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Abstract

The objective of this paper is to demonstrate how the asymptotic behavior of a shell structure, as the thickness (t)

approaches zero, can be evaluated numerically. We consider three representative shell structural problems; the original

Scordelis–Lo roof shell problem, a herein proposed modified Scordelis–Lo roof shell problem and the partly clamped

hyperbolic paraboloid shell problem. The asymptotic behavior gives important insight into the shell load bearing ca-

pacity. The behavior should also be known when a shell problem is used to test a shell finite element procedure. We

briefly review the fundamental theory of the asymptotic behavior of shells, develop our numerical schemes and perform

the numerical experiments with the MITC4 shell finite element. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shells are three-dimensional structures with one di-

mension, the thickness, small compared to the other

two dimensions. This geometric feature is used in shell

analysis in several respects: to define the geometry of

shell structures, only the 2D mid-surface and thickness

need be defined, and to define the shell behavior, as-

sumptions can be used. These assumptions specifically

comprise that the normal stress through the thickness

of the shell vanishes and that straight fibers originally

normal to the mid-surface remain straight during the

deformation of the shell.

The major difficulties of shell analysis arise because

the thickness of a shell is small. Shell structures can

show varying sensitivity with decreasing thickness, de-

pending on the shell geometry and boundary conditions.

For a deeper understanding of the load bearing capacity

of a shell, it is therefore important to investigate the

behavior of the shell as the thickness decreases.

It is well known that the behavior of a shell struc-

ture belongs to one of three different asymptotic cate-

gories: the membrane-dominated, bending-dominated,

or mixed shell problems [1–5]. Recently, various theo-

retical studies regarding the asymptotic behavior of shell

structures have been presented, see [4–9] and the refer-

ences therein. Chapelle and Bathe [4,5] presented some

fundamental aspects regarding asymptotic behavior of

shell structures specific for the finite element analysis.

Pitk€aaranta et al. [6–8] observed the asymptotic diversity
and limit behavior of cylindrical shells with different

support conditions using asymptotic expansions of the

displacement and strain fields. Blouza et al. provided

further results regarding the mixed asymptotic behavior

of shell problems [9].

In spite of many theoretical studies on and the im-

portance of the asymptotic behavior of shell structures,

simple algorithms to evaluate the asymptotic behavior

have not been proposed, and few numerical results

demonstrating the asymptotic behavior have been pub-

lished. The objective of this paper is to present such

algorithms and apply them to three shell structural
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problems, one from each of the fundamental categories

mentioned above.

In the following sections of the paper, we first briefly

review the fundamental theory of the asymptotic be-

havior of shell structures in linear analysis. We then

develop some simple algorithms to evaluate this behav-

ior and perform the asymptotic analysis of three shell

structures that display fundamentally different asymp-

totic behaviors; the original Scordelis–Lo roof shell

problem, a modified Scordelis–Lo roof shell problem,

and the partly clamped hyperbolic paraboloid shell

problem. The MITC4 shell finite element is used for

these numerical experiments [10].

2. The asymptotic behavior of shells

As the thickness of a shell structure approaches zero,

the behavior of the shell generally converges to a specific

limit state. This phenomenon is called the asymptotic

behavior of shells.

Bending action, membrane action and shearing ac-

tion are three basic load-bearing mechanisms of shell

structures. Therefore, shell structures under loading

have three corresponding deformation energies, which

are respectively called the bending strain energy, mem-

brane strain energy and shear strain energy. Because the

shear strain energy is negligible when the thickness is

small, the strain energy of shells mainly consists of two

parts: membrane strain energy and bending strain en-

ergy.

In the engineering literature, frequently, the problem

is referred to as bending-dominated when the shell car-

ries the applied loads primarily by bending action, and

is referred to as membrane-dominated when the shell

carries the applied loads primarily by membrane action.

This is a somewhat loose categorization and a more

precise way to categorize shell behavior can be used and

is based on the asymptotic behavior of the structure as

its thickness decreases [4–9].

The asymptotic behavior of a shell strongly depends

on the geometry of the shell surface, the kinematic

boundary conditions, and the loading. Previous studies

provide some fundamental theoretical results regarding

the asymptotic behavior of shells, but only few numer-

ical results are available that show the actually reached

asymptotic stress, strain and energy conditions.

2.1. Fundamental asymptotic theory

We consider the linear Naghdi shell model or Koiter

shell model, for which the general variational form is

Find U e 2 V such that

e3AbðU e; V Þ þ eAmðU e; V Þ ¼ F eðV Þ; 8V 2 V; ð1Þ

where e is the thickness parameter t=L (t is the thickness
and L is the global characteristic dimension of the shell

structure which can be the diameter or overall length),

the bilinear form Ab represents the scaled bending en-
ergy, the bilinear form Am represents, respectively, the
scaled membrane energy for the Koiter shell model and

the scaled membrane and shear energies for the Naghdi

shell model, U e is the unknown solution (displacement

field), V is the test function, V is the appropriate

Sobolev space, and F e denotes the external loading. We

recall that the bilinear forms Ab and Am are independent
of the thickness parameter e.
To establish the asymptotic behavior as e approaches

zero, we introduce the scaled loading in the form

F eðV Þ ¼ eqGðV Þ; ð2Þ

in which q is an exponent denoting the load-scaling

factor. It can be proven that 16 q6 3, see for example

[5,9].

