KAIST OSE532

Finite Element Analysis of Structures

Mid-term Exam, Fall 2009 (30pt)

1. As shown in Fig. 1, we model a truss structure of uniform area (length =2m,

Area= Am?) subjected to a uniform body force ( qu =2€_ N/m) using a 3-node truss

finite element. Assume that all DOFs for y- and z-directional translations are prescribed
to be zero.
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Figure 1. A truss problem modeled by a 3-node truss element

Find
(@) Interpolation of displacement, u(x) = HU . (3pt)
(b) Relation between strain and nodal displacements, ¢, = BU . (2pt)

(c) Equilibrium equation, KU =R (5pt)
(d) Displacement and stress at X =—0.5m. (5pt)

Note that u(x) is a quadratic polynomial, U ={U, U,} isin (a), (b) and (c), and E
denotes Young’s modulus.
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We have a plane stress problem (4mx4mxt) subjected to a point load, p=-4€ N .

The displacement BC is given as shown in Fig. 2. The 2-D problem is modeled by the
uniform 2x2 mesh of plane stress finite elements.

E O 0
t =thickness, C=|0 E 0 [N/m?
0 0 E/2
p u,,
- @ Ol I—>U9
[€>| 0.5m

4m j) A — YU

4m ‘

Figure 2. A plane stress problem subjected to a point load

Calculate
(a) Diagonal component of the total stiffness matrix corresponding to U, ,
KU7U7 . (5pt)
(b) Components of the load vector, R, and R . (5pt)

(c) Displacement U, and strain energy stored in the structure. (2pt)

Assuming a dynamic analysis of the structure (mass density p ), find
(d) Component of the total mass matrix , MUQUN. (3pt)
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Finite Element Analysis of Structures

Final Exam, Fall 2009 (40 pt)

Using two 3-node triangular plane stress elements and two 2-node truss elements,
we model a structure subjected to an X-directional tip loading (P = 2000N ), see
Fig. 1. The properties are given

-E=2x10°N/m?, v=0.3 and thickness = 0.1m for the plane stress elements,
-E =2x10°N/m? and sectional area = 0.05m?each for the truss elements.

Plane stress elements

2m 0.1m 1

< Truss elements
Truss elements /

# / ¥ B»—> —p P =2000N |j‘
U

2

Plane stress elements Wl Y

3m

Fig.1. A structural model in the XY and YZ planes

Considering "linear elastic analysis", calculate

(@) the Jacobian matrix J and the determinant detJ of the shaded
triangular element (5 pt)

(b) the relation between strain and nodal displacements B(r,s) for the
shaded triangular element (5 pt)

(c) the total stiffness K, correspondingto U, (5 pt)

(d) the displacement U, (5 pt)

Note that the 3-node triangular plane stress element has the interpolation
functions:

hy=1-r-s, h,=r, h,=s,
and the material law is
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2. Consider the single degree of freedom system shown in Fig. 2.
F=U+cCU® > U
R

Fig. 2. A nonlinear spring (C =0.1)

In the figure, U is the tip displacement, F is the internal force of the spring and

R is the external loading. Recall that the stiffness of the system is K = S—S

(@) Write “incremental equilibrium equation” to calculate the response of
the system. (5 pt)

(b) We want to find the tip displacement U correspondingtoR =1.0.
Using the full Newton-Raphson method, perform iterations until the

solution is converged |R - F®| <107, (5 pt)

3. Consider the 4-node plane stress element shown, where °z,, = °z,,="7z,, =0.
Using the total Lagrangian formulation, calculate the nonlinear strain incremental
stiffness matrix ;K . (10 pt)

\ attime t

/
< A :
/ 2m
L ) ’Zm\/ 'X,?’OO v at time 0

3m

Fig. 3. A 4-node plane stress element under rotation

** |f you think that the calculation is too heavy, calculate any component of ;K .
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Finite Element Analysis of Structures

Mid-term Exam, Fall 2010 (30pt)

