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Abstract

In this paper, we study the convergence characteristics of some 3-node triangular shell finite elements. We review the formulations of
three different isotropic 3-node elements and one non-isotropic 3-node element. We analyze a clamped plate problem and a hyperboloid
shell problem using various mesh topologies and present the convergence curves using the s-norm. Considering simple bending tests, we
also study the transverse shear strain fields of the shell finite elements. The results and insight given are valuable for the proper use and
the further development of triangular shell finite elements.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For several decades, the finite element method has been
used as a main tool to analyze shell structures in various
engineering applications. However, there are still many
important research challenges to increase the effectiveness
of the analysis of shells [1–4].

Shells are three-dimensional structures with one dimen-
sion, the thickness, small compared to the other two
dimensions. As the shell thickness decreases, shell struc-
tures can behave differently depending on the geometry,
loading and boundary conditions of the shell, that is, the
behavior of a shell structure belongs to one of three differ-
ent asymptotic categories: membrane-dominated, bending-
dominated, or mixed shell problems [2–4].

A major difficulty in the development of shell finite ele-
ments is to overcome the locking phenomenon for bending-
dominated shells. When the finite element approximations
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cannot sufficiently well approximate the pure bending dis-
placement fields, membrane and shear locking occur. Then,
as the shell thickness decreases, the convergence of the
finite element solution rapidly deteriorates. An ideal finite
element formulation would uniformly converge to the
exact solution of the mathematical model irrespective of
the shell geometry, asymptotic category and thickness.
In addition, the convergence rate should be optimal. Of
course, it is extremely hard to reach ideal (or uniformly
optimal) shell finite elements but continuous efforts are
highly desirable.

When modeling general engineering structures, some tri-
angular finite elements are frequently used. Typically, to
mesh complex shell structures, the mesh generation scheme
establishes by far mostly quadrilateral elements but when
these become too distorted because of geometric complex-
ities, triangular elements are used instead. Also, triangular
shell elements may be effective when these are used to rep-
resent a thin structure within tetrahedral three-dimensional
element meshes, like in the analysis of rubber media rein-
forced by thin steel layers, or in the solution of fluid-struc-
ture interactions [5]. Of course, in general, quadrilateral
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elements can have a higher predictive capability, and there-
fore more research effort has been expended to develop
quadrilateral shell finite element discretizations and more
progress has also been achieved. Since quadrilateral ele-
ments have simpler coordinate systems and richer strain
fields than triangular elements, quadrilateral shell finite ele-
ments that overcome the locking phenomenon are also eas-
ier to establish. Indeed, some quadrilateral shell elements
are close to ‘‘uniformly optimal’’ [1,2].

The two basic approaches used to formulate general
shell elements [1,2,6] are the formulations in which plate
bending and membrane actions are superimposed and the
formulations based on three-dimensional continuum
mechanics [1,2,7]. However, discretizations based on ele-
ments in which the membrane and bending actions are
superimposed may not converge in the solution of general
shell problems [2], and we focus in our work on a general
continuum mechanics based approach. The resulting ele-
ments are attractive because they can be used for any shell
geometry and, also, a linear formulation can directly and
elegantly be extended to general nonlinear formulations.
However, the elements need be developed in mixed formu-
lations, since the pure displacement formulation locks
[1,2,8]. In particular, the displacement-based 3-node trian-
gular shell finite element (QUAD3) locks severely. One
approach is to use selective reduced integration resulting
in the SRI3 element.

Recently, using the MITC1 (Mixed Interpolation of
Tensorial Components) technique for triangular shell finite
elements, a 3-node MITC triangular shell finite element
(MITC3) has been developed [9]. Its performance has been
studied for various shell problems using well-established
benchmark procedures. The element is very attractive
because its formulation is simple and general, and, in par-
ticular, the behavior of the element is isotropic, that is, the
stiffness matrix of the triangular element does not depend
on the sequence of node numbering. However, the element
is not ‘‘uniformly optimal’’, that is, some locking is present
and seen in the solution of the clamped plate problem and
the hyperboloid shell problem [9]. This deficiency provides
a motivation to further study the element behavior.

It is well known that triangular shell finite elements give
very different solution accuracy depending on the mesh pat-
tern used for a shell problem [1,10]. Hence, to evaluate a tri-
angular shell finite element, specific different meshes should
be used to test the element performance. In addition also an
appropriate norm need be used to measure the error [11].

Our objective in this paper is to further study the con-
vergence behavior of the MITC3 shell finite element and
some other 3-node triangular shell finite elements when
using different mesh patterns and the s-norm proposed by
Hiller and Bathe [11]. Also, to obtain insight into the
reasons why the different results are obtained, we study
1 The MITC technique has been successfully used for developing high-
performance quadrilateral shell finite elements, namely the MITC4,
MITC9 and MITC16 elements.
the transverse shear strain fields of the 3-node shell finite
elements in simple bending problems.

