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Abstract: In this paper, several continuum-mechanics based finite elements are developed by remedying their 

deficiencies. Our focus is to develop reliable and efficient shell and solid-shell elements satisfying the ellipti-

city, consistency and inf-sup conditions. That is, basic tests including the isotropy, patch and zero energy 

mode tests should be passed and the elements should show uniformly optimal convergence to reference solu-

tions regardless of asymptotic categories of the shell structures considered. Membrane locking severely dete-

riorates the performance of the of 4-node quadrilateral shell elements when curved geometries are solved with 

distorted meshes. Previous studies to remedy membrane locking based on reduced integration and assumed 

strain method has not been successful in developing reliable 4-node shell elements. In the present study, 

membrane locking in 4-node quadrilateral shell elements is deeply studied for arbitrary mesh geometry. Three 

new 4-node shell elements developed are presented. In addition, 6-node triangular solid-shell element is de-

veloped as an extension of previous shear locking treatment of 3-node shell element and the remedies of 

thickness locking in the previous literatures. The newly developed continuum-mechanics based shell elements 

are examined through basic numerical tests as well as comprehensive convergence studies encompassing the 

practical range of shell thickness. 
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Chapter 1. Introduction 

 

1.1 Introduction  

 

Shells are beautiful and efficient structures that exist in nature and many engineering applications, 

but their inherently complicated behavior is not easy to predict. The Finite Element Method (FEM) 

has been very useful for the analysis of shell structures. For several decades, the development of 

effective shell elements has been of great interest [1-22]. More recently, there have been another 

approaches to analyze the shell structure, using schemes such as extended FEM [23,24] or iso-

geometric analysis [25-27]. However, in this paper, we focus on classical shell finite elements and 

remedying its deficiencies. 

 

The low-order shell elements have minimum number of nodal unknowns and hence very efficient. 

Low-order quadrilateral shell elements are most widely used for its accurate predictive capability, 

while low-order triangular shell elements are frequently used because of its feasibility in modeling 

arbitrary shell structures. [6,28]. However, such low-order shell elements frequently suffer from dif-

ferent kinds of locking (shear, membrane and thickness locking) which prevent the solution to con-

verge accurately. The main topic of this paper is to remedy membrane and thickness locking for 

some specific categories of classical shell finite elements. 

 

A reliable shell finite element should satisfy mathematical condition such as ellipticity and con-

sistency while giving stable convergence toward the reference solution, also known as the inf-sup 

condition. Such “ideal” shell elements should pass basic tests such as patch, zero energy mode, in-

plane mode and isotropy tests. In addition, a uniformly optimal convergence should be shown 

through shell problems regardless of the kinds of asymptotic behavior (membrane-dominated, bend-

ing-dominated and mixed) which depends on the geometry, loading and boundary condition of the 

shell structures [15-22].  

 

There are essentially three different approaches in formulating the shell element discretization. In 

the ‘superposition’ approach, the shell behavior is seen as a superposition of membrane and plate 
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bending actions. These ‘flat shell’ elements do not include the curvature effect and the plate bending 

and membrane behavior is coupled only at the nodal points. In the ‘theory based’ approach, element 

formulation is based on a specific shell theory. However, the finite element discretization requires 

nodal point variables appear on the derivatives in addition to the nodal displacements and rotations. 

If the shell theory is only applicable to certain shell geometries or analysis conditions, the finite el-

ement is subjected to the same restrictions. In the ‘continuum-mechanics based’ approach, very gen-

eral finite element formulation which can be used for any types of analysis is obtained by degenerat-

ing the three-dimensional continuum to shell behavior [29].  

 

The continuum-mechanics based approach results in two big categories of shell element discretiza-

tion. In ‘solid-shell’ elements [30-42], nodes at the top and bottom surfaces remains and only inter-

nal formulation of the element is modified to account for shell behavior. Since it is enough to use 

only nodal translations in the displacement unknowns, solid-shell elements are often preferred in 

certain analysis types involving heavy computations, such as elasto-plastic analysis. In ‘degenerated 

shell’ elements [1,2,5-17,42], nodes are placed only at the mid-surface of the shell structure. These 

elements, frequently called as ‘shell’ elements, are most efficient and widely used while requiring 

both nodal translations and rotations in the nodal displacements. 

 

In the present study, main efforts are devoted to the development of effective continuum-mechanics 

based shell elements. The two different types of low-order shell elements, 4-node quadrilateral shell 

and 6-node triangular solid-shell elements are developed.  

 

 

1.2 Previous studies of low-order shell elements 

 

In this section, we review previous studies of low-order quadrilateral and triangular shell elements, 

encompassing solid-, flat and degenerated shell elements. 

 

 

1.2.1 Solid-shell elements 

 

Firstly, we review the previous studies on the 8-node solid-shell elements. 
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There are many literatures on 8-node solid-shell elements which are close to the optimal element. 

Hauptmann et al. (1998) presented among the first 8-node quadrilateral solid-shell element [35]. 

Kemp et al. (1998) published assumed strain solid-shell element [43]. Klinkel et al. (1999) present-

ed solid-shell element for laminated structure [33]. Hauptmann et al. (2000) applied solid-shell con-

cept to large elasto-plastic deformations [44]. Sze et al. (2000,2002) applied hybrid stress and as-

sumed stress techniques to solid-shell elements [36,37]. Harnau et al. (2002) presented element for 

large-deformation non-linear analysis [41]. Alves de Sousa et al. (2005) applied Enhanced Assumed 

Strain (EAS) and Assumed Natural Strain (ANS) on reduced integrated solid-shell element with sta-

bilization [45]. Kim et al. (2005) applied resultant stress formulation to 8-node solid-shell element 

for increased efficacy in non-linear simulation [46]. Klinkel et al. (2006) also presented element for 

non-linear analysis [32]. Cardoso and Yoon et al. (2008) applied EAS, ANS and ‘area coordinate 

method’ on development of solid-shell element with one-point integration with stabilization [47]. 

Kulikov et al. (2008) [48] applied geometrically exact formulation of Simo et al. (1989) [49] into 

solid-shell with seven D.O.Fs per node. Schwarze et al. (2009) applied EAS and ANS method to 

develop solid-shell element with reduced integration and stabilization [34]. 

 

Secondly, we review the previous studies on the 6-node solid-shell elements. 

 

There have been relatively few literatures on 6-node triangular solid-shell elements. Sze et al. 

(2001) developed a 6-node pentagonal solid-shell element by using the ANS technique for shear 

locking and the ‘modified laminated stiffness matrix’ for thickness locking [30]. Flores (2013) de-

veloped a 6-node solid-shell element by applying the ANS technique for shear locking and the EAS 

technique for thickness locking [31]. Those two elements passed all the basic tests, but we remark 

that convergence tests were not sufficient. Sze et al. tested the convergence of displacements on 

several linear benchmark problems focusing on coarse-meshes [30]. The element by Flores lacks 

linear tests to fully see the convergence behavior, especially for the thin shell cases [31]. Trinh VD 

et al. (2010) presented a 6-node solid-shell element using assumed strain projection method, but 

pass of basic tests were not considered [50]. In our study, we aim to show the convergence perfor-

mance of the newly developed solid-shell element from coarse to fine meshes over shell problems 

with various curvatures encompassing a practical range of shell thickness (ratio of thickness to 

overall dimension, 100/1/ Lt ~ 10000/1 ). 
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1.2.2 Flat shell elements 

 

Firstly, we review the previous studies on the 4-node flat shell elements. 

 

Many literatures considered flat shell element with 6 DOFs (Degrees of Freedom) per node and 

warping correction. Bathe and Ho (1981) developed flat shell element by superimposing membrane 

element and plate bending elements [51]. Ibrahimbegovic and Wilson (1991) presented unified for-

mulation for triangular or quadrilateral flat shell element [52]. Aminpour (1992) applied assumed 

stress hybrid method to the flat shell element [53]. Cook (1994) studied and reviewed the use of 

drilling degrees of freedom on flat shell element having warped geometry [54]. Groenwold et al. 

(1995) applied assumed strain method and modified drilling degrees of freedom and 5-point quadra-

ture rule to obtain the flat shell element [55]. Kim and Lee et al. (1998) applied assumed strain 

method and Allman-type modification on displacements of flat shell regarding membrane locking 

[56]. Choi and Lee et al. (1999) applied higher order modes, 5-point integration with warping cor-

rection on the flat shell element [57]. Choi and Lee et al. (2003) used various non-conforming 

modes on the flat shell elements regarding the membrane locking [58].  

 

First limitation of the literatures of flat shell are, that they use warping correction (or ‘rigid-link cor-

rection’) by Taylor (1987) [59]. Because it is forcibly applied to the geometry to project elements 

into flat shapes, it tends to decrease the performance of the element in general distorted cases, as 

pointed out by Groenwold et al. [55]. Secondly, although separation of membrane and bending is 

simplest and actual physical nature of flat shell structures, it does not correctly account for the 

membrane-bending coupling which naturally arises for general curved shell structures. Adding the 

coupling between membrane and bending, and also further including Reissner-Mindlin theory was 

studied by Cook [54], but it is hard to manipulate all the (separated) membrane, bending and the 

coupled parts in a way to make optimally converging element.  

 

Secondly, we review the previous studies on the 3-node flat shell and plate bending elements. 

 

Batoz et al. (1980) studied one of the first 3-node plate bending elements [60]. Fricker (1985) im-

proved the bending performance of the element by inclusion of cubic order of shape function [61]. 
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Auricchio et al. (1994) developed a plate bending element with cubic bubble shape function applied 

only to the two internal ‘rotation’ DOFs [62]. Argyris et al. (1994) developed a flat shell element 

based on assumed Natural Mode Method (NMM) [63]. Despite the fact that NMM has huge poten-

tial in improving the behavior of the elements, the formulation is relatively complex to be imple-

mented. All the plate bending and flat shell element discussed above did not show uniformly opti-

mal convergence behavior regarding shear locking. Onate et al. (2000) presented a set of flat trian-

gular elements without rotation DOFs, but the computations external to the element domains were 

required [64]. 

 

 

1.2.3 Degenerated shell elements 

 

In this section, we review the previous studies on the 4-node degenerated shell elements. 

 

One major sub-category is related to reduced-integration with stabilization. Work by Belytschko, 

Tsay and Liu (1981) is one of the first to apply reduced integration and stabilization on the shell el-

ement [65]. Hughes and Liu (1981) consequently developed another one-point quadrature shell [66]. 

Belytschko and Tsay (1983) presented a stabilization procedure for plate element [67]. Belytschko 

et al. (1984) showed usefulness of one-point quadrature shell on explicit, nonlinear dynamics [68]. 

Belytschko et al. (1992) applied warping correction to the Belytshcko-Tsay or Hughes-Liu shell el-

ement [69]. Belytschko and Leviathan (1994) developed new physical stabilization procedure so 

that the element passes patch test [70]. Zhu et al. (1996) developed new one-point quadrature shell 

element with drilling DOFs [71]. Kim et al. (2003) applied assumed strain hybrid method with qua-

si-conforming modes to develop shell element with 6 DOFs per nodes [72].  

 

One clear disadvantage of reduced integration with stabilization is that it requires empirical parame-

ter, the control parameter for hourglass stabilization. Using the physical stabilization [70], one can 

obtain the hourglass stiffness with no parameters, but the framework of stabilization still requires 

the control parameter. Second disadvantage of reduced integration with stabilization is that it re-

quires projection on displacements [73] to express correct rigid body modes for the warped geome-

try of the 4-node shell elements. For general 4-node shell elements, this mingles the physical nature 

of translation and rotation DOFs and thus affecting the physical nature of the shell solutions. Thus, 
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although it may obtain convergent behavior in some tests, it is hard to satisfy convergence in strict 

sense: such as accurate convergence of all of displacement, strain and stress combined measured 

using s-norm [18]. 

 

Another major sub-category is related to mode-increasing technique of Enhanced Assumed 

Strain/Stress (EAS) formulation, which is usually used in conjunction with other types of tech-

niques. Lee et al. (1978) studied improvement on shell finite elements using mixed formulation such 

as EAS or ANS [74]. Andelfinger and Ramm (1993) developed several EAS elements and showed 

the equivalence to elements formulated by the Hellinger-Reissner functional [75]. Bischoff and 

Ramm (1997) combined both EAS and ANS techniques to shell elements [76]. Witkowski (2009) 

applied semi-EAS-ANS method to 6 parameter shell element [77].  

 

Disadvantage of the EAS formulation is that the increased performance is directly related to the in-

creased computational cost, the assembly cost of the elements. For the membrane locking problem, 

element behavior is improved as more higher-order terms are involved using the EAS technique, 

because the higher-order terms guarantee higher rates of convergence. However, this is not effective 

than finding the method to eliminate the cause of the membrane locking on the 4-node shell element 

without highly increasing the assembly cost. Most importantly, the error due to locking overruns the 

increased accuracy as thickness is decreased. 

 

Another sub-category is related to hybrid stress/strain or Assumed Stress Hybrid (ASH) technique. 

Rengarajan et al. (1995) published assumed-stress hybrid shell element with drilling DOFs for line-

ar stress, buckling and free vibration analysis [78]. Sze et al. (1997) published hybrids tress quadri-

lateral shell element with full rotational DOFs per node [79]. Sansour et al. (2000) studied families 

of 4-node or 9-node elements with hybrid stress/strain formulation, with no successful result in 

patch tests [80]. Regarding the membrane part, Cen et al. (2011) [81] derived hybrid stress-function 

plane element with drilling DOFs extending the original work by Pian (1964) [82]. 

 

One disadvantage of the hybrid stress/strain formulation is that it does not always yield a symmetric 

stiffness matrix. This is due from that it is required to modify specifically the stress or the strain on-

ly (and not the other one) in some hybrid stress/strain formulation. Another disadvantage is that 

higher performance comes from increased number of internal parameters in assuming the 
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stress/strain. 

 

Another important category is assumed strain or related method, such as the Mixed Interpolation of 

Tensorial Components (MITC), ANS or Discrete Shear/Strain Gap (DSG) methods. Dvorkin and 

Bathe (1984) applied the MITC method on the 4-node shell element to obtain both efficient and ac-

curate element, the MITC4 shell element [1]. This method of treatment of shear locking has been 

used extensively along with other techniques, such as assessed by Stander et al. (1989) for finite 

rotation shell analysis [83]. Choi and Paik (1994) applied the assumed strain method on the mem-

brane part of degenerated shell element to successfully remove the membrane locking while failing 

the patch test [2]. Koschnick et al. (2005) applied the DSG method for treating membrane locking 

of quadrilateral elements, but the basic test was not passed for the 4-node shell element [84]. Vampa 

(2007) [85] developed new MITC shell element by applying QMITC membrane element [86] to in-

plane strains of the MITC4 shell element. While the resulting element satisfies basic tests and ob-

tains improved convergence behaviors, the behavior was not perfectly uniformly optimal and the 

formulation was rather costly computationally. 

 

Secondly, we review the previous studies on the 3-node degenerated shell elements, which pass all 

the basic tests including isotropy, patch and zero energy mode tests. 

 

Indeed, there are few elements which pass all the basic tests. Argyris et al. (1994) developed trian-

gular shell element based on NMM technique, with improved performance in sake of complexity in 

formulation [87]. Further improvement in performance was obtained by Lee et al. (2014) [7] which 

included cubic bubble function for two internal rotation as well as developing new assumed trans-

verse shear strain, based upon the earlier works by Lee et al. (2004) [6]. The resulting element was 

named MITC3+ shell element. For the shear locking treatment in triangular elements, the techniques 

used in degenerated shell element can be applied to other types (solid-shell, plate bending and flat 

shell) of elements and vice versa. 

 

 

1.3 Type of locking and its treatments  

 

Satisfying the inf-sup condition means behavior of the shell elements converging toward the refer-
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ence solution is “uniformly optimal” regardless of the problems considered. That is, the solution 

error must diminish optimally independent of the shell thickness as the mesh is refined [15-22]. In 

achieving such behaviors, the major obstacles are shear, membrane and thickness locking. 

 

Shear locking in 4-node quadrilateral and 3-node triangular shell elements have been treated suc-

cessfully using the MITC (Mixed Interpolation of Tensorial Components) method [1,5-14,31-33], 

also known as ‘assumed strain’ or ANS (Assumed Natural Strain) method [30,34-42,88-90]. Particu-

larly, the convergence behavior of the 4-node MITC shell element (MITC4) [1] and 3-node MITC 

shell element (MITC3+) [7] are observed to be close to uniformly optimal due to its effective shear 

locking treatments. The approach of the MITC4 shell element has been successfully applied to 8-

node quadrilateral solid-shell elements [32-37,41]. On the other hand, optimally convergent 6-node 

triangular solid-shell elements are yet to be found [30,31]. 

