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Abstract

In this paper, a method for the effective modeling of helically stranded cables for which multiple beam finite
elements (FE) are used is presented, and a design procedure for the torque balance of the cables using the beam
FE model is proposed. Regarding the beam modeling, the wire-to-wire contacts and the elastoplastic material
behavior are considered. The proposed beam model is advantageous because the accuracy of the corresponding
numerical results is as good as that of the full solid model, while the computational cost is significantly reduced.
Using the beam FE model, the mechanical behavior of helically stranded cables is analyzed under axial and
transverse loadings. The numerical results are compared with those of full solid FE models and available
experimental results, where accuracy and computational cost are investigated. This paper also proposes a
practical procedure for torque balance design of helically stranded cables using the proposed beam FE model.
Furthermore, the proposed design procedure is verified by experimental tests and the generalized torque balance
curves are proposed using dimensionless parameter.

Keywords helically stranded cable, finite element analysis, beam finite elements, beam modeling, Coulomb
friction, friction coefficient, torque balance
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Chapter 1. Introduction

Cables and ropes that consist of helically stranded wires have been used in a wide range of engineering
applications, and the understanding of their mechanical behavior is a very important issue for cable designers
and manufacturers; however, it is not easy to formulate accurate predictions regarding the behavior of these
wires because of the corresponding complex geometry and the internal contacts that exist between the individual
wires. While experimental tests are necessary for the attainment of accurate predictions (see the previous works
by Utting and Jones [1-3]), laboratory experiments are typically very expensive and difficult to conduct. The
analytical or numerical modeling of cables, if sufficiently accurate, can replace such costly tests, which are

carried out routinely by cable manufactures, and can lead to a considerable cost reduction.

Several analytical models [4-10] that enable the prediction of the mechanical behavior of cables and ropes
under various loading conditions are available. Although these analytical models are simple and easy to use, the
validity of these models is limited for simple stranded cables under axial loading because of the difficulty
regarding the consideration of the complicated geometry, the material, and the complex contact behavior among

the individual wires; in particular, wire-to-wire contact behavior is very complicated.

The finite element analysis has been successfully used to predict the behavior of cables; in particular, full solid
finite element (FE) models have been developed for which the wire-to-wire contact, the wire yielding, and
various loading conditions are considered (see references [11-17]). The predictive ability of the full solid FE
models regarding the complicated behavior of wires are far more accurate than those of the analytical models;
however, in terms of helically stranded cables, this kind of modeling is not trivial. All of the individual wires
must be precisely placed in the FE model and must be in contact with each other without penetration to avoid
the emergence of numerical instabilities during a nonlinear solution procedure; furthermore, to accurately
capture the geometry of the wires and to model the complicated wire-to-wire contact conditions, very fine

meshes that can incur a considerable computational cost are required.

In the cable design phase, full solid FE models are quite often the cause of a time delay that may result in losses
of opportunity and profit for a new cable product. To overcome this problem, analysts have come up with
strategies such as the use of coarse mesh, or even an adjustment of the element size; however, these strategies
can be very labor intensive and do not always work, and this could be why the full solid FE model for analysis
of helically stranded cables is a very good solution but has a limitation in applying it to cable design.
Overcoming this limitation is a major interest of cable designers and manufacturers. The cable designers require
a tool that is reasonably accurate and simple to use; this is especially important during the preliminary design

stage of a new cable system. This outstanding need is the motivation of this work.
In this study, we propose a beam FE model for a computationally efficient prediction of the mechanical
behavior of helically stranded cables whereby complicated contacts and the elastoplastic behavior of wires are

included; here, the wires are modeled using beam finite elements, and the wire-to-wire contacts are modeled
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using beam-to-beam contacts. Compared to the solid FE models, the degrees of freedom (DOFs) are
significantly reduced, but the resulting predictive capability is as good as those of the solid FE models;
furthermore, a large modeling effort is saved because the beam FE model is very effective in terms of both

accuracy and computational cost.

The torque balance design of cables is very important for the prevention or minimization of an undesirable twist,
which is due to the coupling between the stretching and the twisting when cables are axially loaded with tension.
The torque balance design generally requires a large number of torque analyses, and these must be performed
accurately during the preliminary design stage. The solid FE models are proper in terms of accuracy, but the
computational costs are too high; indeed, the solid models have not been used for the torque balance design of
cables in engineering practice, where the use of the beam FE models can be a practical solution. In this paper, a
design procedure for the achievement of the torque balance of helically stranded cables is suggested, whereby
the proposed beam FE model is used. Furthermore, the proposed design procedure is verified by experimental

tests and the generalized torque balance curves are proposed using dimensionless parameter.

This paper is organized as follows: The mathematical relations of a helically stranded cable is introduced and
the stiffness coefficients for the various analytical models are evaluated in Section 2; the FE models for the
prediction of the mechanical behavior of the cables are presented in Section 3; in Section 4, the influence of
friction is analyzed and the computational cost are investigated. And, the accuracies of the FE models are
verified through a comparison of the numerical results to the analytical and experimental results; a procedure for
the torque balance design of the cables is proposed in Section 5; the proposed design procedure is verified
by experimental tests and the generalized torque balance curves are proposed using dimensionless parameter

in Section 6; and the conclusions are given in Section 7.



Chapter 2. Mathematical relations of a helically stranded cable

The mathematical model of the helically stranded cable depends on the assembly of the wires configuring it and
the nature of their contact conditions. The curved rod models fairly represent the bent and curved nature of the

wires and allow the representation of the individual behavior of each wire in the same layer and adjoining layers.

In this section, the equations for curved rod models regarding an understanding of basic cable mechanics under

axial loading and bending are provided. And, these are also used for the comparison with numerical results.

2. 1 Kinematic relations

In helically stranded cables, the kinematics of axial stretching and twisting are coupled together, and twisting
can therefore occur under a pure axial loading; in such a case, it can be assumed that all of the wires in a given
layer carry exactly the same loads. Global cable kinematics are designated by the cable axial strain ¢ and the

cable twist rate o@/h (twist per unit length). The linear elastic response is governed by the following equation:

I:T _ ng Keﬂ €
M, | K, K, |o0/h| )

where F. and M, are cable axial force and cable torsion, respectively, and in the stiffness matrix

components, the subscripts ¢ and @ denote axial stretch and twisting, respectively.

Figs. 2.1 (a), (b) and (c) show the geometry of a single-layer helically-stranded cable and the developed
geometry of a helical wire.

The axial strain and shear strain of the cable are given by the following equation:

oh o0
E=—: =r(—)tana, 2
o r=res) @
where h is cable length, r. is core radius, r, is wire radius, r is wire centerline radius (r +r,), y isshear

strain, @ is twist angle (rad), and « is helix angle. It is assumed that the axial strain is constant in both the
core and the wires, and that the shear strain is constant in the wires. The shear strain is not induced in the core
due to the axial loading.

In Fig. 2.1 (c), the following relations can be established:



h=Isina, ré@=Icosa,

©)

where | is the length of the helical wire in the developed geometry.

@ (b) (c)
X3
|
x\ Myf
Mx‘\ M, —°
FY
m, F T /Fv/
m
mZ
X2
X1
(d)

Fig. 2.1. Geometry of a helically-stranded cable (1 layer, 1 + 6 structure). (a) Cable geometry, (b) Cross section

A-A, (c) Developed geometry of the helical wire, (d) Forces and moments on a helical wire
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It is assumed that the core is rigid radially, the material is linear elastic and isotropic, and the slips between the

wires are ignored.

& =0, =0, sx#0, 0 =0. (4)
When the deformation is small,

Sh=lcosadx +sinad, ®)
rod = —lsinad +cosad . (6)
Solving equations (5) and (6) for &« and using Egs. (2) and (3)

o =(&e—y)sinacos a , ©)

eliminating do in Egs. (4) and (5), the axial strain of the helical wire ¢, is then obtained by the following

equation:

£ :ngsin2a+7cosza. (8)

Yo
The initial curvatures are known for a helix as

cos? o
yo = " ! (9)

Ko=0, x

where x and x are the curvatures inthe x and directions, respectively.
X y y

The initial twist for a helix is known as

_ (sinacosa)
r

(10)

0

where 7 is the twist per unit length.

The change in , is zero, since the deformed helical wires again remain helical on the cylindrical core. The

changes in K, and ¢ are found by variation in Egs. (9) and (10) , respectively as,



2 .
Ak, za[cosr “j, At :5[5'M°°S“j , (11)
r

using Eq. (11) with the kinematic conditions, Eq. (3)

Ak, =~-sin Za[gaj, AT =C0S Za(&j- (12)
r r

Using oo from Eg. (7) and noting that « , =0, the changes of the curvature Ak, and the twist Az can be

calculated by the following equations, respectively:

Ak, =-sin2asinacosa(e~y), Ar=cos2asinacosa(s—y), (13)

the final curvature K, and twist ¢ are given by

2
Ky =Ky, +Ax= s a —sin2asinacosa(s —y) (14)
r

sin ¢ cos .
T=7 +A7=w+cos2asmacow(5—y). (15)
r

2. 2 Equilibrium equations of wire

The equilibrium equations for the resultant forces and moments can be derived for a general twisted and bent

rod under the action of distributed external loads and moments as shown in Fig. 2.1 (d).

ddst -Fr+Fx,+f, =0, (16)
ddFSy—FZKX+FXT+ f,=0. 17
%- Foe, +F, i+ f, =0, (18)
d(I;ASX—MyT+MZKy+mx=0’ (19)



am

dsy—Msz+MxT+my:0' (20)
dg:Z—MXKy+MyKX+mZ=0, (21)

where s is the arc length along the wire, and F,, F ,and F, are the resultant forces on a wire cross section
inthe x, y,and : directions, respectively. M, and M , are the bending moments about the x axis and
y axis, respectively, and M, is the twisting moment in the wire. f , f, and f, are the components of the
external line load per unit length of the centerline of the wire inthe x, y,and z directions, respectively. m ,
m, and m, are the components of the external moment per unit length of the centerline in the x, y,and :

directions, respectively.

The bending and twisting couples Myand M, and the wire tension F, can be simply expressed as the

following formulas:
M, =ElAx,,M,=GlA7, F,=EAg,, F,=M,x, —M 7, (22)

where E is the Young’s modulus of the wire, | is the moment of inertia of the helical wire cross section,
J is the polar moment of inertia of the helical wire cross section, and A is the cross sectional area of the

helical wire. The stresses caused by axial loads are presented in Appendix A.

2. 3 Equilibrium equations of stranded cable

The resultant external force of the cable F, and the moment M, can be obtained from the following

equations, where the core deformation is additionally considered:
Fr =n(F,sina+F cosa)+EA,, (23)
M; =n(M,sina+M, cosa+F,rcosa—Frsina)+G.J,, (24)

where n is the total number of wires, and E.. A, G, and J. are the Young’s modulus, area, shear

modulus, and polar moment of inertia of the core cross section, respectively.



2. 4 Stiffness matrix components of various analytical models

The equations for each analytical model are then briefly presented in a standardized form

2.4.1 Hruska’s model

The model of Hruska is based on simple hypothesis that wires are subjected to pure tensile force only (no
moments) during any axial loading. Since the curved nature of the helical wire is neglected, the flexural and
twisting moments terms El , GJ are omitted in the equations of stiffness constants and only the axial stretch

terms ( EA) are present. The stiffness coefficients are presented as:

K, =n(EAsin®a)+E A (25a)
K,, =K,, =n(EArsin’ acosa) , (25b)
Ky, =N(EAr?sinacos’ @) +G,J, - (25¢)

2.4.2 Machida and Durelli model

The model, through considered the effects of tension, bending and twist in the wires, neglected the term F, in

the equilibrium equations. Accordingly the equations for K _, K, remained unaltered and the equations are

derived as:

K,, =n(EAsin®a)+E_A (26a)
K,, =n(EArsin® acosa) , (26b)
K, =n| EArsin® acosa + GJ cosZozsrin2 acosa  Elsin 20:srinozcos2 a| (260)
K., = N[EAr?sin  cos? & — GJ cos 2asin® & + El sin 2asin® e cos |+ G,J, - (26d)



2.4.3 Costello’s model

Considering the effects of tension, bending, and twist, Costello model can be derived the following stiffness

components:

[, GJcos2acostasing  Elsin2acos® asin’ «
K_ =n| EAsin® o+ +

&€& rz r2

} E.A (279)

o GJcos2acos’ asin® e El sin2acos’ asin®
K., =n| EArsin® a.cosc - “r e “r e e (27b)
. 2asin? El sin2 2 asina(l+sin®
K9£=H{EAI’SII’]20£COSO{+GJ cos ozsr acosa  Elsin2acos ars af a) (270)
K,y = N|EAr? sin & cos? & — GJ cos 2arsin® a + El sin 2arcos ersin? a(1+sin® )|+ G,J, (27d)

It is important to note that the derived analytical equations in Egs. (25), (26) and (27) can be used for only the

linear elastic range.

