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The objective of this paper is to develop a simple and robust error estimation method for the flexibility-based

component mode synthesis method. The flexibility-based component mode synthesis method is known to provide

reliable and improved performance compared to other component mode synthesis methods. However, it is not

possible to estimate errors in finite elementmodels reducedby the flexibility-based componentmode synthesismethod

yet. In this study, an a posteriori method is developed to accurately estimate relative errors in individual eigenvalues

approximated by the flexibility-based componentmode synthesismethodwithout knowing the exact eigenvalues. The

excellent performance of this error estimation method is demonstrated through various numerical examples.

Nomenclature

B = interface Boolean matrix
F = flexibility matrix
f = force vector
K = stiffness matrix
L = assembly Boolean matrix
M = mass matrix
N = number of degrees of freedom or modes
q = generalized coordinate vector
R = rigid-body mode shape matrix
t = time variable
u = displacement vector
α = generalized coordinate vector of rigid-body modes
δ = error term
η = error estimator
λ = eigenvalue
λl = localized Lagrange multiplier vector
ξ = relative eigenvalue error
Φ = eigenvector matrix
φ = eigenvector
ω = natural or forcing frequency

Subscripts

b = interface boundary
d = dominant term
g = global structure
p = partitioned structure
q = deformable mode
r = residual term
s = substructure
α = rigid-body mode

I. Introduction

I N STRUCTURAL engineering, the size of structural models has
become larger and larger. It is a challenging problem to efficiently

handle such large structural models. Component mode synthesis
(CMS) is one of the popular reduced-order modeling techniques for
the finite element models. CMS is also an efficient method to solve
large eigenvalue problems in structural dynamics. In the 1960s,Hurty
[1] and Guyan [2] first proposed the fundamental concept of CMS
methods; since then, various CMS methods have been developed
(see, e.g., [3–14]). The CMS methods are well summarized in [15].
In the CMS methods, the key to success is mainly due to the fact

that a large original structural model is partitioned into small
substructural models that can be easily handled. Then, instead of the
large (nonpartitioned) global structural model, we deal with the
reduced model constructed by dominant substructural modes.
Therefore, CMS methods can dramatically reduce computational
cost and match parallel computations fairly well [16].
The reliability of the reducedmodel can be assessed by errors in its

approximated global eigenvalues. The eigenvalue errors also can
measure the accuracy of the approximated eigensolutions when
CMS methods are used to calculate the solutions of large eigenvalue
problems. Therefore, it is very important to estimate accurately the
errors when CMS methods are used. Basically, it is difficult to
estimate the eigenvalue errors when the exact eigenvalues are
unknown.
In an effort to handle this issue, Bourquin [17] developed an error

bound derived from the exact global eigensolutions. Extending the
error bound proposed by Yang et al. [18], Elssel and Voss [19]
estimated relative eigenvalue errors for the Craig and Bampton (CB)
and automated multilevel substructuring (AMLS) methods.
Jakobsson and Larson [20] developed an a posteriori error estimation
method of the approximated eigensolutions. In spite of the
considerable efforts, the previous error estimation methods still
provide qualitative tendency rather than meaningful quantity in
eigenvalue errors. The methods were developed and tested only for
the CB and AMLS methods.
To construct more reliable and accurate reduced models, Park and

Park proposed the flexibility based component mode synthesis (F-
CMS) method [11]. However, it is not possible to estimate the
reliability of models reduced by the F-CMSmethod. The objective of
this study is to develop an a posteriori method that can accurately
estimate individual eigenvalue errors for the F-CMS method. To
derive the error estimator, the global exact eigensolutions are
decomposed into approximated and error parts and the approximated
eigenvectors are spanned by the exact eigenvectors. The decomposed
eigensolutions are substituted into the global (original) eigenvalue
problem and, analyzing resulting expanded terms, the relative
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eigenvalue error for the F-CMS method is obtained. The derivation
procedure shows that the proposed error estimator can approximate
the relative eigenvalue errors. Of course, the exact global eigenvalues
are unknown in this error estimation method.
In the following sections, we first briefly review the F-CMS

method in Sec. II. The fundamental concept and mathematical
derivation of the proposed error estimation method are presented in
Sec. III. In Sec. IV, its performance is tested through well-established
numerical examples. The conclusions are given in Sec. V.

