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Finite Element Analysis of Structures 
 

 

Mid-term Exam, Fall 2009 (30pt) 
 

 

 

 

1. As shown in Fig. 1, we model a truss structure of uniform area (length m2 , 

Area
2mA ) subjected to a uniform body force ( mNef xB /2


 ) using a 3-node truss 

finite element. Assume that all DOFs for y- and z-directional translations are prescribed 

to be zero. 

            

 
Figure 1. A truss problem modeled by a 3-node truss element 

 

 

      Find 

(a) Interpolation of displacement, Uxu


H)( . (3pt) 

(b) Relation between strain and nodal displacements, Uxx


B . (2pt) 

(c) Equilibrium equation, RU


K . (5pt)  

(d) Displacement and stress at mx 5.0 . (5pt) 

 

 

      Note that )(xu is a quadratic polynomial, 
TUUU }{ 32


 is in (a), (b) and (c), and E  

denotes Young’s modulus. 
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2. We have a plane stress problem ( tmm 44 ) subjected to a point load, Nep y


4 . 

The displacement BC is given as shown in Fig. 2. The 2-D problem is modeled by the 

uniform 2x2 mesh of plane stress finite elements. 

 

t thickness,  
2/
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Figure 2. A plane stress problem subjected to a point load 

 

 

      Calculate  

(a) Diagonal component of the total stiffness matrix corresponding to 7U , 

77UUK . (5pt) 

(b) Components of the load vector,
9UR  and 

10UR . (5pt) 

(c) Displacement 10U  and strain energy stored in the structure. (2pt) 

     

      Assuming  a dynamic analysis of the structure (mass density  ), find 

(d) Component of the total mass matrix ,
109UUM . (3pt) 
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Finite Element Analysis of Structures 
 

Final Exam, Fall 2009 (40 pt) 

 

 

 

1. Using two 3-node triangular plane stress elements and two 2-node truss elements, 

we model a structure subjected to an X-directional tip loading ( NP 2000 ), see 

Fig. 1. The properties are given 

- 26 /102 mNE  , 3.0v  and  thickness = m1.0  for the plane stress elements, 

- 26 /102 mNE   and sectional area = 205.0 m each for the truss elements. 

 

 
Fig.1. A structural model in the XY and YZ planes 

 

      Considering "linear elastic analysis", calculate 

 

(a) the Jacobian matrix J  and the determinant Jdet  of the shaded 

triangular element (5 pt) 

(b) the relation between strain and nodal displacements ),( srB  for the 

shaded triangular element (5 pt) 

(c) the total stiffness 
22UUK  corresponding to 2U  (5 pt) 

(d) the displacement 2U  (5 pt) 

 

      Note that the 3-node triangular plane stress element has the interpolation 

functions: 

srh 11 ,   rh 2 ,   sh 3 , 

      and the material law is 
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2. Consider the single degree of freedom system shown in Fig. 2. 

 
Fig. 2. A nonlinear spring ( 1.0C ) 

 

In the figure, U  is the tip displacement, F is the internal force of the spring and 

R  is the external loading. Recall that the stiffness of the system is 
U

F
K




 . 

 

(a) Write “incremental equilibrium equation” to calculate the response of 

the system. (5 pt) 

(b) We want to find the tip displacement U  corresponding to 0.1R . 

Using the full Newton-Raphson method, perform iterations until the 

solution is converged 2)( 10 iFR . (5 pt) 

 

 

 

3. Consider the 4-node plane stress element shown, where 012

0

22

0

11

0   . 

Using the total Lagrangian formulation, calculate the nonlinear strain incremental 

stiffness matrix NL

t
K0 . (10 pt) 

 
Fig. 3. A 4-node plane stress element under rotation 

 

      ** If you think that the calculation is too heavy, calculate any component of NL

t
K0 .  

