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ABSTRACT

Wave-structure interaction problem is important in ship and offshore engineering. Linear potential theory
is used widely for numerical analysis of wave-structure interaction problem. However, in the frequency domain
analysis using the linear potential theory, error occurs at certain wave frequencies are called the irregular
frequencies. These frequencies do not represent the physical resonance such as sloshing but are due to the
unigueness of solution of boundary integral equation.

We define the irregular frequency and introduce the extended boundary integral equation (EBIE) method
that is one of irregular frequency removal (IRR) methods. The EBIE method that guarantees the uniqueness of
the boundary integral equation for wave-structure interaction problem is applicable to three-dimensional body of
arbitrary shape but it increases computational cost according to the degree of freedom on the wet-surface and
interior free-surface. To reduce the increment of computational cost due to the EBIE method, we present the cost
reduction procedure for IRR method. This procedure apply the EBIE method selectively by detecting wave
frequencies that are affected by the irregular frequencies. The feasibility is shown by applying the cost reduction

procedure to examples: barge, circular cylinder, and ship-shaped offshore unit.

Keywords: Wave-structure interaction; Liner potential theory; Boundary integral equation; free-surface Green

function; Irregular frequency; Fredholm’s theorem; Extended boundary integral equation method
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Chapter 1. Introduction

1.1 Research Background

Analysis of free-surface wave structure interaction problem such as the rigid body motions of ship and the
hydroelastic behavior of floating structure is practically important in offshore engineering for the design of
offshore structures and the safe operation. In the linearized frequency domain analysis, the linear potential
theory is widely used. Utilizing the Green theorem, the linear potential theory induces the boundary integral
equation formulation. It is generally accepted that the boundary integral equation breaks down at specific
wave frequencies that are called the irregular frequencies. Roughly speaking, the irregular frequencies are
related to the volume of displacement and the shape of floating structure. As the volume of displacement
increases, irregular frequencies decrease and come within wave frequency range of interest. Additionally,
error of numerical solution due to irregular frequencies is similar to physical resonance peak of sloshing and
multibody problem [1], so analysis of ships and floating structures should consider the irregular frequencies
for accurate analysis result.

The occurrence of the irregular frequencies in the field of acoustic was first reported by Lamb in 1932 [2]. In
the field of waves and structures interaction, John recognized the existence of the irregular frequencies in
1949 [3]. Several methods have been proposed to remove the irregular frequency effect. Broadly speaking,
the irregular frequency removal method can be divided into two categories [4]:

® Modification of the integral operator
® Modification of the domain of the integral operator.

Several methods of modification of the integral operator methods have been adapted in wave-structure
interaction problem. Ursell [5] added a source at the origin to absorb the energy of the interior eigenmodes.
Lee and Sclavounos [6] adapted Modified integral equation method. The additional integral equation is added
to the boundary integral equation. The additional equation is the differentiation of the boundary integral

equation with respect to the field point. Modification of the domain of the integral operator method also has



been adapted into wave-structure interaction problem. The concept of this method is suppressing the interior
eigenmodes by placing the lid on the interior freesurface. Each method has its pros and cons in terms of
generality, computational cost, and modeling effort. WAMIT, widely using for wave-structure interaction
problem, includes the Extended Boundary Integral equation(EBIE) method that is one of modification of the
domain of the integral operator methods as an irregular frequency removal(IRR) option.

The EBIE method that increases the computational cost is available for general shape ships and floating
structures. However, because it is difficult to distinguish the existence of irregular frequencies in the
frequency range of interest, the IRR method which increases the computational cost should be adapted to

every analysis. Therefore, the total computational cost increases by adapting the IRR method.

1.2 Research Object and Contents

The objective of this research is to present the numerical analysis procedure that adapt the EBIE method
selectively to reduce the computational cost.

In the following chapter, we identify the boundary integral equation for rigid body and a direct-coupled
equation for flexible floating body and transform into a discrete linear system in chapter 2. In chapter 3, we
define the irregular frequencies and find the irregular frequency of barge and circular cylinder analytically.
The cost reduction procedure for the IRR method in case of single body problem that does not include
sloshing phenomenon is presented in chapter 4. Finally, we evaluate hydrodynamic coefficients of barge,
circular cylinder, and ship-shaped offshore unit to show the feasibility of the cost reduction procedure for the
IRR method. The numerical solutions in chapter 5 are obtained using source code developed by CMSS
laboratory in KAIST, a three dimensional hydroelastic analysis code using a direct-coupling method of waves

and floating structures [7, 8]. Chapter 6 draws the conclusions.



Chapter 2. Mathematical Formulation and

Numerical Method

This chapter describes the assumptions and governing equations. First, we present the boundary value
problem, and then we derive the boundary integral equation that has the irregular frequencies. Second, we
briefly review the direct-coupled equations for hydroelastic analysis and the discrete version of the direct-

coupled equations.

2.1 Overall Description and Assumptions

We consider a three-dimensional floating structure which interacts with plane progressive wave as shown in
Figure 2.1. Cartesian coordinate system of which origin is located on the free-surface is used. The water depth
is h. The wave incident angle & is an angle between two lines: positive x, direction line and incident
wave direction line. We adopt a harmonic time dependence and assume that the motion of floating structures
and the amplitude of wave are small compared to the characteristic length of floating structures and wave
length respectively. Assuming newtonian isotropic, incompressible, inviscid and irrotational fluid, we use the

linear potential flow to describe free-surface waves.

2.2 Modeling of the Fluid

We confine our discussion to a three-dimensional floating structure, which interacts with small amplitude
wave, so we use the linear potential flow for mathematical model of incident wave. We simplified the fluid
domain for the linear potential flow formulation from the problem description of Figure 2.2. Boundaries,

which surround the fluid domain, consist of four surfaces: the wet-surface (Sg), the infinite boundary

(S,,) . the bottom boundary (Sg ), and the free-surface (Sg).



Floating Structure ~

Incident Wave

Fluid

Figure 2.1. Problem description for free-surface wave structure interaction.

In general, the radiation and diffraction potentials are dealt with separately when the motions of rigid floating
structures are analyzed. By integrating the radiation potential, we can get an added mass and a wave damping
coefficients for the equation of rigid body motion. A wave exciting force can be obtained through integration
of the diffraction potential. Meanwhile, the total potential, which is sum of the radiation and diffraction
potentials, is used for the analysis of a hydroelastic behavior of floating structure in the direct-coupled
equation [7]. In this thesis, discussion would continue based on the direct-coupled formulation, so the total

potential would be dealt with in the next section.



Figure 2.2. Fluid domain of wave-floating structure interaction problem.

2.2.1 Boundary Value Problem (Exterior Neumann Problem)

We assumed a harmonic time dependence, so we define the velocity potential as “¢ = Rel¢ej”’tJ with the
time factor el in the fluid domain as shown in Figure 2.2. @ is the frequency of free-surface wave and
jis V=1 With the continuity equation and the assumption ideal flow and time dependence, we starts with
the velocity potential which satisfies the Laplace’s equation:

V24, (2.1)

The velocity potential satisfies the linearized free-surface boundary condition:

op  ?
il ) for x;=0 on S 2.2
g ¢ 3 F (2.2)
the bottom boundary condition:
o¢
Fv 0, on Sg(x3=-h)  (2.3)
the radiation condition:
\/E(%+ jkj(¢-¢. ~0) on s, Row)  (24)

the body boundary condition:



0 .
a—fz jou;n;, on Sg (2.9)

where u is the displacement of the floating structure, n is the unit normal vector on Sg, (#—¢,) is the
sum of radiation and scattering potential, and k is the wave number. From now on, we refer this boundary
value problem as the exterior Neumann problem because of its domain and boundary condition on Sg .

