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ABSTRACT

In this study, we analyze nonlinear dynamic problems with numerical instability using Newmark (beta-2)
time integration methods. By performing parameter study of Newmark method, we show that one parameter lead
to numerical damping and the other parameter lead to period elongation only. Period elongation, unlike numeri-
cal damping, has been undiscovered as a role of stabilization in nonlinear dynamic problems. We validate our
argument by numerical experiments including Newmark methods and Bathe’s composite time integration me-
thod. We show that cases exist where numerical damping and period elongation have strength at accuracy over
each other. This study gives us a motive for a better time integration method in the future, with wider range of

characteristic including both period elongation and numerical damping.

Keywords: Newmark, time integration, Non-linear dynamics, Non-linear instability, Numerical damping, Period

elongation
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Chapter 1. Introduction

We deal with numerical error occur that occurs for nonlinear dynamics using the finite element me-
thod. This numerical error, often called nonlinear instability, has been studied by researchers who devel-
op time integration methods. We present here the relationship between these three areas, and previous

studies on time integration methods.

1.1 Finite element method in Nonlinear dynamics

Finite element method (FEM) has been the most successful technique of analyzing structures. Deve l-
opments in FEM made it possible to analyze structures in a more realistic way, by including geo metric or ma-
terial nonlinearities which happens for the actual system. On the other hand, in order to add dynamic effect
into this non-linear FEM, we cannot use mode-superposition because modes are changing at each step of non-
linear analysis. Only possible method for non-linear dynamic analysis in FEM is to use time integration me-
thod. In time integration method, dynamic effects are included by velocity and acceleration calculated directly
from the global displace ment vector. Time integration method enables us to see the dynamic response includ-
ing interaction of every mode in structure.

On the other hand, time integration method itself has two basic kinds: implicit and explicit. Strength of
implicit method over explicit method is that we can use any kind of step size which guarantees analytical sta-
bility of response. Using the larger step size, response gets sparse in time domain and thus lose accuracy.
However, in non-linear dynamics computation itself is often too costly that we want the response to be calcu-
lated using minimum number of step size. Because such cost-effectiveness could be achieved possibly by us-
ing implicit time integration method, it has been the reason of using implicit time integration in non-linear

dynamics.

1.2 Nonlinear instability
Over many years, nature of numerical errors has been investigated. On the other hand, errors that oc-
cur during the analysis have been another concern because sometimes not enough information to deter mine
the nature of the error. It is hard to decide, therefore, the most efficient way to suppress the error. This type of

phenomenon has been widespread in the field of nonlinear dynamics, especially when high-frequency re-



sponse was tried to be calculated by using the trapezoidal rule. Because that the trapezoidal rule was the most
accurate in the family of Newmark algorithm, researchers tended to modify the trapezoidal rule in developing
new, error-stabilizing algorithms.

Instability of nonlinear dynamic analysis is dependent on time integration method. Park([1]) and
Hughes([2]) were the earliest to discover instability of the trapezoidal rule. Many following researches on
time integration field([1],[3-12]) was based on the motive that new time integration method is needed.

Instability of nonlinear dynamic analysis is also dependent on specific problems. Recent papers tended
to deal with specific examples of nonlinear instability. Instability for large-displacement analysis of truss ele-
ment([6],[8],[9].[12]), two-dimensional solid ([3],[6]), three-dimensional solid([10]), plate element([6]), and
shell element([4],[11],[13]) were studied.

There was shift of focus from modifying time integration method into modifying element formula-
tion([9],[11]). This change is along with the time integration method called Energy-Momentum Method or
EMM([14]). EMM use geometry and strain of mid-configuration for calculation of the next configuration.
This means in order to apply EMM, some mod ification on element level is inevitable. Fromthat point, distinc-

tion between finite element formulation/time integration technologies has been blurred.

1.3 Implicit time integration methods

In order to solve nonlinear instabilities, many implicit time integration methods has been developed.
Those studies can be classified into two major categories, methods with numerical damping and methods with
average configuration. In fact, most of research papers devoted to time integration methods fall into category
with numerical damping. In 1970’s, based on the observation of Park, three-step method of Park([1]), HHT -a
of Hilber([5]), and generalized-a of Chung([15]) were developed. Recently, Baig([3]) developed composite-
time integration, Dong([10]) created BDF-like method, and Liu([6]) applied backward-Euler method on insta-
bility problems. On the other hand, papers related to average configuration are relatively small. Simo([11]),
Kuhl([12]) and their co-workers studied the use of EMM, proposed by Simo([14]). However, Kuhl([4],[13])
observed convergence problem of EMM to create methods with numerical damping, CEMM and GEMM.
Another major advantage of using numerical damping instead of average configuration is that no modification
is required for the finite element. Similarly, we present a method which came the from parameter choice of
classical Newmark method to be used just like method with numerical damping. Novel part of this method is
that it does not use numerical damping, but just period elongation to solve instability problems. So far, no
study was related to use of period elongation in solving instability, although the period elongation itself is a
property common to all time integration methods. Further, we leave a room for a new time integration method

including both period elongation and average configuration, or method that selectively encompasses period



elongation and numerical damping.



Chapter 2. Genreral Theory

2.1 Non-linear formulation for structure

Formulation of non-linear dynamics is essentially based upon two things: non-linear formulation of
structure and time integration method. To begin with, we review non-linear finite element formulation for
static analysis.

Classically, there are two kinds of non-linear formu lation of structure: Total Lagrangian and Updated
Lagrangian formulation. The two formulations are analytically identical if relevant assumptions are used.
However, our paper focuses on numerical instability which is not under control by analytic assumptions. Re-
garding this, many studies have been done implying it is better to use UL formulation than TL in dynamic
analysis. We want to apologize that, on the other hand, due to subtleness of formulation in non-linear dynam-
ics the numerical results in this paper were performed by finite element software ADINA V8.8. We explain

the TL formulation as used in ADINA.

