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ABSTRACT 

Wave-structure interaction problem is important in ship and offshore engineering. Linear potential theory 

is used widely for numerical analysis of wave-structure interaction problem. However, in the frequency domain 

analysis using the linear potential theory, error occurs at certain wave frequencies are called the irregular 

frequencies. These frequencies do not represent the physical resonance such as sloshing but are due to the 

uniqueness of solution of boundary integral equation. 

We define the irregular frequency and introduce the extended boundary integral equation (EBIE) method 

that is one of irregular frequency removal (IRR) methods. The EBIE method that guarantees the uniqueness of 

the boundary integral equation for wave-structure interaction problem is applicable to three-dimensional body of 

arbitrary shape but it increases computational cost according to the degree of freedom on the wet-surface and 

interior free-surface. To reduce the increment of computational cost due to the EBIE method, we present the cost 

reduction procedure for IRR method. This procedure apply the EBIE method selectively by detecting wave 

frequencies that are affected by the irregular frequencies. The feasibility is shown by applying the cost reduction 

procedure to examples: barge, circular cylinder, and ship-shaped offshore unit. 

 

Keywords: Wave-structure interaction; Liner potential theory; Boundary integral equation; free-surface Green 

function; Irregular frequency; Fredholm’s theorem; Extended boundary integral equation method 
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Chapter 1. Introduction 

 

1.1 Research Background 

 

Analysis of free-surface wave structure interaction problem such as the rigid body motions of ship and the 

hydroelastic behavior of floating structure is practically important in offshore engineering for the design of 

offshore structures and the safe operation. In the linearized frequency domain analysis, the linear potential 

theory is widely used. Utilizing the Green theorem, the linear potential theory induces the boundary integral 

equation formulation. It is generally accepted that the boundary integral equation breaks down at specific 

wave frequencies that are called the irregular frequencies. Roughly speaking, the irregular frequencies are 

related to the volume of displacement and the shape of floating structure. As the volume of displacement 

increases, irregular frequencies decrease and come within wave frequency range of interest. Additionally, 

error of numerical solution due to irregular frequencies is similar to physical resonance peak of sloshing and 

multibody problem [1], so analysis of ships and floating structures should consider the irregular frequencies 

for accurate analysis result. 

The occurrence of the irregular frequencies in the field of acoustic was first reported by Lamb in 1932 [2]. In 

the field of waves and structures interaction, John recognized the existence of the irregular frequencies in 

1949 [3].  Several methods have been proposed to remove the irregular frequency effect. Broadly speaking, 

the irregular frequency removal method can be divided into two categories [4]: 

 Modification of the integral operator 

 Modification of the domain of the integral operator. 

Several methods of modification of the integral operator methods have been adapted in wave-structure 

interaction problem. Ursell [5] added a source at the origin to absorb the energy of the interior eigenmodes. 

Lee and Sclavounos [6] adapted Modified integral equation method. The additional integral equation is added 

to the boundary integral equation. The additional equation is the differentiation of the boundary integral 

equation with respect to the field point. Modification of the domain of the integral operator method also has 
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been adapted into wave-structure interaction problem. The concept of this method is suppressing the interior 

eigenmodes by placing the lid on the interior freesurface. Each method has its pros and cons in terms of 

generality, computational cost, and modeling effort. WAMIT, widely using for wave-structure interaction 

problem, includes the Extended Boundary Integral equation(EBIE) method that is one of modification of the 

domain of the integral operator methods as an irregular frequency removal(IRR) option. 

The EBIE method that increases the computational cost is available for general shape ships and floating 

structures. However, because it is difficult to distinguish the existence of irregular frequencies in the 

frequency range of interest, the IRR method which increases the computational cost should be adapted to 

every analysis. Therefore, the total computational cost increases by adapting the IRR method. 

 

1.2 Research Object and Contents 

 

The objective of this research is to present the numerical analysis procedure that adapt the EBIE method 

selectively to reduce the computational cost. 

In the following chapter, we identify the boundary integral equation for rigid body and a direct-coupled 

equation for flexible floating body and transform into a discrete linear system in chapter 2. In chapter 3, we 

define the irregular frequencies and find the irregular frequency of barge and circular cylinder analytically. 

