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a b s t r a c t

A phantom-node method is developed for three-node shell elements to describe cracks. This method can
treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Ele-
ments are overlapped on the position of the crack, and they are partially integrated to implement the dis-
continuous displacement across the crack. To consider the element containing a crack tip, a new
kinematical relation between the overlapped elements is developed. There is no enrichment function
for the discontinuous displacement field. Several numerical examples are presented to illustrate the pro-
posed method.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of cracked shells is important in many engineering
applications such as pressurized aircraft fuselages, pipe lines, stor-
age tanks and so on. However, research on fracture mechanics of
shells is complex compared to continuum problems due to the
combination of in-plane and out-of-plane loading. The research
that has considered the shell fracture on in-plane tensile loading
or on bending orthogonal to the crack only is not reasonable in
many practical cases involving asymptotic out-of-plane loadings,
especially pressurized thin shells [1,2]. Therefore, accurate calcula-
tions of fracture parameters play a significant role in examining
failure or predicting fatigue of shells containing cracks. Because
analytical solutions have been derived only for shells of simple
geometry and boundary conditions, numerical methods have been
developed to deal with practical shells with complicated shapes
and boundaries.

A popular method to analyze shell structure is the finite ele-
ment method (FEM) [3–6]. However, modeling crack growth im-
poses a challenge on the FEM that usually requires remeshing.
Alternative methods have been developed to overcome the cum-
bersome nature of remeshing. Such methods as the meshfree
method [7–9] or the extended finite element method (XFEM)
[10–12] have successfully modeled problems of shell fracture.
However, the incorporation of the assumed strain techniques such
as the mixed interpolation of tensorial components (MITC) [13] or
ll rights reserved.
the enhanced assumed strain (EAS) technique [14] to circumvent
locking phenomena, or the smoothed strain technique [15] to im-
prove numerical accuracy are not straightforward in XFEM. The
key idea of these techniques is to design separately assumed strain
fields based on the continuous and compatible gradient of dis-
placement fields. Consequently, the XFEM with the presence of dis-
continuous enrichments in the approximated displacement fields
used to describe crack kinematics may not employ these additional
techniques in a straightforward manner.

Recently, Hansbo and Hansbo [16] have proposed another ap-
proach by duplicating homologous nodes to build overlapping
paired elements for representing crack kinematics instead of adding
enrichments and degrees of freedom as in the XFEM. Because there
are no additional degrees of freedom introduced, ‘‘mixed’’ terms of a
stiffness matrix for standard and additional degrees of freedom are
not needed compared to the XFEM and so conditioning is improved.
Based on the full interpolation bases of the overlapping elements,
the idea of Hansbo and Hansbo can straightforwardly integrate the
enhanced techniques in shell elements, although it is equivalent to
the XFEM as proven in [17]. This so-called phantom-node method
has been implemented in the finite element framework in two
dimensions [18,19], three dimensions [20,21], and thin shells based
on discrete Kirchhoff theory [22–24].

In this paper, we present further developments of the phantom-
node method for shells with through-the-thickness cracks normal
to the midsurface. The shells are discretized by continuum
mechanics based shell elements. These are three-node isotropic
triangular elements with the MITC technique designed to attenu-
ate the shear-locking phenomenon and to satisfy the requirement
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of spatial isotropy [25,26]. In other words, this MITC3 shell element
can strongly reduce the excess of stiffness characterizing the shear-
locking problem and its stiffness matrix is independent of how the
nodes are numbered. Moreover, kinematic constraints of overlap-
ping paired elements for tip elements within which the tip of a
crack is located are derived as an extension from the formulation
given in [19] for two-dimensional tip elements. Hence, elements
do not need to be completely cut by cracks, in contrast to [22–24].

A suitable domain form of the J-integral for cracked shells dis-
cretized by the MITC3 elements is formulated as a special case of
the ‘‘equivalent domain integral’’ method for three-dimensional
fracture problems [27]. For this derivation, the MITC3 element is
treated similarly to a three-dimensional continuum element. Ow-
ing to the MITC technique, the formulation for the domain form
of the J-integral can also handle thin shells. Similarly, a domain
form of the interaction integral is derived to extract the mixed-
mode stress intensity factors, each of which corresponds to in-
plane and out-of-plane loadings. To demonstrate the performance
of the method, some fracture problems of plane stress, plates and
shells are solved and compared to analytical or semi-analytical
solutions.

The paper is outlined as follows. In the following section we
present formulations of the MITC3 shell element discretized for a
cracked shell model in conjunction with the phantom-node meth-
od. Section 3 describes the discretized equilibrium equations. Cal-
culation of the J-integral and the stress intensity factors using the
domain form for shells is given in Section 4. Some numerical exam-
ples are solved in Section 5 and conclusions are drawn in Section 6.
2. Finite element discretization for a cracked shell model

We consider the finite element discretization of a shell model
with an arbitrary through-the-thickness crack. Because of the
crack, there are three types of finite elements, namely uncracked,
cracked, and tip elements; note that the tip elements are partially
cut by the crack. Details of the finite element formulation for each
type of element are presented in the following sections.
Fig. 1. Three-node shell finite element.
2.1. Three-node isotropic triangular MITC shell elements for uncracked
elements

An uncracked element, on which the displacement field is con-
tinuous, can be treated as the standard finite element method. In
computational analysis of shells, approaches based on continuum
mechanics based shell elements originated from the work of Ah-
mad et al. [28] are popular due to their simplicity of formulation
and implementation in the finite element procedures [29]. Unfor-
tunately, the displacement based elements are too stiff in bend-
ing-dominated shell problems when the thickness is small,
leading to locking phenomena [25,30]. To alleviate the locking,
there are many methods such as uniform reduced integration
(URI) [31,32], selective reduced integration (SRI) [33,34], assumed
natural strain (ANS) [35,36] or so-called mixed interpolation of
tensorial components (MITC) [13,37], or enhanced assumed strain
(EAS) [14,38], to name a few. Among these, the effectiveness of the
MITC technique has been well studied [39] and the MITC shell ele-
ments have been mostly adopted in commercial finite element
software.

