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Abstract

In this paper, the development of a general three-dimensional L-section beam finite element for elastoplastic large deformation anal-
ysis is presented. We propose the generalized interpolation scheme for the isoparametric formulation of three-dimensional beam finite
elements and the numerical procedure is developed for elastoplastic large deformation analysis. The formulation is general and effective
for other thin-walled section beam finite elements. To show the validity of the formulation proposed, a 2-node three-dimensional L-sec-
tion beam finite element is implemented in an analysis code. As numerical examples, we first perform elastic small and large deformation
analyses of a cantilever beam structure subjected to various tip loadings, and elastoplastic large deformation analysis of the same struc-
ture under reversed cyclic tip loading. We then analyze the failures of simply supported beam structures of different lengths and slender-
ness ratios under elastoplastic large deformation. The same problems are solved using refined shell finite element models of the structures.
The numerical results of the L-section beam finite element developed here are compared with the solutions obtained using shell finite
element analyses. We also discuss the numerical solutions in detail.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin-walled section beams including L-section (angle)
shapes have been widely used in metallic frameworks for
buildings, industrial structures and lattice structures. Non-
linear analysis considering large deformations and inelastic
material is very important for investigating the load-bear-
ing capacity of beam structures. In practice, the finite ele-
ment method is the main tool for such analyses of beam
structures [1]. The behavior of thin-walled beams (in partic-
ular, non-symmetric thin-walled sections) while undergoing
inelastic large deformations is very complex and hard to
predict using beam finite elements. In fact, the full three-
dimensional nonlinear behavior of such sections can be
represented more accurately using shell finite elements.
However, for structures with a large number of thin-walled
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beam members, such as lattice structures, this approach is
not practical because of the large modeling effort and com-
putational time required.

Considerable effort has been put on the development of
symmetric and non-symmetric section beam finite elements
for elastic large deformation analysis and valuable results
have been obtained, see Refs. [2–4] and therein. However,
considering inelastic material, it is very hard to formulate
such beam finite elements and only successes for relatively
simple symmetric cross-sections (rectangular solid, I-shape,
square and circular hollow sections [5–7]) have been
reported. The development of general (symmetric or non-
symmetric) section beam finite elements for inelastic large
deformation analysis, which are simple and effective, is still
open and the challenge is continuing.

In this paper, we propose a generalized interpolation
scheme for the isoparametric formulation of three-dimen-
sional beam finite elements, which can be used for both sym-
metric and non-symmetric section beams. The formulation
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and numerical procedure are developed for elastoplastic
large deformation analysis of L-section beams. Note that
the formulation is simple and effective for general (thin-
walled) section beam finite elements. Since, in research
articles, we could not find analysis examples or studies on
three-dimensional L-section beam finite elements for elasto-
plastic large deformation analysis, we show the validity of
the element proposed using the solution of shell finite ele-
ment models.

The isoparametric approach has been widely used for
the general curved beam finite element [1], because trans-
verse shear strain is automatically considered and the
formulation is general and effective, in particular, for non-
linear analysis. When the dimensions of the beam section
are small compared to the beam length, the displacement-
based isoparametric beam finite element locks, that is,
the element is too stiff in bending problems. In spite of
this disadvantage, this type of beam finite element is
very attractive because the formulation is directly derived
from three-dimensional continuum mechanics and easily
extended to nonlinear analysis. Locking can be removed
using reduced-order integration or a mixed formulation [1].

In this study, our main objective is to develop a general
three-dimensional L-section beam finite element, which is
general and reliable for elastoplastic large deformation
analysis as well as linear elastic analysis. For effective non-
linear analysis of three-dimensional frameworks using
beam finite elements, the following are necessary:

• Full three-dimensional behavior,
• Consideration of axial, bending and shearing actions,
• Availability for short and long beams (various slender-
ness ratios),

• Geometrical nonlinear capability (for large deformation
and buckling behavior),

• Material nonlinear capability (in particular, for elasto-
plastic material),

• Consideration of loading and displacement
eccentricities.

In the following sections, we present the isoparametric
formulation of a general three-dimensional L-section beam
finite element for elastoplastic large deformation analysis
and show the numerical performance of the formulation.
We propose the generalized geometry and displacement
interpolation scheme for the isoparametric beam finite ele-
ments, which can automatically consider the eccentricities
of loading and boundary conditions. To illustrate the
application of this formulation and discuss its perfor-
mance, we implement a 2-node L-section beam finite ele-
ment in an analysis code. As numerical tests, we perform
elastic small and large deformation analyses of an L-sec-
tion cantilever beam structure subjected to various static
loadings, and the elastoplastic large deformation analysis
of the same structure under reversed cyclic tip loading.
The failures of simply supported beam structures (of differ-
ent length) under elastoplastic large deformation are ana-
lyzed. The results are compared with the solutions
obtained with refined shell finite element models of the
structures.