 

There have been several attempts to alleviate membrane locking of 4-node continuum mechanics 

based shell elements. Those attempts are sometimes confused with improving the membrane behav-

ior of the shell elements. It is extremely difficult to design an ideal 4-node shell element with re-

duced membrane locking in bending-dominated problem but having membrane performances re-

tained. 

 

First, disambiguation with “improving the membrane performance” is presented. Improved mem-

brane behavior can slightly delay the emergence of error caused by membrane locking. However, 

the membrane locking is the phenomenon induced by mesh distortion in case of pure in-extensional 

bending behavior [91]. As the thickness is decreased, the locking occurs more severely, and hence 

the error due to the locking mechanism grossly overruns the solution accuracy. The treatments that 

improve the membrane behavior but do not directly affect membrane locking include ‘drilling de-

gree of freedom’ [51-59] or ‘enhanced assumed strain’ [45,47,92,93]. 

 

The techniques improving the performance in bending dominated problems are most important for 

reducing membrane locking. Reduced integration technique [67,70,73] can greatly alleviate mem-

brane locking, but the elements suffer from rank deficiency and do not properly represent physical 

rigid body modes, needing undesirable stabilization and displacement projection techniques. Various 

assumed strain methods were applied to the membrane strains (in-plane strains evaluated at the mid-
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surface) to alleviate membrane locking while satisfying the basic tests, but the convergence are not 

uniformly optimal or vice versa [2-5,84,85]. 

 

Thickness locking in low-order solid-shell elements has been effectively reduced by the EAS (En-

hanced Assumed Strain) technique [30-34,41]. Compared with the other methods such as ‘plane 

stress condition’ [35], ‘hybrid stress’ [36] or ‘modified laminated stiffness matrix’ [30,37], the 

method provides full coupling between membrane and bending behaviors and the fully general con-

stitutive law can be directly used. 

 

In the present study, major research aims are developing new 4-node quadrilateral shell element by 

reducing membrane locking, and making 6-node quadrilateral solid-shell element based on the 3-

node triangular shell element (MITC3+) by alleviating thickness locking. 

 

 

1.3.1 The membrane locking problem  

 

In this section, membrane locking problem is defined, and previous studies on the membrane lock-

ing are reviewed. 

 

The membrane locking problem has been discussed in many literatures, but sometimes its usage was 

mixed with other type of problem. The first type is the one which occurs for 3-node beam, 9-node 

shell elements or 4-node shell elements with curved geometries, on the bending problem with the 

transverse loadings. The second type is simply named from the deteriorated performance of the in-

plane (membrane) problems for some finite elements, which are tested for the flat case of the shell 

elements. In our study, the problem to be remedied is the first type, which is more important for the 

structural (shell or beam) elements which are designed for effective analysis of the bending prob-

lems. 

 

The membrane locking problem has been studied through various finite elements. Prathap et al. 

(1982) studied the problem on the 3-node beam element and applied the reduced integration or the 

assumed strain method [94]. Storlarski et al. (1982) applied reduced integration on the beam ele-

ment [95]. Stolarski et al. (1983) theoretically studied membrane locking on curved C0 beam ele-

ment [96]. Belytschko et al. (1985) studied the 9-node shell element and applied the stress projec-
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tion method on the 9-node shell element [97]. Pitkäranta J (1992) theoretically studied the mem-

brane locking on the cylindrical shell problem [98]. Bucalem et al. (1993) studied the 9-node shell 

element and applied the assumed strain method [99]. Choi and Paik (1994) studied the 4-node shell 

element and applied the assumed strain method, although the element did not satisfy consistency 

condition (patch test) [2]. Belytschko et al (1994) applied the physical stabilization on the reduced 

integrated 4-node shell element, but the basic membrane behavior and possibly bending behavior 

was deteriorated, while the stabilization also requiring control parameter [70]. Koschnick et al. 

(2005) applied the discrete strain gap method on the 4-node and the 9-node shell elements, but 

membrane patch test was not passed for the 4-node shell element [84]. In summary, the membrane 

locking on the 4-node shell element with generally warped (curved and distorted) geometry was 

neither theoretically studied nor successfully removed. 

 

 

1.3.2 Mathematical derivation of the cause of membrane locking  

 

The purpose of this section is to determine the part of membrane strain of the degenerated 4-node 

shell element which causes membrane locking, in order to aid in the subsequent development of the 

4-node shell element. This study is in accordance with the previous studies on membrane locking 

problem [10,91,98,99], but extended to general warped and distorted 4-node shell element. 

 

In the thin-shell limit, bending strain energy from Kirchhoff’s plate theory (bending behavior in 

Kirchhoff’s hypothesis) [15,60,63,87,91] becomes dominant, which is proportional to the second 

order derivative of transverse translational displacement in direction of physical bending. This con-

dition is often called ‘Kirchhoff limit’, and the bending behavior sometimes ‘Kirchhoff bending’. 

 

Let us define mid-surface coordinates and mid-surface covariant base vectors of each element  
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Here 
1a  and 

2a  denote the mid-surface contravariant bases such that 
ij

j
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is the Kronecker delta, and 
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Within each element, let us set up in-plane, orthogonal coordinate directions shown in Fig. 1.1 de-

fined by unit vectors Le  and Me , and the corresponding coordinates L  and M , such that one 

of the direction corresponds to physical bending, say Le . 

3213 aaaaee tsrtML ML  ,           (1.3) 

in which 0 ML ee , 03 aeL , 03 aeM .          (1.4) 

 

 

 

Fig. 1.1. Transverse displacement and coordinate in direction of bending. The transverse displace-

ment ( tu ) normal to the mid-surface of the shell is shown in (a). The coordinate in direction of 

bending ( L ) on the mid-surface of the shell can be described in terms of the natural coordinates 

within each element, as shown in (b). 
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in which 1a  and 2a  are the mid-surface covariant bases in Eq. (1.2a), which are further decom-

posed as 
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where 1A , 2A  and 3A  are geometry constants independent of natural coordinates ( r , s  and 

t ).  

 

As the mesh is refined on the curved surface, following conditions emerge, 

j
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For the 4-node degenerated quadrilateral shell element global displacements are interpolated bi-

linearly in the natural coordinates, 
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Where 0B , 1B , 2B  and 3B  are displacement constants independent of natural coordinates. 

 

Following the Ref. [100], covariant displacements can be written as the following, 

  )(),( 321031 rssrssrur BBBBAA  ,         (1.10) 

  )(),( 321032 rssrssrus BBBBAA  ,         (1.11) 
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Using Eq. (1.8), covariant displacements in the Eqs. (1.10) to (1.12) are further expressed as the fol-

lowing, 
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in which constants which depends on both geometry and displacements, iC  ( 5,..,0i ), iD  

( 5,..,0i ), and iE  ( 7,..,0i ) are implicitly introduced. Note that those constants are essentially 

contains nodal unknowns or DOFs. 

 

Following the notation in the Ref. [100], membrane strains of 4-node quadrilateral shell element are 

expressed as, 
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By enforcing the pure in-extensional bending as in the Ref. [91], i.e. vanishing strain energy from 

the membrane strains in Eqs. (1.16) to (1.18), following conditions are obtained: 
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06 E , 
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If the conditions obtained involve only single term of unknowns, then it acts to ‘constrain’ the corre-

sponding DOFs [91]. Those conditions, which can either slow down the convergence or prevent the 

expression of physical behaviors, are named ‘spurious constraints’, while those involving two or 

more terms of unknowns are named actual ‘physical constraints’. In this case, total of nine spurious 

constraints appear on in-extensional deformation, and one ( 04 E ) is related to the membrane 
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locking problem as discussed next. 

 

From the Eqs. (1.5) and (1.15) the following three dominant terms for representation of Kirchhoff 

bending are obtained: 

32

2 ),(
E

r

srut 



,            (1.20) 

52

2 ),(
E

s

srut 



,            (1.21) 

4

2 ),(
E

sr

srut 



.            (1.22) 

From the Eq. (1.19) notice that the constraint 04 E  is enforced as shell thickness decreases, 

this prevents the pure bending with regard to the Eq. (1.22). This shows that basic displacement-

based quadrilateral interpolation as in Eq. (1.1) suffers from the membrane locking. Furthermore, 

inspecting the Eqs. (1.13) and (1.15) reveals the following relation 

1232313214 BAABAABAA E .                                   (1.23) 

 

Notice from Eq. (1.23) that if displacement and geometry interpolation does not involve bi-linear 

( rs ) term, 3A  and 3B  disappears and the locking-causing unknown constant ( 4E ) and the spu-

rious constraint ( 04 E ) does not appear. However, in a common 4-node quadrilateral element, 

that part is necessary to correctly represent in-plane bending behavior. 

 

 

1.3.3 Previous treatments of membrane locking  

 

In this section, we deal with previous treatments of membrane locking of 4-node quadrilateral shell 

element. 
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Table 1.1. Comparison of techniques to remedy membrane locking. 

Techniques Strength Weakness 

Reduced integration with stabili-

zation 

-Reduced integration itself is a 

very powerful tool for removing 

the locking, as well as decreasing 

the computational cost 

-Stabilization of stiffness matrix 

require control parameter (Hour-

glass control), which is purely 

empirical 

-Convergence on bending prob-

lems is not always guaranteed 

using the displacement projec-

tion, which is necessary for rep-

resenting the physical rigid body 

modes 

Enhanced Assumed Strain -Able to introduce higher-order 

modes on the low-order elements 

so that element performance is 

better 

-The technique delays (does not 

eliminate) the happening of 

membrane locking 

-Cost of statically condensing out 

the internal parameters is in-

creased, for introducing the more 

modes 

Assumed Stress(Strain) Hybrid -Able to reformulate stress(strain) 

so that element performance is 

better 

-The technique delays (does not 

eliminate) the happening of 

membrane locking 

-Cost of calculating the 

stress(strain) is increased, as 

more parameters are used 

Stiffness matrix is not always 

symmetric 

Assumed strain methods  

(Assumed Natural Strain, Mixed 

Interpolation of Tensorial Com-

ponents, Discrete Strain Gap) 

-Able to modify the locking 

mechanism (for an element pos-

sibly performing better) without 

high additional computational 

cost 

-Using this method, pass of basic 

tests related to consistency are 

affected (for example, it is not 

easy to pass the patch test). 
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In Table 1.1, we showed strength and weakness of the various techniques to remedy membrane 

locking. Reduced integration is powerful for both eliminating the locking and decreasing the com-

putational cost, but require control parameter and bending convergence is not always guaranteed in 

general mesh (if physical rigid body modes are correctly expressed). EAS and ASH techniques are 

similar in that it is easy to make an accurate element in the expense of increasing the computational 

cost. However, such techniques frequently delays the occurrence of locking, not providing the fun-

damental solution. Assumed strain methods are not always successful, and pass of basic tests are 

easily affected. However, it has high potential that the method can potentially eliminate locking 

without high additional computational cost, which suits our goal of research. 

 

 

1.3.4 Previous treatments of thickness locking  

 

In this section, we review previous treatments of thickness locking. 

 

There are two kinds of thickness locking: Poisson thickness (or thickness) locking and curvature 

thickness (or trapezoidal) locking [30-37,41,42,76]. Poisson thickness locking predominantly dete-

riorates the solution accuracy of solid-shell elements whenever Poisson’s ratio is not equal to zero. 

Curvature thickness locking occurs for curved shell structures when mid-surface normal directions 

are naturally distorted within solid-shell element models. 
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Table 1.2. Comparison of techniques to treat thickness locking. 

Techniques Strength Weakness 

Enhanced Assumed Strain 

 

-General three-dimensional con-

stitutive law can be used 

-Full coupling between mem-

brane and bending behavior can 

be retained 

-Additional unknown is necessary 

(Increase of computational cost 

can be minimized by using ‘static 

condensation’ onto the added 

DOF) 

Enforcement of plane-stress con-

dition  

-Simplest method for alleviating 

thickness locking 

-Coupling between membrane 

and bending behavior is lost 

Hybrid Stress method  -Able to reformulate stress(strain) 

so that element performance is 

better 

-Cost of calculating the 

stress(strain) is increased, as 

more parameters are used 

-Stiffness matrix is not always 

symmetric 

-Applying the general constitu-

tive law is involved 

Modified generalized laminated 

stiffness  

-Able to modify the locking 

mechanism (for an element pos-

sibly performing better) without 

high additional computational 

cost 

-Application of general constitu-

tive law is involved 

-In the stiffness matrix (i.e. the 

internal virtual work) the cou-

pling of strain energy between 

thickness normal component and 

the other components is lost 

 

 

In Table 1.2, we showed strength and weakness of the various techniques to treat thickness locking. 

We regard a reliable element to be generally applicable for any types of material law or shell behav-

iors. Regarding the comparison of various methods in Table 1.2, the EAS method is attractive if ad-

ditional unknown can be condensed out, keeping the increase of the computational cost at mini-

mum. 

 

 



 

- 18 - 

1.4 Basic requirements and basic tests  

 

Here the basic requirements of shell elements are presented along with the methods of testing each 

of the requirements (by the basic tests).  

 

Shell elements should satisfy the isotropy or spatial invariance. This means shell elements should 

yield identical results for all orientations formed by rigid body motion of the same configuration, 

and yield identical results for different nodal numberings. This isotropy is important for both trian-

gular and curved quadrilateral shell elements [3,5-9,38]. 

 

The ellipticity of the elements directly require that the stiffness matrix to be positive definite. This 

means that energy stored in the element due to deformations should be positive. Also, symmetry 

between strains and stresses are also important. In computational sense, this means the resulting ma-

trix is symmetric hence only about half of the matrix needs to be stored during the solution process. 

Practically this also implies that strains and stresses are directly related to each other by constitutive 

relation. Disparate treatments of stresses from strains, such as in ‘hybrid stress’ method [36,37,78-

82], are avoided at best for direct usage of general constitutive law. 

 

For the elements to be applicable to dynamic analysis, and also not to cause loss in deformation en-

ergy in static analysis, zero energy mode tests should be passed. In zero energy mode tests, only six 

zero energy modes corresponding to the physical rigid body modes should appear in the stiffness 

matrix of the elements [1,5-9,14,19,31,35,38-40]. For quadrilateral shell elements, the counted zero 

energy modes are sometimes not the physical rigid body modes that depend on the element geome-

try. Especially, using the ‘reduced integration’ technique applied to curved 4-node quadrilateral shell 

element [67,70,73], multiplication of the six rigid body modes to the both sides of the stiffness ma-

trix does not yield zero values as desired. 

 

The consistency condition requires for the elements to satisfy the patch tests [101]. This test is often 

considered to guarantee the convergence of the finite elements, providing mean to test stability. The 

patch of elements is subjected to the minimum number of constrains to prevent rigid body motions 

and the nodal point forces on the boundary corresponding to the constant stress states are applied. 

The patch tests are passed if the correct values of constant stress fields are calculated for any loca-
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tions within the mesh. For shell elements, there are three kinds of patch tests, membrane, bending 

and shearing patch tests, according to the loading and boundary conditions [1,5-9,14,19,30-34,36-

40,102]. 

 

Final requirement is simplicity of formulation and computation. The formulation itself need to be 

physically meaningful and easy to understand, and hence can be simply implemented [10,13,14]. 

Even though some increase in computation time is sometimes inevitable, it is best to keep it at min-

imum. Especially, keeping the of number of unknowns the same by using static condensation ap-

plied to added degrees of freedom is highly desirable [15]. 

 

 

1.4.1 Pass of patch tests 

 

Here we discuss in more detail with the pass of patch tests. Among low-order shell elements, it is 

far more difficult to attain a consistent quadrilateral, rather than triangular, shell element passing the 

patch tests. Among different kinds of strains, membrane, bending and transverse shearing strains 

within the shell element, the membrane strains are the ones related to membrane locking of 4-node 

quadrilateral shell elements. However, there are no given ways to satisfy the membrane patch tests 

for quadrilateral elements. Here, we give detailed condition for quadrilateral elements to pass the 

patch tests. 

 

Interpolation of 4-node quadrilateral element is given by 





4

1

),(),,(
i

ii srhtsr xx ,                                                      (1.24) 

where ),( srhi  is the two-dimensional interpolation function of the standard isoparametric proce-

dure corresponding to node i , ix  is the position vector of node i  in the global Cartesian coordi-

nate system. 

 

The corresponding displacement interpolation of the element is 





4

1

),(),,(
i

ii srhtsr uu ,                                                      (1.25) 

in which iu  is the nodal displacement vector in the global Cartesian coordinate system. 
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The linear terms of the displacement-based covariant strain components are given by 

)(
2

1
,, ijjiije ugug  ,                                                     (1.26) 

in which 

i

i
r




x
g , 

i

i
r




u
u ,  with rr 1 , sr 2 .                                        (1.27) 

 

For transforming the strains we define contravariant bases, 

x
g




 ii r
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i

jj

i δgg .                                                   (1.28) 

 

In the two-dimensional case we define following geometry and displacements in terms of global 

Cartesian coordinate system 

yxii yxx iiix  , yxii vuu iiiu   with xii 1 , yii 2 ,                    (1.29) 

in which xi  and yi  are unit vectors in global x  and y  directions, respectively. 