In this paper, the uncracked part is discretized by the linear
MITC3 element of Lee and Bathe [25]. Particularly, since the
three-node element has flat geometry, it only suffers from shear
locking. To ameliorate the shear locking and meet the requirement
of spatial isotropy, the MITC technique here was designed such
that the transverse shear strain variations corresponding to the
three edge directions of the element are identical.
In the continuum mechanics based shell elements proposed by
[28], the displacement approximation can be obtained by consider-
ing geometric approximation mapping of any point x of the shell in
the global Cartesian coordinate system (x,y,z) into the natural
coordinates (n,g,f) as defined in [40]

xðn;g; fÞ ¼
X3

I¼1

NIðn;gÞxI þ
f
2

X3

I¼1

hINIðn;gÞVn
I ð1Þ

where NI(n,g) is the standard C0 shape function corresponding to
the surface f = constant; xI is the nodal coordinates in the global
Cartesian system; and hI and Vn

I denote the shell thickness and
the director vector, respectively. The subscript I indicates the values
at node I.

The displacement approximation u of the element is then given
by

uðn;g; fÞ ¼
X3

I¼1

NIðn;gÞuI þ
f
2

X3

I¼1

hINIðn;gÞð�V2
I aI þ V1

I bIÞ ð2Þ

wherein, V1
I and V2

I are unit vectors orthogonal to Vn
I and each other to

create a nodal coordinate system at node I, see Fig. 1; uI = {uI,vI,wI}T is
the translational displacements in the global Cartesian coordinate
system, and (aI,bI) are the rotational displacements of the director
vector Vn

I about V1
I and V2

I , respectively, in the nodal coordinate
system.

The purely displacement-based three-node shell elements suf-
fer from a severe ‘‘shear locking’’ phenomenon as the shell thick-
ness decreases. To circumvent the shear locking, the covariant
transverse shear strains in the MITC3 element are separately inter-
polated from values of the covariant transverse shear strains eval-
uated at ‘‘tying points’’ which are the center of the isotropic
element edges as shown in Fig. 2. To satisfy the isotropic property
of the transverse shear strain fields, their interpolations were con-
structed by [25] as follows

~eMITC3
nf ¼ ~eð1Þnf þ cg ð3aÞ

~eMITC3
gf ¼ ~eð2Þgf � cn ð3bÞ

in which,

c ¼ ~eð2Þgf � ~eð1Þnf � ~eð3Þgf þ ~eð3Þnf ð4Þ

and the covariant strain components are derived as

~eij ¼
1
2

gi � u;j þ gj � u;i
� �

ð5Þ

where

gi ¼
@x
@ni

; u;i ¼
@u
@ni

with n1 ¼ n; n2 ¼ g; n3 ¼ f ð6Þ



Fig. 2. Constant transverse shear strain along edges and positions of tying points.
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Next, we use the relationships between the components of the
covariant strain tensor ~eij and those of the global Cartesian strain
tensor emn [40]

~eijgi � gj ¼ emnem � en ð7Þ

in which gi are the contravariant base vectors and satisfy gi � gj ¼ dj
i;

the (mixed) Kronecker delta, and em are the unit base vectors de-
fined in the global Cartesian coordinate system, to transform the
in-plane and transverse strain components respectively given in
equations (5) and (3) into those measured in the global Cartesian
coordinate system. The strain–displacement matrix B can then be
formulated.

2.2. Overlapping paired elements for cracked elements

In a cracked element, which is completely cut by a crack, the
displacement field is discontinuous across the crack but indepen-
dently continuous on each part of the element. Hence, the displace-
ment field can be superimposed by two separate displacement
fields, each of which is continuous on its own part of the element
as illustrated in Fig. 3. This technique is given in the paper of Han-
sbo and Hansbo [16]. While it has been proved to be equivalent to
the XFEM [17], this approximation of the displacement field for the
cracked element exhibits more advantages since there are no dis-
continuous enrichments required. The gradient of the displace-
ment field is continuous on each part of the cracked element.
The shell formulations can then be simply implemented on each
part of the cracked element as a pair of overlapping standard
MITC3 elements.

Let a cracked element Xe be divided into two complementary
parts, Xþe and X�e , by a crack. The displacement field in the cracked
element can be described as
Fig. 3. Displacement jump described by the phantom-node method. Solid circles
are physical nodes; empty circles are phantom nodes.
ucr ¼
uþ in Xþe
u� in X�e

(
ð8Þ

To use the standard approximation of the displacement field on
each part of the cracked element, the real parts Xþe and X�e are ex-
tended to their opposite sides as XP�

e and XPþ
e , respectively, by addi-

tionally introducing the local duplication of homologous nodes
called phantom-nodes, as shown in Fig. 4. These nodes have the
same director vectors as the real nodes. As a result, the continuous
displacement field on each part of the cracked element can be
approximated similarly to that of the continuum mechanics based
shell element

ucrðn;g;fÞ¼

P3
K¼1

NKðn;gÞuK þ f
2

P3
K¼1

hK NKðn;gÞð�V2
KaK þV1

KbKÞ in Xþe

P3
L¼1

NLðn;gÞuLþ f
2

P3
L¼1

hLNLðn;gÞð�V2
LaLþV1

L bLÞ in X�e

8>>><
>>>:

ð9Þ

where K 2 {1,2⁄,3⁄} and L 2 {1⁄,2,3} are nodes belonging to
Xþe [XP�

e and X�e [XPþ
e , respectively.