While we use exclusively 3-node triangular shell finite
elements in these studies, we recognize that – as pointed
out above already – in practice these elements will fre-
quently not be used alone but only when necessary together
with quadrilateral elements. However, this fact does not
diminish the importance of our study.

In the following sections, we first review the formula-
tions of four 3-node triangular shell finite elements and
their strain fields. Next, considering a fully clamped plate
problem and a hyperboloid shell problem, we study the
convergence of the shell finite elements depending on the
mesh patterns used. To further investigate the behavior
of the shell finite elements, we then study the transverse
shear strain fields in two simple plate bending problems.
Since the s-norm is used in the convergence studies, we give
in an Appendix, a general scheme for the numerical calcu-
lation of this norm.

2. Formulations of 3-node triangular shell finite elements

We briefly review the formulations of four different 3-
node triangular shell finite elements: three isotropic ele-
ments and one non-isotropic element. Here, we only show
the covariant strain fields of the elements since, once these
fields are known, it is straightforward to establish the
stiffness matrices for the analysis of shell structures [1].

2.1. Covariant strain fields of 3-node triangular shell finite

elements

The geometry of a q-node continuum mechanics based
shell finite element is described by

~xðr; s; nÞ ¼
Xq

i¼1

hiðr; sÞ~xi þ
n
2

Xq

i¼1

tihiðr; sÞ~V i
n; ð1Þ

where hi(r,s) is the 2D shape function of the standard iso-
parametric procedure corresponding to node i,~xi is the po-
sition vector for node i in the global Cartesian coordinate
system, and ti and ~V i

n denote the shell thickness and the
director vector at node i, respectively (see Fig. 1).

From Eq. (1), the displacement of the element is given
by

~uðr; s; nÞ ¼
Xq

i¼1

hiðr; sÞ~ui þ
n
2

Xq

i¼1

tihiðr; sÞð�~V i
2ai þ ~V i

1biÞ;

ð2Þ

in which ~ui is the nodal displacement vector in the global
Cartesian coordinate system, ~V i

1 and ~V i
2 are unit vectors

orthogonal to ~V i
n and to each other, and ai and bi are the rot-

ations of the director vector ~V i
n about ~V i

1 and ~V i
2 at node i.

For a 3-node triangular shell finite element, q is 3 and
the shape functions are

h1 ¼ 1� r � s; h2 ¼ r; h3 ¼ s: ð3Þ
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Fig. 1. A 3-node triangular continuum mechanics based shell finite
element.
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The linear part of the covariant strain components are
directly calculated by

eij ¼
1

2
ð~gi �~u;j þ~gj �~u;iÞ; ð4Þ

where

~gi ¼
o~x
ori

; ~u;i ¼
o~u
ori

with r1 ¼ r; r2 ¼ s; r3 ¼ n: ð5Þ

All 3-node shell elements considered here are flat, and the
in-plane strain components are directly calculated using
Eq. (4). However, the transverse shear strains are evaluated
differently for each element as we next summarize.

• The QUAD3 element.
The covariant transverse shear strain field of the ori-

ginal displacement-based 3-node triangular shell finite
element is directly calculated by Eqs. (1), (2) and (4) as
follows:

ern ¼
1

2
ð~gr �~u;n þ~gn �~u;rÞ; esn ¼

1

2
ð~gs �~u;n þ~gn �~u;sÞ:

ð6Þ

It is very well known that this element severely locks,
that is, the element is too stiff in bending-dominated
shell problems. Of course, the strain field of this element
is spatially isotropic.
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Fig. 2. Tying positions for the transverse shear strain of the
• The MITC3 element.
With the assumption that the transverse shear strain

be constant along the element edges, we construct the
assumed transverse shear strain field for the MITC3 ele-
ment as [9]

~ern ¼ eð1Þrn þ cs; ~esn ¼ eð2Þsn � cr with

c ¼ eð2Þsn � eð1Þrn � eð3Þsn þ eð3Þrn ð7Þ

and use the tying points shown in Fig. 2. In Eq. (7), eðnÞrn

and eðnÞsn are the covariant transverse shear strains of Eq.
(6) at tying point n. Note that the assumed transverse
shear strain field in Eq. (7) is spatially isotropic.

• The SRI3 element.
The covariant transverse shear strain field of the

SRI3 shell element is assumed constant and given by
Eq. (6)

êrn ¼ ernð1=3; 1=3; nÞ; êsn ¼ esnð1=3; 1=3; nÞ: ð8Þ
The transverse shear strain field of this element is of
course also spatially isotropic. Note that this element
stiffness matrix could be evaluated using one-point selec-
tive reduced integration for the transverse shear strains.
However, this element displays a spurious zero energy
mode and we would not use it in engineering analyses
[1].

