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ABSTRACT 

In this study, we ana lyze nonlinear dynamic problems with numerical instability using Newmark (beta-2) 

time integration methods. By performing parameter study of Newmark method, we show that one parameter lead 

to numerical damping and the other parameter lead to period elongat ion only. Period elongation, unlike numeri-

cal damping, has been undiscovered as a role of stabilizat ion in nonlinear dynamic problems. We validate our 

argument by numerical experiments including  Newmark methods and Bathe‟s composite time integration me-

thod. We show that cases exist where numerical damping and period elongation have strength at accuracy over 

each other. This study gives us a motive for a better time integration method in the future, with wider range of 

characteristic including both period elongation and numerical damping.  

 

Keywords: Newmark, time integration, Non-linear dynamics, Non-linear instability, Numerical damping, Period 

elongation 
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Chapter 1. Introduction 

 

We deal with numerical error occur that occurs for nonlinear dynamics  using the fin ite element me-

thod. This numerical error, often called nonlinear instability, has been studied by researchers who deve l-

op time integration methods. We present here the relationship between these three areas, and previous 

studies on time integration methods. 

 

1.1 Finite element method in Nonlinear dynamics 

Fin ite element method (FEM) has been the most successful technique of analyzing structures. Deve l-

opments in FEM made it possible to analyze structures in a more realistic way, by including geometric or ma-

terial nonlinearities which happens for the actual system. On the other hand, in  order to add dynamic effect 

into this non-linear FEM, we cannot use mode-superposition because modes are changing at each step of non-

linear analysis. Only possible method for non-linear dynamic analysis in FEM is to use time integration me-

thod. In time integration method, dynamic effects are included by velocity and acceleration calculated directly 

from the global displacement vector. Time integration method enables us to see the dynamic response inclu d-

ing interaction of every mode in structure. 

On the other hand, time integration method itself has two basic kinds: implicit and exp licit. Strength of 

implicit method over explicit method is that we can use any kind of step size which guarantees analytical st a-

bility of response. Using the larger step size, response gets sparse in time domain and thus lose accuracy. 

However, in non-linear dynamics computation itself is often too costly that we want the response to be calcu-

lated using minimum number of step size. Because such cost-effectiveness could be achieved possibly by us-

ing implicit time integration method, it has been the reason of using implicit time integration in non-linear 

dynamics. 

 

1.2 Nonlinear instability 

Over many years, nature of numerical errors has been investigated. On the other hand, errors that o c-

cur during the analysis have been another concern because sometimes not enough information to deter mine 

the nature of the error. It is hard to decide, therefore, the most efficient way  to suppress the error. This type of 

phenomenon has been widespread in the field  of nonlinear dynamics, especially when high-frequency re-
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sponse was tried  to be calcu lated by using the trapezoidal rule. Because that the trapezoidal ru le was the most 

accurate in the family  of Newmark algorithm, researchers tended to modify the trapezo idal ru le in developing 

new, error-stabilizing algorithms. 

Instability of nonlinear dynamic analysis is dependent on time integration method. Park([1]) and 

Hughes([2]) were the earliest to discover instability of the trapezoidal ru le. Many following researches on 

time integration field([1],[3-12]) was based on the motive that new time integration method is needed. 

Instability of nonlinear dynamic analysis is also dependent on specific problems. Recent papers tended 

to deal with specific examples of nonlinear instability. Instability for large-displacement analysis of truss ele-

ment([6],[8],[9],[12]), two-dimensional solid ([3],[6]), three-dimensional solid([10]), plate element([6]), and 

shell element([4],[11],[13]) were studied. 

There was shift of focus from modify ing time integration method into modifying element formula-

tion([9],[11]). Th is change is along with the time integration method called Energy-Momentum Method or 

EMM([14]). EMM use geometry and strain of mid-configuration fo r calcu lation of the next configuration. 

This means in order to apply EMM, some modification on element level is inevitable. From that point, distinc-

tion between finite element formulat ion/time integration technologies has been blurred. 

 

1.3 Implicit time integration methods 

In order to solve nonlinear instabilities, many implicit t ime integration methods has been developed. 

Those studies can be classified into two major categories, methods with numerical damping and methods with 

average configuration. In fact, most of research papers devoted to time integration methods fall into category 

with  numerical damping. In 1970‟s, based on the observation of Park, three-step method of Park([1]), HHT-α 

of Hilber([5]), and generalized-α of Chung([15]) were developed. Recently, Baig([3]) developed composite-

time integration, Dong([10]) created BDF-like method, and Liu([6]) applied  backward-Euler method on insta-

bility problems. On the other hand, papers related to average configurat ion are relat ively s mall. Simo([11]), 

Kuhl([12]) and their co-workers studied the use of EMM, proposed by Simo([14]). However, Kuhl([4],[13]) 

observed convergence problem of EMM to create methods with numerical damping, CEMM and GEMM. 

Another major advantage of using numerical damping instead of average configuration is that no modification 

is required for the fin ite element. Similarly, we present a method which  came the from parameter choice of 

classical Newmark method to be used just like method with numerical damping. Novel part of this method is 

that it does not use numerical damping, but just period elongation to solve instability problems. So far, no 

study was related to use of period elongation in solving instability, although the period elongation itself is a 

property common to all time integration methods. Further, we leave a room for a new t ime integration method 

including both period elongation and average configuration , or method that selectively encompasses period 
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elongation and numerical damping. 
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Chapter 2. General Theory 

 

2.1 Non-linear formulation for structure 

Formulat ion of non-linear dynamics is essentially based upon two things: non-linear formulation of 

structure and time integration method. To begin with , we review non-linear fin ite element formulat ion for 

static analysis. 

Classically, there are two kinds of non-linear formulation of structure: Total Lagrangian and Updated 

Lagrangian formulation. The two  formulations are analytically  identical if relevant  assumptions are used. 