The selected analytical models with their principal features, behaviors of wire and change in geometry due to

Poisson’s effect, are summarized in Table 2.1.

Table 2.1 The analytical models with their principal features

Behavior of wires
Model Poisson’s effect
Tension Torsion Bending
Hruska (0] X X X
Machida 0] o] 0 X
Costello o] o] 0 0]




2.4.4 Evaluation of the stiffness coefficients for the various analytical models

The model was considered as a 7- wire helically stranded cable with a core and helical wire diameters of
3.94mm and 3.72mm respectively. The geometric and material properties are given in Table 2.2. The stiffness
coefficients of the various models have been evaluated and given in Table 2.3 for the range of helix angles, 45%

a <85°.

Table 2.2. Geometric and material properties of the 7-wire helically-stranded cable where RHL denotes “right
hand lay” (see Fig. 1.1 (a)).

Layer | No. of Hellgal .ere Pitch Young’s Plastic Yield Poisson’s
No. Wires direction diameter | length Modulus Modulus Strength atio
& angle [mm] [mm] [GPa] [GPa] [GPa]
Core 1 - 3.94 - 188 24.60 1.54 0.3
1 6 RHL, 72.97°] 3.72 78.67 188 24.60 1.54 0.3

The wire dimensions in Table 2.2 were chosen for this analysis for the subsequent study and investigations. The
difference in K_, K,, K, and K, inthe range of o is relatively so small that almost all models yields
mutually agreeable results as given in Table 2.3. This is mainly because of the predominance of the effect of
wire stretch compared to that of wire twist and bending as can be seen Table 2.4 and Fig. 2.2. Table 2.4 and Fig.
2.2 present the relative significance of the contributions among them when the wire axial force, wire twisting

moment and wire bending moment are given.
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Table 2.3. Stiffness coefficients as a function of helix angle for three models

Model | Helix angle [deg] K, [MN] K, [MN-mm] | K, [MN-mm] | K, [MN-mm’]
45 6.63 16.60 16.60 65.29
50 7.80 17.71 17.71 58.63
60 10.26 17.61 17.61 40.65
Hruska
70 12.46 14.18 14.18 21.48
80 14.00 7.91 7.91 7.05
85 14.41 4.06 4.06 3.07
45 6.63 16.60 15.62 67.40
50 7.80 17.71 16.71 61.57
] 60 10.26 17.61 16.69 45.10
Machida
70 12.46 14.18 13.49 27.08
80 14.00 7.91 7.54 13.34
85 14.41 4.06 3.88 9.53
45 6.75 16.11 15.13 66.76
50 7.90 17.28 16.26 60.36
60 10.30 17.33 16.40 42.74
Costello
70 12.48 14.07 13.38 23.69
80 14.00 7.89 7.53 9.22
85 14.41 4.06 3.87 5.21

11 -



Table 2.4. Relative significance of individual contributions by wire stretch, wire bending and wire twist of six

wires to the cable stiffness for Costello’s models.

Helix angle [deg]

Stiffness Wire
coefficient behavior
45 50 60 70 80 85
Stretch 4.3345 5.5112 7.9630 10.1728 11.7095 12.1204
K&‘.‘
Twist 0.0000 -0.0126 -0.0105 -0.0055 -0.0005 0.0000
[MN]
Bending 0.1278 0.1109 0.0587 0.0164 0.0013 0.0001
Stretch 16.6012 17.7117 17.6082 14.1810 7.9078 4.0613
KsS
Twist 0.0000 0.0752 0.1153 0.0613 0.0103 0.0014
[MN-mm]
Bending -0.4894 -0.5064 -0.3893 -0.1727 -0.0273 -0.0036
Stretch 16.6012 17.7117 17.6082 14.1810 7.9078 4.0613
K(?g
Twist 0.0000 -0.0819 -0.2995 -0.4351 -0.3269 -0.1800
[MN-mm]
Bending -1.4682 -1.3694 -0.9084 -0.3684 -0.0554 -0.0073
Stretch 63.5824 56.9208 38.9362 19.7684 5.3404 1.3608
K
v Twist 0.0000 0.3736 1.9867 45781 7.0999 7.8810
[MN-mm?]
Bending 5.6234 6.2504 6.0262 3.8761 1.2031 0.3173
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Fig. 2.2. Individual contribution by stretch, twist and bending to the cable stiffness. (a) Axial stiffness K, (b)
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2. 5 Bending of a helically stranded cable

2.5.1 Costello’s model

An initially straight helical wire with a helix angle, «, is subjected to a bending moment, M, which is applied

about an axis perpendicular to the original axis of the wire. Fig. 2.3 shows such a wire.

Since the initial configuration of the wire is helical, and the initial curvatures and twist per unit length are

2 .
Ccos” o SIna Cos o
KXO :O! KyO = [} =

T [l
r 0 r

(28)

where r is the initial radius of the helix as shown in Fig. 2.1 (b) and, since the spring is subjected to a pure

bending moment only, the following results from Fig. 2.1 (d):

fo=f =f=m=m=m=F=F =F =0. (29)

Fig. 2.3. Helical wire bent by bending moment
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The equations of equilibrium Eqgs. (16) through (21) from Fig. 1(d) yield

M,
" -M,z+M,k, =0, (30)
am
—~-M,x, +M,z=0, (31)
ds
am
SZ—MXKy-i-MyKX:O: (32)

where «,, x, and ¢ arethe final (deformed) curvatures and twist per unit length.

The bending and twisting moments M, M and M, can be expressed as the following formulas:

4 4

v at, ,,
M, :T E(xy —xw) M, = TE(Ky —Kyo)r M, = a(1+v) E(r-1,) (33)

By the Egs. (28) and (33), the equilibrium equations [Egs. (30) through (32)] can be written as

dm 4 sin & cos & cos’ a

MM, - M, + M, =0
ds a7 r y r : (34)
dm 4 sina cos

Yy WM +—M, =0, 35
ds alE r X (35)
dm 4 sina cosa

Yy WM +—M, =0- 36
ds a7 r X (36)

W

Egs. (34) through (36) constitute a nonlinear system of first-order ordinary differential equations that can be
integrated numerically under suitable initial conditions. If these three equations are, respectively, multiplied by

M, M, and M, and the resulting equations are added, the following results

%%(ME+M§+M3):O, (37)

- 16 -



It is important to note that the magnitude of the resulting moment on any cross section is constant (independent
of s).

Once Egs. (34) through (36) are integrated numerically for M, M, and M,, Eq. (33) can be used to calculate

the final curvature and twist.

Under the pure bending moment, M, applied perpendicular to the original axis of the helix, the wire behaves
like a beam. The initially straight axis of the wire deforms into a circle of radius p with the angle ¢ as shown

in Fig. 2.3.

For example, the case of v =0. Egs. (34) through (36) become linear and therefore have the solution

M, =C, cosks+C,sinks, (38)

M, =-C,sinasin ks+Czsinacosks+C(,)ﬂCS, (39)
sina

M, =C, cosasinks—C, cosa cosks+C,, (40)

where,

=0 (41)

r

Let M, =M., M, =0, M,=0 at s=0.Thisyields

M, =M, cosks, M, 6 =-M sinasinks, M, =M, cosasinks. (42)

y —

The strain energy in the wire, U can be written as

| 4 4 4
. E a E ar E
U :J:[ Z (k, — ko) + Z (r, —K,0)" + Z (r—ro)z}ds

1 4 2 2M 21
== MZ+M?+M?*]ds= MZds ="/ 43
2J;;zrw“E[ ! ] anfEJ; ry E *3)

where | is the length of the wire.

When the work done by the bending moment M , is equated to the strain energy, the result is
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2M 2l

4 S
M, (g)dg= e (44)
A differentiation of Eq. (44) yields
_AM 1 dM (45)
* ariE dg
an integration of Eq. (45) yields (since M_(0)=0)
nery
M. ="—"4. 46
ST ¢ (46)
h=Isina, (47)
where h is the length of the wire. Then Eq. (46) becomes
4M ¢ 1
. 48
AErising h p (48)

The above equation is valid for v =0.

When the exact solution for v =0is used in Picard’s method to obtain a solution when v = 0, the following

results

1 _(2+vcos®a) 4M,

: 49
o 2sinad arlE 49)

Eqg. (49) is valid for large changes in curvature. It should be noted that as « approaches 90°, the curvature

1/ p approaches that of a straight beam.

When a straight stranded cable is bent into a circle of radius, p, and the cable is treated as an assemblages of

helical wires, the following expression can be written

| 2nsine  , 4|1 A
= — 7 —_= ) 50
° 4 |:(2+VC08205) " } (0)
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where M, is the total bending moment applied to the stranded cable, p is the radius of curvature of the

stranded cable, n is number of wires, and r_ is the radius of the core. A”, the bending stiffness of the

stranded cable, is defined by the equation

= 2nsina 4 4
A= i+ 51
4 {(2+vcosza) } 1)

It is important to note that the effect of  is small on the value of the bending stiffness A". The stresses

caused by bending are presented in Appendix B.

2.5.2 Semi-continuous model

A semi-continuous model is an approach in which each layer of a strand is mathematically represented by an
orthotropic cylinder whose mechanical properties are selected to match the behavior of its corresponding layer
of wires. A semi-continuous model is linearized to analyze the behavior of bending, stretching, twisting, and
other complex loads. The stiffness matrix based on continuum mechanics and the elasticity model of the
anisotropic material. The cylinder equivalent stiffness, contact force between the wires, inter-laminar shear,
slippage, and other factors are considered. Using stress functions for cylindrically anisotropic elastic bodies, the

analytic equations permit stiffness calculation of an assembly of coaxial cylinders.

The equivalent cable model stiffness matrix is as follows:

i 4 S 0 0 0
E; E; E;
S S 0 0 O
E; E; E;
L N
C= = E; E, . (52)
0 0 0O — 0 ©
G,
0 0 0 0 = 0
G,
0 0 0 0 0 L
L Gr

where E, is axial Young’s modulus of the simplified model and E; is tangential Young’s modulus of the
model. G, and G, are the shear modulus in the axial and tangential directions, respectively. v, and v, are

the Poisson’s ratios in the axial and tangential directions, respectively. The factor E, is carried out by the ratio
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of the elliptical section areas of the n wires of the layer to the cylinder section area so that the axial stiffness

that is considered an outer cylindrical structure will have the same axial stiffness as that of the cable structure.

B 53
E, 4rsina (53)

where E_ is the Young’s modulus of the outer layer of the model, r, is the outer wire radius of the model, r,

is wire helix radius. When no gap exists outside in the direction of the tangential of the outer layers and when n

is large enough, the ratio of Eq. (53) is /4.

Considering that the axial stiffness obtained by the ratio of cross-sectional areas is not sufficiently accurate
especially when it used in bending calculation, E,_ requires another approach when analyzing the bending

behavior of cable structures. Assuming that the outer wires and the simplified cylindrical model have the same

bending stiffness, the ratio of the inertia moment of layer wires to the inertia moment of the cylinder as follows:

E, nr 1+sinea , ..,
—= 2 r,+2r° |- 54
E 8r(rh2+rvf)sina[ 2sin’a ‘ 4)

The deformation characteristics of the cable structure are considered during bending deformation in the model

above. The maximum bending stiffness of the outer layer as
_ 1 2 |ain3
El,, =nE,| | +§Arh sin“a (55)

As shown, the smaller o produces the less bending stiffness El obtained Eq. (55).

2.5.3 Papiliou’s model

This model considers the friction and slip between the wires. Bending stiffness changes with the curvature of the
model in the axis direction when the cable model is bent. The value of bending stiffness is not constant but
varies with the bending curvature and is applied to the cable model when tension varies. The bending stiffness
of the model depends on the value of cable tension and curvature. In addition, the cable model having different

bending stiffness values exhibits conventional nonlinear behavior.