2.1.1 Basic equation

X3

Timet with &u imposed
TN

7 — T

X1

Figure 2.1. Initial and current geometry of body of a structure



Consider the structure with domain given in Fig. 2.1. Let us denote position of material particle P to be
X; with left superscript denote configuration. Displacement U at time tis written as,
t t 0
U=X—X; (2.1)

Advantage of using TLover UL is we can use familiar strain measure, Green-Lagrange strain. Green-

Lagrange strain tensor is defined as

b£ =3 X 0 X~ 1) 2.2)
X%, = 23)
22707 T A0 .
0 ] a XJ

where OtXij is deformation gradient and indices run from 1 to 3. This deformation gradient can de-

composed into rotational part ;5 and stretching part(;U ,
‘R'U (2.4)
0=0—= '

where is 35 an orthogonal matrix. Using this, it is easy to show that the Green-Lagrange strain is in-

variant under rigid-body rotation.
Before setting up an equilibrium equation, we want to find a stress measure where the work composed

of the stress measure and Green-Lagrange strain is invariant under rigid-body rotation. Such known stress
measure is second Piola-Kirchhoff stress, defined from physical Cauchy stress 7 like below.
0

0
OtSij :fgxirtrrs(?XT)sj:tS :_p?étgféT (2.5)

0= t

where pis density of material point, ?Xij is inverse of the deformation gradient OtXij and indices
run from 1 to 3. Important feature of this stress measure is that it is invariant under rigid -body rotation. Con-

sider rigid body rotation R has occurred from configuration tto t+ At so that”%)? :Bg)? Using trans-

formation of second order tensor,

t+At= :Bt £5T (2.6)
and fromtransformation of geometry,
TOX =R X @7
finally from physical consideration,
t+AL p:t D (2.8)



Fromthese it is easy to show that HAOtSij =OtSij :

On the other hand, Green-Lagrange strain in indexformis,

t t t t t t
¢ _l(éxk8xk_5)_l(8uj+6ui+aukauk -
0€ij =20 0 i/ 7 2\A0 0 0 0 (2.9)
0% O°X; 0% O0X; 0% 0X;
This strain is often called separately as linear strain and nonlinear strain as in following equations.
t .ot t
0€ij =0 To i (2.10)
ou.  ou.
tha _ 1 J i
e =i(—+ ) (2.11)
PPN 0%,
o'u, o'u
ol =375 =5 ) (2.12)

In non-linear analysis, equilibrium equation must be set up in the current configuration. Otherwise,
we cannot detect geometrical non-linearity arising from change in geometry during the analysis. For the body
in Fig., we apply a virtual displacement field AU on the current configuration. By principle of virtual dis-

placement, following equilibriumequation is obtained.

[1r,58dV=R (2.13)
v
o8, o
o =% ( atxij + a‘xj) (2.14)

Here 'R is external load, is trij physical Cauchy stress on current configuration, and b]eij is virtual

linear strain produced by the applied virtual displacement. This virtual linear strain can be related to Green-

Lagrange strain. If we take variation of (2.2),

S =4(6, X" X+, X"5,X) (2.15)
also note that
o'x.  Odu. O, 0%
S Ky =05 =—gt=——t—* (2.16)
b0 % 9% 0K,

which can be written in matrix form,

S, X =5, X (217)
odu.

ou=(>(0u)., =—-—- 2.18

=t ( t )IJ 6th ( )



Finally we relate the virtual linear strain in terms of virtual strain measure, or virtual Green-Lagrange

strain.
t t T T t t T t
5= X" H(OW) + oW X=X X @19
where o€ =5teij is the virtual linear strain.
t

oX, )
= —5_ = X; and substituted to (2.13),
0X;

t

(2.5) and (2.19) are rewritten using notation | Xi j

t
Itg : thv = j(%otsm OtXi,k(;Xj,I )((t)xm,i ?Xn,j5(;gmn)d V
v

v (2.20)

t
= I(o_pt;skl5mk5nl5ggmn)dtv = _[()tsklé‘otgkld(\/ = J;§ : 5ot‘9dov
v P Sy L

We now distinguish the current configuration to be at time t+ At to distinguish the configuration at
time tto be known configuration just before the current configuration. Finally, in TL formulation non-linear

equilibrium equation is,

.[ t+A0tSij 5I+Aot<9ij dV=""R @21
OV

2.1.2 Linearization of basic equation
Having distinguished time tand time t+ Afto be known and unknown configuration respectively,
we need to use the known information into (2.21) and linearize it. First, we decompose displacement into

known and unknown quantities.

=ty (2.22)

where U; is called incre mental displace ment.

In each step, we must apply virtual displacement in lastly known configuration, in this case, time t.

Therefore, virtual quantity of (2.22) reduces to
S =0, + &, = A, (2.23)

Using definition of (2.9) and (2.22), virtual Green-Lagrange strain is also written in terms of known

and unknown quantities.

t+At t
0€ii =0 €ij to&j (2.24)



ou; Loy 04U, Ou,  ou, .U, L Ou, au,

% 0% 0% 9%, 0% 9% 0% 0%,

o0& =3 ( (2.25)

where & is called incremental Green-Lagrange strain. Taking virtual the quantity of (2.24) and us-
ing (2.23),
5t+Aotgij =5()tgij +6 85 =08 (2.26)
We can also think of decomposing the second Piola Kirchhoff stress.
t+Aotsij :OtSij +05; (2.27)
In this case, incremental second Piola-Kirchhoff stress OSij is not related to other quantities. Here, we

adopt linearization assumption.

t

0Si = =+ o&, + higher order terms=,C; . ,&,, (2.28)

OrsI

t

0.S.
where we have assumed that value of a?—”is constant throughout the whole configuration change.
&
0

rs
This assumption of linear elastic material law on non-linear case is called St. Venant Kirchhoff material law.
Putting (2.25), (2.26) and (2.27) into (2.21) we get linearized equilibriumequation,
t t+At
IOCijrsogrséogijdo\/ + IOSU—éOgide\/:+ R (2.29)
Ov O

For computational purpose, we separate incremental strain (2. 25),

0€ii =080 (2.30)
ou; ou. olu, ou, Ou, Oiu
e 1 J + i 0¥k k k 0¥k 231
o 2(aoxi a%; 0% 8% 9% a"xj) 23
ou, ou
ol :%(ao; 8°xk ) (2.32)