 

U
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Finite Element Analysis of Structures 
 

 

Mid-term Exam, Fall 2010 (30pt) 
 

 

We have a plane stress problem subjected to point loads, 1P  and 2P , and the displacement 

BC as shown in Fig. The 2D problem is modeled by a 4-node plane stress finite element, 

 

thickness=1.0m,  
2/
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Figure. A plane stress problem subjected to point loads 

 

 

1. Considering the isoparametric procedure, evaluate 

(a) Global coordinate (X,Y) at r=s=0 (2pt) 

(b) Jacobian matrix at r=s=0 (3pt) 

(c) B-matrix at r=s=0 (5pt) 

(d) CBB
T

 at r=s=0 corresponding to 
21UUK  (5pt) 

and calculate 

(e) Components of the load vector,
1UR  and 

2UR  (5pt). 

 

2. Let's assume that we obtain the displacement mUU 001.021   , calculate 

(f) Displacements at r=s=0 (3pt) 

(g) Strains and stresses at r=s=0 (5pt) 

(h) Strain energy stored in the structure (2pt) 
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Finite Element Analysis of Structures 
 

Final exam, 2010-12-20 (40pt.) 

 

 

 

1. Let us consider a 2-node iso-beam (Timoshenko beam) element as shown in Fig. 1. 

 

Fig. 1. A 2-node iso-beam element in 2D (−1.0 ≤ r ≤ 1.0 and −1.0 ≤ s ≤ 1.0) 

 

The geometry and displacement interpolation functions and the nodal displacement vector are 

given: 

(
x
y) = (

∑hixi
s

2
a

),  (
u
v
) = (

∑hiui −
s

2
∑a hiθi

∑hivi

)  and  U⃗⃗ = [u1 u2 v1 v2 θ1 θ2]
T. 

 

The material law used is 

{
τxx

τxy
} = 𝐂 {

ϵxx

γxy
}  with  𝐂 = [

E 0
0 G

]. 

 

Considering the standard isoparametric procedure for linear elastic problems, calculate 

(a) Jacobian matrix (5pt.) 

(b) 
∂u

∂x
,

∂u

∂y
,

∂v

∂x
,

∂v

∂y
 in terms of the nodal displacement vector (5pt.) 

(c) B-matrix (5pt.) 

(d) Components of the K-matrix, 𝐊u1u1
and 𝐊θ1v1

(5pt.) 

 

 

u1 

v1 

θ1 

s 

Y 

X 
r 

u2 
θ2 

v2 

L=10m 

node1 
node 2 

1.0m 

a=1.0m 

Y 

Z 



KAIST Ocean Systems Engineering, OSE532  

2 

 

 

 

2. Considering the total Lagrangian formulation, we analyze an elastic bar problem by using 

one 2-node truss element. Assume that the cross section does not change during 

deformation and the material law is 

S0
t

xx = E ϵ0
t

xx. 

 

Fig. 2. An elastic bar problem 

 

For the configuration at time 0, calculate 

(a) Tangential stiffness, 𝐊u1u10
0  (5pt.) 

 

For the configuration at time t, calculate  

(b) Linear part of the tangential stiffness, ( 𝐊L0
t )u1u1

 (5pt.) 

(c) Nonlinear part of the tangential stiffness, ( 𝐊NL0
t )u1u1

 (5pt.) 

(d) Component of the force vector ( 𝐅0
t ) corresponding to u1 (5pt.) 

 

node1 

ΔL=1m 

X 

L0=10m 

time t time 0 

1.0m 

1.0m 

node2 

tR 

tR 

time 

t 

load 

u1 u2 
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Finite Element Analysis of Structures 
 

 

Mid-term Exam, Fall 2011 (40pt.) 
 

 

1. (25pt.) Let us consider a 2D 5-node plane stress element as shown in Figure.  

 

 

(a) Find the shape function ℎ5 when ℎ1 =
1

4
𝑟(1 + 𝑟)(1 + 𝑠), ℎ2 = −

1

4
𝑟(1 − 𝑟)(1 + 𝑠), ℎ3 =

1

4
(1 − 𝑟)(1 − 𝑠),ℎ4 =

1

4
(1 + 𝑟)(1 − 𝑠). 

(b) Find (𝑥𝑝, 𝑦𝑝) corresponding to 𝑟 = −0.5 and 𝑠 = 1. 

(c) Calculate the Jacobian matrix 𝑱 and 𝑑𝑒𝑡 𝑱 at 𝑟 = 𝑠 = 0. 