The following space plays a crucial role in deter-

mining what asymptotic behavior will be observed,

V0 ¼ fV 2 VjAmðV ; V Þ ¼ 0g: ð3Þ

This space is the subspace of ‘‘pure bending displace-

ments’’ (also called the subspace of ‘‘the mid-surface

inextensional displacements’’). Eq. (3) tells that all dis-

placements in V0 correspond to zero membrane and

shear energies. When the content of this subspace is only

the zero displacement field (V0 ¼ f0g), we say that
‘‘pure bending is inhibited’’ (or, in short, we have an

‘‘inhibited shell’’). On the other hand, when the shell

admits non-zero pure bending displacements, we say

that ‘‘pure bending is non-inhibited’’ (we have a ‘‘non-

inhibited shell’’). The asymptotic behavior of shells

is highly dependent on whether or not pure bending is

inhibited.

The ‘‘pure bending is non-inhibited’’ situation (that

is, the case V0 6¼ f0g) frequently results in the bending-
dominated state. Then the membrane energy term of

Eq. (1) asymptotically vanishes and with q ¼ 3, the
general form of the bending-dominated limit problem is

Find U 0 2 V0 such that

AbðU 0; V Þ ¼ GðV Þ; 8V 2 V0: ð4Þ

This limit problem holds only when the loading activates

the pure bending displacements. If the loading does not

activate the pure bending displacements, that is, we have

GðV Þ ¼ 0; 8V 2 V0; ð5Þ

then the solution of the shell problem does not converge

to the limit solution of the bending-dominated case, and

the theoretical asymptotic behavior is as for the inhib-

ited case, but very unstable [4,5]. Namely, only a small

perturbation in the loading that does not satisfy Eq. (5)
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will change the asymptotic behavior to the bending-

dominated state.

Considering the ‘‘pure-bending is inhibited’’ situation

(that is, the case V0 ¼ f0g), we use the load-scaling
factor q ¼ 1 and provided the problem is well-posed

obtain the limit problem of the membrane-dominated

case in the space Vm. This space is larger than V be-

cause only bounded shear and membrane energies are

considered. The general form of the membrane-domi-

nated limit problem is

Find Um 2 Vm such that

AmðUm; V Þ ¼ GðV Þ; 8V 2 Vm ð6Þ

and this problem is well-posed provided the loading G

is in the dual space of Vm. The condition G 2 V0
m is

directly equivalent to

jGðV Þj6C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AmðV ; V Þ

p
; 8V 2 Vm ð7Þ

with C a constant. Eq. (7) ensures that the applied

loading can be resisted by membrane stresses only, and

hence the condition G 2 V0
m is said to correspond to an

‘‘admissible membrane loading’’. If the loading is a non-

admissible membrane loading (G 62 V0
m), we have an

ill-posed membrane problem. The asymptotic state then

does not correspond to membrane energy only, and the

shell problem is classified as a mixed problem.

The asymptotic categories of shell behaviors are

summarized in Table 1. Note that the asymptotic

behavior of shells contains important information re-

garding the shell load carrying capacity. In order to

accurately interpret the response of shell structures, it is

essential to understand the diversity in asymptotic shell

structural behaviors.

2.2. Geometrical rigidity

The asymptotic behavior of a shell problem depends

on whether or not the shell is inhibited. For an inhibited

shell, the membrane action renders the structure rela-

tively stiff. Inhibited shells, overall, have a larger stiffness

than non-inhibited shells. Whether a shell is inhibited

depends on the shell geometry and the boundary con-

ditions.

Mid-surfaces of shells are classified to be elliptic,

parabolic, or hyperbolic surfaces depending on whether

the Gaussian curvature is positive, zero or negative, re-

spectively. The parabolic and hyperbolic surfaces have

asymptotic lines, which are defined as lines in the di-

rections corresponding to which there is zero curvature.

The dotted lines shown in Fig. 1 are asymptotic lines.

Table 1

The classification of shell asymptotic behaviors

Case Loading Category

Non-inhibited shell

V0 6¼ f0g
Loading activates pure bending displacements (i) Bending-dominated

9V 2 V0 such that GðV Þ 6¼ 0
Loading does not activate pure bending displacements (ii) Membrane-dominated or mixed but unstable

GðV Þ ¼ 0, 8V 2 V0

Inhibited shell

V0 ¼ f0g
Admissible membrane loading (iii) Membrane-dominated

G 2 V0
m

Non-admissible membrane loading (iv) Mixed

G 62 V0
m

Fig. 1. The asymptotic lines and the inhibited zone (a) cylindrical surface, (b) hyperbolic surface.
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The asymptotic lines and boundary conditions deter-

mine the inhibited zones of shells.

