ūg = T̄1η
d
p, T̄1 = T̄0 + T̄r , (25a)

T̄0 = Td
0 , η̄p = ηd

p, T̄r = λ 9̂ Frs 9̂T MgTd
0 , Frs = 8r3

−1
r 8T

r , (25b)

where T̄1 is the transformation matrix enhanced by T̄r , and Frs is the zeroth order term (or static part) of the residual
flexibility F̂r . Here, Frs is indirectly calculated using full and dominant flexibility without considering the residual
substructural modes as

Frs = 8r3
−1
r 8T

r =



Frs
1

. . . 0
Frs

i
. . .

0 Frs
Ns−1

0


,

Frs
i = (K̂(i−1)

i )−1
− (8d

i )(3d
i )−1(8d

i ) T , for i = 1, 2, . . . , Ns − 1, (26)
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Table 1
Comparison between the original and enhanced AMLS methods.

Original AMLS Enhanced AMLS

Transformation matrix T̄0 = 9̂8d T̄1 = T̄0 + T̄r = T̄0 + 9̂Frs 9̂T MgT̄0M̄ −1
p K̄p

Reduced mass matrix M̄p M̄p + T̄T
r MgT̄ + T̄T

0 MgT̄r + T̄T
r MgT̄r

Reduced stiffness matrix K̄p K̄p + T̄T
r KgT̄0 + T̄T

0 KgT̄r + T̄T
r KgT̄r

Size of the reduced matrices N̄p N̄p

in which (K̂(i−1)
i )−1 and (8d

i )(3d
i )−1(8d

i ) T are the full and dominant flexibility matrices for the i th substructure.
Note that the enhanced transformation matrix T̄1 defined in Eq. (25) has been also employed to develop an error
estimator of the original AMLS method [21].

Since the eigenvalue λ in T̄r is unknown, the enhanced transformation matrix T̄1 cannot be used to improve the
original AMLS method in its present form. To handle this problem, we employ O’Callahan’s approach, which was
proposed to improve Guyan reduction [18]. From Eq. (11) with f̄p = 0 and ¨̄ηp = −λη̄p, the following relation is
obtained

λη̄p = M̄ −1
p K̄pη̄p, (27)

and using Eq. (27) in Eq. (25), T̄r is newly defined by

T̄r = 9̂ Frs 9̂T MgTd
0M̄ −1

p K̄p. (28)

Using the redefined T̄r in Eq. (28), T̄1 can be expressed without the unknown eigenvalue λ, and then, new reduced
mass and stiffness matrices, denoted by tilde (˜), are defined as

M̃p = T̄T
1 MgT̄1 = M̄p + T̄T

r MgT̄0 + T̄T
0 MgT̄r + T̄T

r MgT̄r , (29a)

K̃p = T̄T
1 KgT̄1 = K̄p + T̄T

r KgT̄0 + T̄T
0 KgT̄r + T̄T

r KgT̄r . (29b)

Due to the compensation of the residual mode effects in T̄r , the reduced mass and stiffness matrices in Eq. (29) are
more precisely constructed than the original reduced matrices in Eq. (11). Table 1 shows the comparison of the original
and enhanced AMLS methods. Note that it is also possible to consider higher order terms of λ in the enhanced AMLS
formulation but there is little additional improvement in solution accuracy.

It is important to note that both methods produce reduced models that have the same size (N̄p). Unlike in the
original AMLS method, Frs and the inverse of the reduced mass matrix M̄p are additionally computed in the enhanced

AMLS method. Frs can be simply calculated by reusing (K̂(i−1)
i )−1 in Eq. (7) and the dominant modes. Furthermore,

the size of the reduced mass matrix M̄p is also much smaller than the original mass matrix Mg . For these reasons, the
additional computational cost of the enhanced AMLS method is not very high.

However, while the transformation matrix T̄0 of the original AMLS method is sparse, the transformation matrix T̄1
of the enhanced AMLS method is fully populated. Therefore, the computational cost for the enhanced AMLS method
could increase more rapidly than the original AMLS method does, as the size of finite element models becomes larger.
However, to achieve a given solution accuracy, the enhanced AMLS method requires smaller reduced models than the
original AMLS method, that is, the computational cost can be reduced for reduced models with similar accuracy. In
order to clarify this issue, rigorous numerical tests need to be performed considering FE models of various sizes.