However, our paper focuses on numerical instability which is not under control by analytic assumptions. Re-

garding this, many studies have been done implying it is better to use UL formulation than TL in  dyna mic 

analysis. We want to apologize  that, on the other hand, due to subtleness of formulation in non-linear dynam-

ics the numerical results in this paper were performed by finite element software ADINA V8.8. We explain 

the TL formulation as used in ADINA. 

 

2.1.1 Basic equation 

 

Figure 2.1. Init ial and current geometry of body of a structure 
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Consider the structure with domain given in Fig. 2.1. Let us denote position of material particle P to be 

ix with left superscript denote configuration. Displacement 
iu at time t is written as, 

ii

t

i

t xxu 0                                       (2.1) 

Advantage of using TL over UL is we can use familiar strain measure, Green -Lagrange strain. Green-

Lagrange strain tensor is defined as 

)(
002

1

0
IXX

tTtt
                                  (2.2) 

j

i

t

ij

tt

x

x
XX

000 


                                    (2.3) 

where ij

t X0 is deformat ion gradient and indices run  from 1 to 3.  This deformation grad ient can de-

composed into rotational part R
t

0
and stretching part U

t

0
, 

URX
ttt

000
                                       (2.4) 

where is R
t

0
an orthogonal matrix. Using this, it is easy to show that the Green-Lagrange strain is in-

variant under rig id-body rotation. 

Before setting up an equilibrium equation, we want to find a stress measure where the work composed 

of the stress measure and Green-Lagrange strain is invariant under rig id-body rotation. Such known stress 

measure is second Piola-Kirchhoff stress, defined from physical Cauchy stress  like below. 

T

t

t

tt

t

sj

T

trs

t

irttij

t XXSXXS
00

0

0

00
0

0 )( 








                      (2.5) 

where  is density of material point, ijt X0
is inverse of the deformation grad ient ij

t X0 and indices 

run from 1 to 3. Important feature of this stress measure is that it is invariant under rigid -body rotation. Con-

sider rig id body rotation R has occurred from configuration t to tt   so that xRx ttt 
00 

. Using trans-

formation of second order tensor, 

Tttt
RR  


                                     (2.6) 

and from transformation of geometry,  

XRX
ttt

00



                                      (2.7) 

finally from physical consideration, 

 ttt 
                                         (2.8) 
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From these it is easy to show that ij

t

ij

tt SS 00 
. 

On the other hand, Green-Lagrange strain in index fo rm is, 

)()(
00002

1
002

1
0

j

k

t

i

k

t

j

i

t

i

j

t

ij

j

k

t

i

k

t

ij

t

x

u

x

u

x

u

x

u

x

x

x

x



























                (2.9) 

This strain is often called separately as linear strain and nonlinear strain as in following equations. 

ij

t

ij

t

ij

t e  000                                      (2.10) 

)(
002

1
0

j

i

t

i

j

t

ij

t

x

u

x

u
e









                                  (2.11) 

)(
002

1
0

j

k

t

i

k

t

ij

t

x

u

x

u








                                   (2.12) 

 In non-linear analysis, equilibrium equation must be set up in the current configuration. Otherwise, 

we cannot detect geometrical non-linearity  arising from change in  geometry during  the analysis. For the body 

in Fig., we apply a virtual d isplacement field u on the current configuration. By principle o f virtual dis-

placement, following equilibrium equation is obtained. 

RVde tt

V

ijtij

t

t

                                      (2.13) 

)(
2
1

j

t

i

i

t

j

ijt
x

u

x

u
e












                                 (2.14) 

Here Rt
is external load, is ij

t physical Cauchy stress on current configuration, and ijte is virtual 

linear strain produced by the applied virtual displacement. Th is virtual linear strain can be related to Green-

Lagrange strain. If we take variat ion of (2.2),  

)(
00002

1

0
XXXX

tTttTtt
                              (2.15) 

also note that 

j

k

t

k

t

i

j

i

j

i

t

ij

t

x

x

x

u

x

u

x

x
X

0000




















                           (2.16) 

which can be written in matrix form, 

XuX
t

t

t

00
                                        (2.17) 

j

t

i
ijtt

x

u
uu







 )(                                    (2.18) 
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Finally we relate the virtual linear strain in terms of virtual strain measure, or virtual Green-Lagrange 

strain. 

XeXXuuX
t

t

Ttt

t

T

t

Ttt

0002
1

00
))((                        (2.19) 

where 
ijtt ee   is the virtual linear strain. 

 (2.5) and (2.19) are rewritten using notation ij

t

j

i

t

ji

t X
x

x
x 00,0 




 and substituted to (2.13),  
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VdSVdSVdS

VdxxxxSVde

t
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00

0

00

0

00000

0,
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,

0

,0,000

:)(

))((:












       (2.20) 

We now distinguish the current configuration to be at  time tt  , to d istinguish the configuration at 

time t to be known configuration jus t before the current configuration. Finally, in TL formulation non-linear 

equilibrium equation is, 

RVdS tt

V

ij

tt

ij

tt  
0

00
0

                               (2.21) 

 

2.1.2 Linearization of basic equation 

 Having distinguished time t and time tt  to be known and unknown configuration respectively, 

we need to use the known information into (2.21) and linearize it. First, we decompose displacement into 

known and unknown quantities. 

ii

t

i

tt uuu 
                                   (2.22) 

where iu is called incremental displacement.  

In each step, we must apply virtual d isplacement in lastly known configuration, in this case, time t . 

