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Abstract: In this paper, several continuum-mechanics based finite elements are developed by remedying their
deficiencies. Our focus is to develop reliable and efficient shell and solid-shell elements satisfying the ellipti-
city, consistency and inf-sup conditions. That is, basic tests including the isotropy, patch and zero energy
mode tests should be passed and the elements should show uniformly optimal convergence to reference solu-
tions regardless of asymptotic categories of the shell structures considered. Membrane locking severely dete-
riorates the performance of the of 4-node quadrilateral shell elements when curved geometries are solved with
distorted meshes. Previous studies to remedy membrane locking based on reduced integration and assumed
strain method has not been successful in developing reliable 4-node shell elements. In the present study,
membrane locking in 4-node quadrilateral shell elements is deeply studied for arbitrary mesh geometry. Three
new 4-node shell elements developed are presented. In addition, 6-node triangular solid-shell element is de-
veloped as an extension of previous shear locking treatment of 3-node shell element and the remedies of
thickness locking in the previous literatures. The newly developed continuum-mechanics based shell elements
are examined through basic numerical tests as well as comprehensive convergence studies encompassing the

practical range of shell thickness.

Keywords: shell element, solid-shell element, assumed strain method, membrane locking, thickness locking
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Chapter 1. Introduction

1.1 Introduction

Shells are beautiful and efficient structures that exist in nature and many engineering applications,
but their inherently complicated behavior is not easy to predict. The Finite Element Method (FEM)
has been very useful for the analysis of shell structures. For several decades, the development of
effective shell elements has been of great interest [1-22]. More recently, there have been another
approaches to analyze the shell structure, using schemes such as extended FEM [23,24] or iso-
geometric analysis [25-27]. However, in this paper, we focus on classical shell finite elements and

remedying its deficiencies.

The low-order shell elements have minimum number of nodal unknowns and hence very efficient.
Low-order quadrilateral shell elements are most widely used for its accurate predictive capability,
while low-order triangular shell elements are frequently used because of its feasibility in modeling
arbitrary shell structures. [6,28]. However, such low-order shell elements frequently suffer from dif-
ferent kinds of locking (shear, membrane and thickness locking) which prevent the solution to con-
verge accurately. The main topic of this paper is to remedy membrane and thickness locking for

some specific categories of classical shell finite elements.

A reliable shell finite element should satisfy mathematical condition such as ellipticity and con-
sistency while giving stable convergence toward the reference solution, also known as the inf-sup
condition. Such “ideal” shell elements should pass basic tests such as patch, zero energy mode, in-
plane mode and isotropy tests. In addition, a uniformly optimal convergence should be shown
through shell problems regardless of the kinds of asymptotic behavior (membrane-dominated, bend-
ing-dominated and mixed) which depends on the geometry, loading and boundary condition of the

shell structures [15-22].

There are essentially three different approaches in formulating the shell element discretization. In

the ‘superposition’ approach, the shell behavior is seen as a superposition of membrane and plate



bending actions. These ‘flat shell’ elements do not include the curvature effect and the plate bending
and membrane behavior is coupled only at the nodal points. In the ‘theory based’ approach, element
formulation is based on a specific shell theory. However, the finite element discretization requires
nodal point variables appear on the derivatives in addition to the nodal displacements and rotations.
If the shell theory is only applicable to certain shell geometries or analysis conditions, the finite el-
ement is subjected to the same restrictions. In the ‘continuum-mechanics based’ approach, very gen-
eral finite element formulation which can be used for any types of analysis is obtained by degenerat-

ing the three-dimensional continuum to shell behavior [29].

The continuum-mechanics based approach results in two big categories of shell element discretiza-
tion. In ‘solid-shell’ elements [30-42], nodes at the top and bottom surfaces remains and only inter-
nal formulation of the element is modified to account for shell behavior. Since it is enough to use
only nodal translations in the displacement unknowns, solid-shell elements are often preferred in
certain analysis types involving heavy computations, such as elasto-plastic analysis. In ‘degenerated
shell’ elements [1,2,5-17,42], nodes are placed only at the mid-surface of the shell structure. These
elements, frequently called as ‘shell’ elements, are most efficient and widely used while requiring

both nodal translations and rotations in the nodal displacements.

In the present study, main efforts are devoted to the development of effective continuum-mechanics

based shell elements. The two different types of low-order shell elements, 4-node quadrilateral shell

and 6-node triangular solid-shell elements are developed.

1.2 Previous studies of low-order shell elements

In this section, we review previous studies of low-order quadrilateral and triangular shell elements,

encompassing solid-, flat and degenerated shell elements.

1.2.1 Solid-shell elements

Firstly, we review the previous studies on the 8-node solid-shell elements.



There are many literatures on 8-node solid-shell elements which are close to the optimal element.
Hauptmann et al. (1998) presented among the first 8-node quadrilateral solid-shell element [35].
Kemp et al. (1998) published assumed strain solid-shell element [43]. Klinkel et al. (1999) present-
ed solid-shell element for laminated structure [33]. Hauptmann et al. (2000) applied solid-shell con-
cept to large elasto-plastic deformations [44]. Sze et al. (2000,2002) applied hybrid stress and as-
sumed stress techniques to solid-shell elements [36,37]. Harnau et al. (2002) presented element for
large-deformation non-linear analysis [41]. Alves de Sousa et al. (2005) applied Enhanced Assumed
Strain (EAS) and Assumed Natural Strain (ANS) on reduced integrated solid-shell element with sta-
bilization [45]. Kim et al. (2005) applied resultant stress formulation to 8-node solid-shell element
for increased efficacy in non-linear simulation [46]. Klinkel et al. (2006) also presented element for
non-linear analysis [32]. Cardoso and Yoon et al. (2008) applied EAS, ANS and ‘area coordinate
method’ on development of solid-shell element with one-point integration with stabilization [47].
Kulikov et al. (2008) [48] applied geometrically exact formulation of Simo et al. (1989) [49] into
solid-shell with seven D.O.Fs per node. Schwarze et al. (2009) applied EAS and ANS method to

develop solid-shell element with reduced integration and stabilization [34].

Secondly, we review the previous studies on the 6-node solid-shell elements.

There have been relatively few literatures on 6-node triangular solid-shell elements. Sze et al.
(2001) developed a 6-node pentagonal solid-shell element by using the ANS technique for shear
locking and the ‘modified laminated stiffness matrix’ for thickness locking [30]. Flores (2013) de-
veloped a 6-node solid-shell element by applying the ANS technique for shear locking and the EAS
technique for thickness locking [31]. Those two elements passed all the basic tests, but we remark
that convergence tests were not sufficient. Sze et al. tested the convergence of displacements on
several linear benchmark problems focusing on coarse-meshes [30]. The element by Flores lacks
linear tests to fully see the convergence behavior, especially for the thin shell cases [31]. Trinh VD
et al. (2010) presented a 6-node solid-shell element using assumed strain projection method, but
pass of basic tests were not considered [50]. In our study, we aim to show the convergence perfor-
mance of the newly developed solid-shell element from coarse to fine meshes over shell problems
with various curvatures encompassing a practical range of shell thickness (ratio of thickness to

overall dimension, t/L =1/100~1/10000).



1.2.2 Flat shell elements

Firstly, we review the previous studies on the 4-node flat shell elements.

Many literatures considered flat shell element with 6 DOFs (Degrees of Freedom) per node and
warping correction. Bathe and Ho (1981) developed flat shell element by superimposing membrane
element and plate bending elements [51]. Ibrahimbegovic and Wilson (1991) presented unified for-
mulation for triangular or quadrilateral flat shell element [52]. Aminpour (1992) applied assumed
stress hybrid method to the flat shell element [53]. Cook (1994) studied and reviewed the use of
drilling degrees of freedom on flat shell element having warped geometry [54]. Groenwold et al.
(1995) applied assumed strain method and modified drilling degrees of freedom and 5-point quadra-
ture rule to obtain the flat shell element [55]. Kim and Lee et al. (1998) applied assumed strain
method and Allman-type modification on displacements of flat shell regarding membrane locking
[56]. Choi and Lee et al. (1999) applied higher order modes, 5-point integration with warping cor-
rection on the flat shell element [57]. Choi and Lee et al. (2003) used various non-conforming

modes on the flat shell elements regarding the membrane locking [58].

First limitation of the literatures of flat shell are, that they use warping correction (or ‘rigid-link cor-
rection’) by Taylor (1987) [59]. Because it is forcibly applied to the geometry to project elements
into flat shapes, it tends to decrease the performance of the element in general distorted cases, as
pointed out by Groenwold et al. [55]. Secondly, although separation of membrane and bending is
simplest and actual physical nature of flat shell structures, it does not correctly account for the
membrane-bending coupling which naturally arises for general curved shell structures. Adding the
coupling between membrane and bending, and also further including Reissner-Mindlin theory was
studied by Cook [54], but it is hard to manipulate all the (separated) membrane, bending and the

coupled parts in a way to make optimally converging element.

Secondly, we review the previous studies on the 3-node flat shell and plate bending elements.

Batoz et al. (1980) studied one of the first 3-node plate bending elements [60]. Fricker (1985) im-

proved the bending performance of the element by inclusion of cubic order of shape function [61].



Auricchio et al. (1994) developed a plate bending element with cubic bubble shape function applied
only to the two internal ‘rotation’ DOFs [62]. Argyris et al. (1994) developed a flat shell element
based on assumed Natural Mode Method (NMM) [63]. Despite the fact that NMM has huge poten-
tial in improving the behavior of the elements, the formulation is relatively complex to be imple-
mented. All the plate bending and flat shell element discussed above did not show uniformly opti-
mal convergence behavior regarding shear locking. Onate et al. (2000) presented a set of flat trian-
gular elements without rotation DOFs, but the computations external to the element domains were

required [64].

1.2.3 Degenerated shell elements

In this section, we review the previous studies on the 4-node degenerated shell elements.

One major sub-category is related to reduced-integration with stabilization. Work by Belytschko,
Tsay and Liu (1981) is one of the first to apply reduced integration and stabilization on the shell el-
ement [65]. Hughes and Liu (1981) consequently developed another one-point quadrature shell [66].
Belytschko and Tsay (1983) presented a stabilization procedure for plate element [67]. Belytschko
et al. (1984) showed usefulness of one-point quadrature shell on explicit, nonlinear dynamics [68].
Belytschko et al. (1992) applied warping correction to the Belytshcko-Tsay or Hughes-Liu shell el-
ement [69]. Belytschko and Leviathan (1994) developed new physical stabilization procedure so
that the element passes patch test [70]. Zhu et al. (1996) developed new one-point quadrature shell
element with drilling DOFs [71]. Kim et al. (2003) applied assumed strain hybrid method with qua-

si-conforming modes to develop shell element with 6 DOFs per nodes [72].

One clear disadvantage of reduced integration with stabilization is that it requires empirical parame-
ter, the control parameter for hourglass stabilization. Using the physical stabilization [70], one can
obtain the hourglass stiffness with no parameters, but the framework of stabilization still requires
the control parameter. Second disadvantage of reduced integration with stabilization is that it re-
quires projection on displacements [73] to express correct rigid body modes for the warped geome-
try of the 4-node shell elements. For general 4-node shell elements, this mingles the physical nature

of translation and rotation DOFs and thus affecting the physical nature of the shell solutions. Thus,



although it may obtain convergent behavior in some tests, it is hard to satisfy convergence in strict
sense: such as accurate convergence of all of displacement, strain and stress combined measured

using s-norm [18].

Another major sub-category is related to mode-increasing technique of Enhanced Assumed
Strain/Stress (EAS) formulation, which is usually used in conjunction with other types of tech-
niques. Lee et al. (1978) studied improvement on shell finite elements using mixed formulation such
as EAS or ANS [74]. Andelfinger and Ramm (1993) developed several EAS elements and showed
the equivalence to elements formulated by the Hellinger-Reissner functional [75]. Bischoff and
Ramm (1997) combined both EAS and ANS techniques to shell elements [76]. Witkowski (2009)
applied semi-EAS-ANS method to 6 parameter shell element [77].

Disadvantage of the EAS formulation is that the increased performance is directly related to the in-
creased computational cost, the assembly cost of the elements. For the membrane locking problem,
element behavior is improved as more higher-order terms are involved using the EAS technique,
because the higher-order terms guarantee higher rates of convergence. However, this is not effective
than finding the method to eliminate the cause of the membrane locking on the 4-node shell element
without highly increasing the assembly cost. Most importantly, the error due to locking overruns the

increased accuracy as thickness is decreased.

Another sub-category is related to hybrid stress/strain or Assumed Stress Hybrid (ASH) technique.
Rengarajan et al. (1995) published assumed-stress hybrid shell element with drilling DOFs for line-
ar stress, buckling and free vibration analysis [78]. Sze et al. (1997) published hybrids tress quadri-
lateral shell element with full rotational DOFs per node [79]. Sansour et al. (2000) studied families
of 4-node or 9-node elements with hybrid stress/strain formulation, with no successful result in
patch tests [80]. Regarding the membrane part, Cen et al. (2011) [81] derived hybrid stress-function
plane element with drilling DOFs extending the original work by Pian (1964) [82].

One disadvantage of the hybrid stress/strain formulation is that it does not always yield a symmetric
stiffness matrix. This is due from that it is required to modify specifically the stress or the strain on-
ly (and not the other one) in some hybrid stress/strain formulation. Another disadvantage is that

higher performance comes from increased number of internal parameters in assuming the



stress/strain.

Another important category is assumed strain or related method, such as the Mixed Interpolation of
Tensorial Components (MITC), ANS or Discrete Shear/Strain Gap (DSG) methods. Dvorkin and
Bathe (1984) applied the MITC method on the 4-node shell element to obtain both efficient and ac-
curate element, the MITC4 shell element [1]. This method of treatment of shear locking has been
used extensively along with other techniques, such as assessed by Stander et al. (1989) for finite
rotation shell analysis [83]. Choi and Paik (1994) applied the assumed strain method on the mem-
brane part of degenerated shell element to successfully remove the membrane locking while failing
the patch test [2]. Koschnick et al. (2005) applied the DSG method for treating membrane locking
of quadrilateral elements, but the basic test was not passed for the 4-node shell element [84]. Vampa
(2007) [85] developed new MITC shell element by applying QMITC membrane element [86] to in-
plane strains of the MITC4 shell element. While the resulting element satisfies basic tests and ob-
tains improved convergence behaviors, the behavior was not perfectly uniformly optimal and the

formulation was rather costly computationally.

Secondly, we review the previous studies on the 3-node degenerated shell elements, which pass all

the basic tests including isotropy, patch and zero energy mode tests.

Indeed, there are few elements which pass all the basic tests. Argyris et al. (1994) developed trian-
gular shell element based on NMM technique, with improved performance in sake of complexity in
formulation [87]. Further improvement in performance was obtained by Lee et al. (2014) [7] which
included cubic bubble function for two internal rotation as well as developing new assumed trans-
verse shear strain, based upon the earlier works by Lee et al. (2004) [6]. The resulting element was
named MITC3+ shell element. For the shear locking treatment in triangular elements, the techniques
used in degenerated shell element can be applied to other types (solid-shell, plate bending and flat

shell) of elements and vice versa.

1.3 Type of locking and its treatments

Satisfying the inf-sup condition means behavior of the shell elements converging toward the refer-



ence solution is “uniformly optimal” regardless of the problems considered. That is, the solution
error must diminish optimally independent of the shell thickness as the mesh is refined [15-22]. In

achieving such behaviors, the major obstacles are shear, membrane and thickness locking.

Shear locking in 4-node quadrilateral and 3-node triangular shell elements have been treated suc-
cessfully using the MITC (Mixed Interpolation of Tensorial Components) method [1,5-14,31-33],
also known as ‘assumed strain’ or ANS (Assumed Natural Strain) method [30,34-42,88-90]. Particu-
larly, the convergence behavior of the 4-node MITC shell element (MITC4) [1] and 3-node MITC
shell element (MITC3+) [7] are observed to be close to uniformly optimal due to its effective shear
locking treatments. The approach of the MITC4 shell element has been successfully applied to 8-
node quadrilateral solid-shell elements [32-37,41]. On the other hand, optimally convergent 6-node

triangular solid-shell elements are yet to be found [30,31].

There have been several attempts to alleviate membrane locking of 4-node continuum mechanics
based shell elements. Those attempts are sometimes confused with improving the membrane behav-
ior of the shell elements. It is extremely difficult to design an ideal 4-node shell element with re-
duced membrane locking in bending-dominated problem but having membrane performances re-

tained.

First, disambiguation with “improving the membrane performance” is presented. Improved mem-
brane behavior can slightly delay the emergence of error caused by membrane locking. However,
the membrane locking is the phenomenon induced by mesh distortion in case of pure in-extensional
bending behavior [91]. As the thickness is decreased, the locking occurs more severely, and hence
the error due to the locking mechanism grossly overruns the solution accuracy. The treatments that
improve the membrane behavior but do not directly affect membrane locking include “drilling de-

gree of freedom’ [51-59] or ‘enhanced assumed strain’ [45,47,92,93].

The techniques improving the performance in bending dominated problems are most important for
reducing membrane locking. Reduced integration technique [67,70,73] can greatly alleviate mem-
brane locking, but the elements suffer from rank deficiency and do not properly represent physical
rigid body modes, needing undesirable stabilization and displacement projection techniques. Various

assumed strain methods were applied to the membrane strains (in-plane strains evaluated at the mid-



surface) to alleviate membrane locking while satisfying the basic tests, but the convergence are not

uniformly optimal or vice versa [2-5,84,85].

Thickness locking in low-order solid-shell elements has been effectively reduced by the EAS (En-
hanced Assumed Strain) technique [30-34,41]. Compared with the other methods such as ‘plane
stress condition’ [35], ‘hybrid stress’ [36] or ‘modified laminated stiffness matrix’ [30,37], the
method provides full coupling between membrane and bending behaviors and the fully general con-

stitutive law can be directly used.

In the present study, major research aims are developing new 4-node quadrilateral shell element by
reducing membrane locking, and making 6-node quadrilateral solid-shell element based on the 3-

node triangular shell element (MITC3+) by alleviating thickness locking.

1.3.1 The membrane locking problem

In this section, membrane locking problem is defined, and previous studies on the membrane lock-

ing are reviewed.