Quantity ,€;and ,77; are called incremental linear and non-linear strain respectively. ,€; represents
linear part of incremental strain. We apply linearization to (2.29) once more,

I 0Cirs €50 85 vV + '[ OtSij5077ij dV=""R- _[ OtSij og;d v (2.33)
Oy Oy Oy



2.1.3 Linearized equation including dynamic effect
Consider a body force is included in the right-hand side of equilibriumequation (2.13). By principle of

virtual displacement,

['r;0€,dV=R+ [ fidudV (2:34)
hY%

v
By D’Alembert’s Principle, dynamic effect can be thought as a body force fi :—tptl'ji with density

p and acceleration U . Substituting to (2.34),

['ry08,dV=R+ [~ pidud V=R~ [°pliddV (2.35)
tv Oy

v

Making the current configuration as time t + At and applying (2.35) to (2.33),

IOCijrsoerscSoeijdo\/ + J'O‘Sijéonijd(’\/:”“R— jop”muiwid"v - J'OtSijcSoeide\/ (2.36)
O Oy v Ov

In (2.36), virtual displacement AU is applied on the current configuration at time t + At .

2.2 Discretized equation and solution procedure

(2.36) can be discretized by using isoparametric interpolation procedure in finite element method.

That is, on the element domain of 0\/e ,

u, :ﬂAue (2.37)
5ge :5I+Atge — =5AUe — =aJe (238)
t+Atge —H t+AtU'e (2.39)

where U is nodal displace ment vector after assemblage and U, denote elemental nodal displace ment

vector. AU is incremental nodal displacement, analogous to incremental displacement in (2.22). Using these
displacement interpolation and definition (2.31) and (2.32), incremental strains are interpolated in a similar

manner.

(2.40)

(2.41)

e

S =8U, N, AU

Equilibrium equation (2.36) on element domain then becomes



(2.42)

where material law g and stresses S and 2 are appropriately defined. We can assemble the element

domains 0Ve into global domain o Regarding external force as external virtual work and canceling the

virtual quantities, final discretized equilibriumequation in matrix formis,

MU + (K + Ky JAU=""R-F (2.43)
K (V)= [B."CBdY (2.44)
Ta= =
Ku (MU)=3 [By "By dV (2.45)
=4 =
M=3 [°pH"HdV (2.46)
=,
E(*U)=Y. [B,"sd%V (247)
T 8=

Parenthesis in (2.44), (2.45) and (2.47) indicates that the entries are function of current displacement.

To illustrate its usage, we discuss in Appendix the forms of the matrices used in (2.42) for four-node shell

element.

- 10 -



Chapter 3. Time Integration Methods

3.1 Newmark time integration method

In (2.43), we did not have information about "*'U . We wish to solve (2.43) in terms of "'U only,
and method required for doing so is time integration method.

Basic equation of Newmark time integration([16]) is the following two assumptions.

2 2
by U HUAL + (L= A,)'U % B % 3.1
SN2 4 (L AYUAL 4 AL @2

Newmark time integration has two parameters of s and g, which we would preferably call New-
mark( A3,, 3,)- These two parameters play important role in changing error characteristic of Newmark time
integration method, as discussed next.

X+o’x=r (3.3)

Any time integration methods have inherent analytical error. Depending on the discretization and fre-

quency of structure, time integration methods exhibits two types of error, amplitude decay and period elon-

gation. The two errors literally means what happens for homogeneous solution of (3.3) was analyzed by any

time integration method. (3.3) is one-degree-of-freedom system with displacement X , frequency @ , where

I is excitation due to external load or initial conditions. To apply implicit time integration method, equil i-
brium equation of (3.3) is discretized for the current step.

t+At ; 2 t+At

X+ w :t+At

X r (3.4)
In order to see inherent error of using time integration for the discretized equilibrium equation, we at-
tempt to extract characteristic of homogeneous solution. As in [5], [17] and [18], (3.1), (3.2) and (3.4) can be

rearranged in the following form.

t+At X tX
t+At X — é t)-( + |: (35)
t+At X tX

In (3.4), responses in the next step are determined by those of previous step, with multiplication by

matrix A and addition with vector L. It is the matrix A which contains the information about the two types of

- 11 -



error. This matrix is called amplification matrix, and for the Newmark method following form is obtained.

—(G-38)x % (=2) L (=7
é =| At(l- B (% - %ﬂo)ﬁll) 1- 28 ﬁ (_Zﬂl) (3.6)
Atz(%_%ﬂo)(l_%ﬂol) AMQA-38x) 1-3Bx

-1
x=(G=135) (3.7)
(3.6) has three eigenvalues, one zero eigenvalue and two comp lex conjugate ones. Amp litude error can

be investigated from absolute value of maximum eigenvalue of (3.6), which is given by the following equa-

tion, (3.8).

p(A) = |max.eigenvalueof Al

= (T +2B,007°) (207" — A +T7 ~ 25,8 7%) @9)

1 AT BBAC T — A2 + AT? — AR AP T — 4B A77)

T:

Sy

(3.9)

This value is called spectral radius of Newmark time integration method. This value can be plotted
with a range of non-dimensional frequency At/T , where T is period which is related to frequency @
by (3.9). Since given analytical amplitude of response is 1.0, spectral radius less than 1.0 means amplitude
error occurs. On the other hand, if the spectral radius is greater than 1.0 response become magnified at each
step until it diverge. Therefore, spectral radius must be less than or equal to 1.0 to insure analytical stability
of analysis.

Calculated period is also not the same to analytical period T . Calculated frequency @ is related to

phase of maximum eigenvalue of (3.5) Q by,

=3 (3.10)

Q= arctan(\/At27z2(8ﬁ0At27z2 — At + AT — 4B A 7% — 4B A 2?)
(3.11)

I(2B,A 7% — At 7? +T% = 28 A 7%) )

Fromthis, calculated period Tis given and relative period elongation can be constructed, which is al-

so a function of non-dimensional frequency.