For example, Fig. 1(a) shows a cylindrical, that is, a

parabolic surface. The asymptotic lines are parallel to

the axial direction, and if we prescribe the displacements

at the ends of the two cross-sections as shown in Fig.

1(a), the entire corresponding band (shaded region in

Fig. 1(a)) becomes inhibited. The mid-surface of the

Scordelis–Lo roof shell problem considered below is a

parabolic surface.

We also consider below the partly clamped hyper-

bolic paraboloid shell problem shown schematically in

Fig. 1(b). This is a hyperbolic surface and has two as-

ymptotic directions. The boundary conditions result into

the inhibited region shown in the figure.

2.3. Layers and characteristic length

The complete stress fields of shells are divided into

global smooth components and various layer compo-

nents. Layers are specifically due to discontinuities in

geometry (curvature or thickness), incompatibilities of

boundary conditions, and irregularities in the loading.

Fig. 2 shows three examples in which layers occur. In

Fig. 2(a), the shell support and its boundary condition

are compatible such that, assuming a pure membrane

stress field in the shell, all equations of equilibrium are

satisfied. On the other hand, the membrane forces alone

cannot satisfy the conditions at the fixed boundary of

Fig. 2(b). Such membrane incompatible boundary con-

ditions like in Fig. 2(b) cause boundary layers, that is,

localized edge effects inducing moments. Also, kinks and

other discontinuities in shell geometries and irregulari-

ties of loadings as demonstrated in Fig. 2(c) and (d),

disturb the membrane mode of shell behavior and in-

duce stress layers, see for example [7,11–13].

Within stress layers of shells, the displacements vary

rapidly and induce concentrations of strain energies. The

width of layers can be classified by a characteristic

length which is a function of two parameters: the shell

thickness (t) and the overall length of the shell structure

(L). Using dimensional analysis, the general form of the

characteristic length is

Lc ¼ Ct1
lLl; ð8Þ

in which l is a non-negative real number and C a con-

stant. For example,

l ¼ 0) Lc ¼ Ct

l ¼ 1
2
) Lc ¼ Ct1=2L1=2

l ¼ 2
3
) Lc ¼ Ct1=3L2=3

l ¼ 3
4
) Lc ¼ Ct1=4L3=4

..

.

ð9Þ

Eq. (8) shows that the shortest characteristic length is

Ct which corresponds to l ¼ 0, and the characteristic
length is CL when l ¼ 1. Ref. [7] discusses stress layers
of various characteristic lengths considering cylindrical

shells. We solve below for the stress layers in the

Scordelis–Lo roof shell problem.

2.4. Load-scaling factor

As already noted, shell structures efficiently support

applied external forces by virtue of their geometrical

forms. Shells, due to their curvature, are much stiffer

and stronger than other structural forms. For this rea-

son, shells are sometimes referred to as ‘‘form resistant

structures’’. This property means that the stiffness to

weight ratio of a shell structure is usually much larger

than that of other structural systems having the same

span and overall dimensions. In this section, we briefly

discuss the asymptotic stiffness of shell structures.

We stated in Section 2.1 that the asymptotic behavior

of shells can generally be associated with just one real

number, namely the load-scaling factor q, for which we
have 16 q6 3.

In engineering practice, the information as to what

load-scaling factor pertains to the shell considered is

important for the design because the stiffness of the

structure varies with eq. However, it is usually impossi-

ble to analytically calculate the proper load-scaling

factor for a general shell problem. In this section, we

Fig. 2. Schematic regarding layers (a) membrane compatible boundary condition, (b) membrane incompatible boundary condition,

(c) geometric discontinuity, (d) concentrated load.
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discuss some basic concepts to experimentally find the

value through finite element solutions.

Consider the Gedankenexperiment shown in Fig. 3.

The equilibrium equation of the model is

ðK0eqÞ � d ¼ P ; ð10Þ

in which K0 is a constant, e is a thickness parameter, q is
a scaling factor, P is the applied loading to the spring

and d is the displacement at the point of load applica-
tion.

The strain energy of the model subjected to the scaled

loading P ¼ P0el is

EðeÞ ¼ P 2

2KðeÞ ¼
P 20
2K0

e2l
q: ð11Þ

Note that the strain energy is a function of e. Di-
viding EðeÞ by el, the scaled energy (E0) is obtained:

E0 ¼
EðeÞ
el

¼ P 20
2K0

el
q: ð12Þ

Hence the scaled strain energy varies with el
q. If the

exponent l of the applied scaled loading is larger than
the appropriate load-scaling factor q, the scaled strain
energy will asymptotically vanish as e ! 0. If l is

smaller than q, the scaled strain energy will blow up. The
condition that the scaled strain energy does not ap-

proach infinity or zero and be a constant value, that is

(P 20 =2K0), is that the exponent l of the applied scaled
loading be equal to the appropriate load-scaling factor

q. This is an important observation in order to identify
the appropriate load-scaling factor of arbitrary shell

problems.