 

The covariant strain components in Eq. (1.26) can be transformed into global strains by 
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In order to pass the membrane patch tests, following ‘constant strain conditions’ from Eq. (1.30) 

must be expressed: 

1)0,(  vxuexx , 0)0,(  vxueyy , 0)0,(  vxuexy , 

0),0(  yvuexx , 1),0(  yvueyy , 0),0(  yvuexy , 

0),(  xvyuexx , 0),(  xvyueyy , 1),(  xvyuexy ,                  (1.31) 

 

We are able to reverse the transformation relations in Eq. (1.30) as 

))(( ljkiklij ee igig   
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Then, substituting Eq. (1.31) to Eq. (1.32), we obtain the following conditions: 
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(1.33) 

 

The relations in Eq. (1.33) constrain the covariant components of strains to satisfy the membrane 

patch tests. It is evident that displacement-based element in Eq. (1.26) satisfies Eq. (1.33). Also, as 

long as ‘constant parts’ of the covariant strains which does not vary over element domain ( sr, ) is 

preserved, the patch test is passed and vice versa. 

 

Element strains can often be grouped into the constant (
const

ije ) and linear (
lin

ije ) parts, in which the 

‘linear parts’ of the element strains which vary linearly along r  and s : 
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const

ijij  .                                                    (1.34) 

Hence, it is more precise that patch test is passed if the following conditions are met: 
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Here we show usefulness of Eq. (1.35) using an example. In the developments of quadrilateral ele-

ments using enhanced assumed strain methods, the linear parts (
lin

ije ) of the covariant strains are 

often assumed in the following form 
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that devoid of the bilinear term, where ijc  and ijd  are constant over r  and s . The most widely 

used method for 4-node quadrilateral elements are 22  Gauss integration over element domain. 

Note that Eq. (1.35) actually constrains the numerically integrated strains, see [15]. 

 

Applying the 22  Gauss integration to linear strains of Eq. (1.36) we obtain 
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000  ijij dc  with 3/1a ,                                (1.37) 

so the strain in Eq. (1.36) obeys Eq. (1.35), satisfying the patch test. 

 

In more general situations with different linear strains, the check of Eq. (1.35) can be difficult. In 

those cases, comparing the membrane strains with another strain fields satisfying the patch tests 

(such as that of displacement-based element) can be helpful. 

 

 

1.4.2 Pass of zero energy mode tests 

 

Here we discuss the conditions to pass the zero energy mode tests. 

 

The zero energy mode tests can be decomposed into two categories: Check of the deformation 

modes having non-zero (and correct values of) eigenvalues and check of the rigid body modes hav-

ing the zero eigenvalues. 

 

For the deformation mode tests, deformation modes with correct non-zero eigenvalues are required. 

Checking whether each modes have correct eigenvalues can be performed using simple conver-

gence tests of displacements. For example, the element should converge toward analytic solution of 

simple in-plane tests to insures all five in-plane modes shown in Fig. 1.2 (two in-plane stretching, 

two in-plane bending and one in-plane shearing) are correct. Since the eigenvalues of constant 

modes, such as in-plane stretching modes, are already tested through pass of patch tests, higher-

order modes of in-plane bending and shearing need special considerations. For shell elements, on 
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the other hand, twisting mode about the direction normal to the thickness are not necessary [7,8], 

providing an exception to the deformation mode tests. 

 

 

Fig. 1.2. Five in-plane modes of 4-node quadrilateral element. 

 

For the rigid body mode tests, six physical zero energy mode must be present even when element is 

arbitrarily distorted. For the low-order shell elements in Fig. 1.3, following geometry and displace-

ment interpolations are necessary: 

 

For degenerated shell elements : 
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and for solid-shell elements : 
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with 4N  and 3N  for quadrilateral and triangular elements, respectively, ),( srhi  is the 

two-dimensional interpolation function of the standard isoparametric procedure corresponding to 

node i . For degenerated shell elements, ix  is the position vector of node i  in the global Carte-

sian coordinate system, and ia  and 
i

nV  denote the shell thickness and the director vector at the 

node, respectively. For solid-shell elements, 
top

ix  and 
bot

ix  are the position vector of node i  lo-

cated at the top and bottom surface of the shell element, respectively. Also, iα  and iβ  for degen-

erated shell elements denote rotations about vector 
i

1V  and 
i

2V , each of which normal to the vec-

tor 
i

nV  and to each other. 
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Fig. 1.3. Low-order continuum-mechanics based shell elements. (a) 4-node quadrilateral degenerat-

ed shell element. (b) 3-node triangular degenerated shell element. (c) 8-node quadrilateral solid-

shell element. (d) 6-node triangular solid-shell element. 

 

Attaining physical rigid body modes for solid-shell elements are straightforward, since the interpo-

lation of displacement in Eq. (1.38d) includes only the nodal translations (
top

iu  and 
bot

iu ). For de-

generated shell elements, following rigid body modes must be present: 

 

The three translational rigid body modes : 

cu i  with constant vector 
3

Rc ,                                           (1.39a) 

and the three rotational rigid body modes : 

ii xθu   and 
i

i

i

i βα 21 VVθ   with constant vector 
3

Rθ .                    (1.39b) 

In Eq. (1.39b), the values of rotations with given pseudo-rotation vector (θ ) are 
i

iα 1Vθ   and 

i

iβ 2Vθ  , respectively. 

 

The rotational rigid body modes can be not present along with the modifications introduced to treat 

locking. Particular case happens while treating membrane locking, when reduced integration applied 
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to covariant in-plane strains Eq. (1.26). In order to remedy this problem, following displacement 

projection method has been employed: 
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In Eq. (1.40a), the original displacements (translations and rotations) 
ori

iu  are projected using the 

matrix 
T

ii

T

iii RRRRIP
1)(   to form the new nodal displacement vector 

new

iu  that replaces 

ori

iu  at each node i . This procedure is not only costly, but mixes the translation and rotations for 

curved quadrilateral shell elements, thereby deteriorating the quality of strains and stresses. Ideally, 

projection schemes applied on geometry or displacement should be avoided during locking treat-

ments of quadrilateral shell elements, and physical rigid body modes as well as physical nature of 

displacement unknowns should be preserved thoroughly. 

 

 

1.5 Outline of the paper 

 

Here, organization of the paper is presented. 

 

In Chapter 1, brief overview of the present research was introduced. The previous studies of the 

low-order shell elements were investigated to set two different goals of the present study: remedy-

ing membrane locking of 4-node quadrilateral shell element and alleviating thickness locking of 6-
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node triangular solid-shell element. Previous studies regarding each goal were presented. Original 

theoretical study investigating the cause of membrane locking of 4-node quadrilateral shell element 

was presented. 

 

In Chapter 2, the new 4-node degenerated shell elements are presented in the subsequent order of 

developments (MITC4+,MITC4+N and new MITC4+). The formulations of the three elements are 

firstly presented and the performance of the elements is shown through basic tests, benchmark tests 

and convergence studies on linear analysis. For the latest (new MITC4+) shell element, performance 

in geometric nonlinear analysis is also presented. 

 

In Chapter 3, the new 6-node triangular solid-shell element (MITC-S6) is presented. The formula-

tion is presented and the performance of the element is examined through basic tests, convergence 

studies and geometric nonlinear problems.  

 

In Chapter 4, conclusion of the present study is stated. 
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Chapter 2. The improved 4-node quadrilateral shell elements 

 

2.1 The formulations of the developed 4-node quadrilateral shell elements 

 

In this section, the formulations of newly developed 4-node quadrilateral shell elements, the 

MITC4+ [5], MITC4+N and new MITC4+ [103] shell elements, are presented. The geometry and 

displacement interpolations of the new shell elements are as for the MITC4 shell element. 

 

 

2.1.1 Basic 4-node quadrilateral shell element, MITC4  

 

In this section, we present basic 4-node quadrilateral shell element used for further development in 

this study. It has to satisfy all the basic tests while transverse shear strain is optimally treated against 

shear locking. For that purpose, the MITC4 shell element is chosen, and its formulation is briefly 

reviewed here. 

 

The geometry of a standard 4-node continuum mechanics based quadrilateral shell element is inter-

polated using [1,5,15] 
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ii srha
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where ),( srhi  is the two-dimensional interpolation function of the standard isoparametric proce-

dure corresponding to node i , ix  is the position vector of node i  in the global Cartesian coordi-

nate system, and ia  and 
i

nV  denote the shell thickness and the director vector at the node, respec-

tively, see Fig. 2.1. 

 

It is useful to note the following representation of interpolation function ),( srhi : 
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   11114321 ηηηη ,            (2.2) 



 

- 28 - 

in which the signs iξ  and iη  are allowed to be permuted together. 

 

The corresponding displacement interpolation of the element is 
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,                             (2.3) 

in which iu  is the nodal displacement vector in the global Cartesian coordinate system, 
i

1V  and 

i

2V  are unit vectors orthogonal to 
i

nV  and to each other, and i  and i  are the rotations of the 

director vector 
i

nV  about 
i

1V  and 
i

2V , respectively, at node i . 

  

Fig. 2.1. A standard 4-node quadrilateral continuum mechanics based shell element. 

 

The linear terms of the displacement-based covariant strain components are given by 
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2

1
,, ijjiije ugug  ,                                                       (2.4) 

in which 
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x
g , 
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i
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
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u
u,  with rr 1 , sr 2 , tr 3 .                                   (2.5) 

 

For the MITC4 shell element, the covariant in-plane strain components are calculated using Eqs. 

(2.1) to (2.3) without any modification. The transverse shear strain field is based on assuming con-
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stant covariant transverse shear strain conditions along the edges, see Ref. [6] 
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where the tying points are shown in Fig. 2.2 [1,13]. 

 

Fig. 2.2. Tying positions (A), (B), (C) and (D) for the assumed transverse shear strain field of the 

MITC4 shell element. The constant transverse shear strain conditions are imposed along its edges. 

 

The covariant in-plane strain in Eq. (2.4) can be written as 
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The first term 
m

ije  in Eq. (2.7a) is the covariant in-plane membrane strain at the shell mid-surface 

( 0t ), and the remaining terms are the covariant in-plane strains due to bending. The in-plane 

membrane strain, see Eq. (2.7b), can in general induce locking. 

 

 

2.1.2 The MITC4+ shell element 

 

In the formulation of the MITC4+ shell element [5] the mid-surface of the element is subdivided into 

four non-overlapping 3-node triangular domains, and the assumed membrane strain field is con-

structed using the membrane strains of the flat triangular domains.  

 

Let us define the center point denoted by ‘5’ in the mid-surface of the 4-node shell element as shown 

in Fig. 2.3 
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iixx  ,               (2.9) 

where the constants iγ  are used to determine the position of the center point. The choice of con-

stants is important for the element isotropy and the membrane patch tests. 

 

As shown in Fig. 2.4, the geometric centroid of triangle 1 defined by nodes 1-2-4 is 
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and, similarly, the geometric centroid of triangle 2 is given by 
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Then, the geometric centroid of triangles 1 and 2 is calculated using the following equation 
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where 1A  and 2A  are the areas of triangles 1 and 2 shown in Fig. 2.4.  

 

Similarly, the geometric centroid of triangles 3 and 4 is 
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in which 3A  and 4A  are the areas of triangles 3 and 4. 

 

Finally, the mean position of two geometric centroids is simply obtained by 





4

1

4321432134125 ]][[)(
2

1

i

ii

T

TT xxxxxxxx               (2.15a) 

with   ]
3

1

3

1

3

1
0[

2

1
]

3

1
0

3

1

3

1
[

2

1

21

2

21

1
4321

AA

A

AA

A





  

]
3

1

3

1
0

3

1
[

2

1
]0

3

1

3

1

3

1
[

2

1

43

4

43

3

AA

A

AA

A





 .         (2.15b) 

 

Fig. 2.3. Triangular subdivision of the mid-surface of the 4-node shell element.  
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Fig. 2.4. Four triangles to determine the center point of the MITC4+ shell element. 

 

Using the defined center point, the mid-surface of the 4-node shell element is divided into four flat 

triangular domains, see Fig. 2.3. Each triangular domain can be interpolated using the following ge-

ometry interpolation function 
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  for triangle C,  21 xx 
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, 32 xx 
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, 53 xx 
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  for triangle D, 

in which ),( srhi


 is the two-dimensional interpolation function of the 3-node triangular element 

corresponding to node i , and ix


 is the position vector at node i . Note that the subdivision into 

two non-overlapping triangular domains is also possible, but then the element isotropy cannot be 

satisfied. 

 

The interpolation of the corresponding translational displacement vector is given by 
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where iu


 is the translational displacement vector at node i . 

 

In the MITC4+ shell element, the displacement vector at the center point is represented by the dis-

placement vectors at the corner nodes 
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iiuu γ .                                                                (2.18) 

Note that the isoparametric relation between Eq. (2.9) and Eq. (2.18) is important to correctly repre-

sent rigid body modes in the 4-node shell element. Note that the displacements at the center point are 

not degrees of freedom in the element formulation. 

 

The covariant membrane strain in the triangular domains is given by 
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The covariant membrane strain in Eq. (2.19) has two covariant base vectors, 

i

i
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   with  2,1i ,                                                     (2.20a) 

which are supplemented with the third covariant base vector of  

33 gg 


.              (2.20b) 

 

Fig. 2.5. Tying positions (A), (B), (C) and (D) for the assumed membrane strain field of the MITC4+ 

shell element. 

 

In order to apply the assumed strain method, the covariant membrane strain from each triangular 

domain must be transported to the natural coordinate system of the 4-node shell element. The strain 

transformation is given by ( 2,1, ji  and 2,1, lk ), 
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in which 
ijj

i δgg


 with 
ij  the Kronecker delta. 

 

Using the covariant membrane strains evaluated from the four triangular domains, constructing a 

new assumed strain field which alleviates the locking is necessary. It starts with the following as-

sumption 

drscsbrae m

ij ~    with  2,1, ji ,                                       (2.22) 

in which the coefficients a , b , c  and d  are determined using the covariant membrane strains 

evaluated in the triangular domains. 

 

While the strains are constant within each triangular domain, the tying positions symmetric about the 

element center are chosen, see Fig. 2.5. Then the following tying conditions are employed 
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The four coefficients in Eq. (2.22) are thus obtained as 
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Finally, the new assumed strain field for the membrane strains is given as 
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Note that the assumed membrane strains in Eq. (2.25) do not have the bi-linear term ( rs ) which 

causes membrane locking of the MITC4 element when geometrically distorted, see Section 2.3. 

 

The MITC4+ shell element alleviates membrane locking while satisfying the basic tests, but has 

slight disadvantages on reduced membrane behaviors and approximate pass of membrane patch tests. 

In order to retain membrane behaviors, the MITC4+N shell element is developed. 

 

 

2.1.3 The MITC4+N shell element 

 

In order to improve the membrane behavior of the MITC4+ shell element, the basic interpolation 
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used for the assumed membrane strain is modified. 

 

Firstly, the center point for the subdivision of the mid-surface shown in Fig. 2.3 is redefined. Let us 

consider two lines in Fig. 2.6(a): line 24 (connecting the nodes 2 and 4), and line 13 (connecting the 

nodes 1 and 3). A line segment which is orthogonal to both lines 24 and 13 can be defined. The line 

segment represents the shortest distance between the lines 24 and 13. The new center point is located 

on the midpoint of the line segment, as shown in Fig. 2.6(a) and (b). When the element geometry is 

flat, the center point becomes the point of intersection of the two diagonals, see Fig. 2.6(c). This 

choice is very important for the satisfaction of the isotropy and the membrane patch tests. 

 

Fig. 2.6. The construction of center points. (a) Four triangles to determine the center points of the 

original and the MITC4+N shell elements. (b) The new center point (‘5’) for the MITC4+N shell 

element. (c) Location of the new center point for flat geometry. 

 

A simple procedure for obtaining the location of the new center point is derived for arbitrary geome-
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try of the MITC4+N shell element. 

 

Let us denote the vectors representing the line 13 and 24 in Fig. 2.6(a) by 3113 xxx   and 

4224 xxx  , respectively. Two ends points of the line segment are defined,  

412124 )1( xxp μμ  , 321213 )1( xxp μμ  ,          (2.26) 

on the line 24 and 13, respectively, with ]1,0[, 21 μμ . 

 

Then, the center point is defined by 
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2

1
24135 ppx  ,             (2.27) 

where the values of 1μ  and 2μ  need to be solved from the orthogonality of the line segment to the 

line 13 and 24, 

0)()( 241313241324  ppxppx .           (2.28) 

 

In the special case of 01324 xx , the solution of Eq. (2.28) is given by 

)()( 131313342 xxxx μ , )()( 242424341 xxxx μ ,                (2.29) 

where 4334 xxx  . 

