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In this paper, we propose a new and efficient warping displacement model to ensure the continuity of
warping in beams with discontinuously varying arbitrary cross-sections. We briefly review the formula-
tion of the continuum mechanics based beam finite elements allowing warping displacements. We then
propose three basis warping functions: one free warping function and two interface warping functions.
The entire warping displacement field is constructed by a combination of the three basis warping func-
tions with warping degrees of freedom (DOFs). We also propose a new method to simultaneously calcu-
late the free warping function and the corresponding twisting center. Based on this method, the interface
warping functions and the twisting centers at the interface cross-sections are obtained by solving a set of
coupled equations at the interface of two different cross-sections. Several beam problems with discontin-
uously varying cross-sections are numerically solved. The effectiveness of the proposed model is demon-
strated by comparing the numerical results with those obtained by refined solid and shell finite element
models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Beams widely used in many engineering applications have been
analyzed by the finite element method. It is well known that
appropriate consideration of the warping effect in the finite ele-
ment analysis of beams is crucial for an accurate prediction of their
twisting behavior [1–3].

Numerous studies on the warping effect have been done for
many years [4–17]. When a non-constrained prismatic beam is
subjected to uniform torsional moment, its cross-sections undergo
constant warping deformation and the free warping behavior can
be analyzed by St. Venant torsion theory [4–6]. In thin-walled
cross-section beams, more general non-uniform torsion cases and
constrained warping deformations can be considered by Vlasov’s
thin-walled beam theory [7,8]. Additionally, there have been stud-
ies on shear warping effects [9–16] and secondary warping effects
[16,17].

In displacement-based beam finite element formulations, warp-
ing effects can be accounted for by adding warping displacement
fields to Timoshenko’s basic displacement fields. It is very impor-
tant to appropriately construct the additional warping displace-
ment fields in the beam formulations and there have been many
studies, see Refs. [18–24] and therein. Most previous studies have
focused on relatively simple continuously varying cross-section
beams, such as prismatic and tapered beams, see Fig. 1(a). When
the cross-section discontinuously varies along the beam length as
shown in Fig. 1(b), the variation in the warping displacement is
very complicated. Most existing formulations cannot properly rep-
resent the complicated warping behavior.

To describe the torsional warping effect in discontinuously vary-
ing thin-walled cross-section beams, a kinematic compatibility
condition has been proposed to consider the interaction between
two different cross-sections at a discontinuous interface [8,11].
The warping displacement models require a single warping DOF
at each beam node in thin-walled cross-section beams. When a dis-
continuously varying cross-section beam is subjected to torsion, the
twisting center also varies along the beam length. However, this ef-
fect is not considered in the previous beam formulations.

An easy and simple method of modeling the warping displace-
ments in discontinuously varying cross-section beams is to discret-
ize the beam cross-sections with cross-sectional elements and
nodes and to properly construct the continuity of nodal warping
DOFs between two cross-sectional meshes at the interface [25–
28]. Since, in this warping displacement model, a large number
of warping DOFs is required at each beam node and the number
of warping DOFs depends on the cross-sectional meshes used, this
warping displacement model has not been widely used.

In this study, we develop a new and efficient modeling method
to construct the continuous warping displacement fields for dis-
continuously varying arbitrary cross-section beams. In order to
model the continuity of warping, we define three basis warping
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(a) (b)
Fig. 1. Various beam problems. (a) Beam problems with continuous varying cross-section (prismatic and tapered beams), (b) Beam problem with discontinuously varying
cross-section.

Fig. 2. A continuum mechanics based beam finite element assembled with nine
sub-beam elements.

(a)

(b)
Fig. 3. A continuum mechanics beam finite element with cross-sectional mesh. (a)
3-Node beam finite element, (b) cross-sectional mesh at beam node k.
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functions (one free warping function and two interface warping
functions) and the corresponding warping DOFs. The basis warping
functions are multiplied by the corresponding warping DOFs and
interpolated along the beam length. Therefore, in our warping dis-
placement model, at most three warping DOFs are required at each
beam node for torsional warping displacement fields. Furthermore,
the three warping DOFs can be condensed when the same func-
tions exist among the basis warping functions.

The obtained warping displacement fields are not only continu-
ous in the entire domain of the beams, but also fully coupled with
the other basic behaviors of the beam (stretching, shearing, and
bending) by employing the formulation of continuum mechanics
based beam finite elements as proposed in our previous study
[24]. The greatest advantage of the continuum mechanics based
beam finite elements is their modeling ability to easily deal with
very complicated beam geometries. In the warping displacement
model, it is crucial to obtain the correct twisting centers. Other-
wise, the warping effect coupled with stretching, shearing, and
bending cannot be properly considered and erroneous responses
will be obtained.

The most challenging issue in this study is how to calculate the
interface warping functions without knowing the twisting centers
at the interfaces. In order to solve this problem, we develop a new
method to simultaneously calculate the free warping function and
the corresponding twisting center. Based on the method, the inter-
face warping functions and the corresponding twisting center are
also simultaneously calculated by solving a set of coupled equa-
tions at interfaces where the cross-section discontinuously varies.
In the coupled equations, the Lagrange multiplier is employed to
enforce the continuity of warping at the interface.