Applying a constant loading (l ¼ 0 in Eq. (11)), we
obtain the strain energy as a function of e only and have

logðEðeÞÞ ¼ log P 20
2K0

� �

 q logðeÞ: ð13Þ

This equation shows that the proper load-scaling factor

q of the considered shell problem is nothing but the

slope in the log E to log e graph. This feature can also be
used to find the proper load-scaling factor of arbitrary

shell problems.

The strain energy of the general shell problem con-

sidered in Eq. (1) is

EðeÞ ¼ 1
2
½e3AbðU e;U eÞ þ eAmðU e;U eÞ� ð14Þ

and we can use the thoughts given in the above Ge-

dankenexperiment when e ! 0 to evaluate the appro-

priate load-scaling factor.

Lovadina [14] investigated the asymptotic behavior

of the strain energy of shells by means of real interpo-

lation theory and established (under certain conditions)

the relation

lim
e!0

RðeÞ ¼ q 
 1
2

; ð15Þ

where RðeÞ denotes the proportion of bending strain
energy

RðeÞ ¼ e3AbðU e;U eÞ
e3AbðU e;U eÞ þ eAmðU e;U eÞ : ð16Þ

Eq. (15) can be used to calculate the proper load-scaling

factor for a shell from the proportion of bending strain

energy to total strain energy stored in the shell; and, vice

versa, if q is known, the bending energy as a proportion
of the total strain energy can be calculated.

2.5. Remarks on finite element schemes

To this point, we reviewed some general theory re-

garding the asymptotic behavior of shell mathematical

models. We next might ask whether, as the thickness of

a shell structure decreases, shell finite element discreti-

zations can accurately calculate the correct various as-

ymptotic behaviors. To test finite element schemes for

this purpose, we need a special series of benchmark

problems, which reflect the various asymptotic behav-

iors of shell mathematical models.

The usual heretofore performed benchmark analyses

are not sufficiently comprehensive and deep. The solu-

tions provide only a few displacement or stress values at

one or two locations of the structure as reference values,

and just one shell thickness is considered. Thus, the

results cannot reflect the complete behavior of the fi-

nite element schemes, which should be tested on bend-

ing-dominated, membrane-dominated, and mixed state

problems as the shell thicknesses decrease [4].

A major difficulty in the development of shell finite

elements is the locking phenomenon for non-inhibited

shells. When the subspaces of the finite element ap-

proximations do not approximate the pure bending

displacement fields in a sufficiently rich manner, mem-

brane and shear locking, in global and local forms,

occur. Then, as the shell thickness decreases, the finite

element solution convergence rate deteriorates drasti-

cally, and in the worst case the solution tends to a zero

displacement field.

Fig. 3. Gedankenexperiment using a spring.
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An ideal finite element solution scheme is locking-

free, satisfies the ellipticity and consistency conditions

and provides optimal convergence [10]. To establish

whether a given shell finite element procedure is effec-

tive, numerical tests need to be performed, and these

include the inf–sup test and the solution of well-chosen

benchmark problems [4,15–17]. The solutions given in

the next section are valuable in providing basic infor-

mation regarding some shell problems, and therefore

for the selection of appropriate benchmark tests.

3. Asymptotic analysis by numerical experiments

In this section, we perform the asymptotic analysis of

three different shell problems; the original Scordelis–Lo

roof shell problem, a modified (here proposed) Scord-

elis–Lo roof shell problem and the partly clamped

hyperbolic paraboloid shell problem. The three shell

problems are, respectively, a mixed, membrane-domi-

nated and bending-dominated problem.

Due to the difficulty of reaching analytical solutions

for these problems, finite element solutions based on fine

meshes are given. The MITC 4-node shell finite element

implemented by degenerating the three-dimensional

continuum to shell behavior is used for the numerical

experiments [10]. Hence the finite element discretization,

as used in this study, actually provides solutions of the

‘‘basic shell model’’ identified and analyzed by Chapelle

and Bathe [5,18]. However, as shown in these references,

when the shell thickness decreases, the basic shell

mathematical model converges to the Naghdi model,

and hence the above discussion regarding asymptotic

behaviors is directly applicable.

The results of the analyses show the asymptotic be-

haviors of the shell problems with respect to deforma-

tions, energy distributions, layers and load-scaling

factors, as the thicknesses of the considered shell struc-

tures become small. In the numerical solutions we de-

creased � to very small values (up to 10
6), impractical as
it seems, in order to identify as closely as possible the

limit behaviors.

3.1. Original Scordelis–Lo roof shell problem

We consider the original Scordelis–Lo roof shell

problem as an example of an asymptotically mixed case.