The MITC technique, given in Eqs. (3) and (4), is now applied
straightforwardly to the continuous displacement fields in Eq. (9)
of the overlapping paired elements of which the domains are

Xþe [XP�
e

� �
and X�e [XPþ

e

� �
. Similarly to the formulations for the

MITC3 element in Section 2.1, the corresponding strain–displace-
ment matrices can be obtained for the displacement fields in Eq.
(9) realized only on the real parts, i.e. Xþe and X�e .

2.3. Constrained overlapping paired elements for tip elements

The displacement field in tip elements jumps across the par-
tially intersected crack but does not jump at the tip as shown in
Fig. 5. To improve the accuracy of the displacement field, the clas-
sical XFEM uses branch enrichments which are basic functions of
the asymptotic displacement fields near the crack tip [41,42], while
the standard FEM implements the crack tip singularity by using the
quarter point distortion [3]. However, the analytical solution is
known only in a few cases; therefore, the branch enrichments that
we do not have, only add complexity but do not necessarily im-
prove the results in the XFEM.

In fact, Dolbow et al. [42] mentioned that the enriched approx-
imation may cause a shear locking which reduces the accuracy of
the moment intensity factor in the XFEM applied to shell prob-
lems; for an infinite plate with a central crack subjected to a far-
field moment, the XFEM was even worse than the standard FEM
as the thickness was very thin. In the FEM, some authors [4,6] have
shown that fracture behaviors of shell problems can be analyzed



Fig. 4. Additional phantom nodes and phantom domains for cracked elements.

(a) (b)
Fig. 5. Two possibilities of discontinuous displacement field (hatched area) with crack opening in a tip element.
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with good accuracy without using the singular elements. This
means that the branch enrichments or the singular elements are
not always necessary. Moreover, branch enrichments are difficult
to incorporate in the phantom-node method.

In another approach, Zi and Belytschko [43] managed to satisfy
the condition by using the step enrichment only and a different
shape function for the enriched field of the displacement approxi-
mation, which results in the crack-opening displacement vanishing
at edge CP, see Fig. 5. By omitting the branch enrichments, numer-
ical computation is less costly since it avoids the problems related
to blending and integrating the singularity and the non-polynomial
terms. This approach was extended to derive a simple tip element
for the phantom-node method used in two-dimensional problems
[19].

Based on the work of Rabczuk et al. [19], we now develop over-
lapping paired elements for a three-node triangular shell element
containing a tip. Assume that a partial crack cuts edge 13 (in nat-
ural coordinates) of the tip element. There are two possibilities
of the discontinuous displacement fields in the tip element as illus-
trated in Fig. 5. Consider the displacement field required in Fig. 5a.
To provide a set of full interpolation bases for the displacement
field of the small triangle, phantom nodes 1⁄ and 2⁄ are added at
the position of nodes 1 and 2, respectively, to create a completely
new three-node triangular shell element. The tip element is now
decomposed into two elements M123 and M1⁄2⁄3, which share
node 3 (see Fig. 6a). As a result, for each overlapping paired ele-
ment the formulations of the MITC3 element can be implemented
straightforwardly similarly to that for cracked elements.

Additionally, since the crack-opening displacement at the tip
vanishes, the displacement approximations of the overlapping
paired elements must be identical along the CP edge, as demon-
strated in Fig. 6. To satisfy this kinematical condition, the nodal
displacements of the overlapping paired elements must be con-
strained. For the case given in Fig. 6a, using the similarity of trian-
gles M1P1⁄ and M2P2⁄, the displacements of phantom node 2⁄ are
constrained as

nP q2 � q2�ð Þ ¼ ð1� nPÞ q1� � q1ð Þ

) q2� ¼
1� nP

nP
q1 þ q2 �

1� nP

nP
q1� ð10Þ

here, qi ¼ uT
i ;ai;bi

� �T is the nodal translational and rotational
displacements.
Or, the nodal displacements of the overlapping paired element
are constrained in the matrix form as

q1�

q2�

q3

8><
>:

9>=
>; ¼ T�qtip�

e ð11Þ

with

T� ¼
0 0 0 I

1�nP
nP

I I 0 � 1�nP
nP

I

0 0 I 0

2
64

3
75 and qtip�

e ¼

q1

q2

q3

q1�

8>>><
>>>:

9>>>=
>>>;

ð12Þ

For the other case in Fig. 6b in which node 1 is shared, the kinemat-
ical constraint of phantom node 2⁄ gives

nPðq2 � q2� Þ ¼ ð1� nPÞðq3� � q3Þ

) q2� ¼ q2 þ
1� nP

nP
q3 �

1� nP

nP
q3� ð13Þ

In the matrix form, the relationship between the nodal displace-
ments of the overlapping paired elements in Fig. 6b is

q1

q2�

q3�

8><
>:

9>=
>; ¼ T�qtip�

e ð14Þ

with

T� ¼
I 0 0 0
0 I 1�nP

nP
I � 1�nP

nP
I

0 0 0 I

2
64

3
75 and qtip�

e ¼

q1

q2

q3

q3�

8>>><
>>>:

9>>>=
>>>;

ð15Þ

Similarly, we can obtain the constrained matrix T⁄ for the other
cases where the partial crack cuts edges 12 or 23 of the tip shell
element.