In the process of bending wherein the friction effects for bending the cable model are considered, the
deformation process generally involves three stages: stick, transition, and slip. As a common situation, the cable

model of bending behavior is subjected to dynamic bending model calculations as well.
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Assuming that no gap exists among wires in the tangential direction in the ideal cable structure, the outer layer
and the core of the wire contact each other. Static friction is observed in the early stage. The slip force is

insufficient to cause relative sliding between the wires. The bending stiffness of the cable structure is
EI " = EA(rsing)?sin’ar. (56)

When fully sliding without friction between wires, the bending stiffness of the cable is the minimum bending

stiffness,

4

Ep i = E%sina- (57)

min

Wire slip occurs between portions, i.e., portion slippage occurs, owing to the frictional force generated. Slip

does not occur in the other part when the static friction is in the range,

E| vire _ o A(eﬂCOSW _1)rsin ¢sin alk. (58)

slip

Therefore, the behavior of the cable model goes through different stages in the bending process, and bending
stiffness has different expressions.
El . =El . +El

max min stick — const ! (59)

El =El,, +Ely, = f(c F). (60)
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3. Finite element models

Three different FE models were studied to simulate the mechanical behavior of helically stranded cable. We first
considered a model for which 8-node, solid finite elements were used, and which has typically been used in
most of the previous works. In this study, a beam model for which 2-node beam finite elements was used and a

mixed FE model that consists of solid and beam finite elements were both developed.

In this section, the three FE models are explained in detail through the modeling of a straight 7-wire helically
stranded cable comprising a central wire that is surrounded by six symmetrical helical wires, as shown in Fig. 2.
1 (a); the geometric and material properties (bilinear elastoplastic) are given in Table 2.2. The considered cable
length for modeling is twice the pitch length.

The boundary and loading conditions are presented in Fig. 3.1 (a) and Fig. 3.2 (b). The left end is clamped and
the right end is subjected to a force; like the experimental tests, both ends are then restrained against twist for

the FE analyses [1-2]. The boundary conditions at the left end are given as

u =u :uzzaxzeyzezzo_ (61)

X y

Two cases of loading are considered at the right end: axial loading and transverse loading with pre-tension. As

shown in Fig. 3.1 (a), the loading and boundary conditions at the right end for axial loading are
F; =120kN, u, =u, =0, u,#0, 6,=6,=6,=0. (62)

In the case of transverse loading( F,) with pre-tension( F, ), as shown in Fig. 3.1 (b), the loading and boundary

conditions at the right end are
Fy=7kN, F; =10, 20, 30kN, u, =u, =0, u,#0, 6, =6, =6, =0. (63)

Notably, three different pre-tensions, 10kN, 20kN, and 30kN, are considered.
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Ux=Uy=U:=0 ux=Uy=0, uz=0
&=6=6=0
F,

Fixed end Loading end

|LX z (@)

F; (Pre-tension)
—_—

ux=0, uy=0, uz=0
G=6=6=0
(b)

Fig. 3.1. Boundary and loading conditions for the 7-wire helically-stranded cable. (a) Axial load case( F, :Axial

load), (b) Transverse-load case( F, : transverse load, F, : pre-tension)

In the FE analysis model, one end-section of the cable is fully clamped. At the other end, the nodes
corresponding to wires and core are rigidly linked using rigid link elements connected to a master node located
at the cross-section center as shown in Fig. 3.2. Loads are applied at the master node and then conveyed to the

whole section. Therefore, the end effects can be greatly reduced.

Master node

Rigid link

Fig. 3.2. Master node at the cross section center and rigid link.

At this point, it is important to understand the two types of physical contact that exist in helically stranded

cables. First, line-to-line contacts that occur during deformation exist between the adjacent parallel wires within

- 23 -



the same layer. The second type of contact occurs when the two wires of adjacent layers cross at an oblique
angle, producing a point-to-point contact. Both types of contact should be properly modeled to perform the
contact conditions accurately. ; furthermore, the elastoplastic material behavior needs to be considered for

accurate modeling.
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3.1 Full solid finite element model

For the full solid FE model, CATIA was used to obtain the core geometry through a linear z-axis extrusion, and
the core was discretized by the 8-node solid elements. Each wire was generated through the extrusion of its
cross-section along the helix that corresponds to the centroid line of the wire. Each wire (six in the outer layer)
was then separately constructed in the same manner and positioned around the core, as shown in Fig. 3.3 (a). To
accurately capture the radial contact between the individual wires, a relatively large number (28 elements in this
study) of solid elements were used on the circumference direction to form a fine mesh in the wire cross-section,

as shown in Fig. 3.3 (a).

8-node solid element

<— solid node

@)

( 2-node beam element
(b)

——e <——heam node

(© solid element beam element

Fig. 3.3. Three FE models for the 7-wire helically-stranded cable. (a) Full solid FE model, (b) Beam FE model,

(c) Mixed FE model (solid elements + beam elements)

To obtain a proper FE model with both desired accuracy and computational efficiency, we performed
convergence studies to investigate the number of pitches to be modeled (model length) and mesh refinements
required along the cable length considering the cable under axial loading. In this study, the equivalent stress
(Von-Mises stress) at the core center and the maximum equivalent stress at core were investigated in the half
length of the model. Note that the maximum stress occurs at contact points between the core and wires, due to
both axial stress and transverse contact stress, as shown in Fig. 3.4 (a). The axial load applied was 100kN. In
Figs. 3.4 (b) and (c), it is observed that the model length of at least two pitches is required and that the number

of elements required per pitch length is more than 60.
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Fig. 3.4. Convergence of the equivalent stress calculated in the solid FE model. (a) Stress calculation points, (b)

Model length, (c) The number of elements

Based on the convergence studies, we used 96,556 solid elements, 114,368 nodes, and 343,104 DOFs (Degree
Of Freedoms). Extra care was taken to ensure that all six of the outer wires were just in contact with the core.
By using the Coulomb friction model with a friction coefficient of 0.115, the friction-contact conditions were

established between the wires and between the wires and the core.
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3.2 Beam finite element model

The cable was modeled using multiple 2-node Timoshenko beam finite elements [20-24] that are positioned

along the centerline of the core and each wire, as shown in Fig. 3.3 (b). The cross sectional area is ~r” for the

core and ;zrvf for each wire. The moment of inertia is 7er4 /4 for the core and ;zrv‘v‘ /4 for each wire.

To construct a proper beam FE model, we also performed similar convergence studies to investigate the model
length and the mesh refinement along the cable length. Equivalent stress at core center in the half length of the
cable was considered, as shown in Fig. 3.5 (a). Figs. 3.5 (b) and (c) show that the minimum model length is two

pitches and at least 40 elements per pitch length are required.
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Fig. 3.5. Convergence of the equivalent stress calculated in the beam FE model. (a) Stress calculation points, (b)

Model length, (c) The number of elements

The total numbers of beam elements, nodes, and DOFs were 1,099, 1,106, and 6,636, respectively. Only 1.93 %
of the DOFs of the full solid FE model were used.

In this model, it is believed that the beam-to-beam contacts simulate the behavior of the core-wire contact and
the wire-wire contact. Contact resolved between beams in the 3D space and is detected wherever contact occurs,
not just between the beam nodes or beam node and a beam element. Contact algorithm creates an extra node at
the contact point. Beam contact has to be activated in the contact detection form, the contact is detected using
the following penetration function:

g=d-r,—r,+e<0, (64)

where d is the minimum distance between the beams, r, and r, are the radii of the beams (denoted by a

and b, respectively), and e is the change of the beams that is due to the cross-sectional deformation, as
shown in Fig. 3.6. During the contact-iteration procedure, the contact points between the beam elements can
change if the elements slide with respect to each other; furthermore, the points in contact can move from one

element to another. During such sliding, the corresponding friction should be taken into account.
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contact area

(b)

Fig. 3.6. Contact condition of circular beams (a) Closest points on two beams, (b) Contraction of radii of

contacting bodies. r, and r, are the cross-section radii of the beams, respectively.

3.3 Mixed finite element model

Compared with a full solid FE model, a beam FE model is very effective in reducing computational cost;
however, the advantage of the former is the attainment of detailed values such as local stress and the starting
point of the yield in the individual wires. Since yield generally starts from the core, a mixed FE model wherein
the solid elements were used to model the core and the beam elements were used to model the surrounding wires
was considered for this paper, as shown in Fig. 3.2 (c); then, the advantages of both the solid FE and beam FE
models can be obtained. Of course, in this model, the contact between the solid elements and the beam elements
should be considered. In this model, the numbers of the solid and beam elements were 11,932 and 942,

respectively, and the number of DOFs was 48,825.
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4. Results and discussion

Considering the two loading cases for the 7-wire helically stranded cable, axial loading and transverse loading,
the entire analysis procedure is static. In the axial loading analysis (Fig. 3.1 (a)), axial stretch and twisting occur,
and the numerical results were compared to the analytical and experimental results [1, 5]. The transverse loading

analysis (Fig. 3.1 (b)) was performed to predict the transverse behavior under different pre-tension levels.

4.1 Axial loading analysis

Fig. 4.1 presents the axial load-axial strain curves that were obtained from the use of the three different FE
models, and they were compared to the experimental and analytical results [1, 5]. The predicted results of all of
the models are in sound agreement with the experimental results, while the numerical results are compatible

with the analytical results in the linear-elastic range.

A —

G——H8——~8 Experiment
r——==- Analytical model 7
®—0—@ Solid model
200 — @ —¢—¢ Beam model , —
A&—A&—A Mixed model

150

Axial Load [KN]
3

50

o | | | |
0 0.004 0.008 0.012 0.016 0.02

Axial Strain

Fig. 4.1. Axial load-axial strain curves for the 7-wire helically stranded cable in the axial-load case.
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Because the twist is constrained at both ends of the cable, reaction torques occur at the ends during the axial
loading. Fig. 4.2 shows the axial load-torque curves up to an axial load of 90 kN. The results of the beam FE
model closely agree with the experimental results. Notably, unlike the beam FE model, it is not easy to calculate

the torque of the solid FE and mixed FE models, as the post-processing that is required is quite complicated.

100 ‘ ‘ ‘
L EF——H8—-+H Experiment _
®—@—@ Analytical model
80 ¢——¢—¢ Beam model B

60

40

Axial Load [KN]

20

| |
0 20 40 60 80 100
Torque [N-m]

Fig. 4.2. Axial load-torque curves for the 7-wire helically stranded cable in the axial-load case.

Fig. 4.3 shows the displacement contours of the each FE model at £=0.019, the beam model and mixed model
have a good agreement with 3D solid model. Figs. 4.4 and 4.5 show the equivalent stress (Mon-Mises stress) and
longitudinal axial stress contours that were obtained with the use of the three FE models when ¢=0.019. All of

the wires already yielded (o, =1540MPa) and are in the strain-hardening stage.
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Fig. 4.3. Axial displacement contours obtained from the three FE models when axial strain ¢=0.019. (a) Full
solid FE model, (b) Beam FE model, (c) Mixed FE model
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Fig. 4.4. Von-Mises stress contours obtained from the three FE models when axial strain ¢ =0.019. (a) Full solid

FE model, (b) Beam FE model, (c) Mixed FE model
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Fig. 4.5. Axial stress contours obtained from the three FE models when axial strain ¢=0.019. (a) Full solid FE
model, (b) Beam FE model, (c) Mixed FE model

The core is subjected to both axial stress and transverse contact stress that are induced by the continuous
pressing of the helical wires onto the core under the diametrical contraction of the helically stranded wires;
therefore, the maximum stress occurs in the core under axial loading and, compared to other wires, the core is
reached first at the yield stress and the ultimate stress. The outer wires bear less stress than the core because of
an unwinding, and this causes an early yielding in the core. The stress plots show the trend of the stress

distributions under axial loading, helping the cable designer find the stress-intensity locations.
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4.2 Transverse loading analysis

One end is clamped and the other is subjected to a transverse load with pre-tension. The following three
different pre-tensions are considered: 10kN, 20kN, and 30kN. The transverse loading is applied up to 7kN.

Fig. 4.6 shows the transverse load-transverse displacement curves, whereby similar results are obtained with all
three of the FE models. Fig. 4.7 illustrates the displacement contours of each FE model at 20kN pre-tension. All
of the FE models show the same lateral deformation contours.