 

In the case of 01324 xx , the solution of Eq. (2.28) is given by 

)()( 11122 wwww μ , 2211 cμcμ  ,                  (2.30) 

in which 

241131 xxw c , 242342 xxw c , 

)()( 132413131 xxxx c , )()( 132413342 xxxx c .          (2.31) 

 

Next, the new interpolation function which is used for the assumed membrane strain is defined. Note 

that in Eqs. (2.16) and (2.17), the interpolation function as well as the resulting membrane interpola-

tion resides within each triangular domains. In the MITC4+N shell element, the tying membrane 

strains are constructed from the whole quadrilateral domain in aim of improving the membrane per-

formances. This concept is naturally related to the quadrilateral area coordinate methods, see Refs. 

[104-107], which use areas of subdivided triangular domains [5,104,107] to represent the interpola-

tion functions for the quadrilateral domain. 
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Using the defined center point, four characteristic constants related to the area ratio of the triangles 

in Fig. 2.3 are obtained,  

AAAG CA /)(1  , AAAG DA /)(2  ,  

AAAG BD /)(3  , AAAG CB /)(4  ,           (2.32) 

with DCBA AAAAA  , where AA , BA , CA  and DA  denote the areas of triangles A, 

B, C, and D shown in Fig. 2.3. 

 

The new interpolation functions are defined as in Ref. [107], 
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The ‘area coordinates’ 1q  and 2q  newly defined on the subdivided quadrilateral mid-surface are 

shown in Fig. 2.7. 

 

The derivatives of the new interpolation functions in Eq. (2.33) can be calculated from the chain 

rule, 
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for 4,..,1i  and 2,1k . The explicit forms of the derivatives 
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Fig. 2.7. Area coordinates ( 1q  and 2q ) used for the MITC4+N shell element. The polygons are 

formed by shortest paths between the nodes and an arbitrary point ),( srQ  on the subdivided mid-

surface. 

 

Finally, the geometry and displacement interpolations used for the membrane strain of the MITC4+N 

shell element is given by 
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The corresponding covariant membrane strains are given by 
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m

ije ,,

2

1
ugug

    with  2,1, ji ,                            (2.41) 

where 
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The new membrane strains are transformed into fixed coordinate system located at the element cen-

ter [86], 
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in which covariant base vectors are, 
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 with  2,1, ji ,           (2.44a) 

33 gg 


,              (2.44b) 

and from covariant base vectors fixed in the in-plane directions, 

),0,0( t
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
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x
g ,              (2.45) 

the following contravariant base vectors are obtained, 

ijj

i δgg


.              (2.46) 

 

This replaces the covariant membrane strains obtained by Eq. (2.21) in the MITC4+ shell element. 

The resulting MITC4+N shell element has identical bending performances with the MITC4+ shell 

element, including the alleviation of membrane locking. The MITC4+N shell element exactly passes 

the membrane patch tests, and the membrane behavior is slightly improved. However, it is necessary 

to develop an ideal 4-node quadrilateral shell element showing nearly uniformly optimal conver-

gence behavior. Therefore, the new MITC4+ shell element is developed. 

 

 

2.1.4 The new MITC4+ shell element 

 

The formulation of the new MITC4+ shell element [103] is presented here. The covariant membrane 

strains are represented using characteristic geometry and displacement vectors. 
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Using Eq. (2.2) in Eqs. (2.8a) and (2.8b), the following relations are obtained:  
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in which the characteristic geometry vectors rx , sx  and dx  arise naturally from the nodal point 

positions, see Fig. 2.8, and the corresponding displacement vectors are ru , su  and du . 

 

Fig. 2.8. The representative vectors from the element geometry. (a) The two in-plane vectors rx  

and sx , and the plane P with normal vector n . (b) The two in-plane vectors 
r

m  and 
s

m . (c) The 

distortion vector dx . (d) The four edge vectors 
1

ex , 
2

ex , 
3

ex  and 
4

ex . 

 

The two vectors rx  and sx  form the flat plane P with the normal vector   

sr

sr

xx

xx
n




 ,              (2.48) 
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as shown in Fig. 2.8(a). For an arbitrarily distorted shell element, the plane P is the only flat surface 

that can be defined by equally accounting for the geometry of each nodal point, as required for pass-

ing the isotropy test. Since the two in-plane vectors, rx  and sx , are not orthogonal, it is conven-

ient to define their dual basis vectors, 
r

m  and 
s

m  on the plane P, such that 

i

jr

r
δ

j

i xm ,  0nm ir     with rr 1 , sr 2 ,                 (2.49) 

as shown in Fig. 2.8(b). 

 

Since membrane locking occurs due to out-of-plane distortions of the element geometry, the ‘distor-

tion vector’ dx , shown in Fig. 2.8(c), is of particular interest. The length of the distortion vector 

becomes nonzero for both in-plane and out-of-plane distortions of the element geometry. Note that 

the distortion vector can be decomposed into in-plane and out-of-plane components using the ge-

ometry vectors ( rx , sx  and n ): 

nnxxmxxmxx )()()(  ds

s

dr

r

dd ,                               (2.50) 

in which the dual basis vectors 
r

m  and 
s

m  ‘measure’ the distortion in the direction of in-plane 

vectors rx  and sx , the values d

r
xm   and d

s
xm   are the corresponding in-plane distortions, 

and nx d  corresponds to the out-of-plane distortion. 

 

In addition, the ‘edge vectors’ which lie along the element edges are 
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see Fig. 2.8(d). The edge vectors form the corresponding edge strains, 

11)1,0( ee

m
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33)1,0( ee

m
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44)0,1( ee

m

sse ux  , 
22)0,1( ee

m

sse ux  ,       (2.52) 

in which each strain contains only two nodal displacements. 

 

In the original displacement-based element formulation, four nodal displacements arise in the ‘rr’- 

and ‘ss’- membrane strains. However, constraints arise from the condition of vanishing membrane 

strains in pure bending situations. The use of edge strains in Eq. (2.52) is important to establish an 

improved behavior in bending-dominated problems. 
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The membrane strains in Eq. (2.7b) can be expressed using the characteristic geometry and dis-

placement vectors 

2
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in which the subscripts ‘con.’, ‘lin.’ and ‘bil.’ denote constant, linear and bilinear terms, respectively. 

 

The following five strain components obtained at tying points are used to construct the assumed 

membrane strain field [2-5,84,85] 
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which are effective to reduce membrane locking. The tying points (A), (B), (C), (D) and (E) as well 

as the corresponding strain components are shown in Fig. 2.9. 
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Fig. 2.9. Tying positions (A), (B), (C), (D) and (E) for the assumed membrane shear strain field. 

 

Among the assumed membrane strain methods to alleviate membrane locking, membrane strain field 

proposed by Choi and Paik [2] is of particular interest, which was subsequently applied to an exact 

geometry shell element by Cho and Roh [4] 
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That is, Choi and Paik used the five sampled strains in Eq. (2.55) to assume the membrane strain 

field to be one order lower than implicitly given in the original displacement-based element. 

 

Linear terms are included in the covariant in-plane shear strain in Eq. (2.56) to obtain the following 

assumed membrane strain field 
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Those linear terms are necessary for the shell element to pass the patch test. 

 

Comparing the strain field in Eq. (2.57) with the strain field of the displacement-based element (giv-
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en in Eq. (2.53)), the following relations are identified 
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from which the strain components added to the strain field in Eq. (2.57) (to complete the strain field 

of the displacement-based element) are identified to cause membrane locking. Note that all the added 

strain components contain the same term, 
dd

m

rse ux 
.bil

 (given in Eq. (2.54)). 

 

In order to establish an appropriate value for 
.bil

m

rse , the idea of Kulikov and Plotnikova [3] are 

adopted. Namely, the assumed membrane strain field is constructed by the linear combination of the 

five strain coefficients in Eq. (2.56) such as to keep the improved bending performance with the 

membrane locking alleviated 
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where the coefficients ( A , B , C , D and E ) need to be determined. Note that the five strain coeffi-

cients can be easily obtained from the sampled strain components in Eq. (2.55).  

 

To pass the membrane patch tests, the new membrane strain field should satisfy the following condi-

tion: 

.bil.bil

~ m

rs

m

rs ee    when the element geometry is flat ( 0nxd )                        (2.60) 

for arbitrary in-plane deformation modes in the flat geometry. 

 

For a flat element geometry with 0nxd  in the plane P defined in Eq. (2.48), the distortion vec-

tor in Eq. (2.50) becomes 

s
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dd xmxxmxx )()(  .                                                 (2.61) 

Here, Eq. (2.60) are solved for arbitrary in-plane modes along with Eq. (2.61) to determine the five 

coefficients in Eq. (2.59). 

 

The term 
dd

m

rse ux 
.bil

 should become zero in the following deformation mode 
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rr au  ,  ss au  ,  0u d ,            (2.62) 

in which ra  and sa  are arbitrary constant vectors placed in the flat plane P. 

 

From the condition in Eq. (2.60), the assumed membrane strain field in Eq. (2.59) also should be 

zero, 

0~
.bil
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rse                                                                    (2.63) 

in the deformation mode in Eq. (2.60). 

 

Using Eq. (2.62) in Eq. (2.54), the five strain coefficients in Eq. (2.56) become 
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Substituting Eqs. (2.63) and (2.64) into Eq. (2.59), the following equation is obtained 
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for arbitrary constant vectors ra  and sa ,                                         (2.65) 

and thus 

0xxx  dsr DCA 2/ ,  0xxx  dsr EBC 2/ .                       (2.66) 

 

Comparing Eq. (2.66) with Eq. (2.61), following constants are easily identified 
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plane distortions of the element geometry. 
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If another condition of 
dd

m

rse xx 
.bil

 in the following deformation mode 
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0u r ,  0u s ,  dd xu  ,            (2.69) 

is used for solving Eq. (2.60), the following equation should be satisfied, 
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Using Eq. (2.69) in Eq. (2.54), the five strain coefficients in Eq. (2.56) become 
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Substituting Eqs. (2.70) and (2.71) into Eq. (2.68), the constant d  is determined as 

1
22
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which can be rewritten as  
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Using Eq. (2.51) in Eq. (2.73), the constant d  becomes 
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The value d  measures the distortion of pairs of edges within the element. 

 

Substituting the obtained assumed strain term (given in Eq. (2.68)) into all added strain components 

in Eq. (2.58), the new assumed membrane strain field for the 4-node continuum mechanics based 

shell element are finally obtained, 
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For an efficient implementation in computer codes, the assumed strain field in Eq. (2.75) can be re-

written as 
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Although the overall form of the assumed membrane strain resembles those previously published [2-

5], Eq. (2.76) represents the formulation of a new continuum-mechanics based degenerated shell el-

ement, which is generally applicable for arbitrary geometry of the shell structure. In the next sec-

tions, excellent performances of the new MITC4+ shell element are presented. 

 

Note that the membrane part of the new MITC4+ shell element is identical to that of the displace-

ment-based element when the element geometry is flat. That is, in two-dimensional plane stress 

problems, both shell elements always yield the identical solutions. The computational cost of the 

new MITC4+ shell element increase slightly from that of the original MITC4 shell element. Howev-

er, solution time does not change, and only the assembly cost is increased, see Table 2.1 for rough 

comparison. 

 

 

Table 2.1. Relative comparison of assembly time. 

Element MITC4 MITC4+ New MITC4+ 

time 5.0 6.0 5.5 

 

In the numerical analysis, 222   Gauss integration over the element domain are used for the all 

the shell elements considered. 

 



 

- 48 - 

2.2 Basic tests 

 

Here, results of the basic numerical tests to examine the MITC4+, MITC4+N and new MITC4+ shell 

element are presented. The isotropy, zero energy mode and patch tests are considered. 

 

The spatially isotropic behavior is an important requirement for any shell elements. The element be-

havior should not depend on the sequence of node numbering, i.e. the element orientation [3,5-9,38]. 

All three elements pass this test. 

 

Three patch tests of the membrane, bending and shearing patch tests are performed, see Refs. [1,5-

9,14,19,30-34,36-40,101,102]. The mesh geometry is shown in Fig. 2.10. The patch of elements is 

subjected to the minimum number of constrains to prevent rigid body motions and the nodal point 

forces on the boundary corresponding to the constant stress states are applied. The patch tests are 

passed if the correct values of constant stress fields are calculated at any location within the mesh. 

Since the elements modify the membrane strain in Eq. (2.7b), membrane patch tests shown in Fig. 

2.11 need special consideration. 

 

For the MITC4+ shell element, bending and shearing while the membrane patch test is approximate-

ly passed, see Fig. 2.12. The MITC4+N and new MITC4+ elements pass all membrane, bending and 

shearing patch tests. It is already shown that the new MITC4+ shell element passes membrane patch 

test because it is identical to the displacement-based element for flat geometry. For other elements, 

pass membrane patch test can be proven through the methodology presented in Section 1.4.2. 
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Fig. 2.10. Mesh geometry used for the patch tests. 

 

 

Fig. 2.11. Mesh geometry, loading and boundary conditions used for the membrane patch tests. The 

tensile patch tests are shown in (a) and (c), and shear patch test is shown in (b). The lines through 

element Gauss points for stress evaluation are shown in (a) to (c) ( 0.1p , thickness=1.0, 

6101.2 E , 3.0ν ). 

 

In the zero energy mode tests, the number of zero eigenvalues of the stiffness matrix of a single un-

supported element are counted [1,5-9,14,19,31,35,38-40]. For the new elements only the six zero 

eigenvalues corresponding to the six rigid body modes are obtained. That is, all three elements pass 

the zero energy mode tests. 

 

In order to test the in-plane shearing mode of the shell elements, Cook’s problem shown in Fig. 2.13 

is considered. The results of tip displacements are shown in Table 2.2. While all shell elements con-
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verges accurately toward the reference solution, the original MITC4 and the new MITC4+ shell ele-

ment perform the best. We test in-plane bending modes of the shell elements under regular and dis-

torted mesh using cantilever problem and thick curved beam problem shown in Fig. 2.14 and Fig. 

2.15, respectively. The results of tip displacements are presented in Table 2.3 and Table 2.4. While 

all elements converges accurately toward the exact solutions, the original MITC4 and the new 

MITC4+ shell elements performs identically and better than the other elements. 

 

All three shell elements does not have additional unknowns, and hence computationally efficient. 

Formulations of all three shell elements are relatively simple to implement and physically under-

standable. Note also that all three shell elements yield symmetric and positive definite stiffness ma-

trices. 
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Fig. 2.12. Stresses along lines L1 to L6 for the membrane patch tests of the MITC4+ shell element. 

Results of the patch tests in Fig. 2.11(a), (b) and (c) are shown in (a), (b) and (c), respectively.  
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Fig. 2.13. Cook’s problem. Plane stress condition is considered with 0.1E  and 3/1ν . Geome-

try including the 4×4 mesh division, loading and boundary conditions are shown. 

 

Table 2.2. Vertical displacements at the center of tip A  for Cook’s problem.  

Elements 

Mesh 

Reference 

2×2 4×4 8×8 16×16 32×32 

MITC4 11.8452 18.2992 22.0792 23.4304 23.8176 

23.9642 
MITC4+ 11.7291 18.2662 22.0751 23.4301 23.8176 

MITC4+N 11.8200 18.2934 22.0786 23.4304 23.8176 

New MITC4+ 11.8452 18.2992 22.0792 23.4304 23.8176 

 

 

 

Fig. 2.14. Cantilever problem. Plane stress condition is considered with 
5100.2 E  and 0.0ν . 

Geometry including the 1×2 mesh division, loading and boundary conditions are shown. 
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Table 2.3. Vertical displacements (
410 ) at the tip A  for cantilever problem.  

Elements 

Mesh 

Exact 

1×2 1×4 1×8 

MITC4 -1.60 -2.13333 -2.32727 

-2.40 
MITC4+ -1.60 -2.13333 -2.32727 

MITC4+N -1.60 -2.13333 -2.32727 

New MITC4+ -1.60 -2.13333 -2.32727 

 

 

 

Fig. 2.15. Thick curved beam problem. Plane stress condition is considered with 
3100.1 E  and 

0.0ν . Geometry including the 1×2 mesh division, loading and boundary conditions are shown. 

 

 

Table 2.4. Vertical displacements at the tip A  for thick curved beam problem.  

