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초 록 

본 논문은 유한요소모델과 기계학습 알고리즘을 이용한 크랙 진단 방법을 제안하였다. 그러나 

기계 학습을 크랙 진단에 이용하기 위해서는 많은 데이터가 필요하다. 따라서 본 연구에서는 

XFEM을 이용하여 다양한 크랙에 대응하는 변형 데이터를 효율적으로 생성하고, 변형 데이터가 

주어지면 이에 대응하는 크랙 이미지를 생성하는 크랙 진단 방식을 제안하였다. 이를 위해 

대표적인 생성 모델인 variational autoencoder(VAE)의 구조를 이용하였으며, 문제에 맞게 손실 

함수를 수정하였다. 제안된 방식의 크랙 진단 결과는 변형 데이터를 이용하여 크랙의 위치와 

형태를 진단할 수 있음을 보여주며, 하중에 독립적인 모드 형상을 이용한 크랙 진단 방식은 추후 

진동 데이터를 이용한 크랙 진단의 기초연구가 될 것으로 기대한다. 

 

핵 심 낱 말  기계학습, 균열 진단, XFEM, 생성 모델, VAE 

 

 

Abstract 

In this paper, we propose a crack detection method using finite element model and machine learning algorithm. 

However, in order to use machine learning for crack detection, a lot of data is needed. Therefore, in this study, we 

propose a crack detection method that efficiently generates deformation data corresponding to various cracks using 

XFEM and generates a corresponding crack image when deformation data is given. To do this, we use the structure 

of variational autoencoder (VAE), which is a representative model, and modified the loss function to fit the problem. 

The crack detection results show that the position and shape of the crack can be detected using the deformation 

data. The crack detection method using the mode shape independent of the load is expected to be a basic study of 

the crack detection using the vibration data. 

 

Keywords machine learning, crack detection, XFEM, generative model, VAE 
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Chapter 1.  Introduction 

 

1.1.  Background 

 

Cracks are one of the major causes of structural failure. Detection of crack in structure such as 

infrastructure, aircraft, and automobiles is very important because it is directly related to safety of user. Therefore, 

there is a need for techniques to identify and manage the presence of cracks before failures occur. 

Thus, there are many nondestructive techniques for crack detection from data obtained from structures 

for crack detection. Typical examples include ultrasonic technology, radiation transmission technology, and eddy 

current technology. Ultrasonic technology is an inspection method to determine the position and size of 

discontinuity by analyzing the energy amount of ultrasonic waves reflected from a structure and the progress time 

of ultrasonic waves. The radiation transmission technique is a method of detecting defects by recording the 

difference in density between the normal region and the abnormal region of the radiation on a two-dimensional 

image. Eddy current testing technology is an inspection method that analyzes the change of alternating current 

called eddy current due to crack. These inspection methods have to analyze the data change of the external 

stimulus at the crack location in order to detect the crack, so it is difficult to have experienced experience and 

research. 

 

Therefore, researches have been carried out to detect crack using artificial neural network for data 

analysis. Kornelija Zgonc and Jan D. Achenbach used ultrasonic response results to detect the size of cracks in 

the rivet hole [1]. Since a lot of data is required to train the network, they use synthetic data generated by 2D FEM 

together with experimental data. T. Chady and M. Enokizono used the eddy current response results obtained from 

the newly proposed sensor [2]. They studied the results of eddy current response on neural networks using simple 

specimen crack specimens. And depth results of cracks are shown by image information. In [3], neural network 

training was performed using only the vibration response data obtained from the FE model to study the artificial 

neural network. From these results, we extracted 13 features such as maximum response and minimum response 

from the ultrasonic vibration response data obtained from the FEM numerical analysis. As a result, it is suggested 

that the position and length of cracks can be detected for simple straight cracks.  
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Recently, deep learning technology has become popular due to the improvement of computer hardware 

performance, and deep learning is being used for crack detection. A neural network study was developed to predict 

the fatigue crack length and residual fatigue life [4]. The previous studies have not been limited to the shape of 

the structure since the feature length is extracted from the data obtained by the external stimulus and the position 

and length of the crack are detected by learning it in the artificial neural network. However, there is a disadvantage 

in that it is not possible to intuitively obtain image information such as the size and position of cracks in the 

structure. Therefore, there has been a study on the genetic algorithm method that predicts the current state in the 

direction of minimizing the monitoring difference and the predicted result of the XFEM model on the fixed 

structure in which the crack existed [5]. This work has the advantage of detecting many cracks in a three-

dimensional structure, but it has a disadvantage in that efficiency is low because a large number of calculations 

are needed to detect cracks in one case. In addition, many studies for crack diagnosis have been made [6-15]. 

 

In the above studies, detection was done in a way that indicates the position and size of the crack 

numerically, not the crack image on the structure. Therefore, there was a disadvantage that the shape and position 

of the cracks could not be easily identified. The cracks that could be represented by images were relatively simple 

because they required the preparation of specimens or data from experiments. However, actual cracks appear on 

the structure in general form, and detection is required. Therefore, data for various cracks are required, and a 

method for efficiently generating data is required. 

 

As image recognition and generation technology using deep learning has been developed recently, 

studies using image generation networks such as GAN and VAE are being conducted. In particular, research has 

been conducted on the use of deep running in the field of topology optimization, where computational efficiency 

is a problem [16]. In addition, research has been carried out to draw an image of a two-dimensional hand gesture, 

that is, a pose, from an image of a human hand gesture [17]. In addition, research has been carried out to generate 

a sketched image as a colored image, and research on generating images from sentences has also been conducted 

[18-20]. This study will also use this machine learning algorithm. 
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1.2.  Research purpose 

In this study, we want to show the possibility of image-detecting the cracks from external signals for the 

cracks in the structure. Therefore, the goal to overcome the limitation of the existing research is as follows. 

 

 Data generation: efficient generation of data using XFEM model 

 Data analysis : automatic feature extraction using deep learning 

 Result : visualization of results using generation model 

 

This study used a simple 2D rectangle structure and readily available deformation data to identify the 

feasibility of achieving these goals. First, the proposed method automatically generates crack data in various 

directions and sizes from the XFEM. Next, deformation data is processed into image in order to train deep learning 

network. Finally, the position and shape of the crack are detected as an image from deformation image not using 

for the network training. In this basic flow, several deep learning models were applied to crack detection and its 

performance was evaluated. 

 

1.3.  Organization of Dissertation 

 

This paper is structured as follows: 

 
In chapter 1, the research background is presented. We introduced research purpose and this dissertation. 

 
In chapter 2, we proposed three deep learning networks that generate corresponding crack image when given 

deformation image. The performance of the proposed method was validated by quantitative evaluation of crack 

images generated using test data. 

 
In chapter 3, There is a limitation that the previously used deformation data is dependent on the force condition. 