2. L-section beam finite element

In this section, we present the nonlinear formulation of
the general three-dimensional L-section isoparametric
beam finite element for elastoplastic large deformation
analysis.

We first propose generalized geometry and displacement
interpolations that can be used for beam finite elements of
all possible section shapes, and we present the example of
the L-section shape beam here. Considering large deforma-
tion and elastoplastic behavior, the updated Lagrangian
formulation is adopted. We also use the ‘‘mixed interpola-
tion of tensorial components’’ (MITC) technique for the
locking removal [1,8]. To consider large rotation kinemat-
ics, the director vectors of the beam finite element are
updated after each time increment using an orthogonal
matrix for finite rotations as described in [9]. For elasto-
plastic analysis, we use the logarithmic strain calculated
from the one-dimensional multiplicative decomposition of
the longitudinal stretch of the beam [1].

In this paper, we use the superscript or subscript s to
denote time, but, in static analysis, s is a dummy variable
indicating load levels and incremental variables rather than
actual time as in dynamic analysis [1].

2.1. Geometry and displacement interpolations

The basic kinematic assumption of the beam formula-
tion is that plane cross-sections originally perpendicular
to the central axis of the beam remain plane and undis-
torted under deformation but not necessarily perpendicular
to the central axis of the deformed beam. In order to intro-
duce a more general isoparametric beam formulation,
instead of using the central axis, we use a longitudinal
reference line, which does not need to pass through the
centroid of the beam section. This reference line can be
arbitrarily positioned on the beam section depending on
the location of the nodal degrees of freedom; this feature
automatically facilitates consideration of loading and dis-
placement eccentricities at the finite element level.

Considering the longitudinal reference line in Fig. 1, the
geometry of the q-node beam finite element at time s is
interpolated by

s~xðr; s; tÞ ¼
Xq
k¼1

hkðrÞs~xk þ
Xq
k¼1

t ��tk
2

akhkðrÞs~V
k

t

þ
Xq
k¼1

s� �sk
2

bkhkðrÞs~V
k

s ; ð1Þ

where hk(r) are the interpolation polynomials in usual iso-
parametric procedures, s~xk are the Cartesian coordinates of
node k at time s, ak and bk are the cross-sectional dimen-
sions (length of legs in L-section shapes) at node k, and
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Fig. 1. Geometry of a general three-dimensional L-section beam element.
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the unit vectors s~V
k

t and s~V
k

s are the director vectors in
directions t and s at node k and at time s. Note that s~V

k

t

and s~V
k

s are normal to each other, and these vectors are
parallel to the two legs of the L-section, as shown in Fig. 1.

In Eq. (1), the variables �sk and�tk are used to position the
nodal degree of freedom (or the reference longitudinal line)
in the beam finite element. In effect, these variables shift the
domain in the natural coordinate system (s, t) as follows:

�1 6 s 6 1

�1 6 t 6 1

�
)

�1� �sk 6 s� �sk 6 1� �sk;

�1��tk 6 t ��tk 6 1��tk.

�
ð2Þ

As illustrated in Fig. 2, �sk and �tk are calculated from the
location of the nodal degree of freedom and the cross-sec-
tional dimensions. Let us consider the nodal Cartesian
coordinate system defined by the director vectors s~V

k

t and
s~V

k

s at node k. The points c and c 0 are the position of the
nodal degree of freedom and the center of the dotted rect-
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Fig. 2. Geometric description of �xk , �yk , �sk and�tk at node k: (a) in the nodal
Cartesian coordinate system and (b) in the natural coordinate system.
angle, respectively. Due to the geometrical proportionality
between Fig. 2(a) and (b), we obtain

�sk ¼ 2
�xk
bk

; �tk ¼ 2
�yk
ak

; ð3Þ

where �xk and �yk represent the projected distances between c

and c 0 in the nodal Cartesian coordinate system at node k.
This shifting of the domain in the natural coordinate sys-
tem allows a general description of the geometry interpola-
tion. Consequently, the positions of the nodal degrees of
freedom can be arbitrarily located on the beam sections.

The Cartesian coordinate of a point at time s + Ds is
sþDs~x ¼ s~xþ s~u; ð4Þ
where s~u is the incremental displacement from time s to
s + Ds.