Elements 

Mesh 

Exact 

1×2 1×4 1×8 

MITC4 22.5988 57.9325 79.9218 

90.1 
MITC4+ 22.7608 56.6258 76.5462 

MITC4+N 22.4383 57.6903 79.8095 

New MITC4+ 22.5988 57.9325 79.9218 
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2.3 Convergence studies 

 

In this section, convergence studies are performed using appropriate and well-established benchmark 

problems to study the behavior of shell elements: a clamped square plate problem, cylindrical shell 

problems, and hyperboloid shell problems [5-9,11,12,18,19,22,60,100,108]. In addition, spherical 

shell problems newly established in our study is considered. The solution errors are measured in an 

appropriate norm considering membrane and bending-dominated shell problems with various curva-

tures, thicknesses, and boundary conditions. Hence the chosen problems are encompassing the typi-

cal difficulties encountered in shell analyses.  

 

To measure the error in the finite element solution, the s-norm proposed by Hiller and Bathe [18] is 

employed 


Ω

ΩΔΔ dT

sh τεuu
2

   with  hεεε Δ , hτττ Δ ,                        (2.77) 

where u  is the exact solution, hu  is the solution of the finite element discretization, and ε  and 

τ  are the strain and stress vectors. This is a proper norm for investigating whether the finite element 

formulation satisfies the consistency and inf-sup conditions [12,16,18,21]. 

 

Since many good benchmark shell problems designed to detect locking have no analytical solution, 

an accurate finite element solution using a very fine mesh refu  is used to replace the exact solution 

u . Hence the s-norm in Eq. (2.77) is modified to be 


ref

ref

T

shref d
Ω

ΩΔΔ τεuu
2

   with  href εεε Δ , href τττ Δ .                (2.78) 

 

To study the solution convergence of shell elements with decreasing thicknesses, the normalized rel-

ative error hE  are employed 

2

2

sref

shref

hE
u

uu 
 .                                                            (2.79) 
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The theoretical convergence behavior, which corresponds to the optimal convergence, is given by 

k

h ChE  ,                                                                  (2.80) 

in which C  is a constant independent of the shell thickness and h  is the element size. For 4-node 

shell elements, 2k . 

 

In this study, well-converged reference solutions calculated using fine meshes of the MITC9 shell 

elements are used. The MITC9 shell element is known to satisfy the ellipticity and consistency con-

ditions and to show good convergence behavior [12,18,108]. 

 

In each of the problem analyses the results obtained using the classical MITC4 shell element, the 

previously published and the new MITC4+ shell elements are given for the practical range of thick-

ness of the shell element. Either uniformly regular or distorted meshes are employed to check sensi-

tivity on the mesh distortion.  

 

 

2.3.1 Fully clamped square plate problem 

 

The plate bending problem [5-9,11,60,108] shown in Fig. 2.16 is considered. A square plate of di-

mensions LL 22   and uniform thickness t  is subjected to a uniform pressure. Utilizing the 

symmetry condition, only a one-quarter model is considered, with the following boundary condi-

tions: 0 yxu   along BC, 0 xyu   along DC and 0 yxzyx uuu   along AB 

and AD. In addition to the regular mesh in Fig. 2.16, the same plate bending problem with distorted 

meshes shown in Fig. 2.17 is considered. In NN  distorted mesh, each edge is discretized in the 

following ratio: 
1L :

2L :
3L : …… NL  = 1 : 2 : 3 : …… N . 

 

Fig. 2.18 gives the convergence curves of the three shell elements. A 72×72 element mesh of the 

MITC9 shell element is used to obtain the reference solution. NN   element meshes are used 

with N  4, 8, 16, 32, and 64 to calculate the solutions. The element size in the convergence 

curves is NLh / . The performance of the elements is uniformly optimal in both the regular and 

distorted meshes. Note that membrane locking is inherently not present in this plate bending prob-

lem. 
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2.3.2 Cylindrical shell problems 

 

Cylindrical shell of length L2 , radius R  and uniform thickness t  are considered as shown in 

Fig. 2.19(a), see Refs. [5-9,22]. The loading is a smoothly varying pressure )(p  

)2cos()( 0  pp  ,                                                           (2.81) 

see Fig. 2.19(b). 

 

This shell structure shows two different asymptotic behaviors depending on the boundary conditions 

at its ends: bending-dominated behavior when both ends are free and membrane-dominated behavior 

when both ends are clamped. 

 

Fig. 2.16. Fully clamped square plate under uniform pressure ( 0.1L ,
7107472.1 E , 0.1q  

and 3.0 ). 
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Fig. 2.17. Distorted mesh patterns for (a) 4N  and (b) 8N . 

 

Using symmetry, only the region ABCD in Fig. 2.19(a) is modeled. For the membrane-dominated 

problem, the clamped boundary condition is imposed: For the membrane-dominated case, the 

clamped boundary condition is imposed: 0 βuz  along DC, 0 βu y  along AB, 

0 αux  along AD, and 0 zyx uuu  along BC. For the bending-dominated case, 

the free boundary condition is imposed: 0 βuz  along DC, 0 βu y  along AB, and 

0 αux  along AD. When using the clamped boundary condition, the regular mesh is graded with 

a boundary layer of width t2 , see Refs. [21,22] for details. In the free boundary condition, the 

graded mesh with a boundary layer of width t5.0  is considered. The convergence studies using 

the distorted meshes shown in Fig. 2.19(c) are also performed. 
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Fig. 2.18. Convergence curves for the fully clamped square plate problem with (a) the regular and 

(b) distorted meshes shown in Fig. 2.17. The bold line represents the optimal convergence rate. 
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Fig. 2.19. Cylindrical shell problem ( 0.1 RL , 
5100.2 E , 3/1  and 0.10 p ). (a) 

Problem description with graded mesh for the clamped case (8×8 mesh, 100/1/ Lt ). (b) Pressure 

loading. (c) Distorted mesh in Fig. 2.17 applied. 

 

Fig. 2.20 gives the convergence curves in the solution of the clamped cylindrical shell problems. The 

reference solutions are calculated using a 72×72 element mesh of MITC9 shell elements. The solu-

tions are obtained with NN   element meshes ( N  4, 8, 16, 32, and 64). The element size is 

NLh / . In this problem, all shell elements present similarly good convergence behaviors. 

 

Fig. 2.21 shows the convergence curves for the free cylindrical shell problems. Note that, in the 

regular meshes, all 4-node shell elements have a flat geometry, and thus membrane locking does not 

occur. However, in the distorted meshes, the element geometry is not flat, which induces membrane 

locking. In those cases, the performance of the MITC4 shell element severely deteriorates. The new 

MITC4+ shell element shows an excellent performance. 
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Fig. 2.20. Convergence curves for the clamped cylindrical shell problem with (a) the regular or (b) 

distorted meshes. The bold line represents the optimal convergence rate. 

 

 

2.3.3 Hyperboloid shell problems 

 

Here, the hyperboloid shell shown in Fig. 2.22(a) is considered, see Refs. [5-9,12,18,100]. The mid-

surface of the shell structure is given by 

;1 222 yzx    ].1,1[y                                                 (2.82) 

As for the cylindrical shell problems, a smoothly varying pressure in Eq. (2.81) is applied. 

 

A bending-dominated behavior is obtained with free ends and a membrane-dominated behavior is 
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given with clamped ends, similar to the cases of the cylindrical shell. 

 

 

Fig. 2.21. Convergence curves for the free cylindrical shell problem with (a) the regular and (b) dis-

torted meshes. The bold line represents the optimal convergence rate. 

 

Due to symmetry, only one-eighth of the structure corresponding to the shaded region ABCD in Fig. 

2.22(a) is modeled for the analysis. For the membrane-dominated case, the clamped boundary condi-

tion is imposed: 0 zu  along DC, 0 xu  along AB, 0yu  along AD, and 

0 zyx uuu  along BC. For the bending-dominated case, the free boundary condition 

is imposed: 0 zu  along DC, 0 xu  along AB, and 0yu  along AD. 

 

In both cases, a 72×72 element mesh of MITC9 shell elements is used to obtain the reference solu-
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tions. The solutions are calculated using NN   element meshes ( N  4, 8, 16, 32 and 64). The 

element size is NLh / . For the clamped boundary condition, the regular mesh graded in a 

boundary layer of width t6  shown in Fig. 2.22(b) is considered, see Refs. [7,18,21]. For the free 

boundary condition, the regular mesh is graded in a boundary layer of width t5.0  [18,21]. The 

convergence studies with the distorted meshes shown in Fig. 2.22(c) are also performed. 

 

 

Fig. 2.22. Hyperboloid shell problem (
11100.2 E , 3/1 , 0.1L  and 0.10 p ). (a) Problem 

description. (b) Graded mesh for the clamped case (8×8 mesh, 1000/1/ Lt ). (c) Distorted mesh 

in Fig. 2.17 applied. 

 

Fig. 2.23 shows the good convergence behavior of all elements in the solution of the clamped hyper-

boloid shell problem. Fig. 2.24 shows the convergence curves for the solution of the free hyperboloid 

shell problem. While all shell elements behave well when using the regular meshes, the convergence 

behavior of the MITC4 and previously published MITC4+ shell element deteriorate when using the 

distorted meshes. However, the new MITC4+ shell element shows an almost uniformly optimal and 

thus ideal convergence behavior. 
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Fig. 2.23. Convergence curves for the clamped hyperboloid shell problem with (a) the regular and 

(b) distorted meshes. The bold line represents the optimal convergence rate. 

 

 

2.3.4 Spherical shell problems 

 

Finally, the spherical shell of radius R  shown in Fig. 2.25(a) is considered. The spherical shell has 

18° circular cutouts at its top and bottom. The varying pressure in Eq. (2.81) with the azimuthal an-

gle   is applied. 

 

A bending-dominated behavior is obtained with free ends and a membrane-dominated behavior is 

given with clamped ends, similar to the cylindrical and hyperboloid shell problems. 
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Fig. 2.24. Convergence curves for the free hyperboloid shell problem with (a) the regular and (b) 

distorted meshes. The bold line represents the optimal convergence rate. 

 

Utilizing the symmetry, only one-eighth of the structure corresponding to the shaded region ABCD 

in Fig. 2.25(a) is modeled for the analysis. For the membrane-dominated case, the clamped boundary 

condition is imposed: 0 βux  along BC, 0 βuy  along AD, 0 αuz  along AB, and 

0 zyx uuu  along DC. For the bending-dominated case, the free boundary condition 

is imposed: 0 βux  along BC, 0 βuy  along AD, and 0 αuz  along AB. In the free 

boundary condition, the regular mesh graded in a boundary layer of angle 
2.05.2  tφl


 shown in 

Fig. 2.25(b) is considered. The convergence studies with the distorted meshes shown in Fig. 2.25(c) 

are also performed. 
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Fig. 2.25. Spherical shell problem (
11100.2 E , 3/1 , 0.1R , 

180 φ  and 0.10 p ). (a) 

Problem description. (b) Graded mesh for the free case (8×8 mesh, 10000/1/ Rt ). (c) Distorted 

mesh in Fig. 2.17 applied. 

 

Fig. 2.26 presents the convergence curves in the solution of the clamped spherical shell problem. The 

reference solutions are calculated using a 72×72 element mesh of MITC9 shell elements. The solu-

tions are obtained with NN   element meshes ( N  4, 8, 16, 32, and 64). The element size is 

NRh / . All shell elements present similarly good convergence behaviors. 

 

Fig. 2.27 shows the convergence curves for the free spherical shell problem. In the regular meshes, 

all elements perform equally very well. However, in the distorted meshes, the convergence behavior 

of the MITC4 and previously published MITC4+ shell elements deteriorate. In this problem, the new 

MITC4+ shell element still shows an excellent performance. 
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Fig. 2.26. Convergence curves for the clamped spherical shell problem with (a) the regular and (b) 

distorted meshes. The bold line represents the optimal convergence rate. 
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Fig. 2.27. Convergence curves for the free spherical shell problem with (a) the regular and (b) dis-

torted meshes. The bold line represents the optimal convergence rate. 

 

2.4 Classical benchmark tests 

 

Here, a set of widely-used linear benchmark problems are presented to test the proposed shell ele-

ments. The problems considered are the twisted beam problem, hemispherical shell problem and 

pinched cylinder problem. As in the literature, convergence is measured using a representative dis-

placement in a specific location of the shell structure. 

  

The solutions of the new 4-node quadrilateral shell element are compared with the 4-node S4 and 

S4R shell elements used in the commercial software ABAQUS [109]. Note that unlike the S4 ele-
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ment employing the full numerical integration ( 222   Gauss integration), the S4R element re-

quire undesirable stabilization matrix as well as displacement projection method because of the re-

duced integration applied. 

 

 

2.4.1 Twisted beam problem 

 

The twisted beam problem [34,36,38,40,110,111] shown in Fig. 2.28 is considered. A cantilever 

beam of length 12L , width 1.1w , and twist of 
90  is loaded by concentrated out-of-plane 

load P  at the center of free tip, point A. The material properties are 
7109.2 E  and 22.0ν . 

The two different thicknesses, 32.0t  and 0032.0t  are considered. 

 

The whole beam is modeled with NN 6  meshes are used with 4N , 8 , 16 , 32  and 64 . For 

32.0t  and 0032.0t , 0.1P  and 6100.1 P  are respectively used and the reference 

deflections at point A are 
2101754.0 refw  and 

2101294.0 refw , respectively [110].  

 

Fig. 2.29 shows the convergence of the normalized vertical deflections ( refA ww / ) according to the 

mesh division N . All shell elements show nearly identical performances. 

 

Fig. 2.28. Twisted beam problem. 
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Fig. 2.29. Convergence of the normalized vertical deflections for the twisted beam problem. The hor-

izontal lines represent the exact vertical deflection. 

 

 

2.4.2 Pinched cylinder problem 

 

The pinched cylinder problem [1,10,30,35,36,38,39,97,110,111], shown in Fig. 2.30, is considered. 

The cylinder structure of length 600L , radius 300R  and thickness 3t  is supported by 

rigid diaphragms along its ends and is subjected to a pair of pinching forces, 0.1F . The material 

properties used are 
6100.3 E  and 3.0ν .  

 

Only one-eighth of the structure corresponding to the shaded region ABCD in Fig. 2.30 is modeled. 

The boundary conditions are 0u  along the edge AB, 0v  along the edge AD, 0w  along the 

edge CD, and 0 wu  along the edge BC. NN   meshes are used with 4N , 8 , 16 , 32  

and 64 . The reference deflections at point A is 
510825.1 refw . 

 

Fig. 2.31 shows the convergence of the normalized vertical deflections ( refA ww / ) according to the 

mesh division N . The performance of reduced integrated shell element (S4R) is slightly better than 

other full-integrated shell elements. 
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Fig. 2.30. Pinched cylinder problem. 

 

 

Fig. 2.31. Convergence of the normalized vertical deflections for the pinched cylinder problem. The 

horizontal lines represent the exact vertical deflection. 

 

 

2.4.3 Hemispherical shell problem 

 

We solve hemispherical shell problem [10,14] shown in Fig. 2.32. The spherical shell with radius 

0.10R , thickness 04.0t  and 
18  cutout at its pole is subjected to alternating radial forces 

0.2P s at its equator. The material properties used are 
710825.6 E  and 3.0ν . In this 

bending problem, the shell structure undergoes almost inextensional deformation, hence providing a 
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mean to test membrane locking. 

 

Due to symmetry, only one quarter of the structure corresponding to the shaded region ABCD in Fig. 

2.32 is modeled, using NN   meshes with 4N , 8 , 16 , 32  and 64 . We use the following 

boundary conditions: 0 βu  along BC, 0 βv  along AD, and 0w  at any single node. 

The reference deflections at point A is 0924.0refu .  

 

Fig. 2.33 shows the convergence of the normalized deflections ( refA uu / ) according to the mesh di-

vision N . While the reduced integrated shell element (S4R) shows fastest convergence of dis-

placement, the new MITC4+ shell element performs slightly better than the S4 shell element. 

 

 

 

Fig. 2.32. Hemispherical shell problem. 

 

 

Fig. 2.33. Convergence of the normalized vertical deflections for the hemispherical shell problem. 



 

- 72 - 

The horizontal lines represent the exact vertical deflection. 

 

 

2.5 Geometric nonlinear analysis 

 

Here we present performance of new MITC4+ shell element in geometric nonlinear analysis 

[112].We use the solutions obtained from fine mesh of the MITC9 shell element as the reference. 

The numerical results are compared with the classical MITC4 shell element. Here, new MITC4+ 

shell element is simply referred as MITC4+ shell element. 

 

 

2.5.1 Cantilever bending problem 

 

Bending problem of cantilever [1,13,32,113-116] is considered, see Fig. 2.34. The cantilever fully 

clamped at one end is subjected to either shearing force P  or bending moment M  at free tip. The 

cantilever is modeled with 16×1 meshes of the shell elements. The material properties are 

6102.1 E  and 0.0ν . The cantilever has width 0.1b , thickness 1.0h , and length 

0.10L  for shearing load and 0.12L  for moment load case. 

 

For the shearing load case, the reference solution is obtained by fine 32×1 mesh of the MITC9 shell 

elements. We consider maximum load of 0max 4PP   with LEIP /0   and 12/3btI  . 