We have a plane stress problem subjected to point loads, P, and P,, and the displacement
BC as shown in Fig. The 2D problem is modeled by a 4-node plane stress finite element,

E O 0
thickness=1.0m, C=/0 E 0 |N/m?2.
0 0 E/2

Figure. A plane stress problem subjected to point loads

1. Considering the isoparametric procedure, evaluate
(a) Global coordinate (X,Y) at r=s=0 (2pt)
(b) Jacobian matrix at r=s=0 (3pt)
(c) B-matrix at r=s=0 (5pt)
(d) BTCB at r=s=0 corresponding to Kuu, (5p1)
and calculate
(e) Components of the load vector, R, and R, (5pt).

2. Let's assume that we obtain the displacement U, =U, =0.001m , calculate
(f) Displacements at r=s=0 (3pt)
(g) Strains and stresses at r=s=0 (5pt)
(h) Strain energy stored in the structure (2pt)
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Finite Element Analysis of Structures

Final exam, 2010-12-20 (40pt.)

1. Letus consider a 2-node iso-beam (Timoshenko beam) element as shown in Fig. 1.

Y
Y
V2 i V1
X I .
> X >l fg—»“l ya i a=1.0m
l N [«
L=10m ! 1.0m
node 2 nodel

Fig. 1. A 2-node iso-beam elementin 2D (—=1.0 <r < 1.0 and —1.0 <s < 1.0)

The geometry and displacement interpolation functions and the nodal displacement vector are

given:

(x): Zshixi (U): Thyy; —>Yah;6; and U=[u; u; vi v, 6; 6,]T

y -a ' \v 2. hyv; S
2 171

The material law used is
Txx _ Exx . _ E O
{Txy} =C {ny} with C = [ 0 cf

Considering the standard isoparametric procedure for linear elastic problems, calculate

(a) Jacobian matrix (5pt.)

(b) u a0V OV in terms of the nodal displacement vector (5pt.)

ax’ ay’ ox’ ay
(c) B-matrix (5pt.)

(d) Components of the K-matrix, K, ,,and Kg_ . (5pt.)
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2. Considering the total Lagrangian formulation, we analyze an elastic bar problem by using
one 2-node truss element. Assume that the cross section does not change during
deformation and the material law is

t _nnt
OSXX - Eoexx-

time 0 time t
a> —> R J 10m
> PN
Lo=10m AL=1 1.0m
—> =lm
X
load
uz Ui
— ~—>
® ®
node2 nodel

Fig. 2. An elastic bar problem

For the configuration at time 0, calculate

(a) Tangential stiffness, °Kulul (5pt.)

For the configuration at time t, calculate

(b) Linear part of the tangential stiffness, (5KL)u1u1 (5pt.)
(c) Nonlinear part of the tangential stiffness, ((§K1\,L)ulu1 (5pt.)

(d) Component of the force vector ({F) corresponding to u; (5pt.)
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Finite Element Analysis of Structures

Mid-term Exam, Fall 2011 (40pt.)

1. (25pt.) Let us consider a 2D 5-node plane stress element as shown in Figure.

S
2 1
[ ¥ ®
(-0.5,1) 5
0,0 gy
*® y

(0.5-0.3) (0.0) J(C)
® ® ®
3 4 3 X 4

Natural coordinate Global coordinate

(a) Find the shape function hs when h; = ir(l +7r)(1+5), hy = —%r(l —1r)(1+5s), hy =
A=A =)k =;1+71)1A-5).
(b) Find (x,, y,,) correspondingtor = —0.5and s = 1.

(c) Calculate the Jacobian matrix J and detJ atr = s = 0.

(d) Calculate the column vector of the strain-displacement matrix B at r = s = 0 corresponding
to Uy. Note that £ = {e,x &,y Yxy) -
(e) Calculate the components Ry, , Ry, and Ry, of the load vector for the point load P= —pé,

applied at (x,, ).