The problem is described in Fig. 4. The shell surface is a

segment of a cylinder, and hence it is a parabolic surface.

The shell has zero curvature in the axial direction and

a uniform curvature in the circumferential direction. The

asymptotic lines are in the axial direction.

Considering the boundary conditions, at the dia-

phragms the two displacements in the X- and Z-direc-

tions are constrained to be zero. Pure bending is

obviously inhibited for the entire area of the shell. There-

fore, this problem is a membrane dominated problem

provided an admissible membrane loading is used

(G 2 V0
m). However, in the original version of this prob-

lem, considered in this section, the shell is subjected to

self-weight loading, see Fig. 4, which corresponds to a

non-admissible membrane loading (G 62 V0
m), as proven

in Ref. [4].

Fig. 4. Original Scordelis–Lo roof shell problem.
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An analytical solution does not exist for this prob-

lem. The reference value representing the (total) re-

sponse in benchmark solutions is the Z-directional

deflection at the midpoint of the free edge (point A). The

deflection at point A calculated using a very fine mesh is

0.3024 when t ¼ 0:25.
Due to symmetry, we can limit our calculations to the

shaded region ABCD. We use a 72� 72 element mesh
for all Scordelis–Lo roof shell solutions which is suffi-

ciently fine to perform the asymptotic analysis of these

problems.

The scaled loadings, q, used are given by the factor

q0ðe; lÞ in Table 2,

q ¼ q0ðe; lÞ � 90: ð17Þ

Table 3 shows the scaled calculated total strain en-

ergy of the quarter shell

E0ðe; lÞ ¼
Eðe; lÞ
q0ðe; lÞ

ð18Þ

and the corresponding proportion of bending energy as

e becomes very small. The table shows that the scaled
strain energy corresponding to F / e increases, while
the scaled strain energies corresponding to F / e2

and F / e3 decrease. This means that the proper load-
scaling factor of the considered shell problem lies

between 1.0 and 2.0, and hence, of course, this shell

problem is a mixed problem. In accordance with this

observation, the proportion of bending energy, RðeÞ in
Eq. (16), asymptotically converges to a value between

0.0 and 0.5.

Using these results, we can directly graphically cal-

culate the proper load-scaling factor using Fig. 5(a). As

Table 3

Scaled strain energy for the original Scordelis–Lo roof shell problem (E0ðe; lÞ)
e ð¼t=LÞ F / e F / e2 F / e3 RðeÞ
0.01 1:20892Eþ 03 1:20892Eþ 03 1:20892Eþ 03 0.522154

0.001 6:99828Eþ 03 6:99828Eþ 02 6:99828Eþ 01 0.399277

0.0001 3:89610Eþ 04 3:89610Eþ 02 3:89610Eþ 00 0.367219

0.00001 2:11544Eþ 05 2:11544Eþ 02 2:11544E
 01 0.366451

0.000001 1:13502Eþ 06 1:13502Eþ 02 1:13502E
 02 0.362567

Note that, of course, the second and third columns of the table can directly be inferred from the first column.

Table 2

Scale coefficients q0ðe; lÞ for generating scaled loadings
e ð¼t=LÞ F / e, l ¼ 1 F / e2, l ¼ 2 F / e3, l ¼ 3
0.01 1:0Eþ 00 1:0Eþ 00 1:0Eþ 00
0.001 1:0E
 01 1:0E
 02 1:0E
 03
0.0001 1:0E
 02 1:0E
 04 1:0E
 06
0.00001 1:0E
 03 1:0E
 06 1:0E
 09
0.000001 1:0E
 04 1:0E
 08 1:0E
 12

Note that, of course, the second and third columns of the table

can directly be inferred from the first column.

Fig. 5. The graphical evaluation of the proper load-scaling factor for the original Scordelis–Lo roof shell problem (a) scaled strain

energy, (b) calculated load-scaling factor using Eq. (19).
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noted in the Gedankenexperiment, if the proper load-

scaling factor q is used as l for the scaled loading, the
slope of the line corresponding to the scaled energy is

zero. This zero slope corresponds to a value of q ’ 1:72.
A more direct way to calculate the proper load-

scaling factor is to use a constant loading (F / e0) and
Eq. (13). Then, using two different strain energies cor-

responding to two different thicknesses, it is possible

to estimate the proper load-scaling factor as

�qq ¼ 
 logEðe1Þ 
 logEðe2Þ
log e1 
 log e2

; ð19Þ

in which Eðe1Þ and Eðe2Þ are, respectively, the total strain
energies corresponding to e1 and e2 when a constant
loading is applied. The proper load-scaling factor q is
the limit value of Eq. (19) as the thickness approaches

zero:

Table 4

The load-scaling factor calculated by the total strain energies

corresponding to constant loading for the original Scordelis–

Lo roof shell problem

e ð¼t=LÞ Total energy (F / e0) �qq

0.01 1:20892Eþ 03
1.76259

0.001 6:99828Eþ 04
1.74564

0.0001 3:89610Eþ 06
1.73477

0.00001 2:11544Eþ 08
1.72960

0.000001 1:13502Eþ 10

Fig. 6. The normalized deflection for the original Scordelis–Lo roof shell problem (a) along DA, (b) along BA.