 

 

Fig. 2.34. Cantilever bending problem (16×1 mesh). (a) Case of tip shearing force. (b) Case of tip 

moment. 
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Fig. 2.35. Load-displacement curves for the cantilever (a) under tip shearing force and (b) under tip 

moment. 

 

For the moment load case, the cantilever forms a circular arc with its radius R  from the flexural 

formula MEIR /  with 12/3btI  . Using this formula, the following analytical tip displace-

ments are obtained [115,116] 
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The cantilever should bend into complete circle when the maximum tip moment 0max 2 MπM   is 

applied. 
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Fig. 2.36. Deformed shapes of the cantilever (a) under tip shearing force and (b) under tip moment.  

 

Fig. 2.35 shows the load-displacement curves of the MITC4 and MITC4+ shell elements. The solu-

tions agree well with the reference and analytic solution in Eq. (2.83). Fig. 2.36 presents the de-

formed shapes at load levels 25.0/ max PP  and 0.1  for shearing load case and 

25.0/ max MM , 5.0  and 0.1  for moment load case. 

 

2.5.2 Hemispherical shell problem  

 

Hemispherical shell problem [10,14,32,111,115] shown in Fig. 2.37(a) is considered. The spherical 
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shell with cutout angle 
180 φ  at its pole is subjected to alternating radial forces P s at its equa-

tor. The hemisphere has radius 0.10R  and thickness 04.0h . The material properties are 

710825.6 E  and 3.0ν . Due to symmetry, only one quarter of the structure corresponding to 

the shaded region ABCD in Fig. 2.37(a) is modeled, using either 8×8 or 12×12 meshes of the MITC4 

and MITC4+ shell elements. We use the following boundary conditions: 0 βu  along BC, 

0 βv  along AD, and 0w  at any single node. Maximum load of 400max P  is consid-

ered. 

 

 

 

Fig. 2.37. Hemispherical shell problem. (a) Problem description (12×12 uniform mesh). (b) Distorted 

mesh pattern (4×4 mesh). (c) Distorted mesh pattern applied (12×12 mesh). 
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Fig. 2.38. Load-displacement curves for the hemispherical shell problem with the uniform mesh. (a) 

8×8 mesh. (b) 12×12 mesh. 

 

In addition to the uniform mesh in Fig. 2.37(a), we consider distorted mesh pattern shown in Fig. 

2.37(b). Then, when we use an NN   element mesh, each edges are discretized in the following 

ratio: 
1L :

2L :
3L : …… NL  = 1 : 2 : 3 : …… N . The applied distorted mesh is shown in Fig. 

2.37(c). The reference 32×32 mesh of MITC9 shell elements is employed. 
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Fig. 2.39. Load-displacement curves for the hemispherical shell problem with the distorted mesh. (a) 

8×8 mesh. (b) 12×12 mesh. 

 

Fig. 2.38 and 2.39 present the load-displacement curves for the uniform and distorted mesh, respec-

tively. As the mesh is refined, the solution obtained using the MITC4+ shell element converges 

quickly than that of the MITC4 shell element. For the distorted mesh cases, the MITC4 shell element 

behaves erroneously with large deviation from the reference. For the shell element, converging per-

formance is decreased slightly when using distorted mesh with no significant error.  

 

 

 



 

- 78 - 

2.5.3 Bending of cylindrical shell structure 

 

Bending problem of cylindrical shell structure [10,13,14,114] shown in Fig. 2.40(a) is considered. 

The cylindrical shell structure with radius 0.10R , length 0.20L  and angle 
30θ  is 

clamped at one side and is subjected to uniform bending moment M  the opposite side, which var-

ies with thickness h  according to 
3

0hMM  . The three thickness to dimension ratio of 

100/1/ Rh , 1000/1/ Rh  and 10000/1/ Rh  are tested. The material properties are 

6101.2 E  and 0.0ν . For each thickness, we consider load level up to   4

max0 100.4 M . 

 

 

Fig. 2.40. Bending of cylindrical shell structure. (a) Problem description (12×12 uniform mesh). (b) 

Distorted mesh pattern (4×4 mesh). (c) Distorted mesh pattern applied (12×12 mesh). 
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Fig. 2.41. Load-displacement curves for the bending of cylindrical shell structure with the uniform 

mesh. (a) 100/1/ Rh . (b) 1000/1/ Rh . (c) 10000/1/ Rh .  

 

In addition to the uniform mesh in Fig. 2.40(a), we consider distorted mesh pattern shown in Fig. 

2.40(b). Then, when we use an NN   element mesh, the pair of edges are discretized in the fol-

lowing ratio: 
1L :

2L :
3L : …… NL  = 1 : 2 : 3 : …… N . The applied distorted mesh is shown in 
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Fig. 2.40(c). For the MITC4 and MITC4+ shell elements, 12×12 meshes are used. The reference 

32×32 mesh of MITC9 shell elements is employed. 

 

 

Fig. 2.42. Load-displacement curves for the bending of cylindrical shell structure with the distorted 

mesh. (a) 100/1/ Rh . (b) 1000/1/ Rh . (c) 10000/1/ Rh .  
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Fig. 2.41 shows the load-displacement curves for the uniform mesh, where the solutions obtained 

using the 4-node shell elements agree well with the reference solution. Fig. 2.42 presents the load-

displacement curves for the distorted mesh. As thickness is decreased, the solutions obtained by the 

MITC4 shell element depart largely from the reference due to membrane locking. The MITC4+ shell 

element still shows good agreement with the reference solution, in which the convergence behavior 

is close to uniformly optimal as for the uniform mesh case. 

 

2.5.4 Twisted cantilever beam problem 

 

Twisted cantilever beam problem shown in Fig. 2.43 is considered [69,73,111]. The initially twisted 

beam fully clamped at one end is loaded by point load P  at the center of the free tip. The beam has 

length 0.12L  and width 1.1b . From the literatures [69,73,111] we test respectively in-plane 

and out-of-plane load cases for the thin beam structure (thickness 0032.0h ) to see the effect of 

membrane locking. In numerical analysis, 4×24 meshes are employed for the MITC4 and MITC4+ 

shell elements while 8×48 mesh of MITC9 shell elements is used for the reference. The material 

properties are 
7109.2 E  and 22.0ν . Maximum load level is 

2

max 104 P . 

 

Fig. 2.43. Twisted cantilever beam problem (4×24 mesh). 

 

Fig. 2.44 gives the load-displacement curves for both in-plane and out-of-plane load cases. No se-

vere locking is present for in-plane load case, where both 4-node shell elements perform equally. 

When the out-of-plane load is applied, the load-displacement curves of the MITC4 shell element di-

gress largely from the reference solution due to membrane locking. Then, the MITC4+ shell element 

still shows good predictive capability.  
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Fig. 2.44. Load-displacement curves for the twisted cantilever beam problem. (a) Case of in-plane 

load applied. (b) Case of out-of-plane load applied. 

 

 

2.6 Conclusions 

 

In this study, a set of new 4-node quadrilateral shell elements: the MITC4+, MITC4+N and new 

MITC4+ elements are developed. 

 

In the MITC4+ shell element, the new assumed strain field was introduced using the membrane 
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strains obtained from triangular subdomains. The MITC4+ shell element passes the isotropy test, 

zero energy mode tests, bending and shearing patch tests, and also very closely the membrane patch 

test. The MITC4+ shell element shows improved convergence behavior in bending-dominated situa-

tions without losing the predictive capability of the membrane behavior compared to the MITC4 

shell element. 

 

The MITC4+N shell element modifies the formulation of the MITC4+ shell element such that mem-

brane patch test is exactly passed. The element has slightly better membrane-dominated behavior and 

identical bending-dominated behavior when compared with the MITC4+ shell element. 

 

The new MITC4+ continuum mechanics-based shell element using the MITC approach to alleviate 

shear and membrane locking. The shear locking is alleviated by using the interpolations of the clas-

sical MITC4 element formulation. The membrane locking is alleviated by the use of characteristic 

geometry and displacement vectors and using a new MITC interpolation on the membrane strains. 

The new MITC4+ shell element passes all basic tests and shows in an appropriate norm excellent 

performance in the solution of membrane and bending-dominated problems even when significantly 

distorted meshes are used. Indeed, in the difficult to solve elliptic and hyperboloid shell analysis 

problems the element shows an almost ideal behavior. 

 

The new MITC4+ shell element shows a significantly better behavior than the MITC4 shell element 

for both linear and nonlinear analyses, and is computationally more effective than the previous ele-

ments (MITC4+ and MITC4+N). The element is identical to the original MITC4 shell element for a 

flat geometry and hence the membrane behavior is well preserved. 

 

The limitation in the new MITC4+ shell element is that the value d  in Eq. (2.73) could be close to 

zero if the distortion is severe. Such cases rarely happen in practice and no problem was observed for 

the numerical examples in this section. However, a mathematical or numerical study of the present 

formulation to circumvent such limitation would be valuable. 
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Chapter 3. The new 6-node triangular solid-shell element 

 

3.1 The geometric nonlinear formulation of the developed 6-node triangular solid-shell el-

ement, MITC-S6 

 

In this section, the Total Lagrangian nonlinear formulation of newly developed 6-node triangular 

solid-shell element, the MITC-S6 solid-shell element [117] is presented. In the formulation, the left 

superscript t  and tt Δ  are used to denote the two consecutive load steps, each of which corre-

sponds to the previously known and the currently unknown configurations in the equilibrium itera-

tions, and the left super- and subscript 0 is used to denote the initial reference configuration. See 

Fig. 3.1 for the three configurations considered. 

 

The geometry of the proposed element in the configuration t  shown in Fig. 3.2 is interpolated by 
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where rh 1 , sh 2 , srh 13  and the superscripts “bot” and “top” respectively denotes 

the bottom and top surfaces of the solid-shell element. 

 

The incremental displacement vector u  from the configuration t  to the configuration tt Δ  is 

),,(),,(),,( Δ tsrtsrtsr ttt xxu  
,            (3.2) 

and hence 
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Fig. 3.1. Nonlinear kinematics of the 6-node triangular solid-shell element. The covariant base vec-

tors at 0 tsr  in the initial ( 0 ), previous ( t ) and current ( tt Δ ) configurations are depict-

ed. 

 

 

Fig. 3.2. A 6-node triangular solid-shell element. 
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The covariant components of the Green-Lagrange strain are given by 
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where 
i

i
r




u
u , , xxu

0t
, rr 1 , sr 2 , tr 3 . 

 

The incremental covariant strain components are 
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which can be decomposed as 

ijijij e ηε 000     with )(
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,,0 ji

t
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t

iije uggu  , )(
2

1
,,0 jiij uu  ,                (3.6) 

where ije0  and ij0  are the linear and nonlinear parts, respectively. 

 

Substituting Eq. (3.3) into Eq. (3.6), the linear and nonlinear parts of the covariant in-plane strains 

are directly calculated as follows: 

eijji
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in which ijB  is the linear strain-displacement relation matrix for the strain component ij , eU  is 

the incremental nodal displacement vector including 
bot

iu  and 
top

iu , and ijN  is the matrix repre-

senting the relation between the nonlinear strain components and the nodal displacements. 

 

For the transverse shear strains and the corresponding variations, the assumed strain field of the 

MITC3+ triangular shell element [7] is employed. The linear parts of the covariant transverse shear 

strains 230 e  and 130 e  are substituted by  
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with 
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230
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)(

130
~ EFDF eeeec  ,                                                   (3.8c) 

in which the tying points are shown in Fig. 3.3. As for the MITC3+ shell element [7], the fixed val-
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ue 000,100/1d  is chosen. The same assumed strain field with the same tying positions is used 

for the nonlinear part of the covariant transverse shear strains: 

ei

T

ei UNU 32
1

30
~     for 2,1i .                                               (3.9) 

 

To reduce curvature thickness locking, the assumed strain method is also used. The linear and non-

linear parts of the thickness strain are assumed as 

eeeesre UB33330330330330 ))1,0()0,1()0,0((
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Note that, unlike the linear strain field in Ref. [30], the constant assumed strain field is employed for 

thickness strain in this element. 

 

 

Fig. 3.3. Tying positions for the transverse shear strains of the MITC-S6 solid-shell element. 

 

Here, the enhanced strains to improve the behaviors of the 6-node triangular solid-shell element are 

derived. The enhanced strains are used for the linear part of the covariant in-plane, transverse shear 

and thickness strains. 

 

In order to construct the enhanced strains, the following interpolations defined using the bubble-

type functions are considered: 

)(
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1
21

plane-in
VVu βαthb  ,                                                  (3.11a) 
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3

thickness

2

1
Vu γhq ,                                                     (3.11b) 

where )1(27 srrshb   and 
21 thq   are the two-dimensional bubble and one-dimensional 

quadratic functions, 1V , 2V  and 3V  are vectors denoting the direction of translations, and  , 

  and γ  are internal variables. 

 

The interpolation in Eq. (3.11a) is used to effectively enhance the bending mechanism of the trian-

gular elements, see Refs. [7,39,61,62]. In the plate and shell elements [7,62], the variables   and 

  are defined as rotations about 1V  and 2V . However, in this 6-node solid-shell element, the 

variables   and   represent the in-plane translation of shell surfaces in the directions of 1V  

and 2V . As long as the two vectors can fully define the in-plane translations, i.e. they are not coin-

cident to each other, the same numerical results are obtained. Thus, it is not necessary to update 1V  

and 2V  in the nonlinear solution procedure. In this study, xiV 1  and yiV 2  is chosen. 

 

The interpolation in Eq. (3.11b) has been used in three-dimensional shell elements [35,76,93] to in-

duce the thickness stretch to vary linearly along the thickness direction, which is useful to avoid 

Poisson thickness locking. For this purpose, the vector 3V  is taken to be identical to the third con-

travariant base vector 
3

3 gV
t , where the contravariant base vectors 

it
g  satisfy the relation 

ij

jt

i

t δ gg  for the Kronecker delta ijδ . 

 

Using the bubble interpolation in Eq. (3.11a), the following enhanced in-plane covariant strain is 

obtained: 
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where 
i

i
r




plane-in
plane-in

,

u
u , ijG  is the enhanced strain-displacement relation matrix, and eΛ  is 

the vector of internal variables. This strain field is also effective for improving the bending perfor-

mance of the 6-node triangular solid-shell element. 

 

The transverse shear covariant strains due to the bubble interpolation in Eq. (3.11a) are calculated 

by 
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and the enhanced transverse shear strains are obtained using the following assumed field: 
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where the tying points ( A , B  and C ) used are shown in Fig. 3.3. Note that this assumed strain 

does not include the terms linear in r  and s  from Eq. (3.8), resulting in simple matrices 23G  

and 13G  as will be presented. 

 

In order to alleviate Poisson thickness locking, the following enhanced strain is employed for the 

thickness normal component: 

e

tenh tγe ΛGug 33

thickness

3,3330  ,                                               (3.15) 

where 
3

thickness
thickness

3,
r




u
u . In Eq. (3.15), a single internal variable was used, as in Ref. [31], with 

the physical meaning of thickness normal translation being quadratic in t . 

 

Note that the interpolation in Eq. (3.11a) is used only to enhance strain components ‘11’, ‘22’, ‘12’, 

‘23’ and ‘13’, while the thickness strain (component ‘33’) is enhanced by Eq. (3.11b). That is, two 

strain enhancements are independently applied to each other. This is an important characteristic for 

the present 6-node solid-shell element to behave well in various shell problems. 

 

Finally, the linear part of the incremental covariant strains for the 6-node MITC solid-shell element 

is obtained: 
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where 
T

e γβα ][Λ  is the vector of internal variables for the element. Finally, the resulting 

form of the enhanced strain matrices ( ijG ) is given as follows. 

 T132312332211 GGGGGG  
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,  for 2,1i . 

 

Linearizing the principle of virtual work in the configuration tt   about the known configura-

tion at t , the following total Lagrangian formulation is given [15]. 
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where V0
 is the volume of the solid-shell element at step 0 ,  tt

 is the external virtual work 

due to the applied surface tractions and body forces, 
ijt S0  denotes the contravariant second Piola-

Kirchhoff stress and 
ijklC0  is the corresponding general 3D material law tensor [35,93,100]. 

 

Substituting Eqs. (3.7)-(3.10) and (3.16) into Eq. (3.18), the Total Lagrangian formulation is discre-

tized as follows: 
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where e

tt
R


 is the external load vector at step tt  . 

 

The following linearized equilibrium equation is obtained in the element level: 
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The internal variables related to the strain enhancements can be easily condensed out in the element 

level to obtain the condensed equilibrium equation [32,33,35,39] 
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where the contravariant second Piola-Kirchhoff stress is updated by 
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In the incremental solution procedure, the geometry is updated using Eq. (3.2). For the evaluation of 

the element stiffness matrix and internal nodal force vector, 3-point Gauss integration in the r - s  

plane and the 2-point Gauss integration in the t -direction are employed. 