3. Equilibrium equations and numerical integration

3.1. Discretized equilibrium equations

A shell model X containing a crack Ccr is given. The model is
constrained on the necessary boundary Cu and sustains an external



(a)

(b)
Fig. 6. Additional phantom nodes (empty circle) determined by the kinematical constraints for the two possibilities of displacement field given in Fig. 5.
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load of traction s0 on the natural boundary, Ct. Note that
Cu [ Ct = X and Cu \Ct = ;. It is assumed that the crack surface
is free of traction and the material is linear isotropic elasticity.

As the conventional finite element procedure, the discretized
equations of equilibrium can be obtained as

f int ¼ Kq ¼ fext ð16Þ

where fint and fext are the discrete internal and external forces,
respectively, K is the stiffness matrix, and q are the generalized no-
dal displacements, including all physical and phantom nodes. The
expressions for fint and fext are given by

f int ¼
X

uncracked
elements

Z
Xe

BT CBdXqe

þ
X

cracked
elements

Z
Xþe

BT CBdXqcrþ
e þ

Z
X�e

BT CBdXqcr�
e

 !

þ
X

tip
elements

Z
Xþe

BT CBdXqtipþ
e þ

Z
X�e

T�T BT CBT�dXqtip�
e

 !
ð17Þ
fext ¼
X

all
elements

Z
Ce

NTs0dC ð18Þ

where B is the strain–displacement matrix of the MITC3 shell ele-
ment established on physical nodes for the uncracked elements
and nodes belonging to the overlapped paired elements Xþe [XP�

e

or X�e [XPþ
e for the cracked or tip elements; qe is the nodal displace-

ments of an uncracked element; qcrþ
e and qcr�

e are the nodal
displacements of the overlapped paired elements Xþe [XP�

e and
X�e [XPþ

e , respectively, for the cracked elements; qtipþ
e and qtip�

e are
the displacements of all physical nodes and physical nodes plus a
phantom node, respectively, of the overlapping paired tip elements;
T⁄ is the constrained matrix similar to equations (12) or (15); C is
the constitutive matrix representing the linear elastic stress–strain
law in the Cartesian coordinates and given in [40]

C ¼ Q T E
1� m2

1 m 0 0 0 0
1 0 0 0 0

0 0 0 0
1�m

2 0 0
sym: k 1�m

2 0
k 1�m

2

2
666666664

3
777777775

0
BBBBBBBB@

1
CCCCCCCCA

Q ð19Þ

in which, E, m, and k are the Young’s modulus, the Poison’s ratio, and
the shear correction factor, respectively; Q is a matrix that trans-
forms the stress–strain law from an Cartesian shell-aligned coordi-
nate system to the global Cartesian coordinate system.

3.2. Numerical integration

For elements not cut by a crack, the standard Gaussian method
with (3 � 2) quadrature points, i.e. 3 in the in-plane and 2 in the
thickness direction, is applied to numerically evaluate definite
integrals.

To obtain a description of discontinuity by overlapping paired
elements, the definite integrals need to be integrated on their
own real parts only. To this end, the definite integration can be
computed by subdividing domains into quadrature subtriangulars
[41] or using numerical integration techniques for arbitrary polyg-
onal domains. In this paper, for simplicity we subdivide the real
parts into subtriangular domains aligned with the crack. The stan-
dard Gaussian quadratures and weights are modified by mapping
into the subtriangular domains as described in [41] (see Fig. 7).
4. Calculation of fracture parameters

In this section, we describe the domain form of the path-inde-
pendent J-integral for continuum mechanics based shell models.
Additionally, the formulations for extraction of mixed-mode stress
intensity factors in shell models with an arbitrary crack are derived
based on the domain form of the interaction integral.



(a)

(b)
Fig. 7. Sub-triangles for real parts of elements containing discontinuity: (a) crack element; (b) tip element. Each sub-triangle has (3 � 2) Gaussian quadrature points (cross
circles).
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4.1. Domain form for J-integral calculation

Let us consider a through-the-thickness crack with the crack
front normal to the mid-surface of the shell model as shown in
Fig. 8. The J-integral is redefined as [27]

fJ ¼
Z

S
rij

@ui

@x1
�Wd1j

� 	
njqdS ð20Þ

in which, W ¼ 1
2 rijeij is the strain energy density, rij is the stress, eij

is the strain, ui is the displacement, nj is a component of the unit
normal vector to the surface S of a volume V surrounding the crack
front, d1j is the Kronecker delta, q is an arbitrary but continuous
function which is equal to zero on A and non-zero on Ae, and f is
the area under the q function curve along the crack front, see Fig. 8.

Here, the value of J, which is equivalent to the energy release
rate G in the frame of linear elastic fracture mechanics (LEFM), is
computed in the direction x1 of a local crack front coordinate sys-
tem (x1,x2,x3) at the tip.
Fig. 8. Definition of J-domain, function q, and local coordinates at the tip of a crack
in a shell.
Applying the divergence theorem to Eq. (20), we obtain the fol-
lowing domain form of J-integral in the case of LEFM

fJ¼
Z

V
rij
@ui

@x1
�Wd1j

� 	
@q
@xj

dV�
Z

A1þA2

rij
@ui

@x1
�Wd1j

� 	
njqdS ð21Þ

For shell models discretized by the continuum mechanics based
MITC3 elements, the domain form can be considered as a cylinder
containing a crack front through the tip and normal to the midsur-
face. The cylinder is limited by the upper and lower faces, A1 and A2