Therefore, we used the mode image independent of load as input data for training the proposed training network, 

and the performance was validated by quantitative evaluation. 

 
Lastly, in chapter 4, we discuss about present conclusions and future works. 
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Chapter 2.  Crack detection using deformation image 

 

In this chapter, methods are proposed for detecting the corresponding crack image when given a 

deformation as input data. The performance of these methods are also verified. The methods are listed in order of 

improvement, and the method with best performance is selected. 

 

2.1.  Overview of proposed method 

 

We proposed a method to detect the corresponding crack when given the external deformation of the 

structure. The method used machine learning algorithm for crack detection. Accordingly, it took the deformation 

and crack image pairs as a training dataset for deep learning algorithm. At this time, this problem can be regarded 

as a 1:1 match between deformation and crack. However, the proposed method aims to detect crack for new 

deformations that are not in the training dataset using a small amount of training data. 

 

For this, the method is required to generate crack corresponding to the deformation of various cases. 

Therefore, generative model was used. The generative model is different from the discriminant model which 

accounts for most of the machine learning. In the discriminant model, when data x is input, training proceeds to 

know class c  to which x belongs. That is, the objective is to obtain ( | )p c x . The generative model, on the other 

hand, is not aimed at obtaining class c   of data x  . This model is interested in finding the distribution 

( , ) ( | ) ( )p x c p c x p x= ⋅  (Bayes' Rule) of data x belonging to class c. Finally, training proceeds to find ( | )p c x

and ( )p x , which is the distribution of x , and new data 'x  is generated from this distribution. 

 

In this study, Variational Autoencoder (VAE) and Generative adversarial network (GAN), which are 

representative production models, were used. Accordingly, we briefly reviewed how VAE and GAN proceed to 

train ( )p x . 
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2.1.1.  Overview of generative model 

 Variational Autoencoder 

 

  

 
Figure 2.1 Variational Autoencoder 

 

The training model of this study derived from VAE [21]. VAE is similar to Autoencoder (AE) as shown 

in Figure 2.1. These models train low-dimensional representation or distribution of data from structures that 

produce output such as input. However, VAE aims to generate data x  from continuous distribution z , unlike 

AE which obtains low-dimensional representation z  of high dimensional data. In other words, it is possible to 

create new data that is not in the existing training dataset if distribution z  is obtained well. 

 

Specifically, to obtain the previously defined ( )p x , we have to find the distribution ( )p z  of z  and 

the distribution ( | )p x z  that produces data x from z  . However, ( )p z  is not used as a sampling function 

because of the disadvantage that it is difficult to train [22]. Instead, it uses a distribution ( | )p z x  that produces 

x  properly when given x  as input data. However, since this distribution is also unknown, one of the probability 

distributions ( | )q z xφ  that can be easily used is selected so that the distribution is similar to ( | )p z x . 

encoder decoder

latent

x x
( | )q z xφ ( | )p x zθ

z
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Therefore, the following equation is used to obtain ( )p x . 

log( ( )) log( ( )) ( | )

( | )( , )log( ) ( | ) log( ) ( | )
( | ) ( | )

p x p x q z x dz

q z xp x z q z x dz q z x dz
q z x p z x

φ

φ
φ φ

φ

=

= +

∫

∫ ∫
 (2.1)  

Where the first term of Equation (2.1) is called the evidence lower bound ( )ELBO φ  and the second term is the 

distance between the two probability distributions ( | )q z xφ  and ( | )p z x . (KL-divergence) 

 
The training should proceed so that ( | )q z xφ  is similar to ( | )p z x . However, since KL-divergence is 

difficult to calculate, the training should proceed in the direction in which the KL-divergence decreases, that is, 

in the direction in which the ( )ELBO φ  increases. 

 
For this, equation of this ( )ELBO φ  is as follows. 

( | )

( | )
( ) log( ( | )) ( | ) log( ) ( | )

( )
[log( ( | )] ( ( | ) || ( ))q z x

q z x
ELBO p x z q z x dz q z x dz

p z
p x z KL q z x p z

φ

φ
φ φ

φ

φ = −

= Ε −

∫ ∫  (2.2)  

 

Finally, the following equations are considered for training in terms of variational inference and maximum 

likelihood using ( )ELBO φ . 

 
( | )

,
arg min [log( ( | ( )))] ( ( | ) || ( ))

iq z x i ii
p x g z KL q z x p z

φ θ φ
φ θ

−Ε +∑  (2.3)  

The first term is the reconstruction loss for the output data (same as the input data), and the second term is the 

KL-divergence for ( | )q z xφ  and ( )p z . Therefore, training is proceeded in such a way that the reconstruction 

loss is minimized so that the output becomes equal to the input, and the distance between the two distributions is 

minimized. It is the original VAE theory that the distribution of data x  can finally be obtained in this process. 
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 Generative adversarial network 

 

 

 
Figure 2.2 Generative adversarial network 

 

The network used in this study is also derived from GAN [23]. The GAN trains to generate fake data 

similar to real data from noise by encoding noise z . Therefore, there exists a generator that generates fake data 

from random latent vector z , and there exists discriminator which distinguish fake data from real data. The 

purpose of the generator is to make the discriminator recognize fake data as real data. The purpose of discriminator 

is to judge real data as real and fake data as fake. 

 
Therefore, the objective function of the GAN is as follows. 

~ ( ) ~ ( )min max ( , ) [log ( )] [log(1 ( ( )))]
data zx p x z p zG D

V D G D x D G z= Ε +Ε −  (2.4)  

In Equation (2.4), discriminator proceeds so that a large value (close to 1) appears for the real data input and a 

small value (close to 0) for the fake data input. On the other hand, generator receives the noise z and trains that 

the fake data is judged as the real data by the discriminator. That is, the parameter is adjusted so that 1 ( ( ))D G x−  

value is maximized. 

In actual training, parameters are updated separately without training two networks at the same time. As 

a result, the quality of the fake data generated by the generator at the beginning of training is not good. In this 

reason, discriminator distinguishes fake data well. For this reason, the parameters of the generator should be 

updated quickly at the beginning of the training. 

D

𝑍
fake

real

fake

real

G

Discriminator

x
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Therefore, we use the objective function as follows to accelerate the generator training. 

~ ( )min ( ) [log ( ( ))]
zz p zG

V G D G z= Ε  (2.5)  

From the viewpoint of reconstruction input data, VAE has the disadvantage of producing fake data similar to 

training data. On the other hand, GAN generates relatively new data well, but it has a disadvantage that training 

is difficult. There are two reasons why learning is difficult. The first is due to ‘mode collapsing’ [24], which is a 

phenomenon in which the training model does not fully reflect the real data distribution and loses its diversity. 