II. Flexibility-Based Component Mode Synthesis

The flexibility-based component mode synthesis method has been
developed using the localized Lagrange multipliers λl [11,21,22].
Figures 1a and 1b show a global structure Ω modeled by the finite
element discretization and the structure partitioned into two
substructures: Ω1 and Ω2 (Ω � Ω1 ∪ Ω2 and Γ � Ω1 ∩ Ω2),
respectively. The two substructures are connected at the interface
boundary Γ with the constraint conditions using λl. Unlike the
classical Lagrange multipliers, the localized Lagrange multipliers
enable us to have the independent interface boundary degrees of
freedom (DOFs) denoted by ub. Then, the substructures are
individually connected with ub, as shown in Fig. 1c. The subscript b
refers to the interface boundary.

A. Partitioned Formulation

The displacement-based discrete energy functional Π�ug� of the
global structure is

Π�ug��uTg
�
1

2
Kgug−fg�Mg �ug

�
; Mg�LTMsL; Kg�LTKsL

(1)

where Mg and Kg are the global mass and stiffness matrices,
respectively;ug is the global displacement vector; and fg is the global
force vector.Ms and Ks are the partitioned block diagonal mass and
stiffness matrices that consist of substructural mass and stiffness
matrices, respectively. The subscripts g and s denote the global
structure and substructures, respectively. The global structure and
partitioned substructures are related by an assembly Boolean
matrix L.
Then, δΠ�ug� yields the linear dynamics equations of the global

structure

Mg �ug � Kgug � fg (2)

To obtain the eigenvalues and eigenvectors of the global structure
from Eq. (2), the following eigenvalue problem is solved:

Kg�φg�i � λiMg�φg�i; i � 1; 2; : : : ; Ng with ug � Φgqg

(3)

where λi and �φg�i are the ith eigenvalue and eigenvector directly
calculated from the global eigenvalue problem, respectively, and
these are regarded as the exact global eigensolutions. Note that λi is
the square of the ith natural frequency ω2 in structural dynamics.Ng
is the number of DOFs in the global structure. Φg and qg are the
global eigenvector matrix and generalized coordinate vector,
respectively.
Using the localized Lagrange multipliers, Π�ug� can be redefined

as the sum of the substructural and constraint energy functionals

Π�us; λl; ub� � uTs
�
1

2
Ksus − f s �Ms �us

�
� λl�BTus − Lbub�

(4)

where us and f s are the partitioned displacement and force vectors of
the substructures, respectively; and B denotes the interface Boolean
matrix. Lb is obtained by condensing the rows with zero entries of
BTL (see, e.g., [11]).
Here, the partitioned displacement vector us is decomposed by

deformable and rigid-body modes

us � Φsqs � Rsαs (5)

where Φs and Rs are the eigenvector matrices of the deformable and
rigid-body modes, respectively. The corresponding generalized
coordinate vectors are qs and αs. The block diagonal matricesΦs and
Rs are calculated from the substructural eigenvalue problems.
Then, Eq. (4) can be expressed by the energy functional of four

variables Π�qs;αs; λl; ub�, which yields

�
Mp

d2

dt2
� Kp

�
up � fp

Mp

d2

dt2
� Kp �

2
666664

Λs � Iq d2

dt2
0 ΦT

s B 0

0 Iα
d2

dt2
RTb 0

BTΦs Rb 0 −Lb
0 0 −LTb 0

3
777775
;

up �

2
66664

qs

αs

λl

ub

3
77775; fp �

2
66664

ΦT
s f s

RTs f s

0

0

3
77775; Λs � ΦT

s KsΦs;

Iq � ΦT
s MsΦs; Iα � RTsMsRs; Rb � BTRs (6)

where Mp and Kp are the partitioned mass and stiffness matrices,
respectively. The partitioned displacement and force vectors are up
and fp, respectively. Subscript p denotes the partitioned structure,
and t denotes the time variable. Note that Eq. (6) contains all the
deformable modes Φs and rigid-body modes Rs.