Therefore, v irtual quantity of (2.22) reduces to 

iii

t

i

tt uuuu  
                              (2.23) 

Using defin ition of (2.9) and (2.22), v irtual Green-Lagrange strain is also written in terms of known 

and unknown quantities. 

ijij

t

ij

tt  000 
                                    (2.24) 
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

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




             (2.25) 

where ij0 is called incremental Green-Lagrange strain. Taking virtual the quantity of (2.24) and us-

ing (2.23), 

ijijij

t

ij

tt  0000 
                            (2.26) 

We can also think of decomposing the second Piola Kirchhoff stress. 

ijij

t

ij

tt SSS 000 
                                   (2.27) 

In this case, incremental second Piola-Kirchhoff stress ijS0 is not related to other quantities. Here, we 

adopt linearization assumption. 

rsijrsrs

trs

t

ij

t

ij Ctermsorderhigher
S

S 


000

0

0

0 



                  (2.28) 

where we have assumed that value of 

rs

t

ij

tS

0

0




is constant throughout the whole configuration change. 

This assumption of linear elastic material law on non-linear case is called St. Venant Kirchhoff material law. 

Putting (2.25), (2.26) and (2.27) into (2.21) we get linearized equilibrium equation, 

RVdSVdC tt

V

ijij

t

V

ijrsijrs

 
0

00

0

000
00

                    (2.29) 

For computational purpose, we separate incremental strain (2.25), 

ijijij e  000                                      (2.30) 
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                   (2.31) 
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






                                 (2.32) 

Quantity ije0 and ij0 are called incremental linear and non-linear strain respectively. ije0 represents 

linear part of incremental strain. We apply linearization to (2.29) once more,  

VdeSRVdSVdeeC
V

ijij

ttt

V

ijij

t

V

ijrsijrs

0

00

0

00

0

000
000

               (2.33) 

 

 



 

- 9 - 

2.1.3 Linearized equation including dynamic effect  

Consider a body force is included in the right-hand side of equilibrium equation (2.13). By principle o f 

virtual d isplacement, 

 
V

t

ii

tt

V

ijtij

t

tt

VdufRVde                            (2.34) 

By D‟Alembert‟s Princip le, dynamic effect can be thought as a body force 
i

tt

i uf   with density 

 and acceleration u . Substituting to (2.34), 

 
V

ii

tt

V

t

ii

tttt

V

ijtij

t VduuRVduuRVde
tt 0

00               (2.35) 

Making the current configuration as time tt  and applying (2.35) to (2.33), 

VdeSVduuRVdSVdeeC
V

ijij

t

V

ii

tttt

V

ijij

t

V

ijrsijrs

0

00

000

00

0

000
0000

       (2.36) 

In (2.36), v irtual displacement u is applied on the current configuration at time tt  . 

 

2.2 Discretized equation and solution procedure  

 (2.36) can be discretized by using isoparametric interpolation procedure in finite element method. 

That is, on the element domain of eV0
, 

ee UHu                                       (2.37) 

eee

tt

e UHUHuu  


                         (2.38) 

e

tt

e

tt
UHu  

                                    (2.39) 

where U is nodal displacement vector after assemblage and eU denote elemental nodal displacement 

vector. U is incremental nodal displacement, analogous to incremental displacement in (2.22). Using these 

displacement interpolation and definit ion (2.31) and (2.32), incremental strains are interpolated in  a similar 

manner. 

eLe
UBe 

0
                                     (2.40) 

eNL

T

e
e

UNU 
0

                                 (2.41) 

Equilibrium equation (2.36) on element domain then becomes  



 

- 10 - 



















































 VdSBUUVdHHUR

UVdNSVdBCBU

ee

e

V

T

L

T

ee

tt

V

TT

ee

tt

e

V

NLe

V

L

T

L

T

e

000

00

00

00

:







            (2.42)  

where material law C and stresses S and S are appropriately defined. We can assemble the element 

domains eV0  into global domain V0
. Regard ing external force as external v irtual work and canceling the 

virtual quantities, final d iscretized equilibrium equation in matrix form is,  

FRUKKUM tt

NLL

tt   )(                          (2.43) 

 

e V

L

T

L

tt

L VdBCBUK

e

0

0

)(                            (2.44) 

 

e V

NL

T

NL

tt

NL VdBSBUK 0

0

)(                           (2.45) 

 
e V

T
VdHHM

e

00

0

                                 (2.46) 

 

e V

T

L

tt VdSBUF

e

0

0

)(                               (2.47) 

Parenthesis in (2.44), (2.45) and (2.47) indicates that the entries are function of current displacement. 

To illustrate its usage, we discuss in Appendix the forms  of the matrices used in (2.42) for four-node shell 

element. 
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Chapter 3. Time Integration Methods 

 

3.1 Newmark time integration method 

In (2.43), we d id not have information about Utt 
. We wish to solve (2.43) in  terms of Utt 

 only, 

and method required for doing so is time integration method. 

Basic equation of Newmark time integration([16]) is the following two assumptions. 

22
)1(

2

0

2

0

t
U

t
UtUUU ttttttt 




                      (3.1) 

tUtUUU tttttt   
11)1(                           (3.2) 

Newmark t ime integration has two parameters of 
0 and 

1 , which we would  preferab ly call New-

mark(
0 ,

1 ). These two parameters play important role in changing error characteristic of Newmark time 

integration method, as discussed next.  

rxx  2                                      (3.3)  

Any time integration methods have inherent analytical erro r. Depending on the discretization and fre-

quency of structure, time integration methods exhibits two types of error, amplitude decay and period elo n-

gation. The two  errors literally  means what happens for homogeneous solution of (3.3) was analyzed  by any 

time integration method. (3.3) is one-degree-of-freedom system with displacement x , frequency , where 

r is excitation due to external load or initial conditions. To apply implicit  time integration method, equil i-

brium equation of (3.3) is discretized for the current step.  

rxx tttttt   2                                  (3.4)  

In order to see inherent error of using time integration for the discretized equilibrium equation, we a t-

tempt to extract  characteristic of homogeneous solution. As in [5], [17] and [18], (3.1), (3.2) and (3.4) can be 

rearranged in the fo llowing form. 
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                                 (3.5)  

 In (3.4), responses in the next step are determined by those of previous step, with multip licat ion by 

matrix A and addition with vector L. It  is the matrix A which contains the information about the two types of 
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error. This matrix is called amplification matrix, and for the Newmark method following form is o btained. 
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             (3.6)  

1

02
11 )( 22




 

 t
                                 (3.7)  

(3.6) has three eigenvalues, one zero e igenvalue and two complex conjugate ones. Amplitude error can 

be investigated from absolute value of maximum eigenvalue of ( 3.6), which is given by the following equa-

tion, (3.8). 