The cost reduction procedure for the IRR method in case of single body problem that does not include 

sloshing phenomenon is presented in chapter 4. Finally, we evaluate hydrodynamic coefficients of barge, 

circular cylinder, and ship-shaped offshore unit to show the feasibility of the cost reduction procedure for the 

IRR method. The numerical solutions in chapter 5 are obtained using source code developed by CMSS 

laboratory in KAIST, a three dimensional hydroelastic analysis code using a direct-coupling method of waves 

and floating structures [7, 8]. Chapter 6 draws the conclusions. 
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Chapter 2. Mathematical Formulation and  

Numerical Method 

 

This chapter describes the assumptions and governing equations. First, we present the boundary value 

problem, and then we derive the boundary integral equation that has the irregular frequencies. Second, we 

briefly review the direct-coupled equations for hydroelastic analysis and the discrete version of the direct-

coupled equations. 

 

2.1 Overall Description and Assumptions 

 

We consider a three-dimensional floating structure which interacts with plane progressive wave as shown in 

Figure 2.1. Cartesian coordinate system of which origin is located on the free-surface is used. The water depth 

is h . The wave incident angle θ  is an angle between two lines: positive 1x  direction line and incident 

wave direction line. We adopt a harmonic time dependence and assume that the motion of floating structures 

and the amplitude of wave are small compared to the characteristic length of floating structures and wave 

length respectively. Assuming newtonian isotropic, incompressible, inviscid and irrotational fluid, we use the 

linear potential flow to describe free-surface waves. 

 

2.2 Modeling of the Fluid 

 

We confine our discussion to a three-dimensional floating structure, which interacts with small amplitude 

wave, so we use the linear potential flow for mathematical model of incident wave. We simplified the fluid 

domain for the linear potential flow formulation from the problem description of Figure 2.2. Boundaries, 

which surround the fluid domain, consist of four surfaces: the wet-surface ( )BS , the infinite boundary 

( )∞S , the bottom boundary ( )GS , and the free-surface ( )FS . 
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Figure 2.1. Problem description for free-surface wave structure interaction. 

 

In general, the radiation and diffraction potentials are dealt with separately when the motions of rigid floating 

structures are analyzed. By integrating the radiation potential, we can get an added mass and a wave damping 

coefficients for the equation of rigid body motion. A wave exciting force can be obtained through integration 

of the diffraction potential. Meanwhile, the total potential, which is sum of the radiation and diffraction 

potentials, is used for the analysis of a hydroelastic behavior of floating structure in the direct-coupled 

equation [7]. In this thesis, discussion would continue based on the direct-coupled formulation, so the total 

potential would be dealt with in the next section. 
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Figure 2.2. Fluid domain of wave-floating structure interaction problem. 

 

2.2.1 Boundary Value Problem (Exterior Neumann Problem) 

 

We assumed a harmonic time dependence, so we define the velocity potential as [ ]tje ωτ φφ Re=  with the 

time factor tje ω  in the fluid domain as shown in Figure 2.2. ω  is the frequency of free-surface wave and 

j  is 1− . With the continuity equation and the assumption ideal flow and time dependence, we starts with 

the velocity potential which satisfies the Laplace’s equation: 

 .2φ∇  (2.1) 

The velocity potential satisfies the linearized free-surface boundary condition: 

  ,
2

3
φωφ

gx
=

∂
∂  for 03 =x  on FS  (2.2) 

the bottom boundary condition: 

  ,0
3
=

∂
∂
x
φ  on GS ( )hx −=3  (2.3) 

the radiation condition: 

  ( ),0=−





 +
∂
∂

Ijk
R

R φφ  on ∞S  ( )∞→R  (2.4) 

the body boundary condition: 
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  ,ii nuj
n

ωφ
=

∂
∂  on BS  (2.5) 

where u  is the displacement of the floating structure, n  is the unit normal vector on BS , ( )Iφφ −  is the 

sum of radiation and scattering potential, and k  is the wave number. From now on, we refer this boundary 

value problem as the exterior Neumann problem because of its domain and boundary condition on BS . 

The incident wave potential Iφ  is defined by 

 ( )θθ

ω
φ sincos 213 xxjkkx

I eegaj +=  (2.6) 

for the infinite depth where a  is an amplitude of the incident wave [9]. 