B. Reduction Procedure

The eigenvector matrix of the deformable substructural modesΦs

can be divided into the dominant and residual parts

Φsqs � Φdqd �Φrqr (7)

a)

c)
2

1λ 1

2λ

bu

b)

1
2

Fig. 1 Global and partitioned structural models and interface handling
in theF-CMSmethod:a) global (nonpartitioned) structure;b)partitioned
structure; and c) interface boundary treatment.
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where subscripts d and r denote the dominant and residual terms,
respectively. Φd and Φr are the dominant and residual substructural
eigenvector matrices, respectively; and qd and qr are the corres-
ponding generalized coordinate vectors.Φd consists ofNd dominant
substructural eigenvectors (Nd � N�1�d � N

�2�
d � : : : � N�Ns�d ), and

the remaining substructural eigenvectors regarded as the residual
modes are put into Φr. Ns denotes the number of substructures.
Substituting Eq. (7) into Eq. (6) and performing the Gauss

elimination on qr, we obtain the following condensed equations:

2
666664

Λ̂d 0 ΦT
db 0

0 Iα
d2

dt2
RTb 0

Φdb Rb −F̂rb −Lb
0 0 −LTb 0

3
777775

2
66664

qd

αs

λl

ub

3
77775�

2
66664

ΦT
df s

RTs f s

−BTF̂rf s
0

3
77775;

Λ̂d �Λd�
d2

dt2
Id; Λd �ΦT

dKsΦd; Id �ΦT
dMsΦd;

Φdb � BTΦd; F̂rb � BTF̂rB; F̂r �Φr

�
Λr�

d2

dt2
Ir

�−1
ΦT
r

(8)

in which F̂r is the dynamic residual flexibility, and F̂rb is its interface
boundary part, respectively.
We then invoke the harmonic response (d2∕dt2 � −ω2). F̂r and

F̂rb are expressed as functions of ω2, and these yield an intractable
eigenvalue problem.To treat the transcendental nature of the interface
residual flexibility F̂r, we approximate

F̂r � Φr�Λr − ω2Ir�−1ΦT
r ≈ Frs � ω2Frm;

Frs � ΦrΛ−1
r ΦT

r ; Frm � ΦrΛ−2
r ΦT

r (9)

where Frs and Frm are the static and dynamic parts of F̂r, and these
can be indirectly calculated using the full flexibility and the inverse
of the stiffness matrixKs. SinceKs contains rigid-body modes in the
F-CMS method, it is not invertible. Therefore, the pseudoinverse
denoted by the superscript � is used as

Frs � M−1∕2
s �M−1∕2

s KsM
−1∕2
s ��M−1∕2

s −ΦdΛ−1
d ΦT

d (10a)

Frm � M−1∕2
s �M−1∕2

s KsM
−1∕2
s ��2M−1∕2

s −ΦdΛ−2
d ΦT

d (10b)

Then, the interface residual flexibility F̂rb can be also defined:

F̂rb ≈ Frbs � ω2Frbm; Frbs � BTFrsB; Frbm � BTFrmB
(11)

Substituting Eq. (11) into Eq. (8) with the free vibration condition
(f � 0), we obtain the final reduced eigenvalue problem

�Kp� �φp�i� �λi �Mp� �φp�i; i�1;2; : : :;Np

�Kp�

2
66664

Λd 0 ΦT
db 0

0 0 RTb 0

Φdb Rb −Frbs −Lb
0 0 −LTb 0

3
77775; �Mp�

2
66664

Id 0 0 0

0 Iα 0 0

0 0 Frbm 0

0 0 0 0

3
77775;

�Φp�

2
66664

�Φqd

�Φαs

�Φλl

�Φub

3
77775 (12)

where �Mp and �Kp are the reduced partitioned mass and stiffness
matrices, respectively; and �λi and � �φp�i are the eigensolutions of the
reduced model, respectively. Note that an overbar denotes
approximated quantities.
From the third row in Eq. (12), the approximated global

eigenvector � �φg�i is computed by

�φg�i ≈ � �φg�i � Φd� �φqd �i � Rs� �φαs�i − F̂rB� �φλl �i (13)

In the F-CMSmethod, the residual modes are not simply truncated
but transformed into the residual flexibility as shown in Eq. (9). In
contrast, in stiffness-based CMSmethods such as the CB and AMLS
methods, those residual modes are truncated. This fact leads to the
improvement of accuracy in the F-CMS method. Note that the
approximated global eigenvector � �φg�i in Eq. (13) does not satisfy
the mass orthonormality for the global model as

� �φg�Ti Mg� �φg�j ≠ δij (14)

where δij is Kronecker delta (δij � 1 if i � j; otherwise, δij � 0).
Using this feature, it is possible to develop an error estimator for the
F-CMS method. However, the feature cannot be directly employed
for the CB method, which is one of the most popular CMS methods.
This issue will be presented in the following section.