Next, if the generator’s training is difficult and the force balance between the discriminator and the generator is 

broken, adversarial training of the two networks can no longer proceed. Research has been proposed to solve this 

problem. However, in this study, rather than creating a new data, it is important to generate crack data suitable for 

the deformation even though it is similar to the training data. 

 

 Adversarial Autoencoder 

 

 
 

Figure 2.3 Adversarial Autoencoder 

 

One of training networks of this study, the adversarial encoder and decoder network, derived from 

Adversarial Autoencoder (AAE) [25], which is a combination of GAN with VAE in Figure 2.3. AAE was created 

to compensate for disadvantages inherent in VAE. Therefore, a network that acts as a GAN discriminator in the 

existing VAE structure is added. For the calculation of KL-divergence, VAE assumes the prior probability 

fake

real

Decoder

Discriminator

Encoder

G zx x

' ~ ( )z p z
D



9 

 

distribution ( )p z  a normal distribution that is easy to sample and proceeds with training to make ( | )q z xφ  

similar to ( )p z  . A problem arises, when the real data distribution does not follow the normal distribution. 

However, in the case of GAN, there is no need to assume a specific probability distribution in the model. This is 

because the GAN is taught to minimize the difference between the distribution of real data and the distribution of 

fake data generated by the generator. In other words, when the KL-divergence (Regularization) of VAE is replaced 

with GAN-loss (discriminator), model can use distributions other than the normal distributions. 

 

The training process of AAE is as follows. 

( | )( , , ) [log( ( | ))]q z xAE x p x z
φ θφ θ = −Ε  (2.6)  

First, the KL-divergence term from the loss function of VAE is removed. Therefore, loss function of AE network 

is defined only with reconstruction loss as in Equation (2.6). That is, AE network proceeds to minimize the 

reconstruction loss. 

 

( , , , ) log ( ) log(1 ( ( )))D x z d z d q xλ λ φφ λ− = − − −  (2.7)  

Next, the discriminator parameters was updated in such a way as to discriminate real input 'z  from ( )p z  as 

real, and fake input z  form ( | )q z xφ  as fake to minimize the loss function constructed as Equation (2.7). 

 

( , , , ) log( ( ( )))G x z d q xλ φφ λ− = −  (2.8)  

Finally, a generator loss function is constructed as Equation (2.8) to determine the fake input as a real input by the 

discriminator. Generator of AAE is encoder in Figure 2.3, and training proceeds in the direction of minimizing 

the generator loss. As a result, when data x  is input, the encoder generates the latent vector and the decoder 

reconstructs x  from the sampled value. AAE has the advantage of obtaining a result close to real data distribution 

because there is little restriction on the use of probability distribution. Therefore, this network is also used in this 

study because it has the merit of getting clear results which is characteristic of GAN. 
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2.1.2.  Concept of proposed crack detection method 

 

Figure 2.4 shows the concept of the proposed method. In step 1, the FE model is used to obtain the 

image of deformation corresponding to crack. To do this, boundary condition and force condition are defined and 

deformation of 2D rectangular structure with random crack is generated as image data using XFEM code [26]. 

Also, crack is also made the same size image. After that, pair of these two images is used as training data. In step 

2, the crack detection network is trained using these data. There are three networks used in this study, and the 

basic framework is all the same. 

 

Network 1 follows the behavior of the original VAE, and when deformation image is given, the training 

proceeds to generate the corresponding crack image. Network 2 and Network 3 add a discriminator in the same 

frame as Network 1. And these models have a difference according to the method of defining the loss function. 

Network 2 is trained to generate a crack image corresponding to the deformation image in the AAE frame. 

Network 3 adds a discriminator to the frame of Network 1. In this case, the loss is added to the loss function that 

updates the parameters of the encoder and decoder network, and training proceeds in a direction to minimize this 

loss. In step 3, we use the networks trained in step 2 for performance verification. Therefore, when a new 

deformation image is used that is not used as training data, it is checked whether a corresponding crack image is 

generated. 
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Step 1. Generating dataset from XFEM 

 
 

Step 2. Training the CNN-ANN based networks 

 
 

Step 3. Evaluating the performance of proposed networks 

 
 

Figure 2.4 Concept of the proposed method 

Model condition FEM model
 Crack condition
 Force condition
 Boundary condition

 XFEM code
Deformation Crack
 Normalization

Dataset

Trained networkTest input Generated crack Real crack
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2.2.  Generating the dataset 

2.2.1.  Generating the data with XFEM 

 

The deformation data was generated in XFEM code [26]. To generate training data, a rectangular 

structure with the conditions in Table 2.1 was considered. 

 

Table 2.1 Conditions of FE model of deformation data 

Conditions 

Height 2 

Width 2 

Properties 200 / 0.3 

Force 100 

 

For the purpose of detection the internal crack, crack of random shape and location were created inside the 

rectangular structure. In addition, as shown in Figure 2.5, deformation data of Type 1 and Type 2 were generated 

by changing the force and boundary conditions acting on structures with the same crack. Type 1 fixed the lower 

surface and gave a uniform distribution force upwards. Type 2 provided a simply supported boundary condition 

in the y and x directions of the lower and left sides, respectively, and gave a uniform distribution force 

perpendicular to each plane direction on the top and right sides. 

 

 

 
Figure 2.5 Boundary condition and force condition of Type 1 and Type 2 

< Type 1 > < Type 2 >
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2.2.2.  Refining the data with normalization 

 

Make the result obtained from the FE model of the preceding conditions as image. At this time, as shown 

in Figure 2.6, the deformation is too small. Therefore, it is difficult to find out features in deep learning training 

with this data. Accordingly, the total deformation is normalized so that the maximum deformation is 20% of the 

diagonal length ( 2 2 ) so that it can be used for training. 

 
 

Figure 2.6 Output of XFEM and normalization result 

 

A total of 2000 random crack and paired deformation data was created. Unnecessary parts were cut off 

for training. In order to improve training speed and performance, the size of data was converted from 1200 900×

pixels to 100 100×  pixels. We used the .png file to prevent data loss during the process of refining with training 

data. Finally, 2000 pairs of data used for training are shown in Figure 2.7. 

 

 
 

Figure 2.7 Training datasets of deformation 

output normalization
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< Type2 dataset >
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2.3.  Training model 

 
In this study, we used not only Artificial Neural Network (ANN) for training model. In order to take 

advantage of Convolutional Neural Network (CNN), which is excellent for image recognition, ANN and CNN 

network were used in combination. The CNN was used for image recognition in the encoder section, which trains 

the characteristics of the image. The decoder that generates the crack image used the ANN model because its 

shape was just straight and simple. In this way, the networks that have been improved and applied sequentially 

for crack detection are introduced, and the performance is summarized as a result. 