• The NIT3 element.
The three elements above are isotropic triangular

shell finite elements. If we neglect the linear terms of
the covariant transverse shear strains of the MITC3
element, a 3-node non-isotropic triangular shell finite
element (referred herein as the NIT3 element) is
obtained,

�ern ¼ eð1Þrn ; �esn ¼ eð2Þsn : ð9Þ

This is a natural attempt, because if we use two such ele-
ments to represent a rectangular domain similar tying
positions can be selected as used for the MITC4 element
(see Section 3). The third tying point is not required for
the strain interpolations. This 3-node triangular shell fi-
nite element can also be derived using the ‘‘Discrete
Shear Gap’’ concept and was referred to as the DSG3
element [12]. As for the SRI3 element, the NIT3 element
also contains a spurious zero energy mode.
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2.2. Transverse shear strain fields in flat geometry

In this section, we study the transverse shear strain fields
of the 3-node triangular shell finite elements assuming the
elements are used in plate bending problems, merely to
obtain insight into the element behaviors.

When the shell finite element is used for plate bending
problems, with the plate of constant thickness defined in
the XY-plane, we have the conditions

~xi ¼
xi

yi

0

8><
>:

9>=
>;; ~ui ¼

0

0

wi

8><
>:

9>=
>;; V i

n ¼~iz; ~V i
1 ¼~ix; ~V i

2 ¼~iy

and ti ¼ t for all i; ð10Þ

where~ix,~iy and~iz are the unit base vectors in the global
Cartesian coordinate system.

From Eqs. (1) and (2), we then have the geometry and
displacement interpolations

~x ¼

P3
i¼1

hixi

P3
i¼1

hiyi

n
2
t

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ~u ¼

n
2
t �
P3
i¼1

hibi

� n
2
t �
P3
i¼1

hiai

P3
i¼1

hiwi

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð11Þ

We next consider the four different 3-node triangular shell
elements mentioned in the previous section for plate bend-
ing problems.

• The QUAD3 element.
Using Eq. (11) in Eq. (6), we obtain the transverse

shear strain field of the 3-node displacement-based shell
finite element

ern ¼
t
4

w2�w1þðx2� x1Þ �
X3

i¼1

hibi�ðy2� y1Þ �
X3

i¼1

hiai

" #
;

esn ¼
t
4

w3�w1þðx3� x1Þ �
X3

i¼1

hibi�ðy3� y1Þ �
X3

i¼1

hiai

" #
:

ð12Þ

• The MITC3 element.
Using Eq. (7), the transverse shear strain field of the

MITC3 shell finite element is obtained

~ern¼
t
4

w2�w1þ
1

2
ðx2� x1Þðb1þb2Þ�

1

2
ðy2� y1Þða1þa2Þ

� �
þ cs;

~esn¼
t
4

w3�w1þ
1

2
ðx3� x1Þðb1þb3Þ�

1

2
ðy3� y1Þða1þa3Þ

� �
� cr

ð13Þ

with

c ¼ t
8
ðy2 � y3Þa1 þ ðy3 � y1Þa2 þ ðy1 � y2Þa3 þ ðx3 � x2Þb1½

þðx1 � x3Þb2 þ ðx2 � x1Þb3�: ð14Þ
• The SRI3 element.
Similarly, the SRI3 shell finite element has the trans-

verse shear strains

êrn ¼ ernjr¼s¼1=3 ¼
t
4

w2�w1þ
1

3
ðx2� x1Þðb1þ b2 þ b3Þ

�

�1

3
ðy2� y1Þða1 þ a2þ a3Þ

�
;

êsn ¼ esnjr¼s¼1=3 ¼
t
4

w3�w1þ
1

3
ðx3� x1Þðb1þ b2 þ b3Þ

�

�1

3
ðy3� y1Þða1 þ a2þ a3Þ

�
:

ð15Þ
• The NIT3 element.

Using Eq. (9), the transverse shear strain field of the
NIT3 shell finite element is

�ern ¼
t
4

w2 � w1 þ
1

2
ðx2 � x1Þðb1 þ b2Þ

�

� 1

2
ðy2 � y1Þða1 þ a2Þ

�
;

�esn ¼
t
4

w3 � w1 þ
1

2
ðx3 � x1Þðb1 þ b3Þ

�

� 1

2
ðy3 � y1Þða1 þ a3Þ

�
:

ð16Þ
3. Convergence studies

Using a reliable finite element discretization scheme, the
finite element solution converges to the exact solution of
the underlying mathematical model as the element size
decreases [2,3,13]. However, it is important to use an
appropriate norm to measure the convergence of the finite
element solutions.