III. Error Estimation Method

A. Derivation Procedure

As mentioned in the Introduction (Sec. I), it is very important to
estimate the eigenvalue error in CMS methods. In so doing, the ith
relative eigenvalue error ξi is generally used:

ξi �
�λi − λi
λi
�

�λi
λi
− 1 (15)

To obtain the exact relative eigenvalue error, the exact global
eigenvalue λi calculated from the global eigenvalue problem in
Eq. (3) is a prerequisite. In this study, we focus on how to estimate
the relative eigenvalue error when the exact global eigenvalue λi is
unknown.
Here, we first define the relation between the exact and approxi-

mated global eigensolutions. The exact global eigenvalue λi and
eigenvector �φg�i satisfy the global eigenvalue problem in Eq. (3).
The eigensolutions [�λi, � �φp�i] of the reducedmodel are obtained from
the reduced eigenvalue problem in Eq. (12), and the approximated
global eigenvector � �φg�i is calculated from Eq. (13) using � �φp�i.
The exact global eigensolutions are expressedby the approximated

global eigensolutions and the error terms δλi and �δφg�i:

λi � �λi � δλi (16a)

�φg�i � � �φg�i � �δφg�i (16b)

Since the exact global eigenvectors are linearly independent, the
approximated global eigenvector � �φg�i can be represented by a linear
combination of the exact global eigenvectors

� �φg�i �
XNg
k�1

αk�φg�k (17)

where the coefficient αk can be calculated by premultiplying
� �φg�TkMg.
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Using Eq. (17) in Eq. (16b), the eigenvector error �δφg�i can be
represented by αk and �φg�k:

�δφg�i � −�α1�φg�1 � α2�φg�2� · · · ��αi − 1��φg�i� · · ·

� αNg �φg�Ng � (18)

It is important to note that, as we increase the number of
substructural modes retained in the reducedmodel, the approximated
global eigenvector � �φg�i becomes close to the exact global
eigenvector �φg�i. When the approximated global eigenvector is
close enough to the exact global eigenvector, we can assume that

αi ≈ 1; jαij≫ jαi − 1j; jα1j; jα2j · · · jαi−1j;
jαi�1j; · · · ; jαNg j; and �λi ≈ λi (19)

Note that, when the ith exact and approximated global
eigenvectors [�φg�i � � �φg�i] are identical, the coefficient αi � 1
and other coefficients are zero.
Since λi and �φg�i are the solutions of the global eigenvalue

problem in Eq. (3), the following equations are satisfied:

1

λi
�φg�Ti Kg�φg�i � �φg�Ti Mg�φg�i (20)

and

�φg�Ti Mg�φg�i � 1; �φg�Ti Kg�φg�i � λi (21)

Using Eq. (16b) in Eq. (20), we obtain

1

λi
�� �φg�i � �δφg�i�TKg�� �φg�i � �δφg�i�

� �� �φg�i � �δφg�i�TMg�� �φg�i � �δφg�i� (22)

Then, the left-hand side of Eq. (22) can be rewritten:

1

λi
�� �φg�i � �δφg�i�TKg�� �φg�i � �δφg�i�

� 1

λi
� �φg�Ti Kg� �φg�i �

2

λi
�δφg�Ti Kg� �φg�i �

1

λi
�δφg�Ti Kg�δφg�i

(23)

Using Eq. (18) in the second and third terms of Eq. (23), we have

2

λi
�δφg�Ti Kg� �φg�i � −2�αi − 1� − 2�αi − 1�2 − 2

XNg
k�1
k≠i

α2k
λk
λi

(24a)

1

λi
�δφg�Ti Kg�δφg�i � �αi − 1�2 �

XNg
k�1
k≠i

α2k
λk
λi

(24b)

Finally, the left-hand side of Eq. (22) becomes

1

λi
�� �φg�i � �δφg�i�TKg�� �φg�i � �δφg�i�

� 1

λi
� �φg�Ti Kg� �φg�i − 2�αi − 1� − �αi − 1�2 −

XNg
k�1
k≠i

α2k
λk
λi

(25)