)4448(
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


       (3.8) 


2T                                         (3.9)  

This value is called spectral radius of Newmark time integration method. This value can be plotted 

with a range of non-dimensional frequency Tt / , where T is period which is related to frequency   

by (3.9). Since given analytical amplitude of response is 1.0, spectral radius less than 1.0 means amplitude 

error occurs. On the other hand, if the spectral radius is greater than 1.0 response become magnified at each 

step until it diverge. Therefore, spectral radius must be less than or equal to 1.0 to insure analytical stability 

of analysis.  

Calculated period is also not the same to analytical period T . Calcu lated frequency  is related to 

phase of maximum eigenvalue of (3.5)   by, 

t
                                        (3.10)  
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22222
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



 

    (3.11) 

From th is, calculated period T is given and relative period elongation can be constructed, which is al-

so a function of non-dimensional frequency. 

T

TT
elongationperiod


                             (3.12)  
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Figure 3.1. Spectral radius of Newmark method 
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Figure 3.2. Period elongation of Newmark method 
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

2T                                        (3.13)  

Spectral rad ius and period elongation for various parameter of Newmark method is shown in Fig. 3.1 

and Fig. 3.2. Choice of parameter Newmark(0.5,0.5) is called the trapezoidal ru le. 

On the other hand, value of spectral radius less than 1.0 for high values of non-dimensional frequency 

has been a desirable characteristic for t ime integration methods, because it can prevent nonlinear instability. 

If value of spectral rad ius is less than 1.0, given time integration method is referred  as „method with numeri-

cal damping‟ and this characteristic is itself called numerical damping. 

Larger value o f parameter 
1 increases numerical damping, while larger value of parameter 

0 in-

creases period elongation. These distinctive parameters are main characteristic of Newmark method. If 

2
1

1  , parameter 
0 is independent of numerical damping, but it introduce more period elong ation. This 

parameter choice, i.e. increase of 
0 with 

2
1

1  , is of significant importance because we can decouple and 

apply only the period elongation. 

 

3.2 Bathe composite time integration method 

Many methods related to numerical damping have been studied. Many of them have parameters to in-

troduce numerical damping or addit ional constraints which naturally result in numerical damping. Bathe co m-

posite method([7],[8]) is one o f them, and numerical damping is introduced with three-point backward  differ-

ence formula applied at the second sub-step. We describe this process in detail.  

Basically, like other „composite‟ methods, Bathe composite method uses sub-step. It means that for a 

given value of t we actually use 
n
t , perform n times the computation than the original method, and use 

only the finally computed values as  responses. Bathe composite method is a two-substep method, and for the 

first sub-step it uses the trapezoidal ru le. 

4

)2/(

4

)2/(
)2/(

22

22
t

U
t

UtUUU
tt ttttt 





                    (3.14) 

)2/(
2

1
)2/(

2

1
22 tUtUUU
tt tttt


                           (3.15) 

For the second sub-step, three-point backward difference formula is applied to velocity and accelera-

tion, replacing the two orig inal assumptions. 

UcUcUcU ttttt
t

  


321
2                            (3.16) 

UcUcUcU ttttt
t

 


321
2                            (3.17) 
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.where constants are given by 





t
c






1
1

, 
t

c





 )1(

1
2

, 
t

c





)1(

2
3




                    (3.18) 

With normal splitting of time step, i.e. using 
2
t for the first sub-step, 5.0 performs well, as de-

scribed in [7]. 

In addition, any method can be made as sub-step method. Normally if we do not have additional multi-

step constraint like (3.16) and (3.17), we do not make an algorithm sub-step. In this paper, however, Newmark 

method was made as two-substep method in o rder to equalize computational cost with the Bathe comp osite 

method. 

 

3.3 Solution procedure 

We solve (2.43) in  terms of incremental d isplacement, updating the current displacement, velocity and 

acceleration. However, right-hand-side of (2.43) has unknown, as (2.47) is unknown and changing. Therefore, 

we solve iteratively with the updates of (2.44), (2.45) and (2.47). This process is on Table 3.1. 

Table 3.1. Computational processs for equilib rium 

Given the current step tt  , 

assume for in itial iteration 
)()1( iterationlastttt UU 
and 

)()1( iterationlastttt
FF 


 

Iterate for ,..2,1i  Solve (2.43) with time integration assumption ((3.1); (3.14); (3.16))  

to obtain U  

If right-hand-side of (2.42) is under tolerance of (3.18), exit. 

Update UUU ittitt   )1()(
 

Update (2.44), (2.45), (2.47) 

Update UU tttt   ,  using time integration assumptions 

((3.1) and (3.2);  (3.14) and (3.15); (3.16) and (3.17)) 

 

Notice that as equilibrium is met, both sides of (2.43) gets smaller and smaller. Thus, we can stop the 

solution process with giving s mall tolerance to right-hand-side of (2.43). ADINA use energy tolerance, 

etol
RHSU

RHSU
T

iTi






)(

)(
)1()1(

)()(

                              (3.18) 

where 310etol is given as defau lt. Process in Table 3.1 is fu ll Newton-Raphson iteration since left-
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hand-side of equilibrium, (2.44) and (2.45), are updated after each iteration. 

 

3.4 Other methods 

There are other important time integration method, Midpoint rule([11],[12]) and Energy-Momentum 

Method([4],[11],[12],[13],[14]). Reason we are giv ing here is they are sensitive to entire formulat ion and so-

lution process. We had no chance to rigorously formulate those methods. According to [12], both methods use 

following equilibrium. 