The membrane locking problem has been discussed in many literatures, but sometimes its usage was
mixed with other type of problem. The first type is the one which occurs for 3-node beam, 9-node
shell elements or 4-node shell elements with curved geometries, on the bending problem with the
transverse loadings. The second type is simply named from the deteriorated performance of the in-
plane (membrane) problems for some finite elements, which are tested for the flat case of the shell
elements. In our study, the problem to be remedied is the first type, which is more important for the
structural (shell or beam) elements which are designed for effective analysis of the bending prob-

lems.

The membrane locking problem has been studied through various finite elements. Prathap et al.
(1982) studied the problem on the 3-node beam element and applied the reduced integration or the
assumed strain method [94]. Storlarski et al. (1982) applied reduced integration on the beam ele-
ment [95]. Stolarski et al. (1983) theoretically studied membrane locking on curved CO beam ele-

ment [96]. Belytschko et al. (1985) studied the 9-node shell element and applied the stress projec-



tion method on the 9-node shell element [97]. Pitkéranta J (1992) theoretically studied the mem-
brane locking on the cylindrical shell problem [98]. Bucalem et al. (1993) studied the 9-node shell
element and applied the assumed strain method [99]. Choi and Paik (1994) studied the 4-node shell
element and applied the assumed strain method, although the element did not satisfy consistency
condition (patch test) [2]. Belytschko et al (1994) applied the physical stabilization on the reduced
integrated 4-node shell element, but the basic membrane behavior and possibly bending behavior
was deteriorated, while the stabilization also requiring control parameter [70]. Koschnick et al.
(2005) applied the discrete strain gap method on the 4-node and the 9-node shell elements, but
membrane patch test was not passed for the 4-node shell element [84]. In summary, the membrane
locking on the 4-node shell element with generally warped (curved and distorted) geometry was

neither theoretically studied nor successfully removed.

1.3.2 Mathematical derivation of the cause of membrane locking

The purpose of this section is to determine the part of membrane strain of the degenerated 4-node
shell element which causes membrane locking, in order to aid in the subsequent development of the
4-node shell element. This study is in accordance with the previous studies on membrane locking

problem [10,91,98,99], but extended to general warped and distorted 4-node shell element.

In the thin-shell limit, bending strain energy from Kirchhoff’s plate theory (bending behavior in
Kirchhoff’s hypothesis) [15,60,63,87,91] becomes dominant, which is proportional to the second
order derivative of transverse translational displacement in direction of physical bending. This con-

dition is often called ‘Kirchhoff limit’, and the bending behavior sometimes ‘Kirchhoff bending’.

Let us define mid-surface coordinates and mid-surface covariant base vectors of each element

Xy = ZA:hi(r,s)xi , (1.2)
i=1

a, :ax—m with 1=12, (1.2a)
or;

a, =a,(r,s)xa,(r,s)/|a,(r,s)xa,(r,s)|. (1.2b)
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Here a' and a’ denote the mid-surface contravariant bases such that a, -a’ =&, in which d;;

ij
. . oa
is the Kronecker delta, and a'j = 8_
r.
J

Within each element, let us set up in-plane, orthogonal coordinate directions shown in Fig. 1.1 de-
fined by unit vectors e, and e, , and the corresponding coordinates L and M, such that one

of the direction corresponds to physical bending, say €, .

Le, +Me,, +ta, =ra, +sa, +ta,, (1.3)
inwhich e _-e, =0, e _-a,=0, ¢, -a,=0. (1.4)
u midsurface

Fig. 1.1. Transverse displacement and coordinate in direction of bending. The transverse displace-
ment (u,) normal to the mid-surface of the shell is shown in (a). The coordinate in direction of
bending (L) on the mid-surface of the shell can be described in terms of the natural coordinates

within each element, as shown in (b).

o%u,(r,s)

K in Kirchhoff limit can be expanded as follows,

Dominant bending strain

0° , 0? , 0? 0°
U (o TUED o U e il )
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+[(eL -a1,1XeL -al)+(eL -al,zXe )]au (1)

or
ou,(r,s

+[(eL -a2,1XeL -al)Jr(eL -az,zXe )] ( ) : (1.5)
in which a;, and a, are the mid-surface covariant bases in Eq. (1.2a), which are further decom-
posed as

., oh
a,=> —xX=A+Ags, (1.6a)

ke or

2, oh
a, =y —x =A,+A,r, (1.6b)

1 OS

where A;, A, and A, are geometry constants independent of natural coordinates (r, s and
t).
As the mesh is refined on the curved surface, following conditions emerge,
'] >> [’ @)
lay (r,s)xa, (r,s)| = (A, + Ass)x (A, + A;r)| =|A, x A, || =[a,(0,0)xa, (0,0)]. (1.8)
For the 4-node degenerated quadrilateral shell element global displacements are interpolated bi-
linearly in the natural coordinates,
4
u(r,s)=> h(r,s)u“ =B, +B,r+B,s+B,rs, (1.9)
k=1

Where B,, B,, B, and B, are displacement constants independent of natural coordinates.

Following the Ref. [100], covariant displacements can be written as the following,
u,(r,s) = (A, +A,s)- (B, +B,r +B,s +B,rs), (1.10)
u,(r,s) = (A, +A,s)- (B, +B,r +B,s+B.rs), (1.11)
u (r,s) =[(A, + A;8)x (A, + Ar)- (B, +B,r +B,s+B,rs)|/|(A, + As)x (A, + A,r).
(1.12)

Using Eq. (1.8), covariant displacements in the Egs. (1.10) to (1.12) are further expressed as the fol-

lowing,
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u,(r,s)=C, +C,r +C,s +C,rs+C,s* + C,rs’, (1.13)
u,(r,s) =D, +D,r + D,s+D,r* + D,rs+ D,r’s, (1.14)
u,(r,s)=E, +E;r+E,s+E,r* + E,rs+ E;s* + E;r’s + E,rs?, (1.15)
in which constants which depends on both geometry and displacements, C, (i=0,.,5), D,
(i=0,.,5),and E; (i=0,.,7) are implicitly introduced. Note that those constants are essentially

contains nodal unknowns or DOFs.

Following the notation in the Ref. [100], membrane strains of 4-node quadrilateral shell element are

expressed as,

Y (r,S)=U,,, (1.16)
Ve (r,8) = Uy, (1.17)

~ 1 )-Thu, —T2u, —b 118
'Yrs (r,S) - 2 ur,s +us,r 12ur 12us 12ut' ( ) )

By enforcing the pure in-extensional bending as in the Ref. [91], i.e. vanishing strain energy from
the membrane strains in Egs. (1.16) to (1.18), following conditions are obtained:

C,—0, C,—-»0, C.,—0,

D,—-0, D,—>0, D, -0,

C, + D, — 2I'5Cy — 2T2D, — 2b,,Ey — 2/ 33D, +by,E, +TLC, +b,,E )0,

2D, —2I'3D, — 2b,E, —2/3(b,E,) — 0,

2C, - 21.,C, —2b,E, —2/3(b,E,) >0,

E,—0,

2D, +b,E, >0,

I.C, +b,E; -0,

E; >0,

E, >0. (1.19)

If the conditions obtained involve only single term of unknowns, then it acts to ‘constrain’ the corre-
sponding DOFs [91]. Those conditions, which can either slow down the convergence or prevent the
expression of physical behaviors, are named ‘spurious constraints’, while those involving two or
more terms of unknowns are named actual ‘physical constraints’. In this case, total of nine spurious

constraints appear on in-extensional deformation, and one (E, — 0) is related to the membrane
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locking problem as discussed next.

From the Egs. (1.5) and (1.15) the following three dominant terms for representation of Kirchhoff

bending are obtained:

o%u, (r,s)

atT = E,, (1.20)

o%u, (r,s)

8‘5—2 = E,, (1.21)

o%u,(r,s)

—==E,. 1.22
ards ) (1.22)

From the Eq. (1.19) notice that the constraint E, — O is enforced as shell thickness decreases,
this prevents the pure bending with regard to the Eq. (1.22). This shows that basic displacement-
based quadrilateral interpolation as in Eqg. (1.1) suffers from the membrane locking. Furthermore,

inspecting the Egs. (1.13) and (1.15) reveals the following relation
E, c A xA,-B;+A xA;-B,+A,xA,-B,. (1.23)

Notice from Eq. (1.23) that if displacement and geometry interpolation does not involve bi-linear

(rs) term, A, and B, disappears and the locking-causing unknown constant ( E,) and the spu-
rious constraint (E, — 0) does not appear. However, in a common 4-node quadrilateral element,

that part is necessary to correctly represent in-plane bending behavior.

1.3.3 Previous treatments of membrane locking

In this section, we deal with previous treatments of membrane locking of 4-node quadrilateral shell

element.
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Table 1.1. Comparison of techniques to remedy membrane locking.

Techniques

Strength

Weakness

Reduced integration with stabili-

zation

-Reduced integration itself is a
very powerful tool for removing
the locking, as well as decreasing

the computational cost

-Stabilization of stiffness matrix
require control parameter (Hour-
glass control), which is purely
empirical

-Convergence on bending prob-
lems is not always guaranteed
using the displacement projec-
tion, which is necessary for rep-
resenting the physical rigid body

modes

Enhanced Assumed Strain

-Able to introduce higher-order
modes on the low-order elements
so that element performance is

better

-The technique delays (does not
eliminate) the happening of
membrane locking

-Cost of statically condensing out
the internal parameters is in-
creased, for introducing the more

modes

Assumed Stress(Strain) Hybrid

-Able to reformulate stress(strain)
so that element performance is

better

-The technique delays (does not
eliminate) the happening of
membrane locking

-Cost of calculating the
stress(strain) is increased, as
more parameters are used
Stiffness matrix is not always

symmetric

Assumed strain methods
(Assumed Natural Strain, Mixed
Interpolation of Tensorial Com-

ponents, Discrete Strain Gap)

-Able to modify the locking
mechanism (for an element pos-
sibly performing better) without
high additional computational

cost

-Using this method, pass of basic
tests related to consistency are
affected (for example, it is not

easy to pass the patch test).
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In Table 1.1, we showed strength and weakness of the various techniques to remedy membrane
locking. Reduced integration is powerful for both eliminating the locking and decreasing the com-
putational cost, but require control parameter and bending convergence is not always guaranteed in
general mesh (if physical rigid body modes are correctly expressed). EAS and ASH techniques are
similar in that it is easy to make an accurate element in the expense of increasing the computational
cost. However, such techniques frequently delays the occurrence of locking, not providing the fun-
damental solution. Assumed strain methods are not always successful, and pass of basic tests are
easily affected. However, it has high potential that the method can potentially eliminate locking

without high additional computational cost, which suits our goal of research.

1.3.4 Previous treatments of thickness locking

In this section, we review previous treatments of thickness locking.

There are two kinds of thickness locking: Poisson thickness (or thickness) locking and curvature
thickness (or trapezoidal) locking [30-37,41,42,76]. Poisson thickness locking predominantly dete-
riorates the solution accuracy of solid-shell elements whenever Poisson’s ratio is not equal to zero.
Curvature thickness locking occurs for curved shell structures when mid-surface normal directions

are naturally distorted within solid-shell element models.
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Table 1.2. Comparison of techniques to treat thickness locking.

Techniques

Strength

Weakness

Enhanced Assumed Strain

-General three-dimensional con-
stitutive law can be used

-Full coupling between mem-
brane and bending behavior can

be retained

-Additional unknown is necessary
(Increase of computational cost
can be minimized by using ‘static
condensation’ onto the added

DOF)

Enforcement of plane-stress con-

dition

-Simplest method for alleviating

thickness locking

-Coupling between membrane

and bending behavior is lost

Hybrid Stress method

-Able to reformulate stress(strain)
so that element performance is

better

-Cost  of calculating  the

stress(strain) is increased, as
more parameters are used
-Stiffness matrix is not always
symmetric

-Applying the general constitu-

tive law is involved

Modified generalized laminated

stiffness

-Able to modify the locking
mechanism (for an element pos-
sibly performing better) without
high additional computational

cost

-Application of general constitu-
tive law is involved

-In the stiffness matrix (i.e. the
internal virtual work) the cou-
pling of strain energy between
thickness normal component and

the other components is lost

In Table 1.2, we showed strength and weakness of the various techniques to treat thickness locking.
We regard a reliable element to be generally applicable for any types of material law or shell behav-
iors. Regarding the comparison of various methods in Table 1.2, the EAS method is attractive if ad-
ditional unknown can be condensed out, keeping the increase of the computational cost at mini-

mum.
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1.4 Basic requirements and basic tests

Here the basic requirements of shell elements are presented along with the methods of testing each

of the requirements (by the basic tests).

Shell elements should satisfy the isotropy or spatial invariance. This means shell elements should
yield identical results for all orientations formed by rigid body motion of the same configuration,
and yield identical results for different nodal numberings. This isotropy is important for both trian-

gular and curved quadrilateral shell elements [3,5-9,38].

The ellipticity of the elements directly require that the stiffness matrix to be positive definite. This
means that energy stored in the element due to deformations should be positive. Also, symmetry
between strains and stresses are also important. In computational sense, this means the resulting ma-
trix is symmetric hence only about half of the matrix needs to be stored during the solution process.
Practically this also implies that strains and stresses are directly related to each other by constitutive
relation. Disparate treatments of stresses from strains, such as in ‘hybrid stress’ method [36,37,78-

82], are avoided at best for direct usage of general constitutive law.

For the elements to be applicable to dynamic analysis, and also not to cause loss in deformation en-
ergy in static analysis, zero energy mode tests should be passed. In zero energy mode tests, only six
zero energy modes corresponding to the physical rigid body modes should appear in the stiffness
matrix of the elements [1,5-9,14,19,31,35,38-40]. For quadrilateral shell elements, the counted zero
energy modes are sometimes not the physical rigid body modes that depend on the element geome-
try. Especially, using the ‘reduced integration’ technique applied to curved 4-node quadrilateral shell
element [67,70,73], multiplication of the six rigid body modes to the both sides of the stiffness ma-

trix does not yield zero values as desired.

The consistency condition requires for the elements to satisfy the patch tests [101]. This test is often
considered to guarantee the convergence of the finite elements, providing mean to test stability. The
patch of elements is subjected to the minimum number of constrains to prevent rigid body motions
and the nodal point forces on the boundary corresponding to the constant stress states are applied.

The patch tests are passed if the correct values of constant stress fields are calculated for any loca-
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tions within the mesh. For shell elements, there are three kinds of patch tests, membrane, bending
and shearing patch tests, according to the loading and boundary conditions [1,5-9,14,19,30-34,36-
40,102].

Final requirement is simplicity of formulation and computation. The formulation itself need to be
physically meaningful and easy to understand, and hence can be simply implemented [10,13,14].
Even though some increase in computation time is sometimes inevitable, it is best to keep it at min-
imum. Especially, keeping the of number of unknowns the same by using static condensation ap-

plied to added degrees of freedom is highly desirable [15].

1.4.1 Pass of patch tests

Here we discuss in more detail with the pass of patch tests. Among low-order shell elements, it is
far more difficult to attain a consistent quadrilateral, rather than triangular, shell element passing the
patch tests. Among different kinds of strains, membrane, bending and transverse shearing strains
within the shell element, the membrane strains are the ones related to membrane locking of 4-node
quadrilateral shell elements. However, there are no given ways to satisfy the membrane patch tests
for quadrilateral elements. Here, we give detailed condition for quadrilateral elements to pass the

patch tests.

Interpolation of 4-node quadrilateral element is given by
4

x(r,s,t) = > _h(r,9)x; , (1.24)
i=1

where h,(r,s) is the two-dimensional interpolation function of the standard isoparametric proce-

dure corresponding to node i, X.

is the position vector of node i in the global Cartesian coordi-

nate system.

The corresponding displacement interpolation of the element is
4

u(r,s,t) =Y hi(r,s)u;, (1.25)
i=1

in which u; isthe nodal displacement vector in the global Cartesian coordinate system.
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The linear terms of the displacement-based covariant strain components are given by

1
eij:E(gi'U,j+gj'u,i)’ (1.26)
in which
gi:%, uyi:% with r,=r, r,=S. (1.27)

1
For transforming the strains we define contravariant bases,

g' :% with g'-g; =4}. (1.28)

In the two-dimensional case we define following geometry and displacements in terms of global

Cartesian coordinate system

X=X, =xi, +yi,, u=ui; =ui, +vi, with i, =i, i, =1, (1.29)
in which i, and iy are unit vectors in global X and Yy directions, respectively.
The covariant strain components in Eq. (1.26) can be transformed into global strains by
=e,(i;-g )(' -9")
or or 0s 0s or os or os
=€t tC€_————tE&, ——
OX; OX; OX; OX; OX; OX; OX; OX
1 Gui auj
=—| —+—1. (1.30)
2{ OX;  OX

In order to pass the membrane patch tests, following ‘constant strain conditions’ from Eq. (1.30)
must be expressed:

g,(u=xv=0)=1, ¢ (u=xv=0)=0, g,(u=xv=0)=0,

g, (u=0,v=y)=0, g, (u=0v=y)=1 ¢, (u=0v=y)=0,

g,(u=y,v=x)=0, g, (u=y,v=x)=0, g, ,(Uu=y,v=x)=1, (1.31)

We are able to reverse the transformation relations in Eq. (1.30) as

=8, (9; 'ik)(gj 1)
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O T S

=€ . 1.32
o, o, Poror, Yoror, Yo or (1:32)
Then, substituting Eg. (1.31) to Eq. (1.32), we obtain the following conditions:
e, (u=xyv= 0)—Q%, e”(u:o,v:y):gg, e, (U=yv=x)= Zaxay
or or or oror’
OX OX oy oy ox oy
e.(Uu=x,v=0)=——, u=0,v= - Uu=y,v=Xx)=2—
s ( ) P~ € y) = 2 Bs e (U=yv=x)= %25’
OX OX oy oy X 8y ay oX
e (U=xv=0))=——, e, (uU=0,v= —, e (U=y,v=x
o ) or 0s ( )= or 0s =y )= or és ar X
(1.33)

The relations in Eq. (1.33) constrain the covariant components of strains to satisfy the membrane
patch tests. It is evident that displacement-based element in Eq. (1.26) satisfies Eq. (1.33). Also, as

long as ‘constant parts’ of the covariant strains which does not vary over element domain (r,S) is

preserved, the patch test is passed and vice versa.

const

Element strains can often be grouped into the constant (e;"™") and linear (ei'j"‘) parts, in which the
‘linear parts’ of the element strains which vary linearly along r and S:

e;(r,s)=e ™ +e/"(r,s). (1.34)
Hence, it is more precise that patch test is passed if the following conditions are met:

OX OX
e (u=x,v=0)=——, "”u—xv 0)=0,
i ( ) or ar ( ) =

econst( O V= y) — ﬂg , I|n (U O V= y) O

or, 8
EEIE
const U=V.V=x)= = “” V =X 0. 1.35
=y X) = 6ri or; o, or, ( =¥ )= (1.39)

Here we show usefulness of Eq. (1.35) using an example. In the developments of quadrilateral ele-

lin

ments using enhanced assumed strain methods, the linear parts (&;") of the covariant strains are

often assumed in the following form
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d. with j(r,s)= XY _ Y X (1.36)

glin r,s)=c.r S ,
i (18 =Gy " j(r,s) or 0s or os

- +
j(r.s)
that devoid of the bilinear term, where c; and d; are constantover r and S. The most widely

used method for 4-node quadrilateral elements are 2x2 Gauss integration over element domain.

