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A novel idea to construct flat-top partition of unity functions in a closed form on a general
(structured or unstructured) finite element mesh is presented. An efficient and practical
construction method of a flat-top partition of unity function is important in the generalized
finite element method (GFEM). Details on how to construct flat-top partition of unity func-
tions on a provided mesh are given. The generalized finite element approximation with the
use of the new flat-top partition of unity function is presented with various numerical
examples that demonstrate the effectiveness of proposed flat-top partition of unity
functions.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Partition of unity function is an essential component of the generalized finite element method (GFEM) [1,2], and in a
number of meshless methods [3–6]. These methods, based on the partition of unity, have been successfully applied to solve
significant engineering problems (see [1–7], and references therein). In the meshfree (or meshless) community, Shepard type
partition of unity functions and their variants have been popular owing to the flexibility of allowing non-polygonal support
and the ability to control the smoothness of the approximation functions, see for example [7]. In general, non-polygonal sup-
port and smoothness of the approximation function incur a high computational cost to achieve accurate numerical integra-
tions. As a result, several researchers have started to use conventional linear hat functions as a partition of unity function in
an effort to reduce the cost of numerical integration. Of course, when using the linear hat functions in this way, the smooth-
ness of approximation is lost. A singular or nearly singular stiffness matrix can also result from the use of linear polynomials
as enrichment functions [9,8,10]. Nevertheless, using the conventional hat function was shown to be successful in the appli-
cation of the partition of unity enrichment technique in the context of the generalized finite element method (GFEM) [11–
18]. The key to the success is the enhanced degree of practicality; that is, the method can very effectively construct the par-
tition of unity functions.

A simple solution, creating a flat-top region in the partition of unity function was proposed to avoid an ill-conditioned
system with the partition of unity enrichment [8–10,19–21]. It was shown to be effective to reduce the matrix condition
number with higher order polynomial enrichments. Recently, Oh et al. [21] introduced a general framework to create
flat-top partition of unity in 2D and 3D on a polygonal domain. The powerful aspect of the general framework is that it uti-
lizes closed-form one-dimensional partition of unity function to create partition of unity function via a simple product. The
majority of the efforts are focused to improve meshless (meshfree) partition of unity method. Although it may be possible, it
is not a straightforward to create flat-top partition of unity functions on a (structured or unstructured) finite element mesh.
This fact motivates us to develop an efficient and practical method to construct flat-top partition of unity functions.
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In this paper, we present a novel algorithm that constructs flat-top partition of unity functions on a unstructured finite
element mesh. We list some of the important features that distinguish the proposed partition of unity construction method
from existing methods:

� A locally adjustable flat-top size: The existence of the flat-top region and the size of the flat-top area in the formulation of
the partition of unity function are important when patch-wise (elemental) higher-order polynomial enrichment is uti-
lized. The ability to adjust the size of the flat-top region in a patch-wise manner is not an issue when the enrichment
order is chosen uniformly over the entire computational domain, as in several earlier studies [20,9,21]. However, a locally
adjustable flat-top size becomes important when a different order of polynomial enrichment is used. We will demon-
strate this effect in the following section.
� Piecewise linear polynomial partition of unity function in a closed form: We build the flat-top partition of unity function

on a unstructured mesh with standard finite element shape functions. With the help of mesh, the support of partition of
unity functions can be identified easily. Also, unlike the popular Shepard partition of unity, which is defined as rational
functions, the proposed partition of unity is a piecewise linear polynomial including flat-top. This significantly reduces
the amount of work for numerical integration.

In the conventional finite element framework, elemental shape functions are defined on a reference coordinate system
and mapped to a physical coordinate system to create approximation functions. The mapped shape functions need to be
assembled at common vertices along the common edge/face of neighboring elements to obtain continuity of the basis func-
tions. Hence, more vertices may appear along the element edge/face when the order of the interpolation function is in-
creased on the element. As a result, the neighboring elements needs to be altered or a special treatment becomes
necessary to maintain continuity across the elements in the conventional approach. On the other hand, the basis functions
for the partition of unity method, automatically satisfy the continuity requirement as long as the local enrichment functions
are continuous. Therefore, with the proposed partition of unity function, we can fully control the mesh size h as well as the
patch-wise enrichment order p on a conventional finite element mesh.