0 | |
®&—0—@ Solid model B
&—9—¢ Beam model

2 A—A—A Mixed model B
Z
=

— _
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o
|
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>
[%2]

c _
©
|-
-

-6 _

Pretension 30kN 20kN 10kN
8 | | | | |
0 20 40 60 80

Transverse Displacement [mm)]

Fig. 4.6. Transverse load-transverse displacement curves for the 7-wire helically stranded cable in the transverse
load case (Pre-tension = 10kN, 20kN, 30kN).

Figs. 4.8 and 4.9 illustrate the Von-Mises stress and axial stress contours of each FE model at a 20kN pre-
tension. The stress concentration is located at the end areas, and all three FE models show similar levels of stress.
Solid model and mixed model show the same stress contours, but it’s not easy to compare them with beam
model directly. However, the global stress level of beam model except for the area close to the fixed-end and
loading-end is nearly the same with the other FE models.
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Fig. 4.7. Lateral displacement contours obtained from three FE models when pre-tension = 20kN and transverse
load = 7kN. (a) Full solid FE model, (b) Beam FE model, (¢c) Mixed FE model
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Fig. 4.8. Von-Mises stress contours obtained from three FE models when pre-tension = 20kN and transverse
load = 7kN. (a) Full solid FE model, (b) Beam FE model, (c) Mixed FE model
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Fig. 4.9. Axial stress contours obtained from three FE models when pre-tension = 20kN and transverse load =
7KN. (a) Full solid FE model, (b) Beam FE model, (c) Mixed FE model
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4.3 Influence of friction

4.3.1 Influence of friction model

Friction is a complex physical phenomenon and the most popular friction model is the Coulomb friction model
which is used in this study. The coulomb model can be characterized by

£ < o, (stick), (65)
f, =—uf,t (slip), (66)

where f, is the tangential (friction) force, f, isthe normal force, . is the friction coefficientand t is the

tangential vector in the direction of the relative velocity, t=v,_/|v,

, v, Iisthe relative sliding velocity.

For a given normal force, the friction force has a step function behavior based on the value of the relative sliding

velocity v, or the tangential relative displacement Au, as shown in Fig. 4. 10.

A ft

o,

<— Stick

v, or Au,

g

Slip

Fig. 4. 10. Coulomb friction model

Since this discontinuity in the friction value may easily cause numerical difficulties, different approximations of

the step function have been implemented by user subroutine. They are graphically represented in Fig. 4. 11.
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@ (b) ©

Fig. 4. 11. Different approximations of the Coulomb friction model for numerical analysis. , (a) Arctangent

model, (b) Stick-slip (modified step function) model, (c) Bilinear model.

The arctangent model is based on a continuously differentiable function in terms of the relative sliding velocity,

for the friction force

\

f o 2 (j
. =—uf “arctan t (67)
Vs R

where the value of R is the value of the relative velocity below which sticking occurs. The value of R, is

important in determining how closely the mathematical model represents the step function as shown in Fig. 4.

12.

f
At
/ufn ___ —
Vr
¥ Rv :VI’
\ R, =0.1v,
_IUfn ———————————— -RV: OO:I.Vr

Fig. 4.12. Arctangent model for different value of R, .



A very large value of R, results in a reduced value of the effective friction, and a very small value may result
in poor convergence. It is recommended that the value of R, be 1% to 10% of a typical relative sliding velocity,
HVrH' The analysis result for 7-wire helically stranded cable was almost same regardless of the range of R,
from 1% to 10% of relative sliding velocity. Thus, the value of R, is selected as 10% of relative sliding

velocity considering computational cost in this paper.

During iteration of the Newton-Rapson process, the change of the friction force of; is related to the change of

the relative sliding velocity, 5\/1 , is defined as follows :

) AUi _Aui—l i

& _Au —Au (68)
At At

Stick-slip model is based on a slightly modified step function and can be used to simulate true stick-slip

behavior. In this procedure, each node in contact gets a friction status, being either stick or slip. The slip to stick

transition region £ is introduced as a tolerance on the friction solution as shown in Fig. 4.13.

A ft

uf, — -

v

Au,

Fig. 4.13. Stick-slip (modified step function) model with friction parameter f.

If a node is in slipping mode and moves in the direction of the friction force, but the corresponding relative
displacement magnitude is within the slip to stick transition, then this will not cause the increment to be started

with modified friction conditions. A large value of S gives a poor numerical result with friction, and a very

small value may result in poor convergence. Thus, the value of f is selected as 1x10°® in this paper.
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The bilinear model is similar to the modified step function model, it is based on relative tangential
displacements. The bilinear model assumes that the stick and slip conditions correspond to reversible (elastic)

and permanent (plastic) relative displacement, respectively. The friction is expressed by a slip surface @ :

O = |f,| - o, (69)

The stick domain is given by @ <0. The rate of the relative tangential displacement vector is split into an

elastic (stick) and plastic (slip) contribution according to:

. e P
Ut =Ut+ Ut , (70)

and the rate of change of friction force vector is related to the elastic tangential displacement by

e

ftZDUt, (71)

where matrix D is given by

0
D=| & uf, |’ (72)
0 s

with & the slip threshold or relative sliding displacement below which sticking is simulated as shown in Fig.
4.14. The value of § is selected as 0.0025 considering the average edge length of the finite elements defining

the deformable contact bodies in this paper.

A ft

o
<—

v

Au,

Fig. 4.14. Bilinear model with slip threshold & .
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The influence of the friction model was verified using above three models in the solid FE model. The axial
loading conditions were considered in the parametric study. Fig. 4. 15 shows that the global response under axial
load is almost the same regardless of the type of friction models. This observation indicates that the influence of
friction models on the global behavior of the cable is small.

160
120 —
z L J
=
3
3 80 —
s
—  Arctangent model
40 ——  Stick-slip model
®—@—@ Bilinear model
0e | | | |
0 0.004 0.008 0.012 0.016 0.02
Axial Strain

Fig. 4.15. Influence of three different friction models under axial load.

Table 4.1 presents computational time required for each model. The arctangent model requires approximately
123% and the stick-slip model requires 112% of computational time compared to the bilinear model. Therefore,

the bilinear friction model is an effective for the FE analysis of helically-stranded cable in terms of
computational efficiency.

Table 4.1. Computational time required for analyses of the 7-wire helically stranded cable where three different
friction models are used.

Friction model

Arctangent model

Stick-slip model

Bilinear model

Computational time [sec]

26,308 [123%]

23,916 [112%]

21,450 [100%]
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4.3.2 Influence of friction coefficient

The friction coefficient in this study was used 0.115, which was experimentally obtained [25]. This value was
also used in the numerical models proposed in Refs. [14, 17]. It is well known that the range of the coefficient is
from 0.1 to 0.4 [17, 25]. We here verify the influence of the friction coefficient considering five different values,
0.0, 0.05, 0.115, 0.2, and 0.4 in the solid FE model. The axial and transverse loading conditions were considered

in the parametric study.

Figs. 4. 16 (a) and (c) show that the global responses under both axial and transverse loads are almost the same
regardless of friction coefficients. This observation indicates that the influence of friction coefficients on the
global behavior of the cable is small. Figs. 4. 16 (b) and (d) show that, as the friction coefficient increases, the
equivalent stresses at core center and the maximum stress decrease. However, the decrease is not large within
the range of friction coefficients from 0.1 to 0.4. Nevertheless, it should be mentioned that while the friction
effect plays a small role in global behavior of such cables, the effect of friction on the long-term performance

and durability of a structure under cyclic loading can be significant.
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z L |
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v Friction 0.05 |
é @ —@ @ Friction 0.115
Friction 0.2
40 Friction 0.4 ]
0 | | | |
0 0.004 0.008 0.012 0.016 0.02
Axial Strain
(@)

- 43 -



Equivalent Stress [MPa]

Transverse Load [KN]

G—6—=>© Center Point
O—-~8——-1~/a Max. Point

1440
1430
1420
1410 | | |
0 0.1 0.2 0.3 0.4
Friction Coefficient
(b)
0 |
Friction 0.0 H
Friction 0.05
Friction 0.115
-2 — Friction 0.2 —
Friction 0.4
-4 |
-6 _
Pretension 30kN  20kN 10kN
8 \ \ \ \
0 20 40 60 80
Transverse Displacement [mm]
(©)

- 44 -



880r¢ _
O—-8——-~>a Max. Point

860
©
o
2,
@ 840 — —
P U U U U U U N P
B —_—
2 170 - —
2
©
.g 165 -
o OG——6——0 Center Point
L

160 —

155 3

150 \ \ \

0 0.1 0.2 0.3 0.4
Friction Coefficient
(d)

Fig. 4.16. Influence of friction coefficients under axial load and transverse load (a) Load-strain curve under axial
load, (b) Equivalent stress under axial load, (¢) Load-displacement curve under transverse load, (d) Equivalent

stress under transverse load
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4.4 Remarks on computational cost and accuracy

The required computational time for the analysis of the 7-wire helically stranded cable in both loading cases was
measured. A personal computer (Intel Xeon® CPU E5-1620 V3 @3.5 GHz Dual Core Processor, RAM 32GB)
was used to perform all of the computations.

The full solid FE model requires approximately six hours and four hours for the axial loading and transverse
loading cases, respectively, while the beam FE model only requires approximately 17 minutes and 19 minutes,

respectively. Table 4 shows the computational time required for each model.

Considering the geometry modeling and the mesh generation, the cost of the solid FE model is significantly
greater than that of the beam FE model. Computational efficiency is a very important factor for designers in the
cable industry; therefore, the beam FE model is a very effective for the prediction of the mechanical behavior of

helically-stranded cables in terms of computational efficiency.

Table 4. 2. Computational time required for analyses of the 7-wire helically stranded cable where three different
FE models are used.

Number of Number of Computational time [sec]
FE model - N DOF
ements S Axial load Transverse load
Solid model 96,556 [100%)] 343,104 [100%] 21,450 [100%)] 13,445 [100%)]
Beam model 1,099 [1.1%)] 6,636 [1.9%] 999 [4.7%] 1,121 [8.3%)]
Mixed model 12,874 [13.3 %] 48,825 [14.2 %] 3,193 [14.9 %] 1,745 [13.0 %]

We then compared equivalent stresses calculated using three FE models for a 7-wire helically stranded cable.
The equivalent stress at core center and the maximum equivalent stress at core were investigated in the half
length of the model as shown in Fig. 5(a). The stresses were obtained at 100kN axial load and 7kN transverse

load with pre-tension of 10kN.

Table 4.3 shows the stresses calculated using three FE models. Basically, the levels of stress are similar but, as
expected, the stresses calculated using the solid model are larger than those obtained using other models. The
results indicate that the beam FE model is useful for predicting the global behaviors of cables, but the solid and
mixed FE models are appropriate for investigating the local behaviors of cables such as stress concentrations,
local yielding stress, and detailed contact stress.

While the solid FE model shows detailed local-stress distributions, the advantage of the beam FE model is a
high cost-efficiency, and the mixed FE model shows detailed stress distributions in the core with reasonable

cost-efficiency. Therefore, cable designers need to choose an FE model appropriate for the purpose of the design.
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Table 4.3. Equivalent stresses calculated using three FE models.

FE model

Center point [MPa]

Maximum point [MPa]

Axial load Transverse load Axial load Transverse load
[100kN] [7kN] [100kN] [7kN]
Solid model 1431 162 1434 860
Beam model 1428 159 1428 851
Mixed model 1431 161 1433 858
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4.5 Validity of analytical solutions

In order to find the validity of the analytical solutions, we performed general comparisons for helix angle
varying between 55° and 87.5°, the stiffness matrix component values obtained both using the analytical

models and beam FE model have been compared.

The stiffness coefficients in beam FE model are computed in four successive steps corresponding to different

loading condition in tension and torsion. Considering Eq. (1),

K_ :Axialload F, isapplied and the change of twistangle &9 is set to zero.
K,, :Torsion M, isapplied and the change of axial stretch ¢6h is fixed to zero.
K,, -Axialload F; isapplied with a free twist angle.
K

: Torsion M, is applied with a free axial stretch.

