Finite Element Analysis of Structures

Fall 2024, TUE/THU 10:30-11:45, Room 410, Creative Learning Bldg. (E11)

Phill-Seung Lee, phillseung@kaist.edu, 010-9105-3694
SeungGyu Lee, leeseunggyu@kaist.ac.kr, 010-6261-4188
Undergraduate Solid Mechanics and Mathematics
Finite Element Procedures, K.J. Bathe, 1996
Finite Element Procedures - 2 nd edition, K.J. Bathe, 2014
Midterm Exam. (OCT), Final Exam. (DEC)
Homework (20%) + Midterm Exam. (40%) + Final Exam. (40%) +
Reading Assignments

The objective of this course is to teach the fundamentals of finite element analysis of linear/nonlinear problems in solids and structures. This course includes the theoretical foundations, computation techniques, and appropriate use of finite element methods. Specially, the computer programming of finite element procedures will be taught. The methods studied in this course would be practical procedures that are employed extensively in mechanical, ocean, civil and aeronautical industries.

Schedule

1	Review: tensors and solid mechanics	9 Computer programming	
2	Principle of virtual work	10 Mathematical aspects - II	
3	Finite element formulation	11 Nonlinear analysis & solution procedures	
4	ADINA session - I (Linear analysis)	12 Total & updated Lagrangian formulations -	I
5	FE solutions and convergence	13 ADINA session - II (Nonlinear analysis)	
6	Mathematical aspects – I	14 Total & updated Lagrangian formulations -	II
7	Isoparametric finite elements	15 Dynamic analysis or other advanced topics	i.
8	Midterm examination	16 Final examination	