 

 

3.2 The previous 8-node quadrilateral solid-shell element, MITC-S8 

 

In this section, the formulation of the 8-node solid-shell element in the literatures [32-36,41] are 

presented. The element is denoted as MITC-S8 that is used for comparison in this study. Shear lock-

ing and thickness locking are treated using the assumed strain and EAS methods. 

 

For the 8-node solid-shell element, the geometry and displacement interpolations are given by (Fig. 

3.4) 
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The linear part of the covariant strain is calculated by 
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The following assumed transverse shear strains are employed to treat shear locking, see Refs. [32-

36,41] 
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where the tying points are shown in Fig. 2.2. 

 

 

Fig. 3.4. An 8-node quadrilateral solid-shell element. 

 

In order to reduce thickness locking, the following assumed strains is used for thickness strain, see 

Refs. [32-35,41,76], 
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The enhanced assumed thickness strain is also used as follows: 
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in which j  and 0j  are the determinants of the Jacobian matrix  T321 ggg


 at ),,( tsr  and 

at )0,0,0( , respectively, and iγ  are internal variables, see Refs. [32,33,41]. Note that, unlike the 

MITC-S6 triangular solid-shell element, four internal variables are necessary to satisfy the basic 

tests. 

 

Note that this element is equivalent to the 8-node solid-shell element proposed by Klinkel et al. 

[32,33]. In the numerical examples, the 222   Gauss integration is employed. 

 

 

3.3 Basic tests 

 

In this section, basic numerical tests are conducted for the proposed solid-shell element. The isotro-

py, patch and zero energy mode tests are considered. 

 

Spatially isotropic behavior is an important requirement for the triangular elements. The element 

behavior should not depend on the sequence of node numbering, i.e. the element orientation [3,5-

9,38]. The proposed solid-shell element passes this test. 

 

Three patch tests of the membrane, bending and transverse shearing patch tests are performed, see 

Refs. [1,5-9,14,19,30-34,36-40,101,102]. The geometry of the mesh is shown in Fig. 3.5(a). The 

loading and boundary conditions for the membrane, bending and transverse shearing patch tests are 

shown in Fig. 3.5(b) to 3.5(d), respectively, in which the boundary conditions for the shaded regions 

are specified. The patch of elements is additionally subjected to the minimum number of constrains 

to prevent rigid body motions. If the correct constant stress fields are calculated, the patch tests are 

passed. The proposed element passes all the patch tests. Also, the element expresses constant normal 

stress in the constant compression test [30] performed using a single element, see Fig. 3.6. 

 

In the zero energy mode tests, the number of zero eigenvalues of the stiffness matrix of a single un-

supported element is counted [1,5-9,14,19,31,35,38-40]. For the present element, only the six zero 

eigenvalues corresponding to the six correct rigid body modes are obtained. 
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Fig. 3.5. Patch tests. (a) The mesh geometry. The loading and boundary conditions used for the (b) 

membrane, (c) bending, and (d) transverse shearing patch tests. 

 

 

Fig. 3.6. An element used for the constant compression test. 

 

3.4 Classical benchmark tests 

 

Here, a set of widely-used linear benchmark problems are presented to test the proposed solid-shell 

elements. The problems considered are the fully clamped square plate problem, pinched cylinder 

problem, twisted beam problem, Scordelis-Lo roof problem and hyperboloid shell problems. As in 
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the literature, convergence is measured using a representative displacement in a specific location of 

the shell structure. 

  

The solutions of the MITC-S6 solid-shell element are compared with those of the 6-node solid-shell 

element by Sze et al. [30], the 6-node solid-shell element, SC6R, used in the commercial software 

ABAQUS [109] and the 8-node solid-shell element in the literature, denoted as MITC-S8 [32-

36,41]. 

 

 

3.4.1 Fully clamped square plate problem 

 

The plate bending problem [5-8,30,32-34,38,39,42,90,93,108] is shown in Fig. 3.7. The square plate 

with dimensions of LL 22   and thickness t  is subjected to uniform pressure 0.1q . Three dif-

ferent thicknesses, 100/1/ Lt , 1000/1  and 10000/1  are considered with 100L . The ma-

terial properties used are 
4100.1 E  and 3.0 . 

 

Fig. 3.7. Fully clamped square plate problem. 
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Due to symmetry, only a quarter of the plate corresponding to the shaded region ABCD in Fig. 3.7 is 

modeled with the mesh patterns shown in Fig. 3.8. The boundary conditions are 0v  along the 

edge AB, 0u  along the edge AD and 0 wvu  along the edges CD and BC. NN   mesh-

es are used with 2N , 4  and 8 . For the case of 100/1/ Lt , the reference vertical deflection 

is 384.1refw . As the plate thickness becomes smaller, the deflection value varies with 
3)/( Lt . 

 

 

Fig. 3.8. Mesh patterns used for the benchmark tests: Regular meshes of (a) type 1 and (b) type 2 for 

triangular elements, (c) cross mesh for triangular elements and (d) regular mesh for quadrilateral 

elements. 

 

Table 3.1 presents the vertical deflection at the plate center, Aw , normalized by the reference val-

ues. Figure 3.9 shows convergences of the normalized displacement, refA ww /  according to N . It 

is observed that the MITC-S6 element shows good convergences regardless of Lt /  and outper-

forms the 6-node solid-shell developed by Sze, compared in the cross mesh. In the regular mesh 

patterns (types 1 and 2) considered here, the predictive capability of the MITC-S6 triangular solid-

shell element is comparable to that of the MITC-S8 quadrilateral solid-shell element. Note that, in 

plate bending problems, most triangular elements perform much better in a cross mesh than in regu-

lar meshes (types 1 and 2). 
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Table 3.1. Normalized vertical deflections at the plate center (point A ) for the clamped plate prob-

lem. The mesh patterns are shown in Fig. 3.8. 

Lt /  N  

Type 1 

regular mesh 

 Type 2 

regular mesh 

 Cross mesh  Regular 

mesh 

MITC-S6 SC6R MITC-S6 SC6R MITC-S6 SC6R Sze et al. MITC-S8 

1/100 2 0.743 0.029 0.993 0.043 0.933 0.773 0.781 0.957 

4 0.925 0.554 1.000 0.668 0.981 0.937 0.946 0.988 

8 0.981 0.941 1.001 0.970 0.995 0.985 0.991 0.997 

1/1000 2 0.741 0.001 0.991 0.001 0.931 0.771 0.778 0.956 

4 0.924 0.032 0.998 0.034 0.979 0.933 0.943 0.987 

8 0.979 0.557 0.999 0.484 0.993 0.982 0.987 0.995 

1/10000 2 0.741 0.000 0.990 0.000 0.931 0.770 0.778 0.956 

4 0.923 0.006 0.998 0.006 0.979 0.933 0.943 0.987 

8 0.979 0.091 0.999 0.092 0.993 0.982 0.987 0.995 

 

 

3.4.2 Pinched cylinder problem 

 

The pinched cylinder problem [1,10,30,35,36,38,39,97,110,111], shown in Fig. 2.27, is considered. 

The cylinder structure of length 600L , radius 300R  and thickness 3t  is supported by 

rigid diaphragms along its ends and is subjected to a pair of pinching forces, 0.1F . The material 

properties used are 
6100.3 E  and 3.0ν .  

 

Only one-eighth of the structure corresponding to the shaded region ABCD in Fig. 2.27 is modeled. 

The boundary conditions are 0u  along the edge AB, 0v  along the edge AD, 0w  along 

the edge CD, and 0 wu  along the edge BC. NN   meshes are used with 4N , 6 , 8 , 10 , 

12 , 14 , 16  and 32 . 
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Fig. 3.9. Convergence of the normalized vertical deflections for the fully clamped square plate prob-

lem with (a) Lt / =1/100, (b) Lt / =1/1000 and (c) Lt / =1/10000. The solid and dotted lines de-

note type 1 regular and cross mesh in Fig. 3.8, respectively. The horizontal line represents the exact 

vertical deflection. 
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Table 3.2 presents the vertical deflections at point A, Aw , normalized by the reference value of 

5108248.1 refw  [97]. Fig. 3.10 shows the convergence of refA ww / . In this problem, the 

MITC-S6 solid-shell element outperforms both the SC6R solid-shell element and the 6-node solid-

shell developed by Sze, and its performance is also comparable to that of the MITC-S8 quadrilateral 

solid-shell element. 

 

 

Fig. 3.10. Convergence of the normalized vertical deflections for the pinched cylinder problem with 

the type 1 regular mesh shown in Fig. 3.8. The horizontal lines represent the exact vertical deflec-

tion. 

 

Table 3.2. Normalized vertical deflections of the cylinder at point A . The mesh patterns are shown 

in Fig. 3.8. 

Lt /  N  

Type 1 

regular mesh  

 Type 2  

regular mesh 

 Cross mesh  Regular 

mesh 

MITC-S6 SC6R MITC-S6 SC6R MITC-S6 SC6R Sze et al. MITC-S8 

0.005 4 0.395 0.218 0.424 0.196 0.498 0.331 0.354 0.379 

6 0.625 0.447 0.651 0.428 0.714 0.552 0.567 0.613 

8 0.753 0.606 0.771 0.589 0.824 0.685 0.695 0.747 

10 0.826 0.710 0.836 0.694 0.882 0.769 0.776 0.826 

12 0.871 0.780 0.876 0.765 0.915 0.825 0.829 0.875 

14 0.901 0.829 0.903 0.815 0.936 0.863 0.868 0.907 

16 0.921 0.864 0.923 0.851 0.951 0.891 - 0.929 

32 0.981 0.966 0.981 0.959 0.992 0.975 - 0.987 
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3.4.3 Twisted beam problem 

 

The twisted beam problem [34,36,38,40,110,111] shown in Fig. 3.11 often has been considered to 

test membrane locking. A cantilever beam of length 12L , width 1.1w , and twist of 
90  is 

loaded by concentrated forces at the center of free tip, point A. The material properties are 

7109.2 E  and 22.0ν . The two different thicknesses, 32.0t  and 0032.0t  are consid-

ered. 

 

The whole beam is modeled with NN   regular meshes with 2N , 4 , 8 , 16  or 32 . Two 

loading cases are considered: in-plane ( P ) and out-of-plane ( F ) loadings. For 32.0t , 

0.1 FP  is used and the reference deflections at point A are 
2105424.0 refv  and 

2101754.0 refw  for in-plane and out-of-plane loadings, respectively [110]. For 0032.0t , 

6100.1  FP  is used, and the reference deflections at point A are 
2105256.0 refv  and 

2101294.0 refw  for in-plane and out-of-plane loadings, respectively [110].  

 

 

Fig. 3.11. Twisted beam problem. (a) Problem description (2×12 mesh). (a) Out-of-plane load case. 

(b) In-plane load case. 

 

Table 3.3 presents the in-plane and out-of plane deflections at point A, Av  and Aw , normalized by 

the reference values of each. All the solid-shell elements considered here show excellent perfor-

mance. Fig. 3.12 shows the convergence of refA vv /  and refA ww / . All elements show nearly 

identical performances. 
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Table 3.3. Normalized deflections at the free end of the twisted beam in the direction of applied 

load. 

Lt /  Mesh 

In-plane load  Out-of-plane load 

MITC-S6 SC6R MITC-S8 MITC-S6 SC6R MITC-S8 

0.0267 

( t 0.32) 

2×12 0.981 0.996 0.990 0.832 0.825 0.918 

4×24 0.990 0.996 0.995 0.922 0.907 0.973 

8×48 0.995 0.999 0.997 0.973 0.967 0.991 

0.000267 

( t 0.0032) 

2×12 0.998 0.994 0.979 0.990 0.995 0.974 

4×24 0.988 0.985 0.991 0.990 0.992 0.992 

8×48 0.993 0.995 0.997 0.996 0.998 0.997 

 

 

Fig. 3.12. Convergence of the normalized deflections for the twisted beam problem with (a) in-plane 

and (b) out-of-plane load cases. The horizontal lines represent the exact deflection. 
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3.4.4 Scordelis-Lo roof problem 

 

The Scordelis-Lo roof problem [1,17,30,31,34,40,76,97,110] in Fig. 3.13 is considered. A roof 

structure of length 50L , radius 25R  and thickness 25.0t  is supported by rigid end dia-

phragms along its curved edges and is subjected to a self-weight with density 360ρ  and gravity 

constant 0.1g . Its material properties are 
81032.4 E  and 0.0ν . 

 

Only one quarter of the structure corresponding to the shaded region ABCD in Fig. 3.13 is modeled 

with the mesh patterns shown in Fig. 3.8. The boundary conditions are 0v  along the edge AD, 

0u  along the edge AB and 0 wu  along the edge BC. NN   meshes are used with 4N , 

6 , 8 , 10 , 12 , 14 , 16  and 32 . 

 

Table 3.4 shows the normalized vertical deflections at the center of free edge (point D ), Dw , 

normalized by the reference value of 3024.0refw  [97]. Fig. 3.14 shows the convergence of the 

normalized vertical deflections ( refD ww / ) according to the mesh division N  for the type 1 regu-

lar mesh of the 6-node solid-shell elements. The proposed solid-shell element outperforms the 

SC6R element. 

 

 

Fig. 3.13. Scordelis-Lo roof problem. 
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Table 3.4. Normalized vertical deflections at the center of free edge (point D ) of the Scordelis-Lo 

roof problem. The mesh patterns are shown in Fig. 3.8. 

Lt /  N  

Type 1 

regular mesh 

 Type 2 

regular mesh 

 Cross mesh  Regular 

mesh 

MITC-S6 SC6R MITC-S6 SC6R MITC-S6 SC6R Sze et al. MITC-S8 

0.005 4 0.740 0.625 0.670 0.590 0.872 0.829 0.892 0.943 

6 0.819 0.735 0.786 0.704 0.923 0.890 0.946 0.960 

8 0.878 0.811 0.858 0.803 0.952 0.928 0.975 0.973 

10 0.914 0.863 0.900 0.858 0.967 0.951 0.992 0.980 

12 0.936 0.898 0.926 0.894 0.977 0.965 1.003 0.984 

14 0.951 0.921 0.943 0.919 0.984 0.974 1.014 0.987 

16 0.961 0.938 0.955 0.937 0.988 0.980 1.014 0.989 

32 0.987 0.986 0.985 0.985 1.010 0.997 - 0.994 

 

 

Fig. 3.14. Convergence of the normalized vertical deflections for the Scordelis-Lo roof problem 

with the type 1 regular mesh shown in Fig. 3.8. The horizontal lines represent the exact vertical de-

flection. 

 

3.4.5 Pressurized cylinder problem 

 

Here we additionally test effect of thickness locking using a simple test. Cylinder with radially ap-

plied pressure shown in Fig. 3.15 [118] is considered. The cylinder having radius 0.10R  and 

thickness 0.1t , under plane strain condition ( z  displacements are constrained), is subject-
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ed to external pressure 60p . Material properties are 4100.1 E  and 0.0ν . Let us 

denote the MITC-S6 without thickness locking treatment as MITC-S6i. If thickness locking is pre-

sent, the stress in radial direction cannot vary linearly over the radial direction. A coordinate 

]1,1[ξ  is set up for the radius 2/)(2/)( ξRRRRr oioi   to vary from iR  to oR . The 

cylinder is modeled with four meshes along the θ  direction. 

 

Fig. # shows the radial stresses ( rrσ ) across the thickness of the MITC-S6 and MITC-S6i elements. 

Even though results obtained using this coarse mesh does not accurately represent thick-cylinder 

solution [118], the MITC-S6 element shows linearly varying radial stress in contrast with the 

MITC-S6i element. If meshes are refined, the solutions of both elements converge toward thin-

cylinder solution of 2/pσ rr  , which is constant over thickness. In order to accurately repre-

sent the stress of thick cylinder, three-dimensional shell using 7- or more parameters are necessary, 

such as in Ref. [118,119]. 

 

Fig. 3.15. Pressurized cylinder in plane strain condition. 
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Fig. 3.16. Radial stresses across thickness of the pressurized cylinder. 

 

3.5 Detailed convergence studies 

 

In this section, in-depth convergence studies of solid-shell elements are performed for plate and hy-

perboloid shell structures with various values of Lt / . Unlike the previous section where the 

benchmark problems are solved using only regular meshes of solid-shell elements, the behaviors of 

the elements adapting to irregular meshes are also tested. 

 

Solution convergences are measured using the following normalized strain energy error hE , 

ref

href

h
E

EE
E


 ,                                                             (3.34) 

in which hE  and refE  denote strain energies obtained from the finite element and reference solu-

tions, respectively. Optimal convergence for low-order elements considered in this study is obtained 

if 
2chEh  , where c  is a constant independent of the shell thickness and h  is the element size.  