(d) Calculate the column vector of the strain-displacement matrix 𝑩 at 𝑟 = 𝑠 = 0 corresponding 

to 𝑈1. Note that 𝜀 = {𝜀𝑥𝑥  𝜀𝑦𝑦  𝛾𝑥𝑦}
𝑇
. 

(e) Calculate the components 𝑅𝑉1
, 𝑅𝑉2

 and 𝑅𝑉5
 of the load vector for the point load 𝑃⃗ = −𝑝𝑒 𝑦 

applied at (𝑥𝑝, 𝑦𝑝). 

 

 

2. (15pt.) We study the convergence of finite element solutions in potential energy. The potential 

energy is defined by 

π( 𝑣⃑ ) =
1

2
𝑎( 𝑣⃑, 𝑣⃑ ) − ( 𝑓, 𝑣⃑ ), 

    in which 𝑣⃑ is the displacement vector. Prove  𝜋( 𝑢⃑⃗ ) ≤ 𝜋( 𝑢⃑⃗ℎ  ), where  𝑢⃑⃗ is the exact solution and 

𝑢⃑⃗ℎ is the finite element solution, and explain the meaning of the inequality. 
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Finite Element Analysis of Structures 
 

Final Exam, Fall, 2011-12-20 (50pt.) 

 

 

 

 

1. Let us consider a truss structure shown in Fig. 1. The structure consists of two bar 

members connected by a pin and the pin connection is supported by a spring. Each bar 

member of length L is modeled by a 2-node bar element. 

 

 

 
 

Figure 1. Left: A linear elastic truss problem ( L = 5, EA = 1, spring constant = k ). Right: 

2-node bar element in the natural coordinate system. 

 

 

(a) (5pt.) Find the B-matrix of the bar element. 

 

(b) (10pt.) Find the stiffness matrix of the truss problem, U⃗⃗ = [U1 U2]
𝑇. 

 

(c) (5pt.) Find the tension forces of the bar members when k = 1 and U1 = U2 = 0.1. 

 

(d) (10pt.) When k = 0 and R2 = 1, what happens in the linear analysis? Plot the nonlinear 

load-displacement curve that you expect (between R2 and U2) as the load increases. 

 

 

 

 

 

 

r=-1 r=1 

r 

u1 u2 

L               L 

x1 

x2 

U1, R1, 

U2, R2 
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2. Let us consider the 4-node plane stress element shown in Fig. 2. 

 

 
 

Figure 2. A 2-D plane stress problem. 

 

 

At time = t, S220
t =10 and all other stresses = 0 are given in the element. Assume that the 

material law with Young’s modulus E and Poisson’s ratio (𝑣 = 0) relates the incremental 2nd 

Piola-Kirchhoff stresses to the incremental Green-Lagrange strains and assume thickness = 

1.0 at time = 0. 

 

Using the total Lagrangian formulation, calculate the following. 

 

(a) (5pt.) The components of the linear stiffness matrices 𝐊L0
0  and  𝐊L0

𝑡  corresponding to 

δU1 and U1. 

 

(b) (10pt.) The component of the nonlinear stiffness matrix 𝐊NL0
𝑡  corresponding to δU1 

and U1. 

 

(c) (5pt.) The component of the force vector 𝐅0
𝑡  corresponding to U2. 

 

x1 

x2 
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Finite Element Analysis of Structures 
 

 

Mid-term Exam, Fall 2012 (40pt.) 
 

 

 

 

1. (15pt.) As shown in Fig. 1, a 8-node 3D solid element is subjected to a uniformly 

distributed normal pressure q  (force per area). Calculate the nodal point consistent loads at 

nodes 1, 2, 3 and 4. 

 

 

Fig. 1. A 8-node 3D solid element with a pressure loading. 
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2. (25pt.) Let us consider a triangular cantilever problem modeled by a 3-node plane stress 

element as shown Fig. 2. The force and displacement BCs are presented in Fig. 2, thickness 

is 0.1 , 

 


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
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E
C with 0 . 