We use the s-norm proposed by Hiller and Bathe as a
norm to measure convergence for mixed formulations [11]

jj~u�~uhjj2s ¼
Z

X
D~eTD~rdX; ð17Þ

where~u denotes the exact solution and~uh denotes the solu-
tion of the finite element discretization. Here,~e and ~r are
the strain vector and the stress vector in the global Carte-
sian coordinate system, respectively, defined by

~e ¼ ½exx eyy ezz 2exy 2eyz 2ezx�T;
~r ¼ ½rxx ryy rzz rxy ryz rzx�T

ð18Þ

and

D~e ¼~e�~eh ¼~eð~xÞ � Bhð~xhÞUh;

D~r ¼~r�~rh ¼~rð~xÞ � Chð~xhÞBhð~xhÞUh;
ð19Þ

where C denotes the material stress–strain matrix, B is the
strain–displacement operator and U is the vector of nodal
degrees of freedom. The position vectors ~x and ~xh
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correspond to the continuum domain and the discretized
domain, respectively, and we have

~x ¼ Pð~xhÞ; ð20Þ

where P defines a one-to-one mapping.
In the practical use of this norm, a reliable finite element

solution using a very fine mesh, ~uref , can be employed
instead of the exact solution. Using the reference solution,
the s-norm in Eq. (17) is

jj~uref �~uhjj2s ¼
Z

Xref

D~eTD~rdXref ; ð21Þ

with

D~e ¼~eref �~eh ¼ Brefð~xrefÞUref � Bhð~xhÞUh;

D~r ¼~rref �~rh ¼ Crefð~xrefÞBrefð~xrefÞUref � Chð~xhÞBhð~xhÞUh

with ~xref ¼ Pð~xhÞ:
ð22Þ

To measure appropriately the performance of finite ele-
ments, it is necessary to study the relative error Eh defined
as
A B

CD

x

y

z

x

L2

L2

q t

Fig. 3. Fully clamped plate under uniform pressure load (L = 1.0, E = 1.747
Eh ¼
jj~uref �~uhjj2s
jj~uref jj2s

: ð23Þ

For a uniformly-optimal (and hence non-locking) element
we would have for any shell problem

Eh ffi chk; ð24Þ

where c is independent of the shell thickness and k = 2. As
mentioned above such a 3-node element is very difficult
to develop. But in such development, in order to properly
see the qualities of an element, it is important to use an
appropriate norm and to solve appropriate test problems
decreasing the shell thickness [9,11]. A general numerical
procedure to find the one-to-one mapping in Eq. (22) and
to calculate the s-norm is proposed in Appendix.

Below we consider two problems for our convergence
studies. We reported earlier that the MITC3 shell finite ele-
ment shows excellent behavior in membrane-dominated
problems [9]. Of course, the displacement-based 3-node
shell finite element (QUAD3) gives optimal solutions in
such problems. Since shell finite element solutions deterio-
rate in bending-dominated problems, we consider the fully
A B

CD

A B

CD

x

y

L2

L2

x

y

L2

L2

h

2 · 107, m = 0.3 and q = 1.0). (a) and (b) Regular meshes (c) Cross mesh.
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Fig. 4. Convergence curves of the QUAD3 shell finite element in the clamped plate problem (Left: regular mesh, Right: cross mesh).

-1.8 -1.2 -0.6
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

mesh(a), t/L=1/100
mesh(a), t/L=1/1000
mesh(a), t/L=1/10000
mesh(b), t/L=1/100
mesh(b), t/L=1/1000
mesh(b), t/L=1/10000

-1.8 -1.2 -0.6
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

mesh(c), t/L=1/100
mesh(c), t/L=1/1000
mesh(c), t/L=1/10000

hEloghElog

hloghlog

Fig. 5. Convergence curves of the SRI3 shell finite element in the clamped plate problem (Left: regular mesh, Right: cross mesh).

2 The reliable performance of the MITC9 shell finite element is reported
in Refs. [2,11,14].
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clamped plate problem and the hyperboloid shell problem
(as already solved in less extensive convergence studies in
Ref. [9]).

3.1. Fully clamped plate problem

We consider the plate bending problem shown in Fig. 3.
The square plate of dimension 2L · 2L with uniform thick-
ness t is subjected to a uniform pressure normal to the flat
surface and all edges are fully clamped.

Due to symmetry, only one quarter model is considered
(the region ABCD shown in Fig. 3) with the following sym-
metry and boundary conditions imposed: ux = hy = 0 along
BC, uy = hx = 0 along DC and ux = uy = uz = hx = hy = 0
along AB and AD.

Figs. 4–6 show the calculated convergence curves for the
QUAD3, SRI3 and MITC3 shell finite elements, respec-
tively, when t/L = 1/100, 1/1000 and 1/10,000, for the three
different mesh patterns of Figs. 3(a)–(c). Referring to the
meshes in Fig. 3 as 4 · 4 element meshes, the convergence
curves were obtained using 4 · 4, 8 · 8, 16 · 16 and
32 · 32 element meshes. The solutions were measured on
the reference solutions, ~uref in Eq. (21), obtained using
the MITC92 shell finite element with a mesh of 48 · 48 ele-
ments. The solid thick line represents the optimal conver-
gence rate which can be obtained from 3-node triangular
shell finite elements, k = 2 in Eq. (24).

The QUAD3 and SRI3 shell finite elements severely lock
in all the cases of thickness and mesh patterns considered.
The MITC3 shell finite element locks in the meshes of
Figs. 3(a) and (b) but the solution accuracy is still good
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Fig. 6. Convergence curves of the MITC3 shell finite element in the clamped plate problem (Left: regular mesh, Right: cross mesh).
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up to t/L = 1/1000. When the cross mesh in Fig. 3(c) is
used, the MITC3 shell finite element shows the optimal
convergence behavior independent of the shell thickness,
and hence is uniformly optimal.