2. Partition of unity functions

In the partition of unity method [19], one creates a collection of open covering of the given domain X and constructs a
partition of unity function /i subordinated to each cover. A formal requirement for /i to be a partition of unity is given below.

Definition 1. f/i : i 2 Kg is called a partition of unity subordinate to the covering fQi : i 2 Kg if there is a family f/i : i 2 Kg
of Lipschitz functions in X that satisfy the following three conditions:

(i) 9 C such that k/ik1;Rd 6 C for all i.
(ii) suppð/iÞ# Qi, for each i 2 K.

(iii)
P

i2K/iðxÞ ¼ 1, 8x 2 X.

where fQ i : i 2 Kg is a point finite open covering of a domain X, and K is an index set.
The open covering is sometimes called clouds [11,18], spheres [7] or patches [9,20,21]. In this paper we will adopt the no-

tion of patches.
A well-known and popular partition of unity function in meshless community is the Shepard partition of unity function

[22]. The Shepard partition of unity function needs an open covering of the given domain. However, the shape of the covering
does not have to be polygon and can be overlapped many times. Thus has less restriction on geometric constraints compared
to conventional finite element methods. Hence, suitable for meshless approximation and has been widely used in many par-
tition of unity methods. The Shepard partition of unity is defined as follows:

Definition 2. Let Wi : R! R, Wi 2 Ck, k P 0 denote a bubble function with compact support xi. Suppose we have a open
covering fQig of a domain X in Rn and bubble function is built at every xi, i ¼ 1; . . . ;N of an open covering fQig of a domain
X. Then the Shepard partition of unity subordinate to the covering fQig is defined as follows:
/iðxÞ ¼
WiðxÞP
bðxÞWbðxÞ

bðxÞ 2 fcjWcðxÞ – 0g i ¼ 1; . . . ;N: ð1Þ
However, the versatility of the Shepard partition of unity function comes at the price. The difficulty in using the Shepard
function, Eq. (1), is the high computational cost to achieve accurate numerical integration.
Definition 3. A partition of unity f/i : i 2 Kg subordinate to the covering fQi : i 2 Kg that has non empty open set xi within
the support of /i for each i 2 K such that /iðxÞ ¼ 1, 8x 2 xi is called a flat-top partition of unity.
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The partition of unity function can only reproduce constant function exactly on the entire computational domain. Thus,
local enrichment is necessary in most cases to have higher reproducing order. The flat-top partition of unity function has
been known to be effective to reduce the matrix condition number when polynomial enrichment is used. As pointed out
a partition of unity without flat-top property may lead to a singular or nearly singular system of linear equations even with
linearly independent local enrichment functions [8–10]. Therefore, having flat-top region in the partition of unity function is
important to avoid ill-conditioned system of equations.

There is no unique way to create a flat-top partition of unity on a given computational domain. One can create partition of
unity with or without a mesh. To obtain stable h and p refinement, it is recommended to construct a partition of unity func-
tion that has flat-top property. On the other hand, maintaining flat-top region within the support of partition of unity func-
tion seems challenging without a mesh, and also systematic h refinement is impossible which is a standard technique in the
finite element method. Thus, we propose to use a mesh to build flat-top partition of unity function. In the following section,
we will introduce how to build a flat-top partition of unity functions effectively on a given mesh.
(a) (b)

(c) (d)

(e) (f)

Fig. 1. Procedure to build the mesh based flat-top partition of unity: (a) partitioned domain (mesh) with elements Ei; (b) shrunken mesh (dotted lines); (c)
flat-top regions (grayed area); (d) interconnections between flat-top regions; (e) Qi , the support of the partition of unity function /i; (f) partition of unity
function z ¼ /i subordinated to Qi .
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3. Construction of flat-top partition of unity on a mesh

To ameliorate the cost of numerical integration and to reduce the implementation difficulties, we propose a new flat-top
partition of unity function on a mesh by mapping elemental shape functions. The resulting partition of unity function is
piecewise linear polynomial with an additional constant function.