Substituting Eq. (1) into Eq. (4) and using the second-
order approximations for the large rotation of the director
vectors, we obtain the incremental displacement from time
s to s + Ds
s~u ¼ s~ua þ s~ub ð5Þ
with

s~uaðr; s; tÞ ¼
Xq
k¼1

hkðrÞs~uk þ
Xq
k¼1

t ��tk
2

akhkðrÞ s~hk � s~V
k

t

h i

þ
Xq
k¼1

s� �sk
2

bkhkðrÞ½s~hk � s~V
k

s �;

s~ubðr; s; tÞ ¼
Xq
k¼1

t ��tk
4

akhkðrÞ s~hk � ðs~hk � s~V
k

t Þ
h i

þ
Xq
k¼1

s� �sk
4

bkhkðrÞ½s~hk � ðs~hk � s~V
k

s Þ�;

ð6Þ



Fig. 3. Gauss integration points of the 2-node L-section beam element in
the natural coordinate system.

Table 1
Integration points in the natural coordinate system for elastic analysis

r–t plane r–s plane

i r s t i r s t

1 1=
ffiffiffi
3

p
�1 1=
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3

p
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3

p
1=

ffiffiffi
3

p
�1

2 1=
ffiffiffi
3

p
�1 �1=

ffiffiffi
3

p
6 1=
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3

p
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3

p
�1

3 �1=
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3

p
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3

p
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3

p
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3

p
�1
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3
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3

p
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3
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ffiffiffi
3

p
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in which the incremental rotation vector at node k is

s~hk ¼

shkx
shky
shkz

2
64

3
75; ð7Þ

and the displacement s~ub is the additional term derived
from the second-order approximations for the large rota-
tion of the director vectors. Of course, this term is not nec-
essary for linear analysis. This additional displacement is a
quadratic expression in rotations and is used for the non-
linear formulation of the beam finite element.

2.2. Finite element discretization

Using the principle of virtual displacement at time
s + Ds, the linearized equilibrium equation in the updated
Lagrangian formulation is obtained for the beam finite
element,Z

sV
sCijkmseakmdse

a
ij d

sV þ
Z

sV

ssijðdsgaij þ dsebijÞdsV

¼ sþDsR�
Z

sV

srijdseaij d
sV ; ð8Þ

where sV, sCijkm and srij are the volume, the material law
and the Cauchy stress tensor at time s, respectively, and
seakm ¼ 1

2
ðsuak;m þ suam;kÞ are the linear terms of the strain ten-

sor corresponding to the displacement s~ua at time s,
dseaij ¼ 1

2
ðdsuai;j þ dsuaj;iÞ are the linear terms of the strain ten-

sor corresponding to the virtual displacement ds~ua at time
s, dsgaij ¼ 1

2
ðdsuak;isuak;j þ suak;id

suak;jÞ are the nonlinear terms
of the strain tensor corresponding to the virtual displace-
ment ds~ua at time s, and dsebij ¼ 1

2
ðdsubi;j þ dsubj;iÞ are the

components of the strain tensor corresponding to the vir-
tual displacement ds~ub at time s.

The term sþDsR in the right-hand side of Eq. (8) repre-
sents the externally applied forces,

sþDsR ¼
Z

sþDsV

sþDsf B
i dui d

sþDsV þ
Z

sþDsSf

sþDsf S
i du

S
i d

sþDsS;

ð9Þ
where sþDsf B

i are the components of the externally applied
force per unit volume at time s + Ds, sþDsf S

i are the compo-
nents of the externally applied surface traction per unit
surface area at time s + Ds, s+DsSf is the surface at time
s + Ds on which external tractions are applied, and duSi
are dui evaluated on the surface s+DsSf.

Substituting Eqs. (1) and (6) into (8), we obtain the
matrix form of the linearized equilibrium equation in the
updated Lagrangian formulation [1],

sKsU ¼ sþDsR� sF; ð10Þ

where sK is the tangent stiffness matrix at time s, sU is the
incremental nodal displacement vector, s+DsR is the vector
of externally applied nodal load at time s + Ds, and sF is
the vector of nodal forces equivalent to the element stresses
at time s. sK consists of both the geometric linear and non-
linear stiffness matrices (sK = sKL + sKNL).