As mentioned above, it is interesting to investigate the
convergence characteristics of the NIT3 shell finite element
when different element orientations are used for the same
mesh pattern. Since the element is not spatially isotropic,
the behavior of the element depends on its orientation
and the sequence of node numbering in a given mesh pat-
tern. We use the mesh pattern of Fig. 3(a), see Fig. 7,
and first select the element orientation in Fig. 7(b), which
results in the tying points used in the MITC4 shell finite ele-
ment, see Fig. 7(a). We then consider the element orienta-
tion in Fig. 7(c).

Fig. 8 displays the convergence curves of the NIT3 shell
finite element when the element orientations of Figs. 7(b)
and (c) are used. The element gives optimal convergence
with the element orientation of Fig. 7(b) but locks with
Fig. 7(c). Hence the NIT3 element shows different solution
accuracy depending on the element orientation (with the
same mesh pattern). Here, we do not show convergence
results in other cases of mesh patterns and element orienta-
tions, but locking is observed for such cases as well. Of
course this solution dependency on the element orientation
in a given mesh pattern does not occur in isotropic shell
finite elements.

3.2. Hyperboloid shell problem

This shell problem was also used in e.g. Refs. [2,9,11,13]
to study shell elements. The problem is described in Fig. 9.
The midsurface of the shell structure is given by

x2 þ z2 ¼ 1þ y2; y 2 ½�1; 1� ð25Þ

and the loading imposed is the smoothly varying periodic
pressure normal to the surface

pðhÞ ¼ p0 cosð2hÞ; ð26Þ

where p0 = 1.0.
We consider the bending-dominated problem obtained

when both ends are free. Using symmetry, the analyses
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are performed using one eighth of the structure, the shaded
region ABCD in Fig. 9(a). Considering the boundary con-
ditions, we have: uz = b = 0 along BC, ux = b = 0 along
AD and uy = a = 0 along DC.
For the convergence study we use the two different mesh
patterns shown in Figs. 9(b) and (c) and the reference solu-
tion obtained with a mesh of 48 · 48 MITC9 shell finite
elements. The very thin boundary layer is not specially
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meshed. For the mesh in Fig. 9(c), the center node posi-
tions of rectangular cells are evaluated from the average
of the positions of the corners; hence the center nodes are
not quite on the midsurface of the shell given in Eq. (25).

Figs. 10 and 11 show that the QUAD3 and SRI3 shell
finite elements severely lock in the two types of meshes.
Fig. 12 displays that, when the mesh of Fig. 9(b) is used,
the MITC3 element also locks but the solution accuracy
is useful in practice. When the mesh of Fig. 9(c) is used,
the solutions using the MITC3 element become much
better.

In Fig. 13, we report that the convergence of the NIT3
element is uniformly optimal with the element orienta-
tion-1 of Fig. 9(d) but a very different convergence behav-
ior and much worse solution accuracy are obtained with
the element orientation-2 of Fig. 9(e). It is important to
note that there is a large difference in the solution accuracy
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Fig. 11. Convergence curves of the SRI3 shell finite element in the hy
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Fig. 10. Convergence curves of the QUAD3 shell finite element in the
depending on the element orientation in a given mesh pat-
tern when this non-isotropic triangular shell finite element
is used. We can expect a similar undesirable behavior for
other non-isotropic triangular shell finite elements, a
behavior that needs to be understood and taken into
account, automatically or otherwise, in practical analyses.

4. Simple bending test problems

To this point, we presented the convergence behaviors
of four different triangular shell finite elements depending
on mesh patterns and element orientations used. Consider-
ing a cantilever plate problem and a two-sided clamped
plate problem modeled with two or four elements, we next
further study the transverse shear strain fields of the
QUAD3, MITC3 and SRI3 triangular shell elements and
the locking phenomenon in different meshes.
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Fig. 12. Convergence curves of the MITC3 shell finite element in the hyperboloid shell problem (Left: regular mesh, Right: cross mesh).
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4.1. Cantilever plate problem

Let us consider the cantilever plate of dimension L · L

shown in Fig. 14. The structure is subjected to a uniform
moment ma along its tip. This is a basic problem to test
the pure bending behavior of beam/plate/shell finite
elements.

We use only two triangular shell finite elements to solve
the problem: element-I and element-II in Fig. 14 are used
to examine in detail the behavior of the QUAD3, MITC3
and SRI3 shell finite elements.

The boundary condition of this plate problem along the
clamped edge is

w ¼ a ¼ b ¼ 0 ð27Þ

and from the geometry,
x1 ¼ 1; y1 ¼ 0; x2 ¼ 1; y2 ¼ 1

and

x3 ¼ 0; y3 ¼ 0 for element-I;

x1 ¼ 0; y1 ¼ 1; x2 ¼ 1; y2 ¼ 1

and

x3 ¼ 0; y3 ¼ 0 for element-II;

ð28Þ
in which the subscripts are the element node numbers on
the element level, see Figs. 1 and 14. Note that the node
numbers used in the following equations correspond to
the global node numbers given in Fig. 14.