We utilize a conventional finite element mesh to construct patches (open covering of the domain). In this paper, the term
patches is different to the commonly used term elements in conventional finite element method. The patches are allowed to
be overlapped and the i-th patch Q i encloses the i-th element. The flat-top region of the partition of unity function corre-
sponding to a specific element is always within the element.

3.1. Construction procedure

The essential procedure to build a flat-top partition of unity on a general two dimensional domain is illustrated in Fig. 1.
The procedure is outlined as follows:

Step 1: A given domain X is partitioned into elements Ei, i ¼ 1; . . . ;N, see for example Fig. 1(a). When an element has at least
two vertices that falls on the boundary C of the given domain, we call boundary element and if not, we call interior
element. The set of elements fEig can be obtained from the conventional finite element mesh generator.

Step 2: The flat-top region of partition of unity function is determined by simply shrinking the elements as shown in
Fig. 1(b). This can be done efficiently by using the mapping concept of the isoparametric finite element procedure
as follows:
Let ðixj;

iyjÞ be the coordinates for the vertices of element Ei and hjðr; sÞ be the standard linear interpolation functions.
We also define a mapping T from a reference element bE to a physical element Ei as follows:
Fig. 2.
elemen
Tðr; sÞ ¼ xðr; sÞ; yðr; sÞð Þ; ð2Þ
(a) (b)

Shrinking elements to obtain flat-top regions for (a) an interior element and (b) a boundary element. bE is the reference element and Ei is the physical
t. T is the mapping from bE to Ei .
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where xðr; sÞ ¼
P ixjhjðr; sÞ; yðr; sÞ ¼

P iyjhjðr; sÞ, see Fig. 2.
Let us define a flat-top parameter r that takes a value between zero and one. The flat-top parameter r directly con-
trols the size of flat-top region in the partition of unity function as illustrated in Fig. 2. Note that r is defined in the
reference coordinate system.
The procedure to obtain flat-top region of boundary element is slightly different to the procedure for the interior
element. The difference is necessary to impose boundary conditions correctly using the Kronecker delta property.
Let an interior element Ei to be a quadrangle. See for example Fig. 2(a). Then the following four points define the flat-
top region of partition of unity function /i,
Tð�r;�rÞ; Tðþr;�rÞ; Tðþr;þrÞ; Tð�r;þrÞ; ð3Þ
where 0 < r < 1.
On the other hand, let us consider the case of boundary element Ei that has three vertices on the boundary, see
Fig. 2(b). Note that Tð�r;þrÞ is the only interior point. Then the following four points define the flat-top region
of partition of unity function /i.
Tð�r;�1Þ; Tðþ1;�1Þ; Tðþ1;þrÞ; Tð�r;þrÞ: ð4Þ
Similar procedure can be applied to a quadrangular element that has two vertices on the boundary.
Step 3: Step 2 is repeated for all elements Ei, i ¼ 1; . . . ;N. The shrunken elements are shaded in Fig. 1(c) and each of the

shrunken region defines the flat-top region of the partition of unity function /i, i ¼ 1; . . . ;N.
Step 4: After the flat-top regions are identified for each element, the decaying regions can be readily obtained by intercon-

necting the neighboring flat-top regions. Fig. 1(d) shows the completed interconnections.
Step 5: Finally, a patch which will be denoted as Qi is obtained. A patch consists of decaying region and flat-top region and

determines the support of a partition of unity function /i. The patch Q i is outlined with bold lines in Fig. 1(e).
Step 6: On each patch Qi, i ¼ 1; . . . ;N, we construct flat-top partition of unity function. We map a constant function for the

flat-top region, and finite element shape functions and their linear combinations for decaying regions of the partition
of unity function as illustrated in Fig. 3. In this step, we also use the mapping technique of the standard isoparamet-
ric finite element procedure. The actual partition of unity function z ¼ /i subordinated to the patch Q i is shown in
Fig. 1(f). Note that /i is compactly supported, piecewise linear, and has a wide flat-top.
Fig. 3. Construction of the piecewise linear flat-top partition of unity function subordinated to a quadrangular element.
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3.2. Partition of unity on the boundary patches