 

2.3.1.  Variational encoder and decoder network (Network 1) 

 
In this study, it is necessary to generate accurate crack image corresponding to deformation, not 

completely new image. Therefore, we adopted the structure of VAE which shows a reliable result even though 

there is a tendency to overfitting the training data rather than GAN. However, VAE has the same structure of input 

and output so that it can automatically find the latent space of data when only input data is given, whereas the 

problem is to generate output data different from input. Therefore, only the operating structure in VAE was taken, 

and the model was called a variational encoder and decoder network (Network 1). 

 

 Detail of Network 1 

 

 
 

Figure 2.8 Detail of variational encoder and decoder network 
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In this study, the model should be reconfigured to create a crack corresponding to the deformation. To 

do this, we first need to find the latent space of the deformation and the latent space of the crack. Therefore, the 

VAE model of each image was constructed separately, and the mapping function between the latent space of the 

deformation and the latent space of the crack was trained. However, in this study, it can be assumed that the two 

data share a similar latent space because deformation and crack correspond to each other 1:1. Therefore, the 

unified latent space was constructed so that deformation and crack share one latent space. Specifically, Figure 2.8 

shows the training of two identical VAE networks. First, VAE network for deformation is an encoder network of 

CNN structure. When deformation is input, 10 latent vectors are output. Next, VAE network for the crack is a 

decoder network of the ANN structure. When the result of the preceding encoding is input, a crack image having 

the same size as the deformation image is generated. For the implementation of this training procedure, the 

objective function of the original VAE is modified as follows [17]. 

log( ( )) log( ( )) ( | )

( ) ( | ) ( | )
log( ) ( | )

( | ) ( | )
( | ) ( ) ( | )log( ) ( | ) log( ) ( | )
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( | ) ( | )

p y p y q z x dz

p y p z y q z x
q z x dz

p z y q z x
q z x p y p z yq z x dz q z x dz
p z y q z x
q z x p y z p zq z x dz q z x dz
p z y q z x

φ

φ
φ

φ

φ
φ φ

φ

φ
φ φ

φ

=

=

= +

= +

∫

∫

∫ ∫

∫ ∫

 (2.9)  

The purpose of finding the distribution ( )p x  of the data is similar to VAE. However, in this problem, the desired 

output y is not x, which is the same value as the input, so we need to find the distribution of the new output y . 

Therefore, the equation starts with ( )p y . As a result, the first term represents the distance between two probability 

distributions of ( | )q z xφ  and ( | )p z y , and the distance between these two distributions should be minimized. 

In other words, pay attention to the second term. And the training is proceeded to the direction in which this value 

is maximized. 

This second term can be thought of as a new evidence lower bound ( )ELBO φ . 

~ ( | )

( | )
( ) log( ( | )) ( | ) log( ) ( | )

( )
[log ( | )] ( ( | ) || ( ))z q z x

q z x
ELBO p y z q z x dz q z x dz

p z
p y z KL q z x p z

φ

φ
φ φ

φ

φ = −

= Ε −

∫ ∫  (2.10)  

The same result as Equation (2.2) of VAE was obtained, except that input and output were different. 
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Finally, the following equation was considered for training. 

( | )
,

arg min [log( ( | ( )))] ( ( | ) || ( ))
iq z x i ii

p y g z KL q z x p z
φ θ φ

φ θ
Ε −∑  (2.11)  

Like VAE, the first term is the reconstruction loss and should be minimized so that the input x  and output y  

are equal. The second term is the KL-divergence of ( | )q z xφ  and ( )p z , and an ideal sampling function can be 

obtained by minimizing the distance between two distributions. By maximizing the ( )ELBO φ  obtained by 

adding these two losses, the model can be finally constructed so that the deformation and the crack share one 

latent space. As a result, when a new deformation is input, a network for outputting a corresponding crack can be 

completed. The loss function defined on the basis of this theory is as follows. Where x  is deformation image, 

y  is crack image, G  is generator network of VAE, and D  is ANN based discriminator network. 

 

2 2 2

Re

( log ( ) (1 ) log(1 ( ))

0.5 ( log 1)

( )

Recon

KL

con KL

Loss y G x y G x

Loss

Loss Loss Loss

µ σ σ

= − + − −

= + − −

= − +

∑
∑  (2.12)  

Therefore, the training was performed by simultaneously updating the parameters of the encoder and decoder in 

the direction of reducing loss such as Equation (2.12). 

 

 

 Result of Network 1 

 

The optimization function and hyper-parameter used in the training process are as follows. 
 

 Optimizer : ADAM optimizer (Kingma and Ba 2014) 
 Learning rate : 0.0005 
 Batch size : 100 
 Epoch : 2000 
 Filter size : 5 5×  

 

It trained the network using 2000 data pairs of deformation and crack images. Next, for verification, we 

confirmed that when a new deformation image was input, it generates a corresponding crack image. 
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Figure 2.9 Result of Network 1 using Type 1 dataset 

 
 

Figure 2.10 Result of Network 1 using Type 2 dataset 

 

 

 Discussion of Network 1 

 

Figure 2.9 shows the result of Type 1 data, and Figure 2.10 shows the result of Type 2 data. As a result, 

there is no difference in deformation for the other cracks, as in the fifth and seventh for small cracks, so it can be 

confirmed that training is difficult. Also, we can see that the result is similar to the training data set, which is 

characteristic of VAE. On the other hand, in the case of crack not in the training data set, the detection performance 

is lowered as in the seventh. To solve this problem, there is a method of increasing the number of training data. 

However, it is less efficient, the number of suitable training data should be selected. It also shows the blurry output 

characteristic of VAE. In order to mitigate this, Network 2, which is modified AAE, was constructed. 
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2.3.2.  Adversarial encoder and decoder network (Network 2) 

 

Network 1 had a blurry result. In addition, since random z sampling is performed, there is a disadvantage 

in that result is not constant for each test. To overcome these limitations, we used the AAE network. Therefore, 

AAE has both the advantages of VAE, which is relatively easy to learn and generates physically meaningful values, 

and GAN, which shows clear results. In this study, only the operating structure of AAE was used, and the model 

was named adversarial encoder and decoder network. 

 

 Detail of Network 2 

 
AAE is characterized by the same input and output. Therefore, in order to apply to this problem, we 

have to modify it to output the crack corresponding to the deformation. Similar to Network 1, a unified latent 

space was constructed so that deformation and crack share a single latent space. Therefore, as shown in Figure 

2.11, three networks including the encoder network of deformation image, the decoder network of crack image, 

and discriminator network are constructed. 