. O T-T
period elongation= e (3.12)
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Period Elongation
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Newmark (trap. rule)
—— — Newmark (1.0,0.5)
------ Newmark(0.6,0.55)

Newmark (trap. rule) = Newmark (1.0,0.5)
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103
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Figure 3.1. Spectral radius of Newmark method
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Figure 3.2. Period elongation of Newmark method
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N

T=2 (3.13)

e

Spectral radius and period elongation for various parameter of Newmark method is shown in Fig. 3.1
and Fig. 3.2. Choice of parameter Newmark(0.5,0.5) is called the trapezoidal rule.

On the other hand, value of spectral radius less than 1.0 for high values of non-dimensional frequency
has been a desirable characteristic for time integration methods, because it can prevent nonlinear instability.
If value of spectral radius is less than 1.0, given time integration method is referred as ‘method with numeri-
cal damping’ and this characteristic is itself called numerical damping.

Larger value of parameter g increases numerical damping, while larger value of parameter g in-

creases period elongation. These distinctive parameters are main characteristic of Newmark method. If

B, =1, parameter g is independent of numerical damping, but it introduce more period elongation. This

parameter choice, ie. increase of g with g =1, is of significant importance because we can decouple and

1
2

apply only the period elongation.

3.2 Bathe composite time integration method
Many methods related to numerical damping have been studied. Many of them have parameters to in-
troduce numerical damping or additional constraints which naturally result in numerical damping. Bathe co m-
posite method([7],[8]) is one of them, and numerical damping is introduced with three-point backward differ-
ence formula applied at the second sub-step. We describe this process in detail.

Basically, like other ‘composite’ methods, Bathe composite method uses sub-step. It means that for a

given value of Atwe actually use %, perform N times the computation than the original method, and use

only the finally computed values as responses. Bathe composite method is a two-substep method, and for the

first sub-step it uses the trapezoidal rule.

2 2
"ru=u+u (at/2)+'J (Atf) +720 (Atiz) (3.14)
a1 1 eat -
2U:U+§U(At/2)+5 2U (At/2) (3.15)

For the second sub-step, three-point backward difference formula is applied to velocity and accelera-

tion, replacing the two original assumptions.

M0 =cU +¢," U +¢,"MU (3.16)

. At
“AJ =¢U +c, 2U +¢,"MU (3.17)
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.where constants are given by

1-y -1 2—y
C,=—-,C=———, Cg=———
(L—y)yAt (1-y)At

With normal splitting of time step, i.e. using %for the first sub-step, » =0.5performs well, as de-

(3.18)

scribed in [7].

In addition, any method can be made as sub-step method. Normally if we do not have additional multi-
step constraint like (3.16) and (3.17), we do not make an algorithm sub-step. In this paper, however, Newmark
method was made as two-substep method in order to equalize computational cost with the Bathe composite

method.

3.3 Solution procedure

We solve (2.43) in terms of incremental displacement, updating the current displacement, velocity and
acceleration. However, right-hand-side of (2.43) has unknown, as (2.47) is unknown and changing. Therefore,

we solve iteratively with the updates of (2.44), (2.45) and (2.47). This process is on Table 3.1.

Table 3.1. Computational processs for equilibrium

Given the current step T+ At,

assume for initial iteration t+AtU ) :tU (last iteration ) and t+AtE(l) :tE(Iastiteratior)

Iterate for i=12,.. Solve (2.43) with time integration assumption ((3.1); (3.14); (3.16))
to obtain AU

If right-hand-side of (2.42) is under tolerance of (3.18), exit.

Update I+A'[U (i):I+AtU (i-1) +AU
Update (2.44), (2.45), (2.47)
Update "“'U,""™U using time integration assumptions

((3.1) and (3.2); (3.14) and (3.15); (3.16) and (3.17))

Notice that as equilibrium is met, both sides of (2.43) gets smaller and smaller. Thus, we can stop the
solution process with giving small tolerance to right-hand-side of (2.43). ADINA use energy tolerance,

AU OT(RHS?)
AU®T(RHS®)

<etol (3.18)

where etol =10 is given as default. Process in Table 3.1 is full Newton-Raphson iteration since left-

- 15 -



hand-side of equilibrium, (2.44) and (2.45), are updated after each iteration.

3.4 Other methods
There are other important time integration method, Midpoint rule([11],[12]) and Energy-Momentum

Method([4],[11],[12],[13],[14]). Reason we are giving here is they are sensitive to entire formulation and so-
lution process. We had no chance to rigorously formu late those methods. According to [12], both methods use

following equilibrium.

M0+ (K, + K JAU="R -, e

We only discuss difference in (2.46). Midpoint rule use following internal force.

E.(MU)=3 | (B G("MU+U)) SG(TU+U)AV (3:20)

e 0\/e

Parentheses after F., B, and S indicate dependence to displacement. Notice that we use mid-

1
2
point equilibrium and matrices computed via mid-point displacements. For Energy-Momentum Method, in-

ternal force is different with mid-point rule.

Fo(""U) =Y [(BLE(MUHUN)T H(S(™U)+S(U))dV (3.21)

e 0
Ve

In this case, stresses are averaged instead of displacements.
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Chapter 4. Numerical Results

4.1 Rotating pendulum

We solve rotating pendulum problem in [8]. Schema and description of numerical rotating pendulum
model is shown in Fig. 4.1. It is modeled with single two-node truss (rod or bar) element. The model is sub-
jected with no external loading except for initial conditions. Initial velocity drives the rotating pendulum and

initial acce leration was applied for canceling out centrifugal acceleration at the tip.

. z
Y
Stiffness EA=1.0x109IN
Length1=3.0443 m
Inertia pA=6.57 kg/m
Truss model
Initial velocity=7_72 m/s

Initial acceleration=19.6 m/s*

Figure 4.1. Schema and description of the numerical rotating pendulum model
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Table 4.1. Choice of parameter of numerical rotating pendulum for the evaluation of performance

Method Parameter Step size (At) Stiffness (EA)
The trapezoidal rule - 0.01s 10° N
Two-substep Newmark (0.6,0.5) 0.5s 10°N and 10°N
Bathe composite - 0.5s 10°N and 10°N

For the trapezoidal rule, small step size and default stiffness was selected for the demonstration of in-
stability. Because use of small step size with candidate methods give almost exact solution for this problem,
response using the larger step size was demonstrated for comparison of the candidate methods. Because d o-
minant global response, a low-frequency motion of rigid-body rotation of rotating pendulum, is depending on
density and initial velocity and not on stiffness, stiffness was changed to observe variety of solutions.