The incident wave potential ¢, is defined by

4 = j%ekx3e jk(x cos@+x,5sin 8) (2.6)
w

for the infinite depth where a is an amplitude of the incident wave [9].

The above boundary value problem could be solve by using the boundary integral equation method. To
derive the boundary integral equation, we use the free-surface Green function. The free-surface Green
function is the potential at the field point x due to a source at the source point &. It pulsates with the
angular frequency o, and satisfies the Laplace’s equation:

V?G(x-&)=-473(x~ &) for -h<x;<0  (27)
where G(x;&) is defined as “G(x;& o) = RelG(x;@)ej“"J and & is the Dirac’s delta function.
It also satisfies the linearized free-surface boundary condition:

6 _of

G, for x3=0 and x; #¢ (2.8)
X3 ¢
the bottom boundary condition:
oG
— =0, for xg3=-h and x; #¢ (2.9)
0X3
the radiation condition:
o .
\/F(a_Jr kae -0, on S, (r->w) (2.10)
r

Derivation procedure of the free-surface Green’s function in finite and infinite depth is well explained by

Wehausen and Laitone [10]. In case of infinite depth, the free-surface Green function is



* 2
G(x;8)= __t —+ P.V.J[*E—gpr a)2/g e”“"zSJO(zR)}dz
R%+(x3 - &) oLzl /g
_Zﬁw_ze—(wz/g]x3+53\% o RIj,
g g

where PV. means the Cauchy principal value, and J, is Bessel functions of the first kind of order 0. In

(2.11)

case of finite depth, the free-surface Green function is
G(xg)= ! + 1
\/R2+(x —&) \/R2+ (2h+ x5 + & )

+2PVJ. z+ a) /g coshz(x3+h)coshz(§3+h) &3, (R) ki
5 zsinh zh — (a; /g)coshzh

(2.12)

2
[Q’ZJ k.2
g 0
+ 27 5 coshky (x5 +-h)cosh ko (&5 +h)Jg(koR)j
2 2
kozh—[w] h+(a’J
g g

where k, means the positive real root of the dispersion relation equation, o’ = gktanh(kh).

2.2.2 Boundary Integral Equation

To derive the boundary integral equation to solve the above boundary value problem, we starts with the

Green’s theorem. If two arbitrary potential ¢, and ¢, satisfy the Laplace’s equation in the domain of fluid,
the following equation:

o o
J[@ ;:f ~4, ﬂds 0, (2.13)

C

where n is normal to S, from the fluid domain, can be derived easily. S should be a smooth and
closed surface surrounding the fluid domain. When one of the two potential does not satisfy the Laplace’s
equation in the fluid domain, some technique that modify the fluid domain and use the singularity property
can be applied [11]. The result equations are following:

for x outside S;

J| 072 xe) 2 ) o) for x on S (214
A O I

for x inside Sg

When the field point x ison S orinside S, this point is excluded by small surface, S, surrounding

the point. The integration over this small surface appears in the right hand side of equation (2.14).

-7-



Let’s apply Equation (2.14) for fluid domain Vp surrounded by surfaces: Sz, Sg, Sg, and S, as

shown in Figure 2.3, and then we obtain

—G(X;Q)Zf—g}dS@FO for x on Sy  (2.15)

2mg()+ | {qﬁ(&)

Sg+Sg+Sg+S,,

Because G has the same boundary condition on S and Sg with ¢, and on S with (¢—¢,),so we

get
. _ aG(x,é)_ X 6¢(§)
274(x) SI [¢(¢> ane) ~C é}an(a)}ds(é) f Ss (2.16)
oG(x;e) o4 (8) T |
+ Sj {¢. © nE) -Gl g)an—(g)} ¢

Next, consider the fluid domain V surrounded by surfaces: Sg, S,, Sg and S as shown in Figure

2.4, and then we obtain

s [0 atg) Al s

one) one) 0 for x on Sg  (2.17)

Sg+S;+Sg+S,,

Figure 2.3. Fluid domain Vg when x ison Sg.

Integration over S and S, disappear due to the linearized free-surface and bottom boundary conditions of



¢, and G, sowe have

~ 4 (x) = Sj {¢. (é)agrfé)é)—G(X;ﬁ)ag:]'(g}ds(é)- for x on S, (248)

Finally, by adding Equations (2.16) and (2.18) we obtain following equation:

—G(x:é)aﬂé)}ds(ﬁ) for x on Sy (2.19)

-2l 4 ) [[ o9 e

SB
and variational equation:

- IZﬂ¢(X){Z(X)dS(X)+ J.47T¢| (x)g (x)ds (x) =

(2.20)

where ¢ is the virtual velocity potential.

Figure 2.4. Fluid domain V when x ison Sg.

2.3 Discrete Linear System of Equations

Equation (2.20) representing the boundary value problem of the wave structure interaction cannot be solve

alone, because it possess the variable not only the total potential but also the displacement of the structure on



the wet surface. To solve the equation, the structure equation that has the same variables should be considered
simultaneously, and two equations consist the direct coupled equations. Additionally, for arbitrary shape
floating structure the direct coupled equation cannot be solve analytically. Therefore, we use the numerical
method. With the finite element discretization and boundary element discretization[7, 12], we can derive the

discrete linear system of equation:

_w2M+K+ KN ~9OHD ~OHN - joSp a 0
[ e ijG e ZﬁFJM fFGJM:LﬂRJ (2.22)
where
27 [ WK (0)= 3o o 0250
I sjim)ajrfg?}ds(a)ax)ds(x):$T[Fen]ap, 223)
iwsf Sj [GOcE; & )RS E)F(x)S(X) =3 [joFs b, 2230
[ 470, 0 (x)ds (<) = 9" [47 R, ] 2.230)

for a flexible floating body analysis, and we obtain the fluid part equation:
(27Fy —Fn )9 =47R; = jo Fgll (2.24)
In the aforementioned expressions, ¢ and G are the nodal velocity potential and displacement vectors,
respectively. Equation (2.24) is the discrete linear system of equation corresponds to Equation (2.20) and will
be used in the next section to discuss the irregular frequency.
To obtain the discrete linear system of equation for a rigid body motion analysis, we can express the
displacement field of rigid body motions by the six degrees of freedom: surge, sway, heave, roll, pitch, and

yaw as

uiR1 = Q1R51i,UiR2 = c12R§2i ,UiRs = Q3R53i
Ui = a5 g% (2.25)
uiRS :qSRgijk52ij’ |

R6 _ R
i =0g Eijk O3 Xk -

u
respectively, where &, is the permutation symbol. Then, we can obtain the following discrete linear system

of equations:

-10 -



TRT {—CUZSM +SK +SKN _SHD _SHN }TR - ja)‘l’RTSD q _ 0 (2 26)
joFs ¥R 27Fy —Fgn || @ 4rR, | '

where

0~ ¥lay +¥5a5 +-+ P&ag

2.27

in which ‘PiR (i =1 2,~-,6) means the nodal vectors for the ith rigid body mode. By condensing out the
fluid variables, we obtain the equation:
| 0?(SE +S% )+ jwSRy +58 Ja® =RY (2.28)
for arigid body motion analysis where super script R means rigid body motion and
SR = \I,RTSM wR : mass matrix,
SR, = Re[(\pRTSDj(gﬂ Fu = Fen )‘1(FG‘I’R)} : added mass matrix,
: radiated wave damping matrix, (2.29)

SR, = —wx Im[(‘I’RTSD)(Zﬂ Fu - Far )l(FG‘I‘R)}

. hydrostatic stiffness matrix,
Sk :‘PRT(SHS =Spe —Shp ~Shy )‘PR

RR = jw\pRTSDQﬁ Fu — Fon )*1(47r R,) : wave excitation forces vector.

Equation (2.26) corresponds to conventional equation for rigid body motion analysis. Kim [7] presented detail
derivation procedure and comparison of the direct coupling formulation and the conventional formulation.
Numerical results presented by Kim show good agreement with results of WAMIT that is the most advanced
software.

In this chapter, we derive the boundary integral equation-and describe the conversion of continuous Equation
(2.19) to discrete linear system of equation. This linear system of equation becomes ill-conditioned near the
irregular frequencies [6], so solution near the irregular frequencies are erroneous. The bandwidth of polluted
solution can be narrowed by discretizing the wet-surface finer, but it is not practical in aspect of
computational cost. Thus, many researchers have developed the irregular frequency removal methods. We
define the irregular frequency and review the existing methods briefly. Then, we suggest the effective

procedure to remove the irregular frequency effect arising in numerical solution.

-11 -



Chapter 3. Irregular Frequency

In this chapter, we first define the irregular frequency of the boundary integral equation we derived in
previous chapter, and identify the location of the irregular frequencies for barge, circular cylinder. Secondly,
we introduce the irregular frequency removal (IRR) methods that have been developed briefly and explain the

removal principal of the extended boundary integral equation that is one of the IRR methods.

3.1 Definition of the Irregular Frequency

Equation (2.19) that represents the exterior Neumann problem presented in section 2.2.1 is known as
possessing the irregular frequencies, and type of equation should be identified before defining the irregular

frequencies. The most general type of linear integral equation is

h(x)g(x)+ 2 [ K(x &)a(e)e = F(x). (3.1)

where the upper limit of the integral could be either variable or fixed [13]. g(x) is the unknown function.
h(x) and f(x) are known functions and K(x,&) is the Kernel. A is the nonzero parameter. Equation

(2.19) has changed over to the equation:

2t [ sl )0 xS G

_ '[{G(x;a)gf—g}ds(é)ﬂm )

to identify the type of the integral equation. Equation (3.2) is the linear integral equation because Equation
(3.2) corresponds with Equation (3.1) that is the general type of linear integral equation. To compare clearly,

we note equations:

-12 -



-] lce) 28 (o) 40 ().

1 0G(x8)
=00 o)
A=1

(3.3)

The upper limit of the integral is fixed and h(x) is ‘1> and f(x) is not zero. Therefore, the boundary
integral equation (2.19) representing the boundary value problem presented in section 2.2.1 is the linear
inhomogeneous Fredholm integral equation of the second kind.

It is well known that the occurrence of the irregular frequency is due to the existence and uniqueness of the
integral equation, and the Fredholm’s theorem describe the existence and uniqueness of the solution.
Therefore, we briefly introduce the Fredholm’s theorems. For more information, please refer the text book

written by RAM [13].

3.1.1 Fredholm’s Theorem

Fredholm’s theorems for integral equations give the general solution of the linear inhomogeneous and

homogenous Fredholm integral equations:

00+ 2[ K (e E)()dz = (x), 34

b
909+ [ K(xE)a(g)e =0, (3.5)
and concerns the existence and uniqueness. Fredholm’s theorems are closely related to linear algebra, and are
usually dealt with the system of linear algebraic equations. Thus, we introduce the linear system of equations

by confining discussion to one-dimensional integral, and discretizing the integral domain. We divide integral

one-dimensional domain into n equal parts that has a length h=(b—a)/n as shown in Figure 3.1 and then

we obtain the approximate equation:
b n
[k a(e)e ~nY Kx & als; )- (3.6)
a i

Equations (3.4) and (3.5) that integral is replaced using Equation (3.6) take the form
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g(x)+/lhi K(X,ij)g(‘fj)z f(x),

Q(X)MhiK(vaj)Q(ﬁ)“ 0.

Equations (3.7) and (3.8) are valid for n points on the integral domain, and these can be written as

9(x )+ A K (. & Jole; ) = 1), for i =1~n
g(xi)+’1hiK(Xi’§i)g(fj)zo- for i = 1~n
S ele

Figure 3.1. Discretization of one dimensional domain.

3.7)

(3.8)

3.9)

(3.10)

With expressions: g(x;)=g;, f(x)= f;, and K(xi,éj)z Kjj, we obtain linear system of n equations

with tensor representation:

gi+/1hzn:Kijgj % for i = 1~n
rj]
9i+/1hZKijgj ~0. for i = 1~n
i
Equations (3.11) and (3.12) can be written in matrix representation:
[1+K]g =",
[1+2K]g=0,
where
0 hKy;; hKy, -+ hKy, gy f, 0
T e i L T .l PO 22 P 3
00 1 hK,; hK,, -+ hK,, g.n f.n O

(3.12)

(3.12)

(3.13)

(3.14)

(3.15)

The inhomogenous solution vector gi,n.me ©f Equation (3.13) contains the homogenous solution vector
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Ohomo  OF Equation (3.14), and judgment of the solution vector g of Equations (3.13) and (3.14) using linear
algebra is well known. It depends on whether the resolvent determinant of the linear system of Equations

(3.13) and (3.14):

AhK 1+ AhK - 4hK
D,(2)=det ~ . % S 2 (3.16)
AhK,,  hK,, - 1+4hK,,

where subscript n of D, means the number of discretization, is zero or not.
In case of D, =0, parameter A of Equations (3.13) and (3.14) is equal to one of eigenvalues of the
eigenvalue problem:

1+ 429K Jg = 0. (3.17)
Therefore, equation (3.14) has at least one, and at most m, linearly independent solution, that is, gyome IS
non-trivial solution. Each linearly independent solution is the eigenfunction of the eigenvalue problem (3.17).

Equation (3.13), meanwhile, possesses a solution when compatibility equation is satisfied. That equation is

rank[A] = rankl‘Al (3.18)
where
_1+ ﬂ’hKll ﬂhKlZ ' B AhKln
JK.,  AhK,, - 1+4hK,,
- (3.19)
1+/1hKll /IhKlZ el lhKln fl
T A A
JhKy  AhK, - 140K f,

However, even if gimnomo €XIStS, Ginnome OF Equation (3.13) is not a unique because it contains gpgne Of

Equation (3.14) that has infinite non-trivial solution.