Note that Eqg. (1.35) actually constrains the numerically integrated strains, see [15].

Applying the 2x2 Gauss integration to linear strains of Eq. (1.36) we obtain
ij ij ij

L el"(r,s)dV =e!"(-a,—a) j(-a,-a) +e."(-a,a) j(-a,a) +

lin

ei"(a—-a)j(a—a)+e"(a,a)j(a—a)
=c;-0+d;-0=0 with a=1/+3, (1.37)

so the strain in Eq. (1.36) obeys Eq. (1.35), satisfying the patch test.

In more general situations with different linear strains, the check of Eq. (1.35) can be difficult. In
those cases, comparing the membrane strains with another strain fields satisfying the patch tests

(such as that of displacement-based element) can be helpful.

1.4.2 Pass of zero energy mode tests

Here we discuss the conditions to pass the zero energy mode tests.

The zero energy mode tests can be decomposed into two categories: Check of the deformation
modes having non-zero (and correct values of) eigenvalues and check of the rigid body modes hav-

ing the zero eigenvalues.

For the deformation mode tests, deformation modes with correct non-zero eigenvalues are required.
Checking whether each modes have correct eigenvalues can be performed using simple conver-
gence tests of displacements. For example, the element should converge toward analytic solution of
simple in-plane tests to insures all five in-plane modes shown in Fig. 1.2 (two in-plane stretching,
two in-plane bending and one in-plane shearing) are correct. Since the eigenvalues of constant
modes, such as in-plane stretching modes, are already tested through pass of patch tests, higher-

order modes of in-plane bending and shearing need special considerations. For shell elements, on
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the other hand, twisting mode about the direction normal to the thickness are not necessary [7,8],

providing an exception to the deformation mode tests.

— T
U

Fig. 1.2. Five in-plane modes of 4-node quadrilateral element.

For the rigid body mode tests, six physical zero energy mode must be present even when element is
arbitrarily distorted. For the low-order shell elements in Fig. 1.3, following geometry and displace-

ment interpolations are necessary:

For degenerated shell elements :

x(r,s,t) = ZN:hi (r,s)x, + %iai h.(r,s)V!, (1.38a)
u(rs.) = S h(rs)y, +%§N;ai h(r,s)(=Via +V, 8.), (1.38)

and for solid-shell elements :

x(r,s,t) = %(1—t)ZN: h, (r,s)x" +%(1+t)ZN: h. (r,s)x", (1.38c)
- -

u(r,s,t) = 5(1—02 h. (r,s)u’ +E(1+t)z h. (r,s)u’®, (1.38d)
i=1 i=1

with N =4 and N =3 for quadrilateral and triangular elements, respectively, h.(r,s) is the
two-dimensional interpolation function of the standard isoparametric procedure corresponding to
node 1. For degenerated shell elements, X; is the position vector of node 1 in the global Carte-
sian coordinate system, and @; and V! denote the shell thickness and the director vector at the

bot

P and x;

node, respectively. For solid-shell elements, X; are the position vector of node i lo-

cated at the top and bottom surface of the shell element, respectively. Also, o, and p, for degen-

erated shell elements denote rotations about vector V, and V,, each of which normal to the vec-

tor V! and to each other.
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O

V%3

(b) *

. Top surface

~—— Bottom surface

" Bottom surface

(@ (d)

Fig. 1.3. Low-order continuum-mechanics based shell elements. (a) 4-node quadrilateral degenerat-
ed shell element. (b) 3-node triangular degenerated shell element. (c) 8-node quadrilateral solid-

shell element. (d) 6-node triangular solid-shell element.

Attaining physical rigid body modes for solid-shell elements are straightforward, since the interpo-
lation of displacement in Eq. (1.38d) includes only the nodal translations (u}Op and u:""). For de-

generated shell elements, following rigid body modes must be present:

The three translational rigid body modes :
U, =C with constant vector ¢ e R®, (1.39a)

and the three rotational rigid body modes :
u, =0xx; and 0=0;V, +p,V, with constant vector 0 € R®. (1.39b)

In Eq. (1.39b), the values of rotations with given pseudo-rotation vector (0) are a; = B-Vli and

B, =0-V,, respectively.

The rotational rigid body modes can be not present along with the modifications introduced to treat

locking. Particular case happens while treating membrane locking, when reduced integration applied
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to covariant in-plane strains Eq. (1.26). In order to remedy this problem, following displacement

projection method has been employed:

u=u v, woa AT,

uinew — Piuiori,
Pi :I_Ri(RiTRi)_lRiT' (1.402)
with
0 zi-z,  —(Yi—Ye)
—(z,-z,) 0 Xi = X¢

Ri =l Yi— Y. _(Xi_xc) 0

_V2>; _Vz)il _szi

Vi v,/ Vi

1z

\VARSVAS WRVAL [NRVAS I VAR VAL ERVAL

liy 2ity

X; =X +yi, +2zi,, u =ui +vi, +wi,,

+V22iiz’
1 N
X, =N2xi and X, = X0, + Vi, +Zi,. (1.40b)

i=1

ori

In Eq. (1.40a), the original displacements (translations and rotations) u;" are projected using the

new

matrix P, =1-R, (R’iTRi)’lRiT to form the new nodal displacement vector u.,™ that replaces

u" at each node i. This procedure is not only costly, but mixes the translation and rotations for

1
curved quadrilateral shell elements, thereby deteriorating the quality of strains and stresses. Ideally,
projection schemes applied on geometry or displacement should be avoided during locking treat-
ments of quadrilateral shell elements, and physical rigid body modes as well as physical nature of

displacement unknowns should be preserved thoroughly.
1.5 Outline of the paper

Here, organization of the paper is presented.

In Chapter 1, brief overview of the present research was introduced. The previous studies of the
low-order shell elements were investigated to set two different goals of the present study: remedy-

ing membrane locking of 4-node quadrilateral shell element and alleviating thickness locking of 6-
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node triangular solid-shell element. Previous studies regarding each goal were presented. Original
theoretical study investigating the cause of membrane locking of 4-node quadrilateral shell element

was presented.

In Chapter 2, the new 4-node degenerated shell elements are presented in the subsequent order of
developments (MITC4+,MITC4+N and new MITC4+). The formulations of the three elements are
firstly presented and the performance of the elements is shown through basic tests, benchmark tests
and convergence studies on linear analysis. For the latest (new MITC4+) shell element, performance

in geometric nonlinear analysis is also presented.
In Chapter 3, the new 6-node triangular solid-shell element (MITC-S6) is presented. The formula-
tion is presented and the performance of the element is examined through basic tests, convergence

studies and geometric nonlinear problems.

In Chapter 4, conclusion of the present study is stated.
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Chapter 2. The improved 4-node quadrilateral shell elements

2.1 The formulations of the developed 4-node quadrilateral shell elements

In this section, the formulations of newly developed 4-node quadrilateral shell elements, the
MITC4+ [5], MITC4+N and new MITC4+ [103] shell elements, are presented. The geometry and

displacement interpolations of the new shell elements are as for the MITC4 shell element.

2.1.1 Basic 4-node quadrilateral shell element, MITC4

In this section, we present basic 4-node quadrilateral shell element used for further development in
this study. It has to satisfy all the basic tests while transverse shear strain is optimally treated against
shear locking. For that purpose, the MITC4 shell element is chosen, and its formulation is briefly

reviewed here.

The geometry of a standard 4-node continuum mechanics based quadrilateral shell element is inter-

polated using [1,5,15]
4 4

X(r.s.0 = YR, +2 Y ah(roV;. 1)
i=1 i=1

where h.(r,s) is the two-dimensional interpolation function of the standard isoparametric proce-
dure corresponding to node i, X; is the position vector of node i in the global Cartesian coordi-
nate system, and @; and Vri denote the shell thickness and the director vector at the node, respec-

tively, see Fig. 2.1.

It is useful to note the following representation of interpolation function h,(r,s) :
1 I
h(r,s) = Z(1+ Er)@+mns) with 1=1234,

& & & &l=k -1 -1 1]
[’71 M, M3 774]:[1 1 -1 _1], (2.2)
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in which the signs ¢, and #; are allowed to be permuted together.

The corresponding displacement interpolation of the element is
4 t 4 . .

u(r,s,t)=>"h(r,s)u, +§Zai h(r,s)(-Vie; +V, B), (2.3)
i=1 i=1

in which U; is the nodal displacement vector in the global Cartesian coordinate system, V, and
V, are unit vectors orthogonal to V! and to each other, and @, and f3; are the rotations of the

director vector V! about V, and V), respectively, at node i .

Fig. 2.1. A standard 4-node quadrilateral continuum mechanics based shell element.

The linear terms of the displacement-based covariant strain components are given by

1
& :E(gi ‘U+g5-Uy ), (2.4)
in which
gi:%, u,i:% with r,=r, r,=s, I, =t. (2.9)

For the MITC4 shell element, the covariant in-plane strain components are calculated using Egs.

(2.1) to (2.3) without any modification. The transverse shear strain field is based on assuming con-
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stant covariant transverse shear strain conditions along the edges, see Ref. [6]

By =5 (Sl (-9, & =W+l +(1-r)el.

where the tying points are shown in Fig. 2.2 [1,13].

S
4 X : Tying points
e, = const. )
1
g2
N N
e N T
e, =const. e, = const.
P
-1
e, =const.

(2.6)

Fig. 2.2. Tying positions (A), (B), (C) and (D) for the assumed transverse shear strain field of the

MITC4 shell element. The constant transverse shear strain conditions are imposed along its edges.

The covariant in-plane strain in Eq. (2.4) can be written as
e; =ef +tef +t?%e?  with i, j=12,
m_ 1 OX, duy, +axm au,
or. or.  or, or |

] ] 1

e 5

eik]?l B ;(8xm _ou, +ax

m_aub+6xb.aum+6xb_aum
o, or, or, or on ar, or or |

j i i j i

b2 _ 1(8xb _ou, N OX,, 'GUbJ

"2l e ar ar, o

with

4 4 )
= X, =§;aihi(r,s>vn' ,

u, =ZA:hi(r,S)Ui v Uy :%iaihi(r’s)(_vgai +ViB),
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(2.7¢)

(2.7d)
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The first term eiT in Eq. (2.7a) is the covariant in-plane membrane strain at the shell mid-surface
(t=0), and the remaining terms are the covariant in-plane strains due to bending. The in-plane

membrane strain, see Eq. (2.7b), can in general induce locking.

2.1.2 The MITCA4+ shell element

In the formulation of the MITC4+ shell element [5] the mid-surface of the element is subdivided into
four non-overlapping 3-node triangular domains, and the assumed membrane strain field is con-

structed using the membrane strains of the flat triangular domains.

Let us define the center point denoted by ‘5’ in the mid-surface of the 4-node shell element as shown

in Fig. 2.3
4

X5 = Z?’ixi 1 (2.9)
i-1

where the constants y; are used to determine the position of the center point. The choice of con-

stants is important for the element isotropy and the membrane patch tests.

As shown in Fig. 2.4, the geometric centroid of triangle 1 defined by nodes 1-2-4 is

1 1 1 11 1
=gt tgXetghsly g 0 gl X 6l (2.10)

and, similarly, the geometric centroid of triangle 2 is given by

1 11
X;, =[0 3 3 §][xl X, X5 X (2.12)

Then, the geometric centroid of triangles 1 and 2 is calculated using the following equation

Xr12 = LXTl +LXT2’ (2.12)
A+A A+A

where A and A, are the areas of triangles 1 and 2 shown in Fig. 2.4.

Similarly, the geometric centroid of triangles 3 and 4 is
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X Xon + X 2.13
T34 AS + A4 T3 A3 + A4 T4 ( )
with
1 1 1 1 1 1
Xyq = [5 33 01X, X, X5 X', Xgu= [§ 0 3 §][X1 X, X5 X1, (2.14)

inwhich A, and A, are the areas of triangles 3 and 4.

Finally, the mean position of two geometric centroids is simply obtained by

1 4
XSZE(XT12+XT34):[71 Vo Vs VX X, X X4]T:Z7/ixi (2.15a)

. 1 A 11 1. 1 A 111

th == = = 0 Z]+= 0o = = =

with [y 7, 75 7] 2aalz 3 0 3 a.all 53 3
LA A 1L g1 A L1 L (2.15b)

2A,+A, 3 3 3 2A,+A, 3 3 3
t

X

Fig. 2.3. Triangular subdivision of the mid-surface of the 4-node shell element.
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S
\—

Fig. 2.4. Four triangles to determine the center point of the MITC4+ shell element.

® Centroid of triangles 1 and 2
© Centroid of triangles 3 and 4

Using the defined center point, the mid-surface of the 4-node shell element is divided into four flat
triangular domains, see Fig. 2.3. Each triangular domain can be interpolated using the following ge-

ometry interpolation function

3 —~ — — —~

X(r,s,t) =Y h(r,s)%;  with h(r,s)=r, h(r,s)=s, hy(r,s)=1-r-s, (2.16)
i=1

and

X, =X, X, =X,, Xy=Xg fortriangle A, X, =X;, X, =X,, X; =X, fortriangle B,

X, =X,, X, =X;, Xy=X; fortriangleC, X, =X,, X, =X;, X3 =X, fortriangle D,

in which ﬁi(r, S) is the two-dimensional interpolation function of the 3-node triangular element

corresponding to node i, and X, is the position vector at node 1. Note that the subdivision into
two non-overlapping triangular domains is also possible, but then the element isotropy cannot be

satisfied.

The interpolation of the corresponding translational displacement vector is given by
3 —_

a(r,s,t)=> h(r,s)u;, (2.17)
i=1

where U, is the translational displacement vector at node i .

In the MITC4+ shell element, the displacement vector at the center point is represented by the dis-

placement vectors at the corner nodes
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4
Ug =zyiui - (2.18)
i1

Note that the isoparametric relation between Eq. (2.9) and Eq. (2.18) is important to correctly repre-
sent rigid body modes in the 4-node shell element. Note that the displacements at the center point are

not degrees of freedom in the element formulation.

The covariant membrane strain in the triangular domains is given by

m 10X ou ox ou
eij —2 .

or, 8rj 8rj or,

J with i, j=12. (2.19)

The covariant membrane strain in Eq. (2.19) has two covariant base vectors,

g =§—f with =12, (2.20a)

which are supplemented with the third covariant base vector of

9;=0s. (2.20b)

s
T X : Tying points
1

| e] =a+br+cs+drs
—m(4) _ —m(Triangle 4)
€, =é&;

y eH

1 _ _ _ _
a=Z(eyf”(‘4)+eij’."(B)+ei]’."(c)+e,.]’."(D))

—m (D) _ —m(Triangle D) —m (C) __ —m(Triangle C)
e,.]’." —e,.]’.” anete e =¢;
> r L —aw om©
-1 1 b—2(—e,.j +e;"’)
_l Sm(B) , Zm(4)
c—2(—e,.j +ej )
—m(B) __ —m(Iriangle B)
e, =¢;
d=0

-1

Fig. 2.5. Tying positions (A), (B), (C) and (D) for the assumed membrane strain field of the MITC4+

shell element.

In order to apply the assumed strain method, the covariant membrane strain from each triangular
domain must be transported to the natural coordinate system of the 4-node shell element. The strain

transformation is given by (i, j =1,2 and k,l1=1,2),
el =e7(9,-9")(9,-9"), 2.21)
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inwhich g'-g; =&; with & the Kronecker delta.

Using the covariant membrane strains evaluated from the four triangular domains, constructing a
new assumed strain field which alleviates the locking is necessary. It starts with the following as-
sumption

€ =a+br+cs+drs with i,j=12, (2.22)
in which the coefficients a, b, ¢ and d are determined using the covariant membrane strains

evaluated in the triangular domains.

While the strains are constant within each triangular domain, the tying positions symmetric about the

element center are chosen, see Fig. 2.5. Then the following tying conditions are employed
(O 1) m(A), (0 1) em(B), (1 0) em(C), ( 1 O) m(D), (2.23)

The four coefficients in Eq. (2.22) are thus obtained as
1, _ _
(emM)+em®)+em@)+em®U |3=§(_ m®)+em«3) C=—{ m®)+emﬂb

d

0. (2.24)

Finally, the new assumed strain field for the membrane strains is given as

Y _—(em(A)+em(B)+em(C)+em(D))+ (em(D)+e”‘(°’)r+ (em(B)+em(A))s, (2.25)

Note that the assumed membrane strains in Eq. (2.25) do not have the bi-linear term (rs) which

causes membrane locking of the MITC4 element when geometrically distorted, see Section 2.3.
The MITC4+ shell element alleviates membrane locking while satisfying the basic tests, but has

slight disadvantages on reduced membrane behaviors and approximate pass of membrane patch tests.

In order to retain membrane behaviors, the MITC4+N shell element is developed.

2.1.3 The MITC4+N shell element

In order to improve the membrane behavior of the MITC4+ shell element, the basic interpolation
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used for the assumed membrane strain is modified.