This is a pure bending problem, that is, the exact analyt-
ical solution corresponds to

ern ¼ esn ¼ 0 in X; ð29Þ
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where X is the whole plate domain including the elements-I
and -II, and the theoretical relationship between the deflec-
tion wtip, rotation atip and rotation btip, which can be calcu-
lated from basic mechanics, is given by

wtip ¼
1

2
atip; btip ¼ 0: ð30Þ

There is no anticlastic curvature since Poisson’s ratio
m = 0.0. Hence the exact solutions for the nodal rotations
and displacements in Fig. 14 must correspond to Eq.
(30). We now summarize the resulting transverse shear
strain fields obtained in the solution of this problem for
the three shell finite elements.

• The QUAD3 element.
Using the conditions in Eqs. (27) and (28) with Eq.

(12), we obtain the transverse shear strain field of ele-
ment-I,

eI
rn ¼

t
4

w2 � a2rð Þ; eI
sn ¼ �

t
4
b2r; ð31Þ

and the transverse shear strain field of element-II,
eII
rn¼

t
4

w2�w4þh1b4þh2b2ð Þ;

eII
sn¼

t
4
�w4þh1a4þh2a2ð Þ: ð32Þ

Note that, in Eqs. (31) and (32), r and s are indepen-
dently defined in each element, that is, r and s in ele-
ment-I are independent of r and s in element-II.

A necessary condition, but not sufficient, for an ele-
ment to avoid locking is that the transverse shear strain
field can express the pure bending condition in Eq. (29)
with the solution in Eq. (30). For the QUAD3 element,
however, the solution in Eq. (30) does not make the
transverse shear strain field in Eqs. (31) and (32) vanish
in elements-I and -II and therefore locking is expected in
this case.

• The MITC3 element.
Similarly, we obtain for the MITC3 element

~eI
rn ¼

t
4

w2 �
1

2
a2

� �
þ cIs; ~eI

sn ¼ �cIr with

cI ¼ t
8
b2; ð33Þ

and



Table 2
Strain energies for the cantilever plate problem

t/L QUAD3 MITC3 SRI3

1/100 3.71728E�04 1.37363E+00 1.03040E+00
1/1000 3.71849E�03 1.37363E+03 1.03022E+03
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~eII
rn ¼

t
4

w2 � w4 þ
1

2
b4 þ

1

2
b2

� �
þ cIIs;

~eII
sn ¼

t
4
�w4 þ

1

2
a4

� �
� cIIr with

cII ¼ t
8
ða4 � a2 � b4Þ ð34Þ

Using the condition in Eq. (29), we obtain

w2 �
1

2
a2 ¼ 0; b2 ¼ 0; w2 � w4 þ

1

2
b4 þ

1

2
b2 ¼ 0;

� w4 þ
1

2
a4 ¼ 0; a4 � a2 � b4 ¼ 0; ð35Þ

and Eq. (30) satisfies Eq. (35), that is,

w4 ¼ w2 ¼
1

2
a4 ¼

1

2
a2; b4 ¼ b2 ¼ 0: ð36Þ

Therefore, Eq. (30) is a solution of Eq. (35). As a result,
the MITC3 shell finite element can express the pure
bending condition.

• The SRI3 element.
For the SRI3 element we obtain

êI
rn ¼

t
4

w2 �
1

3
a2

� �
; êI

sn ¼ �
t

12
b2 ð37Þ

and

êII
rn ¼

t
4

w2 � w4 þ
1

3
b4 þ

1

3
b2

� �
;

êII
sn ¼

t
4
�w4 þ

1

3
a4 þ

1

3
a2

� �
; ð38Þ

and the analysis shows that the SRI3 shell finite element
can also not predict the pure bending displacement in Eq.
(30) and, indeed, the transverse shear strains vanish with

w2 �
1

3
a2 ¼ 0; b2 ¼ 0; a4 � b4 ¼ 0;

w4 �
1

3
b4 þ

1

3
a2 ¼ 0 ð39Þ

leading to locking.

We next calculate the numerical results using the three
shell finite elements for the cantilever plate problem with
L = 1, ma = 2/L, E = 1.7472 · 107 and m = 0.0. Table 1
shows the tip deflections and rotations when t/L = 1/1000.

