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a b s t r a c t

In this paper, we propose a hydroelastic design contour (HDC) that can be practically used for the
preliminary design of pontoon-type rectangular very large floating structures (VLFSs). Using the design
contour, we can easily predict the maximum bending moment of VLFSs in irregular waves. To develop the
design contour, we first construct the hydroelastic response contours (HRCs) by extensively carrying out
hydroelastic analyses considering various structural and wave conditions, namely, the bending stiffness
and aspect ratio of VLFSs, incident wave length and angle, as well as the sea state. Based on the pre-
calculated HRCs, we develop the HDC considering irregular waves. We then propose a preliminary design
procedure for VLFSs using the HDC and demonstrate the design procedure for pontoon-type rectangular
VLFSs. The HDC can significantly reduce time and effort for the design of VLFSs.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Very large floating structures (VLFSs) have attracted many engi-
neers since the concept appeared in the 19th century. VLFSs can be
used as platforms for various offshore facilities such as oil storages,
container terminals and airports. Cost effectiveness, movability, and
environmental-friendly features could be the representative advan-
tages of VLFSs compared with land reclamation. Recently, several
challenging projects to develop VLFSs have been carried out such as
Mobile Offshore Base (ONR, 1997�2000), Mega-Float (TRAM,
1995�2001), Modular Hybrid Pier (NFESC, 1998�2004), and Hybrid
Quay Wall (KIOST, 2005–2009). However, the design procedures and
regulations for the construction of VLFSs have not been well
established yet.

In the design of VLFSs, hydroelastic analysis is required to
evaluate the responses of the floating structures in waves because
VLFSs have relatively small bending rigidity compared to the overall
dimensions of the structures. Therefore, the complicated interaction
between water waves and flexible structures should be appropri-
ately considered to calculate the structural responses of VLFSs.

The fundamental theory of hydroelastic analysis was estab-
lished for ship design in the 1980s (Bishop and Price, 1979). The
methods of hydroelastic analysis for VLFSs have been actively
studied as reviewed in ISSC (2006) and Watanabe et al. (2004).
In most studies on hydroelastic analysis, VLFSs have been assumed
to be relatively simple floating beam and plate structures

(Kashiwagi, 1998; Khabakhpasheva and Korobkin, 2002; Kim
et al., 2007; Eatock Taylor, 2007). Recently, VLFSs have been
modeled as three-dimensional floating structures (Riggs et al.,
2007; Kim et al., 2013). In general, fluid has been modeled by the
potential fluid theory.

In hydroelastic analysis, fluid and structures should be handled
together. Therefore, additional modeling effort and computational
time are required. In the cross-section design of VLFSs, the
maximum bending moment that occurs in VLFSs in the ranges of
wave parameters should be calculated through hydroelastic ana-
lysis and compared with the bending moment capacity of the
cross-section. Until the safety requirement is properly satisfied,
hydroelastic analyses have to be iteratively performed under
various structural and wave conditions.

For a typical design example, when the ranges of the incident
wave length and angle are divided into 50 and 51 cases, respec-
tively, 2550 cases of the hydroelastic analysis should be per-
formed. To construct the wave spectrums for various irregular
wave conditions, additional computational cost is required.
Assuming that 4 design trials are necessary to satisfy the safety
requirement, in total 10,200 (4�2550) cases of hydroelastic
analysis should be carried out (Kim et al., 2011). Of course, it is
also a difficult task for engineers to process all the data obtained in
the analyses for the design purpose. This fact motivates this study.

The objective of this paper is to propose a very useful design
tool, hydroelastic design contour (HDC), that can significantly
reduce engineers' effort and time for the preliminary design of
pontoon-type rectangular VLFSs.

In this study, VLFSs are simplified as two-dimensional floating
isotropic plates instead of more realistic orthotropic plates or full
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three dimensional shell structures. The water depth is assumed to be
infinite. We construct two types of hydroelastic response contours
(HRC-I and HRC-II) to estimate the response amplitude operator
(RAO) of the maximum bending moment for a given geometry and
bending stiffness of VLFS. HRC-I shows the RAO of the maximum
bending moment depending on wave length and angle. However,
HRC-II shows the RAO of the maximum bending moment under
given ranges of wave length and angle. Based on HRCs, we then
construct HDC to estimate the maximum bending moment in
irregular waves. The Beaufort scale and the corresponding JONSWAP
wave spectrum are used to consider irregular wave effects in HDC.

The bending moments predicted by HDC can be used for the
preliminary design of VLFSs. We also establish a new design
procedure based on the HDC. The new design procedure can
significantly reduce modeling effort and computational time in the
design of VLFSs because time-consuming hydroelastic analyses do
not need to be performed. We verify the design procedure and HDC
by performing the preliminary designs of pontoon-type rectangular
VLFSs with single and double hulls. We also test the feasibility of the
HDC for finite water depth cases through numerical examples.

In the following sections, we first review the governing
equations and the numerical procedure that we adopt to solve
the hydroelastic problems of floating plate structures. The proce-
dure to develop the hydroelastic response and design contours is
explained in detail. We then propose a design procedure using the
HDC and the preliminary designs of pontoon-type VLFSs are
demonstrated. Finally, the concluding remarks are given.