 The above boundary value problem could be solve by using the boundary integral equation method. To 

derive the boundary integral equation, we use the free-surface Green function. The free-surface Green 

function is the potential at the field point x  due to a source at the source point ξ . It pulsates with the 

angular frequency ω ,  and satisfies the Laplace’s equation:  

  ( ) ( )ξxξx −−=−∇ πδ42G  for 03 ≤≤− xh  (2.7) 

where ( )ξx;G  is defined as ( ) ( )[ ]tjeGG ωτ ω ξxξx ;Re,; =  and δ  is the Dirac’s delta function. 

It also satisfies the linearized free-surface boundary condition: 

  ,
2

3
G

gx
G ω

=
∂
∂  for 03 =x  and iix ξ≠  (2.8) 

the bottom boundary condition: 

  ,0
3
=

∂
∂
x
G  for hx −=3  and iix ξ≠   (2.9) 

the radiation condition: 

  ,0=





 +
∂
∂ Gjk
r

r  on ∞S  ( )∞→r  (2.10) 

where ( ) ( )222
2

11 ξξ −+−= xxr . 

 Derivation procedure of the free-surface Green’s function in finite and infinite depth is well explained by 

Wehausen and Laitone [10]. In case of infinite depth, the free-surface Green function is 
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( )
( ) ( )

( ) ,2

/
/..1;

2

0
/

2

0
02

2

2
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2

33
2

33

jR
g

Je
g

dzzRJe
gz
gzVP
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xg

xz





















−













−
+

+
−+

=

+−

∞
+−∫

ωωπ

ω
ω

ξ

ξω

ξξx

 (2.11) 

where ..VP  means the Cauchy principal value, and 0J  is Bessel functions of the first kind of order 0. In 

case of finite depth, the free-surface Green function is 

 

( )
( ) ( )

( ){ } ( ) ( )
( ) ( )

( ) ( ) ( ) jRkJhkhxk

g
h

g
hk

k
g

dzzRJe
zhgzhz

hzhxzgz
VP

xhRxR
G

o

zh

03030
222

2
0

2
0

22

0
02

33
2

2
33

22
33

2

coshcosh2

cosh/sinh
coshcosh/

..2

2

11;

++











+










−

−










+













−

+++
+

+++
+

−+
=

∫
∞

−

ξ
ωω

ω

π

ω
ξω

ξξ
ξx

 

(2.12) 

where 0k  means the positive real root of the dispersion relation equation, ( )khgk tanh2 =ω . 

 

2.2.2 Boundary Integral Equation 

 

To derive the boundary integral equation to solve the above boundary value problem, we starts with the 

Green’s theorem. If two arbitrary potential 1φ  and 2φ  satisfy the Laplace’s equation in the domain of fluid, 

the following equation: 

  ,01
2

2
1 =





∂
∂

−
∂
∂

∫ dS
nn

CS

φ
φ

φ
φ   (2.13) 

where n  is normal to CS  from the fluid domain, can be derived easily. CS  should be a smooth and 

closed surface surrounding the fluid domain. When one of the two potential does not satisfy the Laplace’s 

equation in the fluid domain, some technique that modify the fluid domain and use the singularity property 

can be applied [11]. The result equations are following: 

 ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )














−
−=








∂
∂

−
∂

∂
∫

x
xξ

ξ
ξξx

ξ
ξxξ

πφ
πφφφ

4
2

0
;; dS

n
G

n
G

CS

 

for x  outside CS  

(2.14) for x  on CS  

for x  inside CS  

When the field point x  is on CS  or inside CS , this point is excluded by small surface, εS  surrounding 

the point. The integration over this small surface appears in the right hand side of equation (2.14). 
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Let’s apply Equation (2.14) for fluid domain FV  surrounded by surfaces: BS , FS , GS , and ∞S  as 

shown in Figure 2.3, and then we obtain 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 0;;2 =







∂
∂

−
∂

∂
+ ∫

∞+++

ξ
ξ
ξξx

ξ
ξxξx dS

n
G

n
G

SSSS GFB

φφπφ  for x  on BS   (2.15) 