Similarly, we can expand the right-hand side of Eq. (22):

�� �φg�i � �δφg�i�TMg�� �φg�i � �δφg�i�
� � �φg�Ti Mg� �φg�i � 2�δφg�Ti Mg� �φg�i � �δφg�Ti Mg�δφg�i

� � �φg�TiMg� �φg�i − 2�αi − 1� − �αi − 1�2 −
XNg
k�1
k≠i

α2k (26)

Using Eqs. (25) and (26) in Eq. (22), we obtain

1

λi
� �φg�Ti Kg� �φg�i � � �φg�Ti Mg� �φg�i �

2
4XNg
k�1
k≠i

α2k

�
λk
λi

− 1

�35 (27)

Note that the leading-order terms 2�αi − 1� in Eqs. (25) and (26)
are canceled.
Here, we assume that the global stiffness matrixKg can be divided

into the approximated global stiffness matrix and its error

Kg � �Kg � δKg (28)

in which δKg is error in the global stiffness matrix, and �Kg is the
approximated global stiffness matrix that satisfies

� �φg�Tk �Kg� �φg�k � �λk for k � 1; 2; : : : ; Np (29)

Using Eqs. (28) and (29) in Eq. (27), we obtain

�λi
λi
� � �φg�Ti Mg� �φg�i �

2
4XNg
k�1
k≠i

α2k

�
λk
λi

− 1

�35 −
1

λi
� �φg�Ti δKg� �φg�i

(30)

In the right-hand side of Eq. (30), the second and third
terms are much smaller than the first term under the assumption
in Eq. (19). Neglecting the small terms, the following equation is
given:

�λi
λi

≈ � �φg�Ti Mg� �φg�i (31)

and, subtracting one from the left- and right-hand sides of Eq. (31),
we obtain

�λi
λi
− 1 ≈ � �φg�Ti Mg� �φg�i − 1 (32)

where the left-hand side is the relative error in the ith eigenvalue in
Eq. (15), and the right-hand side is the error in mass orthonormality
for the ith approximated global eigenvector � �φg�i with global mass
matrixMg.
Using the relation in Eq. (32), we can define the error estimator ηi

for the ith approximated eigenvalue in the F-CMS method
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ηi � � �φg�Ti Mg� �φg�i − 1 (33)

with

� �φg�i � Φd� �φqd�i � Rs� �φαs�i − �Frs � �λiFrm�B� �φλl �i (34)

It is important to note that, in order to obtain Eq. (34), the unknown
ω2 contained in F̂r [see Eq. (9)] is substituted by the ith approximated
eigenvalue �λi calculated from the reduced eigenvalue problem.
Consequently, the preceding derivation procedure shows that the
error estimator ηi can be used to approximate the exact relative
eigenvalue error ξi in Eq. (15) (ηi ≈ ξi). We also note that the
computational cost for the error estimator ηi is not high because
only simple additions and multiplications of known matrices are
required.
Mathematically, the proposed error estimator ηi is not defined

as the upper or lower bound of errors. Recalling that the pro-
posed error estimation method is valid under the assumptions
in Eqs. (19) and (28), it is also important to investigate the
accuracy of the error estimator ηi depending on the number of
retained dominant substructural modes. This is studied in numerical
examples.
The proposed error estimator can be also employed to develop

effective model reduction algorithms in combination with various
mode selection methods [21,23] and error estimator for other model
reduction methods [24]. After determining the error tolerance for
target global modes, we can iteratively select the retained
substructural modes until the error tolerance is properly satisfied.
Then, a small reducedmodel with a given accuracy can be effectively
constructed.

B. Feasibility for the Craig and Bampton Method

Mathematically, the global eigenvector �φg�i always satisfies the
mass orthonormality for the global model as

�φg�Ti Mg�φg�j � δij (35)

However, the approximated global eigenvector � �φg�i is not the
direct eigensolution for the global model; thus, � �φg�i does not satisfy
themass orthonormality for the globalmodel in general as in Eq. (14).