Fig. 4.2to 4.11 shows velocity and acceleration of the methods in Table 4.1.

When the trapezoidal rule is used, velocity and kinetic energy are conserved exactly until continuous
accumulation of acceleration stops the solution. On the other hand, two-substep Newmark(0.6,0.5) and Bathe
composite method remains converged even for the larger step size and variety of stiffness.

Unlike Bathe composite method, two-substep Newmark(0.6,0.5) showed almost no decay of velocity

in stiffness 10 N . Strength and weakness of those two candidate methods can be compared for the case of

stiffness 10° N . This case also shows that two-substep Newmark(0.6,0.5) has better conservation of velocity,

but smoothness of accuracy is better for Bathe composite method. In the next example, these differences are

demonstrated in a more dramatic manner.
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-20
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Figure 4.2. Velocity of the numerical rotating pendulum model using the trapezoidal

rule, EA=10"N, At=0.01s

8E+4

6E+4

4E+4

2E+4

z-acceleration
o

-2E+4

-4E+4

-6E+4

-8E+4

time

Figure 4.3. Acceleration of the numerical rotating pendulum model using the trapezoidal rule, EA=10" N,

At =0.01s
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z-velocity
o

time

Figure 4.4. Velocity of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5) method,

EA=10"N, At=0.5s

z-velocity
o

time

Figure 4.5. Velocity of the numerical rotating pendulum model using Bathe composite method, EA=10" N,

At =0.5s
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10

z-acceleration
o

-10

time

Figure 4.6. Acceleration of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5)

method, EA=10"N., At=0.5s
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z-acceleration
o

-10

-20

time

Figure 4.7. Acceleration of the numerical rotating pendulum model using Bathe composite method,

EA=10"N, At=05s
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z-velocity
o

time

Figure 4.8. Velocity of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5) method,

EA=10°N, At=0.5s

z-velocity
o

time

Figure 4.9. Velocity of the numerical rotating pendulum model using Bathe composite method, EA=10°N,

At =0.5s

- 22 -



40

20
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Figure 4.10. Acceleration of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5)

method, EA=10°N, At=0.5s
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-20
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Figure 4.11. Acceleration of the numerical rotating pendulum model using Bathe composite method,

EA=10°N, At=0.5s
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4.2 Compound pendulum

We solve compound pendulum in [7]. It is modeled with 40 four-node two-dimensional solid ele-
ments, two elements in the thickness direction and 20 elements in the longitudinal direction. The model is
subjected to mass-proportional loading of gravity, which gives initial potential energy for the motion of the

compound pendulum.

E=200x10° N/m? 7\

=03
p=8000 kg/m">
thiclness=0.01 m

Plane stress

Figure 4.12. Schema and description of the numerical compound pendulum model

Table 4.2. Choice of parameter of numerical compound pendulum for the evaluation of performance

Method Parameter Step size (At) Stiffness (E)

The trapezoidal rule - 0.005s 2x10" N/m?
Two-substep Newmark (0.6,0.5) 0.05s 1x10" N/m? and 6x10" N/m?
Bathe composite - 0.05s 1x10"N/m? and 6x10" N/m?’

As in the literature, the trapezoidal rule was used to show instability of the numerical compound pen-
dulum model. Again, use of small step size with candidate methods give almost exact solution for this prob-
lem, response using the larger step size was demonstrated for comparison of the candidate methods. Because

dominant global response, a low-frequency motion of rigid -body swing of compound pendulum, is depending
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on density and gravity and not on stiffness, stiffness was changed to observe variety of solutions.

Fig. 4.13to 4.27 shows velocity, acceleration and kinetic energy of the methods in Table 4.2.

When the trapezoidal rule is used, velocity and kinetic energy are conserved exactly until continuous
accumulation of acceleration stops the solution. On the other hand, two-substep Newmark(0.6,0.5) and Bathe
composite method remains converged even for the larger step size and variety of stiffness.

One difference between two-substep Newmark(0.6,0.5) and Bathe composite is degree of conservation
of amplitude of velocity and kinetic energy. In this problem, two-substep Newmark(0.6,0.5) conserved those
quantities better than Bathe composite method. It means for this problem, period elongation performs better
than amplitude decay (numerical damping) in terms of conservation. On the other hand, one weakness of two-

substep Newmark(0.6,0.5) is revealed via acceleration. For stiffness of 1x10” N/m?, two-substep New-

mark(0.6,0.5) have spurious high-frequency response as like the trapezoidal rule demonstrated in the other
literature [17] for simpler ODE problem. Thus, two-substep Newmark(0.6,0.5) should be used for the prob-

lems where conservation of velocity and kinetic energy is more important than response of acceleration itself.

10

z-velocity
o

0 2 4 6 8 10 12 14 16 18 20
time

Figure 4.13. Velocity of the numerical compound pendulum model using the trapezoidal rule,

E=2x10"N/m?, At=0.005s
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Figure 4.14. Acceleration of the numerical compound pendulum model using the trapezoidal rule,

E=2x10"N/m?, At=0.005s
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Figure 4.15. Kinetic energy of the numerical compound pendulum model using the trapezoidal rule,

E=2x10" N/m?, At=0.005s.Straight reference line indicates initial potential energy.
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time

Figure 4.16. Velocity of the numerical compound pendulum model using two-substep Newmark(0.6,0.5)

method, E=6x10"N/m?, At=0.05s
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0 2 4 6 8 10 12 14 16 18 20
time

Figure 4.17. Velocity of the numerical compound pendulum model using Bathe composite method,