 

In order to investigate how much thickness locking deteriorates the solution accuracy, an intermedi-

ate 6-node solid-shell element is also implemented: MITC-S6 without thickness locking treatment 

(MITC-S6i). The solutions obtained using the MITC-S6 and MITC-S6i solid-shell elements are 

compared with those of the MITC-S8 solid-shell elements. 
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3.5.1 Fully clamped square plate problem 

 

To further study the solution convergence of the solid-shell elements with various values of Lt / , 

the plate bending problem in Fig. 3.7 is again solved with geometric and material constants [5-

8,108] in Fig. 2.13. 

 

To avoid difference between regular meshes (type 1 and type 2), the whole plate shown in Fig. 3.7 is 

modeled with the regular mesh pattern shown in Fig. 3.8. The boundary conditions are 

0 wvu  along the edges A B́ ,́ B Ć ,́ C D́  ́and D Á .́ NN   meshes are used with 4N , 

8 , 16  and 32 . 

 

In order to study the performance of the solid-shell elements in irregular meshes, the mesh patterns 

shown in Fig. 3.17(a) and (b) are also considered for the triangular and quadrilateral elements, re-

spectively, where each edge is discretized in the following ratio: 
1L :

2L :
3L : ……   = 1 : 2 : 3 : 

…… N  [5-8]. The similar distorted mesh patterns have been used for testing triangular elements, 

see Refs. [38,39]. 

 

 

Fig. 3.17. Irregular mesh patterns used ( 4N ) for (a) triangular and (b) quadrilateral elements. 

 

The reference solutions are obtained using a 72×72 uniform mesh of MITC9 shell elements [12,18]. 

Fig. 3.18 shows the convergence curves of the solid-shell elements when the regular and irregular 
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mesh patterns are used. The element size in the convergence curves is NLh / . The perfor-

mance of the MITC-S6 solid-shell element is again comparable to that of the MITC-S8 solid-shell 

element, and is particularly better when the irregular mesh pattern is used. On the other hand, the 

convergence of the MITC-S6i solid-shell element severely deteriorates and the errors do not dimin-

ish well with the mesh refinement. This is due to the Poisson thickness locking, and the optimal 

convergence behavior is successfully recovered through the EAS technique. 

 

 

Fig. 3.18. Convergence curves for the fully clamped square plate problem with the (a) regular and 

(b) irregular mesh patterns shown in Fig. 3.17. The bold lines represent the optimal convergence 

rate. 
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3.5.2 Hyperboloid shell problems 

 

The hyperboloid shell problem [5-8,12,18,100] shown in Fig. 2.19(a) is considered. The mid-

surface of the shell surface is given by Eq. (2.82) and a smoothly varying pressure in Eq. (2.81) is 

applied. 

 

A bending-dominated behavior is obtained with free ends and a membrane-dominated behavior is 

given with clamped ends. 

 

Due to symmetry, only one-eighth of the structure corresponding to the shaded region ABCD in Fig. 

2.19(a) is modeled for the analysis. For the membrane-dominated case, the clamped boundary con-

dition is imposed: 0 zu  along DC, 0 xu  along AB, 0yu  along AD, and 

0 zyx uuu  along BC. For the bending-dominated case, the free boundary condition 

is imposed: 0 zu  along DC, 0 xu  along AB, and 0yu  along AD. For both 

cases, NN   meshes are used with 4N , 8 , 16  and 32 . 

 

For the membrane-dominated case, the regular mesh graded in a boundary layer of width t6  

shown in Fig. 2.19(b) is considered, see Refs. [7,18,21]. For the bending-dominated case, the regu-

lar mesh is graded in a boundary layer of width t5.0  [18,21]. The convergence studies are also 

performed with the distorted meshes shown in Fig. 3.17(a) and (b). The points in the figures are 

matched as follows: A is equal to A’, B is equal to B’, C is equal to C’ and D is equal to D’. Note 

that for this hyperboloid shell problems type 1 and type 2 regular meshes shown in Fig. 3.8(a) yields 

almost identical results. 

 

Fig. 3.19 shows the convergence curves of the solid-shell elements for the regular and irregular 

mesh patterns when the clamped boundary condition is imposed. A 72×72 uniform mesh of MITC9 

shell elements is used to obtain the reference strain energy. The element size is NLh / . The 

performance of the MITC-S6 solid-shell element is similar to that of the MITC-S8 solid-shell ele-

ment. As expected, it is observed that thickness locking is inherently not present in this membrane-

dominated problem. 
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Fig. 3.20 shows the convergence curves of the solid-shell elements when the free boundary condi-

tion is used. In both regular and irregular meshes, the MITC-S6 solid-shell element presents excel-

lent convergence behavior, while the convergence of the MITC-S8 solid-shell element severely de-

teriorates for the case of irregular mesh. This is due to membrane locking, which is investigated in 

detail in Ref. [5]. In addition, thickness locking manifests even more severely for this problem, no-

tably from both curvature and Poisson thickness locking. The combined use of the assumed strain 

and EAS techniques for thickness strain indeed facilitates solution convergence in this doubly-

curved shell problem. 

 

Fig. 3.19. Convergence curves for the clamped hyperboloid shell problem with the (a) regular and 

(b) irregular mesh pattern shown in Fig. 3.17. The bold lines represent the optimal convergence rate. 
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Fig. 3.20. Convergence curves for the free hyperboloid shell problem with the (a) regular and (b) 

irregular mesh pattern shown in Fig. 3.17. The bold lines represent the optimal convergence rate. 

 

 

3.6 Geometric nonlinear analysis 

 

In this section, the performance of the MITC-S6 solid-shell element is presented in the numerical 

examples involving large displacements and large rotations through three shell problems: a cantile-

ver beam under shear tip force and a pinched cylindrical shell [111,115,116]. 

 



 

- 111 - 

 

3.6.1 Cantilever under end shearing force 

 

Here consider cantilever under end shearing force shown in Fig. 2.30(b) is considered again. The 

cantilever is modeled with 8×1 mesh of the proposed 6-node solid-shell elements. Fig. 3.21 shows 

the load-displacement curves: non-dimensional applied load EIPL /2
 (with 12/3btI  ) versus 

non-dimensional tip displacements Lutip /  and Lwtip / . The load-displacement curves are in very 

good agreement with those obtained by Sze et al. [115]. Deformed shapes for load levels 0.1P , 

0.2  and 0.4  are shown in Fig. 3.22. 

 

Fig. 3.21. Load-displacement curve for the cantilever beam under end shearing force.  

 

 

3.6.2 Pinched cylindrical shell 

 

The pinched cylindrical shell problem [111,115,116] is considered here, see Fig. 3.23. The cylinder 

of length 048.3L , radius 016.1R  and thickness 03.0t  is clamped at one end and is sub-

jected to a pair of concentrated forces F  at the free end. The material properties used are 

7100685.2 E  and 3.0ν . Due to symmetry, only one quarter of the cylinder is modeled us-

ing 14×14 meshes of the proposed 6-node solid-shell elements. As in Ref. [111], the analysis was 
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performed neglecting the possible contact within the shell structure up to the maximum force 

3100.2 P . 

 

Fig. 3.22. Deformed shapes at shear tip forces 0.1P , 0.2  or 0.4  for the cantilever beam 

problem. 

  

Fig. 3.23. Pinched cylindrical shell. 

 



 

- 113 - 

The radial displacements at points A and B of the shell are shown in Fig. 3.24. The overall load-

displacement curves are in good agreement with Refs. [111,115,116]. The deformed shape at 

700P  is shown in Fig. 3.25. 

 

  

Fig. 3.24. Load-displacement curves for the pinched cylindrical shell. 

  

Fig. 3.25. Deformed shape at 700P  for the pinched cylindrical shell. 
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3.7 Conclusions 

 

In this study, a new 6-node solid-shell element is developed by extending the previous 3-node 

MITC3+ shell element, in which assumed transverse shear strain field of the MITC3+ shell element 

is adopted onto the new MITC-S6 solid-shell element. The concept of enhancing the bending mech-

anism using the cubic bubble function is similar to the MITC3+ shell element, but in this solid-shell 

element the mechanism is applied for the in-plane translation of the shell element through the EAS 

method. To avoid Poisson thickness locking, the thickness stretch mechanism is enhanced to include 

quadratic variation in the thickness direction. The assumed constant thickness strain is adopted to 

avoid curvature thickness locking. 

 

The new MITC-S6 solid-shell element satisfies basic tests and achieves uniformly optimal conver-

gence on various shell problems considered in this study while providing a simple formulation, as in 

the MITC3+ shell element. The MITC-S6 solid-shell element also maintains various advantages in 

computational aspects of nonlinear simulations: No rotation updates are necessary and the general 

three-dimensional material law is directly used, which facilitates further application of the present 

solid-shell element to the analysis of elastoplastic behavior of shell structures when thickness 

change is important [119]. 

 

On the other hand, computational cost increases due to added internal degrees of freedom, and the 

resulting MITC-S6 shell element has purely numerical parameter, 000,100/1d . A study to over-

come such limitations would be greatly valuable. 
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Chapter 4. Conclusions 

 

In this study, two different types of shell elements are developed: 4-node quadrilateral shell element 

and 6-node triangular solid-shell elements, both of which are low-order shell elements. 

 

In the development of 4-node quadrilateral shell elements, the cause of locking phenomenon present 

in the displacement-based membrane strain was investigated for general element under out-of-plane 

distortion. In the series of developments, the MITC4+, MITC4+N and new MITC4+, different crea-

tive approaches are applied for curing such locking mechanism. 

 

In the MITC4+ shell element, the bilinear interpolation was removed by subdividing the mid-

surface and applying triangular interpolation, which are subsequently applied with new assumed 

strain method including transformation. This approach remedied membrane locking to some degree, 

but membrane performance as well as pass of membrane patch tests was not retained. In the 

MITC4+N shell element, the similar assumed strain method as in the MITC4+ shell element were 

applied, the membrane subdivision was maintained, but the interpolation was done on the whole 

quadrilateral domain. The fact that MITC4+N shell element alleviates membrane locking in the 

same degree as the MITC4+ shell element means assumed strain, not the interpolation function, is 

the key to achieve better bending performance under out-of-plane mesh distortion. 

 

In the new MITC4+ shell element, the idea of Choi and Paik [2], Kulikov [3], among many others 

were adopted to develop new assumed strain for the 4-node quadrilateral shell element that behaves 

optimally on bending problems but also retains the membrane performance. The assumed strain is 

constructed from five tied strain components as well as coefficients that come from characteristic 

geometry vectors of the mid-surface. The resulting element passes basic tests and significantly im-

proves convergence behaviors, and also retains the robustness in geometric nonlinear simulation of 

the original MITC4 shell element. 

 

In the development of 6-node triangular solid-shell element, the previous literatures on shear and 
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thickness locking were searched. Shear locking treatment of 3-node MITC triangular shell element, 

MITC3+, and commonly used treatment of thickness locking, EAS method, were applied into the 6-

node solid-shell element. The resulting element passes basic tests, performs particularly well in 

convergence studies and show good agreement with other literatures in geometric nonlinear analysis 

examples. 

 

In future works, any further numerical or theoretical study to overcome limitations of the new-

MITC4+ shell element and the MITC-S6 solid-shell element would be valuable. As a succession of 

the present work, reducing membrane locking within 4-node quadrilateral shell elements by making 

use of the recent methods such as IGA [25-27] can be of particular interest. In addition, membrane 

locking phenomenon should be tested for more arbitrary (generally distorted and unstructured) 

meshes other than the ones presented in this paper. I believe that reduction of dominant locking 

phenomena, shear and membrane locking, in low-order shell element has been performed quite suc-

cessfully up to limiting point (MITC3+ and MITC4+). Hence, applying the extended FEM [23,24] 

to avoid possible locking that may present in more general meshes can be valuable. 
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요 약 문 

 

연속체 역학 기반 4 절점 쉘 유한요소의 막잠김 현상 해결 

 

 

쉘 구조물은 공학적으로나 자연적으로 널리 존재하지만, 그 거동현상을 수학적으로 해석할 

수 있는 방법이 없어 유한요소법과 같은 수치해석이 주로 쓰인다. 이번 연구에서는, 어떠한 쉘 

구조물의 형태나 거동에 관계없이 정확하고, 효율적이며 안정적인 해석을 수행할 수 있는 저차 

쉘 유한요소들을 개발하는 것을 목표로 한다. 

 

효과적인 쉘 유한요소는 등방성(isotropy) 거동을 보이고, 일관성(consistency)와 

타원율(ellipticity) 조건에서 오는 다양한 기본적인 테스트들을 만족해야 한다. 모눈 실험(patch 

test) 와 영에너지 모드 실험(zero-energy mode test)가 대표적인 테스트로, 쉘 유한요소가 작은 

메쉬 개수에서도 정확한지와 정적, 동적 해석에 관계없이 쓰일 수 있는지를 각각 테스트한다. 

또한 해의 수렴성능 면에서 쉘 구조물의 형상, 두께, 경계조건과 하중 등에 상관없는 최적의 

수렴 거동을 보여야 한다. 수렴 거동이 유한요소의 메쉬 크기를 작게 함과 관계없이 큰 오차로 

영향을 받는 현상을 잠김 현상이라고 하며, 막 잠김, 전단 잠김, 두께 잠김 현상 등이 있다. 

 

쉘 유한요소를 감절점 쉘(degenerated), 연속체 쉘(solid-shell)과 평판 쉘(flat shell) 로 

구별할 수 있고, 현재까지 수행된 연구들을 보았을 때 그 장, 단점 및 해결해야 할 부분 또한 

상이하다. 계산 시간 면에서 효율적이어서 널리 쓰이는 저차 쉘 유한요소들의 경우, 사각형 

감절점 쉘의 막잠김 현상을 효과적으로 해결하는 것은 오랜 유한요소 분야의 난제였으며, 또한 

두께 잠김 현상을 해결해서 삼각형 연속체 쉘을 만드는 것 또한 가치있는 연구이다. 

 

사각형 4 노드 감절점 쉘 유한요소는 대체 변형률장 방식으로 전단 잠김현상을 제거한 

요소 (MITC4 쉘 유한요소)가 널리 쓰이고 있다. 그러나 요소가 굽어진 형상을 가질 때 굽힘 

거동에서 발생하는 막 잠김 현상은 효과적인 해결책이 오랫동안 나오지 않았다. 널리 쓰이는 

저차 수치 적분(reduced integration)은 거짓영에너지 모드(spurious zero energy mode)를 

가짐으로 인해 안정화 행렬을 사용해야 하며, 물리적인 영에너지 모드(physical rigid body 

mode)가 제대로 표현되지 않아 변위 투사(displacement projection) 등 쉘의 물리적 거동에 

영향을 주는 기법들이 쓰여야 한다. 또한 대체 막변형률장을 이용한 지금까지의 연구들은 

기본적인 테스트들 중, 특히 모눈 실험(patch test)와 막 성능 자체를 보존하는 것에서 

효과적이지 못했다. 

 

사각형 4 노드 감절점 쉘 유한요소의 개발을 위해 일반적인 형상의 쉘 유한요소에서 막 

잠김 현상이 발생하는 원인을 밝혀 내었다. 이로부터 3 가지의 개선된 사각형 쉘 유한요소 

(MITC4+, MITC4+N, new MITC4+)이 개발되었다. 대체 막변형률장에 기초로 한 이 요소들은, 

지금까지의 연구들이 모눈 실험 통과와 막 성능 보존과 같은 기본 테스트들을 만족하지 못했던 

어려움을 극복하였다. 마지막 사각형 감절점 쉘 유한요소(new MITC4+)의 경우 막 성능도 

기존의 유한요소(MITC4) 와 동일하며, 굽힘 거동에서 최적의 거동에 가까운 수렴 성능을 

보인다. 또한 복잡한 계산을 요구하는 기하 비선형 문제에서 기존의 유한요소(MITC4)와 유사한 

안정적인 성능을 보인다. 
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새롭게 개발된 삼각형 6 노드 연속체 쉘 유한요소는 기존에 대체 변형률장 방식으로 전단 

잠김현상을 제거한 감절점 3 노드 쉘 유한요소 (MITC3+쉘 유한요소) 및 기존에 쓰이는 두께 

잠김현상의 해결책 중 효과적인 강화 대체 변형률장 방식(Enhanced Assumed Strain) 을 기초로 

한다. 새롭게 개발된 삼각형 연속체 쉘 유한요소(MITC-S6)는 기본적인 테스트들을 만족하며, 

굽힘 거동에서 최적에 가까운 수렴 성능을 보인다. 기하 비선형 문제에서도 기존의 유한요소들과 

일치하는 결과를 내었다. 

 

핵심어: 쉘 유한요소, 연속체 쉘 유한요소, 대체 변형률장, 막잠김 현상, 두께 잠김 현상 
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