Because G  has the same boundary condition on FS  and GS  with φ , and on ∞S  with ( )Iφφ − , so we 

get 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )ξ
ξ
ξξx

ξ
ξxξ

ξ
ξ
ξξx

ξ
ξxξx

dS
n

G
n

G

dS
n

G
n

G

S

I
I

SB

∫

∫

∞









∂
∂

−
∂

∂
+









∂
∂

−
∂

∂
=−

φ
φ

φφπφ

;;

;;2

 for x  on BS  (2.16) 

Next, consider the fluid domain V  surrounded by surfaces: FS , IS , GS  and ∞S  as shown in Figure 

2.4, and then we obtain 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 0;;4 =







∂
∂

−
∂

∂
+ ∫

∞+++

ξ
ξ
ξξx

ξ
ξxξx dS

n
G

n
G

SSSS

I
II

GIF

φ
φπφ  for x  on BS  (2.17) 

 

 

 

 
Figure 2.3. Fluid domain FV  when x  is on BS . 

 

Integration over FS  and IS  disappear due to the linearized free-surface and bottom boundary conditions of 
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Iφ  and G , so we have 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ).;;4 ξ
ξ
ξ

ξx
ξ
ξxξx dS

n
G

n
G

S

I
II ∫

∞









∂
∂

−
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∂
=−

φ
φπφ  for x  on BS  (2.18) 

Finally, by adding Equations (2.16) and (2.18) we obtain following equation: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )ξ
ξ
ξξx

ξ
ξxξxx dS

n
G

n
G

BS
I ∫ 








∂
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−
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∂
=+−

φφπφπφ ;;42  for x  on BS  (2.19) 

and variational equation: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )
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ξξx

ξ
ξxξ

xxxxxx

dSdS
n

G
n
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dSdS

B B

BB
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S
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S

φφφ

φπφφπφ

∫ ∫
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∂
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−
∂

∂

=+−

;;

42

 (2.20) 

where φ  is the virtual velocity potential. 

 

 

 
Figure 2.4. Fluid domain V  when x  is on BS . 

 

2.3 Discrete Linear System of Equations 

 

Equation (2.20) representing the boundary value problem of the wave structure interaction cannot be solve 

alone, because it possess the variable not only the total potential but also the displacement of the structure on 
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the wet surface. To solve the equation, the structure equation that has the same variables should be considered 

simultaneously, and two equations consist the direct coupled equations. Additionally, for arbitrary shape 

floating structure the direct coupled equation cannot be solve analytically. Therefore, we use the numerical 

method. With the finite element discretization and boundary element discretization[7, 12], we can derive the 

discrete linear system of equation: 

 







=





















−
−−−++−

IGnMG

DHNHDKNKM

j
j

Rφ
u

FFF
SSSSSS

ππω
ωω

4
0

ˆ
ˆ

2

2
 (2.22) 

where  

 ( ) ( ) ( ) [ ] ,ˆ2ˆ2 φFφxxx M
SB

dS πφφπ Τ=∫  (2.23a) 

 ( ) ( )
( ) ( ) ( ) ( ) [ ] ,ˆˆ; φFφxxξ
ξ
ξxξ Gn

S S

dSdS
n

G

B B

Τ=







∂

∂
∫ ∫ φφ  (2.23b) 

 ( ) ( ) ( )[ ] ( ) ( ) ( ) [ ] ,ˆˆ; φFφxxξξξξx G
S S

ii jdSdSnuGj
B B

ωφω Τ=∫ ∫  (2.23c) 

 ( ) ( ) ( ) [ ],4ˆ4 I
S

I

B

dS Rφxxx πφπφ Τ=∫  (2.23d) 

for a flexible floating body analysis, and we obtain the fluid part equation: 

 ( ) .ˆ4ˆ2 uFRφFF GIGnM jωππ −=−  (2.24) 

In the aforementioned expressions, φ̂  and û  are the nodal velocity potential and displacement vectors, 

respectively. Equation (2.24) is the discrete linear system of equation corresponds to Equation (2.20) and will 

be used in the next section to discuss the irregular frequency. 