On the decaying region of the partition of unity function, at least two partition of unity functions need to be overlapped to
fulfill the partition of unity requirement. Next to the convex boundary, however, the decaying region of the partition of unity
function contains a triangular area which is overlapped only two times by neighboring partition of unity functions which is
insufficient to create partition of unity by the procedure given in Section 3.1. A typical situation is illustrated in Fig. 4. On the
triangular decaying region, marked as Dabc in Fig. 4, only two partition of unity functions are defined. Hence, to make
1 ¼ /left þ /right on the triangular area Dabc, we propose to define two neighboring partition of unity functions /left and
/right on Dabc as follows:
(a)

(b)

Fig. 4. Partition of unity functions, /left and /right, near the convex boundary: Construction of (a) /left and (b) /right on Dabc.
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/left ¼ ha þ
1
2

hb; ð5Þ

/right ¼ hc þ
1
2

hb; ð6Þ
where ha, hb, and hc are linear shape functions defined on Dabc. Fig. 4(a) and (b) shows how to construct for /left and /right on
Dabc. Since the linear shape functions defined on Dabc satisfies ha þ hb þ hc ¼ 1, from Eqs. (5) and (6), the fact /left þ /right ¼ 1
on Dabc follows immediately.

4. Generalized finite element method with the new flat-top partition of unity function

The Generalized finite element approximation for a second order elliptic boundary value problem can be obtained by the
standard Galerkin procedure once the approximation space is known. Hence, we only focus how to construct the finite
dimensional approximation space Vapp with the use of new mesh based flat-top partition of unity functions.

4.1. The finite dimensional vector space

Let us consider the following second order elliptic boundary value problem:
�Du ¼ f in X;

u ¼ ud on CD;

ru � n ¼ un on CN ;

8><>: ð7Þ
1

1
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1 - Linear

2 - Quadratic

4 - Quartic

 - Linear

 - Quadratic
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(a)
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An example on the use of different element orders: (a) approximation order marked on each patch and (b) associated nodes distribution within
ts.
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where X is a domain, n is the outward normal vector along boundary C and CD [ CN ¼ C, CD \ CN ¼ ;. Then the correspond-
ing variational equation is the following:

Find u 2 H1
DðXÞ such that
Fig. 6.
quadra
Bðu; vÞ ¼ FðvÞ for all v 2 H1
DðXÞ; ð8Þ
where Bðu; vÞ ¼
R

Xru � rv and FðvÞ ¼
R

X f v þ
R
CN

unv .
The procedure explained in this section is similar to the generalized finite element method [9,21], except the construction

of new partition of unity function. The finite dimensional vector space for the generalized finite element approximation to this
model problem can be constructed as follows:

Step 1: (Generate a mesh) To construct a mesh based partition of unity functions with a flat-top, the domain X is partitioned
into elements fEig. We supply these elements to generate partition of unity on the computational domain X.
Although mixture of quadrangular and triangular mesh are allowed, we will use only quadrangular mesh for dem-
onstration purpose.

Step 2: (Construct flat-top partition of unity functions) Let /i be the flat-top partition of unity function corresponding to the
elements Ei, i ¼ 1;2; . . . ;N. We use the procedure that is explained in Section 3.1 to obtain the necessary subregions
to define the patch Q i (the support of partition of unity function) and create the flat-top partition of unity functions
on top of Q i, i ¼ 1;2; . . . ;N.