2. (15pt.) We study the convergence of finite element solutions in potential energy. The potential
energy is defined by
- 1 IO e
n(v)=3a(¥,v) - (f.7)
in which v is the displacement vector. Prove w(u ) < m(uy ), where u is the exact solution and

uy, is the finite element solution, and explain the meaning of the inequality.
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Finite Element Analysis of Structures

Final Exam, Fall, 2011-12-20 (50pt.)

1. Let us consider a truss structure shown in Fig. 1. The structure consists of two bar
members connected by a pin and the pin connection is supported by a spring. Each bar
member of length L is modeled by a 2-node bar element.

X2
Uy Ry

Ui uz

Figure 1. Left: A linear elastic truss problem ( L =5, EA =1, spring constant = k ). Right:
2-node bar element in the natural coordinate system.

(@) (5pt.) Find the B-matrix of the bar element.
(b) (10pt.) Find the stiffness matrix of the truss problem, U=[U; U,]T.
(c) (5pt.) Find the tension forces of the bar members when k =1 and U; = U, = 0.1.

(d) (10pt.) When k = 0 and R, = 1, what happens in the linear analysis? Plot the nonlinear
load-displacement curve that you expect (between R, and U,) as the load increases.
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2. Let us consider the 4-node plane stress element shown in Fig. 2.

X2

X1 | |

Figure 2. A 2-D plane stress problem.

At time = t, £S,, =10 and all other stresses = 0 are given in the element. Assume that the
material law with Young’s modulus E and Poisson’s ratio (v = 0) relates the incremental 2"
Piola-Kirchhoff stresses to the incremental Green-Lagrange strains and assume thickness =
1.0attime=0.

Using the total Lagrangian formulation, calculate the following.

(@) (5pt.) The components of the linear stiffness matrices JK; and {K; corresponding to
8U; and U,.

(b) (10pt.) The component of the nonlinear stiffness matrix {Ky; corresponding to 8U;
and U;.

(c) (5pt.) The component of the force vector (F corresponding to U,.
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Finite Element Analysis of Structures

Mid-term Exam, Fall 2012 (40pt.)

1. (15pt.) As shown in Fig. 1, a 8-node 3D solid element is subjected to a uniformly
distributed normal pressure q (force per area). Calculate the nodal point consistent loads at

nodes 1, 2, 3 and 4.

2.0

Fig. 1. A 8-node 3D solid element with a pressure loading.
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2. (25pt.) Let us consider a triangular cantilever problem modeled by a 3-node plane stress

element as shown Fig. 2. The force and displacement BCs are presented in Fig. 2, thickness
is 1.0,

Eyx . 1 v 0
€=4&y ¢ and C:(l 7 v 1 0 with v =0.
Ve "o 0 @-uv)/2

3 X

j?o, 0) j (20, 0) (0,0) (0)

< Global coordinate > < Natural coordinate >

Fig. 2. A triangular cantilever subjected to a point load P

The shape functions of the 3-node element are given by
hh=r,h,=sand hy=1-r-s.
Calculate the followings
(a) Global coordinates (X,Y) corresponding to r=s=0.5

(b) Jacobian matrix J
(c) B -matrix [3 by 2] corresponding to u, and Vv,
(d) Stiffness matrix K [2 by 2] corresponding to u, and v,

(e) Tip displacements u, and Vv,, and stress at X=Y=0
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Finite Element Analysis of Structures

Final Exam, Fall 2012 (45pt.)

1. We here want to extend our experience on finite element analysis of structures into heat
transfer problems. For 2D heat transfer problems, the governing equations are given

2

k Z—f +0°=0 inV, (differential heat flow equilibrium equation)
X;

0=6° onS,, (essential boundary condition)

k 2—9 n =q° on S,,  (natural boundary condition)
Xi

B is the

where k and & are the thermal conductivity and the temperature of the body, g
rate of heat generated per unit volume, ° is the surface temperature on S,.and q° is the

heat flux input on the surface S, see Fig. 1.