As � �φg�i becomes closer to �φg�i, Eq. (14) gets closer to δij. Using
this feature, we derived an estimator ηi of the relative eigenvalue
errors for the F-CMS method in Sec. III.A.
Since the proposed error estimator ηi is derived from the general

description of CMS methods, it may be applied for not only the F-
CMS method but also for other CMS methods. However, the present
form of ηi cannot be directly used for a type of CMS method like the
CB method [3]. In the CB method, the transformation matrix �TCB

constructed by the dominant substructural modes is used to calculate
the reduced matrices as

�Mp � �TTCBMg
�TCB; �Kp � �TTCBKg �TCB (36)

And, using the same transformation matrix �TCB, the approximated
global eigenvector � �φg�i can be also obtained from the eigenvector
� �φp�i calculated in the reduced model

� �φg�i � �TCB� �φp�i (37)

Using Eqs. (36) and (37) in the left-hand side of Eq. (14), the
following relation is obtained:

� �φg�Ti Mg� �φg�j � � �φp�Ti �Mp� �φp�j (38)

Since the eigenvector � �φp�i is the eigensolution of the reduced
model, it is easy to identify

Table 1 Retained substructural mode numbersN�k�d in the

rectangular plate problem using the CB and F-CMS methods

CB F-CMS

Numerical cases N�1�d N�2�d Nd N�1�d N�2�d Nd

Case 1 7 3 10 7 3 10
Case 2 13 7 20 13 7 20

L

1

2
B

Fig. 2 Rectangular plate problem.

a)

b)

[19]

[19]

Fig. 3 Exact and estimated relative eigenvalue errors in the rectangular
plate problem using the CB method: a) Nd � 10, and b) Nd � 20.
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� �φg�Ti Mg� �φg�j � � �φp�Ti �Mp� �φp�j � δij

for i and j � 1; 2; : : : ; Np
(39)

Therefore, in the CBmethod, the mass orthonormality of � �φg�i for
the global model is mathematically identical with the mass

orthonormality of � �φp�j for the reduced model. For this reason, the
proposed error estimator ηi in Eq. (33) always gives zero in the CB
method, and thus cannot be directly used for the CB method in its
present form. However, the conceptual idea of the present error
estimator can be used to develop an error estimator for the CB
method; see [25].

IV. Numerical Examples

In this section, we test the performance of the proposed error
estimation method. For the finite element models, we use the four-
nodemixed interpolation of tensorial components (MITC) shell finite
elements (see, e.g., [26–29]).
Here, we compare the proposed error estimation method with a

previous error estimationmethod proposed byElssel andVoss [19]. It
was developed as an upper bound of the relative eigenvalue error

τi �
�λi

jλr − �λij
(40)

where λr is the smallest residual eigenvalue of substructures.
Although this method was originally developed for the CB and
AMLS methods based on the frequency cutoff mode selection
method, it can also evaluate individual eigenvalue errors in the F-
CMS method with similar accuracy.

a)

b)

[19]

[19]

Fig. 4 Exact and estimated relative eigenvalue errors in the rectangular

plate problem using the F-CMS method: a)Nd � 10, and b) Nd � 20.

Table 2 Exact and estimated eigenvalue errors in the rectangular plate problem

Nd � 10 Nd � 20

Mode number Exact
Estimated

(Elssel and Voss [14])
Estimated
(present) Exact

Estimated
(Elssel and Voss [14])

Estimated
(present)

1 6.94762E − 06 1.14848E − 02 1.38687E − 05 5.89399E − 08 2.80305E − 03 1.54027E − 07
2 2.66257E − 06 1.71028E − 02 5.34686E − 06 9.04237E − 08 4.15680E − 03 2.24763E − 07
3 2.65320E − 05 9.13660E − 02 5.22991E − 05 4.89581E − 06 2.10428E − 02 9.70832E − 06
4 1.36731E − 03 1.02404E − 01 2.62666E − 03 6.93182E − 06 2.33709E − 02 1.38077E − 05
5 5.69427E − 05 2.57811E − 01 1.06987E − 04 3.46214E − 06 5.31378E − 02 6.80650E − 06
6 2.08814E − 03 3.59515E − 01 3.83258E − 03 2.81479E − 05 6.67814E − 01 5.53600E − 05
7 2.04114E − 03 3.96652E − 01 6.46290E − 03 5.05974E − 05 7.50112E − 02 9.82232E − 05
8 2.98671E − 02 7.07415E − 01 5.06769E − 02 4.41654E − 05 1.09932E − 01 8.57886E − 05
9 — — — — — — 1.95870E − 04 1.56472E − 01 3.70223E − 04
10 — — — — — — 2.78901E − 04 2.11385E − 01 5.12478E − 04
11 — — — — — — 1.06043E − 03 3.41084E − 01 1.87649E − 03
12 — — — — — — 1.55768E − 03 4.77692E − 01 2.86479E − 03
13 — — — — — — 6.88535E − 03 7.20722E − 01 1.05754E − 02
14 — — — — — — 2.97041E − 04 9.57359E − 01 5.25239E − 04
15 — — — — — — 2.61556E − 02 1.02923E� 00 3.87200E − 02