2.3. Numerical integration

In order to obtain the tangent stiffness matrix and vec-
tors of Eq. (10), we perform the numerical integration over
the two legs of the L-section, which are placed in the r � t

and r � s planes (see Figs. 1–3),Z
V
AdV ¼

Z 1

�1

Z 1

�1

½grtAdet J�s¼�1 dtdr

þ
Z 1

�1

Z 1

�1

½grsA det J�t¼�1 dsdr; ð11Þ

where A is a generic matrix or vector function, detJ is the
determinant of the three-dimensional Jacobian matrix and
the factors grt and grs are

grt ¼ 2
Xq
k¼1

hkðrÞdk

Xq
k¼1

hkðrÞbk

,
;

grs ¼ 2
Xq
k¼1

hkðrÞek
Xq
k¼1

hkðrÞak

,
ð12Þ

Gaussian quadrature is used for the integration in Eq. (11).
For example, Fig. 3 shows the eight integration points for
the elastic analysis of the 2-node L-section beam finite ele-
ment and the coordinates of the integration points are
given in Table 1. Of course, more integration points in
the s and t directions are required for inelastic analysis
and the solution accuracy depends on the number of inte-
gration points. This is further discussed in Section 3.
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2.4. MITC technique

The standard displacement-based isoparametric beam
finite element is too stiff in bending-dominated problems
when the element is thin, regardless of the displacement
interpolation order. In other words, the solution conver-
gence of the beam finite element discretization in bend-
ing-dominated problems deteriorates significantly as the
ratio of the dimensions of the beam section (ak and bk) to
the beam length decreases. This major difficulty encoun-
tered in the finite element analysis of beams is called ‘‘lock-
ing’’. Effective finite element discretizations for beam
analysis should not lock.

We use the well-known ‘‘mixed interpolation of tensorial
components’’ (MITC) technique for locking removal of the
L-section beam finite element. The basic idea of the MITC
technique is to interpolate displacements and strains sepa-
rately and connect these interpolations at tying points [1,8].

For beam finite elements, the transverse shear and nor-
mal covariant strain components are interpolated,

êijðr; s; tÞ ¼
Xnij
k¼1

hkðrÞ~eijðrk; s; tÞ; ð13Þ

where êijðr; s; tÞ are assumed covariant strain components
in the beam finite element, ~eijðrk; s; tÞ are the covariant
strain components calculated from the displacement-based
beam finite element at tying point (rk, s, t)

~eij ¼
1

2

o~u
ori

� o~x
orj

þ o~x
orj

� o~u
ori

þ o~u
ori

� o~u
orj

� �
with r1 ¼ r; r2 ¼ s; r3 ¼ t; ð14Þ

and hk(r) are the assumed interpolation functions satisfying

hkðrlÞ ¼ dkl ðdij ¼ 1 if i ¼ j and 0 otherwiseÞ;
k; l ¼ 1; . . . ; nij. ð15Þ

The assumed strain components and the tying points de-
pend on the displacement interpolation functions used (or
the number of element nodes). As an example, for the 2-
node isoparametric beam finite element, we use one tying
point at r = 0 for the covariant strains ~ers and ~etr but two
tying points at r ¼ � 1ffiffi

3
p for the covariant strains ~ers, ~etr

and ~err need to be used for the 3-node element in general.

2.5. Large rotation

After solving Eq. (10) in each incremental step, we
obtain the incremental nodal displacement and rotation.
We then update the nodal coordinate and director vectors
at node k for time s + Ds using Eq. (4) and

sþDs~V
k

t ¼ sQs~V
k

t ;
sþDs~V

k

s ¼ sQs~V
k

s ; ð16Þ

where sQ is an orthogonal matrix for finite rotation [9],

sQ ¼ Iþ sin sck
sck

sSk þ
1

2

sin
sck
2

sck
2

 !2

sS2
k ð17Þ
with

sck ¼ fðshkxÞ
2 þ ðshkyÞ

2 þ ðshkzÞ
2g

1
2;

sSk ¼
0 �shkz

shky
shkz 0 �shkx
�shky

shkx 0

2
664

3
775. ð18Þ
2.6. Elastoplastic material model

In three-dimensional large strain elastoplasticity, the
multiplicative decomposition of the deformation gradient
from time 0 to s is generally used,

s
0X ¼ s

0X
Es
0X

P ; ð19Þ
where s

0X
E and s

0X
P are, respectively, the elastic and plastic

deformation gradients [1]. For the beam finite element for-
mulation, we use the one-dimensional multiplicative
decomposition,

s
0k ¼ s

0k
Es
0k

P ; ð20Þ
where s

0k is the stretch in the longitudinal direction of the
beam finite element and, s

0k
E and s

0k
P are, respectively, the

elastic and plastic stretches. In Eq. (20), the stretch is given
by

s
0X ¼ 0~nT s0X

T s
0X

0~n
� �1=2

; ð21Þ

where 0~n is the unit vector of the longitudinal direction of
the beam finite element,

0~n ¼
0~r
j0~rj with 0~r ¼ o0~x

or
. ð22Þ

Of course, the three-dimensional multiplicative decompo-
sition in Eq. (19) can be used to obtain more accurate
solutions. However, the one-dimensional multiplicative
decomposition requires less computational time, in partic-
ular when the shearing effects are relatively smaller than the
bending effects, as is usually the case.