Fig. 1. A 2D body subjected to heat transfer (S =S,US,, S,NS, =0)

(a) (10pt.) Derive the principle of virtual temperatures given as follows

L%Xﬁkgdv = [0 q°aV + [ &9 q°ds,

in which 66 is the virtual temperature distribution (6@ =0 on S,).

(Hint) Divergence theorem: jv gidv = L f n,dS with a scalar function f .
Xi
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(b) (5pt.) Assume that the interpolation of temperature is 8 = Ho , and the relation between
;|20 o0
0%,  OX,

T
} and the nodal temperature vector 0 is & =B . Derive the finite

element formulation for 2D heat transfer problems, Ko =R.

(c) (10pt.) Considering the 4-noede finite element shown in Fig. 2, find the component of
stiffness matrix (K, ;) corresponding to 66, and 6.

. 1 el 16 1 _ 1 ol
(Hint) J._l .[_1 (L£x)?dxdy = 3 L L (L£ X)(LF y)dxdy = L L (L+ x)(1£ y)dxdy =4
A
0, 0
2 *i
0, 0,

Fig. 2. Four-node finite element for 2D heat transfer problems

2. The configurations of a body at time 0, t and t+ At and the second Piola-Kirchhoff
stresses S for the plane strain four-node element are shown in Fig. 3.

t

0S5, =50

’s,, =60 S
Rotated by 30° from time t

0th3 =-20 totime t+ At

te _tg _t _
0 S12_0823_0831 =0

, Configuration at time t
X

1 Configuration at time 0

Fig. 3. Four-node finite element subjected to stretching and rotation

2



(Unit thickness at all time steps)

Calculate the followings

(a) (5pt.) Deformation gradients ;X and ‘5 X

(b) (5pt.) Cauchy stresses attime t, ‘1
(c) (5pt.) Second Piola-Kirchoff stresses at time t + At, “4 S

(d) (5pt.) Cauchy stresses at time t+At, "1

t
(Hint) ‘7 = % X s (ex)

KAIST OSE532
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Finite Element Analysis of Structures

Mid-term Exam, Fall 2013 (40pt.)

1. (10 pt.) Let us consider a 2D finite element model shown in Fig. 1.

AIJIO AIJIZ AU14
> > 3 Yy, v
U U 4
11 13 v, A "
3) “) L 71 > I—» u,
AU5 AU7 A U9 2 u2 1
U, U, L » X, U
Ay (1) (2) L A V3 A V4
JULS U, 3 u, 4
1 > e u,
»- »- < »
o Ul U3 L
— ey
| L L
(a) (b)
ky ky, ks k, ks kg k; ky Y
ky ky ky ky ky kg ky o ky u,
ky ky ky ky ks kg ko Ky Uy
K @ — ky kyp ky ky ks kg kg kg u® = Uy
‘ ks, ks, kg ky ks kg ks kg !
kg ko kg kg ks ke kg kg V,
ky kyp ky ky ks ki ko kg Vs
kg kK kg Ky kg Ky K | Va
(¢)

Fig. 1. A 2D cantilever plate problem. (a) Finite element model (2x2 mesh), (b) A 4-node

plane stress element, (c) Stiffness matrix of the 4-node plane stress element.

Find the components of the global stiffness matrix, K, , , Ky, and Ky, , interms of the

components of K™ in Fig. 1 (c).
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2. (15 pt.) Let us consider a tapered bar problem and its finite element model in Fig. 2.

Ad=a(2-x/L)

(a) (b)

Fig 2. A tapered bar problem (E=Young’s modulus). (&) Problem description, (b) Finite

element model (R =qa).
The exact solution of this problem is given by

ue(x)=&ln 2 :
Ea \2-x/L

Using a 2-node bar element, the following FE solution is obtained

Uy () = (ug +h, (u, - with by (x) =1-x/L, h(x) =x/L, u, =0 and u2=%.