Table 5

The angular distance d measured from the free edge to the first

peak of the normalized deflection for the original Scordelis–Lo

roof shell problem

Thickness t Computed

distance d

Distance d by formula

d ¼ 5:35L0:75t0:25, L ¼ 25
0.25 40.0000 42.2955

0.025 23.3333 23.7845

0.0025 13.3333 13.3750

0.00025 7.77778 7.52132

0.000025 4.44444 4.22954

Note that the actual distance is dpR=180.

Fig. 7. The free edge boundary layer width for the original

Scordelis–Lo roof shell problem.
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q ¼ lim
e1 ;e2!0

�qq: ð20Þ

Table 4 and Fig. 5(b) show that the values calculated

by Eq. (19) asymptotically converge to the proper load-

scaling factor q. Note also that just two points to de-
fine the straight line(s) in Fig. 5(a) and to calculate �qq in
Eq. (19) would in practice be sufficient.

The load-scaling factor q calculated by Lovadina’s
equation, Eq. (15), is 1.725134 when e ¼ 0:000001,
which is almost the same result. It requires some com-

putations to extract the bending energy from the total

strain energy of the considered shell problem. However,

once q is known from Fig. 5 the bending energy can

directly be calculated.

Figs. 6(a) and (b) show the deflections along the

sections DA and BA in Fig. 4. These results are

Z-directional deflections normalized by the magnitude

of deflection at point A. The normalized deflection

along the section DA keeps (almost) the same shape

for decreasing thickness, while the normalized deflec-

tion along the section BA shows a singular behavior at

the free edge as the thickness approaches zero. The

Fig. 8. Strain energy distribution for the original Scordelis–Lo roof shell problem (a) e ¼ 0:01, (b) e ¼ 0:001, (c) e ¼ 0:0001,
(d) e ¼ 0:00001, (e) e ¼ 0:000001.
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stress concentration is a result of the disturbance of

membrane equilibrium at the free boundary edge caused

by the non-admissible membrane loading, resulting in

concentrating bending strain energy. This explains why

this problem is asymptotically not a pure membrane

problem in spite of its inhibited geometry.

It is possible to identify the characteristic length

of the layer at the free boundary from Fig. 6(b). We

select the angular distance measured from the free edge

to the first peak of the normalized deflection corre-

sponding to each t as the width of the layer (distance d in

Fig. 6(b)). Table 5 summarizes the computed values for

d and Fig. 7 shows these results graphically. We see that

in this case, by curve fitting, C ’ 5:35 and 1
 l ’ 0:25.
Finally, it is valuable to consider the asymptotic

change of energy distributions. Figs. 8–10 show the en-

ergy distributions corresponding to the total strain en-

ergy, bending strain energy only and membrane strain

energy only, each time given as energies per unit surface-

area normalized by the total strain energy stored in the

quarter shell structure.

The areas ABCD in Figs. 8–10 correspond to the area

ABCD in Fig. 4. Fig. 8 shows that the energy becomes

concentrated in the free edge boundary layer as the

Fig. 9. Bending energy distribution for the original Scordelis–Lo roof shell problem (a) e ¼ 0:01, (b) e ¼ 0:001, (c) e ¼ 0:0001,
(d) e ¼ 0:00001, (e) e ¼ 0:000001.
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thickness approaches zero. Fig. 9 shows that the bending

strain energy does not asymptotically approach zero but

concentrates near the free edge. Comparing this figure

with Fig. 6(b), we see that the bending strain energy is

concentrated around the first peak in Fig. 6(b). This

prevents this shell problem from being a pure membrane

problem and keeps a balance of membrane and bending

strain energies. Clearly, it is the concentration of the

bending strain energy in the free edge boundary layer

that results in the mixed state of the asymptotic behav-

ior. Fig. 10 shows that the membrane strain energy is

also asymptotically concentrated near the free edge.

3.2. Modified Scordelis–Lo roof shell problem

In the original Scordelis–Lo roof shell problem, the

shell is subjected to a uniformly distributed loading

which does not correspond to a membrane admissible

loading. This condition renders the problem to be an

asymptotically mixed shell problem. Here we are inter-

ested in changing this problem into a membrane-domi-

nated problem by using another applied loading instead

of the uniform loading without changing the geometry

and constraints. To achieve this objective, the newly

applied loading should not induce a concentration of

Fig. 10. Membrane energy distribution for the original Scordelis–Lo roof shell problem (a) e ¼ 0:01, (b) e ¼ 0:001, (c) e ¼ 0:0001,
(d) e ¼ 0:00001, (e) e ¼ 0:000001.
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strain energy at the free boundary. Fig. 11 shows the

profile of the proposed loading using the n1 and n2 co-
ordinates defined in Fig. 4.