As expected, Table 1 shows that the MITC3 shell finite
element produces the theoretical tip displacements and
Table 1
Tip displacements of the cantilever plate problem (t/L = 1/1000)

QUAD3 MITC3 SRI3 Theoretical value

w1
tip 1.27650E�03 6.86813E+02 4.57876E+02 6.86813E+02

w2
tip 2.24774E�03 6.86813E+02 6.86814E+02 6.86813E+02

a1
tip 3.13575E�03 1.37363E+03 1.37363E+03 1.37363E+03

a2
tip 4.30124E�03 1.37363E+03 6.86816E+02 1.37363E+03

b1
tip 5.54999E�04 0.00000E+00 2.06043E�03 0.00000E+00

b2
tip 1.66499E�03 0.00000E+00 6.86811E+02 0.00000E+00
rotations, whereas the QUAD3 and SRI3 elements do
not give good results. Table 1 also shows that the QUAD3
and SRI3 elements each produce different displacements at
both tips and the nodal variables of the SRI3 element sat-
isfy the above conditions. Note that excellent results would
be obtained for any ratio of t/L using the MITC3 element.
Also, if the cross mesh pattern of the MITC3 shell element
is used for this cantilever plate problem, the same excellent
results are obtained.

The cantilever plate problem is a bending-dominated
problem and the strain energy U stored in the structure is
a function of the thickness, see Ref. [4],

UðtÞ / t�3: ð40Þ

Table 2 shows the strain energies of the cantilever plate
problem for the thickness parameters t/L = 1/100 and
t/L = 1/1000. As expected, the numerical results show that
the MITC3 shell finite element works well in this plate
problem but the QUAD3 element locks. Note that,
although the SRI3 element is based on a transverse shear
strain interpolation of lower order than the MITC3 ele-
ment, the MITC3 element gives a more flexible bending
behavior.
4.2. Two-sided clamped plate problem

We observed that in the cantilever plate problem the
MITC3 shell finite element does not lock, but it shows
some locking in the fully clamped plate problem and the
hyperboloid shell problem. Considering a simple two-sided
clamped plate problem, we further investigate the behavior
of the MITC3 shell finite element.

The clamped plate of dimension L · L shown in Fig. 15
is subjected to uniform moments ma and �mb along its free
sides. The boundary conditions are w = a = b = 0 along
the clamped edges. We consider three different meshes,
mesh A, mesh B and mesh C as shown in Fig. 15.

Table 3 presents the strain energies calculated using the
MITC3 shell finite element. The results show that the
MITC3 element works well in the meshes B and C, but
locks when using the mesh A.

Considering the mesh A and using the notation of
Section 4.1, the boundary conditions are

a1 ¼ a3 ¼ a4 ¼ b1 ¼ b3 ¼ b4 ¼ w1 ¼ w3 ¼ w4 ¼ 0: ð41Þ

The transverse shear strain field is given by

~eI
rn ¼

t
4

w2 �
1

2
a2

� �
þ cIs; ~eI

sn ¼ �cIr with cI ¼ t
8
b2

ð42Þ
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Table 3
Strain energies using the MITC3 element for the two-sided clamped plate
problem

t/L Mesh A Mesh B Mesh C

1/100 4.11903E�04 6.86813E�01 6.86937E�01
1/1000 4.12086E�03 6.86813E+02 6.86814E+02
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and

~eII
rn ¼

t
4

w2 þ
1

2
b2

� �
þ cIIs; ~eII

sn ¼ �cIIr with cII ¼ � t
8

a2:

ð43Þ

Clearly, the only nodal displacements and rotations that
satisfy the pure bending condition are

a2 ¼ b2 ¼ w2 ¼ 0; ð44Þ

and this implies locking in this case.
Similarly, it is simple to show that the QUAD3 and

SRI3 elements lock in this plate problem for all three
meshes used.

These results are in correspondence with the finding that,
while of course the QUAD3, SRI3, and MITC3 elements
pass the membrane patch tests, of these elements only the
MITC3 element passes also the bending patch test [1].

5. Conclusions

Our objective was to obtain insight into the convergence
behavior of 3-node triangular shell finite elements in bend-
ing-dominated problems depending on the mesh patterns
used. We reviewed the formulations of four 3-node triangu-
lar shell finite elements and their strain fields, the QUAD3,
SRI3, MITC3 and NIT3 elements, and presented the solu-
tions of a fully clamped plate problem and a hyperboloid
shell problem. Although the SRI3 and NIT3 elements con-
tain a spurious zero energy mode – and can therefore not
be recommended for practical use – we evaluated these ele-
ments in our study merely to obtain insight into element
behaviors.

Regarding the convergence behavior of the 3-node trian-
gular shell finite elements, we have made the following
observations:

• In the fully clamped plate problem, the QUAD3 and
SRI3 shell finite elements severely lock regardless of
the mesh patterns used. In the regular meshes, the
MITC3 element shows some locking but frequently
acceptable for practical analysis, and when the cross
mesh of the MITC3 shell finite element is used, almost
optimal convergence is obtained. The NIT3 shell finite
element shows optimal convergence when for a specific
mesh pattern the tying points of the element are aligned
as used in the MITC4 element, but locking is seen in
other cases, that is, the solution accuracy given by the
NIT3 element highly depends on the mesh patterns used
and on the element orientation in a given mesh pattern.