In the following sections, we first briefly review the formulation
of the continuum mechanics based beam finite elements. We then
propose how to construct the continuous warping displacement
fields with the three basis warping functions and a numerical
method to obtain the basis warping functions. We present four
numerical examples: a step varying solid cross-section problem,
a discontinuously varying thin-walled cross-section problem, a
partially constrained cross-section problem, and a curved beam
problem with a discontinuously varying cross-section. The results
are compared with reference solutions obtained by refined solid
and shell element models. Finally, conclusions are given.
2. Modeling of warping displacement fields

In this section, based on the formulation of the continuum
mechanics based beam finite element allowing warping



(a)

(b)

(c)
Fig. 4. Warping DOFs used for a discontinuously varying cross-section beam. (a) A
discontinuously varying cross-section beam, (b) finite element model and warping
DOF used at each nodes, (c) individual amplitude of the basis warping functions
along the beam length.

Fig. 5. Twisting kinematics and twisting center.
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displacements [24], we introduce a new approach to constructing
the continuity of warping with the definition of three basis warp-
ing functions. In the beam formulation, warping is fully coupled
with bending, shearing, and stretching. The beam element can
consider free/constrained warping conditions and uniform/non-
uniform torsions, and model eccentricities, curved geometries,
continuously varying cross-sections, as well as arbitrary cross-sec-
tions (including thin/thick-walled, open/closed, and single/multi-
cell cross-sections) [24].
2.1. Continuum mechanics based beam finite elements

The formulation of continuum mechanics based beam finite
elements is directly derived from an assemblage of n solid finite
elements. As shown in Fig. 2, a beam can be modeled by 3-D solid
elements and the geometry interpolation of the l-node solid ele-
ment m is given by

xðmÞ ¼
Xl

i¼1

hiðr; s; tÞxðmÞi ð1Þ

in which x(m) is the material position vector, hi(r, s, t) denotes the
3-D shape function for the usual isoparametric procedure, and
xðmÞi is the ith nodal position vector.

When the nodes are positioned in the beam cross-sections, the
3-D shape function in Eq. (1) can be replaced by the multiplication
of 1-D and 2-D shape functions

xðmÞ ¼
Xq

k¼1

hkðrÞ
Xp

j¼1

hjðs; tÞxjðmÞ
k ; ð2Þ

where q is the number of the beam cross-sections, p is the number
of nodes of the solid element m positioned at each beam cross-
section, hk(r) and hj(s, t) are the 1-D and 2-D shape functions,
respectively, and xjðmÞ

k is the jth nodal position vector of the solid
element m in the beam cross-section k. This degeneration procedure
is graphically represented in Figs. 2 and 3.

The kinematic assumption of Timoshenko beam theory is
applied by

xjðmÞ
k ¼ xk þ �yjðmÞ

k Vk
�y þ �zjðmÞ

k Vk
�z ; ð3Þ

where the unit vectors Vk
�y and Vk

�z are the directors placed in
the beam cross-section k, the two vectors and the position xk at
the beam node Ck define the k th cross-sectional Cartesian coordi-
nate system, as shown in Figs. 2 and 3. The coordinates �yjðmÞ

k and
�zjðmÞ

k represent the position of the jth cross-sectional node in the
cross-sectional Cartesian coordinate system. Note that, while
the cross-sectional nodes are positioned in the cross-sections to
define the cross-sectional geometry, the beam nodes are positioned
along the longitudinal axis given by xk, see Fig. 3.

Using Eq. (3) in Eq. (2), the geometry interpolation of the con-
tinuum mechanics based beam finite element corresponding to
the solid element m is obtained as

xðmÞ ¼
Xq

k¼1

hkðrÞxk þ
Xq

k¼1

hkðrÞ�yðmÞk Vk
�y þ

Xq

k¼1

hkðrÞ�zðmÞk Vk
�z ð4Þ

with �yðmÞk ¼
Xp

j¼1

hjðs; tÞ�yjðmÞ
k ; �zðmÞk ¼

Xp

j¼1

hjðs; tÞ�zjðmÞ
k ; ð5Þ

where �yðmÞk and �zðmÞk denote the material position in the beam cross-
section. Then, Eq. (4) becomes the geometry interpolation of the
sub-beam m corresponding to the solid element m. The continuum
mechanics based beam finite element consists of n sub-beams. Note
that Eq. (5) becomes the geometry interpolation of the cross-sec-
tional element m in the cross-sectional mesh shown in Fig. 3(b).

The displacement interpolation of the sub-beam m is derived
from Eq. (4) as for general curved beam finite elements in Ref. [1]

uðmÞ ¼
Xq

k¼1

hkðrÞukþ
Xq

k¼1

hkðrÞ�yðmÞk fhk�Vk
�ygþ

Xq

k¼1

hkðrÞ�zðmÞk fhk�Vk
�zg ð6Þ

with uk¼
uk

vk

wk

264
375 and hk¼

hk
x

hk
y

hk
z

2664
3775: ð7Þ

The basic displacement field in Eq. (6) consists of Timoshenko’s six
deformation modes: one stretching, two transverse shearing, one



(a)

(b) (c)
Fig. 6. Cross-sections of a discontinuously varying cross-section beam. (a) Cross-sections (I) and (II), and their interface XC, (b) interconnected domain and twisting center, (c)
cross-sectional meshes used at the interface.