The new distributed loading on the 2D shell surface

is acting into the negative Z-direction with magnitude

qðn1; n2Þ ¼ q0ðe; lÞfe
8ðn
1=d1Þ2 
 e
8gfe
8ðn2=d2Þ2 
 e
8g;

ð21Þ

where q0ðe; lÞ is the scaling coefficient for generating the
scaled applied loading given in Table 2, and d1 and d2
are, respectively, the distances measured along n1 from B
to C and along n2 from B to A in Fig. 4.

Table 6 and Fig. 12(a) show that the scaled strain

energy corresponding to F / e becomes a constant value
whereas the scaled strain energies corresponding to

F / e2 and F / e3 decrease and approach zero. There-
fore, the proper load-scaling factor of this shell problem

is clearly 1.0. Accordingly, also, the value of RðeÞ inFig. 11. Distribution of loading.

Table 6

Scaled strain energy for the modified Scordelis–Lo roof shell problem (E0ðe; lÞ)
e ð¼t=LÞ F / e F / e2 F / e3 RðeÞ
0.01 1:84299E
 03 1:84299E
 03 1:84299E
 03 0.363274

0.001 5:13474E
 03 5:13474E
 04 5:13474E
 05 0.151134

0.0001 7:49566E
 03 7:49566E
 05 7:49566E
 07 0.021661

0.00001 7:69900E
 03 7:69900E
 06 7:69900E
 09 0.000374

0.000001 7:70523E
 03 7:70523E
 07 7:70523E
 11 0.000040

Fig. 12. The graphical evaluation of the proper load-scaling factor for the modified Scordelis–Lo roof shell problem (a) scaled strain

energy, (b) calculated load-scaling factor using Eq. (19).
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Table 6 tends to zero. In Fig. 12(b), the load-scaling

factor calculated by Eq. (19) converges to 1.0 as the

thickness decreases. All of these results mean that in this

problem, asymptotically only membrane strain energy

is encountered.

Figs. 13(a) and (b) show the normalized deflections

along the sections CB and BA in Fig. 4. The results in

the figures are normalized by the magnitude at point B.

The normalized deflections along the section CB have

almost the same shape for various thicknesses, while the

normalized deflections along the section BA converge to

a specific limit shape as the thickness decreases. No

strain layer is observed in these two figures.

Fig. 14 shows 1 that the strain energy becomes large

near point B as the thickness decreases, but the overall

energy distribution does not vary significantly once e has
reached the value of 0.0001. Considering Fig. 15, we see

that the bending strain energy asymptotically vanishes

over the complete shell surface, while Fig. 16 shows that

the distribution of membrane strain energy asymptoti-

cally converges to the distribution of the total strain

energy shown in Fig. 14.

These results show that this is a membrane-domi-

nated shell problem and that merely the use of the new

load distribution induced a dramatic change in the as-

ymptotic behavior.

3.3. Partly clamped hyperbolic paraboloid shell problem

This shell problem is classified as a bending domi-

nated problem. The problem was suggested in Ref. [4] as

a good problem to test finite element procedures as

to whether or not a scheme locks. The surface is defined

as

X
Y
Z

0
@

1
A ¼ L

n1

n2

ðn1Þ2 
 ðn2Þ2

0
@

1
A; ðn1; n2Þ 2

	

 1
2
;
1

2


2
;

ð22Þ

and clamped along the side Y ¼ 
L=2. The structure is
loaded by its self-weight.

By symmetry, only one half of the surface needs to

be considered in the analysis (the shaded region ABCD

in Fig. 17), with clamped boundary conditions along

BC and symmetry conditions along AB. As men-

tioned already, this shell problem has a triangular in-

hibited area defined by the points C, B, and the midpoint

of BA.

For the finite element analysis we use a uniform

144� 72 element mesh, which is considered sufficiently
fine.

The scaled loading (force per unit area) for the

asymptotic analysis is

q ¼ q0ðe; lÞ � 80; ð23Þ

where q0ðe; lÞ is the scaling coefficient for generating the
scaled applied loading and is given in Table 2.

Fig. 13. The normalized deflection for the modified Scordelis–Lo roof shell problem (a) along CB, (b) along BA.

1 For better readability, the results in Figs. 14–16 are plotted

using a 36� 36 element mesh, but these are identical to the
results obtained using the 72� 72 mesh.
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We use the scaled loadings with l ¼ 1; 2; 3. Table 7
and Fig. 18(a) show the scaled strain energies calculated

in the finite element solutions. The results show that the

scaled strain energies corresponding to F / e and F / e2

continuously increase, while the scaled strain energy

corresponding to F / e3 converges to a constant value.
The proportion of bending energy given by RðeÞ in Table
7 converges to 1.0 as the thickness of the shell decreases.

In addition, the load-scaling factor calculated by Eq.