Firstly, the center point for the subdivision of the mid-surface shown in Fig. 2.3 is redefined. Let us
consider two lines in Fig. 2.6(a): line 24 (connecting the nodes 2 and 4), and line 13 (connecting the
nodes 1 and 3). A line segment which is orthogonal to both lines 24 and 13 can be defined. The line
segment represents the shortest distance between the lines 24 and 13. The new center point is located
on the midpoint of the line segment, as shown in Fig. 2.6(a) and (b). When the element geometry is
flat, the center point becomes the point of intersection of the two diagonals, see Fig. 2.6(c). This

choice is very important for the satisfaction of the isotropy and the membrane patch tests.

t t

—

-
Triangle 2 "1 4 » ‘ 4
\*’ ’

@ Pointonthe line 24
© Point on the line 13

(b) (c)

Fig. 2.6. The construction of center points. (a) Four triangles to determine the center points of the

original and the MITC4+N shell elements. (b) The new center point (‘5”) for the MITC4+N shell

element. (c) Location of the new center point for flat geometry.

A simple procedure for obtaining the location of the new center point is derived for arbitrary geome-
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try of the MITC4+N shell element.

Let us denote the vectors representing the line 13 and 24 in Fig. 2.6(a) by X,; =X, —X; and
X,, =X, —X,, respectively. Two ends points of the line segment are defined,

Paq = 16X, + (A= 14)X4, Prg = 1%, + 1= p,)Xs, (2.26)
on the line 24 and 13, respectively, with g, 1, €[0,1].

Then, the center point is defined by

1
Xg = E (p13 + p24) 1 (2.27)

where the values of x, and u, need to be solved from the orthogonality of the line segment to the
line 13 and 24,
Xos - (p13 - p24) =Xz (p13 - p24) =0. (2.28)

In the special case of X,, - X,; =0, the solution of Eq. (2.28) is given by

Ho = _(X34 'Xls)/(xls 'X13) v M= (X34 'X24)/(X24 “X34) (2.29)

where Xz, =Xz —X,.

In the case of X,, - X,; # 0, the solution of Eq. (2.28) is given by

o = =W, W, )/ (W -W,), 1y =Cu, +C,, (2.30)
in which

W = X33 = C1Xp4y Wy =Xz —CXoy,s

C = (X13 'Xls)/(X24 'X13) » Gy = (X34 'X13)/(X24 'X13) . (2.31)

Next, the new interpolation function which is used for the assumed membrane strain is defined. Note
that in Egs. (2.16) and (2.17), the interpolation function as well as the resulting membrane interpola-
tion resides within each triangular domains. In the MITC4+N shell element, the tying membrane
strains are constructed from the whole quadrilateral domain in aim of improving the membrane per-
formances. This concept is naturally related to the quadrilateral area coordinate methods, see Refs.
[104-107], which use areas of subdivided triangular domains [5,104,107] to represent the interpola-

tion functions for the quadrilateral domain.
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Using the defined center point, four characteristic constants related to the area ratio of the triangles
in Fig. 2.3 are obtained,

G, =(A,+A)/ A, G,=(A, +A)IA,

G,=(A, +A)/ A, G,=(A, +A)IA, (2.32)

with A=A, + A; + Ac + Ay, where A,, A;, A; and A, denote the areas of triangles A,
B, C, and D shown in Fig. 2.3.

The new interpolation functions are defined as in Ref. [107],
- G -~ G
h=—>-0+G;p. h,=="-0,-G,p,

G ~ G
h3:?1+ql+Glp, h4:?2+q2—62p, (2.33)

with

o =§[r+s+<eg ~G)A+rs)], g, =§[— r+s+(G,—-G,)-rs)], (234)

G,G, —G,G
p= [3(q12 ~q,°)+2(G,-G,)q, +(G, -G,)q, + (,C, > L 3)}/(1+ G,G, +G,G,). (2.35)

The ‘area coordinates’ @, and (, newly defined on the subdivided quadrilateral mid-surface are
shown in Fig. 2.7.

The derivatives of the new interpolation functions in Eq. (2.33) can be calculated from the chain
rule,

oh _ oh g, b _ oh ogy (2.36)
or oq, or o0s oq, Os '

: h,
for 1=1..,4 and k=12. The explicit forms of the derivatives oA nd il

, —— are given
Jq, or 0s J
as follows.
0 1 0 1
| | Je+G-6)9) | | T |a+E-6)n
- , - , (2.37)
0 1 0 1
el 15612669 | [SE] | 0-6,-6)n)
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oh, o | T T
- = ~-1+G, &» G, P
oy, o, "oq, o,
on, oh, -G, P ~1-G, o
aq,  ad, * g, * oq,

Gy 9 | _ , 2.38
oy ohy || PG P o
oq, oq, oq,  od,
oh oh| | -6, P 16, %

100, o, | L aql aqz .
with

@ 8p ! _ 1 6q1 +2(Gl _G3) (2.39)
ach aqz 1+G1G3+GzG4 _6q2+2(G4_Gz) ' .

N2,
\‘ ﬂ%

S
P

q =51/A
9 =52/A

O(r,s) Apoint on the subdivided mid-surface
S, Signed area of polygon 0-4-5-2
S, Signed area of polygon 0-1-5-3

X

Fig. 2.7. Area coordinates (0, and Q,) used for the MITC4+N shell element. The polygons are
formed by shortest paths between the nodes and an arbitrary point Q(r,S) on the subdivided mid-

surface.

Finally, the geometry and displacement interpolations used for the membrane strain of the MITC4+N

shell element is given by

X(r,s,t) :iﬁi (r,s)x,, a(r,s,t) :iﬁi (r,s)u, . (2.40)
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The corresponding covariant membrane strains are given by

m 1 . o
; :E(gi 0,49 -u,i) with 1,]=12, (2.41)
where
. OX . ou _
=—, U;=— and =(,. 242
ot T o, 92=0s (242

The new membrane strains are transformed into fixed coordinate system located at the element cen-

ter [86],
e =eq(97-9")(g5-9"). (2.43)
in which covariant base vectors are,

gizaaxrm with i, j=12, (2.442)

0; =03, (2.44b)

and from covariant base vectors fixed in the in-plane directions,
X
9; = X 0,0,1), (2.45)
o,

the following contravariant base vectors are obtained,

9'-9;,=9;- (2.46)

This replaces the covariant membrane strains obtained by Eqg. (2.21) in the MITC4+ shell element.
The resulting MITC4+N shell element has identical bending performances with the MITC4+ shell
element, including the alleviation of membrane locking. The MITC4+N shell element exactly passes
the membrane patch tests, and the membrane behavior is slightly improved. However, it is necessary
to develop an ideal 4-node quadrilateral shell element showing nearly uniformly optimal conver-

gence behavior. Therefore, the new MITC4+ shell element is developed.

2.1.4 The new MITC4+ shell element

The formulation of the new MITC4+ shell element [103] is presented here. The covariant membrane

strains are represented using characteristic geometry and displacement vectors.
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Using Eq. (2.2) in Egs. (2.8a) and (2.8b), the following relations are obtained:

OX
8m:xr+sxd, ==X, +IXy, —-=U, +SU;, —==U, +IUy,
r

with
1$ 1$ 1$

Xy :—Zﬁfixi X =_Z’7ixi Xy :_Zfi’?ixi ’
473 473 43
1$ 1¢ 1¢

u, =—Zfiui v U =—Z’7iui v Uy =_Zfi77iui , (2.47)
4i:1 4'i:l 4i:1

in which the characteristic geometry vectors X,, X, and X, arise naturally from the nodal point

positions, see Fig. 2.8, and the corresponding displacement vectorsare u,, U, and U,.

(€) * (d)
Fig. 2.8. The representative vectors from the element geometry. (a) The two in-plane vectors X,

and X, and the plane P with normal vector n. (b) The two in-plane vectors m" and m®. (c) The

2
e

distortion vector X, . (d) The four edge vectors X;, X2, X and X;.
The two vectors X, and X, form the flat plane P with the normal vector
X, X X
= —, (2.48)
e x|
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as shown in Fig. 2.8(a). For an arbitrarily distorted shell element, the plane P is the only flat surface
that can be defined by equally accounting for the geometry of each nodal point, as required for pass-

ing the isotropy test. Since the two in-plane vectors, X, and X, are not orthogonal, it is conven-

ient to define their dual basis vectors, m" and m°® on the plane P, such that

m"-x, =6, m"-n=0 with ,=r, r,=s5, (2.49)

as shown in Fig. 2.8(b).

Since membrane locking occurs due to out-of-plane distortions of the element geometry, the ‘distor-
tion vector’ X, , shown in Fig. 2.8(c), is of particular interest. The length of the distortion vector
becomes nonzero for both in-plane and out-of-plane distortions of the element geometry. Note that
the distortion vector can be decomposed into in-plane and out-of-plane components using the ge-
ometry vectors (X,,X, and n):

Xq =(Xq -M")X, + (X4 -M®)X, + (X, -N)N, (2.50)
in which the dual basis vectors m" and m® ‘measure’ the distortion in the direction of in-plane
vectors X, and X,,thevalues m"-x, and m®-X, arethe corresponding in-plane distortions,

and X, -n corresponds to the out-of-plane distortion.

In addition, the ‘edge vectors’ which lie along the element edges are

X! XX =—X, — X, K (00), xZ XX = —X, + X, K (-1,0),
2 or 2 oS
X, —X OX X, — X OX
x2="4 T8 oy —x, =—"(0,-1), xI="2 T4 x4+ x, =—"(1,0), 2.51
e 2 r d ar( ) e 2 S d 83( ) ( )

see Fig. 2.8(d). The edge vectors form the corresponding edge strains,
elT’ (0’1) = Xle : Ui ' etT’ (O’_l) = Xi : Ug, eg; (1!0) = X: : ug, esn; (_110) = XGZJ : Us ! (252)

in which each strain contains only two nodal displacements.

In the original displacement-based element formulation, four nodal displacements arise in the ‘rr’-
and ‘ss’- membrane strains. However, constraints arise from the condition of vanishing membrane
strains in pure bending situations. The use of edge strains in Eq. (2.52) is important to establish an

improved behavior in bending-dominated problems.
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The membrane strains in Eq. (2.7b) can be expressed using the characteristic geometry and dis-

placement vectors

m m m m 2
€ =€ con " in. rs bil.‘s !
m m m m 2
€ = Es con SS1jin. S|yl r
1
em _Aam L am + _em S+ em rs 553
rs Slcon 2 lin 2 SS1iin. "Spil. ( )
with
e"l =x-u, e =x u m —1(x x.-u)
| con. r Yo sseon. s “Ugs erscon._z U +X -u, ),
m m m
Crrlyn, = Xr Ua X Upo o Bl = XU + Xy -Ugy - €] =X -Ug- (2.54)

in which the subscripts ‘con.’, ‘lin.” and ‘bil.” denote constant, linear and bilinear terms, respectively.

The following five strain components obtained at tying points are used to construct the assumed

membrane strain field [2-5,84,85]

m(A) _ oM . am m m m(B) _ om _am m m
err - err (011) - err con. + err lin. rs|pir.’ err - err (01_1) - err con ~ Crr lin. rs|pir’
m(C) _ oM _am m m m(D) _ om . am m m
ess - ess (1’0) - ess con. + ess lin. rs|pi’ ess - ess (_1’0) - ess con - ess lin. rs|pi’

en® =¢n(0,0) =€

rs

(2.55)

1
con.

which are effective to reduce membrane locking. The tying points (A), (B), (C), (D) and (E) as well

as the corresponding strain components are shown in Fig. 2.9.
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X : Tying points

1
m(4)
€.
,m(D) m(C ) >
1 Css (E) €5 1 r
- m
€.s
m(B)
€.
-1

Fig. 2.9. Tying positions (A), (B), (C), (D) and (E) for the assumed membrane shear strain field.

Among the assumed membrane strain methods to alleviate membrane locking, membrane strain field
proposed by Choi and Paik [2] is of particular interest, which was subsequently applied to an exact

geometry shell element by Cho and Roh [4]

1 1 ( )
Am _ m (A) m (B) m (A) m (B) _{am m m
€, = E(err +€ )+E(err —€n ) S=1&, con. rs|pil. +€ lin. S,
Hm_l(m(c) m(D)) 1(m(c) m(D)) _(m m ) m
€ = E Ess + € +§ €ss — € T =18 con +€s bil. + € lin. r,

gm zl(em(A) Lem® 4 am(©) +em(D))=em(E) e
rs rs rs

rs rs rs rs
4

, (2.56)

That is, Choi and Paik used the five sampled strains in Eq. (2.55) to assume the membrane strain

field to be one order lower than implicitly given in the original displacement-based element.

Linear terms are included in the covariant in-plane shear strain in Eq. (2.56) to obtain the following

assumed membrane strain field

Am = am = am _=m , 1 1
ér=e;, ér=es, é.=er+=eyl -r+=enl -s. (2.57)
2 lin. 2 lin.

Those linear terms are necessary for the shell element to pass the patch test.
Comparing the strain field in Eq. (2.57) with the strain field of the displacement-based element (giv-
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en in Eqg. (2.53)), the following relations are identified

m
Ss

m
rs

2 m

r-, e

m
bil. rs

AM

= ers

—e +ep

-rs, (2.58)

S1pil, S |pil. bil. bil.

from which the strain components added to the strain field in Eq. (2.57) (to complete the strain field

of the displacement-based element) are identified to cause membrane locking. Note that all the added

strain components contain the same term, e

L = Xa Ug (given in Eq. (2.54)).

In order to establish an appropriate value for e

. the idea of Kulikov and Plotnikova [3] are

adopted. Namely, the assumed membrane strain field is constructed by the linear combination of the
five strain coefficients in Eq. (2.56) such as to keep the improved bending performance with the

membrane locking alleviated
— m m
bil. A'(e” bil.)+ B- (ess

where the coefficients (A,B,C,Dand E) need to be determined. Note that the five strain coeffi-

S m

m
ers

‘+ef$‘ o biL)+C -en

+€

con.

(2.59)

+D-¢e
con. rr

m
lin. +E Css

L
con lin.

cients can be easily obtained from the sampled strain components in Eq. (2.55).

To pass the membrane patch tests, the new membrane strain field should satisfy the following condi-

tion:

S m m
rs e

bil.  'Slp

when the element geometry is flat (X, -n=0) (2.60)

for arbitrary in-plane deformation modes in the flat geometry.

For a flat element geometry with X, -n=0 in the plane P defined in Eq. (2.48), the distortion vec-
tor in EqQ. (2.50) becomes

Xg =(Xq -M)X, + (X4 -M°)X. (2.61)
Here, Eq. (2.60) are solved for arbitrary in-plane modes along with Eq. (2.61) to determine the five
coefficients in Eq. (2.59).

Theterm e,

L = Xa Uqg should become zero in the following deformation mode
1.
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u, =a,, u,=a,, u,=0, (2.62)

S s

inwhich a, and a, are arbitrary constant vectors placed in the flat plane P.

From the condition in Eq. (2.60), the assumed membrane strain field in Eq. (2.59) also should be

Z€ero,

&" =0 (2.63)

rs pil

in the deformation mode in Eqg. (2.60).

Using Eq. (2.62) in Eqg. (2.54), the five strain coefficients in Eq. (2.56) become

m
(el’l’

m
rs

m

bil_)= Xi-@p (ess

m
rs

m
rs

21(Xr ‘A + X 'ar)’

=X, A,
bil.) s s € con. 2

con. con.

el =Xa @y Bl =X -a. (2.64)
Substituting Egs. (2.63) and (2.64) into Eqg. (2.59), the following equation is obtained
(A-x, +C-x,/2+D-x,)-a, +(C-x, /2+B-x,+E-x,)-a, =0
for arbitrary constant vectors a, and a,, (2.65)
and thus
A-x,+C-x,/2+D-x, =0, C-x,/2+B-x,+E-x,=0. (2.66)
Comparing Eq. (2.66) with Eq. (2.61), following constants are easily identified
A=c’/d, B=c?/d, C=2cc,/d, D=-c/d, E=-c//d (2.67)

r

with ¢, =X, -m", ¢, =X, -m° andanew constant d.Thevalues ¢, and C, denote the in-

plane distortions of the element geometry.

Consequently,
2 2
~ c c 2c.C c c
m m m m m m m m
€rs bil. - Fr(e” con. €rs bi|.)+Fs(e55 con. rs bil.) (; ) "S{con. _Er iin. _Esess lin.” (2.68)

If another condition of e

b = Xa X in the following deformation mode
1l
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u =0, u,=0, u,=x,, (2.69)
is used for solving Eqg. (2.60), the following equation should be satisfied,

am
rs

= Xy Xq- (2.70)

bil.

Using Eq. (2.69) in Eq. (2.54), the five strain coefficients in Eq. (2.56) become

m
(err

m
rs

m

bi|,)=Xd K (ess

m
rs

m

bil,):Xd Xgo Bl =0,

con.

+€

con.

+€

con.

m
rr

enl =X, X4, en

Z%, X, (2.71)

S

lin. lin.

Substituting Eqgs. (2.70) and (2.71) into Eq. (2.68), the constant d is determined as
d=c’+c’ -1, (2.72)
which can be rewritten as
d=(c, +1(c, -1 +(c, +1(c, - +1
:[(xd err)-mrI(xd —xr)-mr]Jr[(xd +xs)~msl(xd —xs)~ms]+1. (2.73)

Using Eqg. (2.51) in Eq. (2.73), the constant d becomes
d=0¢-m)(xE-m®)+(x3-m ) -m")+1. (2.74)

The value d measures the distortion of pairs of edges within the element.

Substituting the obtained assumed strain term (given in Eg. (2.68)) into all added strain components
in Eq. (2.58), the new assumed membrane strain field for the 4-node continuum mechanics based

shell element are finally obtained,

~m ¥m ~m 2 ¥m =
e —€ bil. rs ™, ess - ers

rs

-rs. (2.75)

bil. bil. 'S pil.

For an efficient implementation in computer codes, the assumed strain field in Eq. (2.75) can be re-

written as

e = %(1—261A +5+2a,-5%)en®™ +%(1— 2a, —5+2a, -52)en® +a.(~1+52)en© +

rr rr S

ap(-1+ sz)e;”(D) +aE(—1+ sz)em‘E), (2.76a)

S rs
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am :aA(_1+r2)e:1(A) +aB(_1+ rz)e;n(B) "'%(1_2‘% +r+2a, ‘rZ)e:;(C) 4

SS r r

%(1— 2a, —r+2a - rz)eS”;(D) +ag (—1+ rz)e"“E), (2.76b)

rs

em = %(r +4a, -rs)en ™ +%(— r+4a, -rs)e”® +%(s +4a, -rs)el© +

rs rr

%(— s+4ag -rs)el® +(1+ag -rs)en®, (2.76c)
with
- 1 c.(c. -1 c.(c. +1 2c.C
A e A (e B C IR A I
2d 2d 2d 2d d

Although the overall form of the assumed membrane strain resembles those previously published [2-
5], Eq. (2.76) represents the formulation of a new continuum-mechanics based degenerated shell el-
ement, which is generally applicable for arbitrary geometry of the shell structure. In the next sec-

tions, excellent performances of the new MITC4+ shell element are presented.