2
1

2
1

2
1

2 )( FRUKKUM tt

NLL

t t

  

                       (3.19) 

We only discuss difference in (2.46). Midpoint ru le use following internal force. 

   

e V

tttTttt

L

tt VdUUSUUBUF

e

0

2
1

2
1

0
2
1 ))(()))((()(            (3.20) 

Parentheses after 
2
1F , LB and S indicate dependence to displacement. Notice that we use mid-

point equilibrium and matrices computed via mid-point d isplacements. For Energy-Momentum Method, in-

ternal force is different with mid-point ru le. 

   

e V

tttTttt

L

tt VdUSUSUUBUF

e

0

2
1

2
1

0
2
1 ))()(()))((()(          (3.21) 

In this case, stresses are averaged instead of displacements. 
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Chapter 4. Numerical Results 

 

4.1 Rotating pendulum 

We solve rotating pendulum problem in [8]. Schema and description of numerical rotating pendulum 

model is shown in Fig. 4.1. It is modeled with single two-node truss (rod or bar) element. The model is sub-

jected with no external loading except for in itial conditions. Initial velocity drives the rotating pendulum and 

initial accelerat ion was applied for canceling out centrifugal accelerat ion at the tip. 

 

Figure 4.1. Schema and description of the numerical rotating pendulum model 
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Table 4.1. Choice of parameter of numerical rotating pendulum for the evaluation of performance 

Method Parameter Step size ( t ) Stiffness (EA ) 

The trapezoidal rule  - s01.0  N1010  

Two-substep Newmark )5.0,6.0(  s5.0  N310  and N1010  

Bathe composite - s5.0  N310  and N1010  

 

For the trapezoidal ru le, small step size and default stiffness was selected for the demonstration of in-

stability. Because use of small step size with candidate methods give almost exact solution for this problem, 

response using the larger step size was demonstrated for comparison of the candidate methods. Because d o-

minant global response, a low-frequency motion of rigid-body rotation of rotating pendulum, is depending on 

density and initial velocity and not on stiffness, stiffness was changed to observe variety of solutions. 

Fig. 4.2 to 4.11 shows velocity and acceleration of the methods in Table 4.1.  

When the trapezoidal rule is used, velocity and kinetic energy are conserved exactly until continuous 

accumulat ion of acceleration stops the solution. On the other hand, two-substep Newmark(0.6,0.5) and Bathe 

composite method remains converged even for the larger step size and variety of stiffness. 

Unlike Bathe composite method, two-substep Newmark(0.6,0.5) showed almost no decay of velocity 

in stiffness N1010 . Strength and weakness of those two candidate methods can be compared for the case of 

stiffness N310 . Th is case also shows that two-substep Newmark(0.6,0.5) has better conservation of velocity, 

but smoothness of accuracy is better for Bathe composite method. In the next example, these  differences are 

demonstrated in a more dramat ic manner.  
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Figure 4.2. Velocity of the numerical rotating pendulum model using the trapezoidal  

rule, NEA 1010 , st 01.0  
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Figure 4.3. Acceleration of the numerical rotating pendulum model using the trapezoidal rule, NEA 1010 , 

st 01.0  
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Figure 4.4. Velocity of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5) method, 

NEA 1010 , st 5.0  
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Figure 4.5. Velocity of the numerical rotating pendulum model using Bathe composite method, NEA 1010 , 

st 5.0  
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Figure 4.6. Acceleration of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5) 

method, NEA 1010 , st 5.0  
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Figure 4.7. Acceleration of the numerical rotating pendulum model using Bathe composite method, 

NEA 1010 , st 5.0  
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Figure 4.8. Velocity of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5) method, 

NEA 310 , st 5.0  
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Figure 4.9. Velocity of the numerical rotating pendulum model using Bathe composite method, NEA 310 , 

st 5.0  
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Figure 4.10. Acceleration of the numerical rotating pendulum model using two-substep Newmark(0.6,0.5) 

method, NEA 310 , st 5.0  
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Figure 4.11. Acceleration of the numerical rotating pendulum model using Bathe composite method, 

NEA 310 , st 5.0  
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4.2 Compound pendulum 

We solve compound pendulum in [7]. It is modeled with 40 four-node two-dimensional solid  ele-

ments, two elements in the thickness direction and 20 elements in the longitudinal direction. The model is 

subjected to mass-proportional loading of gravity, which gives in itial potential energy for the mot ion of the 

compound pendulum. 

 

Figure 4.12. Schema and description of the numerical compound pendulum model 

Table 4.2. Choice of parameter of numerical compound pendulum for the evaluation of performance  

Method Parameter Step size ( t ) Stiffness (E ) 

The trapezoidal rule  - s005.0  211 /102 mN  

Two-substep Newmark )5.0,6.0(  s05.0  27 /101 mN  and 211 /106 mN  

Bathe composite - s05.0  27 /101 mN  and 211 /106 mN  

 

As in the literature, the trapezoidal rule was used to show instability of the numerical compound pen-

dulum model. Again, use of small step size with candidate methods give almost exact solution for this pro b-

lem, response using the larger step size was demonstrated for comparison of the candidate methods. Because 

dominant global response, a low-frequency motion of rigid -body swing of compound pendulum, is depending 
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on density and gravity and not on stiffness, stiffness was changed to observe variety of solutions. 

Fig. 4.13 to 4.27 shows velocity, acceleration and kinetic energy of the methods in Table 4.2. 

When the trapezoidal rule is used, velocity and kinetic energy are conserved exactly until continuous 

accumulat ion of acceleration stops the solution. On the other hand, two-substep Newmark(0.6,0.5) and Bathe 

composite method remains converged even for the larger step size and variety of stiffness. 