of the shells. The local coordinates (x1,x2,x3) are constructed by x1

normal to the crack front or tangent to the midsurface, x3 normal
to the midsurface and x2 orthogonal to x1and x3 following the
right-handed rule (Fig. 8). We simply assume that A1 and A2 are
equal and orthogonal to the crack front. Then,

n1 ¼ n2 ¼ 0; n3 ¼ 1 on A1

n1 ¼ n2 ¼ 0; n3 ¼ �1 on A2

and the q function is taken to be constant through the shell thick-
ness, i.e. f = h, and equal to 1 on Ae. Eq. (21) can be rewritten as

hJ ¼
Z

V
rij

@ui

@x1
� 1

2
rijeijd1j

� 	
@q
@xj

dV �
Z

A1þA2

ri3
@ui

@x1
n3qdS ð22Þ

In Eq. (22), the stress, strain, and derivatives of displacements with
respect to the local coordinate system (x1,x2,x3) at the tip can be ob-
tained by transforming those that are post-processing values of a fi-
nite element solution to the global Cartesian coordinate system
(x,y,z) [27,40].

The last term of Eq. (22) is calculated using the integration
points f ¼ �1=

ffiffiffi
3
p

through the shell thickness as suggested in
[27] as follows

hJ ¼
Z

V
rij

@ui

@x1
� 1

2
rijeijd1j

� 	
@q
@xj

dV �
ffiffiffi
3
p

�
Z

A1

Fðf ¼ 1ffiffiffi
3
p Þ � F f ¼ �1ffiffiffi

3
p

� 	� �
qdS ð23Þ

with F = ri3(@ui/@x1).
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For finite element implementation, the domain V is a set of ele-
ments which has at least one node in and one node out of a circular
cylinder with the central axis being the crack front and radius rd. In
this paper, the value of rd = 2.5havg will be used, wherein havg is the
mean value of the square-roots of the cracked elements’ areas [41].

The q function evaluated inside any element can be interpolated
by means of finite element shape functions as

q ¼
X3

I¼1

NIðn;gÞqI ð24Þ

in which NI(n,g) is the standard C0 shape function, and qI is the no-
dal value of function q, which is equal to 1 if node I is inside or equal
to 0 if I is outside the circular cylinder.

4.2. Extraction of mixed-mode stress intensity factors

In LEFM, the stress intensity factors (SIFs) in shell models under
combined in-plane and out-of-plane loadings are defined as a
superposition of the plane stress and plate theory fields. The SIFs
associated with each of the loadings in Fig. 9 have been thoroughly
discussed in [2] and are briefly described as follows.

� Membrane loadings
- Symmetric membrane loading: KI ¼ limr!0

ffiffiffiffiffiffiffiffiffi
2pr
p

rhhðr; 0Þ
- Antisymmetric membrane loading: KII ¼ limr!0

ffiffiffiffiffiffiffiffiffi
2pr
p

rrh

ðr;0Þ
� Kirchhoff theory’s bending loadings
- Symmetric loading (bending): k1 ¼ limr!0

ffiffiffiffiffi
2r
p

rhh r;0; h
2
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where (r,h) are the polar coordinates at a crack tip.
The relationship between the J-integral value and the SIFs in the

cases of mixed-mode loadings is given as [2]
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for Reissner theory ð25bÞ

To calculate SIF for a particular mode of loading in cases of mixed-
mode loadings, we follow the scheme which was derived in [41,44]
for two- or three-dimensional problems. Consider two states of a
(a) (b)

(d)(c)
Fig. 9. Stress intensity factors related to each mode of loading; (a) Symmetric
membrane loading, KI; (b) Antisymmetric membrane loading, KII; (c) Symmetric
bending: Kirchhoff theory, k1, Reissner theory, K1; (d) Antisymmetric bending and
shear: Kirchhoff theory, k2, Reissner theory, K2, K3 [2].
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and an auxiliary stage rð2Þij ; e
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which will be chosen as the

asymptotic fields given in the Appendix. From Eq. (22), the domain
form of the J-integral for the superposition of the two states is
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Expanding and arranging terms in Eq. (26) gives

Jð1þ2Þ ¼ Jð1Þ þ Jð2Þ þ Ið1;2Þ ð27Þ

in which I(1,2), the so-called interaction integral, is
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Using Eq. (25), the J-integral for the combination of the present and
auxiliary states is

For Kirchhoff theory;

Jð1þ2Þ ¼ Jð1Þ þ Jð2Þ þ 2
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For Reissner theory;
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From Eqs. (27) and (29), we have the following relationship be-
tween the interaction integral I(1,2) in Eq. (28) and the SIFs

For Kirchhoff theory;
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For Reissner theory;
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By choosing the auxiliary state as the pure symmetric membrane
loading, meaning that the asymptotic fields have only Kð2ÞI ¼ 1 and
the other SIFs are equal to zero, the stress intensity factor Kð1ÞI for
the present state in terms of the interactive integral Ið1;KIÞ is given as

Kð1ÞI ¼
E
2

Ið1;KIÞ ð31Þ

Similarly, we can determine the other stress intensity factors.

5. Numerical examples

To verify the theory and numerical implementation described in
the preceding sections, the calculation of J-integral or stress intensity
factorsareillustratedbelowinseveralnumericalexamples.Problems
of plane stress and bending plate are first presented as simplified



(a) (b)
Fig. 10. Geometry of edge cracked plates under: (a) the tension, (b) the shear. The
dimensions are b = 7,a = 3.5, and l = 16.

Table 1
Normalized KI of the tension case for various meshes and integral domain sizes.