 

 
 

Figure 2.11 Detail of adversarial encoder and decoder network 
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As shown in Figure 2.11, the AE network for deformation image is an encoder network of CNN structure. When 

the deformation image is input, 10 latent vectors are output. Next, the AE network for the crack image is a decoder 

network of the ANN structure, and a crack image is generated from the result of the preceding encoding. This 

process is similar to that of the previous Network 1. However, the adversarial encoder and decoder network used 

discriminator instead of KL-divergence, so the reconstruction loss is equal to Equation (2.13). 

( | )[log( ( | ))]AE q z xLoss p y z
φ θ= −Ε  (2.13)  

First, when deformation is given as an input, the training proceeds to minimize the reconstruction loss. Next, the 

ANN based discriminator network serves to distinguish fake latent value z  of real latent value 'z  sampled 

from the real distribution. The loss function of the discriminator network is expressed by Equation (2.14), and the 

training proceeds in the direction of minimizing loss. 

log ( ) log(1 ( ( )))DLoss d z d q xλ λ φ− = − − −  (2.14)  

Finally, the generator loss function is constructed as Equation (2.15) to make the discriminator discriminate as 

real for fake latent value z . 

log( ( ( )))GLoss d q xλ φ− = −  (2.15)  

The generator of Network 2 represents the ENCODER part, and the training was performed by updating the 

parameter in the direction of minimizing this loss. 

 

 
 Result of Network 2 

 
The optimization function and hyper-parameter used in the training process are as follows. 

 
 Optimizer : ADAM optimizer (Kingma and Ba 2014) 
 Learning rate : 0.0005 (For generator, encoder and decoder network) 
 Learning rate : 0.0001 (For discriminator) 
 Batch size : 100 
 Epoch : 2000 
 Filter size : 5 5×  

 

The initial output of generator is not good, so discriminator can easily distinguish it. Therefore, we used a 

smaller learning rate than the generator to slow the training of the discriminator. The training was conducted using 

2000 pairs. When a deformation image is given to trained network, it is encoded to obtain z . The result is then 

used as a decoder input to generate a crack image. 
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Figure 2.12 Result of Network 2 using Type 1 dataset 

 
 

Figure 2.13 Result of Network 2 using Type 2 dataset 

 

 
 Discussion of Network 2 

 

Figure 2.12 shows the results of Type 1 data and Figure 2.13 shows the results of Type 2 data. First, 

compared to Network 1, the blurring was somewhat resolved, but some cracks were not clear. There was no 

significant improvement in small cracks. However, since the latent value obtained as an encoding result is fixed, 

there is an advantage that a fixed value can be obtained. This model is fundamentally a structure where 

discriminator and generator are adversarial to each other, so training does not work well compared with Network 

1. The results also showed no significant improvement. Therefore, to improve the efficiency and performance, 

Network 3 was proposed after adding discriminator to Network 1. 
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2.3.3.  Variational encoder and decoder network with discriminator (Network 3) 

 

Network 2 solved some of the blurry problems, but it was difficult to train. To overcome this limitation, 

we added a discriminator to Network 1. Like Network 1, the training is easy, and the network is constructed to 

have the advantages of VAE and GAN. Therefore, we added a discriminator to the operating structure of Network 

1 and named it variational encoder and decoder network with discriminator. 

 

 Detail of Network 3 

 

 
Figure 2.14 Detail of variational encoder and decoder network with discriminator 

 

Reconstruct the model by adding a discriminator to Network 1 as shown in Figure 2.14. First, we 

constructed a VAE model for deformation and cracks separately. And then, take a structure of Network 1 that 

allows the deformation and crack to share a single latent space. Next, the encoder and decoder network thus 

constituted is used as generator. Like Network 1, the generator reduces the dimensions of the image to 10 latent 

vectors when a deformation image is given. Next, increase the dimension to the same size. Thereafter, training 

proceeds to generate a crack image. In this case, the fake image generated by the generator is used as input to the 

discriminator along with the real crack image, so the loss function is redefined. 
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Network 1 proceeds to minimize the reconstruction loss and KL-divergence (KL-loss) in order to generate a crack 

image from the deformation image. Network 3 is further constructed with GAN loss to train the discriminator to 

discriminate the fake image as real. As a result, deformation and crack share latent space, and when deformation 

is inputted, the network that outputs crack can be completed. The Loss function of the generator and the 

discriminator defined on the basis of this theory is finally shown in Equation (2.16). Where x  is deformation 

image, y  is crack image, G is the generator network of the VAE structure, and D is the ANN based discriminator 

network. 
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∑

 (2.16)  

 
Therefore, as in Equation (2.16), the encoder and decoder parameters of the generator network are simultaneously 

updated in the direction of minimizing the G loss. It also updates the discriminator network parameters to 

minimize the D Loss. 

 

 
 Result of Network 3 

 

The optimization function and hyper-parameter used in the training process are as follows. 

 
 Optimizer : ADAM optimizer (Kingma and Ba 2014) 
 Learning rate : 0.0005 (For generator, encoder and decoder network) 
 Learning rate : 0.0001 (For discriminator) 
 Batch size : 100 
 Epoch : 2000 
 Filter size : 5 5×  

 

For the same reason as Network 2, the learning rate of generator and discriminator was different. The training 

was conducted using 2000 data pairs. After that, test data was generated and the trained network was verified. At 

this time, the network encodes the input deformation to obtain the latent value z . Then, the z  is used as a 

decoder input to generate a crack image. 
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Figure 2.15 Result of Network 3 using Type 1 dataset 

 
 

Figure 2.16 Result of Network 3 using Type 2 dataset 

 

 
 Discussion of Network 3 

 

Figure 2.15 is the result of Type 1 data, and Figure 2.16 is the result of Type 2 data. Because it is the 

same structure as Network 1, it can be seen that the characteristic of Network 1 also appears in Network 3. That 

is, it outputs different results for each test, and it can be confirmed that detection is difficult for small cracks. Also, 

as with Network 1, you can see that the results are similar to the cracks in the training dataset. However, compared 

to Network 1, blurry result was somewhat resolved. Therefore, we confirmed that Network 3 outputs relatively 

accurate results. Furthermore, compared to Network 2, training is relatively easy. However, the current 

comparison is to qualitatively compare the results of the proposed Networks. Next, we propose a measure for 

quantitative performance comparison. 
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2.4.  Evaluating the performance of trained network 

 

In chapter 2.3, performance was checked for each network, but it was very qualitative. Therefore, in this 

chapter, we propose the following measures to quantitatively evaluate the performance of the training network. 

 

2.4.1.  Quantitative evaluation 

 

 Quantitative evaluation using least square method 

 

The detection results show that the position and shape of the cracks are comparable, but they are blurry. 