One difference between two-substep Newmark(0.6,0.5) and Bathe composite is  degree of conservation 

of amplitude of velocity and kinetic energy. In this problem, two-substep Newmark(0.6,0.5) conserved those 

quantities better than Bathe composite method. It means for this problem, period elongation performs better 

than amplitude decay (numerical damping) in terms of conservation. On the other hand, one weakness of two-

substep Newmark(0.6,0.5) is revealed via accelerat ion. For stiffness of 27 /101 mN , two-substep New-

mark(0.6,0.5) have spurious high-frequency response as like the trapezoidal ru le demonstrated in the other 

literature [17] for simpler ODE problem. Thus, two-substep Newmark(0.6,0.5) should be used for the prob-

lems where conservation of velocity and kinetic energy is more important than response of acceleration itself. 
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Figure 4.13. Velocity of the numerical compound pendulum model using the trapezoidal rule , 

211 /102 mNE  , st 005.0  
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Figure 4.14. Acceleration of the numerical compound pendulum model using the trapezoidal ru le, 

211 /102 mNE  , st 005.0  
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Figure 4.15. Kinetic energy of the numerical compound pendulum model using the trapezoidal rule , 

211 /102 mNE  , st 005.0 . Straight reference line indicates init ial potential energy. 
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Figure 4.16. Velocity of the numerical compound pendulum model using two-substep Newmark(0.6,0.5) 

method, 211 /106 mNE  , st 05.0  
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Figure 4.17. Velocity of the numerical compound pendulum model using Bathe composite method, 

211 /106 mNE  , st 05.0  
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Figure 4.18. Acceleration of the numerical compound pendulum model using two-substep Newmark(0.6,0.5) 

method, 211 /106 mNE  , st 05.0  
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Figure 4.19. Acceleration of the numerical compound pendulum model using Bathe composite method, 

211 /106 mNE  , st 05.0  
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Figure 4.20. Velocity of the numerical compound pendulum model using two-substep Newmark(0.6,0.5) 

method, 27 /101 mNE  , st 05.0  
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Figure 4.21. Velocity of the numerical compound pendulum model using Bathe composite method, 

27 /101 mNE  , st 05.0  
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Figure 4.22. Acceleration of the numerical compound pendulum model using two-substep Newmark(0.6,0.5) 

method, 27 /101 mNE  , st 05.0  
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Figure 4.23. Acceleration of the numerical compound pendulum model using Bathe composite method, 

27 /101 mNE  , st 05.0  
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Figure 4.24. Kinetic energy of the numerical compound pendulum model using two-substep 

Newmark(0.6,0.5) method, 211 /106 mNE  , st 05.0 . Straight reference line indicates initial potential 

energy. 
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Figure 4.25. Kinetic energy of the numerical compound pendulum model using Bathe composite method, 

211 /106 mNE  , st 05.0 . Straight reference line indicates init ial potential energy. 
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Figure 4.26. Kinetic energy of the numerical compound pendulum model using two-substep 

Newmark(0.6,0.5) method, 27 /101 mNE  , st 05.0 . Straight reference line indicates initial potential 

energy. 
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Figure 4.27. Kinetic energy of the numerical compound pendulum model using Bathe composite method, 

27 /101 mNE  , st 05.0 . Straight reference line indicates init ial potential energy. 
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4.3 Cantilever beam 

We solve cantilever beam in [7]. It  is modeled with 400 nine-node two-d imensional solid  elements, 

one element in the thickness direction and 400 elements in the longitudinal direction. It is subjected to (dis-

placement-dependent) pressure load on the top side. 

 

Figure 4.28. Schema and description of the numerical cantilever beam model 

Table 4.3. Choice of parameter of numerical cantilever beam for the evaluation of performance  

Method Parameter Step size ( t ) 

The trapezoidal rule  - s002.0  

Two-substep Newmark )5.0,5001.0(  and )5.0,6.0(  s004.0  

Bathe composite - s004.0  

 

The trapezoidal rule  was used to show instability of the numerical cantilever beam model. For two -

substep Newmark and Bathe composite method, twice the step size for the trapezoidal rule was used. Because 

both of the two methods are two-substep method, we used essentially  the same step size for all the methods in 
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real computation. 

Fig. 4.29 to 4.40 shows displacement, velocity and acceleration of the methods in Table 4.3. 

Displacement, velocity and accelerat ion response of numerical cantilever beam shows that Bathe co m-

posite method exh ibit slightly more decay than two-substep Newmark method. It means that period elongation 

is better than numerical damping for analysis of numerical cantilever beam prob lem.   
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Figure 4.29. Displacement of the numerical cantilever beam model using the trapezoidal ru le, st 002.0  
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Figure 4.30. Velocity of the numerical cantilever beam model using the trapezoidal rule , st 002.0  
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Figure 4.31. Acceleration of the numerical cantilever beam model using the trapezoidal ru le, st 002.0  
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Figure 4.32. Displacement of the numerical cantilever beam model using two-substep Newmark(0.5001,0.5) 

method, st 004.0  
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Figure 4.33. Displacement of the numerical cantilever beam model using two-substep Newmark(0.6,0.5) 

method, st 004.0  



 

- 37 - 

time

z
-d

is
p
la

c
e
m

e
n
t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

 

Figure 4.34. Displacement of the numerical cantilever beam model using Bathe composite method, 

st 004.0  
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Figure 4.35. Velocity of the numerical cantilever beam model using two-substep Newmark(0.5001,0.5) 

method, st 004.0  
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Figure 4.36. Velocity of the numerical cantilever beam model using two-substep Newmark(0.6,0.5) method, 

st 004.0  
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Figure 4.37. Velocity of the numerical cantilever beam model using Bathe composite method, st 004.0  
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Figure 4.38. Acceleration of the numerical cantilever beam model using two-substep Newmark(0.5001,0.5) 

method, st 004.0  
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Figure 4.39. Acceleration of the numerical cantilever beam model using two-substep Newmark(0.6,0.5) 

method, st 004.0  
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Figure 4.40. Acceleration of the numerical cantilever beam model using Bathe composite method, 

st 004.0  

 