 To obtain the discrete linear system of equation for a rigid body motion analysis, we can express the 

displacement field of rigid body motions by the six degrees of freedom: surge, sway, heave, roll, pitch, and 

yaw as 

 

.
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,
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36
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25
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33
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RR
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kjijk
RR
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kjijk
RR
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RR

ii
RR

i

xqu

xqu

xqu

quququ

δε

δε

δε

δδδ

=

=

=

===

 (2.25) 

respectively, where ijkε  is the permutation symbol. Then, we can obtain the following discrete linear system 

of equations: 
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where 

 
.

ˆ 662211
RR

RRRRRR qqq

qΨ

u

=

Ψ++Ψ+Ψ≈   (2.27) 

in which ( )6,,2,1 =Ψ iR
i  means the nodal vectors for the i th rigid body mode. By condensing out the 

fluid variables, we obtain the equation: 

 ( )[ ] R
W

RR
K

R
CW

R
MA

R
M j RqSSSS =+++− ωω 2  (2.28) 

for a rigid body motion analysis where super script R  means rigid body motion and 

( ) ( )

( ) ( )
( )

( ) ( )IGnMD
RR
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K

R
GGnMD

RR
CW

R
GGnMD

RR
MA
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1
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−−−=





 −
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 −





=
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: mass matrix, 

(2.29) 

: added mass matrix, 

: radiated wave damping matrix, 

: hydrostatic stiffness matrix, 

: wave excitation forces vector. 

Equation (2.26) corresponds to conventional equation for rigid body motion analysis. Kim [7] presented detail 

derivation procedure and comparison of the direct coupling formulation and the conventional formulation. 

Numerical results presented by Kim show good agreement with results of WAMIT that is the most advanced 

software. 

In this chapter, we derive the boundary integral equation and describe the conversion of continuous Equation 

(2.19) to discrete linear system of equation. This linear system of equation becomes ill-conditioned near the 

irregular frequencies [6], so solution near the irregular frequencies are erroneous. The bandwidth of polluted 

solution can be narrowed by discretizing the wet-surface finer, but it is not practical in aspect of 

computational cost. Thus, many researchers have developed the irregular frequency removal methods. We 

define the irregular frequency and review the existing methods briefly. Then, we suggest the effective 

procedure to remove the irregular frequency effect arising in numerical solution. 
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Chapter 3. Irregular Frequency 

 

In this chapter, we first define the irregular frequency of the boundary integral equation we derived in 

previous chapter, and identify the location of the irregular frequencies for barge, circular cylinder. Secondly, 

we introduce the irregular frequency removal (IRR) methods that have been developed briefly and explain the 

removal principal of the extended boundary integral equation that is one of the IRR methods. 

 

3.1 Definition of the Irregular Frequency 

 

Equation (2.19) that represents the exterior Neumann problem presented in section 2.2.1 is known as 

possessing the irregular frequencies, and type of equation should be identified before defining the irregular 

frequencies. The most general type of linear integral equation is 

 ( ) ( ) ( ) ( ) ( )xfdgxKxgxh
a

=+ ∫ ξξξλ , , (3.1) 

where the upper limit of the integral could be either variable or fixed [13]. ( )xg  is the unknown function. 

( )xh  and ( )xf  are known functions and ( )ξ,xK  is  the Kernel. λ  is the nonzero parameter. Equation 

(2.19) has changed over to the equation: 

( ) ( ){ } ( )
( ) ( )

( ) ( )
( ) ( ) ( )xξ
ξ
ξξx

ξ
ξ
ξxξx

I
S
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dS
n
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dS
n

G

B

B

πφφ

π
πφπφ

4;

;
2
122

+







∂
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=





















∂
∂

+

∫

∫
 for x  on BS   (3.2) 

to identify the type of the integral equation. Equation (3.2) is the linear integral equation because Equation 

(3.2) corresponds with Equation (3.1) that is the general type of linear integral equation. To compare clearly, 

we note equations: 
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I
SB

. 
(3.3) 

The upper limit of the integral is fixed and ( )xh  is ‘1’  and ( )xf  is not zero. Therefore, the boundary 

integral equation (2.19) representing the boundary value problem presented in section 2.2.1 is the linear 

inhomogeneous Fredholm integral equation of the second kind. 

 It is well known that the occurrence of the irregular frequency is due to the existence and uniqueness of the 

integral equation, and the Fredholm’s theorem describe the existence and uniqueness of the solution. 