Therefore, the least square method was modified to solve this problem. When we know the straight line of the 

crack, we used the vertical distance from the straight line as the error. The reason for not using pixel-wise MSE 

at this time is that although the network did not detect the exact position, we wanted to find the error when finding 

similar position and shape cracks. 
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Therefore, the straight line at 100 100×  domain is obtained by using both ends of the crack. Then, the 

coordinates of the cracks detected by the network are the components (i, j) of the 100 100×  matrix. Next, we use 

the distance formula between the coordinates of the crack and the straight line. That is, the distance between the 

detection value and the actual crack straight line is numerically expressed. At this time, we used the method that 

divides the error into the longest distance (100 2 ) in the domain so as to be between 0 and 1. In addition, the 

detection result values are closer to 0 in white, and closer to 1, they are in black. Therefore, the detected values 

along with the distance from the actual crack should be calculated with weighting. For this, the error was 
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calculated by dividing into (1) the area where the actual crack existed and (2) the area where the crack did not 

exist. At this time, since the weight values are mostly concentrated from 0 to 0.4, the square root was taken to 

adjust the scale. Therefore, the error can be obtained by Equation (2.17) using the values obtained in (1) and the 

values obtained in (2). 

 

 Quantitative evaluation using histogram compare method 

 
The accuracy was calculated using the least square method. However, there is a disadvantage that 

measurement of size is not possible. In order to compensate for this, we have considered the use of different 

measures together. In order to compensate for this, we have considered the use of different measures together. A 

histogram comparison method was used to measure the size of the crack. The actual crack data and detection data 

are projected on the x and y-axes and the histograms are compared. To do this, a data histogram is obtained by 

using dot product the vector with all components 1 on the left and right sides. Also, since the weights are mostly 

concentrated in values between 0 and 0.4, we take the square root to adjust the scale. Then, using the histogram 

correlation method of Equation (2.18), accuracy between 0 and 1 was shown. 
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 (2.18)  

In the equation, N represents the total number of histogram bins, and i and j represent the i-th and j-th components 

of the histogram, respectively. 
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 Result 

 
 
 
 
 
 

 
 

Figure 2.17 Quantitative result of Type 1 dataset 
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Figure 2.18 Quantitative result of Type 2 dataset 
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 Discussion 

 

Using the least square method and the histogram compare method, the accuracy is calculated as shown 

in Figure 2.17 and Figure 2.18. Figure 2.17 shows the result of training using Type 1 data. The results show that 

the accuracy is low for small crack. This is because deformation is very small regardless of the location of the 

cracks. Even though the vertical cracks are large, the same phenomenon occurs because the deformation is similar 

to the vertical tensile stress. In addition, the result of Network 3 is clearer than that of Network 1, and it was 

quantitatively accurate. Also, for Network 2, the accuracy was not very good for some cases of cracks. Figure 

2.18 shows the result of training using Type 1 data. In this case, Network 3 is more accurate than Network 1 and 

Network 2 in terms of accuracy. 

However, the proposed measure has the disadvantage of knowing the slope of the crack. Therefore, we 

used accuracy and recall to measure the accuracy. To measure precision and recall, a value less than a certain value 

is determined as 0, and a value equal to or greater than a predetermined value is determined as 1, and the result is 

clarified. As a result, the detection image is as shown in Figure 2.19, and the data values are composed of only 0 

(white) and 1 (black). The first row in Figure 2.19 shows the actual cracks, and the second row is the network-

detected crack. Finally, the third row is a refined result for quantitative evaluation. 

 

 
Figure 2.19 Refined result 
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To evaluate the detection performance, a detection rate (recall) was used first. Recall represents the 

ability to capture objects without missing in cognitive technology. Thus, this problem is a measure of whether the 

system has detected cracks in the pixel region where real cracks exist. Therefore, it is expressed as follows. 

real fake

real

crack crack
recall

crack
=

  (2.17)  

However, if there is a crack in all pixels, the recall is 100%, so recall is not enough to evaluate 

performance. In other words, recall and precision must be considered simultaneously to evaluate the performance 

of detection technology. Therefore, we calculated the precision of crack detection results. Precision is used in 

machine learning to have a similar meaning to accuracy. Precision is the accuracy when the system detects a crack. 

That is, it is a measure to judge whether a pixel that the network diagnoses as a crack is a pixel where a real crack 

exists. 

real fake

fake

crack crack
precision

crack
=

  (2.19)  

To evaluate the performance of detection technology, recall and precision must be considered 

simultaneously. Therefore, we want to express the precision-recall performance of the algorithm as a number 

using F-measure. The F-measure is calculated as the harmonic mean of the precision and recall. It can be expressed 

as follows. 

2 precision recallF measure
precision recall

⋅
− = ⋅

+
 (2.20)  

In this study, both precision and recall are very important. However, in fact, the value of precision is 

very small because it is represented by approximate position in detection. Therefore, both F-measure and recall 

were calculated. For performance verification, 100 Type 2 data were used and the quantitative evaluation values 

were averaged. The results of these performance tests are shown in Table 2.2. 

 

Table 2.2 Result of precision and recall 

 Recall F-measure 

Network 1 0.362 0.16 
Network 2 0.366 0.18 
Network 3 0.282 0.14 
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First, it was confirmed whether the quantitative evaluation was successful. As mentioned earlier, in the 

case of crack detection of this problem, it is very important to get the correct value. However, it is difficult to 

obtain accurate cracks in the actual exact position. That is, the value of precision is very small because the crack 

is represented by the approximate position. Therefore, the F-measure value is very small. On the other hand, the 

recall, which is the approximate location accuracy, was relatively high. Unlike the actual qualitative results, the 

results were evaluated with pixel by pixel, so the accuracy was low even though the approximate position was 

well detected. Therefore, this measure is considered to need more complement. Next, the network was compared 

using quantitative evaluation results. First, we can confirm that Network 3 has good performance for Type 1 data, 

which is difficult to detect for vertical cracks due to boundary condition and force direction, except for vertical 

cracks. On the other hand, in case of Type 2 data, the result of Network 2 is relatively accurate. However, it can 

be seen that Network 1 and Network 3 show more accurate results quantitatively. Comparing the network 

performance based on the qualitative comparison and the quantitative comparison, it can be confirmed that 

Network 3 shows more accurate results and quantitatively accurate results. At this time, Network 2 is somewhat 

clearer than the result of Network 1, but there is no big difference. It also does not detect size or location for small 

cracks. In other words, there are significant differences in performance. In addition, Network 2 is difficult to train, 

so Network 1 and Network 3 are used in this study. Finally, Figure 2.20 shows the detection results using Type 2 

of the actual system in the case of the crack-free structure. When the quantitative evaluation was carried out except 

0.03 or less pixels, a reasonable result was obtained. 

 

 
 
 

Figure 2.20 Result of crack-free structure 
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2.5.  Validation of network performance 

 

Convergence test was performed for verification of Network 1 and Network 3. Total 2000 data, 4000 

data and 8000 data were used for the learning and the quantitative accuracy was averaged using a total of 1000 

test data. The result is shown in Figure 2.21. 

