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Abstract

Our objective in this paper is to present some results regarding the predictive capabilities of the MITC9 shell element

when the tying points in the element are changed. The MITC9 element is a general nine-node shell element based on the

formulation approach of using mixed-interpolated tensorial components. Different tying points are very simple to

implement and are not decreasing the computational efficiency of the element. Hence, the use of the ‘‘best’’ tying points

is clearly of value.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Finite element methods for the analysis of shell

structures have been developed for almost half a century

[1] and still improvements in the finite element proce-

dures are very desirable. Shell structures can show a very

varied and complex behavior and finite element methods

that are general and always effective are very difficult to

attain. However, the use of mixed methods has greatly

advanced the field [1–3] and specifically, the mixed-

interpolated shell elements proposed in Refs. [4–7] are

employed.

During the recent years also mathematical insights

and theories have been established that greatly help in

assessing the effectiveness of finite element procedures

[3,8–10]. These assessments in particular focus on whe-

ther a given finite element scheme is ‘‘uniformly opti-

mal’’ for any shell structural problem as the shell

thickness decreases.

We have evaluated in earlier publications the MITC

shell elements regarding their predictive capabilities [11–

13] and concluded that while these elements are clearly

powerful, improvements are still desirable, and in par-

ticular for the MITC9 shell element [13].

In the next section of the paper we briefly summarize

the important requirements for general shell elements.

We then briefly mention in Section 3 the essence of the

MITC9 shell element formulation and present the vari-

ous modifications to the tying points tested in this study.

The results obtained using these modifications in the

solution of two rather tough test problems are then

presented in Section 4, and we give our conclusions in

Section 5.

2. On the assessment of shell finite element discretization

schemes

Our objective in this section is to briefly focus on the

question as to how shell finite element methods should

be tested. More details on this question are given in

Refs. [3,8,13].

2.1. The spectrum of shell problems

The difficulty of developing an effective general finite

element solution scheme for any shell problem is due to

the fact that shell structures can show totally different

behaviors depending on the geometry, boundary con-

ditions, and applied loading. We consider in this paper

only linear analysis conditions; in non-linear analysis of

course also the material conditions, whether or not

contact is established, etc. would need to be considered

[3].
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Shell problems have been for a long time classified as

membrane-dominated, bending-dominated and mixed

problems. This classification has recently been made

particularly precise by considering the asymptotic be-

haviors of shells. In the following we briefly summarize

some important concepts, see [3,8–10].

Consider the shell mathematical model governed by

equations that in variational form result in the problem

statement

Find ue 2 V such that

e3Abðue; vÞ þ eAmðue; vÞ ¼ eqGðvÞ 8v 2 V ; ð1Þ

where e is the shell thickness parameter t=L (t is the
thickness and L is a global characteristic dimension of
the shell structure), the bilinear form Ab represents the
scaled bending energy, the bilinear form Am represents

the scaled membrane and shear energies, ue is the un-

known solution (displacement field), v is the test func-

tion, V is the appropriate Sobolev space, and G denotes

the scaled external loading. It can be proven that, when

a well-defined scaling exists, we have 16 q6 3.

The following subspace characterizes the asymptotic

behavior of a shell as e approaches zero

V0 ¼ fv 2 V jAmðv; vÞ ¼ 0g: ð2Þ

If the content of this subspace is only the zero dis-

placement field ðV0 ¼ f0gÞ, we say that ‘‘pure bending is
inhibited’’ (or, in short, we have an ‘‘inhibited shell’’).

On the other hand, when the shell admits non-zero pure-

bending displacements, we say that ‘‘pure bending is

non-inhibited’’ (we have a ‘‘non-inhibited shell’’).

The ‘‘pure bending is non-inhibited’’ situation fre-

quently results in the bending-dominated state and the

appropriate value to use for the load-scaling factor q is
3. The general form of the limit problem is

Find u0 2 V0 such that

Abðu0; vÞ ¼ GðvÞ 8v 2 V0: ð3Þ

Of course, this limit problem holds only when the

loading activates the pure bending displacements; oth-

erwise, the shell behavior is as for the ‘‘inhibited’’ case

but very unstable.

In the case of the ‘‘pure bending is inhibited’’ situa-

tion, we use the load-scaling factor q ¼ 1. Then, pro-

vided the problem is well posed, we obtain the limit

problem of the membrane-dominated case in the space

Vm, a space larger than V , consisting of all displacements
of bounded membrane (and shear) energy only

Find um 2 Vm such that

Amðum; vÞ ¼ GðvÞ 8v 2 Vm: ð4Þ

This problem is well posed provided

jGðvÞj6C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amðv; vÞ

p
8v 2 V ð5Þ

with C a constant. This condition ensures that the ap-

plied loading can be resisted by membrane stresses only.