 

 

 

Fig. 2. A triangular cantilever subjected to a point load P  

 

 

   The shape functions of the 3-node element are given by  

rh 1 , sh 2  and srh 13 . 

   Calculate the followings 

(a) Global coordinates (X,Y) corresponding to  r=s=0.5 

(b) Jacobian matrix J  

(c) B -matrix [3 by 2] corresponding to 1u  and 1v  

(d) Stiffness matrix K [2 by 2] corresponding to 1u  and 1v  

(e) Tip displacements 1u  and 1v , and stress at X=Y=0 
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Finite Element Analysis of Structures 
 

Final Exam, Fall 2012 (45pt.) 
 

 

 

 

1. We here want to extend our experience on finite element analysis of structures into heat 

transfer problems. For 2D heat transfer problems, the governing equations are given 

 

  0
2

2




 B

i

q
x

k


           in V ,         (differential heat flow equilibrium equation) 

  
S                            on S ,       (essential boundary condition) 

  
S

i

i

qn
x

k 



               on qS ,       (natural boundary condition) 

 

    where k  and   are the thermal conductivity and the temperature of the body, 
Bq  is the 

rate of heat generated per unit volume, 
S  is the surface temperature on S , and 

Sq  is the 

heat flux input on the surface  qS , see Fig. 1. 

 

 
 

Fig. 1. A 2D body subjected to heat transfer  ( 0   ,  qq SSSSS   ) 

 

 

(a) (10pt.) Derive the principle of virtual temperatures given as follows 

 

     dSqdVqdV
x

k
x

S

S

B

V
i

V
i

q

     










, 

    in which   is the virtual temperature distribution ( 0  on S ). 

    (Hint) Divergence theorem: dSnfdV
x

f

S
i

V
i

 



  with a scalar function f . 

 

 

Sq

S

qS

S
1x

2x V

n

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(b) (5pt.) Assume that the interpolation of temperature is 


H , and the relation between 
T

xx


















21





 and the nodal temperature vector 


 is 


B . Derive the finite 

element formulation for 2D heat transfer problems, R


K . 

 

(c) (10pt.) Considering the 4-noede finite element shown in Fig. 2, find the component of 

stiffness matrix ( 11K ) corresponding to 1  and 1 .  

(Hint)    


1

1

1

1

2

3

16
)1( dxdyx ,     


1

1

1

1

1

1

1

1
4)1)(1()1)(1( dxdyyxdxdyyx    

 
Fig. 2. Four-node finite element for 2D heat transfer problems 

 

 

2. The configurations of a body at time 0 , t  and tt   and the second Piola-Kirchhoff 

stresses S
t

0  for the plane strain four-node element are shown in Fig. 3. 

 

 
Fig. 3. Four-node finite element subjected to stretching and rotation  
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(Unit thickness at all time steps) 

 

Calculate the followings 

 

(a) (5pt.)  Deformation gradients X
t

0  and X
tt 

0  

(b) (5pt.)  Cauchy stresses at time  t , τ
t

 

(c) (5pt.)  Second Piola-Kirchoff stresses at time  tt  , S
tt 

0  

(d) (5pt.)  Cauchy stresses at time  tt  , τ
tt 

 

 

         (Hint)  Tttt
t

t
XSXτ 0000

   



  
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Finite Element Analysis of Structures 
 

 

Mid-term Exam, Fall 2013 (40pt.) 
 

 

1. (10 pt.) Let us consider a 2D finite element model shown in Fig. 1. 

 

 

 

Fig. 1. A 2D cantilever plate problem. (a) Finite element model (2x2 mesh), (b) A 4-node 

plane stress element, (c) Stiffness matrix of the 4-node plane stress element. 

 

Find the components of the global stiffness matrix, 
77UUK , 

76UUK  and 
122UUK , in terms of the 

components of 
)(m

eK  in Fig. 1 (c). 
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2. (15 pt.) Let us consider a tapered bar problem and its finite element model in Fig. 2. 

 

 

 

Fig 2. A tapered bar problem (E=Young’s modulus). (a) Problem description, (b) Finite 

element model ( qaR  ). 

 

The exact solution of this problem is given by 













LxEa

RL
xue

/2

2
ln)( . 