(a) (b) (c)
Fig. 7. Three special cases for the interface warping functions. (a) Free interface, (b) fully constrained interface, (c) partially constrained interface.
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twisting and two bending modes. To include the warping mode, the
new warping displacements uðmÞw should be added to Eq. (6). Then,
the generalized displacement field allowing warping displacements
is obtained

uðmÞg ¼ uðmÞ þ uðmÞw : ð8Þ

Similarly, we can include other deformation modes as well, includ-
ing shear warping modes, secondary warping modes, cross-
sectional distortion modes and so on.

Based on the cross-sectional discretization at beam node k in
Fig. 3, two modeling methods can be employed to construct the
continuous warping displacements. The first model uses
uðmÞw ¼
Xq

k¼1

hkðrÞ
Xp

j¼1

hjðs; tÞf jðmÞ
k Vk

r ; ð9Þ

where f jðmÞ
k are warping DOFs at each cross-sectional node and Vk

r

is the director vector normal to the cross-sectional plane k.
In this model, the total number of degrees of freedom for
warping at each beam node is the same as the number of
cross-sectional nodes in each cross-sectional plane. Non-uniform
torsion and constraint warping cases can be easily handled
as well as uniform torsion and free warping cases. As
mentioned in Introduction, this method can be used for both
discontinuously and continuously varying beams, but too many



(a)

(b)
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warping DOFs are required depending on the cross-sectional
meshes used.

In the second model, the free warping function and the corre-
sponding warping DOF are used to construct the warping displace-
ment field

uðmÞw ¼
Xq

k¼1

hkðrÞf ðmÞk ðs;tÞakVk
r with f ðmÞk ðs;tÞ¼

Xp

j¼1

hjðs;tÞf jðmÞ
k ð10Þ

in which f ðmÞk ðs; tÞ is the free warping function and ak is the warping
DOF at beam node k. In Eq. (10), f jðmÞ

k is the pre-calculated free warp-
ing values at cross-sectional nodes by solving St. Venant equations
in the cross-sectional plane k. Then, only one DOF is used for contin-
uous warping displacements at each beam node. Note that the free
warping function is used as a basis function and the entire warping
displacement field has the interpolation along the beam length
direction by using the warping DOFs. Therefore, the warping dis-
placement can consider uniform/non-uniform torsion, and free
and constraint warping cases. However, this interpolation method
is valid only for continuously varying cross-section beams.

The strain-nodal displacement relation of the sub-beam m is di-
rectly obtained from Eq. (8)

eðmÞ ¼ BðmÞU with eðmÞ ¼ eðmÞrr 2eðmÞr�y 2eðmÞr�z

h iT
; ð11Þ

where e(m) and B(m) are the strain vector and the strain-nodal
displacement relation matrix, respectively, and the nodal displace-
ment vector for the q-node beam finite element is

U¼ u1 v1 w1 h1
x h1

y h1
z a1 . . . uq vq wq hq

x hq
y hq

z aq

h iT
:

ð12Þ

Note that the number of DOFs used at a beam node is 7.
(a)

(b)

(c)
Fig. 8. Nodal warping DOFs used for (a) free–free, (b) constrained–free, (c)
constrained–constrained warping problems.

(c)
Fig. 9. Step varying rectangular cross-section problem. (a) Problem description
(unit:m), (b) beam element model, cross-sectional mesh used and the number of
each nodal DOFs used, (c) solid element model used.

(a) (b) (c)
Fig. 10. Twisting centers in the step varying rectangular cross-section problem. (a)
ðky; kzÞ ¼ ð0;0Þ for the free warping function of cross-section A, (b)
ðky; kzÞ ¼ ð0;�0:0833Þ for the interface warping function at x = 5 m, (c)
ðky; kzÞ ¼ ð0;�0:25Þ for the free warping function of cross-section B .
Finally, the stiffness matrix of the continuum mechanics based
beam finite element is numerically calculated by

K ¼
Xn

m¼1

Z
V ðmÞ

BðmÞT CBðmÞdV ðmÞ ð13Þ

in which n is the number of sub-beams and, V(m) and C are respec-
tively the volume of the sub-beam m and the constitutive matrix for
the beams [1]. To avoid transverse shear and membrane lockings,



(a) (b)

(c) (d)
Fig. 11. Numerical results along the beam length in the step varying rectangular cross-section problem. (a) Angle of twist, (b) transverse displacement v at Q, (c) shear stress
rxy at Q, (d) shear stress rxz at Q.
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the reduced integration technique or the MITC (Mixed Interpolation
of Tensorial Components) method can be used [1,24,29]. Note that
in this beam formulation the shear correction factor is not consid-
ered. Therefore, the equivalent shear correction factor used is 1.0
for all the numerical examples considered in this paper. However,
it is not hard to employ the shear correction factor in this beam for-
mulation. To do that, a simple decomposition of strains is necessary.
2.2. New warping displacement model