Therefore, we briefly introduce the Fredholm’s theorems. For more information, please refer the text book 

written by RAM [13]. 

 

3.1.1 Fredholm’s Theorem 

 

Fredholm’s theorems for integral equations give the general solution of the linear inhomogeneous and 

homogenous Fredholm integral equations: 

  
( ) ( ) ( ) ( )

( ) ( ) ( ) ,0,

,,

=+

=+

∫
∫

b

a

b

a

dgxKxg

xfdgxKxg

ξξξλ

ξξξλ
 

 (3.4) 

 (3.5) 

and concerns the existence and uniqueness. Fredholm’s theorems are closely related to linear algebra, and are 

usually dealt with the system of linear algebraic equations. Thus, we introduce the linear system of equations 

by confining discussion to one-dimensional integral, and discretizing the integral domain. We divide integral 

one-dimensional domain into n  equal parts that has a length nabh /)( −=  as shown in Figure 3.1 and then 

we obtain the approximate equation: 

 ( ) ( ) ( ) ( )∫ ∑≈
b

a

n

j
jj gxKhdgxK ξξξξξ ,, . (3.6) 

Equations (3.4) and (3.5) that integral is replaced using Equation (3.6) take the form 
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 ( ) ( ) ( ) ( )xfgxKhxg
n

j
jj ≈+ ∑ ξξλ , , (3.7) 

 ( ) ( ) ( ) 0, ≈+ ∑
n

j
jj gxKhxg ξξλ . (3.8) 

Equations (3.7) and (3.8) are valid for n  points on the integral domain, and these can be written as 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) .0,

,,

≈+

≈+

∑

∑
n

j
jjii

i

n

j
jjii

gxKhxg

xfgxKhxg

ξξλ

ξξλ

 

for i  = n~1  (3.9) 

  for i  = n~1  (3.10) 

 

 

Figure 3.1. Discretization of one dimensional domain. 

 

With expressions: ( ) ii gxg = , ( ) ii fxf = , and ( ) ijji KxK =ξ, , we obtain linear system of n  equations 

with tensor representation: 

  

.0

,

≈+

≈+

∑

∑
n

j
jiji

i

n

j
jiji

gKhg

fgKhg

λ

λ

 

for i  = n~1  (3.11) 

  for i  = n~1  (3.12) 

Equations (3.11) and (3.12) can be written in matrix representation: 

 [ ] fgKI =+ λ , (3.13) 

 [ ] 0gKI =+ λ , (3.14) 

where 
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 (3.15) 

The inhomogenous solution vector moinhog  of Equation (3.13) contains the homogenous solution vector 
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mohog  of Equation (3.14), and judgment of the solution vector g  of Equations (3.13) and (3.14) using linear 

algebra is well known. It depends on whether the resolvent determinant of the linear system of Equations 

(3.13) and (3.14): 

 ( ) ,

1

1
1

det

21

22221

11211
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+
+

=

nnnn

n

n

n

hKhKhK
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λλλ
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λ









 (3.16) 

where subscript n  of nD  means the number of discretization, is zero or not. 

In case of 0=nD , parameter λ  of Equations (3.13) and (3.14) is equal to one of eigenvalues of the 

eigenvalue problem: 

 [ ] .0gKI =+ eig
kλ  (3.17) 

Therefore, equation (3.14) has at least one, and at most m, linearly independent solution, that is, mohog  is 

non-trivial solution. Each linearly independent solution is the eigenfunction of the eigenvalue problem (3.17). 

Equation (3.13), meanwhile, possesses a solution when compatibility equation is satisfied. That equation is 

 [ ] [ ],~AA rankrank =  (3.18) 

where  
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A
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 (3.19) 

However, even if moinhog  exists, moinhog  of Equation (3.13) is not a unique because it contains mohog  of 

Equation (3.14) that has infinite non-trivial solution. 