In case of D, =0, it is evident that Equation (3.13) has a unique solution and Equation (3.14) has trivial
solution. In other words, gy,m, Of Equation (3.14) is unique solution which is trivial solution and g;,nomo
of Equation (3.13) is unique solution.

Jinnomo  OF Equation (3.13) contains g;,,m, Of Equation (3.14), and the existence and uniqueness of ginnomo

depends on Qgugme and f. When g, iS trivial solution, ginome €XiSts and is unique. However, gpomo
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is non-trivial solution, the existence of gi,nome depends on f, and even if it exists, it is not unique. In other
words, the uniqueness of ginome Can be decided based on whether gpqm, 1S trivial or non-trivial. Above

statements are summarized in Tables 3.1 and 3.2.

Table 3.1. Existence and uniqueness of solution of homogenous linear system of equations.

homo  Of [1+iK]g=0

D, (2)
Existence Uniqueness
Unique Solution
D,(4)#0 0
(Trivial Solution)
Infinite Solutions
D, (4)=0 0

(Non-Trivial Solutions)

Table 3.2. Existence and uniqueness of solution of inhomogenous linear system of equations.

Yinhomo of [' +/1K]g =f

9 homo
Existence Uniqueness
Trivial O Unique Solution
Infinite Solutions
Non-Trivial Depends on f

(If exists)

The existence and uniqueness of solution of Fredholm integral equation correspond with the discrete linear
system of equation obtained by discretization and approximation as written in first part of this section. In
addition, there are two points should be considered before moving on to Fredholm’s theorem. First, as
nincrease to infinity, D,(4) becomes D(1) that is the resolvent determinant of Equations (3.4) and (3.5).

Second, the compatibility equation that related to the existence of the Qinomo WHEN Gpomo 1S NON-trivial,

differs from the discrete linear system of equation.
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Fredholm’s first and third theorems state the existence and the uniqueness of inhomogeneous Fredholm
integral equation. Fredholm’s second theorem describes the existence and uniqueness of homogenous
Fredholm integral equation. Three theorems also give the solution of the series form.

The integral equation that we solve is the inhomogenous Fredholm integral equation, so Fredholm’s first and

third theorem should be considered. In case of D, #0, Gjmnomo €XiSts and is unique. However, in case of
D(4)=0, the existence of ginomo depends on whether the compatibility equation is satisfied or not. The
compatibility equation is that the given function f(x) is orthogonal to every solution of the adjoint

homogenous equation:

o)+ 2[ K e =0, 620

that is

[ ol (c)ox =0, (3.21)

a
where the superscript * means a complex conjugate. Even if ginomo €Xists, it is not unique because it

contains gpqne that is non-trivial. Above statements are summarized in Table. 3.3.

Table 3.3 Existence and Uniqueness of Solution of Inhomogenous linear Fredholm equation of second kind.

Ginhomo Of g(x)+lI:K(x,§)g(§)d§ < f(X)

Jhomo
Theorem Existence Uniqueness
Unigue Solution
Fredholm’s First O Unique Solution
(Trivial Solution)
Infinite Solutions Infinite Solutions
Fredholm’s Third Depends on £ (x)
(Non-Trivial Solutions) (If exists)

3.1.2 Existence and Uniqueness of Solution of the Exterior Neumann Problem

Let’s identify the existence and uniqueness of solution of equation (3.2). Equation (3.2) is the linear

inhomogeneous Fredholm equation of the second kind, and corresponding homogeneous equation is
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276(x) + Sj {2;;¢(g)[%‘f%}2?}}d5(@)=m for x on Sy (3.22)

that has the kernel is the function of wave frequency. The homogenous solution of Equation (3.22) can be the
trivial solution or the non-trivial solution, and is part of the inhomogenenous solution of Equation (3.2).
Fredholm’s third theorem state about the inhomogenous solution when homogenous solution is trivial and
non-trivial.

Based on Fredholm’s first theorem, Equation (3.2) has the unique solution when the homogenous solution is
the trivial solution. According to Fredholm’s third theorem, the compatibility Equation (3.21) should be
satisfied in order that Equation (3.2) have a solution when homogenous solution is the non-trivial solution. By
substituting integral domain, known function, and the non-trivial solution of the homogenous equation, the

compatibility equation becomes

[ [t} &N as(e) () -0, 623

where o(x) is the non-trivial solution of the homogenous adjoint equation:

270(x) + J‘{Zmp(ﬁ)[iai;—(é;)g)ﬂdS(&):O, for x on Sz (3.24)

corresponding to Equation (3.2). Proof of Equation (3.23) can be shown by introducing the adjoint
homogenous equation and the interior Dirichlet problem considering potential ¢? that satisfies the Laplace
equation, the free-surface boundary condition on 'S, , and homogeneous Dirichlet boundary condtionon Sg .
Detail proof is written in section 3.1.4. However, even if Equation (3.23) is satisfied, Equation (3.2) has
infinite solution because Equation (2.19) cannot be determined uniquely, that is, the solution of inhomogenous
Equation (3.2) contains the solution of homogeneous equation that has at least one linearly independent
solution that makes infinite cases of homogeneous solution. This non-trivial solution of Equation (3.22) is a
solution of interior Dirichlet problem. We present how Equation (3.22) and the interior Dirichlet problem are
connected in section 3.1.4.

In summary, the solution of Equation (3.2) always exists, and is unique only when the solution of Equation
(3.22) is the trivial solution. Therefore, the irregular frequency is the wave frequency that make the solution of

Equation (3.22) the non-trivial solution.
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3.1.3 Interior Dirichlet Problem

In this section, we show that Equation (3.22) is related to the interior Dirichlet problem which is fictitious and

has nothing to with physical sloshing of interior domain. Interior problem domain is shown in Figure 3.2.

- T

Figure 3.2. Domain of Interior Dirichlet Problem.

Let’s apply Equation (2.14) for interior potential ¢3 that satisfies the free surface boundary condition and G

in fluid domain V, surrounded by surfaces: ' Sg and S, ,and then we obtain

i)+ | {5(&)6;(.)((5)—G(X:é)jf(éﬂds(éF0- for x on
Because G has the same boundary conditionon S, with gg,we get
2o [[46)°C s - [l s 26 st for . or

Sg Sg

The differentiation of Equation (3.26) with respect to the normal vector at field point x on Sg
og(x) o ([ 5.)26(x8)
2 - ds(g) =
" on(x) ) J P’@’ o) o6

(| 96(x8) ag(E
J { an(x) on(g)

for x on

—~—

}ds(é)-

Sg
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One should note that whereas the sign of parameter A in Equation (2.19) is positive, the sign of parameter
A in Equation (3.25) is negative, because the direction of n of Vg and the direction of n' of V, are
opposite. Now, let’s consider the Dirichlet and Neumann boundary conditions on Sy . When 8¢3/an =0, the

interior potential means the physical sloshing and Equation (3.26) becomes
; 9G(x;§)
27T¢(X)—SJ[¢(§) ) }ds(i) for x on Sz  (3.28)

so it has nothing to do with Equation (3.2). When ¢f= 0, the interior potential does not have the physical
relationship with Neumann exterior boundary value problem that presented in chapter 2, and Equation (3.27)

becomes

o Zﬁg)h S[Hzﬂa g ;} 17, ae(? )i)}ds(g)zo. for x on Sz (3.29)

Kernel, parameter, and integral surface of Equation (3.29) and Equation (3.2) are equal, so the relation

between the exterior Neumann problem and the interior Dirichlet problem is presented.