The variation in warping displacements is very complicated
around discontinuous interfaces and the twisting center also varies
along the beam length direction. Therefore, it is difficult to con-
struct the warping displacement field by using only the free warp-
ing function obtained by St. Venant equation. The basic idea of this
study is that the complicated warping displacement field uðmÞw in
Eq. (8) can be represented by a linear combination of the free
warping function and the warping functions at the discontinuous
interface. However, it is challenging to find the interface warping
functions that satisfy the continuity of warping displacements. In
particular, it is not easy to find the centers of the twist on the inter-
face cross-sections. These were not found in previous studies.
We here define three basis warping functions: one free warping
function (f ðmÞk ) and two interface warping functions (f ðmÞL and f ðmÞR ) at
both beam ends. A combination of these three basis warping func-
tions with the corresponding three warping DOFs (ak, bk

L and bk
R)

constructs the continuous warping displacement fields for discon-
tinuously varying cross-section beams

uðmÞw ðr;s;tÞ¼
Xq

k¼1

hkðrÞ f ðmÞk ðs;tÞakþ f ðmÞL ðs;tÞb
k
Lþ f ðmÞR ðs;tÞb

k
R

h i
Vk

r : ð14Þ

Therefore, in general at most three warping DOFs are required at
each beam node.

To demonstrate how to set up the warping DOFs, we consider a
beam with a discontinuously varying cross-section, as shown in
Fig. 4(a). The beam consists of two regions with different cross-sec-
tions. Beam regions A and B have cross-sections A and B, respec-
tively. Each region is modeled by four beam finite elements, as
shown in Fig. 4(b). In each beam region, all of the warping DOFs
(a, bL and bR) are set to be continuous. Each beam region has inter-
faces at the left and right ends; that is, free and constrained ends
are also considered as interfaces. At each interface, two warping
DOFs except for the warping DOF corresponding to the interface
are set to be zero, as shown in Fig. 4(b). At the interface of both



(a) (b)

(c) (d)
Fig. 12. Transverse shear stresses in the cross-section for the step varying rectangular cross-section problem. (a) rxy at x = 2.5 m, (b) rxy at x = 7.5 m, (c) rxz at x = 2.5 m, (d) rxz

at x = 7.5 m.
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beam regions, the interface warping DOFs bðAÞR ¼ bðBÞL and the other
DOFs are set to be zero. Therefore, the interface DOFs make the
warping displacements continuous at the interfaces. Fig. 4(c)
shows the possible distributions of the warping DOFs along the
beam length.

2.3. Free warping function

In our previous study [24], to calculate free warping functions,
the following three-step calculation is required as in Ref. [30]: In
the first step, St. Venant equation is solved for a certain arbitrary
coordinate system. In the second step, the twisting center is calcu-
lated using the warping function obtained in the first step. In the
third step, the final warping function is obtained by the coordinate
transformation of the warping function obtained in the first step
using the twisting center calculated in the second step.

Here we present a newly developed single-step method to
simultaneously calculate the free warping function and the corre-
sponding twisting center in arbitrary beam cross-sections.

Let us consider the cross-sectional domain X defined in the
cross-sectional Cartesian coordinates �y and �z with the origin C, as
shown in Fig. 5. The position of the origin C can be arbitrarily cho-
sen in the cross-section. The cross-sectional domain X is subjected
to pure twisting kinematics about the twisting center bC , where
bending and transverse shearing are not involved. Then, the dis-
placement fields are obtained as

u ¼ kf ; m ¼ �ẑhx and w ¼ ŷhx in X; ð15Þ

where k = o hx/ o x, f ðŷ; ẑÞ is the warping function corresponding
to the twisting center and ŷ and ẑ are the coordinates in the
cross-sectional Cartesian coordinate system defined at the twist-
ing center bC .

Note that in general the position of the twisting center ðk�y; k�zÞ is
unknown. After the warping function corresponding to the origin C
is obtained, the twisting center can be calculated, and then the
correct warping function corresponding to the twisting center bC
can be obtained through a transformation procedure, as in Refs.
[24,30]. However, in the method proposed in this study, the warp-
ing function and the twisting center are obtained at the same time.
This is a very important feature in obtaining the interface warping
functions.

The displacement field in Eq. (15) results in the transverse shear
stress fields

sxŷ ¼ Gk
@f
@ŷ
� ẑ

� �
and sxẑ ¼ Gk

@f
@ẑ
þ ŷ

� �
in X ð16Þ

in which G is the shear modulus. Note that other stresses are zero.
By applying Eq. (16) to the local equilibrium equations [24,30],

the well-known St. Venant equations are obtained

G
@2f
@ŷ2þ

@2f
@ẑ2

 !
¼0 in X; n�y

@f
@ŷ
þn�z

@f
@ẑ
¼n�yẑ�n�zŷ on C; ð17Þ

where ðn�y;n�zÞ is the vector normal to the cross-sectional boundary,
see Fig. 5.

The variational formulation can be easily derived with the var-
iation of the warping function df,Z

X
G

@f
@ŷ

@df
@ŷ
þ @f
@ẑ

@df
@ẑ

� �
dX ¼

Z
C

Gðn�yẑ� n�zŷÞdf dC: ð18Þ

Using the relation between the two cross-sectional Cartesian coor-
dinate systems denoted as ð�y;�zÞ and ðŷ; ẑÞ, ŷ ¼ �y� k�y and ẑ ¼ �z� k�z,
in Eq. (18), we obtain

G
Z

X

@f
@�y

@df
@�y
þ @f
@�z

@df
@�z

� �
dXþ Gk�z

Z
C
ðn�ydf ÞdC� Gk�yZ

C
ðn�zdf ÞdC ¼ G

Z
C
ðn�y�z� n�z�yÞdf dC: ð19Þ



(a)

(b)

(c)
Fig. 13. Discontinuously varying thin-walled cross-section beam problem. (a)
Problem description (unit:m), (b) beam element model, cross-sectional meshes
used and the number of each nodal DOFs used, (c) shell element model used.