Fig. 4.17 shows the axial stiffness value, K_, obtained by different analytical models as well as beam FE
model, versus helix angle. The axial stiffness values of analytical models are almost same each other, but a little
higher than those of beam FE model. For the large helix angle (o >75°), the results of all analytical models have

a good agreement with the beam FE model (within 2.2% of each other).
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Fig. 4.17. Axial stiffness K versus Helix angle « curves for the 7-wire helically stranded cable.
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Fig. 4.18 shows the torsion stiffness value, K, , versus helix angle. As shown in Fig. 4.18 the model of Hruska

00"’
gives results appreciably lower than the others, because the torsional stiffness of the wires is neglected as
presented in eq. (25c). All the other analytical models provide very similar results, the difference increases
slightly with decreasing helix angle. For o>62.5°, the agreement between the analytical models (except

Hruska’s model) and beam FE model are very close.

60 | |
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8
\
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Fig. 4.18. Torsional stiffness K, versus Helix angle « curves for the 7-wire helically stranded cable.

The stiffness value of the coupling terms, K, and K, , versus helix angle are shown in Figs. 4.19 (a) and (b).
For K, , the difference increases with decreasing the helix angle. For a large helix angle («>75°), the

agreement with the FE model is good and the difference is within 5%. Below this o value, a significant

difference appears.

For K,,, the Hruska model has same stiffness value with K_, because it has symmetrical matrix terms (K, =
K,.) While the Machida and Costello models have different value with K_ . As shown in Fig. 4.19 (b), the

Machida and Costello models have a good agreement with beam FE model at ¢ >70°.
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Fig. 4.19. Coupling stiffness K_, and K, versus helix angle ¢ curves for the 7-wire helically stranded cable.
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In conclusion, the relative differences of stiffness values between analytical models and beam FE model are less
than 5% for the helix angle beyond 75°. But, the differences grow significantly for ¢ value below 75°, the
analytical models are too approximate for the analysis of 7-wire helically stranded cable. This can be a good

information for the cable designers when they select a design tool for cable design.
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5. Torque balance design of helically stranded cables

During axial loading, the helical wires, which render the cable flexible, induce a twisting of the stranded cable
that can be undesirable in several ways. Cable twisting may loosen some wires and tighten others depending on
the helix directions, so that some of the layers will be stressed at higher levels and the breaking strength of the
cable could be considerably reduced. Long cables that are restrained from twisting may develop a large induced
torque, whereby slight relaxations of the cable tension (momentary slack cable) can result in hockling (looping)

due to the corresponding instability.

To prevent undesirable cable twisting, external torque needs to be applied; however, a more favorable solution is
the prevention or minimization of such twisting behavior by properly designing the cable layer composition. It is
possible to find the “torque balance design” that is a suitable geometry between the adjoining layers of a
multilayered stranded cable that yields no twisting and no torque. For torque balance design, 88/h=0 and

M, =0 inEq. (1) and thus K, inEq.(1)and Egs. (25b), (26c) and (27c) are equal to zero. Our goal is to find

a layer composition and geometry that resultin K, =0.

For torque balance design, there are available several analytical models [26—30], in which dimensionless
parameters are adopted. However, such analytical models are only useful for designing cables with relatively
simple geometry. In this study, the use of the beam FE model is proposed for the torque balance design. The
beam FE model can be used for a design of cable with a complicated geometry, while the desirable accuracy and
a computational efficiency are also achieved. Of course, full solid FE model can be used for torque balance
design, but their practical use is limited due to the excessive computational cost. In the following sections, a
design procedure for which the beam FE model is used is explained through demonstrations of the torque

balance designs of two layer and three layer cables.

5.1 Two layer cable

To create the torque balance condition in a two layer cable, as shown in Fig. 5.1, the torque of layer 1 should be
equal and in the opposite direction to that of layer 2 . Here, the helix angles of both layers are defined as the
design parameters; that is, the helix angles need to be determined for the torque balance, while the other
properties (the geometric and material properties of the cable, and the boundary conditions including the

contacts) are fixed. This methodology has been widely and effectively used in common cable design practices.
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Fig. 5.1. Geometry of the two-layer cable (1 + 6 + 12 structure). ¢, : helix angle of layer 1; ¢, : helix angle of

layer 2.

A two-layer cable consists of 19 helically stranded wires (1 + 6 + 12). Fig. 5.1 shows the geometric and
boundary conditions, Fig. 5.2 shows the beam FE model for the prediction of the torque, and Table 5.1 presents
the geometric and material properties of the cable. Coulomb friction model with a friction coefficient of 0.115

was used in this model.

Fig. 5.2. Beam FE model of the two layer cable (a) Core and layer 1, (b) Layer 2
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Table 5.1. Geometric and material properties of the two layer cable

Laver | No. of Helical Wire Pitch Model Young’s Poisson’s
N)é wi}es direction diameter length Length Modulus ratio
' & angle [a] [mm] [mm] [mm] [GPa]
Core 1 - 3.66 - 334.56 198 0.3
1 6 RHL, 75.37° 3.33 84.11 334.56 198 0.3
2 12 RHL, 75.9° 3.33 167.28 334.56 198 0.3

Fig. 5.3 shows the axial load-axial strain curves that were obtained through the use of the beam FE model, the
experiments [3], and the analytical model [10]. During the investigation of the loads that correspond to the axial
strain of 0.003, the observed response of the beam FE model is much closer than that of the analytical model to
the experimental results. The differences from the experimental results are 20% and 5.7% for the analytical
model and the beam FE model, respectively. Fig. 5.4 shows that the axial load-torque curves of the cable are
also well predicted through the use of the beam FE model, whereby the cable produces a net torque of 140N-m

at a working load of 120kN; that is, the torque in this cable is not balanced.

Regarding torque balance design, a consideration of the stress limit and the flexural rigidity, in addition to the
torgque balance, is also very important; that is, the design stress limit should always be satisfied. A lower flexural
rigidity allows for a more effective cable handling capability; therefore, the torque balance condition and design

stress limit should be satisfied together, and the flexural rigidity needs to be minimized.

In a two-layer cable, the helix angles ¢, and ¢, for layer 1 and layer 2, respectively, are the design

parameters.
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Fig. 5.4. Axial load-torque curves of the two layer cable
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The torque balance design can be accomplished by using the following design procedure:

(Step 1) First, the helix angles are selected. Practically, a limit of the helical angle «, needs to be considered,

because the wire has the maximum permissible value of the helical-wire area in the layer. The cross sections of
the helical wires are perpendicular and are of an elliptical shape. The total surface area of these cross sections
depends on the helical angle and the wire diameter of the layer. For a given wire diameter, the minimum helical
angles are limited by the equations in Appendix C to make the closest fit between the helical wires and to

maximize the surface area of the cross sections; therefore, the range of ¢, is approximately from 70° to 90°.
Within this range, six ¢, values (72.5° 75°, 77.5° 80°, 82.5° and 85° right-hand lay (RHL)) are selected for
the torque balance design; similarly, in the range from 70° to 90°, five «,values (72.5° 75°, 80°, 85° and 90°

left-hand lay (LHL)) are selected. Note that the angles ¢, and ¢, are in opposite directions.

(Step 2) For the selected ¢, and ¢, values, torque analyses are performed using the beam FE model. The ¢, -
torque relation curve for every ¢, value is then plotted to find the zero-torque points, as shown in Fig. 5.5.

Using the six points, the torque balance curve (the relation between ¢, and ¢, ) is plotted, as shown in Fig. 5.9.

40
Op—------5 T —————————————
r Torque balance line &
— points (Torque=0) from
E 40— beam model analysis _
z
@ L i
S
o pZ *—o—¢ 0,585
|9 -80 — ) —=—=u =825 o
o—o—o o,=80
B A—A—A 0,=775 |
120 - A —>—> 0,575 ]
%% o,=725
-160 \ \ \ \

72 76 80 84 88
Layer 2 [al,, LHL]

Fig. 5.5. Torque balance points (torque = 0); red dots: torque balance points
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(Step 3) The maximum equivalent stress (Von-Mises stress) at the zero torque points is computed using the
beam FE model and the equivalent-stress curve is also plotted, as shown in Fig. 5.9. Note that the maximum
equivalent stress is generally found in the core because the core is subjected to both axial stress and transverse

contact stress induced by the helical wires continuously pressing on the core.

(Step 4) Flexural rigidity is a very important factor when handling cable in cable industries, especially in the
installation stage. To compute the flexural rigidity, bending analyses are performed using the beam model shown
in Fig. 5. 6. Several tip moments with no pre-tension are applied at the right end of the cable; then, we can fit the

centerline of the deformed cable with a circle fitting. The curvature of the bend radius o can be calculated

through this analysis. The curves of the bending moment-curvature and flexural rigidity-curvature of the cable
with different helical angle pairs (at zero torque points) are shown in Fig. 5.7 and 5.8. It is well known that,
although the flexural rigidity and curvature relation is nonlinear, a smaller helical angle pair generally produces

less flexural rigidity in the entire range of curvature [5, 55-56].

Fig. 5.6. Boundary conditions and deformation using beam model to compute flexural rigidity of the cable. M

is tip bending moment and p is bend radius.
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Fig. 5.7. Curves of the bending moment-curvature of the two layer cable with different helical angle pairs (at
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Fig. 5.8. Curves of the flexural rigidity-curvature of the two layer cable with different helical angle pairs (at zero
torque points).
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Based on these results, the flexural rigidity curve for the bend radius of 0.6m (cable drum size) is plotted at zero

torque points, as shown in Fig. 5.9.

(Step 5) On the equivalent-stress curve, Point (D that corresponds to the design stress limit (924MPa), which is
defined as 60 % of the yield strength (1540MPa) of the wire, is found. To satisfy the design stress limit, the

value of ¢, should be larger than 78.85° as shown in Fig. 5.9. In the range of ¢, the minimum flexural
rigidity is obtained at ¢, = 78.85% as shown in Point (2 of Fig. 5.6. The torque balance point is finally
determined at Point (3), whereby ¢, =78.85°and ¢, = 87.41°, satisfying the design stress limit and minimizing

the flexural rigidity.

89 \ ‘ \ ‘ 1300 — 221
®—@—@ Torque balance curve
r 4—&—¢ Equivalent stress curve 7 B
B—=—# Flexural rigidity curve
88.5 — 1200 — 22

& £
T 88 —1100 S 219 2
3L I S
- 1<} =
~ o oS
S 875 —1000 & 218 5
N E’ [nd
e L N 3} _ —_
> S Ne I s
© = S
- 87 Design stress limit [924 MPaJ | 900 g — 217 S
N i w i [

86.5 — — 800 — 21.6

86 ‘ ‘ ‘ 700 215

72 76 80 84

Layer 1 [al,, RHL]

Fig. 5.9. Determination of the torque balance point (D: Design stress limit point, @: Minimum flexural rigidity
point that satisfies the design stress limit, (3: Torque balance point that satisfies the design-stress limit and

minimizes the flexural rigidity.
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This proposed design procedure for which the beam FE model is used is practically very useful for the torque

balance design of helically-stranded cables. Fig. 5.10 summarizes the flowchart of the design procedure.

Select helix angles of each layer
[Step 1] (a,and o)
Y
[Step 2] Perform torque analyses, find zero torque
P points and plot the torque balance curve
A2
[Step 3] Compute the gquwalent stress and plot
the equivalent stress curve
A2
[Step 4] Compute the flexur.al.n.gldlty and plot the
flexural rigidity curve
A\ 4
Determine the torque balance point that
[Step 5] satisfies the design stress limit and
minimizes the flexural rigidity

Fig. 5.10. Torque balance design procedure.
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5.1.1 Comparison with analytical models

In this section, we compared FE beam model with analytical model for the torque balance. In the analytical

model, the equation s¥/h=0 and M, =0 inEq. (1) and thus K, =0. This means

(Keg)layerl + (Keg)layerz = O (73)

Using Eqg. (73) and Egs. (25b), (26¢) and (27c) for various analytical models, the torque balance points were
calculated and compared with the results of beam FE model. A two layer contra helically armored KEVLAR
EM cable used as a segment link between a surface support ship and a deep sea unmanned work system has

been used. For the two layered cable given in Table 5.2, suitable helix angle for the outer layer ¢, is computed
for different helix angles of inner layer ¢,. MATLAB program was used for calculation and the convergence

condition for satisfying Eq. (73) is as follows

‘(Kes)layerl - (Kyg)layerz

<10 (74)
‘ (Kﬁa)layerl ‘
Table 5.2. Geometric and material properties of KEVLER EM cable
Parameter Inner Layer Outer Layer
Wire radius, r, [mm] 1.285 0.9715
Centerline radius, r [mm] 12.59 14.85
Helix angle, o [deg] RHL LHL
Young’s Modulus, E [GPa] 75.36 83.74
Yield Strength, S, [MPa] 1309 1509
Number of wires, n 28 44
Core radius, r, [mm] 11.31
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The relationship between ¢, and ¢, obtained and compared with FE beam model is shown in Fig. 5.11. The

results among analytical models are similar, but they are different from beam FE model. Especially, in the
smaller helical angle, the difference is larger.