2. Theoretical background

In this section, we briefly present mathematical formulations
and discrete coupled equations for the hydroelastic analysis of
floating plates interacting with surface regular waves. In this work,
the structural motions and the amplitudes of incident waves are
assumed to be small enough for the use of linear theory.

Fig. 1 shows the problem description. A plate (L�B�H) is
floating on the water with draft d. The water depth h is measured
from the flat bottom seabed to the free surface of calmwater, and a
fixed Cartesian coordinate system (x1, x2, x3) on the free surface is
introduced. The plate volume is denoted by V, and the fluid is
bounded by the wet surface of the structure SB, the free surface SF,
the surface S1 which is a circular cylinder with a sufficiently large
radius R, and the flat bottom seabed surface SG. An incident gravity
wave with small amplitude a and angular frequency ω comes
continuously from the positive x1 axis with an angle θ. The basic
assumptions are that the plate has homogeneous, isotropic, and
linear elastic material, and the fluid flow is incompressible,
inviscid, and irrotational. In addition, for simplicity, we set the
atmospheric pressure to be zero.

2.1. Formulation of the floating plate

The equilibrium equations of the floating plate at time t are

∂tsij
∂txj

� tρs gδi3� tρs
t €ui ¼ 0 in tV

tstijnj ¼ � tptni on tSB ð1Þ

where tsij is the Cauchy stress tensor at time t, tρs is the structural
density at time t, ρw is the fluid density, g is the acceleration of
gravity, tui is the displacement at time t, and tp denotes the total
water pressure at time t. Note that tp ¼ �ρwgx3þ tpd , in which pd
is the hydrodynamic pressure. Also, δij is the Kronecker delta, and
tni denotes the unit normal vector outward from the plate to the
fluid at time t. We use subscripts i and j, which vary from 1 to 3 to

express the components of tensor, and adopt the Einstein summa-
tion convention.

The principle of virtual work for the floating plate at time t can
be stated asZ

tV

tρt
s €ui δui dVþ

Z
tV

tsijδeij dV

¼ �
Z

tV

tρs g δu3 dVþ
Z

t SB
ρwg

tx3 tni δui dS�
Z

t SB

tpd
tniδui dS;

ð2Þ

where δui and δeij refer to the virtual displacement vector and
small strain tensor, respectively.

In the hydrostatic equilibrium state, which is denoted by time
t¼0, Eq. (2) becomesZ

0V

0sijδeij dV ¼ �
Z

0V

0ρs g δu3 dVþ
Z

0SB
ρwg

0x03ni δui dS: ð3Þ

If we linearize Eq. (2) at the static equilibrium state, and
subtract Eq. (3) from the linearized Eq. (2), we obtain the steady
state equation (Kim et al., 2013)

�ω2
Z

0V

0ρsui δui dVþ
Z

0V
Cijkl ekl δeij dV�

Z
0SB

ρwg u3
0ni δui dS

¼ �
Z

0SB
pd

0ni δuidS; ð4Þ

where Cijkl is the stress–strain relation tensor (k and l vary from
1 to 3), and

tui ¼ txi �0xi ¼ Refuie
jωtg; teij ¼ Refeijejωtg; tpd ¼ Refpdejωtg ð5Þ

Fig. 1. Problem description for the hydroelastic analysis of a floating plate:
(a) floating plate and incident wave and (b) fluid domain with an interface fluid
boundary surface.
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in which the superscript j¼
ffiffiffiffiffiffiffiffi
�1

p
. Note that in Eq. (4), we assume

that 0x3 and 0sij are equal to zero because they are negligible
quantities.

2.2. Formulation of the fluid

In the steady state, the velocity potential tϕ is governed by
tϕ ¼ Refϕe jωtg ð6aÞ

∇ϕ2 ¼ 0 in fluid domain; ð6bÞ

∂ϕ
∂x3

¼ω2

g
ϕ for x3 ¼ 0 on SF ; ð6cÞ

∂ϕ
∂x3

¼ 0 on SG; ð6dÞ

ffiffiffi
R

p ∂
∂R

þ jk
� �

ðϕ�ϕIÞ ¼ 0 on S1 ðR-1Þ; ð6eÞ

∂ϕ
∂n

¼ � jωu3 on 0SB ð6fÞ

where ∇ is the Laplace operator, k is the wave number and ϕI is the
velocity potential for the incident wave. The incident velocity
potential ϕI is defined by (Dean and Dalrymple, 1984; Wehausen
and Laitone,1960)

ϕI ¼ j
ga
ω

cosh kðx3þhÞ
cosh kh

e jkðx1 cos θþ x2 sin θÞ ð7Þ

From Eqs. (6) and (7), the boundary integral equation can be
formulated using Green's function and Green's second identity
(Kim et al., 2013). The boundary integral equation for the floating
plate is

4πϕ�4πϕI ¼
Z

0SB
�ϕ

ω2

g
G�G

∂ϕ
∂n

� �
dSξ ð8Þ

where G(x, ξ) is the free surface Green's function (Wehausen and
Laitone, 1960), and this is a function of spatial point x and source
point ξ. The subscript ξ means that the integral should be
conducted with respect to ξ.