K. Yoon, P.S. Lee / Computers and Structures 131 (2014) 56–69 63
Since the pure twisting kinematics does not produce bending mo-
ments in the cross-section, the zero bending moment condition
M�z ¼ M�y ¼ 0 gives

G
Z

X
ð�y� �yaveÞf df dX ¼ 0 and G

Z
X
ð�z� �zaveÞf df dX ¼ 0 ð20Þ
(a) (b)

(d)
Fig. 14. Twisting centers in the discontinuously varying thin-walled cross-section beam
(�0.3584,�0.1037) for the interface warping function at x = 4 m, (c) (�0.4163,0) for th
warping function at x = 10 m, (e) (0.0037,0.4952) for the free warping function of cross-
with the location of the cross-sectional centroid being

�yave ¼
R

X
�ydXR

X dX
and �zave ¼

R
X

�zdXR
X dX

: ð21Þ

In order to discretize the three equations in Eqs. (19) and (20), the
warping function is interpolated as in Eq. (10). Applying the stan-
dard procedure of the finite element method, the matrix equations
are obtained

GK GN�y �GN�z

GH�y 0 0
GH�z 0 0

264
375 F

k�z

k�y

264
375 ¼ GB

0
0

264
375 in X; ð22Þ

where F is the vector of the unknown nodal warping values, K, N�y,
and N�z are the matrices obtained from the left-hand side of Eq. (19),
B is the vector obtained from the right-hand side of Eq. (19), and H�y

and H�z are the matrices obtained from Eq. (20). Solving Eq. (22), we
can simultaneously calculate both the warping function and the
corresponding twisting center.

2.4. Interface warping functions

The warping functions and the position of the corresponding
twisting center at interfaces have not been studied before. In this
section, we present a method to calculate the interface warping
functions and the corresponding twisting center by solving a set
of coupled equations.

Let us define the interface cross-sections, as shown in Fig. 6. The
cross-sectional domains X(I) and X(II) have shear moduli G1 and G2,
respectively. Eq. (22) can be rewritten for each cross-sectional
domain

G1KðIÞ G1NðIÞ�y �G1NðIÞ�z LðIÞ

G1HðIÞ�y 0 0 0

G1HðIÞ�z 0 0 0

2664
3775

FðIÞ

k�z

k�y

k

26664
37775 ¼

G1BðIÞ

0
0
0

26664
37775 for XðIÞ;

ð23Þ

G2KðIIÞ G2NðIIÞ�y �G2NðIIÞ�z �LðIIÞ

G2HðIIÞ�y 0 0 0

G2HðIIÞ�z 0 0 0

2664
3775

FðIIÞ

k�z

k�y

k

26664
37775 ¼

G2BðIIÞ

0
0
0

26664
37775 for XðIIÞ;

ð24Þ
(c)

(e)

problem. (a) (0.0037,�0.4952) for the free warping function of cross-section A, (b)
e free warping function of cross-section B, (d) (�0.3584, 0.1037) for the interface
section C .



(a)

(b)
Fig. 15. Angle of twist and displacement v along the beam length in the discontinuously varying thin-walled cross-section beam problem. (a) Sampling points Q in the cross-
sections, (b) angle of twist (left) and displacement v (right).
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where L(I) and L(II), and k are Boolean matrices and the Lagrange
multiplier vector, respectively, to enforce the constraint condition
such that the warping values in both cross-sectional domains
should be equal in the interconnected area XC

LðIÞT �LðIIÞT
� � FðIÞ

FðIIÞ

" #
¼ ½0� for XC : ð25Þ

Eqs. (23)–(25) finally give a set of five coupled equations in a matrix
form

G1KðIÞ 0 G1NðIÞ�y �G1NðIÞ�z LðIÞ

0 G2KðIIÞ G2NðIIÞ�y �G2NðIIÞ�z �LðIIÞ

G1HðIÞ�y G2HðIIÞ�y 0 0 0

G1HðIÞ�z G2HðIIÞ�z 0 0 0

LðIÞT �LðIIÞT 0 0 0

2666666664

3777777775

FðIÞ

FðIIÞ

k�z

k�y

k

26666664

37777775 ¼
G1BðIÞ

G2BðIIÞ

0
0
0

26666664

37777775
ð26Þ

in which the first and second equations are St. Venant equations
corresponding to the two different cross-sectional domains, the
third and fourth equations correspond to the zero bending moment
conditions in Eq. (20), and the last equation is the constraint equa-
tion that enforces the continuity of warping in the interconnected
cross-sectional area.

Solving Eq. (26), we can calculate the interface warping func-
tions, which are used as basis warping functions in the warping
displacement model for discontinuously varying cross-section
beams.