Note that the membrane part of the new MITC4+ shell element is identical to that of the displace-
ment-based element when the element geometry is flat. That is, in two-dimensional plane stress
problems, both shell elements always yield the identical solutions. The computational cost of the
new MITC4+ shell element increase slightly from that of the original MITC4 shell element. Howev-
er, solution time does not change, and only the assembly cost is increased, see Table 2.1 for rough

comparison.

Table 2.1. Relative comparison of assembly time.

Element MITCA4 MITC4+ New MITC4+

time 5.0 6.0 55

In the numerical analysis, 2x2x2 Gauss integration over the element domain are used for the all

the shell elements considered.
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2.2 Basic tests

Here, results of the basic numerical tests to examine the MITC4+, MITC4+N and new MITC4+ shell

element are presented. The isotropy, zero energy mode and patch tests are considered.

The spatially isotropic behavior is an important requirement for any shell elements. The element be-
havior should not depend on the sequence of node numbering, i.e. the element orientation [3,5-9,38].

All three elements pass this test.

Three patch tests of the membrane, bending and shearing patch tests are performed, see Refs. [1,5-
9,14,19,30-34,36-40,101,102]. The mesh geometry is shown in Fig. 2.10. The patch of elements is
subjected to the minimum number of constrains to prevent rigid body motions and the nodal point
forces on the boundary corresponding to the constant stress states are applied. The patch tests are
passed if the correct values of constant stress fields are calculated at any location within the mesh.
Since the elements modify the membrane strain in Eqg. (2.7b), membrane patch tests shown in Fig.

2.11 need special consideration.

For the MITC4+ shell element, bending and shearing while the membrane patch test is approximate-
ly passed, see Fig. 2.12. The MITC4+N and new MITC4+ elements pass all membrane, bending and
shearing patch tests. It is already shown that the new MITC4+ shell element passes membrane patch
test because it is identical to the displacement-based element for flat geometry. For other elements,

pass membrane patch test can be proven through the methodology presented in Section 1.4.2.
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Fig. 2.10. Mesh geometry used for the patch tests.
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(b) (0
Fig. 2.11. Mesh geometry, loading and boundary conditions used for the membrane patch tests. The

tensile patch tests are shown in (a) and (c), and shear patch test is shown in (b). The lines through

element Gauss points for stress evaluation are shown in (a) to (c) ( p =1.0, thickness=1.0,

E=21x10° v=0.3).

In the zero energy mode tests, the number of zero eigenvalues of the stiffness matrix of a single un-
supported element are counted [1,5-9,14,19,31,35,38-40]. For the new elements only the six zero
eigenvalues corresponding to the six rigid body modes are obtained. That is, all three elements pass

the zero energy mode tests.

In order to test the in-plane shearing mode of the shell elements, Cook’s problem shown in Fig. 2.13

is considered. The results of tip displacements are shown in Table 2.2. While all shell elements con-
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verges accurately toward the reference solution, the original MITC4 and the new MITC4+ shell ele-
ment perform the best. We test in-plane bending modes of the shell elements under regular and dis-
torted mesh using cantilever problem and thick curved beam problem shown in Fig. 2.14 and Fig.
2.15, respectively. The results of tip displacements are presented in Table 2.3 and Table 2.4. While
all elements converges accurately toward the exact solutions, the original MITC4 and the new

MITCA4+ shell elements performs identically and better than the other elements.

All three shell elements does not have additional unknowns, and hence computationally efficient.
Formulations of all three shell elements are relatively simple to implement and physically under-
standable. Note also that all three shell elements yield symmetric and positive definite stiffness ma-

trices.
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Fig. 2.12. Stresses along lines L1 to L6 for the membrane patch tests of the MITC4+ shell element.

Results of the patch tests in Fig. 2.11(a), (b) and (c) are shown in (a), (b) and (c), respectively.
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16 /

44

Fig. 2.13. Cook’s problem. Plane stress condition is considered with E =1.0 and v=1/3. Geome-

try including the 4x4 mesh division, loading and boundary conditions are shown.

Table 2.2. Vertical displacements at the center of tip A for Cook’s problem.

Mesh
Elements Reference

2%2 4x4 8x8 16x16 32x32

MITC4 11.8452 18.2992  22.0792 23.4304  23.8176

MITC4+ 11.7291 18.2662  22.0751 23.4301  23.8176
23.9642

MITC4+N 11.8200 18.2934  22.0786 23.4304  23.8176

New MITC4+  11.8452 18.2992  22.0792 23.4304  23.8176

Y
4
p=20
iﬁC B >
1
: 4|p=20
[ ToXx

2

Fig. 2.14. Cantilever problem. Plane stress condition is considered with E =2.0x10° and v=0.0.

Geometry including the 1x2 mesh division, loading and boundary conditions are shown.
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Table 2.3. Vertical displacements (x10™*) at the tip A for cantilever problem.

Mesh
Elements Exact
1x2 1x4 1x8
MITC4 -1.60 -2.13333 -2.32727
MITC4+ -1.60 -2.13333 -2.32727
-2.40
MITC4+N -1.60 -2.13333 -2.32727
New MITC4+ -1.60 -2.13333 -2.32727

600

L >

I 10

N
|

5

Fig. 2.15. Thick curved beam problem. Plane stress condition is considered with E =1.0x10° and

v=0.0. Geometry including the 1x2 mesh division, loading and boundary conditions are shown.

Table 2.4. Vertical displacements at the tip A for thick curved beam problem.

Mesh
Elements Exact
1x2 1x4 1x8
MITC4 22.5988 57.9325 79.9218
MITC4+ 22.7608 56.6258 76.5462
90.1
MITC4+N 22.4383 57.6903 79.8095
New MITC4+ 22.5988 57.9325 79.9218
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2.3 Convergence studies

In this section, convergence studies are performed using appropriate and well-established benchmark
problems to study the behavior of shell elements: a clamped square plate problem, cylindrical shell
problems, and hyperboloid shell problems [5-9,11,12,18,19,22,60,100,108]. In addition, spherical
shell problems newly established in our study is considered. The solution errors are measured in an
appropriate norm considering membrane and bending-dominated shell problems with various curva-
tures, thicknesses, and boundary conditions. Hence the chosen problems are encompassing the typi-

cal difficulties encountered in shell analyses.

To measure the error in the finite element solution, the s-norm proposed by Hiller and Bathe [18] is

employed
ju—u|? = [AeTATdQ  with Ae=g-g, At=T-T,, 2.77)

where U is the exact solution, U, is the solution of the finite element discretization, and ¢ and
T are the strain and stress vectors. This is a proper norm for investigating whether the finite element

formulation satisfies the consistency and inf-sup conditions [12,16,18,21].

Since many good benchmark shell problems designed to detect locking have no analytical solution,

an accurate finite element solution using a very fine mesh u, is used to replace the exact solution

u. Hence the s-normin Eq. (2.77) is modified to be

2
U rer —UhHS =J.Qref Ae"ATdQ, . with Ag=g, —g&,, AT=T, —T,. (2.78)

To study the solution convergence of shell elements with decreasing thicknesses, the normalized rel-
ative error E, are employed

E, = M . (2.79)

2
u

ref

S
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The theoretical convergence behavior, which corresponds to the optimal convergence, is given by
E, =Ch", (2.80)
inwhich C is a constant independent of the shell thickness and h is the element size. For 4-node

shell elements, k=2.

In this study, well-converged reference solutions calculated using fine meshes of the MITC9 shell
elements are used. The MITC9 shell element is known to satisfy the ellipticity and consistency con-

ditions and to show good convergence behavior [12,18,108].

In each of the problem analyses the results obtained using the classical MITC4 shell element, the
previously published and the new MITC4+ shell elements are given for the practical range of thick-
ness of the shell element. Either uniformly regular or distorted meshes are employed to check sensi-

tivity on the mesh distortion.

2.3.1 Fully clamped square plate problem

The plate bending problem [5-9,11,60,108] shown in Fig. 2.16 is considered. A square plate of di-
mensions 2L x2L and uniform thickness t is subjected to a uniform pressure. Utilizing the
symmetry condition, only a one-quarter model is considered, with the following boundary condi-
tions: u, =6, =0 along BC, u, =6, =0 alongDCand u, =u,=u, =6, =6, =0 along AB
and AD. In addition to the regular mesh in Fig. 2.16, the same plate bending problem with distorted
meshes shown in Fig. 2.17 is considered. In- N x N distorted mesh, each edge is discretized in the
following ratio: L;:L,:L;:...... Ly =1:2:3:...... N .

Fig. 2.18 gives the convergence curves of the three shell elements. A 72x72 element mesh of the
MITCO shell element is used to obtain the reference solution. N x N element meshes are used
with N = 4,8, 16, 32, and 64 to calculate the solutions. The element size in the convergence
curves is h =L/ N . The performance of the elements is uniformly optimal in both the regular and
distorted meshes. Note that membrane locking is inherently not present in this plate bending prob-

lem.
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2.3.2 Cylindrical shell problems

Cylindrical shell of length 2L, radius R and uniform thickness t are considered as shown in
Fig. 2.19(a), see Refs. [5-9,22]. The loading is a smoothly varying pressure p(6)

p(0) = p, cos(26), (2.81)
see Fig. 2.19(b).

This shell structure shows two different asymptotic behaviors depending on the boundary conditions
at its ends: bending-dominated behavior when both ends are free and membrane-dominated behavior

when both ends are clamped.

V4
A
9 t
A A A A A A A A i x
>
)
Yy
A
2L
D C 2L
h
X
A B >

Fig. 2.16. Fully clamped square plate under uniform pressure (L=1.0, E =1.7472x10", q=1.0
and v=0.3).
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(@) (b)
Fig. 2.17. Distorted mesh patterns for () N =4 and (b) N =8.

Using symmetry, only the region ABCD in Fig. 2.19(a) is modeled. For the membrane-dominated
problem, the clamped boundary condition is imposed: For the membrane-dominated case, the
clamped boundary condition is imposed: U, =8 =0 along DC, u, =/ =0 along AB,

u,=a=0 alongAD, and U, =U,=U,=a=/=0 along BC. For the bending-dominated case,
the free boundary condition is imposed: U, = =0 along DC, U, =/ =0 along AB, and

u, =a =0 along AD. When using the clamped boundary condition, the regular mesh is graded with
a boundary layer of width 2\/f , See Refs. [21,22] for details. In the free boundary condition, the

graded mesh with a boundary layer of width 0.5\/f is considered. The convergence studies using

the distorted meshes shown in Fig. 2.19(c) are also performed.
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Fig. 2.18. Convergence curves for the fully clamped square plate problem with (a) the regular and

(b) distorted meshes shown in Fig. 2.17. The bold line represents the optimal convergence rate.
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Fig. 2.19. Cylindrical shell problem (L=R =1.0, E=2.0x10°, v=1/3 and p,=1.0). (a)

Problem description with graded mesh for the clamped case (8x8 mesh, t/L =1/100). (b) Pressure
loading. (c) Distorted mesh in Fig. 2.17 applied.

Fig. 2.20 gives the convergence curves in the solution of the clamped cylindrical shell problems. The
reference solutions are calculated using a 72x72 element mesh of MITC9 shell elements. The solu-
tions are obtained with N x N element meshes (N = 4, 8, 16, 32, and 64). The element size is

h =L/ N . In this problem, all shell elements present similarly good convergence behaviors.

Fig. 2.21 shows the convergence curves for the free cylindrical shell problems. Note that, in the

regular meshes, all 4-node shell elements have a flat geometry, and thus membrane locking does not
occur. However, in the distorted meshes, the element geometry is not flat, which induces membrane
locking. In those cases, the performance of the MITC4 shell element severely deteriorates. The new

MITC4+ shell element shows an excellent performance.
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Fig. 2.20. Convergence curves for the clamped cylindrical shell problem with (a) the regular or (b)

distorted meshes. The bold line represents the optimal convergence rate.

2.3.3 Hyperboloid shell problems

Here, the hyperboloid shell shown in Fig. 2.22(a) is considered, see Refs. [5-9,12,18,100]. The mid-
surface of the shell structure is given by

xX*+2°=1+y%* ye[-1, 1] (2.82)
As for the cylindrical shell problems, a smoothly varying pressure in Eq. (2.81) is applied.

A bending-dominated behavior is obtained with free ends and a membrane-dominated behavior is
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given with clamped ends, similar to the cases of the cylindrical shell.
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Fig. 2.21. Convergence curves for the free cylindrical shell problem with (a) the regular and (b) dis-

torted meshes. The bold line represents the optimal convergence rate.

Due to symmetry, only one-eighth of the structure corresponding to the shaded region ABCD in Fig.
2.22(a) is modeled for the analysis. For the membrane-dominated case, the clamped boundary condi-
tion is imposed: U, = =0 alongDC, U, = =0 alongAB, U, =a =0 along AD, and
u,=u,=u,=a= =0 along BC. For the bending-dominated case, the free boundary condition
isimposed: U, = =0 alongDC, U, =£=0 alongAB,and U, =a =0 along AD.

In both cases, a 72x72 element mesh of MITC9 shell elements is used to obtain the reference solu-
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tions. The solutions are calculated using N x N element meshes (N = 4, 8, 16, 32 and 64). The
element size is h =L/ N . For the clamped boundary condition, the regular mesh graded in a
boundary layer of width 6\/f shown in Fig. 2.22(b) is considered, see Refs. [7,18,21]. For the free
boundary condition, the regular mesh is graded in a boundary layer of width 0.5\/f [18,21]. The

convergence studies with the distorted meshes shown in Fig. 2.22(c) are also performed.

(b) (c)
Fig. 2.22. Hyperboloid shell problem (E =2.0x10",v=1/3,L=1.0 and p, =1.0). (a) Problem

description. (b) Graded mesh for the clamped case (8x8 mesh, t/L =1/1000). (c) Distorted mesh
in Fig. 2.17 applied.

Fig. 2.23 shows the good convergence behavior of all elements in the solution of the clamped hyper-
boloid shell problem. Fig. 2.24 shows the convergence curves for the solution of the free hyperboloid
shell problem. While all shell elements behave well when using the regular meshes, the convergence
behavior of the MITC4 and previously published MITC4+ shell element deteriorate when using the
distorted meshes. However, the new MITC4+ shell element shows an almost uniformly optimal and

thus ideal convergence behavior.
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Fig. 2.23. Convergence curves for the clamped hyperboloid shell problem with (a) the regular and

(b) distorted meshes. The bold line represents the optimal convergence rate.

2.3.4 Spherical shell problems

Finally, the spherical shell of radius R shown in Fig. 2.25(a) is considered. The spherical shell has
18° circular cutouts at its top and bottom. The varying pressure in Eq. (2.81) with the azimuthal an-

gle @ isapplied.

A bending-dominated behavior is obtained with free ends and a membrane-dominated behavior is

given with clamped ends, similar to the cylindrical and hyperboloid shell problems.
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Fig. 2.24. Convergence curves for the free hyperboloid shell problem with (a) the regular and (b)

distorted meshes. The bold line represents the optimal convergence rate.

Utilizing the symmetry, only one-eighth of the structure corresponding to the shaded region ABCD
in Fig. 2.25(a) is modeled for the analysis. For the membrane-dominated case, the clamped boundary
condition is imposed: U, = =0 alongBC, u,=$=0 alongAD, U, =a=0 along AB, and
u =u,=u,=a= L =0 along DC. For the bending-dominated case, the free boundary condition
isimposed: U, = =0 alongBC, u,=£=0 alongAD, and U, =a =0 along AB. In the free
boundary condition, the regular mesh graded in a boundary layer of angle ¢, =2.5°t™? shown in
Fig. 2.25(b) is considered. The convergence studies with the distorted meshes shown in Fig. 2.25(c)

are also performed.
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(b) (c)
Fig. 2.25. Spherical shell problem (E =2.0x10",v=1/3,R=10, ¢,=18" and p, =1.0). (a)

Problem description. (b) Graded mesh for the free case (8x8 mesh, t/R =1/10000). (c) Distorted

mesh in Fig. 2.17 applied.

Fig. 2.26 presents the convergence curves in the solution of the clamped spherical shell problem. The
reference solutions are calculated using a 72x72 element mesh of MITC9 shell elements. The solu-
tions are obtained with N x N element meshes (N = 4, 8, 16, 32, and 64). The element size is

h =R/ N . All shell elements present similarly good convergence behaviors.

Fig. 2.27 shows the convergence curves for the free spherical shell problem. In the regular meshes,
all elements perform equally very well. However, in the distorted meshes, the convergence behavior
of the MITC4 and previously published MITC4+ shell elements deteriorate. In this problem, the new

MITC4+ shell element still shows an excellent performance.
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Fig. 2.26. Convergence curves for the clamped spherical shell problem with (a) the regular and (b)

distorted meshes. The bold line represents the optimal convergence rate.
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Fig. 2.27. Convergence curves for the free spherical shell problem with (a) the regular and (b) dis-

torted meshes. The bold line represents the optimal convergence rate.

2.4 Classical benchmark tests

Here, a set of widely-used linear benchmark problems are presented to test the proposed shell ele-

ments. The problems considered are the twisted beam problem, hemispherical shell problem and

pinched cylinder problem. As in the literature, convergence is measured using a representative dis-

placement in a specific location of the shell structure.

The solutions of the new 4-node quadrilateral shell element are compared with the 4-node S4 and

S4R shell elements used in the commercial software ABAQUS [109]. Note that unlike the S4 ele-
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ment employing the full numerical integration (2x 2x 2 Gauss integration), the S4R element re-
quire undesirable stabilization matrix as well as displacement projection method because of the re-

duced integration applied.