Using the linearized Bernoulli equation, the velocity potential ϕ
is expressed as

ϕ¼ j
ω

1
ρw

pþgu3

� �
on 0SB ; ð9Þ

where tp ¼ Refp ejωtg. If we insert Eqs. (9) and (6f) into Eq. (8), we
have

p
ρwg

þu3þ
ω2

4πρwg2

Z
0SB

pG dSξ ¼ � j
ω
g
ϕI on

0SB ; ð10Þ

For subsequent boundary element approximations, we weight a
test function δp to Eq. (10), and integrate over the wet surface 0SB

1
ρwg

Z
0SB

p δp dSþ
Z

0SB
u3 δp dSþ ω2

4πρwg2

Z
0SB

Z
0SB

pG dSξδp dSx

¼ � j
ω
g

Z
0SB

ϕI δp dS: ð11Þ

2.3. Discretization of the coupled equations

The formulations in Eqs. (4) and (11) can be transformed into
the coupled matrix form by the finite and boundary element
discretizations as

�ω2SMþSK �Cup

�Cup
T �FM�FG

" #
û
p̂

" #
¼

0
R̂I

" #
ð12Þ

in which the matrices and vectors are defined as follows:

ω2
Z

0V

0ρsui δui dV ¼ δûT ω2 SM û ð13aÞ

Z
0V

Cijkl ekl δeij dV ¼ δûT SK û ð13bÞ

Z
0SB

p δu3 dS¼ δûT Cup p̂ ð13cÞ

1
ρwg

Z
0SB

p δp dS¼ δp̂T FM p̂; ð13dÞ

ω2

4πρwg2

Z
0SB

Z
0SB

pG d Sξδp dSx ¼ δp̂T FG p̂ ð13eÞ

j
ω
g

Z
0SB

ϕI δp dS¼ δp̂T R̂I ð13fÞ

Note that, in the discretization for the steady state problem, the
structural finite element and the fluid boundary element should be
matched each other on the wet surface 0SB . To discretize the
coupled equations, we here use the 4-node MITC shell finite
element (MITC4), in which the MITC (Mixed Interpolation of
Tensorial Components) method is applied to alleviate undesired
shear locking phenomena (Bathe and Dvorkin, 1986; Bathe, 1996;
Bathe and Lee, 2001; Bathe et al., 2003; Lee and Bathe, 2004, 2010;
Lee et al., 2007, 2012).

In Kim et al. (2013), the formulation reviewed in this section
were verified through comparisons with the experimental results
obtained by Yago and Endo (1996).

3. Hydroelastic response contours

The hydroelastic design contour (HDC) is constructed based on
the hydroelastic response contours (HRCs). In this section, we
propose two types of HRC (HRC-I and HRC-II).

3.1. Hydroelastic response contour – I

Here, we describe how to develop the HRC-I, which can give the
RAO of the dimensionless maximum bending moment depending
on incident regular wave length and angle for the given structural
parameters.

VLFSs are assumed to be two-dimensional rectangular floating
plates of length L, breadth B, and height H. The water depth h is
assumed to be infinite.

At a certain position (x1, x2) in the plate, the maximum
principal bending moment per unit width is defined by

Mpðx1; x2Þ ¼ maxð M1ðx1; x2Þ
�� ��; M2ðx1; x2Þ

�� ��Þ with

M1;2 ¼
Mx1 þMx2

2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx1 �Mx2

2

� �2

þM2
x1x2

s
ð14Þ

whereMx1 and Mx2 are the bending moments, Mx1x2 is the twisting
moment, and M1 and M2 are the principal bending moments
(Timoshenko and Krieger, 1970). Note that all the bending
moments considered in this study are per unit width.

Let us consider the maximum bending moment Mmax, which is
the maximum value in the distribution of the maximum principal
bending moment Mp in the entire plate domain (0rx1rL and
0rx2rB) under incident wave with unit amplitude (a¼1). That
is, Mmax is the RAO of the maximum bending moment. Then, the
RAO of the dimensionless maximum bending moment denoted as

J.-G. Kim et al. / Ocean Engineering 78 (2014) 112–123114



Mmax is a function of 5 dimensionless parameters

Mmax ¼MmaxðL=B; S; d=H; α; θÞ with Mmax ¼
Mmax

ρwgL
2 ð15Þ

where L/B is the aspect ratio, S¼EI/ρwgL
5 is the dimensionless

bending stiffness1 with Young's modulus E and the second
moment of inertia I (I¼BH3/12), d/H is the ratio of draft to height,
α¼λ/L is the ratio of wave length to structural length, and θ is the
angle of the incident wave (Lee and Newman, 2000).

In Eq. (15), the ratio d/H represents the ratio of plate density to
fluid density. Considering the practical range of d/H, we assume
d/H¼0.5, which means that draft d is half of the plate height. Then,
for the given d/H, Eq. (15) becomes

Mmax ¼MmaxðL=B; S; α; θÞ ð16Þ
Based on Eq. (16), HRC-I is designed to present the RAO of the
dimensionless maximum bending moment for the given L/B and S
depending on α and θ.