Method Phantom-node XFEM

rd/havg mesh1 mesh2 mesh3 mesh1 mesh2 mesh3

1.5 0.872 0.953 0.959 1.045 0.972 0.958
2.0 0.882 0.953 0.960 1.104 1.006 0.991
2.5 0.878 0.953 0.960 1.114 1.002 0.988
3.0 0.879 0.953 0.961 1.113 1.003 0.989

Present, mesh1 (990elem.)
Present, mesh2 (24750elem.)
Present, mesh3 (80190elem.)
XFEM, mesh1 (990elem.)
XFEM, mesh1 (24750elem.)
XFEM, mesh1 (80190elem.)

rd / havg

K I

Fig. 11. Normalized KI for the edge cracked plate under tension with different
meshes and J-integral domain sizes: phantom-node method (continuous lines) and
XFEM (dash lines).

Table 2
Normalized KI of the shear case for various meshes and integral domain sizes.

Method Phantom-node XFEM

rd/havg mesh1 mesh2 mesh3 mesh1 mesh2 mesh3

1.5 0.799 0.962 0.986 0.989 0.986 0.984
2.0 0.812 0.967 0.985 1.039 1.021 1.021
2.5 0.808 0.966 0.984 1.047 1.019 1.017
3.0 0.809 0.966 0.985 1.046 1.019 1.018

Table 3
Normalized KII of the shear case for various meshes and integral domain sizes.

Method Phantom-node XFEM

rd/havg mesh1 mesh2 mesh3 mesh1 mesh2 mesh3

1.5 0.803 1.004 1.051 0.653 0.990 1.104
2.0 0.827 0.975 1.031 0.901 1.000 1.034
2.5 0.846 0.977 1.014 0.886 0.985 1.012
3.0 0.847 0.979 1.013 0.898 0.988 1.013

Present, mesh1 (990elem.)
Present, mesh2 (24750elem.)
Present, mesh3 (80190elem.)
XFEM, mesh1 (990elem.)
XFEM, mesh1 (24750elem.)
XFEM, mesh1 (80190elem.)

rd / havg

K I

Fig. 12. Normalized KI for the edge cracked plate under shear with different meshes
and J-integral domain sizes: phantom-node method (continuous lines) and XFEM
(dash lines).
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cases of typical shell models. Subsequently, examples of circular cyl-
inders with different directions of crack are considered.

5.1. Edge cracked plates under tension or shear

Consider a plane stress plate of width b = 7, height l = 16, and
thickness h = 1 with an edge crack length of a = b/2. The material
properties are E = 3 � 107, and m = 0.25. The plate is subjected to
a tension r = 1 at the top and bottom edges as shown in Fig. 10a,
or is clamped onto the bottom edge and sustains a shear s = 1 on
the top edge (see Fig. 10b).
The analytical solution for the plate under tension is given in
[41]

KI ¼ Cr
ffiffiffiffiffiffi
pa
p

ð32Þ

with C = 1.12 � 0.231(a/b) + 10.55(a/b)2 � 21.72(a/b)3 � 30.39(a/b)4

The values of KI and KII for the shear case in [45] are used as the
reference solutions:

KI ¼ 34:0; KII ¼ 4:55 ð33Þ

The plate is modeled by various structured meshes (nx � ny) de-
fined as the number of elements along the x and y axes (see
Fig. 10), respectively. These are three structured meshes of
(15 � 32), (75 � 165), and (135 � 297) MITC3 shell elements. In
the following tables and figures, these meshes are denoted as
mesh1, mesh2, and mesh3. The numerical results normalized by
the reference solutions are given in Table 1 and Fig. 11 for the
tension, and Tables 2 and 3 and Figs. 12 and 13 for the shear. The
structure mesh and displacement fields are illustrated in Fig. 14.

The results show that as mesh density increases the stress
intensity factors approach the reference solutions and are mostly



Present, mesh1 (990elem.)
Present, mesh2 (24750elem.)
Present, mesh3 (80190elem.)
XFEM, mesh1 (990elem.)
XFEM, mesh1 (24750elem.)
XFEM, mesh1 (80190elem.)

rd / havg

K I
I

Fig. 13. Normalized KII for the edge cracked plate under shear with different
meshes and J-integral domain sizes: phantom-node method (continuous lines) and
XFEM (dash lines).

Fig. 15. Dimensions of a central cracked plate (simply supported all around)
subjected to uniform pressure.
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independent of the domain sizes of the interaction integral. Rea-
sonable values of rd/havg range from 2.0 to 3.0, where rd and havg

were defined in Section 4.1. We also present the SIFs computed
by the XFEM using three-node triangular elements with the
asymptotic enrichment functions at the tip elements in the plane
stress condition [46]. Compared to the XFEM, the phantom-node
method requires fine mesh to obtain acceptable results. However,
the asymptotic enrichment functions are known for this type of
problem. For other more complex problems where the solution is
not known, asymptotic enrichment does not necessarily provide
more accurate results but introduces additional complexity and
parameters that need to be calibrated.
Fig. 14. (a) Structured mesh with (15 � 32) MITC3 shell elements for the edge cracked
deformation factor is 105.
5.2. Central cracked plates under pressure

This example considers a square plate with a central crack sub-
jected to uniform pressure p = 1.0. The plate is simply supported on
all edges. The geometry shows b = 1.0 in Fig. 15. Material proper-
ties are E = 1000, and m = 0.3.