88 | |
B — Hruska |
— Machida
84 — m—=—m Costello ]
@ —® —@® FE model
—
L o8 |
N Fr
3 76 |
=
= I
72 —
n a, |
68 | | | | |

64 68 72 76 80 84 88
Layer 1 [@,;, RHL]

Fig. 5.11. Comparison of helix angles satisfied with torque balance of KEVLER EM cable
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5.2 Three layer cable

We performed the torque balance design of a three layer cable with 37 wires (1 + 6 + 12 + 18), and its geometry
and boundary conditions are shown in Fig. 5.12. Coulomb friction model with a friction coefficient of 0.115 was
used in this model. Fig. 5.13 shows the beam FE model that is used, and the geometric and material properties
are given in Table 5.3. To achieve the torque balance for the three-layer cable, the sum of the torques that are

induced in the three layers should be equal to zero, as follows:

(Kas)layer 1 + (Kﬁg)layer 2 + (Kae)layer 37 0 (75)

Ux=Uy=u:=0 Ux=uy=0, uz=0
G=6=6=0 G=6=6=0
Y :
—_—
y

L, ©

Fig. 5.12. Geometry of the three layer cable (1 + 6 + 12 + 18 structure). ¢, : helix angle of layer 1; «,: helix

angle of layer 2; ¢, : helix angle of layer 3.
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@)

(b)

(©

Fig. 5.13. Beam FE model of the three layer cable (a) Core and layer 1, (b) Layer 2, (c) Layer 3

Table 5.3. Geometric and material properties of the three-layer cable where RHL and LHL denote “right hand
lay” and “left-hand lay,” respectively.

Helical Wire Pitch Young’s . ,

Layer No. of - . Poisson’s
NO wires direction diameter length Modulus ratio

' and angle [o] [mm] [mm] [GPa]

Core 1 - 1.09 - 190 0.3
1 6 RHL, 79.23° 1.00 34.52 190 0.3
2 12 LHL, 79.23° 1.00 67.55 190 0.3
3 18 RHL, 79.23° 1.00 100.58 190 0.3

Fig. 5.14 shows the axial load-axial strain curves that were obtained with the use of the beam FE model, the
experiments, and the analytical model. The beam FE model is capable of a sound prediction of the experimental
results [31].

By using a design procedure that is similar to that which has been presented for the two layer cable, the torque

balance points that satisfy the design stress limit and minimize the flexural rigidity can be determined for the

three layer cable model.
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Fig. 5.14. Axial load-axial strain curves of the three layer cable

First, six ¢, values (72.5° 75° 77.5° 80°, 82.5° and 85° RHL), six ¢, values (72.5°, 75°, 77.5° 80°, 82.5°,
and 85° LHL), and five @, values (72.5° 75° 80° 85° and 90° RHL) are selected for the torque balance

design. The directions of the three helix angles are defined in Fig. 5.12 (a).

For the selected «,, a, and a, values, 180 cases (SiXx «,* siX a,X five @,) of the torque analyses were
performed using the beam FE model. The ¢, torque-relation curves are plotted for all of the ¢, and g,
values and the zero-torque points were found. Fig. 5.15 shows the ¢, - torque relation curves for the ¢, values

when ¢, = 85€ similarly, for the other ¢, values (72.5° 75°, 77.5° 80°, and 82.5°), the curves are plotted and

the torque balance points were found. . Fig. 5.16 and 5.17 show the curves of the bending moment-curvature and
the flexural rigidity-curvature for the three layer cable with different helix angle pairs (at zero torque points)
when ¢, =85 It also shows that a smaller helix angle pair produces less flexural rigidity over the entire range

of curvature.
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Fig. 5.15. Torque balance line and points (torque = 0) when ¢, = 85€, red dots: torque balance points.
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Fig. 5.16. Curves of the bending moment - curvature of the three layer cable with different helical angle pairs (at

zero torque points) when ¢, = 85°
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Fig. 5.17. Curves of the flexural rigidity - curvature of the three layer cable with different helical angle pairs (at

zero torque points) when ¢, = 85°

Using the obtained torque balance points, the torque balance curves (the relations among ¢,, «, and «,) are

plotted, as shown in Fig. 5.18. On the equivalent stress curves that are also plotted, the design-stress limit
(924MPa) can be reached for three ¢, values (80°, 82.5° and 85°), and the corresponding points in the torque
balance curves are point (D, point 2, and point Q. The flexural rigidity obtained at the three points, @O, @,
and ), are 0.3602 N-m?, 0.3607 N-m? and 0.3612 N-m? respectively, and point (D provides the minimum
flexural rigidity among the three points. The torque balance design is finalized at o, = 85° ¢, = 80.1° and

o, =86.28°

Based on the design procedure proposed in this study, multilayered helically-stranded cables that comprise four

or more layers can be practically designed for torque balance.
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Fig. 5.18. Determination of the torque balance point; A: torque balance curves; B: equivalent stress curves; red
dots: torque balance points that satisfy the design stress limit.

Finally, we note that in engineering practice, two and three layer cables have been most widely used and the
proposed design procedure is demonstrated for such cases. However, as the number of cable layers increases,
the design procedure could become very complicated. Refs. [57-58] suggest a torque balanced arrangement of
high axial stiffness for the cable design, using an analytical model derived from parametric study and the
structural optimization method, for up to five layers. This may be a good solution for the design of multilayer

cables, and the beam FE model proposed in this paper could be used as an analysis tool for it.

Here, for more practical approach to perform the torque balance design of multilayer cables, it may be a better

method to determine only two helical angles, «, , and ¢, , for n layer cables using the beam FE model. For

an example, in a five layer cable, the helical angles of the first, second and third layers (with alternating opposite

directions) could be determined within a practically reasonable range, and then ¢, and ¢, could be

determined using the torque balance design procedure suggested (as presented in Fig. 5.10). It is not a perfect

solution for the design of multilayer cables, but it may be a good practical solution useful in cable industries.
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To verify the accuracy of the design procedure for torque balance, two test cables, typical of aluminum-

6. Case study

conductor steel reinforced (ACSR) and submarine power cable, were constructed and subjected to tests.

6.1 Case study 1: Torque balance design of ACSR cable

The ACSR test cable is depicted in Fig. 6.1. Its outside diameter is 22.75mm and the external 2 layers are made
of aluminum alloy wires whose function is mainly to flow electrical current. Core and the internal 1 layer are

made of aluminum-clad steel wires that act as the main structural part. Geometric and material properties for all

cable components are summarized in Table 6.1.

1

a,[RHL)

|
]

oy (LKL)

(@)

]

Fig. 6.1. Geometry of ACSR cable. Core and 1 layer : aluminum-clad steel, 2 and 3 layers : aluminum alloy.

Table 6.1. Geometric and material properties of ACSR cable

Helical Wire Pitch Young’s .

Layer No. of — . Poisson’s

No wires direction diameter length Modulus ratio
' and angle [o] [mm] [mm] [GPa]

Core 1 - 3.25 - 162 0.3
1 6 RHL, 85° 3.25 233.4 162 0.3
2 12 LHL, 75.5° 3.25 157.9 69 0.33
3 18 RHL, 85.4° 3.25 761.4 69 0.33
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6.1.1 Cable design

By using the proposed design procedure in this paper, six ¢, values (72.5°, 75°, 77.5°, 80°, 82.5° and 85° left-
hand lay (LHL)) and five ¢, values (72.5° 75° 80°, 85°, and 90° RHL) are selected for the torque balance

design, and ¢, is fixed as 85°(RHL).

For the selected ¢, and ¢, values, 30 cases (one g, x six a,x five @,) of the torque analyses were
performed using the beam FE model. The ¢, torque-relation curves are plotted for all of ¢, values and the
zero-torque points were found. Fig. 6.2 shows the ¢, - torque relation curves for all of ¢, values, the curves

are plotted and the torque balance points were found. Coulomb friction model was used with a friction
coefficient of 0.2 in FE analysis.

120 | |

Torque [N-m]

40 | | | |
72 76 80 84 88

Layer 3 [a,, RHL]

Fig. 6.2. Torque balance points of ACSR cable

Using the obtained torque balance points, the torque balance curves are plotted, as shown in Fig. 6.3. The
equivalent stress curves and flexural rigidity curves are also plotted. On the equivalent-stress curve, Point @

that corresponds to the design stress limit (720MPa), to satisfy the design stress limit, the value of ¢, should

be larger than 75.59 as shown in Fig. 6.3. In the range of ¢, , the minimum flexural rigidity is obtained at «,=
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75.59 as shown in Point 2 of Fig. 6.3. The torque balance point is finally determined at Point (3, whereby

a,=75.5°(LHL) and @,= 85.4°(RHL), satisfying the design stress limit and minimizing the flexural rigidity.

90 | 740 — 21
@—@—® Torque balance curve
I €—9¢ ¢ Equivalent stress curve |
B—&—8 Flexural rigidity curve B

Design stress limit [720 MPa] 720 P
< &
- o £
- z =
= 00 @ =
- D =
» ] ©
3, b 19 B
™ = o
A <) —_
L 680 <
S = I S
= 3
LLl LL

— 18

660
84 | | | 640 17

72 76 80 84
Layer 2 [a.,, LHL]

Fig. 6.3. Determination of the torque balance point of ACSR cable
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6.1.2 Experimental test

First, the mechanical tests of core and the internal 1 layer, which are made of aluminum-clad steel wires, were
performed as shown in Fig. 6.4. Both ends were firmly socketed and fixed against rotation. One end was

attached to a torque meter.

Fig. 6.4. Tensile test of the core and internal 1 layer structure (aluminum-clad steel wires) of ACSR cable

Comparison of the beam model and test results is given in Figs. 6.5 and 6.6, which are axial load-axial strain
curves and axial load-torque curves respectively. The beam model is successful in predicting the reaction torque
as well as the load-strain relation with applied tension. It is obvious that the beam model predicts the behavior of

the core and internal 1 layer structure.
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Fig. 6.5. Axial load-axial strain curves of the core and 1 layer structure of ACSR cable
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Fig. 6.6. Axial load-torque curves of the core and 1 layer structure of ACSR cable
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Second, the mechanical tests were performed on the ACSR cable which is manufactured by torque balance
design in section 6.1.1. The specimen was socketed and restrained against rotation at each end. The load was
applied up to 100kN. During the test, cable axial strain and reaction torque resulting from an applied tension

were measured.

6.1.3 Results and discussion

Figs. 6.7 and 6.8 compare beam model and experimental results respectively. Fig. 6.7 shows close agreement in
the axial load-axial strain plots, while Fig. 6.8 shows a small difference. The torque from beam FE model is 0.56
N-m with applied tension 100kN. The torque value from beam model is nearly “zero” and this means the cable
is well designed for torque balance. The experimental result indicates that the torque is 2.53N-m with applied
tension, the difference of the value between beam model and experiment is 1.97N-m. It can be considered that
the difference is due to unequal load sharing among the wires. Looseness of the wires while handling them in
preparation for socketing makes it possible for wire layers to have unequal lengths between sockets and generate
torque. Nevertheless, the torque value from experiment is below 3N-m and it’s so small value. It’s obvious that
this small torque value doesn’t make the cable to have any harmful mechanical behavior.

120 | |
~ O—8—~0& Experiment n
&—<$—< Beam model
100 —
80 — —

f o

Axial Load [kN]
3
\
|

20 — —
0% | | |
0 0.001 0.002 0.003 0.004

Axial Strain

Fig. 6.7. Axial load-axial strain curves of ACSR cable
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Fig. 6.8. Axial load-torque curves of ACSR cable

As a result, good agreement between test and analysis results indicates that satisfactory estimates of cable
behavior can be obtained with the proposed beam FE model and torque balance design procedure. This can

provide preliminary designs and guidance in planning appropriate cable manufacturing.
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6.2 Case study 2: Torque balance design of submarine power cable

The submarine power cable is depicted in Fig. 6.9. The cable mainly consists of copper keystone conductors,

XLPE insulation, a lead sheath and double layers of copper armor wires. Conductors consist of helically

stranded flat wires. Geometric and material properties for all cable components are summarized in Table 6.2.