For the given S and L/B, Fig. 2 shows how to construct HRC-I.
Changing the values α and θ, we find the maximum values in the
RAO distribution of the maximum principal bending moment Mp

and plot them in HRC-I as shown in Fig. 2(a) and (b). Therefore,
HRC-I presents the RAO of the dimensionless maximum bending
moment as a function of α and θ for the given structural
parameters.

Figs. 3 and 4 display HRC-I considering four aspect ratios
L/B¼1, 2.5, 5 and 7.5, and three dimensionless stiffness parameters

S¼2�10�5, 1�10�4 and 2�10�4. To calculate all the hydro-
elastic responses, the floating plates are modeled by the plate
finite elements with 60�60 mesh for L/B¼1, 60�24 mesh for
L/B¼2.5, 60�12 mesh for L/B¼5, and 60�8 mesh for L/B¼7.5.
In order to obtain the proper meshes, the convergence of the
maximum bending moments was tested for the smallest wave
length cases considered (α¼0.04). The meshes chosen can provide
less than 3% errors in the maximum bending moments compared
to well-converged solutions. Note that much finer meshes would
be required to accurately calculate entire bending moment dis-
tributions in the floating plates (Wang et al., 2008).

HRC-I can also give the values of α and θ when the maximum
bending moment occurs. Many valuable detailed investigations
can be made through HRC-I. Here we particularly note an impor-
tant observation that the maximum bending moment occurs
when the dimensionless wave length α varies from 0.04 to 1.0 in
the analysis cases considered. The contours also show that, as the
bending stiffness increases, the wave length corresponding to the
maximum bending moments becomes closer to L. HRC-I shows
how the bending moment distribution varies according to S and
L/B in detail.

3.2. Hydroelastic response contour - II

Based on the HRC-I, HRC-II is constructed to estimate the RAO
of the dimensionless maximum bending moment in the significant
ranges of wave length α and angle θ. When the ranges of α and θ
in Eq. (16) are fixed, the RAO of the dimensionless maximum
bending moment becomes only a function of L/B and S

Mmax ¼MmaxðL=B; SÞ ð17Þ
The ranges of the wave parameters should be carefully determined
to properly consider the hydrodynamic effects on VLFSs in the

Fig. 2. Construction procedure of the HRC-I for the case of L1/B1 and S1. (a) distribution of the maximum principal bending moment in the floating plate under two wave
cases and (b) HRC-I.

1 Note that the bending stiffness of isotropic plates is defined by D¼EH3/12
(1�υ2) per unit width in general. However, in this study we use the longitudinal
bending stiffness EI as a representative bending stiffness by fixing Poisson's
ratio υ¼0.3.

J.-G. Kim et al. / Ocean Engineering 78 (2014) 112–123 115



preliminary design stage. In this study, the range of the wave angle
θ that we choose is from 01 to 901 because the shape of the VLFSs
considered is symmetric. We use the range of the dimensionless
wave length α from 0 to 2. This is a reasonable choice for most of
VLFSs because, in general, the bending moment is maximumwhen
0oαo1 as investigated in the previous section. Table 1 also
shows that the wave parameters in previous studies on VLFS
design are mostly covered by those ranges (Yago and Endo, 1996;
Hong, 2007).

Fig. 5 shows how HRC-II is developed from HRC-I. For the given
range of wave parameters (0rθr901 and 0oαr2), HRC-I is
prepared by changing the values of L/B and S as shown in Fig. 5(a).
Then, the maximum RAO of the dimensionless maximum bending
moment is found in each HRC-I and plotted in HRC-II as shown
in Fig. 5(b). The horizontal and vertical axes of HRC-II are the
dimensionless bending stiffness S and the aspect ratio L/B of VLFSs,
respectively. Hence, HRC-II can give the RAO of the dimensionless
maximum bending moment with respect to the structural para-
meters, L/B and S, for the given ranges of the wave parameters.

Considering the aspect ratio 1rL/Br10 and the dimensionless
bending stiffness 2�10�6rSr2�10�4, Fig. 6 presents the HRC-
II. To plot HRC-II, we performed hydroelastic analyses considering
7 aspect ratios (L/B¼1, 2.5, 4, 5, 6, 7.5 and 10) and 7 dimensionless
stiffness parameters (S¼2�10�6, 1�10�5, 2�10�5, 5�10�5,
1�10�4, 1.5�10�4 and 2�10�4). The ranges of the incident
wave length and angle are divided into 50 and 51 cases with a

uniform interval, respectively. Therefore, α¼0.04, 0.08, 0.12...... 2.0
(from 0.04 to 2) and θ¼0, 1.8, 3.6...... 901. To construct HRC-II, a
total of 124,950 (7�7�51�50) cases of hydroelastic analysis
were performed. Table 1 shows that the structural parameters
in the previous studies are sufficiently contained in the ranges
considered in this study.