3.1.4 Adjoint Homogenous Equation

In this section, we show that the compatibility equation that assures the existence of solution of Equation (3.2)
when homogeneous solution is non-trivial is valid. To prove that, we first compare the adjoint homogeneous
equation of the interior Dirichlet problem and the exterior Neumann problem that are represented in the

integral Equations (3.24) and (3.2) respectively. The adjoint homogenous form of Equation (3.2) is

2ﬁ¢(X)+S.[{{2ﬂ¢(é)}{ ! 8Gan—((§)§)HdS(§)—Oy for x on Sy  (3.30)
and the adjoint homogenous form of Equation (3.24) is
og(x) 0p(E)| 1 aG"(x;8) _
The identity
plx)= 00x) (3.32)

an(x)
is established by comparison Equations (3.30) and (3.31).

Secondly, we consider the adjoint homogenous form of Equation (3.26):
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| ()220 ) - - ] a2 s ) for xon s, (339

and adopt the boundary conditionon ¢ =0 on Sy Equation (3.33), and get

06
| {G(X:é)af—((é))}ds(%)ﬂ- for x on s, (3.34)
SB

Thirdly, we apply Equation (2.14) for incident wave potential ¢, and adjoint interior potential ¢ in fluid
domain V, surrounded by surfaces: Sg, and S, . Incident wave potential satisfies the free-surface

boundary condition on S, and adjoint interior potential satisfies the free-surface boundary condition on S,

and the homogeneous Dirichlet condition on S . We obtain

[ {qﬁ, (x)gf((:ﬂds(&F j{(i)(X)agj' (X)}d8(§)=0- for x on s,  (335)

: an(x)

Finally, we can prove Equation (3.23). By substituting Equation (3.32) into Equation (3.23), we obtain

J Zf(()’:)) j G(X;i)gz—g ds (&) ds(x)+ j gf—((xx))x 474, (x)dS(x) =0, (3.36)
and the first term of Equation (3.36) becomes
S{ng g[ G(xE) 2?((;()) ds(x)!ds(z)=0, (3.37)

by changing order of integral and substituting Equation (3.34). The second term of Equation (3.36) becomes

o Ot kst - o [ o0 2es(0)-0 3%

by using Equation (3.35) and boundary condition ¢ =0.

3.1.5 Occurrence of the Irregular Frequency

As discussed in the several previous sections, Equation (3.2) representing the exterior Neumann problem
always has a solution and is unique only if solution of the interior Dirichlet problem of which solution vary
according to wave frequency is trivial. Therefore, when a solution of the Dirichlet problem is non-trivial, a
solution of the exterior Neumann problem is not a unique, and corresponding wave frequencies that make a

solution of the exterior Neumann problem not unique are called the irregular frequencies.
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In other words, the interior Dirichlet problem could have the trivial or non-trivial solution depending on a
wave frequency. Therefore, if we know the analytical solution of the interior Dirichlet problem, it is possible
to distinguish the irregular frequencies. However, it is difficult to solve the interior Dirichlet problem
analytically except simple geometry problem like barge, and circular cylinder. Accordingly, it is not possible

to predict the irregular frequency in most cases.

3.2 Location of the Irregular Frequency

In this section, we present the location of the irregular frequencies for barge and circular cylinder by solving

the interior Dirichlet problem analytically.

3.2.1 Barge

We assumed a harmonic time dependence, so we define the velocity potential as “¢® = Re[q;B ej“’tl. For a
barge with the length L, the breadth B, and the draft T as shown in Fig. 3.3, the velocity potential ¢®

satisfies the Laplace equation:

82 B 62 B 62 B
Vit =20 -0, (3.39)
OXq 6x2 6x3

the linearized free-surface boundary condition:

09® (%, %5, T) | ?

v :?(pB(xl,xz,T), on S, (3.40)

the homogeneous Dirichlet condition:
9°(0.%5,%3) = 0° (L, X5, %3) = 0° (%0, %3 ) = 9 (x, B, X3) = 0, on Sg (3.41)
9®(x1,%,,0)=0. on Sy (3.42)

By assuming the velocity potential as

b X ) . (MrX
B (X, X, X3) = Zanm Xq sm( Lljsm( ﬁsz (3.43)

n=1l m=1

The series form of the velocity potential (3.43) satisfies the boundary condition (3.42), and its double

derivatives with respectto  x;, and x, are
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09 (%4, %, , Shs ’ - :
9P M. %2, %3) ()(;1)(2)(2 X3)=_ZZ[HTHJ bnm(X3)S|n[n7iX1jsm(m7;X2j (3.44)

1 n=1l m=1
00 (X1, %5, %3) o (m;z T (nzx .. (mzx,
kA K A 2 —— | by (x3)sin sin (3.45)
i = P

By substituting Equations (3.44) and (3.45) into the Laplace equation, Equation (3.40) becomes

i 3% ( x3 [n;lejsin(mﬁxzj
n=l m=1 aXS L B

®  © 2 (3.46)
o Pt
B
n=1l m=1
N 2 m 2 1/2
If we introduce the parameter: y = [(TEJ + (—”j ] then we get
0%b,, (x
M_yzbnm()%):o' (3-47)
OX3
The general solution of Equation (3.47) is
bnm (X3): Anmep(3 +Cnmein3, (3.48)

where A,, and C,, are the arbitrary constants should be determined by adopting the boundary condition.

Now;, we find the relation that is A, = C,, by applying the boundary condition (3.42), and we obtain

0° (X, X2, %3) = 2A,, Sinh(ﬂfxg)Sin(nixljsin(mﬂBXZJ for nm=12,--- (3.49)

Finally with the linearized free-surface boundary condition, we have the equation:

S =Joycoth(yT) (3.50)

that represents the irregular frequencies of the barge problem [14].
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Figure 3.3. Schema of the Interior Dirichlet Problem (Barge).

3.2.2 Circular Cylinder

We define the velocity potential as “¢° = Rel(oc ej"’tJ by assuming a time harmonic dependence. For a

circular cylinder the radius R, and the draft T as shown in Fig. 3.4, the velocity potential ¢© satisfies the

Laplace equation:

¢ 276, €1, .C
Vz(ocziﬁ(ra(ﬂ j-r—:%@(p o =0,

ror| or r2 or2 oz

the linearized free-surface boundary condition:

2¢°(r,0,0) _w?

oz :F(DC (r60) oS
the homogeneous Dirichlet condition:
»°(R,6,2)=0, on Sg
9 (r,6,-T)=0. on Sg
By assuming the velocity potential as
9 (r.0,2)= ii Ann[sinh{n(z + T )}]x {cos(m@)+sin(m@)}3 , (nr),
m=1 n-1

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

where J, is the Bessel function of order m. The series form of the velocity potential (3.55) satisfies the

boundary condition (3.54). To satisfy the boundary condition (3.53), we define n that satisfies Jm(nR) =0.