The logarithmic normal strain,
senn ¼ ln s

0k; ð23Þ
and the normal component of the Cauchy stress, srnn, in
the longitudinal direction are used and the bilinear elasto-
plastic stress–strain relation with isotropic strain hardening
shown in Fig. 4 is used.
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3. Numerical tests

To investigate in detail the predictive capability of
the proposed numerical scheme, we implement the 2-node
L-section beam finite element in an analysis code and per-
form numerical studies for various beam problems. In this
section, we report upon the various numerical results of the
L-section beam finite element proposed in this study.

Let us consider the beam structure shown in Fig. 5. The
beam is straight and has an L-shape section with two legs
z

x

y

A

B

z

y

L

H

W

h

h

Fig. 5. L-section beam structure.

Beam model
(8 beam elements)

Shell model (2x20
MITC9 elements)

Fig. 6. Beam and shell finite element mo
of lengths, W and H. The legs have a constant thickness,
h, and are normal to each other. The section profile is con-
stant along the beam axis. The beam is then given various
boundary conditions and loadings at ends A and B, which
allows to simulate various structural behaviors. In the fol-
lowing section, we perform the elastic small and large
deformation, elastoplastic large deformation and elasto-
plastic failure analyses using the 2-node beam finite ele-
ments developed.

The results obtained with the beam finite elements are
compared with the refined solutions of the MITC9 shell
finite elements in ADINA [10]. The reliable performance
of the MITC9 shell finite element has been demonstrated
in the literature [11,12]. For the shell finite element models,
a uniform mesh is used in each leg and along the axial
direction and for the beam finite element models, a uniform
mesh of 2-node beam elements is used along the axial direc-
tion. Fig. 6 shows the meshes used for the shell (2 · 20 ele-
ments) and beam (eight elements) finite element models.
After studying the solution convergence of the shell finite
element models, we selected the mesh of the shell finite ele-
ment models which can be used as reference.

In this study, we use only uniform meshes, which is not
optimal for efficient numerical solution in general. How-
ever, since uniform meshes are frequently used in practice,
it is valuable to use them to investigate the numerical per-
formance of the proposed beam finite element.
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In order to avoid local failures near the ends of the beam
structure in the shell finite element models due to concen-
trated loading and boundary conditions, we impose the
kinematic beam assumptions at the ends as mentioned in
Section 2.1. For that purpose, we use rigid beam finite ele-
ments1 at the two ends of the beam structure as shown with
the dotted lines in Fig. 6.

3.1. Cantilever L-section beam problems

We first analyze a cantilever L-section beam structure
with the sectional dimensions W = H = 0.0508 m and
h = 0.0032 m. The beam structure of m in Fig. 5 is
clamped at point A and free at point B. The structure is
loaded with forces and moments at pointB. In the sections
of the beam ends, the boundary conditions and loads are
applied at:

• Case (a): the center of the leg in the y-direction
(y = 0.0254 m and z = 0.0 m)

• Case (b): the shear center (y = z = 0.0 m)
1 Note that using such rigid beam finite elements cannot perfectly satisfy
the kinematic beam assumption at the beam ends because the elements
restrain the in-plane deformation along the legs of the beam section, that
is, this modeling restricts the expansions of the shell finite elements due to
Poisson�s effect locally at the beam ends. However, this effect is local and
negligible in the global response of the beam.
• Cases (c) and (d): the bending center (centroid) of the
beam section (y = z =W/4 = 0.0127 m in Fig. 5; W/4
is a good approximation when h � W).

Considering the various cases of static loading as shown in
Fig. 7(a)–(d), we perform the elastic small and large defor-
mation analyses and the elastoplastic large deformation
analysis under reversed cyclic loading.