 

Using a 2-node bar element, the following FE solution is obtained 

2211 )()()( uxhuxhxuh      with  Lxxh /1)(1  , Lxxh /)(2  , 01 u  and 
aE

LR
u

3

2
2  . 

 

The principle of virtual work specialized to this bar problem is given by 

Lx

L

uRdx
dx

du
EA

dx

ud


 


0
,   with 0

0


x
u ,   0

0


x
u  

 

(a) For the following 4 cases, check whether the principle of virtual work is satisfied or 

not. 

- )(xuu e , )(20 xhau  ,  and )(xuu e , 
2

0xau   

- )(xuu h , )(20 xhau  ,  and )(xuu h , 
2

0xau   

(Hint) 
)/2( LxEa

R

dx

due


  

 

(b) Discuss the results. 
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3. (15 pt.) A 3-node bar finite element is shown in Fig. 3. 

 

 
 

Fig 3. A 3-node bar finite element (E=Young’s modulus, A=area,  =density). 

 

 

Considering the isoparametric procedure, the shape functions for the 3-node bar finite 

element are given by 

)1(
2

1
1  rrh ,   )1(

2

1
2  rrh ,   )1)(1(3 rrh  . 

 

Calculate the followings 

 

(a) Jacobian 

(b) B-matrix, )(rB  when  u)()( rrxx B    with   Tuuu 321u . 

(c) Component of the stiffness matrix, 
22uuK . 

(d) Component of the mass matrix, 
21uuM . 
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Finite Element Analysis of Structures 
 

 

Final Exam, Fall 2013 (40pt.) 

 

 

 
1. (15 pt.) A 3-node triangular plane stress element shown in Fig. 1 is subjected to 

the prescribed displacement  . 

 

 

Fig. 1. A 3-node triangular plane stress element 

(a) in the Cartesian coordinate system, (b) in the natural coordinate system. 

 

Thickness = 0.1, 






















2/)21(00

01

01

1 2

v

v

v

v

E
C , E = 1 and v = 0. 

Shape functions: shrhsrh  321 ,,1  

 

Calculate the followings 

 

(a) Strain-displacement matrix, B  

(b) 3 by 3 stiffness matrix where the boundary condition is imposed, K  

(c) Displacements at nodes 1 and 2 

(d) Reaction force corresponding to the prescribed displacement 
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2.  (10 pt.) Consider a 4-node plane strain element in the configurations at time 0 and t 

shown in Fig. 2. 

 

 

 

 

Fig. 2. A 4-node plane strain element at time 0 and t 

 

Calculate the followings at 021  rr  

 

(a) Jacobian matrices, J
0  and J

t  

(b) Deformation tensor, X
t

0  

(c) Green-Lagrange strain tensor at time t, ε
t

0  

 

 

 

 

 

 

 

 

 

 

 

 



KAIST OSE532 

 

 

3 

 

 

3.  (15 pt.) Using the total Lagrangian formulation, we consider a truss structure 

modeled by two 2-node truss elements in Fig. 3. Assume that the cross section ( 0A ) is 

not changed during the deformation and the material law is given by 

 

 

 

 

 

Fig. 3. A truss structure modeled by two 2-node truss elements. 

 

When 32

2 ut  for the configuration at time t, evaluate the followings 

 

(a) Component of the linear part of the tangent stiffness matrix ( L

t

0 K ) 

corresponding to 2

2u and 2

2u  

(b) Component of the nonlinear part of the tangent stiffness matrix ( NL

t

0 K ) 

corresponding to 2

2u and 2

2u  

(c) Component of the internal force vector F)
t

0(  corresponding to 2

2u  

 

(Hint) Due to symmetry, you may consider a half-symmetric model. 

 

110110 tt ES 



KAIST OSE532 

 

 

Finite Element Analysis of Structures 
 

Mid-term Exam, Fall 2014 (40pt.) 
 

Let us consider a thin membrane structure of thickness t  subjected to a uniform temperature variation 

1 ˚C as shown in Figure. The structure is clamped along left, right and bottom edges. We model 

the structure using a uniform 2x2 mesh of four 4-node isoparametric plane stress elements. 