In this study, we considered only undamped structural models, but the enhanced AMLS method can be also
employed for model reductions of damped structural models [22].

5. Numerical examples

In this section, we compare the performance of the enhanced AMLS method to the original AMLS method. The
original and enhanced AMLS methods were implemented using MATLAB. Four structural problems are considered:
rectangular plate, cylindrical solid, bench corner structure and hyperboloid shell problems, in which, for finite element
modeling, 4-node MITC shell [23–26] and 8-node brick finite elements are used.
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a

b

Fig. 3. Rectangular plate problem: (a) Partition Type A, (b) Partition Type B.

The frequency cut-off mode selection method is used to select the dominant modes, and the following relative
eigenvalue error is used to measure the accuracy of the original and enhanced AMLS methods.

ξi =
λ i− λi

λi
, (30)

in which ξi denotes the relative eigenvalue error for the i th mode and the exact global eigenvalue λi is obtained from
the eigenvalue problem of the global structure in Eq. (2). In the following numerical examples, rigid body modes are
not considered for the relative eigenvalue error.

5.1. Rectangular plate problem

We here consider a rectangular plate with free boundary as shown in Fig. 3. Length L is 20.0 m, width B is 12.0
m, and thickness h is 0.08 m. Young’s modulus E is 206 GPa, Poisson’s ratio υ is 0.33, density ρ is 7850 kg/m3. The
plate is modeled by a 20 × 12 mesh of the 4-node MITC shell finite elements and the number of total DOFs for this
problem is 1365. Two different partition types are considered as in Figs. 3(a) and (b):

• Partition Type A: The global structure is partitioned into seven substructures with three substructural levels (levels
0, 1 and 2), see Fig. 3(a). Retaining 30 and 50 dominant modes (Nd = 30 and Nd = 50), two numerical cases are
considered.

• Partition Type B: As shown in Fig. 3(b), the number of substructures is 13 and the number of substructural levels
is five (levels 0, 1, 2, 3 and 4). We retain 55 and 75 dominant modes for two numerical cases (Nd = 55 and Nd
= 75).

The numbers of retained substructural modes N d
i in both partitioned types are listed in Tables 2 and 3 in detail. Figs. 4

and 5 present the relative eigenvalue errors obtained by the original and enhanced AMLS methods. The results show
that the enhanced AMLS method significantly outperforms the original AMLS method.
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Table 2

Retained mode numbers N d
i for the rectangular plate problem with Partition Type A. All the

substructural modes are retained in the highest level substructure (level 0).

Substructural level Substructural number N d
i Case 1 Case 2

Level 0 7 N d
7 65 65

Level 1
3 N d

3 3 5

6 N d
6 3 5

Level 2

1 N d
1 6 10

2 N d
2 6 10

4 N d
4 6 10

5 N d
5 6 10

Total retained mode number Nd 30 50

Size of the reduced model N̄p 95 115

Table 3

Retained mode numbers N d
i for the rectangular plate problem with Partition Type B. All the

substructural modes are retained in the highest level substructure (level 0).

Substructural level Substructural number N d
i Case 1 Case 2

Level 0 13 N d
13 65 65

Level 1
9 N d

9 10 13

12 N d
12 4 5

Level 2

7 N d
7 5 7

8 N d
8 9 12

10 N d
10 6 10

11 N d
11 3 5

Level 3
3 N d

3 5 5

6 N d
6 3 3

Level 4

1 N d
1 4 6

2 N d
2 2 3

4 N d
4 3 4

5 N d
5 1 2

Total retained mode number Nd 55 75

Size of the reduced model N̄p 120 140

5.2. Cylindrical panel problem

The performance of the proposed method is also tested in a cylindrical panel with free boundary, see Fig. 6. Length
L is 0.8 m, radius R is 0.5 m, and thickness h is 0.005 m. Young’s modulus E is 69 GPa, Poisson’s ratio ν is 0.35, and
density ρ is 2700 kg/m3. The cylindrical panel is modeled by a 16 × 16 distorted mesh of shell finite elements and
each edge is discretized in the following ratio: L1 : L2 : L3 : . . . L16 = 16 : 15 : 14 : . . . 1 [25].