It is essential to note three special cases for the interface warp-
ing functions, as shown in Fig. 7.
� Free interface: At the interface, no connected cross-section
exists. This means that warping is free and the interface warp-
ing function thus becomes equal to the free warping function.
Therefore, the corresponding interface warping DOF can be con-
densed out by setting it to zero.
� Fully constrained interface: The whole interface cross-section is

connected to a rigid wall. Thus, warping is fully constrained
and the corresponding interface warping function vanishes.
Therefore, the corresponding interface DOF needs to be
removed by setting it to zero.
� Partially constrained interface: A part of the interface is con-

nected with a rigid wall. To solve this case, Eq. (26) should be
modified. The cross-sectional domain X(II) is assumed to be
rigid. Using the condition G2 ?1 in Eq. (26), we then obtain

KðIÞ 0 NðIÞ�y �NðIÞ�z LðIÞ

0 KðIIÞ NðIIÞ�y �NðIIÞ�z 0

0 HðIIÞ�y 0 0 0

0 HðIIÞ�z 0 0 0

LðIÞT 0 0 0 0

2666666664

3777777775

FðIÞ

FðIIÞ

k�z

k�y

k

26666664

37777775 ¼
BðIÞ

BðIIÞ

0
0
0

26666664

37777775: ð27Þ

Fig. 8 shows the DOFs used for the free-free, constrained-free, and
constrained-constrained warping conditions. Finally, we note that
when beams have a continuously varying cross-section, as shown
in Fig. 1(a), two interface warping functions (f ðmÞL and f ðmÞR ) become
equal to the free warping function (f ðmÞk ). Therefore, the interface
warping functions can be condensed out, and only the free warping
function and the corresponding DOF are necessary in the beam ele-
ment formulation.



(a)

(b)

(c)
Fig. 16. Partially constrained warping problem. (a) Problem description (unit:m), (b) beam element model, cross-sectional mesh used, constrained warping area (shaded
area) and the numbers of the nodal DOFs used, (c) solid element model used.

(a) (b)
Fig. 17. Twisting centers in the partially constrained warping problem. (a)
ðky; kzÞ ¼ ð0;�0:4369Þ for the interface warping function at x = 0 m, (b)
ðky; kzÞ ¼ ð0;0Þ for the free warping function.
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3. Numerical results

To verify the performance of the warping displacement model
proposed in this study, we numerically solve three beam problems:
a step varying rectangular cross-section problem, a discontinu-
ously varying thin-walled cross-section problem, a partially con-
strained warping problem, and a curved beam problem with a
discontinuously varying cross-section. The results are compared
with reference solutions obtained by using refined solid and shell
element models. In addition, the solutions of the beam element
model with the warping displacement model in Eq. (9) are com-
pared. Note that two-node linear beam finite elements are used
for all of the beam models and that the well-known reduced inte-
gration is employed in order to avoid shear locking [1,24,29]. A
Young’s modulus E = 2.0 � 1011 N/m2 and a Poisson’s ratio m = 0
are used for all of the beam problems considered in this section.1

3.1. Step varying rectangular cross-section problem

We consider a step varying rectangular cross-section problem
with two beam regions corresponding to two different cross-
sections, A and B, as shown in Fig. 9(a). All of the displacements
including warping are constrained at x = 0 m and a torsional
moment Mx = 1.0 Nm is applied at x = 10 m. The rectangular
cross-section is discontinuous at x = 5 m. The beam problem is
modeled by the proposed beam element, as shown in Fig. 9(b).
The cross-sections A and B are discretized by two and one 16-node
1 In order to avoid difficulties in specifying boundary conditions in equivalent shell
and solid finite element models, zero Poisson’s ratio is used.
cubic cross-sectional elements, respectively, and have an intercon-
nected area Xc at x = 5 m.

The beam region with cross-section A is modeled by four beam
elements that have eight nodal DOFs

u v w hx hy hz aðAÞ bðAÞR

h iT
. The interface warping DOF

bðAÞL is removed by setting bðAÞL ¼ 0 because beam region A has a fully
constrained interface at its left end (x = 0 m). The beam region with
cross-section B is modeled by four beam elements with eight nodal

DOFs u v w hx hy hz aðBÞ bðBÞL

h iT
. Setting bðBÞR ¼ 0; the

interface warping DOF bðBÞR is condensed out because beam region
B has a free interface at its right end. At x = 5 m, the interface warp-
ing function is shared through the continuity of interconnected

DOFs (bðAÞR ¼ bðBÞL ) and a(A) = a(B) = 0 at the interface node. The

boundary condition u ¼ v ¼ w ¼ hx ¼ hy ¼ hz ¼ aðAÞ ¼ bðAÞR ¼ 0 is



(a) (b)

(d)(c)
Fig. 18. Numerical results of the partially constrained warping problem. (a) Angle of twist, (b) displacement v at Q, (c) Shear stress rxy at Q, (d) shear stress rxz at Q.
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applied at x = 0 m. The numbers of the nodal DOFs used are pre-
sented in Fig. 9(b).

To calculate the reference solutions, 27-node quadratic solid fi-
nite elements are used, as shown in Fig. 9(c). In the solid element
model, point loads (p = 0.5 N) are applied to obtain the equivalent
torsional moment Mx = 1.0 N m at x = 10 m and all DOFs are fixed at
x = 0 m.