4. Hydroelastic design contour and design procedure

In this section, we propose the hydroelastic design contour
(HDC), which is constructed based on the HRCs discussed in the
previous section. HDC is developed to estimate the maximum
bending moments of VLFSs in irregular waves. We also propose a
preliminary design procedure using HDC.

4.1. Hydroelastic design contour

Real water waves in the ocean are irregular. Therefore, the
effect of the irregular waves should be considered in the design of
VLFSs. HDC is constructed from HRCs to estimate the maximum
bending moment in irregular waves represented by sea states.

The irregular waves can be statistically represented by wave
spectrums. We adopt the Mean JONSWAP wave spectrum (Journée

Fig. 3. HRC-I for Mmax (�10�3). (a) L=B¼ 1 and S¼ 2� 10�5, (b) L=B¼ 1 and S¼ 1� 10�4, (c) L=B¼ 1 and S¼ 2� 10�4, (d) L=B¼ 2:5 and S¼ 2� 10�5, (e) L=B¼ 2:5 and
S¼ 1� 10�4 and (f) L=B¼ 2:5 and S¼ 2� 10�4.
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and Massie, 2001)

SJðωÞ ¼ 320 ðH1=3Þ2
T4
p

ω�5exp
�1950

T4
p

ω�4

 !
γ4 with

A¼ exp � ω=ωP�1
s
ffiffiffi
2

p
� �2

( )
;ωP ¼

2π
TP

and s¼
0:07 if ωrωP

0:09 if ω4ωP

(

ð18Þ

where H1/3 is the significant wave height, γ is the peakedness
factor (γ¼3.3). ωP and TP are the peak frequency and period at the
spectral peak, respectively. Note that TP can be calculated from the
mean centroid wave period T1. The relation between TP and T1 is

T1 ¼ 0:834TP ð19Þ

Table 2 shows the relation between the sea states defined by the
Beaufort scale and the characteristic data of the JONSWAP wave
spectrum (Journée and Massie, 2001). The Beaufort scale is an

empirical measure that relates the average wind velocity at 19.5 m
above the sea level to observed sea conditions.

The JONSWAP wave spectrum SðkÞJ at sea state k can be
calculated by Eqs. (18) and (19), and the characteristic data in
Table 2. The wave energy spectrum at sea state k is defined as

SðkÞJ ðωÞ dω¼ 1
2 ðaðkÞðωÞÞ2 ð20Þ

Similarly, the energy spectrum of the dimensionless bending
moment can be defined

SðkÞM ðωÞ ¼ ðMmaxðωÞÞ2SðkÞJ ðωÞ ð21Þ

where SðkÞM is the energy spectrum of the dimensionless bending
moment at sea state k, and Mmax is the RAO of the dimensionless
maximum bending moment in HRC-II. That is, Mmax is a transfer

Fig. 4. HRC-I for Mmax (�10�3). (a) L=B¼ 5 and S¼ 2� 10�5, (b) L=B¼ 5 and S¼ 1� 10�4, (c) L=B¼ 5 and S¼ 2� 10�4, (d) L=B¼ 7:5 and S¼ 2� 10�5, (e) L=B¼ 7:5 and
S¼ 1� 10�4 and (f) L=B¼ 7:5 and S¼ 2� 10�4.

Table 1
Ranges of the design parameters in previous researches on VLFS designs.

h (m) d/H L/B S α θ (deg)

Mega-Float (Yago and Endo, 1996) 58.5 0.25 5.0 1.96�10�5 0.1�1.0 0, 30, 60, 90
KIOST (Hong, 2007) 8 0.5 1.7 5.0�10�5 0.09�0.44 0�90

30 0.33 2.0 7.0�10�6 0.13�0.34 0�90
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function to give the relation between bending moment and wave
spectrum.

The dimensionless maximum bending moment at sea state k is
finally calculated using Eq. (21), and the mean response height of
the one third highest responses

M
ðkÞ
max ¼

2

aðkÞ1=3

Z 1

0
SðkÞM ðωÞdω

� �2
ð22Þ

in which aðkÞ1=3 is the significant wave amplitude (aðkÞ1=3 ¼HðkÞ
1=3=2) at

sea state k.
In this paper, we construct HDC corresponding to sea states

5–10. Sea state 10 can be regarded as the most severe sea
condition for VLFSs, and this means storm condition in the US
weather service description.

The ranges of the structural and wave parameters used for HDC
are identical to those of HRC-II. Therefore, considering the range
0.04rαr2 in the JONSWAP wave spectrum, the zero order
moment mðkÞ

0 is calculated as

mðkÞ
0 ¼

Z ω2

ω1

SðkÞJ dω ð23Þ

in which ω1 and ω2 are the wave frequencies corresponding to
α¼0.04 and α¼2. The calculated zero order moments are above
99% of the analytical values

R1
0 SðkÞJ dω in sea states 5–10. This

means that the spectrum energy is well reflected in the range of α.

Fig. 5. Construction procedure of the HRC-II. (a) HRC-I for two cases of L/B and S and (b) HRC-II.

Fig. 6. HRC-II for Mmax (�10�3). P3 denotes the third trial to estimate Mmax, see
Section 5 and Table 4.