The global structure is partitioned into seven substructures with three substructural levels (levels 0, 1 and 2) as
shown in Fig. 6. The numbers of retained substructural modes N d

i are listed in Table 4. The significant accuracy
improvement is observed in the enhanced AMLS method, see Fig. 7.
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b

Fig. 4. Relative eigenvalue errors for the rectangular plate problem with the Partition Type A: (a) Nd = 30, (b) Nd = 50.

Table 4

Retained mode numbers N d
i for the cylindrical panel problem with a distorted mesh,

Partition Type A is applied. All the substructural modes are retained in the highest level
substructure (level 0).

Substructural level Substructural number N d
i Case 1 Case 2

Level 0 7 N d
7 85 85

Level 1
3 N d

3 7 11

6 N d
6 7 11

Level 2

1 N d
1 4 10

2 N d
2 14 29

4 N d
4 14 29

5 N d
5 4 10

Total retained mode number Nd 50 100

Size of the reduced model N̄p 135 185
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a

b

Fig. 5. Relative eigenvalue errors for the rectangular plate problem with Partition Type B: (a) Nd = 55, (b) Nd = 75.

5.3. Cylindrical solid problem

Let us consider a cylindrical solid problem with free boundary at both ends, see Fig. 8. Lengths L1 and L2 are
0.16 and 0.24 m, respectively, and the radii R1, R2 and R3 are 0.08 m, 0.12 m, and 0.16 m, respectively. Young’s
modulus E is 76 GPa, Poisson’s ratio υ is 0.33, and density ρ is 2796 kg/m3. The cylindrical solid problem is
modeled using 8-node brick elements and the number of total DOFs is 1740. Considering the three substructural
levels (0, 1 and 2), the global structure is partitioned into seven substructures. Two different numbers of retained
dominant modes (Nd = 70 and Nd = 120) are considered as listed in Table 5. The relative eigenvalue errors are
plotted in Fig. 9. The results show the robustness of the enhanced AMLS method compared with the original AMLS
method.

5.4. Bench corner structure problem

Here, a bench corner structure is considered. Lengths L1 and L2 are 4.0 m and 1.0 m, heights H1 and H2 are 2.0 m
and 1.0 m. Width B is 1.0 m and thickness h is 0.025 m. Young’s modulus E is 210 GPa, Poisson’s ratio υ is 0.30, and
density ρ is 7850 kg/m3. The 4-node MITC shell finite elements are used for the finite element model of the struc-
ture, in which the number of DOFs is 3508 DOFs. As shown in Fig. 10, the global structure is partitioned into nine
substructures with four sub-structural levels (0, 1, 2 and 3). We retain 50 and 80 dominant modes in two numerical
cases (Nd = 50 and Nd = 80), and the numbers of the retained substructural modes N d

i are listed in Table 6. Fig. 11
demonstrates the excellent performance of the enhanced AMLS method.
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Fig. 6. Cylindrical panel problem with a distorted mesh.

Table 5

Retained mode numbers N d
i for the cylindrical solid problem. All the

substructural modes are retained in the highest level substructure (level 0).

Substructural level Substructural number N d
i Case 1 Case 2

Level 0 7 N d
7 180 180

Level 1
3 N d

3 12 20

6 N d
6 10 12

Level 2

1 N d
1 13 26

2 N d
2 13 26

4 N d
4 11 18

5 N d
5 11 18

Total retained mode number Nd 70 120

Size of the reduced model N̄p 250 300

5.5. Hyperboloid shell problem

Consider a hyperboloid shell problem of height H = 4.0 m and thickness h = 0.05 m. The mid-surface of this
shell structure is described [25] as

x2
+ y2

= 2 + z2
; z ∈ [−2, 2] . (31)

No boundary condition is imposed. Young’s modulus E is 69 GPa, Poisson’s ratio ν is 0.35, and density ρ is
2700 kg/m3. A 20 (axial)×40 (circumferential) mesh of shell finite elements is used. Considering three sub-structural
levels (0, 1 and 2), the global structure is partitioned into seven substructures, see Fig. 12. We use 60 and 120 retained
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a

b

Fig. 7. Relative eigenvalue errors for the cylindrical panel problem with a distorted mesh: (a) Nd = 50, (b) Nd = 100.

Table 6

Retained mode numbers N d
i for the bench corner structure problem. All the

substructural modes are retained in the highest level substructure (level 0).