 

Figure. Thermal expansion of a thin membrane structure. 

(a) Finite element model, (b) A 4-node plane stress element. 

 

For this thermal expansion problem, we use the stress-strain law given by 

)( th
εεCτ     with  



















xy

yy

xx







τ ,  



















2/00

00

00

E

E

E

C ,  



















xy

yy

xx







ε , 























0





th
ε , 

in which τ  is the stress vector, ε  is the total strain vector, 
th
ε  is the thermal strain vector, C  is the 

material law matrix with Young’s modulus E , and   is the thermal coefficient of expansion. 

 

(a) (8pt.) Specialize the principle of virtual work to this problem considering the given stress-strain 

law. Write down the finite element formulation for the nodal load vector due to the thermal strain. 

(b) (8pt.) Calculate the stiffness components 
11 vvk , 

44 vvk  and 
41 vvk  of the element (1), see Figure (b).   

Note that   


1

1

1

1

2 3/16)1( drdsr  and   


1

1

1

1
3/8)1)(1( dsdrss . 

(c) (8pt.) Construct the 2x2 total stiffness matrix K  using 
11 vvk , 

44 vvk  and 
41 vvk . The corresponding 

nodal displacement vector is  TUU 21U . Note that the problem is symmetric. 

(d) (8pt.) Calculate the nodal load vector,  TRR 21R . 

(e) (8pt.) Assuming 100/321 U  and 100/82 U , calculate the stress jump 
yy  at point A 

between the elements (1) and (3), see Figure (a). 
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Finite Element Analysis of Structures 
 

Final Exam, Fall 2014 (40pt.) 
 

 

1. (10pt.) Consider a single degree of freedom (DOF) system subjected to the force )(tp  as 

shown in Figure 1.  

 

 

10)(6,0,2  tpandkcm  

Figure 1. A single degree of freedom system. 

 

For this SDOF system, the linear equation of motion is given by 

)()()()( tptuktuctum     with 0)0( u  and 0)0( u , 

in which m , c , k , and u are the mass, damping coefficient, spring constant and 

displacement, respectively. 

 

Using the Central Difference Method (CDM) with time step size crtt  , calculate the 

response of the system from time 0 to 1 sec. (Fill in the blanks (a), (b) and (c) in Table 1.) 

 

Table 1. Response of the SDOF system. 

Time [sec] 0 t  t2  

)(tu  (a) (b) (c) 

 

Note that the critical time step size /ncr Tt    and the free-vibration period of the system 

nT  is 5.0 . In CDM, the following approximations are used for the discretization of time 

 )()(
2

1
)( ttuttu

t
tu 


   and   )()(2)(

)(

1
)(

2
ttututtu

t
tu 


 . 
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2. (15pt.) Let us consider a 4-node axisymmetric finite element as shown in Figure 2. The 

finite element is clamped along the bottom edge. 

 

Figure 2. A 4-node axisymmetric finite element. (a) Global DOFs, (b) Local DOFs 

 

For linear elastic analysis, the material law matrix C  and the strain vector ε  are given by 





















E

E

E

E

000

05.000

000

000

C   and  





















zz

xy

yy

xx









ε  

with Young’s modulus E , 
x

u
xx




 , 

y

v
yy




 , 

x

v

y

u
xy









 , and 

x

u
zz  . 

 

Using the isoparametric procedure, calculate the stiffness component 
11UUK . 

 

Note that   


1

1

1

1

2 3/64)1)(4( drdssr ,   


1

1

1

1

2 24)1)(4( drdsrr  and 

  




1

1

1

1

22

5/8
4

)1()1(
dsdr

r

sr
. 
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3. (15pt.) Let us consider a plane strain element as shown in Figure 3.  

 

 

Figure 3. A 2D plane strain element. 

 

The Cauchy stress at time t , not including zz

t , is given by 















0100.2

100.20
7

7

τ
t  Pa. 

 

Using the Total Lagrangian Formulation, compute the component of the nonlinear stiffness 

NL

t
K0  corresponding to 1U  and 1U . Note that NL

t

L

tt
KKK 000  . 
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