Fig. 10 shows the positions of the twisting center for the free
warping function of cross-sections A and B, and for the interface
warping function at x = 5 m. The variation of the twisting center
along the beam length is automatically considered through the
warping displacement field in Eq. (11).

Fig. 11 presents the numerical results along the beam length:
showing the distribution of the angle of twist, displacement v,
and transverse shear stresses rxy and rxz at point Q. Fig. 12 shows
the distributions of transverse shear stresses rxy and rxz on the
cross-sectional planes at x = 2.5 m and x = 7.5 m. The numerical re-
sults demonstrate the excellent predictive capability of the warp-
ing displacement model proposed in this study. Note that the
numbers of DOFs used are 63 and 4680 in the beam and solid ele-
ment models, respectively.
3.2. Discontinuously varying thin-walled cross-section problem

Let us consider a beam that consists of three beam regions cor-
responding to three different thin-walled cross-sections, A, B and C,
see Fig. 13(a). All displacements including warping are constrained
at both ends (x = 0 m and x = 14 m) and a distributed torsional mo-
ment Mx = 1.0 Nm/m is applied at beam region B. The cross-section
are discontinuous at x = 4 m and x = 10 m. The physical problem is
modeled by the proposed beam element model, as shown in
Fig. 13(b). The cross-sections A, B and C are discretized by four-
node linear cross-sectional elements, and the cross-sectional
meshes are interconnected at x = 4 m and x = 10 m.

Beam region A is modeled by four beam elements that have eight

nodal DOFs u v w hx hy hz aðAÞ bðAÞR

h iT
. The interface

warping DOF bðAÞL is set to zero because the warping is fully con-
strained at x = 0 m. Beam region B is modeled by six beam elements

with nine nodal DOFs u v w hx hy hz aðBÞ bðBÞL bðBÞR

h iT
.

Beam region C is modeled by four beam elements with eight nodal

DOFs u v w hx hy hz aðCÞ bðCÞL

h iT
. The interface warping



(a)

(b) (c)
Fig. 19. Curved beam problem. (a) Problem description (unit:m), (b) beam element model, cross-sectional meshes used and the numbers of nodal DOFs used, (c) solid
element model used (p1 = 0.041667 N, p2 = 0.125 N, p3 = 1.0 N).
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DOF bðCÞR is set to zero because the warping is fully constrained at
x = 14 m. The interface warping functions are shared at x = 4 m

and x = 10 m for the continuity of interconnected DOFs (bðAÞR ¼ bðBÞL

and bðBÞR ¼ bðCÞL ) and a(A) = a(B) = a(C) = 0 at the interfaces. The bound-

ary conditions u ¼ v ¼ w ¼ hx ¼ hy ¼ hz ¼ aðAÞ ¼ bðAÞR ¼ 0 and u ¼
v ¼ w ¼ hx ¼ hy ¼ hz ¼ aðCÞ ¼ bðCÞL ¼ 0 are applied at x = 0 m and
x = 14 m, respectively. The numbers of the nodal DOFs used are pre-
sented in Fig. 13(b).

To obtain the reference solutions, MITC9 shell finite elements are
used in the shell element model shown in Fig. 13(c) [31–34]. Point
loads (p = 1/3 N/m) are distributed along beam region B, which pro-
duces the equivalent distributed torsional moment mx = 1.0 Nm/m.
Therefore, the torsion is non-uniform along beam region B.

Fig. 14 shows the positions of the twisting centers for the free
warping functions in cross-sections A, B, and C and for the interface
warping functions at x = 4 m and x = 10 m. Fig. 15(b) presents the
distributions of the angle of twist and displacement v along the
beam length corresponding to point Q in Fig. 15(a). The present
beam element model (total 113 DOFs) with the proposed warping
displacement model gives an angle of twist very close to that of the
reference shell element model (total 805 DOFs). The figure shows
that the transverse displacement of the present beam element
model is also correctly calculated, because, in the beam element
formulation, warping is fully coupled with stretching, shearing,
and bending.

In Fig. 15(b), we also present the results when the continuity of
warping is not properly considered. In the beam element models –
I and II, only one warping function (the free warping function) and
the corresponding warping DOF are employed. In the beam ele-
ment model-I, the warping displacement field is not continuous
at the interface cross-sections. Therefore, two independent
warping DOFs are used at the interface cross-sections. In the beam
element model-II, the warping DOFs are shared at the interface
cross-section. Note that these two models are only available in
most commercial FE software to consider the continuity of warp-
ing. Fig. 15(b) demonstrates the importance of the proper model-
ing of warping displacements. In particular, the displacement v
could be incorrectly approximated when the modeling of warping
displacements is not proper.

3.3. Partially constrained warping problem

We consider a wide flange beam problem with a partially con-
strained warping condition as shown in Fig. 16(a). At x = 0 m, all
displacements including warping are constrained only at the
shaded area Xc in Fig. 16(a) and (b), and torsional moment
Mx = 1.0 N m is applied at x = 10 m.

The beam finite element model is shown in Fig. 16(b). The wide
flange cross-section is discretized by seven four-node linear cross-
sectional elements, and has a partially constrained interface at
x = 0 m. The beam is modeled by eight beam elements with eight
nodal DOFs u v w hx hy hz a bL½ �T . The interface warping
DOFbR is set to zero owing to the free interface at x = 10 m. The bound-
ary condition u = v = w = hx = hy = hz = a = 0 is applied at x = 0 m. The
numbers of the nodal DOFs used are presented in Fig. 16(b).