The principle of virtual work specialized to this bar problem is given by

deﬂEA—d x=R&l_,, withu| =0, &|_ =0

x=0

(a) For the following 4 cases, check whether the principle of virtual work is satisfied or

not.
- u=U,(x), u=a,h,(x), and u=u,(x), U =aX’
- u :uh(x), A =ayh,(x), and u=u,(x), du=a,x*

R
Ea(2—-x/L)

(b) Discuss the results.
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3. (15 pt.) A 3-node bar finite element is shown in Fig. 3.

X, u r
'S ° ®
1 3 2
— —> —>
U U, U,
L L
2 2

Fig 3. A 3-node bar finite element (E=Young’s modulus, A=area, p =density).

Considering the isoparametric procedure, the shape functions for the 3-node bar finite
element are given by

h, =%r(r -1, h, =%r(r +1), h,=@Q+r@-r).
Calculate the followings

(a) Jacobian
(b) B-matrix, B(r) when ¢, (r)=B(r)u with u:[ul u, us]T.
(c) Component of the stiffness matrix, Kuzuz.

(d) Component of the mass matrix, Muluz.
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Finite Element Analysis of Structures

Final Exam, Fall 2013 (40pt.)

1. (15 pt.) A 3-node triangular plane stress element shown in Fig. 1 is subjected to

the prescribed displacement A.

(a) (b)
Fig. 1. A 3-node triangular plane stress element

(@) in the Cartesian coordinate system, (b) in the natural coordinate system.

1 v 0
Thickness:O.l,C=1E2 v 1 0 ,E=1andv=0.
-V
0 0 1-2v)/2

Shape functions: h, =1-r—s, h,=r, h,=s

Calculate the followings

(a) Strain-displacement matrix, B
(b) 3 by 3 stiffness matrix where the boundary condition is imposed, K
(c) Displacements at nodes 1 and 2

(d) Reaction force corresponding to the prescribed displacement
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2. (10 pt.) Consider a 4-node plane strain element in the configurations at time 0 and t
shown in Fig. 2.

(0,4) (4,4) /\ (5,3)

x, *l:_’ " x2[

0.0) % 4,0) % 4,0)
time=0 time =¢

Fig. 2. A 4-node plane strain element at time 0 and t

Calculate the followingsat r, =r, =0

(a) Jacobian matrices, °J and 'J

(b) Deformation tensor, ; X

(c) Green-Lagrange strain tensor at time t, ;&



KAIST OSE532

3. (15 pt.) Using the total Lagrangian formulation, we consider a truss structure

modeled by two 2-node truss elements in Fig. 3. Assume that the cross section ( A;) is