If this is not possible, the asymptotic state does not

correspond to membrane energy only, and the shell

problem is classified as a mixed problem.

Hence, we have on the one side of the spectrum well-

posed membrane-dominated problems and on the other

side of the spectrum well-posed bending-dominated
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Fig. 1. The hyperboloid shell problem used with free ends and clamped ends (Young�s modulus ¼ 2:0E11, Poisson�s ratio ¼ 1=3). The

applied pressure is given in Eq. (10).
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problems. The difficulty in designing effective ‘‘general

shell elements’’ is in obtaining elements that work

equally well for both kinds of problems and, indeed, that

are ‘‘uniformly optimal’’ for these problems. If this has

been achieved, it is reasonable to assume that the finite

element scheme will also work well for any other shell

problem, including ‘‘monster-type problems’’ [10].

To have a ‘‘uniformly optimal shell element’’, we

need the following convergence measure to hold [1,3,13]

kue
ref � ue

hk�
kue

refk�
ffi Chk ; ð6Þ

where ue
ref is the (accurate) reference solution usually

replacing the exact solution ue, ue
h is the finite element

solution, k is the displacement interpolation order, and
k � k� denotes the norm used. The constant C must be

independent of the shell thickness parameter e and the
mesh sizes used, that is, the element size h.
To use in Eq. (6) the proper norm is crucial, since if

the wrong norm is employed, the conclusions regarding

Fig. 2. Graded mesh (16� 16, t ¼ 1=1000, clamped case).
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Fig. 3. Strain interpolations and tying points of the MITC9

shell element (the ~eess and ~eest components are interpolated in a
symmetric manner) [1].
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Fig. 4. Additional tying schemes of the MITC9 shell element.
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Fig. 5. Additional tying schemes of the MITC9 shell element.
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the performance of the element scheme are certainly

highly questionable and may well be wrong.

Since two different types of problems need to be

considered, it is mathematically natural to use two dif-

ferent norms as discussed in Ref. [3]. However, we can

also use the single norm proposed in Ref. [13], referred

to below as the s-norm, and we shall use this norm in the

following study. The s-norm is defined as

kue
ref � ue

hk
2

s ¼
Z

X
DeeTCðxÞDee dX: ð7Þ

Here CðxÞ denotes the material law expressed in the

Cartesian coordinate system (x), and denoting by B the

strain operator of the continuum and by Bh the strain

operator of the (mixed) finite element procedure

Dee ¼ BðxÞue
refðxÞ � BhðP�1ðxÞÞue

hðP�1ðxÞÞ ð8Þ

with P defining a one-to-one mapping between every

point of the discretization and the continuum. The ad-

vantage of using this norm lies in that it is physically

based and can be employed for any shell problem. Also,

let us note that if the finite element procedure is con-

sistent, the strain operator B can be replaced by the finite

element strain operator. For the discussion of this norm

and results obtained with this norm we refer to Refs.

[3,13].

Fig. 6. (a) Additional tying schemes of the MITC9 shell ele-

ment (corner tying for ~eers). (b) Additional tying schemes of the
MITC9 shell element (edge tying for ~eers).

Fig. 7. Convergence curves of the MITC9 element using tying

schemes in Fig. 3 (top: clamped case, bottom: free case). The

bold line shows the optimal convergence rate, which equals 2.0.
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2.2. Considerations regarding element schemes and the

test problems used

While shell analyses have been performed for decades

and acceptable solutions in terms of some error assess-

ment have been obtained, with advances in technology

more stringent requirements have evolved and more

accurate and efficient analyses of general shells are

needed.

As summarized in the previous section, the analysis of

general shells is difficult because of the different behav-

iors that can be encountered. It is extremely difficult to

obtain a shell finite element method that is uniformly

optimal for any shell problem and a mixed formulation

Fig. 8. Strain distributions on the deformed geometry of the free hyperboloid (16� 16 graded mesh, t=L ¼ 1=1000); tying scheme of

Fig. 3. The free edge is on the right.
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must be used. In this formulation we should aim to

satisfy:

Ellipticity

Each shell finite element and the complete finite ele-

ment discretization, when not supported, must always

exactly contain only the six physical zero eigenvalues,

corresponding to the rigid body modes, and not any less

or additional zero eigenvalues. We cannot recommend

the use of any element for general shell analyses that

violates this condition, see Ref. [1, p. 473].