The plate is discretized by a regular mesh of (81 � 81) MITC3
shell elements. Three different domain sizes were used to verify
the path-independence of the J-integral and meshing quality
for the case where b/h = 10. The values of J-integral are given in
Table 4. The difference between the J values on the domain sizes
plate; Vertical displacement field: (b) under the tension, (c) under the shear. The



Table 4
J-integral in cases of various crack lengths and domain sizes, b/h = 10.

rd/
havg

a/b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.5 0.738 1.265 1.672 1.938 2.036 1.947 1.668 1.216 0.640
2.5 0.731 1.260 1.665 1.922 2.006 1.897 1.591 1.106 0.494
3.5 0.687 1.196 1.578 1.812 1.872 1.738 1.408 0.899 0.267

J =
G

Present, b/h=10
Sosa and Eischen, b/h=10
Present, b/h=6
Sosa and Eischen, b/h=6

Fig. 16. J-integral values of the central cracked plate (simply supported all around)
subjected to uniform pressure.

Fig. 17. Geometry of a central cracked plate under a uniform far-field moment.

K 1

Phantom node, MITC3 - Present
XFEM, MITC4 - Bordas et al., 09
XFEM, MISC - Bordas et al., 09

Fig. 18. Convergence of relative error in K1 of a central cracked plate subjected to a
uniform far-field moment.

Fig. 19. Geometry of a cylinder with an axial crack under internal pressure.
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significantly occurs in cases of the tips near the boundary, meaning
that a denser mesh should be used.

Results of the J-integral for various lengths of the central crack
in two different cases of thickness, b/h = 6 and b/h = 10, are illus-
trated in Fig. 16. Because of the boundary constraints, the J-inte-
gral, or the energy release rate G, decreases as the tips of the
crack approach the edges. The results accord well with those
solved by Sosa and Eischen [47] using the finite element method
and a path-independent J-integral. Notice that the problem under
consideration has only the symmetric bending mode.
5.3. Central cracked plate under a uniform far-field moment

To compare the SIF convergence given by the present method
and the XFEM we consider a benchmark problem which is a rect-
angular plate containing a through-the-thickness crack and sub-
jected to a uniform far-field moment. Under such boundary
conditions, the plate is loaded by a purely mode I stress intensity
factor of symmetric bending. Analytical calculations were studied
by Boduroglu and Erdogan using Reissner’s transverse shear
theory.

Following the paper of Bordas et al. the plate dimensions are ta-
ken to be a width of 2b = 2, a length of l = 6 and a thickness of h = b/
4. The length of the crack is 2a = 1.0. A constant distributed mo-
ment of M0 = 1 is applied on both edges of the plate parallel to
the crack, as shown in Fig. 17. The material is isotropic elasticity
with a Young’s modulus of E = 200GPa and Poisson’s ratio of m = 0.3.

The SIF of symmetric bending, K1, is numerically solved using
various regular meshes of MITC3 shell elements which differ in
the size of the edges. Compared to the analytical solution given
in ,the convergence of relative error in K1 with respect to element
size is illustrated in Fig. 18. The figure also shows the convergence



Fig. 20. (a) Typical mesh of a cylinder with an axial crack; (b) Regular and fine mesh near the crack; (c) Displacement field with crack opening (Deformation factor 0.05).

K I

a = 9.841
a = 4.92
a = 1.23
convergence rate

1
4

Fig. 21. Relative errors of the KI vs. element size obtained by the phantom-node
method. The continuous bold line shows the optimal convergence rate, which is
about 1/4.

a

K I

Present
Folias

Fig. 22. Stress intensity factor KI corresponding to membrane symmetric loading.

Table 5
J-integral of circumferentially cracked cylinder under tension.

2c R/h Present Ref. [49] Ref. [50] Ref. [48]

45� 40 3.03 � 10�2 3.24 � 10�2 3.09 � 10�2

6.2 4.10 � 10�4 4.56 � 10�4 4.23 � 10�4

90� 20 2.40 � 10�2 2.57 � 10�2 2.48 � 10�2
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computed by Bordas et al. using the XFEM which incorporates tip
enrichments into the formulation of MITC4 [37] or MISC plate ele-
ments. The XFEM employing the enriched MISC elements gives
superior convergence over the present method because the
smoothing curvature of the plate elements improves the accuracy
of the MITC elements. However, the convergence rates of the pres-
ent method which ignores tip enrichments and the XFEM using the
enriched MITC4 are similar, especially in the cases of very fine
meshes. The slight difference may be due to the greater accuracy
of the MITC4 than the MITC3 elements. Therefore, tip enrichments
are not necessary for plates or shells.

5.4. Pressurized cylinder with an axial crack

A thin walled cylinder with the mean radius R = 20, thickness
h = 0.25, and length l = 100 containing an axial through-the-thick-
ness crack of length 2a is subjected to an internal pressure p = 1.0
Fig. 23. Geometry of a cylinder with a c
(see Fig. 19). E is 1000, and m = 0.3. We support open-end
conditions.

The mesh used for calculations is regular and fine around the
crack area but irregular and gradually coarse in the other area
remote from the crack. The typical mesh and displacement field
ircumferential crack under tension.



Fig. 24. Cylinder containing a circumferential crack with an angle 90� under tension: (a) meshing; (b) displacement field; (c) normal stress field in the tension direction
(Deformation factor 2 � 104).

Fig. 25. Geometry of a cylinder with a crack inclined at an angle b under uniform internal pressure.

J
R
/t

J
R
/t

R/t = 6.2
R/t = 40

-10 -8

β

T. Chau-Dinh et al. / Computers and Structures 92-93 (2012) 242–256 253
with crack opening are depicted in Fig. 20 for the cylinder with a
crack length of 2a = 19.682.