(19) converges to 3.0, see Fig. 18(b). Therefore, the

proper load-scaling factor of this shell problem is 3.0

which corresponds of course to a bending dominated

problem.

Figs. 19(a) and (b) show the normalized Z-directional

deflections along the sections BA and AD. The deflec-

tions are normalized by the magnitudes at point A and

point D, respectively. The two figures show that there

exists a specific limit displacement shape.

Figs. 20–22 illustrate 2 the asymptotic changes in

normalized total strain energy, bending energy and

Fig. 14. Strain energy distribution for the modified Scordelis–Lo roof shell problem (a) e ¼ 0:01, (b) e ¼ 0:001, (c) e ¼ 0:0001,
(d) e ¼ 0:00001, (e) e ¼ 0:000001.

2 For better readability, the results in Figs. 20–22 are plotted

using a 72� 36 element mesh, but these are identical to the
results obtained using the 144� 72 mesh.
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membrane energy. We note that asymptotically the

distributions of bending and total strain energies are the

same. The strain energy in the inhibited area is very small

and there is a significant strain energy concentration at

the boundary between the inhibited area and the non-

inhibited area. This energy concentration is due to the

discontinuity in geometric rigidity between these areas.

The observed inner layers are located along the asymp-

totic lines of the shell starting at the corners.

Finally, we would like to mention that it would be

valuable to further study the strain concentration at the

corner point C which in these numerical solutions dis-

appears as the thickness becomes small.

4. Concluding remarks

The objective of this paper is to illustrate how an

asymptotic analysis of a shell structure can be per-

formed. Three shell problems were analyzed and some

detailed results are presented.

Fig. 15. Bending energy distribution for the modified Scordelis–Lo roof shell problem (a) e ¼ 0:01, (b) e ¼ 0:001, (c) e ¼ 0:0001,
(d) e ¼ 0:00001, (e) e ¼ 0:000001.
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Through this study, we identified boundary layers,

characteristic lengths, and proper load-scaling fac-

tors, and observed the asymptotic change of energy

distributions. Specifically, we observed that the proper

load-scaling factor calculated by several schemes can be

used as an indicator of the asymptotic behavior of shell

structures.

The study provides valuable reference values for

benchmark problems to test the robustness of shell finite

elements and valuable information for engineers de-

signing shell structures.

Regarding the three considered shell problems, we

have made the following observations:

• The original Scordelis–Lo roof shell problem is as-

ymptotically a mixed problem. Even though pure

bending is obviously inhibited in the entire shell,

the non-admissible membrane loading (the shell

self-weight) induces a concentrated strain energy

layer at the free edge with bending strain energy.

The proper load-scaling factor of the problem is

about 1.72.

Fig. 16. Membrane energy distribution for the modified Scordelis–Lo roof shell problem (a) e ¼ 0:01, (b) e ¼ 0:001, (c) e ¼ 0:0001,
(d) e ¼ 0:00001, (e) e ¼ 0:000001.
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Table 7

Scaled strain energy for the partly clamped hyperbolic paraboloid shell problem (E0ðe; lÞ)
e ð¼t=LÞ F / e F / e2 F / e3 RðeÞ
0.01 8:37658E
 04 8:37658E
 04 8:37658E
 04 0.876383

0.001 5:48614E
 02 5:48614E
 03 5:48614E
 04 0.937673

0.0001 4:46665Eþ 00 4:46665E
 02 4:46665E
 04 0.969496

0.00001 4:05017Eþ 02 4:05017E
 01 4:05017E
 04 0.986142

0.000001 3:88468Eþ 04 3:88468Eþ 00 3:88468E
 04 0.994201

Fig. 17. Partly clamped hyperbolic paraboloid shell problem.

Fig. 18. The graphical evaluation of the proper load-scaling factor for the partly clamped hyperbolic paraboloid shell problem

(a) scaled strain energy, (b) calculated load-scaling factor using Eq. (19).
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Fig. 19. The normalized deflection for the partly clamped hyperbolic paraboloid shell problem (a) along BA, (b) along AD.

Fig. 20. Strain energy distribution for the partly clamped hyperbolic paraboloid shell problem (a) e ¼ 0:01, (b) e ¼ 0:001,
(c) e ¼ 0:0001, (d) e ¼ 0:00001, (e) e ¼ 0:000001.
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• The proposed modified Scordelis–Lo roof shell prob-

lem is asymptotically a membrane-dominated prob-

lem. Merely the use of a new load distribution in

the original Scordelis–Lo roof shell problem induces

a dramatic change of asymptotic behavior. This ex-

ample illustrates not only how sensitive shell struc-

tures are but also how membrane-dominated shells

behave.

• The partly clamped hyperbolic paraboloid shell prob-

lem is a representative bending-dominated problem.

The solution results illustrate the asymptotic behav-

ior of bending-dominated shells, and also show how

internal concentrated energy layers can develop in a

shell structure.
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