We rewrite Equation (3.55) as in the field of
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9 (r,0,2)= Z A [sinh{n(z + T )}]x {cos(m@)+sin(m)}J , (NR) (3.56)
m=1
Finally with the linearized free-surface boundary condition, we have the equation:

c n
= _— 3.57
@i =419 tanh(nT) (357)

that represents the irregular frequencies of the circular cylinder problem.

Figure 3.4 Schema of the Interior Dirichlet Problem (Circular Cylinder).

3.3 Irregular Frequency Removal Method

Since the existence of the irregular frequencies was reported by Lamb [2], several IRR methods have been
suggested in the field of acoustics and water wave problems. These methods can be classified into two
categories [4]:

(1) Modification of the integral operator
(2) Modification of the domain of the integral operator.

Representative methods in the first category are the Modified Green function method [15], the Null-field
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equation method [16], and the Modified integral-equation method [6]. In the second category, there are two
typical methods: the Combined boundary integral equation(CBIE) method, and the Extended boundary
integral equation(EBIE) method, and the principle is the same [4, 17]. The ease of implementation, the
computational cost aspect, and general applicability should be considered when choosing one of methods.

Methods in the first category increase relatively small computational cost and are applicable for three-
dimensional body, but not suitable for arbitrary shape body. Meanwhile, the CBIE method and the EBIE are
applicable for three-dimensional structure, and the EBIE method are suitable for a structure of arbitrary shape.
However, the increment of computational cost of the EBIE method is relatively larger than methods in the first
category. Detailed contents are described in related papers and we summarize that briefly in Table 3.4. In
Table 3.4, the quantitative comparison is presented because comparison of cost increment is related to several
factors, and A means that it is difficult to apply to structure of arbitrary shape because particular factors such

as field point, arbitrary constant are involved.

Table 3.4. Comparison of irregular frequency removal methods.

Three Dimension Arbitrary Shape Cost Increment
Modified Green-
Available A Low
function Method
Null-field
Available Not Available Low
equation Method
Modified Integral-
Available A Mid
equation Method
CBIE Method Available A Low
EBIE Method Available Available High

Although the EBIE method increases the computational cost considerably, it is applicable to the three
dimensional floating structure of arbitrary shape. Therefore, we use the EBIE method for procedure to remove

the irregular frequency effect in numerical analysis presented in the chapter 4. The principle of the CBIE and
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EBIE methods is suppressing the non-trivial solution of the interior Dirichlet problem by imposing

homogenous Dirichlet boundary condition on S, . Through the EBIE method, Equation (2.19) is transformed

into

e
. I {¢'(g)8§r522)§) ds(z) for x on s,  (3.58)

B G&é
—amle { o) }
N SI { o agrfé)@ for x on s,  (3.59)
6¢B(§) + 47, (X
Jlote %M S(0)+ 4 )

where ¢B and ¢' are the velocity potentials on Sg and S, respectively. For detail procedure, please refer
the paper written by Lee [17]. We construct the discrete linear system of equation through variational

formulation, and boundary element discretization, then

— Sy +Sk +Skn —Shp =S — joSs G 0
|: e Kj;FCT?t\‘aI "o i F"\ertaIJi)Fggtal :||:(T)Tlital}:|:4ﬂRlTotal:| (3-60)
where
27 j Hx)F(x)Is(x) =5 2z FE JpTout (3.61a)
—47ZI¢(X)¢T(X)dS(X)= éTotalT[_ Ar FI\I/I ]("*)Total , (3.61b)
Si
I oG(x; ] ZTota ota
#(8) arfé)é) ds(e)g(x)as(x) =5 ' [Fee oo (3.610)
SeSg- -
¢(§)5(§r52(§)§) S(2)3 (x)dS(x ):—TotalT[FB | ](PTotaI, (3.610)
SeS - -
I G(X; ] ~Total otal
#2257 el @610
Si et -

-27 -



p(a)a‘;(x;é)}ds(w( x)is ()= 570 [ oo, 610

gl )
ij[G(X el B @)F (s (x) =57 [jwFea, (3.61g)
S5 Ss
jo j [t e @ e)sces()- 5™ liwrtla. @610
[ 4701 (<) (x)as (x)= ™ "azr?), (3.61i)
S
I4fr¢. () 0s (=57 4R} ], (3.61))
@Total =38 +¢', FIobl il i lpe FT0E _ o, FB _47Fl (3.61k)
FO® <FSP+FE +FLP +FL . R =RP+R], (3.611)

for flexible floating body analysis. In the aforementioned expressions, @2 and ¢' are the nodal velocity
potential vectors on Sz and S, , respectively. By expressing the displacement field by the six degrees of
freedom, and condensing out the fluid variables, we obtain the following equation:

| 0?8 +S5a )+ i@SEy +58 Jaf =RY (3.62)
of which mass and hydrostatic stiffness matrix are equal to those of equation (3.37). Added mass, radiated

wave damping matrices, and wave excitation force vector are
S&A:R%(wRS j@ F me) @?meﬂ
Sgw =—@ox Im[(\y RTS 1 j (2” F&om | 3 Fgﬁ‘a' )—1 (Fgotal PR )} (3.63)

RVS/ — ja)‘I’R (2 F&otal FTotaI) (47[RT°tal)

respectively.
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Chapter 4. Cost Reduction Procedure for the Irregular Frequency

Removal Method

The EBIE method is applicable to the three dimensional floating structure of arbitrary shape as mentioned in
the previous chapter, but it increases the computational cost, Increment of the computational cost depends on
the degree of freedom on the interior free-surface, because the EBIE method include the interior free-surface
as part of domain. The degree of freedom on the interior free-surface vary depending on type of and floating
structure. Here we present representative two examples: ship-shaped offshore unit, and ISSC tension-leg
platform(TLP). Numerical hydrodynamic analyses are conducted under equivalent computational condition
by WAMIT in frequency range from 0.2 ~ 1.5rad/s and constant panel method [18] is used. The
discretization of the ship-shaped offshore unit and ISSC TLP are shown in Figures 4.1 and 4.2. Table 4.1
summarize the degree of freedom on the wet surface and the internal free-surface, the computational time of

original boundary integral equation(OBIE) method and extended boundary integral equation(EBIE) method.

Figure 4.1. Discretization of the wet surface of ISSC TLP and the interior free-surface.
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Figure 4.2. Discretization of the wet surface of ship-shaped offshore unit and the interior free-surface.

Table 4.1. Analysis condition and computational time of ship-shaped offshore unit and ISS TLP.

Ship-shaped offshore unit ISSC TLP
Degree of freedom Computational Time Degree of freedom Computational Time
S| /SB OBIE EBIE  Increment S| /SB OBIE EBIE  Increment
Sg S Sg S
[%] [s] [s] [o6] [%] [s] [s] [%]
1352 768 56.8 917 2365 157.9 4048 384 94 3171 6458 103.7

The computational cost of ship-shaped offshore unit and ISSC TLP increased 350.5% and 145.5%
respectively. In this chapter, we present the procedure to reduce increment of the computational cost due to the
EBIE method. The key concept of the cost reduction procedure for the IRR method is applying the EBIE
method selectively. As shown in Figure 4.3, the numerical error due to the irregular frequencies appears over a
substantial frequency band around the irregular frequencies. Therefore, the total computational cost can be
reduced by applying the EBIE method only for discrete wave frequencies in “polluted” frequency band.