Description

Details

Conductor

Keystone conductor

Conductor Screen

Extruded PE

Insulation

Extruded XLPE

Insulation Screen

Extruded PE

Axial water seal

Semi-conducting swelling tape(s)

Metallic Screen

Lead alloy sheath

Sheath

Extruded polyethylene

Bedding Semi-conducting polyester tape
Armor 1 Copper wire

Armor 2 Copper wire

Serving Polypropylene yarn

Fig. 6.9. Geometry of submarine power cable.

Table 6.2. Main geometric and material properties of submarine cable

No. of Helical Outer Pitch Young’s Poisson’s
Layer wi}es direction Diameter length Modulus atio
and angle [o] [mm] [mm] [GPa]

Conductor - - 58.8 - 117 0.36

Insulation - - 117.2 - 0.30 0.46

Metallic screen - - 130.6 - 9.78 0.45

Sheath - - 137.0 - 0.88 0.46

Armor 1 85 RHL, 74.7° 148'52_ 1650 117 0.36
(5mm : wire)

Armor 2 78 LHL, 75.5° 162'72. 1900 117 0.36
(6mm : wire)
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6.2.1 Cable core test and modified cable model

The real model consists of many components as shown in Fig. 6.9. This model needs to be simplified for the

beam model. We assumed the equivalent core that has only one component from

ign using

torque balance des

lent core. The modified model

ing equiva

conductor to bedding layer. Fig. 6.10 shows the modified model us

consists of equivalent core and wires. Fig. 6.11 shows the beam FE model that is used in this modeling.

Armors

Equivalent core

(@)

Fig. 6.10. Modified model using the equivalent core. (a) original model, (b) modified model.
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Fig. 6.12. Beam FE model of submarine cable (a) Equivalent core and layer 1, (b) Layer 2
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The cable core test was performed to get the equivalent material properties for the equivalent core. The test
equipment is shown in Fig. 6.12. The core was socketed and restrained against rotation at each end. The load
was applied up to 200kN. During the test, cable axial strain and reaction torque resulting from an applied

tension were measured.

The test result is given in Figs. 6.13 and 6.14, which are axial load-axial strain curves and axial load-torque
curves respectively. The equivalent Young’s modulus of the core can be determined as 19.84GPa from the axial
load-axial strain curve. Because the conductor of the cable originally consists of helically stranded flat wires, the
torque of the core is generated under axial load. The torque from the core test is 281N-m when the load applied
200kN as shown in Fig. 6.14. It is very important to consider the torque of the core from the test when we
design the torque balance using the modified model. After the torque balance design using the modified model,

the torque of the core from the test needs to be added or subtracted depending on its direction of the torque.

Actuator Cable core Roller (four direction)

—Hol I

I I-H-..l(xntl)lui

Straln gage

Fig. 6.12. Tensile test equipment of cable core
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Fig. 6.13. Axial load-axial strain curves of cable core
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Fig. 6.14. Axial load-torque curves of cable core
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Bending test was performed to find bending rigidity and Young’ modulus for bending of the equivalent core was
calculated. Fig. 6.15 shows the test equipment for 3 point bending. Bending rigidity can be calculated following

equation.
3
El = \;V;‘(S : (76)

where El isbending rigidity, W isload, L is length between pivotsand § is deformation.

sheath

- HDPE

Cable
Sensor

Fig. 6.15. Bending test equipment of the cable core

The equivalent Poisson’s ratio needs to be determined but it’s not easy to measure the lateral displacement of the
core from the test. Therefore, the FE analysis for finding equivalent Poisson’s ratio was performed using beam
model. The difference of the values of Axial load-axial strain curves was just below 0.1% with the range of the
Poisson’s ratio 0.1~0.45 from FE analysis result as shown in Fig. 6.16. Thus, the Poisson’s ratio was determined

as 0.4 and Table 6.3 shows the geometric and material properties of the modified model for the submarine cable.
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In the table 6.3, there are two types of Young’ modulus, one is for axial rigidity and another is for bending
rigidity, respectively.

200 — | | —
O—&—H8 Experiment
——— Beam model v=0.1
r ———— Beam model v=0.2 7
—————— Beam model v=0.4
150 — — Beam model v=0.45 |
Z
x L _
f:
- 100 — |
8
N ]
50 — —
0 | | |
0 0.0002 0.0004 0.0006 0.0008

Axial Strain

Fig. 6.16. Axial load-axial strain curves of cable core with Poisson’s ratio

Table 6.3. Geometric and material properties of the modified model for the torque balance of the submarine

cable
No. of Helical Wire Pitch Young’s Poisson’
Layer wi}es direction diameter length Modulus * Or:i(; °
and angle [o] [mm] [mm] [GPa]
. 19.84 (A)

Equivalent core - - 138.12 - 236 (B) 0.4

Armor 1 85 RHL, 78.8° 5 2270 117 0.36

Armor 2 78 LHL, 82.4° 6 3629 117 0.36

* Two types of Young’s modulus, A : for axial rigidity, B : for bending rigidity
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6.2.2 Cable design

By using the proposed design procedure and modified cable model with equivalent core in this paper, six ¢,
values (72.5°, 75°, 77.5°, 80°, 82.5° and 85° right-hand lay (RHL)) and five ¢, values (72.5° 75°, 80°, 85°,

and 90° LHL) are selected for the torque balance design.

For the selected ¢, and ¢, values, 30 cases (six o, * five q,) of the torque analyses were performed using
the beam FE model. The ¢, torque-relation curves are plotted for all of ¢, values and the zero-torque points
were found. Fig. 6.17 shows the ¢, - torque relation curves for all of ¢, values, the curves are plotted and the

torque balance points were found. The friction coefficient was used as 0.2 in FE analysis.

8000

4000

Torque [N-m]
o

-4000

-8000 \ \ \ |
72 76 80 84 88

Layer 2 [o,, LHL]

Fig. 6.17. Torque balance points of the submarine power cable

Using the obtained torque balance points, the torque balance curves are plotted, as shown in Fig. 6.18. The
equivalent stress curves and flexural rigidity curves are also plotted. The maximum equivalent stress (Mon-Mises
stress) at the zero torque points is computed as shown in Fig. 6.18. The maximum equivalent stress is calculated
in the wire. The flexural rigidity is also computed at the zero torque points and the flexural rigidity curve is
plotted, as shown in Fig. 6.18. To compute the flexural rigidity, bending analyses are performed using a beam
model for which a bending radius of 2000mm is considered.
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On the equivalent-stress curve, Point (D that corresponds to the design stress limit (158MPa), to satisfy the

design stress limit, the value of ¢, should be larger than 78.89 as shown in Fig. 6.18. In the range of ¢, the
minimum flexural rigidity is obtained at ¢ = 78.8% as shown in Point 2 of Fig. 6.19. The torque balance
point is finally determined at Point (3), whereby ¢, =78.8°(RHL) and «,= 82.4°(LHL), satisfying the design

stress limit and minimizing the flexural rigidity.

88 ‘ T ‘ 162 — 43.7
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—436 T

— £
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T = =
1 @ 435 x
N 8 —_
S 159 &H - g‘

)

cq:) E 43.4 2
: g e
- 158 g ©
o 2

2

—433 LW

157
78 | | | 156 432
72 76 80 84 88

Layer 1 [o,, RHL]

Fig. 6.18. Determination of the torque balance point of the submarine power cable
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6.2.3 Experimental test

The tensile tests as shown in Fig. 6.19 were performed on the submarine cable which is manufactured by torque
balanced design in section 6.2.2. All the conductor and armors were bonded together at both ends of the cable by
means of an anchoring head which prevents them from longitudinal movement and relative rotation inside it.
The cable heads were installed in a way that the resulting forces on the different cable components far from the
ends are equivalent to the distribution of forces during test. To achieve this is to have separate anchoring devices
for the armors and cable core where the relative load sharing can be controlled by a screw device. An anchoring
head is shown in Fig. 6.20. Before the test a small tensile load was applied to the cable and the core anchoring
position was adjusted, relative to the armor anchoring, to ensure that the core is also loaded. The load was
applied up to 1,000kN. During the test, cable axial strain and reaction torque resulting from an applied tension

were measured.

e A i Aby Ay A A 4
J

' A

Fig. 6.19. Tensile test of the submarine power cable (a) Specimen test, (b) Real cable test.
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Fig. 6.20 Anchoring head to control relative load sharing between conductor and armor

6.2.4 Results and discussion

Figs. 6.21 and 6.22 compare beam model and experimental results respectively. Fig. 6.21 shows close agreement

in the axial load-axial strain plots while Fig. 6.22 shows difference between beam model and experiment.

\ \
1000 |— O——&—H8 Experiment —
&O——<O—< Beam model

800 — —

E‘ L _
=,

T 600 — r .
o

.l B _
e

X 400 — —

200 — —

0 | | |
0 0.0004 0.0008 0.0012 0.0016

Axial Strain

Fig. 6.21. Axial load-axial strain curves of submarine cable
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The torque from beam model is nearly “zero”, but the torque from the experiment is 1381N-m when the load
applied up to 1,000kN. The conductor of the core originally consists of helically stranded flat wires, the torque
of the core is generated under axial load. Thus, the torque from core model should be considered as we
mentioned in section 6.2.1. The torque from the core test is 281N-m when the load applied 200kN as shown in
Fig. 6.14. If the load in Fig. 6.14 applied up to 1,000kN, the torque from the core is linearly increased up to
1405N-m as shown in Fig. 6.22. This torque value of the core is nearly same with the experiment result of the
cable. Considering above result, the proposed beam FE model with torque balance procedure has good

agreement with the experiment results.

1000 — G——8—-*8 Experiment_Cable
C—0—0 Experiment_Core
- O—<—< Beam model -

800 —
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=t 3
400 — llb‘ Eiii
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Cable Core
0 N B b | 5
-1600 -1200 -800 -400 0 100

Torque [N-m]

Fig. 6.22. Axial load-torque curves of submarine cable



6.3 Generalized torque balance curves using dimensionless parameter

Two layer contra-helically armored cables have been most widely used in the submarine cable system. Thus, it
is very important to achieve torque balance for two layer cable. If the generalized torque balance curves could
be introduced for a two layer cable without using any analytical solution or FE analyses, it’s very useful and
practical to perform preliminary design in cable industry. Therefore, generalized torque balance curves in two

layer contra-helically cables were proposed in this section.

Based on eq. (73), generalized torque balance curves can be proposed by properly introducing dimensionless
parameter with the geometric and material properties. As discussed in section 5, the three analytical stiffness
constants, Egs. (25b), (26¢) and (27c) have to be zero to achieve torque balance. The difference of the values
among those three equations is very small because the values are dominated by the wire stretch and they have
same stretch term in each equation [see section 2.4]. Therefore, by properly adjusting the geometric and material

values in stretch term of those equations, new dimensionless parameter, R , for torque balance can be
introduced as follows :
nEAT
R, _MWEAn )
nZEZAZrZ
where n,, n,, E,, E,, A, A, r, and r, are the number of wires, Young’s modulus, area of wires and wire

center line radius of the each layer, respectively.

The helix angles of each layer for torque balance can be calculated in accordance with the dimensionless

parameter, R, using the beam FE analysis. The range of the helix angles is selected from 70°to 90 which are

most frequently used in two layer cables.

First, to verify the definition of dimensionless parameter, the model in section 6.2 is used. Several types of

model can be made with same R, (=0.703). For example, if the wire radius of armor 2 is changed from 6mm to
7mm, the number of wires of armor 2 can be changed from 85 to 57 to have same value of R, as presented in
type 1 of table 6.4. Four types of changed models with same R, are presented in Table 6.4. The values with

bold type on the underlines are changed from original model. The material properties of the core are used with

the same values.