Step 3: (Determine the order of approximation on each element) We may use same order of approximation for every element.
However, the proposed method allows us to use different approximation order on each element. Different approx-
imation orders are marked on each element in Fig. 5(a). Let us recall that the mapping T in Eq. (2) maps reference
Construction of the global approximation function: (a) compactly supported piecewise polynomial flat-top partition of unity function /iðx; yÞ; (b)
tic, k ¼ 2, Lagrange interpolating polynomial iLkðx; yÞ; and (c) global approximation function iNkðx; yÞ ¼ /iðx; yÞ � iLkðx; yÞ.
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element bE to the physical element Ei. i.e. TðbEÞ ¼ Ei. Suppose that the order of approximation for element Ei is p. Then
uniformly (or quasi-uniformly) distributed nodes ibpk, k ¼ 1; . . . ;ni ¼ ðpþ 1Þ2 on the reference element bE through the
mapping T will place ðpþ 1Þ2 points ipk ¼ TðibpkÞ, k ¼ 1; . . . ;ni on Ei � Qi. Example of the distribution of nodes with
different order p are shown in Fig. 5(b).

Step 4: (Create interpolation functions) Let ibLk, k ¼ 1; . . . ;ni are the Lagrange interpolating polynomials of the nodes bpk in the
reference element bE. Then these interpolating polynomials on the reference element can be used to build interpo-
lating functions iLk on the physical element Ei as follows:
Fig. 7.
chosen
iLk ¼ ibLk � T�1 k ¼ 1; . . . ; ni: ð9Þ
The Lagrange interpolating polynomials of order p exactly reproduce polynomials up to degree p and have the Kro-
necker delta property.

Step 5: (Construct global basis functions) The global approximation functions iNkðx; yÞ with compact support are constructed
as follows:
iNkðx; yÞ ¼ /iðx; yÞ � iLkðx; yÞ; i ¼ 1; . . . ;N; k ¼ 1; . . . ;ni ð10Þ
where the index i represents element number and ni is determined by the approximation order of the i-th element.
The partition of unity function /iðx; yÞ and Lagrange interpolating polynomial iLkðx; yÞ with k ¼ 2 is pictured in
Fig. 6(a) and (b), respectively. The resulting functions iNkðx; yÞ, see Fig. 6(c), are piecewise polynomials that have
compact support. These global approximation functions are continuous and correspond to the nodes:
ipk; i ¼ 1;2; . . . ;N; k ¼ 1;2; . . . ;ni: ð11Þ
Since /i is only in the class of C0, the regularity of iNkðx; yÞ is also C0.
Step 6: (Build finite dimensional approximation space) Let the vector space spanned by the approximation functions in Eq.

(10) be Vapp. With the approximation space Vapp, one can follow the standard Galerkin procedure to get the general-
ized finite element approximation.
Numerical integration over the intersection of two patches Qi and Qj. The support of iN and jN are Qi and Qj , respectively. Four quadrature points are
assuming iN and jN are quadratic.
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4.2. Discrete equations

The global approximation uapp is obtained as the sum of the local approximation ui ¼
Pni

k¼1cik
iLk multiplied by the parti-

tion of unity function /i:
uappðx; yÞ ¼
XN

i¼1

/iu
i ¼

XN

i¼1

/i

Xni

k¼1

cik
iLk

 !
¼
XN

i¼1

Xni

k¼1

cik/i
iLk ¼

XN

i¼1

Xni

k¼1

cik
iNk; ð12Þ
where iNk is the k-th shape function subordinated to the patch Q i. See for example Fig. 6(c).
Let us use the following vector notation:
N ¼ 1Nj2Nj3Nj � � � jNN
� �

; c ¼ c1jc2jc3j � � � jcN½ �T; ð13Þ
where iN ¼ iN1jiN2jiN3j � � � jiNk

� �
and ci ¼ ci1 jci2 jci3 j � � � jcik

� �
. Substituting Eq. (12) into the weak form (8) with the introduced

vector notation, we obtain the following discrete linear system,
Kc ¼ R; ð14Þ
where
K ¼
Z