not changed during the deformation and the material law is given by

te _pt
0811 _EOgll

time 0
0 t
Xy Xy
4 | 4 |
< »l< .
ele. 1 l ele. 2
§~~ A 2 "’ >
~ o 0
1 ~~~*~ ¢”” 3 xl ’ ' xl
~~“~ 3 2 138
~“~~ u 2 ¢"'
~~~ Pid
-
; ~ 4”"
2
2

time ¢

Fig. 3. A truss structure modeled by two 2-node truss elements.

When 'uZ =-3 for the configuration at time t, evaluate the followings

(@) Component of the linear part of the tangent stiffness matrix ( ;K )
corresponding to su; and uj

(b) Component of the nonlinear part of the tangent stiffness matrix (,K,, )
corresponding to su;and uj

(c) Component of the internal force vector (,F) corresponding to u?2

(Hint) Due to symmetry, you may consider a half-symmetric model.
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Finite Element Analysis of Structures

Mid-term Exam, Fall 2014 (40pt.)

Let us consider a thin membrane structure of thickness t subjected to a uniform temperature variation

A@ =1°C as shown in Figure. The structure is clamped along left, right and bottom edges. We model

the structure using a uniform 2x2 mesh of four 4-node isoparametric plane stress elements.

b "

) @)
A U |
®
/‘42”1# 1N
/
4m 3) y @
‘x
Val Vel Val
o Am
(a) (b)

Figure. Thermal expansion of a thin membrane structure.

(a) Finite element model, (b) A 4-node plane stress element.

For this thermal expansion problem, we use the stress-strain law given by

To E 0 O Ey A
1=C(e—¢") with = r,|» C=|0 E 0 |, e=]¢g, e =a|AG |,
Ty 0 0 E/2 sy 0

in which T is the stress vector, € is the total strain vector, £ is the thermal strain vector, C is the

material law matrix with Young’s modulus E , and « is the thermal coefficient of expansion.

(@) (8pt.) Specialize the principle of virtual work to this problem considering the given stress-strain
law. Write down the finite element formulation for the nodal load vector due to the thermal strain.
(b) (8pt.) Calculate the stiffness components kvlvl’ kvm and kv1v4 of the element (1), see Figure (b).

1 el 2 1 el
Note that L L(1+ r)2drds =16/3 and L L(1+ s)(1—s)dsdr =8/3.

(c) (8pt.) Construct the 2x2 total stiffness matrix K using k k,. and kv1v4 . The corresponding

AZERAA
nodal displacement vector is U = [Ul U2]T . Note that the problem is symmetric.
(d) (8pt.) Calculate the nodal load vector, R = [R1 Rz]T .

(e) (8pt.) Assuming U, =32/100 and U, =8/100, calculate the stress jump Az, at point A

between the elements (1) and (3), see Figure (a).



KAIST OSES532
Finite Element Analysis of Structures

Final Exam, Fall 2014 (40pt.)

1. (10pt.) Consider a single degree of freedom (DOF) system subjected to the force p(t) as

shown in Figure 1.

> u(z)
k
NN NN
il

m=2,¢=0, k=6 and p(t) =10

Figure 1. A single degree of freedom system.

For this SDOF system, the linear equation of motion is given by

mui(t) + cu(t) + ku(t) = p(t) with u(0)=0 and u(0) =0,
in which m, ¢, k, and u are the mass, damping coefficient, spring constant and
displacement, respectively.

Using the Central Difference Method (CDM) with time step size At = At_ , calculate the

cr?

response of the system from time 0 to 1 sec. (Fill in the blanks (a), (b) and (c) in Table 1.)

Table 1. Response of the SDOF system.
Time [sec] 0 At 2At

u(t) (@) (b) (©)

Note that the critical time step size At, =T, /z and the free-vibration period of the system

T, is 0.5z . In CDM, the following approximations are used for the discretization of time

u(t) = ZiAt[u(t +At)—u(t—At)] and ti(t) = ﬁ[u(t + At) — 2u(t) +u(t — At)].
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2. (15pt.) Let us consider a 4-node axisymmetric finite element as shown in Figure 2. The

finite element is clamped along the bottom edge.

A
y

. R,=10m

o~

R =6m

(b)
Figure 2. A 4-node axisymmetric finite element. (a) Global DOFs, (b) Local DOFs

For linear elastic analysis, the material law matrix C and the strain vector & are given by

E O 0 0 £y

C= 0 E 00 and ¢= w

0 0 O5E O Yy

0 0 0 E £,
with Young’s modulus E, ¢, :G_U, & :@, | :a_u+@, and ¢, _Y
ox Y oy 'Y oy ox X

Using the isoparametric procedure, calculate the stiffness component K,

1 el 2 1 el 2
Note that L L(4+ r)(L+s)?drds = 64/3, L j_1(4+ r)@+r)?drds =24 and

[ A" 0+9)" jogr _gys
1 A4r '
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3. (15pt.) Let us consider a plane strain element as shown in Figure 3.

Time t

3>
>

X

Figure 3. A 2D plane strain element.

The Cauchy stress at time t, not including 'z, , is given by
7
o 0 2.0x10 Pa.
2.0x10’ 0

Using the Total Lagrangian Formulation, compute the component of the nonlinear stiffness

s K, corresponding to U, and 8U,. Note that ;K= K + K, .
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