2.4.1 Twisted beam problem

The twisted beam problem [34,36,38,40,110,111] shown in Fig. 2.28 is considered. A cantilever

beam of length L=12, width w=1.1, and twist of 90° is loaded by concentrated out-of-plane
load P at the center of free tip, point A. The material properties are E =2.9x10" and v=0.22.
The two different thicknesses, t=0.32 and t=0.0032 are considered.

The whole beam is modeled with N x6N meshes are used with N =4, 8, 16, 32 and 64. For

t=0.32 and t=0.0032, P=1.0 and P =1.0x10"° are respectively used and the reference
deflections at point Aare W =0.1754x107 and W, =0.1294x107?, respectively [110].

Fig. 2.29 shows the convergence of the normalized vertical deflections (w, / w,,, ) according to the

mesh division N . All shell elements show nearly identical performances.

Fig. 2.28. Twisted beam problem.
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Fig. 2.29. Convergence of the normalized vertical deflections for the twisted beam problem. The hor-

izontal lines represent the exact vertical deflection.

2.4.2 Pinched cylinder problem

The pinched cylinder problem [1,10,30,35,36,38,39,97,110,111], shown in Fig. 2.30, is considered.
The cylinder structure of length L =600 , radius R =300 and thickness t=3 is supported by

rigid diaphragms along its ends and is subjected to a pair of pinching forces, F =1.0. The material

properties used are E =3.0x10° and v=0.3.

Only one-eighth of the structure corresponding to the shaded region ABCD in Fig. 2.30 is modeled.
The boundary conditions are u=0 along the edge AB, v=0 along the edge AD, w=0 along the
edge CD,and u=w=0 along the edge BC. NxN meshes are usedwith N=4, 8, 16, 32
and 64 . The reference deflections at point Ais W =1.825x107.

Fig. 2.31 shows the convergence of the normalized vertical deflections (w, / w,,, ) according to the

mesh division N . The performance of reduced integrated shell element (S4R) is slightly better than

other full-integrated shell elements.
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Fig. 2.30. Pinched cylinder problem.
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Fig. 2.31. Convergence of the normalized vertical deflections for the pinched cylinder problem. The

horizontal lines represent the exact vertical deflection.

2.4.3 Hemispherical shell problem

We solve hemispherical shell problem [10,14] shown in Fig. 2.32. The spherical shell with radius
R =10.0, thickness t=0.04 and 18° cutout at its pole is subjected to alternating radial forces

P = 2.0's at its equator. The material properties used are E =6.825x10" and v=0.3. In this

bending problem, the shell structure undergoes almost inextensional deformation, hence providing a
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mean to test membrane locking.

Due to symmetry, only one quarter of the structure corresponding to the shaded region ABCD in Fig.
2.32 is modeled, using NxN mesheswith N=4, 8, 16, 32 and 64.We use the following
boundary conditions: u= /=0 alongBC, v=/=0 alongAD,and w=0 at any single node.
The reference deflections at point Ais U, =0.0924.

Fig. 2.33 shows the convergence of the normalized deflections (u, /u, ) according to the mesh di-

vision N . While the reduced integrated shell element (S4R) shows fastest convergence of dis-

placement, the new MITC4+ shell element performs slightly better than the S4 shell element.

Fig. 2.32. Hemispherical shell problem.
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Fig. 2.33. Convergence of the normalized vertical deflections for the hemispherical shell problem.
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The horizontal lines represent the exact vertical deflection.

2.5 Geometric nonlinear analysis

Here we present performance of new MITC4+ shell element in geometric nonlinear analysis
[112].We use the solutions obtained from fine mesh of the MITC9 shell element as the reference.
The numerical results are compared with the classical MITC4 shell element. Here, new MITC4+

shell element is simply referred as MITC4+ shell element.

2.5.1 Cantilever bending problem

Bending problem of cantilever [1,13,32,113-116] is considered, see Fig. 2.34. The cantilever fully
clamped at one end is subjected to either shearing force P or bending moment M at free tip. The
cantilever is modeled with 16x1 meshes of the shell elements. The material properties are

E=1.2x10° and v=0.0. The cantilever has width b =1.0, thickness h = 0.1, and length

L =10.0 forshearingload and L=12.0 for moment load case.

For the shearing load case, the reference solution is obtained by fine 32x1 mesh of the MITC9 shell

elements. We consider maximum load of P, =4P, with P,=ElI/L and |=0bt*/12.

@ p (b)

)

A

X Y

b
Fig. 2.34. Cantilever bending problem (16x1 mesh). (a) Case of tip shearing force. (b) Case of tip

moment.
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Fig. 2.35. Load-displacement curves for the cantilever (a) under tip shearing force and (b) under tip

moment.

For the moment load case, the cantilever forms a circular arc with its radius R from the flexural

formula R=EI/M with | =bt?®/12. Using this formula, the following analytical tip displace-
ments are obtained [115,116]

U, W,
ﬂzﬂsinﬂ_l, ﬂ:% ]__Cosﬂ , M, =E_ (2.83)
L M M, L M 0 L

The cantilever should bend into complete circle when the maximum tip moment M, =22M, is

applied.
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Fig. 2.36. Deformed shapes of the cantilever (a) under tip shearing force and (b) under tip moment.
Fig. 2.35 shows the load-displacement curves of the MITC4 and MITC4+ shell elements. The solu-
tions agree well with the reference and analytic solution in Eq. (2.83). Fig. 2.36 presents the de-

formed shapes at load levels P/P,,, =0.25 and 1.0 for shearing load case and

M/M,, =0.25, 0.5 and 1.0 for moment load case.

2.5.2 Hemispherical shell problem

Hemispherical shell problem [10,14,32,111,115] shown in Fig. 2.37(a) is considered. The spherical
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shell with cutout angle @, =18" at its pole is subjected to alternating radial forces P s at its equa-
tor. The hemisphere has radius R =10.0 and thickness h =0.04. The material properties are

E =6.825x10" and v=0.3. Due to symmetry, only one quarter of the structure corresponding to
the shaded region ABCD in Fig. 2.37(a) is modeled, using either 8x8 or 12x12 meshes of the MITC4
and MITC4+ shell elements. We use the following boundary conditions: u= /=0 along BC,
v=/=0 alongAD,and w=0 atany single node. Maximum load of P, =400 is consid-

ered.

D c (a)
L
L, L,
L3
L,
L I,
A B

(b) (c)
Fig. 2.37. Hemispherical shell problem. (a) Problem description (12x12 uniform mesh). (b) Distorted

mesh pattern (4x4 mesh). (c) Distorted mesh pattern applied (12x12 mesh).
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Fig. 2.38. Load-displacement curves for the hemispherical shell problem with the uniform mesh. (a)

8x8 mesh. (b) 12x12 mesh.

In addition to the uniform mesh in Fig. 2.37(a), we consider distorted mesh pattern shown in Fig.
2.37(b). Then, when we use an N x N element mesh, each edges are discretized in the following
ratio: LiL,:Lg:...... Ly =1:2:3:...... N . The applied distorted mesh is shown in Fig.
2.37(c). The reference 32x32 mesh of MITC9 shell elements is employed.
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Fig. 2.39. Load-displacement curves for the hemispherical shell problem with the distorted mesh. (a)

8x8 mesh. (b) 12x12 mesh.

Fig. 2.38 and 2.39 present the load-displacement curves for the uniform and distorted mesh, respec-
tively. As the mesh is refined, the solution obtained using the MITC4+ shell element converges
quickly than that of the MITC4 shell element. For the distorted mesh cases, the MITC4 shell element
behaves erroneously with large deviation from the reference. For the shell element, converging per-

formance is decreased slightly when using distorted mesh with no significant error.
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2.5.3 Bending of cylindrical shell structure

Bending problem of cylindrical shell structure [10,13,14,114] shown in Fig. 2.40(a) is considered.
The cylindrical shell structure with radius R =10.0, length L =20.0 and angle 8 =30 is
clamped at one side and is subjected to uniform bending moment M the opposite side, which var-
ies with thickness h accordingto M = I\/I0h3. The three thickness to dimension ratio of
h/R=1/100, h/R=1/1000 and h/R =1/10000 are tested. The material properties are
E=2.1x10° and v=0.0. For each thickness, we consider load level up to (MO)max =4.0x10°.

m

[vy)

A

(@)

(b) (c)
Fig. 2.40. Bending of cylindrical shell structure. (a) Problem description (12x12 uniform mesh). (b)

Distorted mesh pattern (4x4 mesh). (c) Distorted mesh pattern applied (12x12 mesh).
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Fig. 2.41. Load-displacement curves for the bending of cylindrical shell structure with the uniform

mesh. (@) h/R=1/100. (b)) h/R =1/1000.(c) h/R =1/10000.

In addition to the uniform mesh in Fig. 2.40(a), we consider distorted mesh pattern shown in Fig.
2.40(b). Then, when we use an N x N element mesh, the pair of edges are discretized in the fol-

lowing ratio: L;:L,:Ly:...... Ly =1:2:3:...... N . The applied distorted mesh is shown in
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Fig. 2.40(c). For the MITC4 and MITC4+ shell elements, 12x12 meshes are used. The reference
32x32 mesh of MITC9 shell elements is employed.

x10*

36
32
28

24

Load
(M) 2T

— reference
= B 12x12MITC4 ]
=0 12x12 MITC4+

0 1 2 3 4 5 ] 7 8 9

b

Load
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— reference
= B 12x12MITC4 -]
-0~ 12x12 MITC4+

(©)

Load
(M)

— reference
2 O 12X12MITC4
-6—06- 12x12 MITC4+

1 1 1 1

0 1 2 3 4 5 8 7 8 9

Displacements
Fig. 2.42. Load-displacement curves for the bending of cylindrical shell structure with the distorted

mesh. (a) h/R=1/100. (b) h/R=1/1000. (c) h/R =1/10000.
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Fig. 2.41 shows the load-displacement curves for the uniform mesh, where the solutions obtained
using the 4-node shell elements agree well with the reference solution. Fig. 2.42 presents the load-
displacement curves for the distorted mesh. As thickness is decreased, the solutions obtained by the
MITC4 shell element depart largely from the reference due to membrane locking. The MITC4+ shell
element still shows good agreement with the reference solution, in which the convergence behavior

is close to uniformly optimal as for the uniform mesh case.

2.5.4 Twisted cantilever beam problem

Twisted cantilever beam problem shown in Fig. 2.43 is considered [69,73,111]. The initially twisted
beam fully clamped at one end is loaded by point load P at the center of the free tip. The beam has
length L=12.0 and width b =1.1. From the literatures [69,73,111] we test respectively in-plane
and out-of-plane load cases for the thin beam structure (thickness h = 0.0032) to see the effect of
membrane locking. In numerical analysis, 4x24 meshes are employed for the MITC4 and MITC4+
shell elements while 8x48 mesh of MITC9 shell elements is used for the reference. The material

properties are E=2.9x10" and v=0.22. Maximum load level is P =4x107,

Fig. 2.43. Twisted cantilever beam problem (4x24 mesh).

Fig. 2.44 gives the load-displacement curves for both in-plane and out-of-plane load cases. No se-
vere locking is present for in-plane load case, where both 4-node shell elements perform equally.
When the out-of-plane load is applied, the load-displacement curves of the MITC4 shell element di-
gress largely from the reference solution due to membrane locking. Then, the MITC4+ shell element

still shows good predictive capability.
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2.6 Conclusions
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Fig. 2.44. Load-displacement curves for the twisted cantilever beam problem. (a) Case of in-plane

In this study, a set of new 4-node quadrilateral shell elements: the MITC4+, MITC4+N and new

In the MITCA4+ shell element, the new assumed strain field was introduced using the membrane




strains obtained from triangular subdomains. The MITC4+ shell element passes the isotropy test,
zero energy mode tests, bending and shearing patch tests, and also very closely the membrane patch
test. The MITC4+ shell element shows improved convergence behavior in bending-dominated situa-
tions without losing the predictive capability of the membrane behavior compared to the MITC4

shell element.

The MITC4+N shell element modifies the formulation of the MITC4+ shell element such that mem-
brane patch test is exactly passed. The element has slightly better membrane-dominated behavior and

identical bending-dominated behavior when compared with the MITC4+ shell element.

The new MITC4+ continuum mechanics-based shell element using the MITC approach to alleviate
shear and membrane locking. The shear locking is alleviated by using the interpolations of the clas-
sical MITC4 element formulation. The membrane locking is alleviated by the use of characteristic
geometry and displacement vectors and using a new MITC interpolation on the membrane strains.
The new MITC4+ shell element passes all basic tests and shows in an appropriate norm excellent
performance in the solution of membrane and bending-dominated problems even when significantly
distorted meshes are used. Indeed, in the difficult to solve elliptic and hyperboloid shell analysis

problems the element shows an almost ideal behavior.

The new MITC4+ shell element shows a significantly better behavior than the MITC4 shell element
for both linear and nonlinear analyses, and is computationally more effective than the previous ele-
ments (MITC4+ and MITC4+N). The element is identical to the original MITC4 shell element for a

flat geometry and hence the membrane behavior is well preserved.

The limitation in the new MITC4+ shell element is that the valued in Eq. (2.73) could be close to
zero if the distortion is severe. Such cases rarely happen in practice and no problem was observed for
the numerical examples in this section. However, a mathematical or numerical study of the present

formulation to circumvent such limitation would be valuable.
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Chapter 3. The new 6-node triangular solid-shell element

3.1 The geometric nonlinear formulation of the developed 6-node triangular solid-shell el-
ement, MITC-S6

In this section, the Total Lagrangian nonlinear formulation of newly developed 6-node triangular
solid-shell element, the MITC-S6 solid-shell element [117] is presented. In the formulation, the left
superscript t and t+ At are used to denote the two consecutive load steps, each of which corre-
sponds to the previously known and the currently unknown configurations in the equilibrium itera-
tions, and the left super- and subscript O is used to denote the initial reference configuration. See

Fig. 3.1 for the three configurations considered.

The geometry of the proposed element in the configuration t shown in Fig. 3.2 is interpolated by
1 2 1 3

X(r,s,t) = 5 @-1)> h'x™ s (L+1)> h'x®, (3.1)
i=1 i=1

where h, =r, h,=s, hy=1-r—s and the superscripts “bot” and “top” respectively denotes

the bottom and top surfaces of the solid-shell element.

The incremental displacement vector u from the configuration t to the configuration t+ At is

u(r, s, t)="""x(r, s, t)-"x(r, s, 1), (3.2)
and hence
1 S bot 1 S top
u ZE(l_t)z hu; +§(1+t)z hu*” . (3.3)
i=1 i-1
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step t+A¢

Fig. 3.1. Nonlinear kinematics of the 6-node triangular solid-shell element. The covariant base vec-

torsat r=s=t=0 intheinitial (0), previous (t) and current (t+ At) configurations are depict-
ed.

. Top surface

Fig. 3.2. A 6-node triangular solid-shell element.
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The covariant components of the Green-Lagrange strain are given by

t 1. 0. 0 S0 °x d'X_

L= — L. .- L. . W|th L=, i:_: i+ui' 34
08” 2( g| gj g| gj) g| ari g arl g , ( )
where ui:—au, u='x-°x, L, =r, r,=s, r,=t.

tooor

The incremental covariant strain components are

€= 0€j—0Ej :%(u'i-tgj#gi ‘U +u;-ug)  with ug :%. (3.5)

which can be decomposed as

. 1 1
0€i=0€jtoM;  With 0 €jj :E(u,i'tgj_'_tgi 'u,j), b :E(U,i 'u,j), (3.6)

where ,e; and ,7; are the linear and nonlinear parts, respectively.

Substituting Eq. (3.3) into Eq. (3.6), the linear and nonlinear parts of the covariant in-plane strains

are directly calculated as follows:
1 t t 1 1 T - .
08 :E(u’i- g;+9;-u;)=B;U,, (7 =§(u'i u;)=3U, N U, fori,j=12, (3.7)

inwhich B is the linear strain-displacement relation matrix for the strain component j, U, is
the incremental nodal displacement vector including u’®" and u'®”, and N, is the matrix repre-

senting the relation between the nonlinear strain components and the nodal displacements.

For the transverse shear strains and the corresponding variations, the assumed strain field of the
MITC3+ triangular shell element [7] is employed. The linear parts of the covariant transverse shear

strains ,€,; and e, are substituted by

1
——(Oe(A’ >0 e(A’)+ 3(Oe(c)+ e‘c))+ c(l 3r)=B,,U,, (3.8a)
1~
_(oe(B) Y eég)) + _(061(3:)"' ez )+§C (35 _1) = BZSUeI (3.8b)
with
EZo el(g) o el(sD) o eég) +oe§§) ) (3.8¢)

in which the tying points are shown in Fig. 3.3. As for the MITC3+ shell element [7], the fixed val-
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ue d =1/100,000 ischosen. The same assumed strain field with the same tying positions is used

for the nonlinear part of the covariant transverse shear strains:

o7lis =3U,NU,  for i=12. (3.9)

To reduce curvature thickness locking, the assumed strain method is also used. The linear and non-

linear parts of the thickness strain are assumed as

~ 1
0e33(r’ S) = 5(0633(O’O)+0e33(1’0)+0633(011)) = BSBUe ! (310&)

- 1
oM33(r,S) = 5(0 133(0,0)+ 7755 (1,0)+, 77:5(0,1)) = % UeT N;3U, . (3.10b)

Note that, unlike the linear strain field in Ref. [30], the constant assumed strain field is employed for

thickness strain in this element.

X : Tying points 1 X : Tying points

(B)
1/6
©
0 L e g
1/6 1/3 r 0 2d d 1 r
(a) (b)

Fig. 3.3. Tying positions for the transverse shear strains of the MITC-S6 solid-shell element.

Here, the enhanced strains to improve the behaviors of the 6-node triangular solid-shell element are
derived. The enhanced strains are used for the linear part of the covariant in-plane, transverse shear

and thickness strains.

In order to construct the enhanced strains, the following interpolations defined using the bubble-

type functions are considered:

yin-plane _ %hbt(avl + ﬁvz) ’ (3.11a)
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uthickness — _% hqu , (311b)
where h, =27rs(l-r—-s) and h, = 1—t? are the two-dimensional bubble and one-dimensional
quadratic functions, V,, V, and V, are vectors denoting the direction of translations, and « ,

p and y are internal variables.