E=6x10"N/m?, At=0.05s
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time
Figure 4.18. Acceleration of the numerical compound pendulum model using two-substep Newmark(0.6,0.5)

method, E=6x10"N/m?, At=0.05s

15

10

z-acceleratioin
o

-10

-15

0 2 4 6 8 10 12 14 16 18 20
time

Figure 4.19. Acceleration of the numerical compound pendulum model using Bathe composite method,

E=6x10"N/m?, At=0.05s
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Figure 4.20. Velocity of the numerical compound pendulum model using two-substep Newmark(0.6,0.5)

method, E =1x10" N/m? At=0.05s
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Figure 4.21. Velocity of the numerical compound pendulum model using Bathe composite method,

E=1x10"N/m? At=0.05s
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Figure 4.22. Acceleration of the numerical compound pendulum model using two-substep Newmark(0.6,0.5)

method, E =1x10" N/m? At=0.05s
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Figure 4.23. Acceleration of the numerical compound pendulum model using Bathe composite method,

E=1x10"N/m? At=0.05s
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Figure 4.24. Kinetic energy of the numerical compound pendulum model using two-substep

Newmark(0.6,0.5) method, E =6x10"N/m?, At =0.05s. Straight reference line indicates initial potential

energy.
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Figure 4.25. Kinetic energy of the numerical compound pendulum model using Bathe composite method,

E =6x10"N/m?, At =0.05s. Straight reference line indicates initial potential energy.
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Figure 4.26. Kinetic energy of the numerical compound pendulum model using two-substep

Newmark(0.6,0.5) method, E =1x10" N/m?, At =0.05s. Straight reference line indicates initial potential

energy.
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Figure 4.27. Kinetic energy of the numerical compound pendulum model using Bathe composite method,

E =1x10" N/m?, At=0.05s. Straight reference line indicates initial potential energy.
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4.3 Cantilever beam

We solve cantilever beam in [7]. It is modeled with 400 nine-node two-dimensional solid elements,

one element in the thickness direction and 400 elements in the longitudinal direction. It is subjected to (dis-

placement-dependent) pressure load on the top side.

500 f(time) Nim?

lm_om m
| ' ! Jr.
3 -
04m

E=70x10° N/m?

+=0.33

p=2700 kg/m?

Plane strain

, -

0.02 004 time

Figure 4.28. Schema and description of the numerical cantilever beam model

Table 4.3. Choice of parameter of numerical cantilever beam for the evaluation of performance

Method Parameter Step size (At)
The trapezoidal rule - 0.002s
Two-substep Newmark (0.5001,0.5) and (0.6,0.5) 0.004s
Bathe composite - 0.004s

The trapezoidal rule was used to show instability of the numerical cantilever beam model. For two -

substep Newmark and Bathe composite method, twice the step size for the trapezoidal rule was used. Because

both of the two methods are two-substep method, we used essentially the same step size for all the methods in
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real co mputation.
Fig. 4.29to 4.40 shows displacement, velocity and acceleration of the methods in Table 4.3.
Displacement, velocity and acceleration response of numerical cantilever beam shows that Bathe com-
posite method exhibit slightly more decay than two-substep Newmark method. It means that period elongation

is better than numerical damping for analysis of numerical cantilever beam problem.

0.2

0.15

0.1

0.05

z-displacement
o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time

Figure 4.29. Displacement of the numerical cantilever beam model using the trapezoidal rule, At =0.002s
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Figure 4.30. Velocity of the numerical cantilever beam model using the trapezoidal rule, At =0.002s
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Figure 4.31. Acceleration of the numerical cantilever beam model using the trapezoidal rule, At =0.002s
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Figure 4.32. Displacement of the numerical cantilever beam model using two-substep Newmark(0.5001,0.5)

method, At =0.004s
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Figure 4.33. Displacement of the numerical cantilever beam model using two-substep Newmark(0.6,0.5)

method, At =0.004s
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Figure 4.34. Displacement of the numerical cantilever beam model using Bathe composite method,

At = 0.004s
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Figure 4.35. Velocity of the numerical cantilever beam model using two-substep Newmark(0.5001,0.5)

method, At =0.004s
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Figure 4.36. Velocity of the numerical cantilever beam model using two-substep Newmark(0.6,0.5) method,

At =0.004s
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Figure 4.37. Velocity of the numerical cantilever beam model using Bathe composite method, At =0.004s

- 38 -



300

200

100

z-acceleration
o

-100

-200

-300

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time

Figure 4.38. Acceleration of the numerical cantilever beam model using two-substep Newmark(0.5001,0.5)

method, At =0.004s
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Figure 4.39. Acceleration of the numerical cantilever beam model using two-substep Newmark(0.6,0.5)

method, At =0.004s
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Figure 4.40. Acceleration of the numerical cantilever beam model using Bathe composite method,

At =0.004s

4.4 Cylindrical shell
Kuhl([4],[13]) observed convergence problem of EMM to create methods with numerical damping,
CEMM and GEMM. This example was designed to follow closely the cylindrical shell in [4] and [13]. Eight-
node isoparametric shell element with five degrees of freedom per node with 2x2 Gauss integration per ele-
ment was used. Because rotation degrees of freedom are used just to correctly update director vectors perele-
ment, physical boundary condition was applied to translational degrees of freedom only. Because the director
vectors are set default by ADINA, and because of difference in shell formulation from [4] and [13], response

is slightly different with the references.
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Boundary Conditions
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p=10* kg/m’
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One quarter of physical model } >
Shell model 0.2 time

Figure 4.41. Schema and description of the numerical cylindrical shell model

Table 4.4. Choice of parameter of numerical cy lindrical shell for the evaluation of performance

Method Parameter Step size (At)
The trapezoidal rule - 0.0005s
(0.6,0.5), (0.55,0.5) and
- 0.001s
Two-substep Newmark (0.55,0.55)
Bathe composite - 0.001s

The trapezoidal rule was used to show instability of the numerical cylindrical shell model. Half the
step size than the literature was used for showing instability after longer analysis time. For two-substep New-

mark and Bathe composite method, twice the step size for the trapezoidal rule was used. Because both of the
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two methods are two-substep method, we used essentially the same step size for all the methods in real com-
putation.