Table 2
Relation between the Beaufort wind scale and the characteristic data of the
JONSWAP wave spectrum (Journée and Massie, 2001).

Sea state
number

Wind speed
(kn)

Significant wave height
H1/3 (m)

Mean centroid wave
period T1 (s)

1 2.0 0.50 3.50
2 5.0 0.65 3.80
3 8.5 0.80 4.20
4 13.5 1.10 4.60
5 19.0 1.65 5.10
6 24.5 2.50 5.70
7 30.5 3.60 6.70
8 37.0 4.85 7.90
9 44.0 6.10 8.80
10 51.5 7.45 9.50
11 59.5 8.70 10.00
12 464.0 10.25 10.50
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The horizontal and vertical axes of HDC correspond to the
dimensionless bending stiffness S and aspect ratio L/B, respec-
tively. Using the procedure in Eq. (22), the dimensionless max-
imum bending moment in each sea state is calculated and plotted

in HDC. Figs. 7–9 show the proposed HDC corresponding to sea
states 5–10, which can give the dimensionless maximum bending
moment of VLFSs in each sea state without numerical analysis in
the preliminary design stage.

Based on HRC-II, HDC can be constructed by other wave spectra
such as ISSC, SMB and TMA models considering adequate envir-
onmental conditions for the operation of VLFSs. Using a procedure
similar to that presented in this paper, the HRCs and HDC for other
structural responses such as maximum stress, displacement, and
acceleration can be constructed for the purposes of design and
detailed investigation of the hydroelastic response of VLFSs.

4.2. New design procedure

In this section, we propose a new hydroelastic design proce-
dure using HDC as shown in Fig. 10. Note that the use of the design
procedure is restricted in the preliminary design stage.

In the design procedure, step 1 is for the initial plan of a VLFS.
Overall dimensions, such as structural length L and width B, are
determined for the service purpose of VLFS. To estimate the
maximum bending moment at a significant sea state by using
HDC, the significant sea state is also determined according to the
sea area in which the VLFS operates.

In step 2, an initial structural design for the cross-section is
performed. The compartments and members are arranged, and the
dimensions of decks and stiffeners are determined in this step. The
materials of all members are also defined. Then, the dimensionless
bending stiffness S and bending moment capacity Mu are
calculated.

In step 4, the maximum bending moments Mmax due to the
wave conditions at the sea state are estimated using HDC.

In step 5, the structural safety of the VLFS is checked consider-
ing the bending moment capacity Mu and the maximum bending
moment Mmax. Unless Mu is large enough to satisfy the required
safety criteria, the design procedure has to be iterated from step 2
(see Fig. 10).

Fig. 7. HDC for M
ðkÞ
max (�10�3). (a) Sea state 5, (b) Sea state 6. P1, P2, and P3 denote

the first, second, and third trials in the two design demonstrations, see Section 5
and Tables 3–5.

Fig. 8. HDC for M
ðkÞ
max (�10�3). (a) Sea state 7 and (b) Sea state 8.

Fig. 9. HDC for M
ðkÞ
max (�10�3). (a) Sea state 9 and (b) Sea state 10.
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The proposed design procedure is based on the typical design
flows in Fujikubo (2005) and Wang et al. (2008), which require
high computational cost for hydroelastic analyses. Mooring effect
is not considered in the preliminary design stage. The detailed
structural response of the VLFSs to evaluate safety against fatigue
and corrosion is considered in the detailed design stage, see
Fujikubo (2005) and Wang et al. (2008).

5. Design demonstration

HDC just gives the maximum bending moment considering the
hydroelastic behavior of VLFSs. Thus, various design methodolo-
gies such as ASD (Allowable Stress Design) and LRFD (Load and
Resistance Factor Design) can be used to assess the structural
safety requirement.

In this section, we demonstrate the preliminary design proce-
dure for the hull girder cross-sections of pontoon-type rectangular
VLFSs. In order to check the structural safety, we adopt the rules of
LRFD with several assumptions. The hull girder ultimate bending
capacity per unit width Mu has to satisfy

γW ð1:86MmaxÞrMu=γR ð24Þ
in which γW and γR are the partial safety factors for the design load
combinations. Although the partial safety factors have not been
well studied for VLFSs, we use γW¼1.3 and γR¼1.1 by the Det
Norske Veritas (DNV) rules for ship designs (DNV, 2008). In
Eq. (24), the factor 1.86 is also used to calculate the extreme
bending moment.

The maximum bending moment Mmax due to the wave condi-
tions can be estimated using HDC considering the significant sea

state. The hull girder ultimate bending moment capacity Mu can be
simply calculated by

Mu ¼ Z syd ð25Þ
where Z is the cross-section modulus and syd is the minimum
yield stress.

5.1. Design example: single hull

Let us perform a single hull girder cross-section design of a
pontoon type VLFS model of L/B¼5. Length L is 500 m, breadth B is
100 m and pontoon height Hpontoon is 8 m. We assume that the
weight of cargos and superstructures 4100 kg/m2 is uniformly
distributed on the VLFS.2 We also assume that sea state 6 is the
significant condition.