In this chapter, we first compare the numerical analysis procedure of OBIE and EBIE in terms of the
computational cost. Second, we present the criterion that would be used to detect wave frequencies that are in
“polluted” frequency band. Then, we finally propose the cost reduction procedure for the IRR method and

examine feasibility and limitation of this procedure.
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Figure 4.3. Surge added mass of ship-shaped offshore unit as function of wave frequency and the polluted

frequency band.

4.1 Comparison of the computational cost between OBIE and EBIE

To carry out the numerical analysis of the interaction of surface wave with floating structure, it is necessary to
evaluate the free-surface Green function for each wave frequency. The free-surface Green function contains
the integral of which domain goes infinity, so direct numerical evaluation is inefficient. Several algorithms for
the free-surface Green function evaluation have been developed [19, 20, 21] to reduce the computational cost,
and Newman’s algorithm is widely used. The linear system of equations also should be solved for each wave
frequency. Both the iterative solver and the direct solver are available. When the degree of freedom is large, it
is recommended to use the iterative solver in terms of the computational cost [18] . These two calculations
occupy most of the computational cost. It is difficult to calculate the computational cost precisely, because the
Green function evaluation and solving the linear system of equation vary with the wet surface of floating
structures. Nevertheless, it is evident that the computational cost increases as the degree of freedom increases.

Therefore, the EBIE method increases the computational cost, because this method extend its domain. Let’s
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define N® is the number of node on Sz and N' is the number of node on S,. Without the EBIE
method, the free-surface Green function must be evaluated for each combination nodes on Sy , that is (N B)z
evaluations should be done for single wave frequency. However, with the EBIE method, the number of
evaluations increases to (N B4N! )2 . The size of linear system of equations that should be solved to obtain a
solution increases from N® to (N BLN' ) In Figure 4.4 the relation of degree of freedom on Sg and the
number of the Green function evaluation is shown where x-axis means the degree of freedom on Sg, and y-
axis means the number of the free-surface Green function evaluation. The number of Green function
evaluation is growing according to a quadratic curve. In Figure 4.5 the normalized computational time is
plotted in y axis, and the degree of freedom is plotted on Sy . Each computational time is divided by the
longest one. Numerical hydrodynamic analysis of barge is carried out for single wave frequency repeatedly

using WAMIT as increasing the degree of freedom and higher-order method is used.

Table 4.2. Increment of the number of Green function evaluation and the computational time due to the EBIE

method. WAMIT and higer-order method are used.

N'#N® =10 (%) N'/N® =30(%)
Increment due to EBIE method (%) Increment due to EBIE method (%)
NB N®
Number of Green . . Number of Green . .
Computational time Computational time
function evaluation function evaluation
4000 30.52 1920 150.52
5760 21 33.83 4320 69 116.67
7840 33.23 7680 118.17

Table 4.2 gives the increment of the number of Green function evaluation and the computational time
corresponding to the degree of freedom on the wet surface. As ratio of N' to NPB increases, the
computational cost increases as expected. Additionally, the increment of the computational cost is larger than
the increment of the number of Green function evaluation. This means that not only Green function evaluation

but also solving of linear system of equations contribute to the increment of the computational cost.
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surface for single wave frequency.
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4.2 Criterion for Detecting the Irregular Frequency

As described in section 3.1.5, the irregular frequency affects solution when Equation (3.22) has non-trivial
solution. Therefore, if we know whether solution of Equation (3.22) is non-trivial or not for each frequency,
we can classify the irregular frequencies that make numerical solution erroneous. This non-trivial solution
consist of the sum of the eigenfunctions of eigenvalue problem:

274(x) + figﬂhqﬁ(é)(i%éw)ﬂds(é)—o’ for x on s;  (4.1)

when one of eigenvalues is equal to one that is the parameter of Equation (3.22). In other words, eigenvalue
problem (4.1) has the kernel that is a function of frequency, so eigenvalue of problem (4.1) vary with
frequency. Then, at certain wave frequencies, one of eigenvalues becomes ‘1’. In that case, Equation (4.1)
becomes equation (3.22), then homogeneous solution of equation (3.22) is sum of eigenfunctions multiplied
by arbitrary constants. Therefore, when one of eigenvalues of problem (4.1) becomes “1°, equation (3.2) has
infinite solution.
This eigenvalue problem can be transformed into generalized matrix eigenvalue problem:

22Fy ~ 2% Fgno ) =0 4.2)
with variational formulation and boundary element discretization as we derived the discrete linear system of
equations. To solve problem (4.1), it is necessary to calculate Fy and Fg, (a)) However, these are
calculated in numerical procedure, so additional matrix calculation is not necessary. In addition, we only
concern the eigenvalue near ‘1’, so the Arnoldi method that approximate a few eigenvalues and corresponding
eigenvectors effectively could be applied.
In the discretized problem, continuous frequency range is also discretized and the linear system of equations
are solved for each discrete frequencies. Then, the linear system of equations becomes ill-conditioned near the
irregular frequencies. This phenomena can be described in terms of eigenvalue of problem (4.2). As
eigenvalue that is a function of frequency approach to ‘1’, a numerical solution becomes erroneous. In order

to distinguish the frequency that is affected by the irregular frequency, it is necessary to define a criterion:

f@—4<g, (4.3)
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and ¢ depends on the discretization of wet-surface and interpolation order of the boundary element.

29 s complex, because components of Fg, (w) are complex. Therefore, the criterion (4.3) becomes

‘Re(ﬂe@)—l‘<gm (4.42)

Mm(i“ﬂ<ﬁm. (4.4b)

In this thesis, wet-surface is discretized into quadrilateral flat panels of which length is shorter than a quarter
of wave length. Under theses conditions, we set &, and &, as 0.015 that makes error due to the EIBE

method under 5% through numerical tests.

4.3 Cost Reduction Procedure and Its Limitation

Numerical analysis procedure that solve the Exterior Neumann problem with and without the EBIE method
are shown in Figure 4.6. Numerical analysis step colored with yellow includes the Green function evaluation
and numerical analysis step colored with green includes solving the linear system of equations. As explained,
the number of the Green function evaluation and the size of the linear system increases by adapting the EBIE
method to remove the irregular frequency effect for every frequency, then the total computational time
increases as shown in Fiure. 4.5. Therefore, we suggest the cost reduction procedure for the IRR method that
apply the EBIE method selectively by using the criterion presented in the previous section as shown in Figure
4.7.