 

 

Figure 2.21 Convergence curve of quantitative results 

 

In the convergence curve, it is confirmed that the accuracy improves as the number of data actually 

increases. However, Network 3 has higher accuracy than Network 1 only when it is trained using 4000 data. This 

is because this convergence curve compares the results of 1500 iterations. That is, in the case of Network 3 having 

a larger number of parameters, the training was not completed for all the parameters, and the results were different 

from each other. Therefore, if the number of training iterations is increased, the result is expected to improve. 

Finally, the number of latent values was increased by increasing the latent value from 5. The results of training 

Network 3 using Type 2 data (2000) are as follows. 5 was 0.7394, 10 was 0.6910, and finally 20 was 0.6787. 

Therefore, the best result was obtained when the latent value was 5. 

  



32 

 

2.6.  Conclusion 

 

In this study, we attempted to solve the problem of crack detection by generating a crack corresponding 

to the deformation of a two-dimensional rectangular structure. Therefore, the generative model was trained. 

Actually, rather than using VAE, which has the same input and output structure, it is more structured to use a 

model called Pix2pix using GAN, an image matching method, to implement crack images for deformation. 

Pix2pix is a structure in which generator and discriminator grow hostile in the way that generator generates an 

image from noise when input data is given and discriminator distinguishes it from a real image. Therefore, there 

is an advantage that a new image can be generated. However, as a result of actual training, there was a disadvantage 

that it was difficult to learn by falling into mode collapsing phenomenon as shown in Figure 2.22. 

 

 

Figure 2.22 Result of Pix2pix 

 

In this study, it is also important to create an image suitable for the deformation even if it is close to the 

training data, rather than creating a new image that is the advantage of the GAN. Therefore, based on the structure 

of VAE, discriminator was added to compensate for the disadvantages of VAE. Therefore, we proposed the 

structure of Network 1 ~ 3. In addition, through validation, we confirmed that the proposed network can finally 

detect cracks from the deformation image. However, in the case of deformation images, there is a limitation that 

cracks can be detected only for actual force conditions. In other words, there is a disadvantage in that if it is 

applied to an actual problem, data must be generated in accordance with the condition of the load and the training 

should proceed. To alleviate this limitation, we will use a static-mode shape that is load-independent in the next 

chapter. We also trained the Network 1 and Network 3 networks using the mode shape data. 
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Chapter 3.  Crack detection using mode image 

In this chapter, training and testing were conducted when the mode shape was used as input data in the 

crack detection model proposed in chapter 2. 

 

3.1.  Generating the dataset 

 
Since the deformation data is load-dependent, there are limitations. In other words, a dataset must be 

configured for each load-condition to train the network. Therefore, in this chapter, static mode is used to construct 

load-independent dataset. 

 

3.1.1.  Generating the data with XFEM 

 
Mode data was also generated using the XFEM code [26]. Consider a rectangular structure with the 

same conditions as in Table 3.1. 

 
Table 3.1 Conditions of FE model of mode data 

Conditions 

Height 2 

Width 2 

Properties 200 / 0.3 

 

Therefore, to obtain the static mode, only the boundary conditions are considered except for the load 

condition. This is because the actual structure has a boundary condition and can be constructed as a model. Next, 

we used the boundary conditions of Type 2, which had good results in chapter 2, as shown in Figure 3.1. 

In this condition, we obtain the eigenvector of the stiffness matrix obtained from Finite Element (FE) model. In 

this case, the first mode with the smallest eigenvalue represents the mode shape in which the structure is most 

easily changed, so that the first mode is used. Considering the training results of the mixed data in chapter 2, crack 

detection performance improves when additional features are added. Therefore, the mode shape is obtained from 

the eigenvector when only the first mode is input, and the mode shape is obtained from the eigenvector when both 

the first mode and the second mode are input. 
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Figure 3.1 Boundary condition of load-independent dataset 

 

3.1.2.  Refining the data with normalization 

 
For training, XFEM results are imaged. However, the mode shape of actual XFEM result is small 

deformation. Also, the overall mode deformation is smaller than deformation of the enrich node. Therefore, 

normalization is performed so that the maximum deformation of the outer node is 10% of the diagonal length 

( 2 2 ) since the outer line of the structure is used for training. In this way, 2000 image data sets were created and 

the data were refined. The data of 2000 pairs used for training are divided into mode data and mixed mode data 

according to the number of modes used, as shown in Figure 3.2. 

 

 
 

Figure 3.2 Training datasets of mode shape 
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3.2.  Training result 

 
In chapter 2, the network is sequentially improved for crack detection. In this study, we selected the 

training of Network 1 and Network 3 and conducted training. Then we verified the performance of the trained 

network. Figure 3.3 shows the results of Network 1 and Network 3 training with mode data. Figure 3.4 shows the 

result of Network 1 and Network 3 training mixed mode data using both primary mode and secondary mode. 

 

 
 

Figure 3.3 Result of Network 1and Network 3 using mode dataset 

 

 
 

Figure 3.4 Result of Network 1 and Network 3 using mixed mode dataset 
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3.2.1.  Discussion 

 
Compared with the result of deformation data in chapter 2, it can be confirmed that the result is not 

good. This is because the actual deformation of the structure consists of superposition of various modes. Therefore, 

it is difficult to detect crack with just one mode. Therefore, as a result of checking the data, different cracks may 

correspond to each other in a similar mode shape as shown in Figure 3.5, which makes training of the network 

difficult. 

 

 

 
Figure 3.5 Similar mode shapes corresponding to different cracks 

 

Therefore, the network is trained by using mixed mode data. As a result, we could obtain good results 

in Network 1 and Network 3 when using mixed mode data. Therefore, it is expected that more accurate crack 

detection will be possible by using superposition of modes of first mode, second mode, third mode. 

 

Next, comparing the network, we can confirm that the result of Network 3 is clearer than Network 1. 

That is, the blurry result is resolved. However, the quantitative accuracy showed similar results. Unlike Network 

2, which trains to minimize generator loss, Network3 is training to minimize overall loss by adding generator loss 

to ELBO. Therefore, the actual generator loss increases as training progresses. However, there is an advantage 

that GAN is applied because the training progresses because the generator and the discriminator are hostile. 
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3.3.  Closure 

 

In this chapter, we have trained Network 1 and Network 3 proposed in chapter 2 using static mode shape 

data of structures for crack detection. In other words, it is a crack detection method that generates an image of a 

corresponding crack from the mode shape of a two-dimensional rectangular structure. Because the deformation 

data in chapter 2 is load-dependent data, the efficiency is not good, so the training is performed using load-

independent data. 