4.4 Cylindrical shell 

Kuhl([4],[13]) observed convergence problem of EMM to create methods with numerical damping, 

CEMM and GEMM. This example was designed to follow closely the cylindrical shell in  [4] and [13]. Eight-

node isoparametric shell element with five degrees of freedom per node with 2x2 Gauss integration per ele-

ment was used. Because rotation degrees of freedom are used just to correctly update director vectors per ele-

ment, physical boundary condition was applied to t ranslational degrees of freedom only. Because the director 

vectors are set default by ADINA, and because of difference in shell formulation from [4] and [13], response 

is slightly different with the references. 
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Figure 4.41. Schema and description of the numerical cylindrical shell model 

Table 4.4. Choice of parameter of numerical cy lindrical shell for the evaluation of performance  

Method Parameter Step size ( t ) 

The trapezoidal rule  - s0005.0  

Two-substep Newmark 
)5.0,6.0( , )5.0,55.0(  and 

)55.0,55.0(  
s001.0  

Bathe composite - s001.0  

 

The trapezoidal ru le was used to show instability of the numerical cylindrical shell model. Half the 

step size than the literature was used for showing instability after longer analysis time. For two-substep New-

mark and Bathe composite method, twice the step size for the trapezoidal ru le was used. Because both of the 
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two methods are two-substep method, we used essentially the same step size for all the methods in real com-

putation. 

Fig. 4.42 to 4.46 shows displacement of the methods in Table 4.4.  

Displacement response of numerical cylindrical shell shows two things, i.e. buckling and post -

buckling vibrat ion. Two displacements at the center line of hinged boundaries of cylindrical shell shows that 

the initially convex model becomes concave, and vibrates in that concave circumstance. As  the entire struc-

ture fluctuate, amplitude of vibration at the center line decreases until stabilized vibration of constant ampli-

tude occurs. When the trapezoidal ru le is used, solution is stopped shortly after d isplacement undergoes stabi-

lized v ibration. 

Among the candidate methods, Bathe composite method shows the most good stabilized vibrat ion in 

terms of large amplitude and its preservation. For two-substep Newmark method, parameter (0.6,0.5) was 

better than (0.55,0.5) while both of them use period elongation and no numerical damping. It turned out that 

method with numerical damping is more suitable for solving the numerical cylindrical shell model than that of 

period elongation. For two-substep Newmark method, parameter (0.55,0.55) was better than both parameter 

(0.55,0.5) and (0.6,0.5) that the post-buckling vibrat ion has high and preserved amplitude at the stabilized 

range of time. Notice that post-buckling vibration of two-substep Newmark (0.55,0.55) and Bathe composite 

are almost the same. By  adjusting the parameters in two-substep Newmark, we could almost catch up the per-

formance of Bathe composite. 
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Figure 4.42. Displacement of the numerical cylindrical shell model using the trapezoidal rule , st 0005.0  
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Figure 4.43. Displacement of the numerical cylindrical shell model using two-substep Newmark(0.6,0.5) 

method, st 001.0  
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Figure 4.44. Displacement of the numerical cylindrical shell model using two-substep Newmark(0.55,0.5) 

method, st 001.0  
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Figure 4.45. Displacement of the numerical cylindrical shell model using two-substep Newmark(0.55,0.55) 

method, st 001.0  
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Figure 4.46. Displacement of the numerical cylindrical shell model using Bathe composite method, 

st 001.0  
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Chapter 5. Conclusion 

 

We have studied various parameter values of Newmark time integrat ion method into non-linear dy-

namic problems with instability. We have observed that parameter of Newmark t ime integration is meaningfu l 

for solving such instabilit ies. Increase of
0 in Newmark(

0 ,
1 ) method from the trapezoidal ru le gives me-

thod with period elongation, and increase of
1 in Newmark(

0 ,
1 ) method from the t rapezoidal rule  gives 

method with numerical damping. Strength at accuracy of choosing period elongation or numerical damping 

depends on each problem of nonlinear instability. Therefore, a  wise choice between numerical damping and 

period elongation is required for any time integration method. Most of all, very few method  have only period 

elongation without numerical damping like Newmark(
0 ,0.5). Further study of Newmark(

0 ,0.5) will aid in 

development of new t ime integration method in the future. 
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Chapter A. Formulation of shell elements 

 

We present here non-linear four-node shell element with five degrees of freedom per node. To Clarify, 

Configurat ion at time tt   and time t in here means the last and the previous of each iteration. Therefore, 

processes in this section should be used to update (2.44), (2.45) and (2.47) per each iteration. 

 

Figure A.1. Init ial and current geometry of shell element  

Geometry of init ial and current configuration is interpolated like below. 
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Here right superscript on x denotes node number, so too the right subscript on h . h is shape func-

tion common for isoparametric elements, with natural coordinates 1r and 2r . 3r  is the third natural coordi-
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nate, and a is thickness of the shell. The natural coordinates range from -1 to 1 and cover entire geometry for 

each configuration. 

Besides the Cartesian coordinate system, two more coordinate system should be given for each confi-

guration: covariant coordinate system and local Cartesian coordinate system. 

For configuration l , covariant bases are defined as 

i

l

i

l

r

x
g









                                       (A.3) 

The set of three vectors { 321 ,, ggg lll 
} form a basis. Notice that this basis changes not only by confi-

guration, but also within the element geometry. Th is covariant basis is for computing strains within the ele-

ment. Also notice from the defin ition covariant base vectors follow the line of increasing the respective natu-

ral coordinates. 