This procedure, in common with existing numerical analysis procedure, first make mass and hydrostatic
stiffness matrices that are already mentioned in Equation (2.29), and then build the fluid matrices: Fg, (a))
Fe (a)) and R, (a)) for each wave frequency. While the existing numerical analysis procedure with EBIE
method construct added mass and wave damping matrices, and wave force vector (2.29), the cost reduction
procedure solve the eigenvalue problem (4.2) and check the criterion (4.4) to identify whether wave frequency
is in “polluted” frequency band or not for each wave frequency. When the criterion (4.4) is not satisfied, added
mass and wave damping matrices, and wave force vector are calculated according to Equation (2.29). On the
other hand, if the criterion (4.4) is satisfied, added mass and wave damping matrices, and wave force vector

are calculated by adapting the EBIE method.
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Figure 4.6. Numerical Analysis Procedure (a) with the EBIE method, (b) without the EBIE method. N is

the number of wave frequency.
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The cost reduction procedure need to solve eigenvalue problem for every frequency. Then, if it takes more
time than the computational time increase due to the EBIE method, it is meaningless procedure. We use the
Arnoldi method [22] to compute one eigenvalue closest to “1°, and computational time of it also increases as
degree of freedom increases. The computational time of eigenvalue problem is relatively small compared to
the increment of the computational time due to the EBIE method for single frequency analysis as shown in
Figure. 4.8. Figure 4.8 is equal to Figure 4.5, but include the computational time of eigenvalue analysis using

Arnoldi method additionally.
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Figure 4.8. Computational cost of OBIE method, EBIE method, and Eigenvalue problem corresponding to the

degree of freedom on the wet surface.

Another point should be considered is the number of frequencies that is classified according to the criterion
(4.4). Present procedure could be effective when a few of frequencies are affected in the frequency range of
interest. Fortunately, it is well known that general shape of ships has a few irregular frequencies and if wet-
surface discretization is enough, “polluted” frequency bandwidth is relatively small. Therefore, present
procedure could be effective for hydrodynamic analysis of ships and ship shaped floating structures.

In this section, we present the cost reduction procedure for IRR method that adapt the EBIE method
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selectively. This procedure could be effective when the number of wave frequency that are affected by the
irregular frequency are relatively small, and the computational cost of solving the eigenvalue problem (4.2).
To verity the effectiveness of the cost reduction procedure, examples of barge, circular cylinder, and ship-

shaped offshore unit are presented in the next chapter.
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Chapter 5. Numerical Results

In this chapter, we consider three examples: barge, circular cylinder, and ship-shaped offshore unit. We
validate the criterion (4.4) that separate out frequencies that are in polluted solution bandwidth by comparing
with analytical irregular frequencies of barge and circular cylinder in the frequency range of interest. The
added mass, and excitation force are calculated and eigenvalue problem (4.2) is solved in frequency range
from 0.2 to 3.0rad /s. We show the feasibility of the cost reduction procedure by applying to the ship-shaped

offshore unit.

51 Barge

The barge of which the length L is 10m, the breadth B is 10m, and the draft T is 2m is considered. The
irregular frequencies that are in frequency range from 0.2 to 3.0rad /s are 2.48 and 2.79rad /s. The
discretization of barge is shown in Figure 4.1. Figure 4.2 and 4.3 show the added mass, the wave excitation
forces on the barge for the surge and heave modes, and one of eigenvalues that is closest to ‘1’ of the
eigenvalue problem (4.2) respectively. As eigenvalue approach to ‘1’, a solution becomes erroneous, and its
point corresponds with the irregular frequencies well. Therefore, it is shown that the criterion (4.4) presented
in the previous chapter is applicable to separate out the frequencies that are affected by the irregular

frequencies.

Figure 5.1. Discretization of Barge.
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Figure 5.2. Surge added mass, wave excitation force on the barge and eigenvalue of problem (4.2) as function
of wave frequency. L is the length of barge, and A is the amplitude of the incident wave. Added mass and

wave excitation force are non-dimensionalized by pL3 and pALZ where p is the water density.
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function of wave frequency. Other definitions are equal to those of Figure 5.2.
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5.2 Circular Cylinder

The circular cylinder of which the radius L is 4m, and the draft T is 2m is considered. The irregular frequency
that are in frequency range from 0.2 to 3.0rad /s is 2.66rad /s. The discretization of circular cylinder is
shown in Figure 5.4. Figures 5.5 and 5.6 show the added mass, the wave excitation forces on the circular
cylinder for the surge and heave modes, and one of eigenvalues that is closest to ‘1’ of the eigenvalue problem
(4.2) respectively. In common with barge case, circular cylinder results show that the criterion presented in the

previous chapter is applicable.

Figure 5.4. Discretization of circular cylinder.
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water density.
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5.3 Ship-shaped offshore unit

Ship-shaped offshore unit shown in Figure 5.7 is considered in order to show feasibility of the cost reduction
procedure for IRR method. Numerical analysis conditions and results are shown in Table 5.1. Panel model of
ship-shaped offshore unit is equal to model that is presented in chapter 4, but the interior free-surface panel is
generated manually not by applying option of WAMIT. Through the cost reduction procedure, 8 frequencies
out of 81 frequencies are considered as being affected by the irregular frequencies and 29.3% computational
cost is saved in comparison with numerical analysis procedure with EBIE method. Figures 5.8, 5.9, and 5.10
show the added mass, the wave radiation damping on ship-shaped offshore unit for the surge, heave, and roll

modes, and one of eigenvalues that is closest to ‘1’ of the eigenvalue problem (4.2) respectively.

Table 5.1. Analysis conditions and computational times of ship-shaped offshore unit using the numerical
analysis procedure with EBIE method and the cost reduction procedure that is presented in the chapter 5.

Wave angle is defined in Figure 2.1.

Degree of Freedom Wave Condition Computational time (s)
B | Angle Frequency Numerical analysis procedure .
N N (rad) (rads) with EBIE method Cost reduction procedure
1401 369 0 02~18 5629.5 3978.2

Figure 5.7. Discretization of Discretization of ship-shaped offshore unit.
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Chapter 6. Conclusions

We define the irregular frequencies of the boundary integral equation that representing the exterior Neumann
problem. With the Fredholm’s theorems, we investigate the cause of the irregular frequencies, and review the
irregular frequency removal method have been developed briefly. Each method has its pros and cons, and the
extended boundary integral equation method is the only way to remove the irregular frequency effect for three
dimensional floating structure of arbitrary shape. However, the computational cost increase depending on the
discretization of the interior free-surface. Therefore, it is necessary to reduce the computational cost, and we
present the cost reduction procedure for IRR method that adapt the extended boundary integral equation
method selectively. To distinguish the frequencies that are affected by the irregular frequencies, the cost
reduction procedure needs to solve the eigenvalue problem. We adopt the Arnoldi method for eigenvalue
problem, and it is shown that the computational time of eigenvalue problem is relatively small compared to
the increment of the computational time due to the EBIE method for single frequency. In case of the barge and
the circular cylinder of which the irregular frequencies can be derived analytically, frequencies are in
“polluted” freqeuncy band are detected appropriately by adapting the cost reduction procedure. We also apply
the cost reduction procedure for ship-shaped offshoure unit, and it save 29.3% computational cost in

comparison with the numerical analysis procedure with EBIE method.

In this research, we present the cost reduction procedure for IRR method to reduce the computational cost. It
is expected that this procedure is effective especially to deal with large degree of freedom problem. However,
it is applicable when single floating structure is considered and it would be effective only when the number of

frequencies affected by the irregular frequencies in the frequency range of interest is relative small.
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