X
ðrNÞTrNdX ð15Þ
and
R ¼ RD þ RN ¼
Z

X
NTfdXþ

Z
CN

NTðru � nÞdX: ð16Þ
4.3. Numerical integration

We can perform exact numerical integration for the stiffness matrix given in Eq. (15). This is possible because iN in Eq.
(13) are polynomials on each of the subregions (triangular or quadrangular shape; see for example Fig. 1(e)) that form
the support of partition of unity function /i. The subregions are pre-determined at the early stage, see for example
Fig. 1(d), when the flat-top regions are interconnected. Hence, numerical integration can be performed efficiently by creating
optimal number of quadrature points in each subregion.
(a) (b)

(c) (d)

Fig. 10. Mesh sequence on a L-shape domain: (a) h ¼ 1:0; (b) h ¼ 0:5; (c) h ¼ 0:25; and (d) h ¼ 0:125.
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Each triangular or quadrangular subregion can be mapped from the reference coordinate ðr; sÞ by mapping T, Eq. (2).
Hence, the evaluation of partition of unity function and its derivatives at the physical quadrature point are performed in
the reference coordinate system as follows:
/iðgx; gyÞ ¼ /i � Tðgr ; gsÞ ¼ b/ðgr ; gsÞ; ð17Þ
rxy/iðgx; gyÞ ¼ JðTÞTrrs

b/iðgr; gsÞ; ð18Þ
where ðgx; gyÞ is the physical quadrature point, ðgr ; gsÞ is the reference quadrature point, JðTÞT is the transpose of Jacobian
matrix, and b/ is the partition of unity function in the reference coordinate system. Note that /i ¼ 1 and rxy/i ¼ 0 if the
quadrature point is chosen inside the flat-top region.

The evaluation of local approximation functions iLkðgx; gyÞ and its derivativesriLkðgx; gyÞ can be done similarly in the ref-
erence coordinate system. Therefore, iNk in Eq. (13) and its derivativesriNk ¼ r/i

iLk þ /iriLk can be effectively calculated in
the reference coordinate system as in the conventional finite element method.

Let us consider an example. Fig. 7 shows the support of iN and jN and their intersection. Since the support of iN and jN are
restricted by the partition of unity functions, support of iN and support of jN coincides with the patch Q i and Q j, respectively.
Note the intersection of two patches Q i \ Q j consists of three rectangular subregions. On each of the subregions, iN and jN are
polynomials so the optimal number of quadrature points can be obtained to perform exact numerical integration. In the case
when linear Lagrange interpolating polynomials are used, iN and jN become piecewise quadratic polynomial because of
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multiplying partition of unity function. Thus, four quadrature points for each subregions of Qi \ Q j should suffice to obtain
exact integration for ði; jÞth block of the stiffness matrix K in Eq. (15).

5. Numerical examples

We provide basic error estimates for the generalized finite element method with the new flat-top partition of unity func-
tion. A general error bounds with quasi-reproducing assumption can be found in [1] without flat-top. For the case with flat-
top partition of unity, similar statement can be found in [9].
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Theorem. Suppose uapp 2 Hl is the Galerkin approximation for the boundary value problem in Eq. (8) and has the polynomial
reproducing property of order p. Suppose also u 2 HqðXÞ and kþ 1 ¼minðq; pþ 1Þ. Then for 0 6 s 6minfl; kþ 1g,
u� uappj jj js;X 6 Chkþ1�s uj jj jkþ1;X; ð19Þ
where C is independent of u and h.
Proof. Theorem 3.5 in Ref. [1] along with Theorem 2.4.1 in Ref. [23] (Céa’s Lemma) provides the proof. h
Corollary. If u 2 C1 and uapp 2 H1 then k ¼ p, so the previous Theorem implies the following estimate:
u� uappj jj j1;X 6 Chp uj jj jpþ1;X: ð20Þ
Also when solution is not smooth, for instance if u 2 H5=3�� with p P 1 and uapp 2 H1 then the following convergence bound is
the best that can be achieved for all � > 0.
u� uappj jj j1;X 6 Ch2=3�� uj jj jpþ1;X: ð21Þ
We refer chapter 4.5 of Ref. [24] for Sobolev spaces with fractional indices.
Throughout this section we will denote the strain energy of u as UðuÞ ¼ 1