Fig. 4.42to 4.46 shows displacement of the methods in Table 4.4.

Displacement response of numerical cylindrical shell shows two things, i.e. buckling and post-
buckling vibration. Two displacements at the center line of hinged boundaries of cylindrical shell shows that
the initially convex model becomes concave, and vibrates in that concave circumstance. As the entire struc-
ture fluctuate, amplitude of vibration at the center line decreases until stabilized vibration of constant ampli-
tude occurs. When the trapezoidal rule is used, solution is stopped shortly after displace ment undergoes stabi-
lized vibration.

Among the candidate methods, Bathe composite method shows the most good stabilized vibration in
terms of large amplitude and its preservation. For two-substep Newmark method, parameter (0.6,0.5) was
better than (0.55,0.5) while both of them use period elongation and no numerical damping. It turned out that
method with numerical damping is more suitable for solving the numerical cylindrical shell model than that of
period elongation. For two-substep Newmark method, parameter (0.55,0.55) was better than both parameter
(0.55,0.5) and (0.6,0.5) that the post-buckling vibration has high and preserved amplitude at the stabilized
range of time. Notice that post-buckling vibration of two-substep Newmark (0.55,0.55) and Bathe composite
are almost the same. By adjusting the parameters in two-substep Newmark, we could almost catch up the per-

formance of Bathe composite.
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Figure 4.42. Displacement of the numerical cylindrical shell model using the trapezoidal rule, At =0.0005s
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time

Figure 4.43. Displacement of the numerical cylindrical shell model using two-substep Newmark(0.6,0.5)

method, At =0.001s
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Figure 4.44. Displacement of the numerical cylindrical shell model using two-substep Newmark(0.55,0.5)

method, At =0.001s
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Figure 4.45. Displacement of the numerical cylindrical shell model using two-substep Newmark(0.55,0.55)

method, At =0.001s



z-displacement

Figure 4.46. Displacement of the numerical cylindrical shell model using Bathe composite method,

1.6

1.2

0.8

0.4

0.2

LYATAYAYE
\ K" ‘\J | \‘ ‘{
e
ey
0.4 0.6
time

At =0.001s

- 45 -

0.8




Chapter 5. Conclusion

We have studied various parameter values of Newmark time integration method into non-linear dy-
namic problems with instability. We have observed that parameter of Newmark time integration is meaningful
for solving such instabilities. Increase of 5 in Newmark( 4, 3,) method from the trapezoidal rule gives me-

thod with period elongation, and increase of g in Newmark( 3, g,) method from the trapezoidal rule gives

method with numerical damping. Strength at accuracy of choosing period elongation or numerical damping
depends on each problem of nonlinear instability. Therefore, a wise choice between numerical damping and
period elongation is required for any time integration method. Most of all, very few method have only period

elongation without numerical damping like Newmark( 4,,0.5). Further study of Newmark( 4, ,0.5) will aid in

development of new time integration method in the future.
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Chapter A. Formulation of shell elements

We present here non-linear four-node shell element with five degrees of freedom per node. To Clarify,
Configuration at time t+ At and time tin here means the last and the previous of each iteration. Therefore,

processes in this section should be used to update (2.44), (2.45) and (2.47) per each iteration.

ty 1

X1

Figure A.1. Initial and current geometry of shell element

Geometry of initial and current configuration is interpolated like below.

4 4

°% = > h X +Ea2hk°\/ik (A1)
k=1 2 k=1
4 r &

o= h X+ 2ad h v (A2)
k=1 2 k=1

Here right superscript on X denotes node number, so too the right subscript on h. his shape func-

tion common for isoparametric elements, with natural coordinates I and I,. I3 is the third natural coordi-
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nate,and ais thickness of the shell. The natural coordinates range from -1 to 1 and cover entire geometry for
each configuration.
Besides the Cartesian coordinate system, two more coordinate system should be given for each confi-

guration: covariant coordinate systemand local Cartesian coordinate system.

For configuration |, covariant bases are defined as

. 0%

=== A3
g or (A3)

The set of three vectors { ! gl,'gz ,'(jS} form a basis. Notice that this basis changes not only by confi-

guration, but also within the element geometry. This covariant basis is for computing strains within the ele-
ment. Also notice from the definition covariant base vectors follow the line of increasing the respective natu-
ral coordinates.

Another basis is local Cartesian basis, which can be calculated from covariant basis like below. We

first normalize the three vectors in covariant basis.

€, = (A4)

The vectors in the set {'€,,,'€, ,, '€, 5} are now of unit length, but they are not orthogonal to each

other. We make a set of orthogonal vectors,

Iz _1 =

5 Iz g Iz g
€;=€ 5, € =(€ ,x er,s)/H € X €3

Iz = | = | = | =
‘, e, :( €, 3% el)/H €, 53X el” (A.5)
The set of resulting vectors {'€;,'€, '€} are now orthonormal to each other. This basis is called lo-

cal Cartesian basis. Notice from (A.1) and (A.2) the third natural coordinate is always perpendicular to the
mid-surface of the shell. Local Cartesian basis is composed of three orthonormal vectors with third vector
always in the direction of increasing the third natural coordinate. Therefore, this basis can be used for apply-

ing material law for the element.

On the other hand, any basis has its dual basis. Dual basis of covariant basis {'Qi }is called contrava-
riant basis{ 'éi }, which is defined like below.
Iz IR
g;e Gj = é‘ij (A.6)

For Cartesian and local Cartesian basis, dual basis is itself. This concept of dual basis is used for trans-

forming strains. For example, consider that strain components are given for covariant component and contra-

. . . . R P
variant basis and we want to transform it into local Cartesian basis { €;}, i.e. we want to know the compo-
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nents of the same strain in local Cartesian coordinate. Because strain is a second-order tensor, writing cova-

. 1= . | . L o
riant componentas gjj and local Cartesian components as &;; , following equation is satisfied.

ij o
|- = = T
&= €' G®'G,=¢,'6, Q'€ (A7)
Fromthis, unknown components in local Cartesian basis is,

'e,='6 o('c,,'6,0'€,)e'E, =", -('Ers'ér®'és)-'éj='2i,- ('6¢'G,)('E;*'G,) (A8)