1
2

3

4

1

2

3

4

H

12R

22R

Fig. 5 Hemisphere shell problem.

Table 3 Retained substructural mode numbers N�k�d
in the hemisphere shell problemusing the F-CMSmethod

Numerical cases N�1�d N�2�d N�3�d N�4�d Nd

Case 1 12 8 20 14 54
Case 2 25 17 35 23 100
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A. Rectangular Plate Problem

Let us consider a rectangular platewith a free boundary; see Fig. 2.
The lengthL is 0.6096m, thewidthB is 0.3048m, and the thicknessh
is 3.175 × 10−3 m. Young’smodulusE is 72G Pa, Poisson’s ratio ν is
0.33, and the density ρ is 2796 kg∕m3. The plate is modeled by a
12 × 6 mesh of the four-node MITC shell finite elements, and the
structural model is partitioned into two substructures.
Since the error estimation method by Elssel and Voss [19] in

Eq. (40)was originally developed for theCBandAMLSmethods,we
first test its performance in the CB method. The frequency cutoff
mode selection method is employed to select dominant substructural
modes. Two numerical cases are considered for the number of
retained substructural modes, and the numbers of the retained
substructural modes are listed in Table 1. Figure 3 shows the exact
relative eigenvalue errors ξi and estimated relative eigenvalue errors
τi. The numerical results show that τj provides an upper bound for the
exact relative eigenvalue error ξj, and the difference between τj and ξj
is about one or two digits on a log scale, as presented in [19].
Figure 4 presents the exact and estimated relative errors in

eigenvalues when the F-CMS method is employed. To select the
dominant substructural modes, we adopt the frequency cutoff mode
selection method. The numbers of retained substructural modes are
listed in Table 1.
The performance of the error estimationmethod byElssel andVoss

[19] is similar in both the CB and F-CMS methods. The numerical
results show the excellent performance of the proposed error
estimation method for both numerical cases compared with the

previous error estimation method. The proposed error estimation
method provides an upper bound for the exact relative eigenvalue
error in the problem considered here. The exact and estimated
eigenvalues errors are given in Table 2.
It should be also noted that Elssel and Voss’s method [19] is an a

priori method that was developed for giving the upper bound of errors
in the CB method. However, the proposed method is an a posteriori
method focusing on accurately estimating the relative eigenvalue
errors in the F-CMS method. Therefore, this difference should be
considered when numerical results are investigated.

B. Hemisphere Shell Problem

Let us consider a hemisphere shell with a free boundary condition
at both ends; see Fig. 5. The heightH is 3.084 m, and the thickness h
is 0.05 m. The radii R1 and R2 are 2 and 0.618 m, respectively.
Young’s modulus E is 69G Pa, Poisson’s ratio ν is 0.35, and the
density ρ is 2700 kg∕m3. For the finite element model, 20 and 40
four-node MITC shell finite elements are used in the axial and
circumferential directions, respectively. The structure is partitioned
into four substructures.
Using the F-CMSmethod,we consider two numerical cases for the

number of retained substructural modes: 54 and 100 substructural
modes, as listed in Table 3. Figure 6 shows the excellent performance
of the proposed error estimation method. As in the previous
numerical example, the proposed error estimation acts as an upper
bound for the exact relative eigenvalue error in general.