Therefore, the training was performed using the primary mode shape. The results were worse than the 

training using deformation. This is because, as mentioned above, the characteristics of the crack cannot be found 

only in a few low-order modes. Therefore, mixed mode data was generated using both the primary mode shape 

and the secondary mode shape, and training was conducted. As a result, the performance was improved, and the 

feasibility of the method of generating data by superposition more modes was confirmed. 
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Chapter 4.  Conclusion 

 

In this study, we attempted to solve the problem of detecting internal crack of structure from external 

data (deformation, mode shape) by using generative model of deep learning. Therefore, when a deformation image 

of a structure is given, a training model is constructed to detect crack. First, training data and test data were 

generated using XFEM code. The deformation images and the corresponding crack images were generated by 

varying the force and boundary conditions on the 2 2×   rectangular two-dimensional structures with random 

cracks. For the load-independent data training, a mode shape of the structure using only boundary conditions and 

a corresponding crack image were generated. In this way, 2000 pairs were used as training data, respectively. For 

the test data, 10 pairs of deformation and mode shape images were prepared for cracks not included in the training 

data. The deformation(mode) image is entered into the CNN based encoder network. At this time, the dimension 

is reduced to a latent vector, and it is trained to generate a crack image in the decoder network. This process is 

required to obtain both the distribution of the deformation(mode) image and the crack image. However, since 

deformation and crack are closely related to each other in this problem, it can be assumed that deformation and 

crack have the same latent vector. Therefore, a training model is constructed so that the deformation image and 

the crack image share the same latent vector. In the process, we minimize the distance between ( | )q x zφ  to obtain 

the latent vector of deformation and ( | )p z y  to obtain the latent vector of crack. In other words, the encoder and 

decoder parameters are updated so that the two latent vectors are equal. Using this encoder and decoder structure, 

a network for crack detection was constructed. 

 

Network 1 is derived from a variational encoder and decoder network. Network 2 is an adversarial 

encoder and decoder network with GAN added to Network 1, and it tries to solve blurry problem which is a 

disadvantage of VAE. Network 2 solved the problem of blurry, which was the limitation of Network 1, but it 

became difficult to train with GAN structure. In addition, some cracks showed satisfactory performance, but for 

small cracks, they did not even notice the shape. Therefore, in order to solve this problem, training was conducted 

with Network 3 where a discriminator network was added to Network 1. In order to validate the performance of 

the three networks, a new deformation(mode) image was input and a crack image was output. 
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First, I have reviewed data. When the deformation image was used for the training data, Type 2 was 

better than Type 1. This is because vertical tensile load is applied to Type 1, so vertical cracks have similar 

deformation. Therefore, Type 2 data, which was able to better characterize crack, could detect crack more 

accurately. Small crack also had a small deformation size and could not obtain accurate result. Next, we use a 

mode shape which is load-independent data to overcome the constraint of deformation data. However, the 

detection using the mode shape showed worse performance than the deformation image. This is because the 

characteristics of cracks cannot be completely expressed by using only the primary mode. Therefore, the training 

was performed with the image that overlapped the primary mode and the secondary mode, and the better results 

were obtained. Through this, we confirmed the possibility of crack detection using mode data. 

 

Next, the training model showed similar results for Network 1 and Network 3, which are structurally 

similar. By comparison, Network 3, which added a discriminator, performed a little better. At this time, Network 

2 has a merit that Network 2 shows one result, not a random result in structure, and high-accuracy detection 

performance in some cases of cracks. However, the GAN feature makes training difficult, and in some cases the 

accuracy of cracks is not good. Therefore, Network 2 is excluded in order to select a network that guarantees 

consistent performance regardless of what data is input. Therefore, a convergence test was conducted to validate 

the adopted Network 1 and Network 3. At this time, the best used data was Type 2, and the performance of the 

training model was confirmed using 2000 pairs, 4000 pairs, and 8000 pairs of data. As a result, we can confirm 

that the performance increases for both Network 1 and Network 3 as the number of data increases. Also, it was 

confirmed that the detection performance was improved for the cracks that were difficult to detect. However, it is 

necessary to study whether the number of data is appropriate. As the actual number of data increases, accuracy 

improves, but training efficiency decreases, so it is important to find the right number of data. 
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First, since the study was conducted using a two-dimensional image, there is a limitation in actually 

detecting visible crack. Therefore, this study is not practical in itself, but it is meaningful in that it confirms the 

feasibility of crack detection using 3D crack data in the future. Still, I was concerned about the application of this 

study. In the case of a laminated structure with a thin plate type structure, it was judged that the result of this study 

could be applied because the cracks of each plate are invisible in reality. In fact, this study proceeded with two-

dimensional data because there is no 3D finite element model implemented. However, if we later generate crack 

data for a 3D structure, we will expect that internal crack detection using the FE model and machine learning 

algorithm is possible.  

Second, the deformation of the real structure is very small and difficult to measure. In addition, there is 

a limitation in that it uses lab-level data to understand the conditions. To solve this problem, we used load-

independent static mode. However, static mode shapes also have limitations that are difficult to obtain from 

structures. Therefore, the results of this study are useful in confirming the feasibility of detecting crack through 

machine learning of mode data. Therefore, this result is expected to be a cornerstone of crack detection using 

dynamic mode(vibration) data.  

Third, all of the data used in this study were normalized for data refining because of their small 

deformation. Therefore, the size information of the crack can be ignored in the same type of crack at the same 

position. In order to compensate for this, we will use conditional variational autoencoder (CVAE) in future studies. 

That is, the maximum deformation is known, so labeling it as a condition can solve this problem. There is also a 

limitation that different cracks correspond to similar deformations. Therefore, in order to solve this problem, a 

method of constructing a training model so that data of Type 1 correspond to data of Type 2 will be used. However, 

in order to guarantee the detection performance, we think that the application field should be considered for very 

small cracks. 

Finally, in this study, we used CNN and ANN instead of CNN based neural network. However, in the 

case of image recognition, CNN shows better performance in most studies. Furthermore, the performance of the 

training model using CNN and ANN was better than the actual ANN based results. Therefore, it is necessary to 

use full CNN neural network in future studies. In addition, to make the training model robust, we will use training 

data to synthesize noise in deformation data. We will also check whether crack detection is possible for arbitrary 

deformations that are not generated by the FE model. 
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Despite the limitations of this study mentioned above, crack detection through machine learning of FE 

model data is intuitive and interesting. It is useful in detecting random cracks when compared with conventional 

crack detection studies using machine learning. Also, since the FE model data is used without using laboratory 

data, there is an advantage that data can be efficiently collected. Although there is a shortcoming in practicality 

when compared with current commercially available technologies. However, there is a limit to the commercialized 

crack diagnosis method that the actual person must directly collect data and analyze it. Therefore, we expect that 

this study will be a practical study through future work if we use external data (vibration) considering actual 

measurement. 
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