2Bðu;uÞ where Bð�; �Þ represents the bilinear form
of the weak formulation in Eq. (8). We also calculate the relative error in energy norm as follows:
jjejjE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUðuÞ � UðuappÞj

UðuÞ

s
: ð22Þ
In this section, the proposed method is tested with different local approximation order p and various mesh size h. The
Kronecker delta property is used to impose essential boundary conditions for all numerical examples in this section. Thus,
imposing boundary condition is straight forward as in conventional finite element method.

5.1. Effect of flat-top size on the condition number

The condition number is critical to get the convergence of the iterative algorithm such as the conjugate gradient method
[25]. As pointed out earlier, piecewise linear partition of unity functions (without flat-top) and using linear polynomials as
local approximation space may result in severely ill-conditioned matrix. This phenomenon can be reproduced by taking
r ! 0 in our proposed partition of unity function. In the case r ¼ 0, the partition of unity function results singular matrix
with the use of linear local approximation functions [8].

Using the direct matrix solver, we test the effect of flat-top size on the condition number with the model problem
given in Eq. (7) by setting X ¼ ½�1;1� � ½0;1�, ud ¼ un ¼ 0, CN ¼ ½�1;1� � fy ¼ 1g, CD ¼ @X n CN and f ðx; yÞ ¼ 0:5p2

cosð0:5pxÞ sinð0:5pyÞ.
Fig. 8 clearly demonstrates the effect of flat-top size on the matrix condition number. Based on our numerical tests, it is

advised to widen the flat-top size with the increment of approximation order p. We only present the result for p ¼ 8 with
'fesol00' using 1:2:5
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Fig. 14. Error distribution in jj � jj1 norm for the problem with a strong singularity (h ¼ 0:25 and p ¼ 2).
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uniform mesh size h ¼ 0:5. As shown enlarging the flat-top size (r close to 1) effectively reduces the matrix condition
number.

5.2. Convergence test

We test our proposed method on an L-shape domain. A problem with a smooth solution is considered with homogenous
essential boundary condition. In the model problem given in Eq. (7), we set C ¼ CD, ud ¼ 0, and f ¼ 2p2 sinðpxÞ sinðpyÞ. The
analytic solution to the boundary value problem is uðx; yÞ ¼ sinðpxÞ sinðpyÞ.

As a modeling example, we first demonstrate the proposed method with a mesh that consists three elements with h ¼ 1:0
and flat-top parameter r ¼ 0:9, as shown in Fig. 9(a). Quartic interpolation is chosen for the element in the second quadrant
and quadratic interpolation is used for the rest. With this particular setting, we have distribution of nodes as shown in
Fig. 9(b). The degrees of freedom is 19 after imposing boundary conditions. Fig. 9(c) shows the error distribution with
jj � jj1 norm. Note that there is no error along the boundary and the errors are localized in the elements where low order
p is used.
(a)

(b)

p p+1 p+2 p+3

p p+2 p+4

Fig. 15. Different configurations for the singular problem; (a) uniform mesh size h ¼ 0:125 with progressively increasing p toward the point of singularity
and (b) graded mesh with progressively increasing p toward the point of singularity.
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In the beginning of this section, we provided a priori error estimates for the generalized finite element approximation
with the new partition of unity function. Since the analytic solution for the smooth boundary value problem is in the class
of C1, according to Eq. (20), we expect the following rate of convergence:
Fig. 16
progres
refinem
jju� uappjj1 	 OðhpÞ; ð23Þ
where p is the approximation order. To verify the expected rate of convergence, we test the proposed method on different
meshes, see Fig. 10.