27-Node solid finite elements are used to obtain reference solu-
tions, see Fig. 16(c). Point loads (p = 1/3 N) are applied in the solid
element model for the equivalent torsional moment Mx = 1.0 Nm,
and all DOFs corresponding to the shaded area Xc are fixed at
x = 0 m.

Fig. 17 shows the positions of the twisting centers for the inter-
face warping function at x = 0 m and the free warping function of
the wide flange cross-section. Fig. 18 presents the angle of twist,



(a) (b)

(d)(c)
Fig. 20. Numerical results of the curved beam problem along the beam length. (a) Angle of twist h/ for the load case – I, (b) displacement w for the load case – I, (c) angle of
twist h/ for the load case – II, (d) displacement w for the load case – II.
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displacement v, and transverse shear stresses rxy and rxz at point Q
along the beam length. The results of the beam element model (to-
tal 65 DOFs) with the proposed warping displacement model are
compared with those the reference solid element model (total
8,880 DOFs) and the beam element model (total 174 DOFs) with
the warping displacement model in Eq. (9), which uses 16 warping
DOFs at each beam node in this beam problem.

The results of the two beam element models show good agree-
ment with the reference solution calculated by the solid element
model. The numbers of DOFs used show the effectiveness of the
present beam model. We show the results for free and fully con-
strained warping cases. As expected, the angle of twist of the par-
tially constrained case exists between those of both cases. While
the displacement v of the free and fully constrained warping cases
is zero, the partially constrained warping case results in non-zero
displacement v. This indicates that the twisting centers are prop-
erly considered in the present warping displacement model.
3.4. Curved beam problem with a discontinuously varying cross-
section

We consider a curved beam problem with discontinuously
varying cross-sections: from the cross-shaped cross-section A to
the rectangular cross-section B as shown in Fig. 19(a).
The cross-section discontinuously varies from A to B at / = 45�.
All displacements including warping are constrained at / = 0� and
two load cases are considered:

(Load case – I) A torsional moment My = 1.0 Nm is applied at
/ = 90�.
(Load case – II) An eccentric shear force Fx = 1.0 N is applied at
/ = 90�.

As shown in Fig. 19(b), the cross-sections A and B are discretized
by 16-node cubic cross-sectional elements with an interconnected
domain Xc at / = 45�. Beam region A is modeled by four beam ele-

ments with eight nodal DOFs u v w hx hy hz aðAÞ bðAÞR

h iT
.

The interface warping DOF bðAÞL is set to zero due to the fully
constrained interface at / = 0�. Beam region B is modeled by four
beam elements with eight nodal DOFs

u v w hx hy hz aðBÞ bðBÞL

h iT
. The interface warping DOF

bðBÞR is set to zero due to the free interface at / = 90�. The continuity

of the warping displacement is ensured by the condition bðAÞR ¼ bðBÞL

at / = 45�. The boundary condition u ¼ v ¼ w ¼ hx ¼ hy ¼
hz ¼ aðAÞ ¼ bðAÞR ¼ 0 is used at / = 0�. The numbers of the nodal DOFs
used are presented in Fig. 19(b).
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To obtain the reference solutions, 27-node solid elements are
used, as shown in Fig. 19(c). In the solid element model, point loads
(p1 = 0.041667 N and p2 = 0.125 N) are applied for load case – I and
a point load (p3 = 1.0 N) is applied for load case – II at / = 90�. All
DOFs are fixed at / = 0�.

Fig. 20 shows the angle of twist and displacement v at point Q
along the beam length. The results of the beam element model (to-
tal 69 DOFs) with the proposed warping displacement model show
good agreement with those of the reference solid element model
(total 85,536 DOFs). It is very difficult to calculate the response
of this curved beam problem accurately without properly consider-
ing the flexure–torsion coupling effect.

4. Conclusions

In this paper, we proposed a new modeling method to construct
continuous warping displacement fields for beams with discontin-
uously varying arbitrary cross-sections. The warping displacement
is represented by a combination of three basis warping functions
(one free warping function and two interface warping functions)
accompanying the corresponding three warping DOFs that are
interpolated along the beam length. We also introduced a new
numerical method that calculates the free warping functions and
the twisting centers simultaneously. Using this method and La-
grange multipliers, a set of coupled equations was formulated to
obtain interface warping functions.

All of the methods proposed in this study can be generally used
for beams with arbitrary cross-sections including solid and thin
and thick-walled cross-sections. We presented three numerical
examples to show the feasibility and effectiveness of the proposed
warping displacement model. The proposed modeling method to
construct the warping displacement fields can significantly reduce
the required number of DOFs.

Although the method proposed here was demonstrated the ba-
sis of the continuum mechanics based beam finite elements, the
concept can be easily adopted to other types of beam finite ele-
ments allowing warping displacements. A direct extension of the
proposed method for nonlinear analyses is a worthwhile topic for
future studies, as in Refs. [35–37]. Further, it is important to note
that in this study we considered only the continuity of primary tor-
sional warping displacements in discontinuously varying cross-
section beams. However, the same method can be employed for
secondary torsional warping and shear warping displacements.
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