3.1.1. Elastic small and large deformation analyses

Considering three load cases at the tip shown in
Fig. 7(a)–(c), we perform the elastic small deformation
analyses of the cantilever L-section beam problem. An elas-
tic material is used (Young�s modulus; E = 2 · 1011 N/m2

and Poisson�s ratio; m = 0.3) for steel.
As mentioned before, we use the uniformly distributed

2, 4 and 8 L-section beam finite element meshes for the
beam models and a uniform 4 · 80 mesh of the MITC9
shell finite elements for the reference shell model. Table 2
reports that the results calculated from the two models
are very close when the MITC technique is used for the
L-section beam finite element but the L-section beam finite
element without using the MITC technique clearly locks. In
cases (a) and (c), the solutions of the beam finite element
using the MITC technique are accurate enough regardless
of the mesh refinements.

We then investigate the performance of the proposed L-
section beam finite element in the elastic large deformation



Table 2
Tip displacements calculated in the linear elastic analyses of the cantilever L-section beam structure using the MITC technique

Mesh Case (a) Case (b) Case (c)

dx �dy, dz dy dz dy dz

Beam (1el.) 1.07653e�7 3.63282e�6 8.58098e�4 1.43045e�3 �4.29073e�4 �7.15122e�4
Beam (2el.) 1.07653e�7 3.63282e�6 1.07264e�3 1.78801e�3 �4.29073e�4 �7.15122e�4
Beam (4el.) 1.07653e�7 3.63282e�6 1.12627e�3 1.87740e�3 �4.29073e�4 �7.15122e�4
Beam (8el.) 1.07653e�7 3.63282e�6 1.13968e�3 1.89975e�3 �4.29073e�4 �7.15122e�4
Beam (8el.)a 1.00407e�9 3.06232e�9 5.45709e�8 1.21179e�7 �2.07250e�8 �4.48377e�8
Shell (4 · 80el.) 1.07570e�7 3.62781e�6 1.13804e�3 1.90033e�3 �4.26848e�4 �7.12577e�4

a Denotes the beam finite element without using the MITC technique and unit for displacement is m.
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Fig. 8. Load–displacement curves for the x, y and z-directional tip displacements (unit for displacement is m).
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analysis. The cantilever L-section beam is subjected to the
tip loading shown in Fig. 7(d) and the elastic large defor-
mation analysis is performed using the same elastic mate-
rial (steel) as in the elastic small deformation analyses.
The loading factor a is increased statically and the tip dis-
placements in the x, y and z directions are measured. We
calculate the solutions using the uniform 4 · 80 mesh of
the shell model and the uniform 4, 8 and 16 element meshes
of the beam model.

Fig. 8 shows the load–displacement (a–d) curves in the
two ranges of loading (up to a = 300 and a = 4000). The
solutions of the shell finite element model are not obtained
for the loading factor larger than a = 300 due to local fail-
ure in the numerical solution. When 4, 8 and 16 L-section
beam finite elements are used in the beam model up to
a = 300, the responses of the L-section beam finite elements
agree with those of the shell finite element model. The
load–displacement curves up to a = 4000 show that the
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Fig. 9. Deformed shapes projected in the x–y and x–z planes for a mesh of
16 elements (unit is m).
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displacements (unit for displacement is m).
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the very large deformation range. Fig. 9 displays the
deformed shapes of the cantilever projected in the x–y
and x–z planes at various load levels for the case with a
mesh of 16 beam finite elements.

3.1.2. Elastoplastic large deformation analysis
We perform here the elastoplastic large deformation

analysis under a reversed cyclic loading using the beam
and shell finite element models described in the previous
section. The properties of the bilinear elastoplastic material
(see Fig. 4) used are:

• Young�s modulus: E = 2 · 1011 N/m2,
• Yield stress: ry = 250 · 106 N/m2,
• Poisson�s ratio: m = 0.3,
• Strain hardening modulus: Et = 2.0 · 1010 N/m2.
istributions. (a) L = 0.25 m, dx = 0.0004 m (2 · 5el. mesh), (b) L = 1.0 m,
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As shown in Fig. 10, a reversed cyclic loading is stati-
cally applied at the shear center of the free end of the beam
(y = z = 0.0 m in Fig. 5). We use the uniform 4 · 80 mesh
for the reference shell model and the uniform 8 element
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tion points as shown in Fig. 10, the solutions are
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Fig. 11(a) and (b) display the load–displacement curves
for the x- and y-directional tip displacements, respectively.
Due to the symmetry of the problem, the z-directional dis-
placement is equal to the y-directional displacement. After
one cycle of loading, the residual displacements due to plas-
tic strain are observed. As the number of integration points
increases, the solutions of the beam finite element model
converge toward the reference shell finite element solutions.
When the 7-point numerical integration scheme is used in
each leg of the beam section, the responses calculated using
the L-section beam finite elements show very good agree-
ment with the reference solutions obtained with the MITC9
shell finite element model. The 7-point numerical integra-
tion is therefore recommended for inelastic analysis using
the L-section beam finite element proposed in this paper.