Fig. 11(a) shows the cross-section along the breadth of the VLFS,
which has four uniform compartments, that is, the bulkheads are
arranged with 25 m intervals in the breadth direction. For the first
design trial, the thicknesses of the top and bottom decks, side
decks and bulkheads are assumed as td¼13 mm, tsd¼12 mm and
tb¼12 mm, respectively. The T-shape stiffeners are positioned
with 2 m intervals in the breadth and height directions, in which
the web and flange of the T-shaped stiffener have dimensions of
600 mm�15 mm and 400 mm�20 mm, respectively. Also, the
elastic modulus E is 200 GPa, and Poisson's ratio υ is 0.3. The
minimum yield stress syd is 235 MPa. The steel density is 8000 kg/
m3. For the simplicity of the design demonstration, we only
change the thickness of top and bottom decks td in the iteration
of design procedures.

From the cross-section design of the first trial, the second
moment of inertia I and the dimensionless bending stiffness S are
calculated to be 63.1 m4 and 4�10�5, respectively. The bending
moment capacity Mu is also calculated using Eq. (25), see Table 3.
We now can estimate the dimensionless maximum bending
moments M

ð6Þ
max using HDC as shown in Fig. 7(b). Note that HDC

gives the dimensionless values. Thus, the physical values Mmax

should be calculated using Eqs. (15) and (22)

Mmax ¼ ρwgL
2a1=3M

ð6Þ
max ð26Þ

In the first trial, the safety factor SF¼ ðMu=γRÞ=ðγw � 1:86MmaxÞ is
calculated as 0.76, which means that the safety condition in Eq.
(24) is not satisfied. Thus, the thickness of the top and bottom
decks td should be adjusted, and the second and third trials are
listed in Table 3. Iterating the design procedures, the hull girder
cross-section of VLFS designed in the third trial (td¼33.5 mm) not
only satisfies the safety requirement but also gives the most
reasonable safety factor 1.16 among the three trials.

Fig. 10. Preliminary design procedure of VLFSs using HDC.

Fig. 11. Hull girder cross-sections along the breadths of the pontoon-type rectan-
gular VLFSs, (a) single hull type and (b) double hull type.

2 Note that the self-weight is also reflected in dead load with the weight of
cargos and superstructures.
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The cross-section design along the length can be considered as
a simple extension of the cross-section design along the breadth.
Thus, the cross-section along the length has 20 uniform compart-
ments with the same dimensions of bulkheads and desks as the
cross-section along the breadth has.

To check the predictive capability of the HRC-II and HDC
proposed in this paper, Mmax and M

ð6Þ
max estimated by HRC-II and

HDC are compared with the bending moments calculated through
10,200 cases of hydroelastic analysis for the third trial model
(S¼8.1�10�5). In the numerical analysis, the floating plate model
is discretized by a 60�12 uniform mesh. The ratio of draft to
structural depth d/H is 0.5875 with self-weight in the third
trial model.

Length L, the second moment of inertia I, and elastic modulus E
of the plate model are identical to those of the pontoon-type VLFS,
but height H, draft d and, structural density ρs of the plate model
are equivalently calculated by

H ¼ 12Ipontoon
B

� �1=3

; d¼ dpontoon
Hpontoon

; ρs ¼
d
H
ρw; ð27Þ

The same ranges of dimensionless wave length and angle (0.04r
αr2 and 0�901) are considered.

It is very important to note that the HRC-II and HDC were
developed under the assumptions of infinite water depth and draft
d/H¼0.5. These assumptions can cause the differences between
estimated and calculated maximum bending moments. Of course,
human eye reading error is also involved in the differences. Based
on the third design trial, we consider 4 cases as listed in Table 4:
(I), (II), (III) and (IV). In the cases (I) and (II), the draft d/H¼0.5875
is considered. The calculated maximum bending moments are 3.6–
5.9% larger than the estimated maximum bending moments. The
differences are not so large for the preliminary design purpose.

Considering two finite water depth cases: (III) h¼50 m and (IV)
h¼10 m, we test the feasibility of the proposed HRC-II and HDC.
Based on the ratio of water depth to wave length (h/λ), the water
depth can be categorized into shallow, intermediate and deep
water ranges. The water depth h is represented by a dimensionless
variable β¼h/L. Then, h/λ becomes the ratio of β to α (¼λ/L), that
is, h/λ¼β/α. Fig. 12 shows the three water depth ranges. For the
range of dimensionless wave length (0.04rαr2) considered in
the HRCs and HDC, the water depth ranges for h¼50 m and 10 m
are given in Fig. 12(a) and (b), respectively. The ranges for h¼50 m
and h¼10 m are included in the intermediate and deep water
ranges and in the shallow and intermediate water ranges, respec-
tively. We here note that the water depth ranges of three previous
VLFS designs in Table 1 are mostly included in the intermediate
water range, see Fig. 12(c), (d) and (e).

Table 4 shows the dimensionless maximum bending moments
Mmax and M

ð6Þ
max estimated by HRC-II and HDC, see Figs. 6 and 7(b).