Substructural level Substructural number N d
i Case 1 Case 2

Level 0 9 N d
9 97 97

Level 1
5 N d

5 7 11

8 N d
8 8 10

Level 2

3 N d
3 5 6

4 N d
4 11 14

6 N d
6 2 7

7 N d
7 11 18

Level 3
1 N d

1 4 9

2 N d
2 2 5

Total retained mode number Nd 50 80

Size of the reduced model N̄p 147 177

dominant modes in two numerical cases (Nd = 60, Nd = 120), and the numbers of the retained sub-structural modes
N d

i are listed in Table 7. Fig. 13 consistently demonstrates the excellent performance of the enhanced AMLS method.
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Fig. 8. Cylindrical solid problem.

Table 7

Retained mode numbers N d
i for the hyperboloid shell problem. All the

substructural modes are retained in the highest level substructure (level 0).

Substructural level Substructural number N d
i Case 1 Case 2

Level 0 7 N d
7 200 200

Level 1
3 N d

3 8 14

6 N d
6 8 14

Level 2

1 N d
1 11 23

2 N d
2 11 23

4 N d
4 11 23

5 N d
5 11 23

Total retained mode number Nd 60 120

Size of the reduced model N̄p 260 320

6. Computational cost

In order to investigate the computational cost required for the enhanced AMLS method, computation times are
measured, and compared with those of the original AMLS method. A sparse matrix computation with MATLAB is
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a

b

Fig. 9. Relative eigenvalue errors for the cylindrical solid problem: (a) Nd = 70, (b) Nd = 120.

Fig. 10. Bench corner structure problem.

used in a personal computer (Intel core (TM) i7-3770, 3.40 GHz CPU, 16GB RAM). Note that, of course, computation
times vary depending on implementation details of the computer codes, as well as on the performance of the computers
used. Therefore, the results discussed in this section could not be simply generalized.
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Fig. 11. Relative eigenvalue errors for the bench corner structure problem: (a) Nd = 50, (b) Nd = 80.

Table 8
Computation times for calculating the lowest eigenvalues by the original and enhanced AMLS methods.

DOFs Computation time (s)
Ng N̄p Original AMLS Enhanced AMLS

Rectangular plate (Freq. cut-off, Nd = 30) 1365 135 1.018E−01 1.182E−01
Cylindrical solid (Freq. cut-off, Nd = 70) 1740 250 2.912E−01 3.001E−01
Bench corner structure (Freq. cut-off, Nd = 50) 3508 147 2.216E−01 2.458E−01
Hyperboloid shell (Freq. cut-off, Nd = 60) 4200 260 5.045E−01 5.248E−01

6.1. Reduced models with same size

When the size of the reduced model is the same, additional computation is required for the enhanced AMLS
method, compared with the original AMLS method. Table 8 presents the computation times for calculating the lowest
eigenvalues (mode number = 1) in the four numerical examples considered in Section 5. Note that the original and
enhanced reduced transformation matrices in Eqs. (11) and (29) are used in the original and enhanced AMLS meth-
ods, respectively. The results show that the additional computational cost for the enhanced AMLS method is not high
compared with the original AMLS method.

We investigate the additional computation times required for the enhanced AMLS method by increasing the number
of DOFs in the rectangular plate problem with Partition Type A in Fig. 3(a). We here consider six different meshes:
20 × 12 (Ng = 1365, N̄p = 95), 30 × 18 (Ng = 2945, N̄p = 125), 40 × 24 (Ng = 5125, N̄p = 155), 48 × 30
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Fig. 12. Hyperboloid shell problem.

(Ng = 7595, N̄p = 185), 54 × 32 (Ng = 9075, N̄p = 195), and 60 × 36 (Ng = 11285, N̄p = 215), see Fig. 14 for
30 × 18 and 40 × 24 meshes.

To construct the reduced models, the number of retained dominant substructural modes is fixed as 30 in every
numerical case. Note that, as the number of DOFs increases, the size of reduced models also increases due to the DOF
increment in the highest level substructure. The computation times required for calculating the lowest eigenvalues by
the original and enhanced AMLS methods are presented in Fig. 15. This result also shows the good computational
efficiency of the enhanced AMLS method.