The interaction integral I for the Kirchhoff theory is employed to
extract the stress intensity factor KI of symmetric membrane load-
ing. Because the stress intensity factor is mostly influenced by the
stress and strain fields near the crack tip, various regular meshes
around the crack, which differ in the length of triangular elements,
are placed to investigate the dependence of accuracy on the
meshes. Fig. 21 presents the relationship between the length of
elements in the regular meshes around the crack and the relative
error of KI which is obtained based on the analytical solution given
by Folias [48]. In this figure, the convergence rate of KI is about 1/4
and KI can be calculated within 4% accuracy using triangular ele-
ments of length a/123.

Fig. 22 shows the values of KI for various axial cracks of lengths
2a = 2.46, 4.92, 9.84, 14.76 or 19.682. In all the cases, elements of
length a/123 are used for structured mesh around the crack. These
results are in good agreement with the analytical solution of Folias
[48].
Table 6
J values of a pressurized cylinder with variously inclined cracks.

R/h Scale b (degree)

0 30 45 60 90

6.2 �10�10 39.4 29.2 21.0 13.3 5.5
20 �10�9 91.7 64.3 44.1 26.6 8.7
40 �10�8 62.7 42.9 29.6 18.1 4.8

Fig. 26. J value vs. angle b for a pressurized cylinder with an inclined crack. The left
axis is for R/h = 6.2. The right axis is for R/h = 40.
5.5. Cylinder with a circumferential crack under tension

We compute here the J value of a cylinder with radius
R = 0.0529 and thickness h containing a circumferential



Fig. 27. A pressurized cylinder (R/h = 40) with a crack inclined at an angle: (a) b = 30�: displacement; (b) b = 45�: stress rxx; (c) b = 60�: strain exx (Deformation factor 2 � 106).

Fig. 28. Local coordinates at the tip of a crack in a shell model.
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through-wall crack of length 2a = 2cR in the circular direction,
where 2c is the total included angle (see Fig. 23). Tensile forces
P = 90 are applied on both ends of the cylinder. Material properties
are E = 2.07 � 1011 and m = 0.3. This example was solved by LePort
et al. [49] using the finite element method and virtual crack exten-
sion method for energy release rate calculation.

Table 5 presents J values obtained by the phantom-node
method and the domain form of the J-integral in various cases
of the crack length and shell thickness. The results are similar
to those calculated by [49] and the analytical solutions given
in [48,50]. The crack opening is shown in Fig. 24 as well as
the displacement field and concentration of tension stress near
the crack tips.
5.6. Pressurized cylinder with an inclined crack

Consider the cylinder given in Section 5.5 but containing a crack
of length 2a = 0.05 inclined an angle of b as shown in Fig. 25. The
cylinder is subjected to a uniform internal pressure p = 10 and an
axial extension P = 8.8 � 10�2. This load condition is equivalent
to the cylinder with both end caps under the internal pressure
p = 10.

Table 6 presents calculated J values for the cylinder with the
crack inclined different angles of b and various thicknesses of the
cylinder. When the thickness decreases, the J value or the energy
release rate G increases. Fig. 26 demonstrates the decrease of J val-
ues as the crack changes from the axial to perpendicular direction
with respect to the cylindrical axis in the cases of thickness R/
h = 6.2 and 40. To the knowledge of the authors, no results are
available that can be compared with our results, and these results
can thus be used as a reference. The distributions of displacement,
stress and strain fields with crack opening are illustrated in Fig. 27
for the case R/h = 40.

6. Conclusions

The phantom-node method has been developed for shell mod-
els discretized by MITC3 elements. The method is useful for the
smooth growth of a crack since it permits crack tips to be arbi-
trarily located within an element. Since discontinuity across the
crack is described using continuities constructed from full interpo-
lation bases of overlapping paired elements, the separate interpo-
lation of transverse shear strains (MITC technique) can be
employed straightforwardly. Therefore, the presented method al-
lows the modeling of both thin and thick shell structures with
the crack independent of the finite element mesh.

The equivalent domain integral technique applied for three-
dimensional problems has been derived for shell models using
continuum mechanics based shell elements to compute the J-inte-
gral, or the energy release rate. Extraction of stress intensity factors
was also formulated based on the interaction integral. The domain
form of integrals can be easily implemented in the context of the
phantom-node method as a post-processing stage. Due to the
MITC3 used, the methodology in this paper has computed the frac-
ture parameters for both thin and thick shells.

Several numerical examples, i.e. plane stress, plate, and shell
problems containing cracks have been studied to demonstrate
the efficiency of the present method. Working as the finite element
method without the quarter point elements at the crack tips, the
mesh of finite element should be fine enough in areas surrounding
the crack tips to obtain accuracy of calculation. In the examples,
numerical results are in excellent agreement with the analytical
solutions or those given in the references.
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Appendix A. Asymptotic fields near a crack tip

The stress and displacement fields with respect to a polar coor-
dinate system (r,h) at a crack tip shown in Fig. 28 are given as fol-
lows [2].
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For membrane loading:
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where l = E/2(1 + m) is the shear modulus.
For bending and transverse shear loading in the context of Kir-

chhoff theory:
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For bending and transverse shear loading in the context of Reissner
theory:
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The scalar function v is related to the transverse shear resultants by

Q 13 ¼
@v
@x2

; Q23 ¼ �
@v
@x1

ðA:11Þ
and is further used in the equations for the in-plane displacements

ua ¼ �x3
@wðx1; x2Þ

@xa
þ 12ð1þ mÞ

5Eh
x3Qa3ðx1; x2Þ ðA:12Þ

where a = 1, 2.
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