Table 6.4. Geometric and material properties of the original model and changed model with same dimensionless

parameter RI .
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No. of Wire Center line Young’s Dimensionless
Model Layer wires diameter radius Modulus parameter
[mm] [mm] [GPa] R,
Core - 138.12 69.06 19.84
Original Armor 1 85 5 71.56 117 0.703
Armor 2 78 6 77.06 117
Core - 138.12 69.06 19.84
Type 1 Armor 1 85 5 71.56 117 0.703
Armor 2 57 7 77.56 117
Core - 138.12 69.06 19.84
Type 2 Armor 1 59 6.02 72.07 117 0.703
Armor 2 78 6 78.08 117
Core - 138.12 69.06 19.84
Type 3 Armor 1 85 5 71.56 100 0.703
Armor 2 66 6.03 77.08 117
Core - 69.06 34.53 19.84
Type 4 Armor 1 45 5.09 37.08 117 0.703
Armor 2 40 6 42.62 117

The torque balance curves for the original model and changed models were plotted by using proposed design

procedure. Fig. 6.23 shows the comparison of torque balance curves among original model and changed models

with same R, (=0.703). The differences among each type can be negligible as shown in Fig. 6.23. Therefore,

it’s obvious that the definition of dimensionless parameter is appropriate for torque balance, and using this

dimensionless parameter, the generalized torque balance curves can be plotted.
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Fig. 6.23. Comparison of torque balance curves among the original model and the changed models with same
dimensionless parameter R, (=0.703).

Fig. 6.24 shows the torque balance curves obtained from the torque analysis of the beam FE model in
accordance with a variety of dimensionless parameters for two layer cables. As shown in Fig. 6.24, the torque
balance point is determined at Point (O R =1.1, ¢ = 70°(RHL) and @,= 65.8°(LHL), at Point @ R =0.8,
a,= 75° (RHL) and ¢@,= 78.6%(LHL), and at Point ©) R,=0.5, @, = 80° (RHL) and ¢,= 85.2°%(LHL),

respectively.

This generalized torque balance curves can be a good guidance for preliminary torque balance design instead of
relying on experimental data or other analysis tools.
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Fig. 6.24. Generalized torque balance curves for a two layer cable with dimensionless parameter, R, .
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7. Conclusion

The stiffness coefficients of the various analytical models for the helically stranded cable were evaluated. The
difference in the stiffness coefficients among analytical models was relatively so small. This is mainly because

of the predominance of the effect of wire stretch compared to that of wire twist and bending.

To predict the mechanical behavior of helically stranded cables, FE model was proposed in this paper.
Regarding the FE modeling, the wire-to-wire contacts and the elastoplastic material behavior are considered.
For the contact model, the influence of friction was analyzed and the bilinear coulomb friction model is an
effective for the helically-stranded cable in terms of computational efficiency. And, the influence of friction

coefficients on the global behavior of the cable was small.

The results that were obtained with the use of three different FE models (solid FE model, beam FE model and
mixed FE model) were compared with those of an analytical model and experiments, where the accuracy and
computational cost were also investigated. The solutions produced by the FE models were closer to the
experimental results than those produced by the analytical model; in particular, the beam FE model accurately
predicted global behavior of the cable as the solid FE model did. The computational cost of the beam FE model,
however, was significantly less than that of the solid FE model. For this reason, the beam FE model can be a
cost-effective solution for the design of helically stranded cables. Since many FE analyses must be performed

during the preliminary design stage, the importance of the effectiveness of the beam FE model is heightened.

To verify the validity of the analytical solutions, analytical models and FE model have been compared with
stiffness coefficients. As the result, the relative differences of stiffness values between analytical models and

beam FE model are less than 5% for the helix angle beyond 75°.

A procedure for the torque balance design whereby the beam FE model is used to design a non-rotating helically
stranded cable was proposed. In the proposed torque balance design, the helix angles are first changed using the
beam FE model for the performance of a number of torque analyses; simultaneously, the stress and flexural
rigidity are calculated, followed by the plotting of the torque balance, equivalent stress, and flexural rigidity
curves. Lastly, the helix angles of each of the layers that satisfy the design stress limit and the torque balance are

determined, and the flexural rigidity is minimized.

The proposed design procedure is verified by experimental test and the generalized torque balance curve is
proposed using new dimensionless parameter. The design procedure and torque balance curves provide an
appropriate and rational choice regarding the initial structural parameters for the preliminary design stage of
helically stranded cables. It is likely that the impact of the findings of this paper will be significant for cable

industries.
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Appendix

Appendix A. Stress determination of a stranded cable under axial load

It is assumed that the wires are initially stress free. From the Eqgs. (23) and (24), the total axial loads the total

axial twisting moment acting on the n outer wires are

F
;WZ =n{EFzzsina+ Eyz cosa] (A1)
M, M, . M, F r Foro.
=3 =n = Zsina + = 5 Cosa + —4 —cosa——25 —sina | (A2)

where F_ istotal axial load and M, is the total twisting moment acting on the wires.

The axial load F,_ and the axial twisting moment M _ acting on the core (center wire) are given by

FC
ErZ = 7ng’ (AB)
Er®  4(+v) ° | (A4)

The total axial load F, and the total axial twisting moment M, acting on the stranded cable are as

F=F +F, (A5)

M, =M, +M,. (A6)

In the case of the core, the axial stress is

FC
O = rl ! (A7)

4

the maximum shearing stress on the cross

Om = 3C . (A8)
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The outside wires are subjected to axial, bending, and torsional loading in addition to the shearing load F,- The

stresses caused by the shearing force F, are in general very small and is neglected. The axial stress caused by

the load F, is
Fu
O-WF = ﬂrz ) (Ag)

the normal stress due to the bending moment M , is

M,
O-WMy = ? . (AlO)

w

The maximum shearing stress on an outside wire due to the twisting moment M, is

Oumz =3 (A.11)
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Appendix B. Stress determination of a stranded cable under bending

Based on the equations in section 2.5, the stresses in an outer wire subjected to bending are

AM (B.1)
O =—— COSKS:
ﬂrw
am, (B.2)
Oumy =—-Sinasinks:
ﬂrW
2M, _ (B.3)
Oy =—— CoSasinks:
ﬂrW
where
cos a
k= , (B.4)
r.W
i Esina
(B.5)

*2p(2+veos? @) '

o and & are the maximum normal bending stresses on a given cross section due to the bending
WMXx wMy

moments M, and M, Cum is the maximum shear stress on a given cross section due to the twisting

moment M,. The maximum normal stress on the cross section occurs at s=0, s=z(r,/cosa), ..., and,
therefore,
aM B6
o, = . .
o (B.6)

The core (center wire) is also subjected to bending and, therefore, the maximum bending stress is

o, =—=. (B.7)

The maximum bending stress always occurs in the center wire for two reasons, except for considering contact

condition. First, the core usually has an equal or larger wire than the outside wire. Second, the helix angle o
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tends to decrease the stiffness of an outside wire, compared with a straight wire. For example, a helical spring

has a smaller bending stiffness, compared with a straight wire of the same wire diameter.
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Appendix C : The minimum value of helical angle of the wire

An equation is derived to determine minimum helical angle of the wire to prevent the outer wires from touching

each other.

Consider n helical wires, in a strand, that are just touching each other. Let the radius of helix, the wire radius,

and the helix angle be denoted by r, r and «, respectively. Fig. C. 1(c) shows a wire cross section in a plane

perpendicular to the cable. Since the wires are thin, the equation of the cross section, shown in Fig. C. 1(c), will
be assumed elliptical and hence,

) (2]
r,/sina r,

where (X, y) is any point on the ellipse. Now,

in2
dy . xsin” a

dc (xsin a]z (C2)
r,.|1-

I

W

Also at the point (x,, y, ), the slope is equal to —tan[” _”j , as shown in Fig. C.1(c). Hence,
2 n

(ﬂ' nj x, sin’ o
tan = - = |= )
n sina (C.3)
r,.1- xl—r

2 n)\/sin2a+tan2(727”) (C.4)

n

whereas Eq. (C.1) results in

r,sina

Y1 = ' C5
\/sinza+tan2[72z—”) (C.5)

n
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Fig. C.1. Geometry of a helically-stranded cable (1 layer, 1 + 6 structure). (a) Cable geometry, (b) Cross section
A-A, (c) Wire cross section perpendicular to axis of cable
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Fig. C. 1(c) indicates that
VA
=X tan ——— | C.6
= tar 2 -7 c8)

and, hence, since r=b +vy,,

(C.7)

(C.8)
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Summary in Korean

0% B 3248 o8% AEY 2dd ¥y %
o] & °L%3P?ﬂﬂ 4

~EWE= 7ol E(Helically stranded cable) 71414 A% S Y3 o nd
=] =]

& Al (stiffness  coefficient) & Al4tstar oo wE JFEE FASSIY. oF F  dtFol

Ael=e] 71AH As a@Ms A Fesr s Y
mde 7t gfolojgte] HE Aw B ©AA AR

A& AsS Fdsty] Y9l 2% vlE(Coulomb friction)S AFE3FaL, o]E o] &3k A7iA] wl#
Ldlo] thsl A B FE(Subroutine) EEIIH S o] §ato] FIto ey RAo wipE Aes 7T
S ool s} M #AEgih. A4 A, ZF owepE mEzke] Aol Al A E(global
behavior)2 FAFSI o™ A7k 2dl T W EE A 3k 2P (Bilinear model)o] 71 &% 9l
A AR=ES Jehder. w3 mpE Al (friction coefficient)o] wE QS BAS A, v
Aol wE Alel5e] AAl s (global behavior)ell td Ayf= FAFSIA oM, &2 npzE A
Zolo] wel FWE WY Estrain)e] PAE Qe gidE ARD naF

S e AR 37 9

et s 22 339 1A /32 43D solid FE model), . 38 4 (beam FE model) 2
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sfolojo]l Al HZ= &2(detail contact stress), - 3= -3 (local yielding stress) 5 A
7% (local behavior)S wi-¢- 2 F&aA| vk B 2o Hls] Aizor A F&A o] Wolxth
H fF3ases Aloge wA AsY AEd mdo= dF Ao AN, Aojs AA Ass

43 ANFUAE EEgol Holupm, Aol MA wAAY RN b HFFS @
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oA ARbE ts B f3a s o] g3t o] Edd g A
(validity)S H7}stodth H7F 23}, Hruska 2 2-S A€ g Costello 22 Machida 222 o]
A7 (Helix angle)”F 75° o]/de] A9 fgk 84 REI 50 ojule] AXsH= 4 ARE

7)
UEd S & o dddnh

=

op
o,

i1

!

s 2 fFaadis o83t ~EWdE Aolg W 3 AA H(procedure of torque
balance design)< AlQtstlth WA, Alels Zb FH(layer) Z1dZtE(helical angle)ol] W
314 2 (torque) S 74teta, 3]M o] 0 o] ¥ 3]W 7 3 4(torque balance curve)S A Al ST

FAlol AA 715 &2 (design stress limit)¥ A4 (flexural rigidity) S =5 w=deE H 4 A

K

THEAS 33 o2 AolEeo H3Z A 4 (optimized torque balance point) & & A ¢FeF3ith.

F71 8 dy A W dis] AAl s AolEo] e Hgsta AEges FE 2 A9E
Ase Ax, AA Adet & dATES gl we, 3 #F Akl AFe =98 Sl
z7] Aels AA dANA a4 =gy olE4 Rl HE§ gflo] I ZE o]&ste kY
Aol A AA A8 7hse 3 +8 39S A

- 105 -



Acknowledgments in Korean

of 25

el

ofp

5%

—_
o

o
g
o

ol
N

Al

==
T

3)

ALrgl oy 7AWy s

|
Al

h S
A=FH e

._AE

v}

918

s

A}

=
T

ol A

4r
uze)

ﬂ”
o

. 259 o Aest

we

717 0]

bl =

—

]:]]-HH Al

avkgS =gy, agar,

==
L

Y

A Zpel

Aol ehi=

e

o)
5

24

o
o]

ofp

=44 2

e Ege TP OISS AT

=3
s

ARElel A T

<H

o=

Al
h

J A= 3

A 54
21417} o]

ol
e

Tor

Ao kg,

sl7]1&

kg B 43

FaA, el oiE vl shef gl o

S

3} e Y

%

1}01- Ag

A
4]

DEF mopFal 34 EREI o

o~
T

=]
=

}
2|5 o] Ao A Ao e gHr} oz FALe] & ub

hni

il
oF
Tor

<

dellM A

=
=

B
1o

iji

B

4
o7

o

<A

o] zFoluhn} Kol ¥7]% nhgc.

A4

20173 59

R
oy
op
puzel

—_

!

- 106 -