• In the hyperboloid shell problem, severe locking is seen
for the QUAD3 and SRI3 shell finite elements. The
MITC3 shell finite element shows alleviated locking in
the regular mesh and much better results in the cross
mesh. For the NIT3 element, the results highly depend
on the element orientation in a given mesh pattern.

We also studied the transverse shear strain fields and
strain energies stored in two simple plate bending prob-
lems. This simple study gave some insight why there is
the mesh-dependent behavior of the MITC3 shell finite ele-
ment in the fully clamped plate problem and the hyper-
boloid shell problem.
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Based on the results of this study, it is obvious that for
the benchmark tests of triangular shell finite elements, var-
ious mesh patterns need to be considered, and, in addition,
when non-isotropic shell finite elements are tested, their
performance should also be studied considering their vari-
ous orientations in the given mesh patterns.
Appendix. A general scheme for the numerical calculation of
the s-norm

We here propose a numerical procedure to calculate the
s-norm for shell finite element solutions with general types
of elements and general meshes.

The reference numerical solution given by ~uref is
employed instead of the exact solution and the target
numerical solution given by~uh is compared with this refer-
ence solution. The major difficulty of the s-norm cal-
culation is to establish the mapping points between the
reference mesh and the target mesh.

We evaluate the integration in Eq. (21) using the Gauss
integration technique in the reference domain. Figs. 16(a)
and (b) shows the reference mesh and the target mesh. In
the figures, (rref, sref,nref) are the isoparametric coordinates
of the Gauss integration point of the element in the refer-
1
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(xref,yre

),,( re fre fre f zyx
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),,( refrefref s
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Fig. 16. Mapping between the reference mesh and the target mesh (The cor
Reference mesh, (b) Target mesh, (c) Triangular areas of a tested 3-node elem
ence mesh, and (rh, sh,nh) are the corresponding isopara-
metric coordinates of the corresponding element in the
target mesh. Our goal is to find the corresponding element
and to establish (rh, sh) for the given (rref, sref) because
nh = nref in shells.

The first step is to find the corresponding element in
the target mesh. From the given (rref, sref) of the element
in the reference mesh, we calculate the global coordinates
(xref,yref,zref)

xref ¼
Xnref

i¼1

hiðrref ; srefÞxi
ref ; yref ¼

Xnref

i¼1

hiðrref ; srefÞyi
ref ;

zref ¼
Xnref

i¼1

hiðrref ; srefÞzi
ref ; ðA:1Þ

where nref is the number of nodes of the element in the ref-
erence mesh. Then in the target mesh we find the element
corresponding to the minimum of g

g ¼ jS �
Pm

i¼1Sij
S

: ðA:2Þ

Here S is the area of the element tested in the target mesh,
Si is the area of the triangle which consists of the point
(xref,yref,zref) and the edge i of that element in the target
mesh and m is the number of edges on the boundary of that
f,zref)

h

P

r

s

),,( hhh zyx

hr

hs

Ω

),,( hhh sr

μ

ξ

responding element in the target mesh is shaded in (b), (c) and (d).); (a)
ent in the target mesh, (d) Finding (rh,sh) in the corresponding element.
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element. For example, in Fig. 16, S is given by the points
1-2-3 in Fig. 16(c), and S1 (by points 1-2-P), S2 (by points
2-3-P) and S3 (by points 3-1-P) in Fig. 16(c) are the trian-
gular areas for the tested 3-node element in the target mesh.

For a flat element, if the point (xref,yref,zref) is inside the
element, g = 0; otherwise g > 0. Considering general geo-
metries, it is sufficient to find the element for which g in
Eq. (A.2) is minimized. To search for the element accu-
rately in a general n-node element mesh, we divide each
n-node element into triangular domains and proceed as
above.

The second step is to find (rh, sh) in the element that was
just found, see Fig. 16(d). We need to establish the solution
(rh, sh) that minimizes

l ¼ xh � xrefð Þ2 þ yh � yrefð Þ2 þ zh � zrefð Þ2; ðA:3Þ
with

xh ¼
Xnh

i¼1

hiðrh;shÞxi
h; yh ¼

Xnh

i¼1

hiðrh;shÞyi
h;

zh ¼
Xnh

i¼1

hiðrh;shÞzi
h;

ðA:4Þ

where nh is the number of nodes of the corresponding
element in the target mesh. We achieve this by employing,
for example, a simple bisection algorithm [15].

Finally, we calculate the strains and stresses for (rref,
sref,nref) in the reference solution and for (rh, sh,nh) in the
target solution and, by Eq. (21), the s-norm is obtained.
This scheme can be used for shell finite element solutions
(reference and target) with general types of elements and
general meshes.

Also, of course

1

2
~urefk k2

s ¼
1

2

Z
Xref

~eT
ref~rref dXref

¼ the strain energy of the reference solution;

ðA:5Þ
1

2
~uhk k2

s ¼
1

2

Z
Xref

~eT
h~rh dXref

� the strain energy of the target solution; ðA:6Þ
but it is important to note that in general ~uref �~uhk k2
s 6¼

~urefk k2
s � ~uhk k2

s .
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