If known and unknown are reversed, we similarly apply dot product for the dual basis of known co m-

ponent to the basis of unknown component.
= 0z AT IR olf Valms = ol Mz oz vals | (= =z \l= =
cij=0, (& G, ®G,)eq;=0;o(s, €ERE)ed;=¢,(G*€)(TG;*E) (A.9)
Now let us assume every configuration fromtime O to time t is known. We want to solve for incremen-
tal displacement U to get to the unknown configuration at time t + At as in the following equation.
TG0 O (A.10)
Notice that not only the coordinates at the nodes, but also the change in director vectors V¥ should be
given for each configuration. This is done by adopting two rotational degrees of freedom ¢, and ,Bk per
each node. Using small-rotations, director vectors in unknown configuration is given by
t+At\7k:t\7k +\7k (A11)
7k _ t7k t\7 k
VK =V¥a, +V/ B, (A12)
Where t\71k and t\72k are vectors orthogonal to V¥ defined as
ty7 k = N7k Jllg Lt\7k
Vi =<'V e,V (A.13)
7Tk 7k 7k
AAERVARVA (A.14)
where §2 is the second Cartesian basis. The rotation degrees of freedom are not accumu lated and just

t+At\7 k

used to update the vector . At the start of each iteration where configuration at time T+ At is solved

. . : YL 7k
from previous information, values of ¢, and /3, are reset to zero. Also, vectors 'V, and 'V, are re-

calculated at the start of each iteration using (A.13) and (A.14).
Because (2.43) was formulated in Cartesian system, it is also applied to local Cartesian system. There-

fore, let us assume (2.43) is written in local Cartesian system. Material law for used in (2.43) is defined for

local Cartesian stress o7 and strain & components,

- 50 -



1 v 0 O 0 0
1 0 O 0 0
E 0 O 0 0
C=— (A.15)
= 1-v =0 0
k() 0
Sym. k(%)
o =C¢ (A.16)
' = (GLl On Ox Op Oz 511) (A17)
£ = (‘91,1 £y &3 26 26y 253,1) (A.18)

To calculate the matrices in (2.43) in local Cartesian system, we need to know both total and incre-

mental strains. We use total strain in calculating stresses OtSij identifying OtSij =0y in (A.16). Second, we

use incremental strains to calculate B, and N, .To do so, we start from covariant strain component.

Covariant strain component at the previous of current configuration is given by,
o _1ftm atm Oz 0=
ocij =3(G;*G;—Gi*0;) (A19)

Using (A.19) with (A.8) and (A.16), we calculate OLS which is used to approximate ”AOtSﬂ in the

ﬂ )
iterative equilibrium of (2.43).
We need incremental strain in linear and nonlinear part respectively, which are reproduced in follow-

ing equations.

t+At — t— -
0&ij =0 Eijto&ij (A.20)
0&ij =0E€ij +77; (A.21)

On the other hand, using (A.19) with (A.3) gives alternative form of (A.19).
0Eij Z%(tﬂ”i OOgj+0gi OtU’j—l-tUVi Otl]"j) (A.22)
t—
where the conventiontlIi = 6_u is used. Using (A.22) into (A.20),
ocj =5 (U;e°g;+ G, el +U;eU,+U el;+U;eU,) (A.23)
Using again the definition of (A.3),
oz‘ij =2(U;e gj+

g, el +U, oU,j) (A.24)

-5 -



It can be separated into linear and nonlinear part in (A.21),

0 €ij 2%( g

(Ql
. Cl
=

(A.25)

,Cl

o7y =4 (U, o0 ,) (A.26)

Comparing (2.31) and (A.25), notice that the form of linear incremental strain is simpler because we

expressed it in covariant components. Recall that we need matrices related to linear incremental strain and

virtual non-linear incremental strain,

e, =B.AU, (A.27)

0 8
Sotty, =, Ny AU, (A.29)

In fact, we do not need closed formof B, and N, . Instead, using (A.8), we can transform (A.27)

and (A.28) into the following equations.

Oéije = B_LAU

e (A.27)
_ T—
5077ije =J, N, AU, (A.28)
Now we deal with the form of B_Land NNL.

For the four-node element considered, elemental nodal incremental displacement vector AU can be

expressed in a following form.

AU =(ub w2 oud oot b oud oo oul o oudul A29)
o a, a a, B B B ﬂ4)
Using (A.2), (A.10) and (A.12) form of incremental displacement is
4
t t
uizzhk i —3aZh( VZIak Vllﬂk) (A31)
k=1 2 k=1
Derivatives of incremental displacement in terms of natural coordinates can be expressed as,
ou
QAUe (A.32)
8r =
Qi is 3x20 matrix which is easily calculated from (A.31). Using (A.25),
_ T -
oei, =3('g;' D,+'d,' D)AU, (A.33)

Using (A.28),
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8o, =, $(D,'D; +D;"D)AU, (A34)
From (A.33) and (A.34), we get closed formof B_L and N_NL .

To prevent shear locking, we should use the covariant strains in modified form, called ‘assumed cova-
riant strains’. In covariant components, only the transverse shear strains are modified. The incremental strains

in (A.27) and (A.28), and the total strain in (A.19) should be modified as in the following equations.

082" =1 (1+1)0€x: (10, 1) +3(1-r,)o€2.(-10,1,) (A.35)
0€ae” =1 (1+1,)0€3.(01,1,) + L (1—1,)0€21. (0,-1,T;) (A.36)
Sollose = L+ 1) 07250 (L0, 1) + L (L 1) 47755, (-1,0,1,) (A37)
Sollar.” =3+ 16,)8075. (0L, 1) + £ (L—1,) 5774, (0,-L,1,) (A:38)
062" =L(L+1)0£2(L0,1,) + 1 (L—1)og2s(~10,1,) (A39)
oea” =L(L+1,)0eu (0L, 1,) +4(A—1,)oea(0-11,) (A.40)

Parentheses after each strains means substitution of the natural coordinates.
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Summary

Insight into Newmark time integration parameters in non-linear dynamic
problems
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