C. Stiffened Plate Problem

Here, the proposed error estimation method is used for a stiffened
platewith a free boundary; see Fig. 7. The lengthL is 4.8m, thewidth
B is 3.2 m, and the thickness h is 0.03 m. The plate has two and four
stiffeners in the longitudinal and transverse directions, respectively.

a)

b)

[19]

[19]

Fig. 6 Exact and estimated relative eigenvalue errors in the hemisphere
shell problem using the F-CMS method: a) Nd � 54, and b) Nd � 100.

1

2

3

4

H

L
B

5

6

1 2 3 5

4 6

Fig. 7 Stiffened plate problem.

Table 4 Retained substructural mode numbers N�k�d
in the stiffened plate problem using the F-CMS method

Numerical cases N�1�d N�2�d N�3�d N�4�d N�5�d N�6�d Nd

Case 1 8 8 4 4 4 4 32
Case 2 12 12 7 7 7 7 52
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The stiffeners have a height of H � 0.5 m and a thickness of
h � 0.03 m. Young’s modulusE is 210G Pa, Poisson’s ratio ν is 0.3,
and the density ρ is 7850 kg∕m3. The plate is modeled by a 24 × 16
mesh of four-node MITC shell finite elements, and the longitudinal
and transverse stiffeners are modeled by 24 × 2 and 16 × 2meshes of
four-node MITC shell finite elements, respectively. This stiffened
plate is partitioned into six substructures.
In this problem, we consider two cases for the number of retained

substructural modes: 32 and 52 substructural mode; see Table 4. As
shown in Fig. 8, the proposed error estimation method can very
accurately estimate the relative eigenvalue error in the reducedmodel
constructed by the F-CMS method. Also, the method provides an
upper bound rather than a lower bound in this problem.

D. Cylindrical Panel Problem

Let us consider a cylindrical panel problem, shown in Fig. 9. The
panel structure is fixed along the bottom edge. The length L is 0.8 m,
the radius is R is 0.5 m, and the thickness h is 0.005 m. Young’s

L

R

60

1

2

4
1L

2L

3L

4L

5L

6L

7L

8L

3

Fixed boundary

Fig. 9 Cylindrical panel problem with a distorted mesh.

Table 5 Retained substructural mode numbers N�k�d
in the cylindrical panel problemusing the F-CMSmethod

Numerical cases N�1�d N�2�d N�3�d N�4�d Nd

Case 1 7 12 6 12 37
Case 2 9 15 8 16 48

a)

b)

[19]

[19]

Fig. 8 Exact and estimated relative eigenvalue errors in the stiffened
plate problem using the F-CMS method: a)Nd � 32, and b) Nd � 52.

a)

b)

[19]

[19]

Fig. 10 Exact and estimated relative eigenvalue errors in the cylindrical
panel problem using the F-CMS method: a) Nd � 37, and b) Nd � 48.
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modulus E is 69G Pa, Poisson’s ratio ν is 0.35, and the density ρ is
2700 kg∕m3. We model the structure with a 16 × 16 distorted mesh
of four-node shell finite elements, inwhich each edge is discretized in
the following ratio: L1∶L2∶L3∶ · · · L16 � 16∶15∶14∶ · · · 1. The
structural model is partitioned into four substructures. For two
numerical cases, 37 and 48 substructural modes are selected; see
Table 5. Figure 10 shows that the proposed error estimation method
also performs well in a distorted mesh.
In this study, we considered only undamped structural models, but

the proposed method can be also employed for model reductions of
damped structural models [30].

V. Conclusions

In this paper, an accurate error estimationmethodwas developed for
the flexibility-based component mode synthesis method. This error
estimationmethodprovides relative errors in individual eigenvalues for
the flexibility based component mode synthesis (F-CMS) method.
Through four numerical examples, such as rectangular plate,
hemisphere shell, stiffened plate, and cylindrical panel problems,
the performance of the proposed error estimation method was
demonstrated. The numerical results showed that the proposed error
estimation method is consistently accurate. In most of the numerical
cases considered in this study, the error estimator provides a tight upper
bound for the exact relative eigenvalue error, even when the retained
dominant substructural modes are relatively few.
It will be valuable in future works to apply the concept of the

proposed error estimation method to other component mode
synthesis methods [10,12]. It is noted that the proposed error
estimation method can be adopted to develop effective model
reduction algorithms in combination with various mode selection
methods [22,23]. In addition, the error estimation method could be
employed for the time-integration schemes with the F-CMSmethod.
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