6.2. Reduced models with similar accuracy

For a fair comparison, the computation times of the original and enhanced AMLS methods are measured for the
reduced models with similar accuracy. A turbine blade problem in Fig. 16 is considered. Length L is 35 m, thickness is
0.05 m, Young’s modulus E is 210 GPa, Poisson’s ratio ν is 0.3, and density ρ is 7800 kg/m3. The detailed geometry
is described in Ref. [27]. We use 10300 shell finite elements and 10100 nodes (51308 DOFs). Considering three
sub-structural levels (0, 1 and 2), the global structure is partitioned into 19 substructures.

The following numerical cases are considered:

• The original AMLS method is used with the reduced model size of N̄p = 1260 (Nd = 60) and N̄p = 3100 (Nd =

1900).
• The enhanced AMLS method is used with the reduced model size of N̄p = 1260 (Nd = 60).

Fig. 17 shows that the accuracy is similar for the reduced models using the original AMLS method with N̄p =

3100 (Nd = 1900) and using the enhanced AMLS method with N̄p = 1260 (Nd = 60). Table 9 lists the breakdown
of computation time. It is observed that, with similar accuracy, the computation time required for the enhanced AMLS
method is less than for the original AMLS method.
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Fig. 13. Relative eigenvalue errors for the hyperboloid shell problem: (a) Nd = 60, (b) Nd = 120.

Table 9
Computation times for calculating the lowest eigenvalues in the turbine blade problem. The computation times are normalized by
the total computation time required for the original AMLS method when Nd = 60.

Items Related
equations

Normalized computation times

Original AMLS
(Nd = 60)

Original AMLS
(Nd = 1900)

Enhanced AMLS
(Nd = 60)

Transformation procedures 11 and 27
0.0736 0.6272 0.0736

Solution of the substructural
eigenvalue problems

8

Calculation of the multi-level
constraint mode matrix 9̂

13 0.9252 0.9252 0.9252

Solution of the reduced
eigenvalue problem

3 0.0012 0.0599 0.0012

Calculation of the residual
flexibility matrix Frs

a
24 – – 0.0062

Inverse matrix of the reduced
mass matrix M̄p

a
26 – – 0.0118

Total 1.0000 1.6123 1.0180

a Items only required for the enhanced AMLS method.
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a

b

Fig. 14. Two different meshes for the rectangular plate problem with Partition Type A in Fig. 3(a): (a) 30 × 18 mesh, (b) 40 × 24 mesh.

Fig. 15. Computation times depending on the number of DOFs in the rectangular plate problem with Partition Type A in Fig. 3(a).

At this point, it is very important to note that, in this study, we tested the computational cost of the enhanced AMLS
method for several FE models with up to 51308 DOFs using our own MATLAB implementation. Therefore, additional
tests are required considering various FE models with more than millions of DOFs. Note also that the computational
efficiency is crucial to use the enhanced AMLS method as a solver of eigenvalue problems with large DOFs. In order
to do that, much more effective computer codes and high performance computers are necessary.



110 J.-G. Kim et al. / Comput. Methods Appl. Mech. Engrg. 287 (2015) 90–111

Fig. 16. Turbine blade problem.

Fig. 17. Relative eigenvalue errors for the turbine blade problem.

7. Conclusions

In this paper, we presented a new component mode synthesis (CMS) method developed by improving the auto-
mated multi-level substructuring (AMLS) method. Unlike for the original AMLS method, the residual mode effect
is considered in constructing the transformation matrix. As a result, the original AMLS transformation matrix is en-
hanced by the residual flexibility, in which the unknown eigenvalue is approximated using O’Callahan’s approach
from the improved reduced system (IRS) method.

The enhanced AMLS method was then developed using this enhanced transformation matrix. As a result, global
(original) structural models can be more precisely reduced, and the accuracy of reduced models is dramatically im-
proved. The accuracy improvement of the enhanced AMLS method was demonstrated through numerical examples,
and its computational cost was also investigated. However, as mentioned, additional numerical tests on the computa-
tional cost of the enhanced AMLS method are necessary considering much larger FE models than those considered in
this study.

In order to effectively use the enhanced AMLS method as a solver of eigenvalue problems, it is important to in-
crease its computational efficiency. An optimized algorithm for computer programming would be valuable, and then
efficient mode selection and error estimation techniques are essential [28–30]. In addition, the proposed method can
be used to reduce the size of system matrices in flexible multi-body systems [31–33].
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