The expected slope is p if the errors in energy norm versus the mesh size h are plotted in log–log scale when p is fixed and
h is changed. Only the result of even order p is plotted in Fig. 11, but we validated the expected slope for all 1 6 p 6 7.

On the other hand, according to the Corollary, if we fix the mesh size h and change the approximation order p instead, we
expect logðChÞ ¼ � logðC0=hÞ for the slope where C0 is the reciprocal of C. Numerical results in Fig. 12, show good agreement
with the predicted convergence rates. This corresponds to the p-convergence in the conventional finite element method.
. Convergence comparison between different configurations. Number next to the marked data points indicates the order p; (a) graded mesh and
sively increasing p toward singularity; (b) uniform mesh size h ¼ 0:125 with progressively increasing p toward singularity; and (c) uniform h-
ent with a fixed p ¼ 8.

Fig. 17. Relative errors in energy norm depending on the configuration of interpolation orders. Unstructured quadrangular mesh is used.
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5.3. Problem with a strong singularity on an L-shape domain

We test our proposed method for a non-smooth problem, u 2 H5=3�� for all � > 0, on an L-shape domain with flat-top
parameter r ¼ 0:95. We consider the Laplace equation with analytical solution uðr; hÞ ¼ r

2
3 sin 2

3 h
� �

2 H5=3��. We set
CD ¼ @X, ud ¼ u, f ¼ 0 in the model problem given in Eq. (7).

In Fig. 13, we see the rate of convergence, slope 2
3, with the mesh sequence in Fig. 10 which agrees well with the theoret-

ical prediction, in Eq. (20). Unlike the smooth problem where u 2 C1, we loose the exponential convergence rate even for a
relatively small mesh size, h ¼ 0:125. The reason for the slow convergence is due to the presence of the singularity located at
the reentrant corner. Fig. 14 shows the error distribution in jj � jj1 norm with h ¼ 0:25 and p ¼ 2. The error is concentrated
near the reentrant corner. However, we can effectively treat the singularity by grading the mesh and increasing p toward the
singularity, a well known technique in p version of finite element method [26]. Fig. 15(a) and (b) shows two different strat-
egies we have tested. As shown in Fig. 16, both convergence rates outperform the best convergence rate that is obtained by
uniform h refinement with p ¼ 8. Especially Fig. 16(a) shows the typical hp convergence.

We finally demonstrate the flexibility of our proposed method with different order p on a distorted quadrangular mesh.
For the test problem we have considered, there was virtually no difference in convergence between structured and unstruc-
tured mesh. Different p enrichments and its convergence result on a simple unstructured mesh is shown in Fig. 17 demon-
strating the flexible ability of the proposed partition of unity function.

6. Concluding remarks

We have developed a new flat-top partition of unity function that can be built on a given mesh. The partition of unity
functions are given as piecewise polynomial in closed form which is significantly different from the Shepard partition of
unity. The generalized finite element approximation with the use of new flat-top partition of unity function possesses three
robust features; exact numerical integrations, direct imposition of boundary conditions, and different orders of local p
enrichment. We presented the construction procedure of the new flat-top partition of unity, showed how to create the gen-
eralized finite element approximation space, and described the numerical integration technique.

The flat-top size effect on the matrix condition number was examined. The numerical test showed that a flat-top param-
eter r close to 1 (i.e. larger flat-top region) allows stable enrichment. We also tested h and p convergence and confirmed the
theoretical convergence rate for exact solutions to the test problems. Compared to the uniform enrichment case, applying
higher order enrichment only in the region where it is needed can save significant number of degrees of freedom.

We applied the new partition of unity function for simple two-dimensional problems only for demonstration purposes.
However, recalling that proposed method to construct the flat-top partition of unity poses practical modeling capabilities,
the potential of the proposed method in three-dimensional continuum, involving beam, plate and shell problems [26–29]
can be explored.
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