Consistency

The discretization scheme must be consistent in rep-

resenting all strain terms. Briefly, this means that the

bilinear forms used in the finite element discretization,

Fig. 9. Reference strain distributions of the free hyperboloid (96� 96 graded mesh, t=L ¼ 1=1000Þ.
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which may be a function of the element size h, must
approach the exact bilinear forms of the mathematical

model as h goes to zero.

Inf–sup condition

Ideally, the mixed finite element scheme would satisfy

the inf–sup condition, see Refs. [1,3,14]. Elements that

satisfy this condition would be ‘‘uniformly optimal’’, as

defined in Eq. (6), in bending-dominated problems for

the interpolations used. However, no general shell finite

element scheme has so far been proven analytically to

satisfy the relevant inf–sup condition. So far only nu-

merical tests have been performed on general shell dis-

cretization schemes [12,14].

Fig. 10. Strain distributions on the deformed geometry of the clamped hyperboloid (16� 16 graded mesh, t=L ¼ 1=1000); tying scheme

of Fig. 3. The clamped edge is on the right.
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Since rigorous mathematical investigations on whe-

ther a general shell finite element scheme is uniformly

optimal are still out of reach, recourse to numerical in-

vestigations is largely necessary. However, the numerical

studies must be based upon the general mathematical

understanding available and need to be well designed.

In Ref. [13] we used two shell problems in order to

evaluate shell discretization schemes. The problems are

depicted in Fig. 1. The shell is an axisymmetric hyper-

boloid structure subjected to a smoothly varying pres-

sure. The surface is defined as

x2 þ z2 ¼ 1þ y2; y 2 ½�1; 1� ð9Þ

and the loading imposed is the periodic pressure

pðhÞ ¼ P0 cosð2hÞ: ð10Þ

Fig. 11. Reference strain distributions of the clamped hyperboloid (96� 96 graded mesh, t=L ¼ 1=1000).
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A bending-dominated problem (corresponding to q ¼ 3)

is obtained when the ends are free and a membrane-

dominated problem (corresponding to q ¼ 1) is obtained

when the ends are clamped, see Ref. [13]. We shall use

the same problems also in the study presented below.

An important requirement in the convergence studies

is to mesh the boundary layers appropriately if we want

to observe the actual and proper convergence rates of

finite element discretizations. The meshing used should

ideally be such that the error measured per unit volume

or surface of the shell is uniform in the finite element

solutions [1].

For the two problems considered here, we are using

the same meshes as in Ref. [13] because these have been

identified to be appropriate meshes. Hence, we use

symmetry conditions and consider one-eighth of the

structure (that is, half the length and 90�), and L ¼ 1 in

Eq. (1). Since no analytical solutions are available we

employ in each case a reference solution using a very fine

mesh to measure the errors obtained using the coarser

meshes. For the reference solutions a 96 by 96 element

mesh of MITC9 shell elements is used, and the conver-

gence and accuracy studies are performed using meshes

of sizes 8� 8, 16� 16, 24� 24, and 32� 32.

In each case, half the mesh is used to represent the

boundary layer as shown in Fig. 2. For the clamped

hyperboloid, the boundary layer thickness used is 6
ffiffi
t

p
,

and for the free hyperboloid the boundary layer thick-

ness used is 0:5
ffiffi
t

p
[13].

3. The MITC9 element and tying points used

The MITC9 element has been described in various

publications [1,3,7,11] and there is no need to describe

the element here again. The key point is that in the

MITC element formulations the covariant strain com-

ponents are interpolated and then tied to the displace-

ments. Hence, only the usual displacements and

rotations at the nodes are used as degrees of freedom.

For the MITC9 element, the usual nine nodes for La-

grangian displacement interpolations are employed.

Fig. 3 gives the strain interpolations and tying points

used for the MITC9 shell element proposed in Ref. [7].

Of course, alternative tying points (for the same inter-

polations) are possible, and in particular those shown in

Fig. 4. In addition, we can consider using the tying

points shown in Figs. 5 and 6. However, the element

based on the tying points given in Figs. 6(a) and (b),

respectively, contains a spurious zero energy mode and

shows locking, and so we do not consider these two al-

ternatives any further.

Indeed, the MITC9 element using the tying points in

Fig. 5 displays in essence the same predictive capability

as when the tying points in Fig. 4 are used, with the tying

points of Fig. 4 resulting in slightly better results. Hence

the real comparison is between the use of the tying

points shown in Figs. 3 and 4. For the tying points of

Figs. 4 and 5 the MITC9 element does not contain any

spurious zero energy mode (the ellipticity condition is

satisfied) and the element is consistent in the sense dis-

cussed above [13].