3.2. Elastoplastic failure analyses of a simply

supported beam

Let us consider a simply supported straight L-section
beam structure of length L, shown in Fig. 12. The structure
has equal legs (W = H = 0.0508 m) of uniform thickness
h = 0.0032 m. Three different beam lengths of 0.25 m, 1 m
and 4 m are considered. The structure is subjected to a pre-
scribed axial displacement dx at point B in the �x direction
and the boundary conditions imposed are: ux = uy = uz =
hx = 0 at point A and uy = uz = 0 at point B.

It should be noted that points A and B in Fig. 12 are
eccentric with respect to the centroid (bending center) of
the beam section. This eccentricity can be considered as
an initial imperfection of the beam structures and can
induce instability (or buckling) when the beam structure
is slender enough. The position of the centroid in the
y � z plane is y = z = 0.0127 m in Fig. 12 and points A

and B are at y = z = 0.015 m. Therefore, the eccentricity
is ey = ez = 0.0023 m in the y and z directions.

We use a bilinear elastoplastic material model,

• Young�s modulus: E = 2 · 1011 N/m2,
• Yield stress: ry = 250 · 106 N/m2,
• Poisson�s ratio: m = 0.3,
• Strain hardening modulus: Et = 0.1 N/m2.

Using the MITC9 shell finite elements, the three prob-
lems (corresponding to L = 0.25 m, 1 m and 4 m) described
above are analyzed. Fig. 13 displays the non-scaled
deformed shapes and accumulated effective plastic strain
distributions of the simply supported L-section beam struc-
tures modeled using the MITC9 shell finite elements. In
Fig. 13(b) and (c), plastic hinges are observed at mid length
of the beam structures.

In the analysis using the L-section beam finite element,
the 7-point per leg numerical integration is adopted as
recommended in Section 3.1.2 and we use the 4, 8 and 16
uniform element meshes in the longitudinal direction.

Fig. 14(a) shows the reaction–displacement curves at the
tip (point B in Fig. 12), when the beam length is 0.25 m.
The axial reaction is measured at the same point where
the displacement is prescribed. The curves represent typical
linear elastic behavior up to point D in Fig. 14(a). After
that point, yielding of the longitudinal fibers of the beam
under compression occurs, which clearly governs the fail-
ure of this short beam. The results of the 2-node L-section
beam finite element developed show almost the same curves
as the solutions calculated from the shell finite element
models.

The reaction–displacement curves of the 1.0 m beam are
shown in Fig. 14(b). The behavior of this beam is more
complex than the 0.25 m beam. Up to point D in the
curves, the behavior is linear elastic. The beam then starts
yielding and excessive bending develops at mid length of
the beam where a plastic hinge suddenly occurs at point
D. The plastic hinge and the P � D effect rapidly reduce
the load-bearing capacity of the beam structure. The failure
mode is dominated by plastic hinging and then the P � D
effect.

The decreasing load-bearing capacity of this case can be
explained by a simple model. When a simply supported
beam with a plastic hinge buckles under a compressive load
P, the plastic post-buckling response is approximately
given by

P ¼ 2Mpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL� dÞ2

q ; ð24Þ

where Mp is the plastic moment of the beam section, L is
the length of the beam and d is the axial displacement. This
equation can be easily derived from the model in Fig. 15.
We also plot the curve given by Eq. (24) in Fig. 14(b).

It is interesting to note that, in our numerical solution,
there is a sudden change in the response curves of the shell
finite element model (4 · 20 mesh) at point E but not in the
beam finite element solutions. This behavior results from
the local failure at the center of the beam structure due
to the excessive deformation. Fig. 16 shows the deformed
shape and accumulated effective plastic strain distributions
before and after point E. A similar phenomenon happens
in the numerical solution of the 2 · 20 mesh shell model
but the position of the dropping point is different.



Fig. 16. Local failure at the mid length (a) before point E (b) after point E shown in Fig. 14(b).

2 This ratio is obtained using the same solver in our analysis code for the
beam and shell finite element models. Note that, in general, the ratio
depends on a solver used to calculate the numerical solution.
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The theoretical elastic buckling load of this beam is

P cr ¼
p2EImin

L2
� 69; 000N; ð25Þ

where Imin is the minimum second moment of area of the
beam section. However, the beam starts its failure when
the reaction is about 60% of the buckling load because of
the plastic hinge effect.