The interpolation in Eq. (3.11a) is used to effectively enhance the bending mechanism of the trian-
gular elements, see Refs. [7,39,61,62]. In the plate and shell elements [7,62], the variables « and
S are defined as rotations about V, and V,.However, in this 6-node solid-shell element, the
variables o and S represent the in-plane translation of shell surfaces in the directions of V,
and V, . As long as the two vectors can fully define the in-plane translations, i.e. they are not coin-
cident to each other, the same numerical results are obtained. Thus, it is not necessary to update V,

and V, in the nonlinear solution procedure. In this study, V; =i, and V, =i, ischosen.

The interpolation in Eq. (3.11b) has been used in three-dimensional shell elements [35,76,93] to in-
duce the thickness stretch to vary linearly along the thickness direction, which is useful to avoid
Poisson thickness locking. For this purpose, the vector V, is taken to be identical to the third con-
travariant base vector V, ='g®, where the contravariant base vectors ‘g’ satisfy the relation

t ty]
g~ 9’ =9; forthe Kronecker delta 4.

Using the bubble interpolation in Eq. (3.11a), the following enhanced in-plane covariant strain is

obtained:
iy - -
Oei?nh _ E (u:in-plane.t 9 _'_tgi . u:?»plane) =G ijAe for i,j=12, (3.12)
, yn-plane ) . ) ) .
where u™mPlane :a—, G isthe enhanced strain-displacement relation matrix, and A is

the vector of internal variables. This strain field is also effective for improving the bending perfor-

mance of the 6-node triangular solid-shell element.

The transverse shear covariant strains due to the bubble interpolation in Eq. (3.11a) are calculated

by
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oeib3Ub — (um plane t g3+ g| |n plane) , (313)

and the enhanced transverse shear strains are obtained using the following assumed field:

1 1

e”h=—oe§§’b(A) 2 ub(A))_i_3(0 ub(C)_i_O ;b(C)) G23A (3.14&)
1

0Bl == (oefﬁb(B)—z ehuey , 1 30e e 1 el ) = G A, (3.14b)

where the tying points (A, B and C) used are shown in Fig. 3.3. Note that this assumed strain
does not include the terms linear in r and s from Eq. (3.8), resulting in simple matrices G,

and G, as will be presented.

In order to alleviate Poisson thickness locking, the following enhanced strain is employed for the
thickness normal component:

0 enh th utglckness — Vt — G33Ae , (315)

thickness
thickness __

where U = 8— In Eq. (3.15), a single internal variable was used, as in Ref. [31], with
r3

the physical meaning of thickness normal translation being quadratic in t.

Note that the interpolation in Eq. (3.11a) is used only to enhance strain components ‘117, ‘22°, 12°,
‘23’ and ‘13’, while the thickness strain (component ‘33”) is enhanced by Eq. (3.11b). That is, two
strain enhancements are independently applied to each other. This is an important characteristic for

the present 6-node solid-shell element to behave well in various shell problems.

Finally, the linear part of the incremental covariant strains for the 6-node MITC solid-shell element

is obtained:

0€=08 o =B;U. +GyA, for i,j=12, (3.16a)
08s=085+0 ef;“ =B,,U, +G,A, for i=12, (3.16h)
082570 €350 = B,U, + G A, (3.16¢)

where A, =[a p y]T is the vector of internal variables for the element. Finally, the resulting

form of the enhanced strain matrices (G ) is given as follows.

[Gll GZZ 633 GlZ GZ3 Gl?:]T
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T
hb,ltvl't g, hb,ztvl't 9, 0 % hb,ztvl't g, + %hb,ltvl't g, %Vl't 9, %Vl't 9,
= hb,1tV2 ! 9, hb,ztvz ! g, 0 % hb,ztvz ! g, + %hb;tvz ! 9, %Vz ! 9, %Vz ! 9.1 > (3-17)
0 0 t 0 0 0

in which hbizaa—hb for i=12.
' I

Linearizing the principle of virtual work in the configuration t+ At about the known configura-

tion at t, the following total Lagrangian formulation is given [15].
, 0C™ 80NV + [, (SIS, d V=R, (SIsE AV, (3.18)

where °V s the volume of the solid-shell element at step 0, "R is the external virtual work
due to the applied surface tractions and body forces, OtS " denotes the contravariant second Piola-

Kirchhoff stressand ,C"™ is the corresponding general 3D material law tensor [35,93,100].

Substituting Egs. (3.7)-(3.10) and (3.16) into Eqg. (3.18), the Total Lagrangian formulation is discre-

tized as follows:

8U,"[[, By sC™B,dV + [ Nys"dV U, +8U,"[[, B, ,C™G,dV A,
+8A|[ G, ,CMBdV U, +8A.T[], G, ,CMG,dV A,

=3U," "R, -8V, [, B,"4SUdV -3, [, G,"SUd%V, (3.19)

where "R, is the external load vector at step t+ At .

The following linearized equilibrium equation is obtained in the element level:

tke tre Ue t+AtRe tf:e
rT ota | A - 0 N tH | (3.20)
with

‘K, =], By CH¥BdV + [, NygsUdV, ‘T, =, B ,CMG,dV,

‘A, =], G, CHGdV, ‘F = B/ 4SUdV, H, =] G, §SIdV.
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The internal variables related to the strain enhancements can be easily condensed out in the element

level to obtain the condensed equilibrium equation [32,33,35,39]

'K U=""R,—F, with ‘K=K, -T,'A, T, 'F="F,-'T,'A,"H, (3.21)
where the contravariant second Piola-Kirchhoff stress is updated by

t+AtSu tS”+ il (3.22)
with

,Si=,CM(B,U, +G A, +%UGTNHUG) , (3.23)
A, ="'A]('H AT, U,). (3.24)

In the incremental solution procedure, the geometry is updated using Eq. (3.2). For the evaluation of
the element stiffness matrix and internal nodal force vector, 3-point Gauss integration inthe r-s

plane and the 2-point Gauss integration in the t-direction are employed.

3.2 The previous 8-node quadrilateral solid-shell element, MITC-S8

In this section, the formulation of the 8-node solid-shell element in the literatures [32-36,41] are
presented. The element is denoted as MITC-S8 that is used for comparison in this study. Shear lock-

ing and thickness locking are treated using the assumed strain and EAS methods.

For the 8-node solid-shell element, the geometry and displacement interpolations are given by (Fig.

3.4)

x(rst)—%(l t)Zh“bM (1+t)Zh“‘°”, (3.25)
G(r,s,t)=%(l tZA: ha™ += (1+tz4:ﬁia}°p. (3.26)

with h, :%(1— r-s), h, :%(1+ ri-s), h, :%(1+ r(1+s), h, :%(1— r(+s).
The linear part of the covariant strain is calculated by
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_ 1.
(s, =2(0,9,+G,-0,) (327)

With Gi:a_u, gi:a_xy
Tooor or,

r=r, rn=s, rn==¢. (3.28)

The following assumed transverse shear strains are employed to treat shear locking, see Refs. [32-
36,41]

€y5(r,s,t) = %(1+ e + %(1— ey, (3.29)

~ 1 _ 1 _
&alr,st) =2 (L4 9)e” + - (1-9)8y, (3.30)

where the tying points are shown in Fig. 2.2.

Top surface -.___

Fig. 3.4. An 8-node quadrilateral solid-shell element.

In order to reduce thickness locking, the following assumed strains is used for thickness strain, see
Refs. [32-35,41,76],

€(r,s,1) = ﬁlé33(_1!_1) + F12§33(1,—1) + ﬁ3§33(1,1) + ﬁ4é33(_]-’:|-) - (3.31)

The enhanced assumed thickness strain is also used as follows:

bt

eM(r,s )= L2t rt st orst] 7], (3.32)
J V3

V4
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with t; =0,(r,s,t)-9°(0,0,0), §;(r,s.t)-g’(r,s,t) =4, (3.33)
inwhich j and j, are the determinants of the Jacobian matrix [@1 g, @3]T at (r,s,t) and
at (0,0,0), respectively, and y, are internal variables, see Refs. [32,33,41]. Note that, unlike the
MITC-S6 triangular solid-shell element, four internal variables are necessary to satisfy the basic

tests.

Note that this element is equivalent to the 8-node solid-shell element proposed by Klinkel et al.

[32,33]. In the numerical examples, the 2x2x2 Gauss integration is employed.

3.3 Basic tests

In this section, basic numerical tests are conducted for the proposed solid-shell element. The isotro-

py, patch and zero energy mode tests are considered.

Spatially isotropic behavior is an important requirement for the triangular elements. The element
behavior should not depend on the sequence of node numbering, i.e. the element orientation [3,5-

9,38]. The proposed solid-shell element passes this test.

Three patch tests of the membrane, bending and transverse shearing patch tests are performed, see
Refs. [1,5-9,14,19,30-34,36-40,101,102]. The geometry of the mesh is shown in Fig. 3.5(a). The
loading and boundary conditions for the membrane, bending and transverse shearing patch tests are
shown in Fig. 3.5(b) to 3.5(d), respectively, in which the boundary conditions for the shaded regions
are specified. The patch of elements is additionally subjected to the minimum number of constrains
to prevent rigid body motions. If the correct constant stress fields are calculated, the patch tests are
passed. The proposed element passes all the patch tests. Also, the element expresses constant normal

stress in the constant compression test [30] performed using a single element, see Fig. 3.6.
In the zero energy mode tests, the number of zero eigenvalues of the stiffness matrix of a single un-

supported element is counted [1,5-9,14,19,31,35,38-40]. For the present element, only the six zero

eigenvalues corresponding to the six correct rigid body modes are obtained.
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Bending Transverse shearing

u:v:a:B:O

Fig. 3.5. Patch tests. (a) The mesh geometry. The loading and boundary conditions used for the (b)

membrane, (¢) bending, and (d) transverse shearing patch tests.

T y L7 N
x w=0

Fig. 3.6. An element used for the constant compression test.
3.4 Classical benchmark tests

Here, a set of widely-used linear benchmark problems are presented to test the proposed solid-shell
elements. The problems considered are the fully clamped square plate problem, pinched cylinder

problem, twisted beam problem, Scordelis-Lo roof problem and hyperboloid shell problems. As in
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the literature, convergence is measured using a representative displacement in a specific location of

the shell structure.

The solutions of the MITC-S6 solid-shell element are compared with those of the 6-node solid-shell
element by Sze et al. [30], the 6-node solid-shell element, SC6R, used in the commercial software
ABAQUS [109] and the 8-node solid-shell element in the literature, denoted as MITC-S8 [32-
36,41].

3.4.1 Fully clamped square plate problem

The plate bending problem [5-8,30,32-34,38,39,42,90,93,108] is shown in Fig. 3.7. The square plate
with dimensions of 2L x2L and thickness t is subjected to uniform pressure q=1.0. Three dif-
ferent thicknesses, t/L=1/100, 1/1000 and 1/10000 are considered with L =100 . The ma-

terial properties used are E =1.0x10* and v=0.3.

A Z

\
=

2L

»
’

C D

Fig. 3.7. Fully clamped square plate problem.
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Due to symmetry, only a quarter of the plate corresponding to the shaded region ABCD in Fig. 3.7 is
modeled with the mesh patterns shown in Fig. 3.8. The boundary conditions are v=0 along the

edge AB, u=0 along the edge AD and u=v=w=0 along the edges CD and BC. NxN mesh-
esare used with N =2, 4 and 8. For the case of t/L =1/100, the reference vertical deflection

is W, =1.384. As the plate thickness becomes smaller, the deflection value varies with (t/L)°.

Type 1 Type 2
A B
C D (o] D
(@)
A A
(o} D (o} D
(b) (c)

Fig. 3.8. Mesh patterns used for the benchmark tests: Regular meshes of (a) type 1 and (b) type 2 for
triangular elements, (c) cross mesh for triangular elements and (d) regular mesh for quadrilateral

elements.

Table 3.1 presents the vertical deflection at the plate center, w,, normalized by the reference val-
ues. Figure 3.9 shows convergences of the normalized displacement, w, /w,, accordingto N . It
is observed that the MITC-S6 element shows good convergences regardless of t/L and outper-
forms the 6-node solid-shell developed by Sze, compared in the cross mesh. In the regular mesh
patterns (types 1 and 2) considered here, the predictive capability of the MITC-S6 triangular solid-
shell element is comparable to that of the MITC-S8 quadrilateral solid-shell element. Note that, in
plate bending problems, most triangular elements perform much better in a cross mesh than in regu-

lar meshes (types 1 and 2).
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Table 3.1. Normalized vertical deflections at the plate center (point A) for the clamped plate prob-

lem. The mesh patterns are shown in Fig. 3.8.

Type 1 Type 2 Cross mesh Regular
t/L N regular mesh regular mesh mesh
MITC-S6 SC6R MITC-S6 SC6R MITC-S6 SC6R Szeetal. MITC-S8
1/100 2 0.743 0.029 0.993 0.043 0.933 0.773 0.781 0.957
4 0.925 0.554 1.000 0.668 0.981 0.937 0.946 0.988
8 0.981 0.941 1.001 0.970 0.995 0.985 0.991 0.997
1/1000 2 0.741 0.001 0.991 0.001 0.931 0.771 0.778 0.956
4 0.924 0.032 0.998 0.034 0.979 0.933 0.943 0.987
8 0.979 0.557 0.999 0.484 0.993 0.982 0.987 0.995
1/10000 2 0.741  0.000 0.990  0.000 0931 0770 0.778 0.956
4 0.923  0.006 0.998  0.006 0979 0933 0943 0.987
8 0.979  0.091 0.999  0.092 0.993 0982  0.987 0.995

3.4.2 Pinched cylinder problem

The pinched cylinder problem [1,10,30,35,36,38,39,97,110,111], shown in Fig. 2.27, is considered.

The cylinder structure of length L =600 , radius R =300 and thickness t=3 is supported by

rigid diaphragms along its ends and is subjected to a pair of pinching forces, F =1.0. The material

properties used are E =3.0x10° and v=0.3.

Only one-eighth of the structure corresponding to the shaded region ABCD in Fig. 2.27 is modeled.

The boundary conditions are U =0 along the edge AB, v=0 along the edge AD, w=0 along

the edge CD, and u=w=0 along the edge BC. N xN meshes are used with N=4, 6, 8, 10,
12, 14, 16 and 32.

-97-



t/L=1/100

t/L =1/1000

t/L=1/10000

SC6R Sze et al. MITC-S6
1.2 . 1.2 .
1 _ — 1 ~ 5 — i
0.8~ 0.8qr .
w, /W, 06 0.6 .
0.4} 0.4} 1 o4}
0.2} 0.2} 1 o2}
0 1 0 1 0 1
2 4 2 4 8 2 4 8
N N N
(a)
SC6R Sze et al.
1.2 T 1.2 T
1 —lk — 1 —E =
0.8k ~ 0.84 .
W/ w, o6l 0.6F .
0.4} 04} 1 o4}
0.2} 0.2} 1 o2f
QA 0 L 0 1
2 4 2 4 8 2 4 8
N N N
(b)
SC6R Sze et al. MITC-S6
1.2 . 1.2 . 1.2 .
! o — ! _e - I == 8
0.8y 0.84 1 os}
W,/ W, 06f 06 4 os}
0.4} 04} 1 o4}
0.2} 0.2} 1 o2}
0b—a—1 ' 0 '
2 4 2 4 8 2 4 8
N N N
()

vertical deflection.

-08 -

Fig. 3.9. Convergence of the normalized vertical deflections for the fully clamped square plate prob-
lem with (a) t/L=1/100, (b) t/L=1/1000 and (c) t/L =1/10000. The solid and dotted lines de-

note type 1 regular and cross mesh in Fig. 3.8, respectively. The horizontal line represents the exact



Table 3.2 presents the vertical deflections at point A, w, , normalized by the reference value of
W =1.8248x107° [97]. Fig. 3.10 shows the convergence of w, /W, . In this problem, the
MITC-S6 solid-shell element outperforms both the SC6R solid-shell element and the 6-node solid-
shell developed by Sze, and its performance is also comparable to that of the MITC-S8 quadrilateral

solid-shell element.

SC6R MITC-S6

1.2 T T 1.2 T T

0.8 .

Wyl W08

t/L=1/200

0.2( .

Fig. 3.10. Convergence of the normalized vertical deflections for the pinched cylinder problem with
the type 1 regular mesh shown in Fig. 3.8. The horizontal lines represent the exact vertical deflec-

tion.

Table 3.2. Normalized vertical deflections of the cylinder at point A. The mesh patterns are shown
in Fig. 3.8.

Type 1 Type 2 Cross mesh Regular

t/L N regular mesh regular mesh mesh
MITC-S6 SC6R MITC-S6 SC6R MITC-S6 SC6R Szeetal. MITC-S8

0.005 4 0.395  0.218 0.424  0.196 0.498 0331 0.354 0.379

6 0.625 0.447 0.651 0.428 0.714 0.552 0.567 0.613

8 0.753  0.606 0.771  0.589 0.824 0685  0.695 0.747

10 0.826  0.710 0.836  0.694 0.882 0769  0.776 0.826

12 0.871 0.780 0.876 0.765 0.915 0.825 0.829 0.875

14 0.901 0.829 0.903 0.815 0.936 0.863 0.868 0.907

16 0.921 0.864 0.923 0.851 0.951 0.891 - 0.929

32 0.981 0.966 0.981 0.959 0.992 0.975 - 0.987
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3.4.3 Twisted beam problem

The twisted beam problem [34,36,38,40,110,111] shown in Fig. 3.11 often has been considered to
test membrane locking. A cantilever beam of length L =12, width w=1.1, and twist of 90° is
loaded by concentrated forces at the center of free tip, point A. The material properties are
E=29x10" and v=0.22. The two different thicknesses, t=0.32 and t=0.0032 are consid-

ered.

The whole beam is modeled with N x N regular meshes with N=2, 4, 8, 16 or 32.Two
loading cases are considered: in-plane ( P ) and out-of-plane (F ) loadings. For t=0.32,

P=F =1.0 isused and the reference deflections at point Aare V., =0.5424x107 and

W, =0.1754x107 for in-plane and out-of-plane loadings, respectively [110]. For t=0.0032 ,
P=F =1.0x10"° is used, and the reference deflections at point Aare v, =0.5256x107 and
W, =0.1294x107 for in-plane and out-of-plane loadings, respectively [110].

Fig. 3.11. Twisted beam problem. (a) Problem description (2x12 mesh). (a) Out-of-plane load case.