In practice and in our studies below, the MITC9 shell

element is used as an element degenerated from three-

dimensional continuum mechanics, and hence the un-

derlying shell theory is not exactly of the form used in

Eq. (1), but as the shell thickness decreases the problems

considered in Section 2.1 are reached, see [3,15].

4. Numerical results

As mentioned above we are solving the two problems

of Fig. 1. These are a membrane-dominated problem

and a bending-dominated problem. In all solution cases

we use the graded meshes described above.

Fig. 7 shows the convergence results obtained for the

MITC9 element with the tying in Fig. 3. RE in the figure

is the relative error measure

Fig. 12. Convergence curves of the MITC9 element using tying

schemes in Fig. 4 (top: clamped case, bottom: free case).
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RE ¼ kue
ref � ue

hks
kue

refks
ð11Þ

These results were already reported in Ref. [13] and

actually spurred this further study. The convergence for

the clamped structure is ‘‘uniformly optimal’’ in the

sense that the convergence curves show the optimal

slope and do not shift upward as the shell thickness is

decreased. Indeed, the curves shift downward which is

better than what we require. However, the convergence

curves for the free structure do not show a uniformly

optimal behavior. The optimal slope is present but there

is a marked shift of the curves upward as the shell

thickness is decreased. Clearly we should aim to improve

upon this behavior.

In order to identify why the shifting of the curves

occurs we study the predicted strain values for the shell

thickness t ¼ 1=1000. Figs. 8 and 9 show, respectively,

Fig. 13. Strain distributions of the free hyperboloid (16� 16 graded mesh, t=L ¼ 1=1000); tying scheme of Fig. 4.
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the calculated strain values using the 16� 16 element

mesh and the reference values for the free edge case. All

strain values given in the figures of this paper are un-

smoothed [1] for the outer surface of the shell and cor-

respond to the orthogonal axes in the plane of the shell

shown in Fig. 1, see Ref. [1, p. 438]. We see that the

strain components are well predicted using the 16� 16

element mesh except for the transverse shear strain

components.

For comparison we also show the strain values for

the clamped edge case. The strain results calculated

with the 16� 16 element mesh are quite accurate, see

Fig. 10, when compared to the reference values, see

Fig. 11.

Fig. 14. Strain distributions of the clamped hyperboloid (16� 16 graded mesh, t=L ¼ 1=1000); tying scheme of Fig. 4.
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Fig. 12 shows the convergence results obtained for

the MITC9 element with the tying points in Fig. 4. The

convergence curves for the clamped structure are es-

sentially as in Fig. 7, but the convergence curves for the

free structure show a significant improvement. The slope

is still the optimal slope and significantly less shifting is

present as the shell thickness decreases.

Fig. 13 shows the calculated strain values obtained

with the same coarse 16� 16 element mesh. Clearly, the

results for the transverse shear strain components are

now much better and the other strain component solu-

tions have hardly changed. Fig. 14 shows also the strain

values for the clamped case and we see that these are still

quite accurate as well.

Finally, we show in Fig. 15 the convergence re-

sults obtained using the tying points of Fig. 5. We see

that there is little difference to the results given in Fig.

12. The predicted strain values (not shown) are also

quite close to those shown in Figs. 13 and 14.

Based on these observations, we conclude that for the

axisymmetric hyperboloid problem with the edges free,

the MITC9 element using the tying points in Fig. 4 has

significantly better predictive capabilities than when

using the tying points in Fig. 3.

5. Concluding remarks

Our objective in this paper was to present some re-

sults using the MITC9 shell element when the tying

points for the strain components are changed.

The MITC9 shell element using the tying points

earlier proposed [7] is clearly a powerful element and has

shown excellent convergence behavior in many problem

solutions. In the rather difficult doubly-curved shell

problems considered in this paper, the element is also

optimal, but only ‘‘uniformly’’ optimal when the shell is

clamped. A study of the predicted strain components

shows that the transverse shear strains are not predicted

to sufficient accuracy when the shell is free at its edges.

A change of the tying points for the shear strain

components to the element edges results into signifi-

cantly better results. Optimality in the convergence be-

havior is retained and all strain components are

predicted with reasonable accuracy. The convergence

curves show much less shifting as the shell thickness is

decreased.

Other options of tying points were also considered

but did not result into a further improvement in the

predictive capability of the element.

Of course, further studies of the element should be

performed, both analytically as far as possible and also

numerically using additional test problems (see Ref. [3]

and the references therein). However, when performing

numerical tests the strategy used in this paper is very

valuable.
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