All the curves in Fig. 14(b) obtained from the beam and
shell finite element models show a very similar response in
the elastic range. However, after the plastic hinge occurs at
the center of the beam structure, the beam finite element
solutions show some difference with the results of the shell
finite element models because of the local failure observed
at mid length in the numerical solution of the shell models.

Fig. 14(c) shows the numerical results when the length of
the beam structure is 4 m. Buckling of the beam structure
starts at point D and the plastic hinge occurs at point E.
The failure of this slender beam structure is clearly due
to elastic buckling. The theoretical elastic buckling load
calculated is Pcr � 4300 N, which matches well with point
D in the response curves. For the same reason as explained
in the case of the 1.0 m beam structure, the solutions of the
L-section beam finite element show different responses after
dropping point F obtained with the shell finite element
solution. It is also noted that Eq. (24) shows good agree-
ment with the beam numerical solutions.

We report that, considering computational time
required for comparable accuracy, the beam finite element
model is about 2.5 times2 efficient than the shell finite ele-
ment model when the beam length is equal to 4 m. How-
ever, as the beam length decreases, the computational
advantage of the beam finite element model becomes
smaller.

As a last numerical example, we modeled the three
simple beam problems with a section of unequal legs as
shown in Fig. 17. The same prescribed axial displacements
as in the previous example are applied at the shear center
of the beam sections, that is, there is eccentricity. The
same material properties are used and the 7-point per leg
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Fig. 17. A simply supported L-section beam with a section of unequal legs.
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numerical integration is used for the beam finite element
models. Fig. 18 shows the reaction–displacement curves
in each case and the non-scaled deformed shape when the
beam length L is equal to 1 m. It is observed that the reac-
tion–displacement curves of the beam and shell finite ele-
ment models show good agreement when eight beam
finite elements are used.
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Fig. 18. Reaction–displacement curves for (a) L = 0.25 m, (b) L = 1.0 m an
dx = 0.01 m. (Unit for reaction is N and unit for displacement is m.)
Finally, we discuss when it is better to use the beam or
shell finite element models. Considering the modeling effort
and the computational time required to obtain an accurate
solution, we find that for a simple structure with few L-sec-
tion beam members, the beam finite element model is not
much better than the shell finite element model. However,
for structures with a large number of the L-section beam
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Fig. 19. Deformed shapes of the L-section beam structure which cannot be predicted by the beam finite element model.
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members and for predicting the global responses, the beam
finite element model is obviously much more efficient.

In inelastic large deformation analysis, it is important to
note that the beam finite element model has its own limita-
tions, mainly related to the basic kinematic assumption,
that is, the plane cross-sections originally normal to the ref-
erence axis remain plane and undistorted during deforma-
tion. However, this assumption is violated in severe load
cases and Fig. 19 shows the examples for L-section shapes.
Therefore, the shell finite element model can better repre-
sent the realistic behavior of L-section beam structures,
in particular, when the excessive local deformation needs
to be investigated or the structure is simple to model.

4. Conclusions

The development of a general three-dimensional L-sec-
tion beam finite element for elastoplastic large deformation
analysis was presented and, for a numerical evaluation of
the procedure proposed, the 2-node L-section beam finite
element was implemented in an analysis code. Using this
2-node L-section beam finite element, we performed the
elastic small and large deformation, and elastoplastic large
deformation analyses of a cantilever structure subjected to
various tip loadings. We then analyzed the failure of simply
supported beam structures under elastoplastic large defor-
mation.

The results were compared with the solutions obtained
using a refined mesh of the MITC9 shell finite elements. In
the numerical studies, we investigated the influence of the
number of the beam finite elements used and the number
of integration points (in elastoplastic analysis) on the solu-
tion accuracy. It was observed that the beam finite element
solutions quickly converge to the reference solutions
obtained with the refined shell finite element models, which
demonstrates that the formulation of the 3DL-section beam
finite element proposed is good and reliable. The numerical
examples presented can be used as benchmark problems for
other L-section beam finite elements developed in future.

The L-section beam finite element is very attractive in
elastoplastic large deformation analysis because it requires
much less modeling and computational effort than the shell
finite element models for comparable accuracy, specially
when structures with a large number of thin-walled beam
members need to be analyzed. The formulation that we
presented is general and effective as well as simple. The
same procedure can be used to develop beam finite ele-
ments of other thin-walled sections regardless of their sec-
tion shape and number of nodes. In this paper, the warping
effect was ignored in the beam formulation but this subject
would make a valuable study.
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