The differences between calculated and estimated values are
2.9–4.9% and 18.3–22.6% for h¼50 m and 10 m, respectively. These
results show that HRC-II and HDC could provide reasonable
preliminary designs of VLFSs when water depth ranges are not
largely included in the shallow water range.

5.2. Design example: double hull

We here demonstrate one more preliminary design case for a
pontoon type VLFS model with a double hull cross-section. LRFD is
also applied in this design example. Length L is 600 m, breadth B is
80 m (L/B¼7.5) and pontoon height Hpontoon is 10 m. We assume
that the ratio of draft to structural depth d/H is fixed as 0.5, and
then sea state 5 is considered as the significant condition.

Fig. 11(b) shows the cross-section along the breadth of the
VLFS, which has four uniform compartments (lb¼20 m). For the
first trial, the thicknesses of the top and bottom decks, side decks
and bulkheads are assumed to be td¼14 mm, tsd¼14 mm and
tb¼10 mm, respectively. The T-shape stiffeners are positioned
with 1.7 m intervals in the breadth and height directions, in which
the web and flange of the T-shaped stiffener have dimensions of
250 mm�12 mm and 90 mm�16 mm, respectively. Material
properties are the same as in the single hull case. For the simplicity
of the design demonstration, we here change the thicknesses of
decks (td, tsd and tb) in the iteration of design procedures.

The three design trials are summarized in Table 5. In the first
trial, the safety factor SF is calculated as 1.01, in which the safety
margin is too small. Thus, we perform additional design trials. In
the third trial, we obtain the double hull girder cross-section with
SF¼1.27.

Finally, we give remarks on the use of the principal bending
moments in the HRCs and HDC. Since the proposed HRCs and HDC
are based on the maximum principal bending moments, the
direction of the cross-section in which the maximum principal

Table 3
Design trials of the pontoon-type rectangular VLFS with single hull cross-section,
see Figs. 7(b) and 11(a).

Trial #1 Trial #2 Trial #3

Step 3
td (mm) 13 53.5 33.5
S 4.0�10�5 12.0�10�5 8.1�10�5

d/H 0.5475 0.6263 0.5875
Mu (MNm/m) 37.1 110.8 73.8

Step 4

M
ð6Þ
max

5.8�10�3 8.6�10�3 7.6�10�3

Step 5
γwð1:86MmaxÞ (MNm/m) 44.1 65.3 57.7
Mu/γR (MNm/m) 33.7 100.7 67.1
Safety factor (SF) 0.76 1.54 1.16

Table 4
Comparison between the dimensionless maximum bending moments estimated by HRC-II and HDC and those calculated by hydroelastic analyses, see Figs. 6 and 7(b).

Estimated Calculated

(I) (II) (III) (IV)
h Inf. Inf. 50 m 50 m 10 m

Water depth range – – Intermediate to deep Intermediate to deep Shallow to intermediate
Draft (d/H) 0.5 0.5875 0.5875 0.5 0.5
Mmax 9.9�10�3 10.52�10�3 10.47�10�3 10.41�10�3 12.79�10�3

Diff.¼5.9% Diff.¼5.4% Diff.¼4.9% Diff.¼22.6%

M
ð6Þ
max

7.6�10�3 7.89�10�3 7.88�10�3 7.83�10�3 9.30�10�3

Diff.¼3.7% Diff.¼3.6% Diff.¼2.9% Diff.¼18.3%

Difference¼ Calculated�Estimatedj j
Calculatedj j � 100%
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bending moment occurs does not coincide with that of the design
cross-section considered. This means that the use of HDC would
result in a slightly conservative structural design, especially when
L/B is not large (close to 1.0).

6. Concluding remarks

In this study, we developed design tools that can significantly
reduce the computational cost for hydroelastic analyses of VLFSs at
the preliminary design stage. For this purpose, we extensively
performed well-established hydroelastic analyses of rectangular
floating plates. Water depth was assumed to be infinite, and the
draft was fixed as half of the structural depth.

We first constructed two types of hydroelastic response con-
tours (HRC-I and HRC-II), which, for the given structural para-
meters, can estimate the RAO of the dimensionless maximum
bending moment in regular waves. Based on the HRCs, the
hydroelastic design contour (HDC) was developed to predict the
maximum principle bending moment of VLFSs in irregular waves
represented by sea states. Here, we assume the practical ranges of
the wave parameters.

The maximum bending moments predicted through HDC can
be used for the preliminary design of VLFSs. We also proposed a
preliminary design procedure using HDC instead of time-
consuming numerical analyses to solve the hydroelastic problems
of VLFSs. The feasibility of HRCs and HDC was tested through
several numerical experiments. The HDC can result in a feasible
preliminary cross-section design and significantly reduce engi-
neers' effort and time at the preliminary design stage of VLFSs.

To construct the HDC in this study, we made the several
assumptions regarding ocean environments, structural parameters,
and wave parameters. It is important to note that the feasibility of
HDC would depend on the differences between actual and assumed
conditions. Of course, additional studies on the differences are
required as a future study, and an excellent research topic would
be the construction of HDC for large ships by applying a procedure
similar to that presented in this paper.
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