Another basis is local Cartesian basis, which can be calculated from covariant basis like below. We 

first normalize the three vectors in covariant basis. 
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The vectors in the set { 1,r

l e


, 2,r

l e


, 3,r

l e


} are now of unit length, but they are not orthogonal to each 

other. We make a set of orthogonal vectors, 
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The set of resulting vectors { 1el 
, 2el 

, 3el 
} are now orthonormal to each other. This basis is called lo-

cal Cartesian basis. Notice from (A.1) and  (A.2) the third  natural coordinate is always perpendicular to the 

mid-surface of the shell. Local Cartesian basis is composed of three orthonormal vectors with third vector 

always in the direction of increasing the third natural coordinate. Therefore, this basis can be used for apply-

ing material law for the element.  

On the other hand, any basis has its dual basis. Dual basis of covariant basis { i

l g


}is called contrava-

riant basis{ i

lG


}, which is defined like below. 

ijj

l

i

l Gg 


                                     (A.6) 

For Cartesian and local Cartesian basis, dual basis is itself. This concept of dual basis is used for trans-

forming strains. For example, consider that strain components are given for covariant component and contra-

variant basis and we want to transform it into local Cartesian basis { i

l e


}, i.e. we want to know the compo-
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nents of the same strain in local Cartesian coordinate. Because strain is a second-order tensor, writing cova-

riant component as ij

l

 and local Cartesian components as ij

l , fo llowing equation is satisfied. 
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From this, unknown components in local Cartesian basis is, 
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If known and unknown are reversed, we similarly apply  dot product for the dual basis of known co m-

ponent to the basis of unknown component. 
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Now let us assume every configuration from t ime 0 to time t is known. We want to solve for incremen-

tal displacement u


to get to the unknown configuration at time tt  , as in the following equation. 

uuu ttt 


                                   (A.10) 

Notice that not only the coordinates at the nodes, but also the change in director vectors 
kV


should be 

given for each configuration. This is done by adopting two rotational degrees of freedom k and k per 

each node. Using small-rotations, director vectors in unknown configuration is given by 

kktktt VVV

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                                 (A.11) 

k
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                               (A.12) 

Where 
ktV1


and 

ktV2


are vectors orthogonal to 

ktV


defined as 

ktktkt VeVeV


 221 /                              (A.13) 

kktkt VVV 12


                                   (A.14) 

where 2e


is the second Cartesian basis. The rotation degrees of freedom are not accumulated and just 

used to update the vector 
ktt V




. At the start of each iterat ion where configuration at t ime tt   is solved 

from previous informat ion, values of k and k are reset to zero. Also, vectors 
ktV1


and 

ktV2


are re-

calculated at the start of each iteration using (A.13) and (A.14). 

Because (2.43) was formulated in Cartesian system, it is also applied  to local Cartesian system. There-

fore, let us assume (2.43) is written in local Cartesian system. Material law for used in (2.43) is defined for 

local Cartesian stress ij and strain ij components, 
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 
312312332211  T

                     (A.17) 

 312312332211 222  T
                    (A.18) 

To calculate the matrices in (2.43) in local Cartesian system, we need to know both total and incre-

mental strains. We use total strain in calculating stresses 
ij

tS0
identifying 

ijij

tS 0
 in (A.16). Second, we 

use incremental strains to calculate LB and NLN . To do so, we start from covariant strain component. 

Covariant strain component at the previous of current configuration is given by, 
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Using (A.19) with (A.8) and (A.16), we calculate 
ij

tS0
, which is used to approximate 

ij

tt S

0
in the 

iterative equilib rium of (2.43). 

We need incremental strain in linear and nonlinear part respectively, which are reproduced in follo w-

ing equations. 
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On the other hand, using (A.19) with (A.3) g ives alternative form of (A.19).  
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where the convention
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, is used. Using (A.22) into (A.20), 
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Using again the definit ion of (A.3),  
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It can be separated into linear and nonlinear part in (A.21),  
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Comparing (2.31) and (A.25), notice that the form of linear incremental strain is simpler because we 

expressed it in covariant components. Recall that we need matrices related to linear incremental strain and 

virtual non-linear incremental strain, 
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ij UNU  0
                           (A.28) 

In fact, we do not need closed form of LB and NLN . Instead, using (A.8), we can transform (A.27) 

and (A.28) into the following equations. 

eLeij UBe 0                                 (A.27) 
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eeij UNU  0                            (A.28) 

Now we deal with the form of LB and NLN . 

For the four-node element considered, elemental nodal incremental displacement vector eU can be 

expressed in a following form. 
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Using (A.2), (A.10) and (A.12) fo rm of incremental displacement is  
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Derivatives of incremental displacement in terms of natural coordinates can be expressed as, 
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i
D is 3x20 matrix which is easily calculated from (A.31). Using (A.25),  
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Using (A.28), 
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From (A.33) and (A.34), we get closed form of 
LB and 

NLN . 

To prevent shear locking, we should use the covariant strains in modified form, called „assumed cova-

riant strains‟. In covariant components, only the transverse shear strains are modified. The incremental strains 

in (A.27) and (A.28), and the total strain in (A.19) should be modified as in the following equations. 
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Parentheses after each strains means substitution of the natural coordinates. 
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Summary 

Insight into Newmark time integration parameters in non-linear dynamic 

problems 

시간 적분법은 비선형 동적해석을 위한 방법으로 구조물의 거동을 가장 정확하게 표현할 

수 있지만  다양한  경우에  대해  불안정성을  갖는다. 그간  불안정성을  없애기  위해  수치  제동을 

사용한 시간 적분법이  사용되어 왔지만 , 주기 증가를 이용한 방식은 개발되지 않았다. 뉴마크 

시간 적분법에 대해 파라미터를 바꾸어  가면  주기 증가를  얻는  알고리즘을  얻을 수  있고  수치 

해석을 통해 이것이 불안정성을 안정화하는 데 의미가 있음을 보였다. 이 연구는 향후에 더 

나은 시간  적분법을  개발하는  데  사용될 수 있을  것으로  기대된다. 

 

Keywords: Newmark, time integration, Non-linear dynamics, Non-linear instability, Numerical damping, Pe-

riod elongation 
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