(b) In-plane load case.

Table 3.3 presents the in-plane and out-of plane deflections at point A, v, and w,, normalized by
the reference values of each. All the solid-shell elements considered here show excellent perfor-

mance. Fig. 3.12 shows the convergence of v, /v, and w,/w,, .All elements show nearly

ref

identical performances.
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Table 3.3. Normalized deflections at the free end of the twisted beam in the direction of applied

load.
In-plane load Out-of-plane load
t/L Mesh
MITC-S6 SC6R  MITC-S8 MITC-S6 SC6R  MITC-S8
0.0267 2x12 0.981 0.996 0.990 0.832 0.825 0.918
(t=032) 4x24 0.990 0.996 0.995 0.922 0.907 0.973
8x48 0.995 0.999 0.997 0.973 0.967 0.991
0.000267 2x12 0.998 0.994 0.979 0.990 0.995 0.974
(t=0.0032) 4x24 0.988 0.985 0.991 0.990 0.992 0.992
8x48 0.993 0.995 0.997 0.996 0.998 0.997
SC6R MITC-S6
1.2 T T T
11
0.8 .
Uy U, 06F .
0.4} .
B85 t/L=0.0267
0.2} - 0.2} ©—6- t/L=0.000267
0 L 1 1 0 1 1 1
2 4 8 16 32 2 4 8 16 32
N N
(a)
SC6R MITC-S6
1.2 . . . 1.2 . . T
10;—/9==ﬁ——ﬂ 1 ]
0.8f . 0.8f .
W,/ W08t . 0.6} .
0.4} g 0.4 ]
88 tlL|= 0.0267
0.2 - 0.2} -6 t/L=0.000267
0 1 1 1 0 1 1 1
2 4 8 16 32 2 4 8 16 32
N N

(b)

Fig. 3.12. Convergence of the normalized deflections for the twisted beam problem with (a) in-plane

and (b) out-of-plane load cases. The horizontal lines represent the exact deflection.
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3.4.4 Scordelis-Lo roof problem

The Scordelis-Lo roof problem [1,17,30,31,34,40,76,97,110] in Fig. 3.13 is considered. A roof
structure of length L =50, radius R=25 and thickness t=0.25 is supported by rigid end dia-
phragms along its curved edges and is subjected to a self-weight with density p=360 and gravity

constant g =1.0. Its material properties are E =4.32x10° and v=0.0.

Only one quarter of the structure corresponding to the shaded region ABCD in Fig. 3.13 is modeled
with the mesh patterns shown in Fig. 3.8. The boundary conditions are v=0 along the edge AD,
u=0 alongthe edge ABand u=w=0 alongthe edge BC. N xN meshes are used with N =4,
6, 8, 10, 12, 14, 16 and 32.

Table 3.4 shows the normalized vertical deflections at the center of free edge (point D), w,,
normalized by the reference value of w,, =0.3024 [97]. Fig. 3.14 shows the convergence of the
normalized vertical deflections (W, / W, ) according to the mesh division N for the type 1 regu-
lar mesh of the 6-node solid-shell elements. The proposed solid-shell element outperforms the

SC6R element.

Rigid diaphragm
Free edge

Freeedge  Rigid diaphragm

Fig. 3.13. Scordelis-Lo roof problem.
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Table 3.4. Normalized vertical deflections at the center of free edge (point D) of the Scordelis-Lo

roof problem. The mesh patterns are shown in Fig. 3.8.

Type 1 Type 2 Cross mesh Regular
t/L N regular mesh regular mesh mesh
MITC-S6 SC6R MITC-S6 SC6R MITC-S6 SC6R Szeetal. MITC-S8
0.005 4 0.740 0.625 0.670 0.590 0.872 0.829 0.892 0.943
6 0.819 0.735 0.786 0.704 0.923 0.890 0.946 0.960
8 0.878 0.811 0.858 0.803 0.952 0.928 0.975 0.973
10 0.914 0.863 0.900 0.858 0.967 0.951 0.992 0.980
12 0.936 0.898 0.926 0.894 0.977 0.965 1.003 0.984
14 0.951 0.921 0.943 0.919 0.984 0.974 1.014 0.987
16 0.961 0.938 0.955 0.937 0.988 0.980 1.014 0.989
32 0.987 0.986 0.985 0.985 1.010 0.997 - 0.994
SC6R MITC-S6
1.2 . . 1.2 r .

1 1 #1

0.8 I/a/a/. o.s[;/a/a—— -

Wy /W, 0] . 0.6 1

0.4} . 0.4 J

858 t/iL=1/200
0.2 - 0.2 g
0 1 1 0 1 1
2 4 8 16 2 4 8 16
N N

Fig. 3.14. Convergence of the normalized vertical deflections for the Scordelis-Lo roof problem
with the type 1 regular mesh shown in Fig. 3.8. The horizontal lines represent the exact vertical de-

flection.

3.4.5 Pressurized cylinder problem

Here we additionally test effect of thickness locking using a simple test. Cylinder with radially ap-
plied pressure shown in Fig. 3.15 [118] is considered. The cylinder having radius R=10.0 and

thickness t=1.0, under plane strain condition (z displacements are constrained), is subject-
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ed to external pressure p =60. Material properties are E =1.0x10* and v=0.0. Letus
denote the MITC-S6 without thickness locking treatment as MITC-S6i. If thickness locking is pre-
sent, the stress in radial direction cannot vary linearly over the radial direction. A coordinate
¢e[-11] issetup for the radius r=(R,+R,)/2+(-R, +R,)/2 tovary from R, to R,.The

cylinder is modeled with four meshes along the 6 direction.

Fig. # shows the radial stresses (o,,) across the thickness of the MITC-S6 and MITC-S6i elements.
Even though results obtained using this coarse mesh does not accurately represent thick-cylinder
solution [118], the MITC-S6 element shows linearly varying radial stress in contrast with the
MITC-S6i element. If meshes are refined, the solutions of both elements converge toward thin-
cylinder solution of &, =—p/2, which is constant over thickness. In order to accurately repre-
sent the stress of thick cylinder, three-dimensional shell using 7- or more parameters are necessary,

such as in Ref. [118,119].

Fig. 3.15. Pressurized cylinder in plane strain condition.
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Fig. 3.16. Radial stresses across thickness of the pressurized cylinder.

3.5 Detailed convergence studies

In this section, in-depth convergence studies of solid-shell elements are performed for plate and hy-
perboloid shell structures with various values of t/L. Unlike the previous section where the
benchmark problems are solved using only regular meshes of solid-shell elements, the behaviors of
the elements adapting to irregular meshes are also tested.

Solution convergences are measured using the following normalized strain energy error Eh :

E, —E,

ref

Eref
inwhich E, and E

W= , (3.34)

f denote strain energies obtained from the finite element and reference solu-
tions, respectively. Optimal convergence for low-order elements considered in this study is obtained

if Eh =~ Chz, where C is a constant independent of the shell thickness and h is the element size.

In order to investigate how much thickness locking deteriorates the solution accuracy, an intermedi-
ate 6-node solid-shell element is also implemented: MITC-S6 without thickness locking treatment
(MITC-S6i). The solutions obtained using the MITC-S6 and MITC-S6i solid-shell elements are
compared with those of the MITC-S8 solid-shell elements.
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3.5.1 Fully clamped square plate problem

To further study the solution convergence of the solid-shell elements with various values of t/L,
the plate bending problem in Fig. 3.7 is again solved with geometric and material constants [5-

8,108] in Fig. 2.13.

To avoid difference between regular meshes (type 1 and type 2), the whole plate shown in Fig. 3.7 is
modeled with the regular mesh pattern shown in Fig. 3.8. The boundary conditions are

u=v=w=0 alongthe edgesA'B",B'C",C'D"and D’A". N xN meshes are used with N =4,
8, 16 and 32.

In order to study the performance of the solid-shell elements in irregular meshes, the mesh patterns
shown in Fig. 3.17(a) and (b) are also considered for the triangular and quadrilateral elements, re-
spectively, where each edge is discretized in the following ratio: L,:L,:L,:...... =1:2:3:
...... N [5-8]. The similar distorted mesh patterns have been used for testing triangular elements,

see Refs. [38,39].

() (b)

Fig. 3.17. Irregular mesh patterns used (N =4) for (a) triangular and (b) quadrilateral elements.

The reference solutions are obtained using a 72x72 uniform mesh of MITC9 shell elements [12,18].

Fig. 3.18 shows the convergence curves of the solid-shell elements when the regular and irregular
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mesh patterns are used. The element size in the convergence curves is h =L/ N . The perfor-

mance of the MITC-S6 solid-shell element is again comparable to that of the MITC-S8 solid-shell

element, and is particularly better when the irregular mesh pattern is used. On the other hand, the

convergence of the MITC-S6i solid-shell element severely deteriorates and the errors do not dimin-

ish well with the mesh refinement. This is due to the Poisson thickness locking, and the optimal

convergence behavior is successfully recovered through the EAS technique.
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Fig. 3.18. Convergence curves for the fully clamped square plate problem with the (a) regular and

(b) irregular mesh patterns shown in Fig. 3.17. The bold lines represent the optimal convergence

rate.
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3.5.2 Hyperboloid shell problems

The hyperboloid shell problem [5-8,12,18,100] shown in Fig. 2.19(a) is considered. The mid-
surface of the shell surface is given by Eqg. (2.82) and a smoothly varying pressure in Eq. (2.81) is
applied.

A bending-dominated behavior is obtained with free ends and a membrane-dominated behavior is

given with clamped ends.

Due to symmetry, only one-eighth of the structure corresponding to the shaded region ABCD in Fig.
2.19(a) is modeled for the analysis. For the membrane-dominated case, the clamped boundary con-
dition is imposed: U, =4=0 alongDC, U, =/=0 alongAB, U, =a =0 along AD, and
u,=u,=u,=a= S =0 along BC. For the bending-dominated case, the free boundary condition
isimposed: U, = =0 alongDC, u,=£=0 alongAB,and u, =a =0 along AD. For both

cases, NxN meshes are used with N =4, 8, 16 and 32.

For the membrane-dominated case, the regular mesh graded in a boundary layer of width 6t

shown in Fig. 2.19(b) is considered, see Refs. [7,18,21]. For the bending-dominated case, the regu-
lar mesh is graded in a boundary layer of width 0.5Vt [18,21]. The convergence studies are also
performed with the distorted meshes shown in Fig. 3.17(a) and (b). The points in the figures are
matched as follows: A is equal to A’, B is equal to B’, C is equal to C’ and D is equal to D’. Note
that for this hyperboloid shell problems type 1 and type 2 regular meshes shown in Fig. 3.8(a) yields

almost identical results.

Fig. 3.19 shows the convergence curves of the solid-shell elements for the regular and irregular
mesh patterns when the clamped boundary condition is imposed. A 72x72 uniform mesh of MITC9
shell elements is used to obtain the reference strain energy. The element sizeis h=L/N . The
performance of the MITC-S6 solid-shell element is similar to that of the MITC-S8 solid-shell ele-
ment. As expected, it is observed that thickness locking is inherently not present in this membrane-

dominated problem.
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Fig. 3.20 shows the convergence curves of the solid-shell elements when the free boundary condi-

tion is used. In both regular and irregular meshes, the MITC-S6 solid-shell element presents excel-

lent convergence behavior, while the convergence of the MITC-S8 solid-shell element severely de-

teriorates for the case of irregular mesh. This is due to membrane locking, which is investigated in

detail in Ref. [5]. In addition, thickness locking manifests even more severely for this problem, no-

tably from both curvature and Poisson thickness locking. The combined use of the assumed strain

and EAS techniques for thickness strain indeed facilitates solution convergence in this doubly-

curved shell problem.
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Fig. 3.19. Convergence curves for the clamped hyperboloid shell problem with the (a) regular and

(b) irregular mesh pattern shown in Fig. 3.17. The bold lines represent the optimal convergence rate.
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Fig. 3.20. Convergence curves for the free hyperboloid shell problem with the (a) regular and (b)

irregular mesh pattern shown in Fig. 3.17. The bold lines represent the optimal convergence rate.

3.6 Geometric nonlinear analysis

In this section, the performance of the MITC-S6 solid-shell element is presented in the numerical
examples involving large displacements and large rotations through three shell problems: a cantile-

ver beam under shear tip force and a pinched cylindrical shell [111,115,116].
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3.6.1 Cantilever under end shearing force

Here consider cantilever under end shearing force shown in Fig. 2.30(b) is considered again. The
cantilever is modeled with 8x1 mesh of the proposed 6-node solid-shell elements. Fig. 3.21 shows

the load-displacement curves: non-dimensional applied load PL?/El (with | =bt*/12) versus
/L and w,

non-dimensional tip displacements u i | L - The load-displacement curves are in very

tip
good agreement with those obtained by Sze et al. [115]. Deformed shapes for load levels P=1.0,
2.0 and 4.0 are shown in Fig. 3.22.

4 ] ] ] ] ] ]
¢
7 _
f¢
241 d il
Load #
(PL*/ EI) (f
1.6} g i
08} ¢ — w, /L .
f — - u, /L
6 O O Szeetal.
0 L L L L L L
0 01 02 03 04 05 06 07

Displacement

Fig. 3.21. Load-displacement curve for the cantilever beam under end shearing force.

3.6.2 Pinched cylindrical shell

The pinched cylindrical shell problem [111,115,116] is considered here, see Fig. 3.23. The cylinder
of length L =3.048, radius R=1.016 and thickness t=0.03 is clamped at one end and is sub-
jected to a pair of concentrated forces F at the free end. The material properties used are

E =2.0685x10" and v=0.3. Due to symmetry, only one quarter of the cylinder is modeled us-

ing 14x14 meshes of the proposed 6-node solid-shell elements. As in Ref. [111], the analysis was
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performed neglecting the possible contact within the shell structure up to the maximum force

P=2.0x10°.

Fig. 3.22. Deformed shapes at shear tip forces P=1.0, 2.0 or 4.0 for the cantilever beam

problem.

Clamped edge

Fig. 3.23. Pinched cylindrical shell.
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The radial displacements at points A and B of the shell are shown in Fig. 3.24. The overall load-

displacement curves are in good agreement with Refs. [111,115,116]. The deformed shape at

P=700 isshown in Fig. 3.25.
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Fig. 3.24. Load-displacement curves for the pinched cylindrical shell.

Fig. 3.25. Deformed shape at P =700 for the pinched cylindrical shell.
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3.7 Conclusions

In this study, a new 6-node solid-shell element is developed by extending the previous 3-node
MITC3+ shell element, in which assumed transverse shear strain field of the MITC3+ shell element
is adopted onto the new MITC-S6 solid-shell element. The concept of enhancing the bending mech-
anism using the cubic bubble function is similar to the MITC3+ shell element, but in this solid-shell
element the mechanism is applied for the in-plane translation of the shell element through the EAS
method. To avoid Poisson thickness locking, the thickness stretch mechanism is enhanced to include
quadratic variation in the thickness direction. The assumed constant thickness strain is adopted to

avoid curvature thickness locking.

The new MITC-S6 solid-shell element satisfies basic tests and achieves uniformly optimal conver-
gence on various shell problems considered in this study while providing a simple formulation, as in
the MITC3+ shell element. The MITC-S6 solid-shell element also maintains various advantages in
computational aspects of nonlinear simulations: No rotation updates are necessary and the general
three-dimensional material law is directly used, which facilitates further application of the present
solid-shell element to the analysis of elastoplastic behavior of shell structures when thickness

change is important [119].
On the other hand, computational cost increases due to added internal degrees of freedom, and the

resulting MITC-S6 shell element has purely numerical parameter, d =1/100,000 . A study to over-

come such limitations would be greatly valuable.
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Chapter 4. Conclusions

In this study, two different types of shell elements are developed: 4-node quadrilateral shell element

and 6-node triangular solid-shell elements, both of which are low-order shell elements.

In the development of 4-node quadrilateral shell elements, the cause of locking phenomenon present
in the displacement-based membrane strain was investigated for general element under out-of-plane
distortion. In the series of developments, the MITC4+, MITC4+N and new MITC4+, different crea-

tive approaches are applied for curing such locking mechanism.

In the MITC4+ shell element, the bilinear interpolation was removed by subdividing the mid-
surface and applying triangular interpolation, which are subsequently applied with new assumed
strain method including transformation. This approach remedied membrane locking to some degree,
but membrane performance as well as pass of membrane patch tests was not retained. In the
MITC4+N shell element, the similar assumed strain method as in the MITC4+ shell element were
applied, the membrane subdivision was maintained, but the interpolation was done on the whole
guadrilateral domain. The fact that MITC4+N shell element alleviates membrane locking in the
same degree as the MITC4+ shell element means assumed strain, not the interpolation function, is

the key to achieve better bending performance under out-of-plane mesh distortion.

In the new MITC4+ shell element, the idea of Choi and Paik [2], Kulikov [3], among many others
were adopted to develop new assumed strain for the 4-node quadrilateral shell element that behaves
optimally on bending problems but also retains the membrane performance. The assumed strain is
constructed from five tied strain components as well as coefficients that come from characteristic
geometry vectors of the mid-surface. The resulting element passes basic tests and significantly im-
proves convergence behaviors, and also retains the robustness in geometric nonlinear simulation of

the original MITC4 shell element.

In the development of 6-node triangular solid-shell element, the previous literatures on shear and
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thickness locking were searched. Shear locking treatment of 3-node MITC triangular shell element,
MITC3+, and commonly used treatment of thickness locking, EAS method, were applied into the 6-
node solid-shell element. The resulting element passes basic tests, performs particularly well in
convergence studies and show good agreement with other literatures in geometric nonlinear analysis

examples.

In future works, any further numerical or theoretical study to overcome limitations of the new-
MITC4+ shell element and the MITC-S6 solid-shell element would be valuable. As a succession of
the present work, reducing membrane locking within 4-node quadrilateral shell elements by making
use of the recent methods such as IGA [25-27] can be of particular interest. In addition, membrane
locking phenomenon should be tested for more arbitrary (generally distorted and unstructured)
meshes other than the ones presented in this paper. | believe that reduction of dominant locking
phenomena, shear and membrane locking, in low-order shell element has been performed quite suc-
cessfully up to limiting point (MITC3+ and MITC4+). Hence, applying the extended FEM [23,24]

to avoid possible locking that may present in more general meshes can be valuable.
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