In case of 0≠nD , it is evident that Equation (3.13) has a unique solution and Equation (3.14) has trivial 

solution. In other words, mohog  of Equation (3.14) is unique solution which is trivial solution and moinhog  

of Equation (3.13) is unique solution. 

moinhog  of Equation (3.13) contains mohog  of Equation (3.14), and the existence and uniqueness of moinhog  

depends on mohog  and f . When mohog  is trivial solution, moinhog  exists and is unique. However, mohog  
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is non-trivial solution, the existence of moinhog  depends on f , and even if it exists, it is not unique. In other 

words, the uniqueness of moinhog  can be decided based on whether mohog  is trivial or non-trivial. Above 

statements are summarized in Tables 3.1 and 3.2. 

 

Table 3.1. Existence and uniqueness of solution of homogenous linear system of equations. 

( )λnD  
mohog  of [ ] 0gKI =+ λ  

Existence Uniqueness 

( ) 0≠λnD  O 
Unique Solution 

(Trivial Solution) 

( ) 0=λnD  O 
Infinite Solutions 

(Non-Trivial Solutions) 

 

Table 3.2. Existence and uniqueness of solution of inhomogenous linear system of equations. 

mohog  

moinhog  of [ ] fgKI =+ λ  

Existence Uniqueness 

Trivial O Unique Solution 

Non-Trivial Depends on f  
Infinite Solutions 

(If exists) 

 

The existence and uniqueness of solution of Fredholm integral equation correspond with the discrete linear 

system of equation obtained by discretization and approximation as written in first part of this section. In 

addition, there are two points should be considered before moving on to Fredholm’s theorem. First, as 

n increase to infinity, ( )λnD  becomes ( )λD  that is the resolvent determinant of Equations (3.4) and (3.5). 

Second, the compatibility equation that related to the existence of the moinhog  when mohog  is non-trivial, 

differs from the discrete linear system of equation. 
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Fredholm’s first and third theorems state the existence and the uniqueness of inhomogeneous Fredholm 

integral equation. Fredholm’s second theorem describes the existence and uniqueness of homogenous 

Fredholm integral equation. Three theorems also give the solution of the series form. 

The integral equation that we solve is the inhomogenous Fredholm integral equation, so Fredholm’s first and 

third theorem should be considered. In case of 0≠nD , moinhog  exists and is unique. However, in case of 

( ) 0=λD , the existence of moinhog  depends on whether the compatibility equation is satisfied or not. The 

compatibility equation is that the given function ( )xf  is orthogonal to every solution of the adjoint 

homogenous equation: 

 ( ) ( ) ( ) 0,* =+ ∫
b

a
dpxKxp ξξξλ , (3.20) 

that is  

 ( ) ( ) 0=∫
b

a
dxxfxp , (3.21) 

where the superscript * means a complex conjugate. Even if moinhog  exists, it is not unique because it 

contains mohog  that is non-trivial. Above statements are summarized in Table. 3.3.  

 

Table 3.3 Existence and Uniqueness of Solution of Inhomogenous linear Fredholm equation of second kind. 

omohg  
omoinhg  of ( ) ( ) ( ) ( )xfdgxKxg

b

a
=+ ∫ ξξξλ ,  

Theorem Existence Uniqueness 

Unique Solution 

(Trivial Solution) 
Fredholm’s First O Unique Solution 

Infinite Solutions 

(Non-Trivial Solutions) 
Fredholm’s Third Depends on ( )xf  

Infinite Solutions 

(If exists) 

 

3.1.2 Existence and Uniqueness of Solution of the Exterior Neumann Problem 

 

Let’s identify the existence and uniqueness of solution of equation (3.2). Equation (3.2) is the linear 

inhomogeneous Fredholm equation of the second kind, and corresponding homogeneous equation is 
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( ) ( ) ( )
( ) ( ) 0;

2
122 =




















∂

∂
+ ∫ ξ

ξ
ξxξx dS

n
G

BS
π

πφπφ , for x  on BS   (3.22) 

that has the kernel is the function of wave frequency. The homogenous solution of Equation (3.22) can be the 

trivial solution or the non-trivial solution, and is part of the inhomogenenous solution of Equation (3.2). 

Fredholm’s third theorem state about the inhomogenous solution when homogenous solution is trivial and 

non-trivial. 

Based on Fredholm’s first theorem, Equation (3.2) has the unique solution when the homogenous solution is 

the trivial solution. According to Fredholm’s third theorem, the compatibility Equation (3.21) should be 

satisfied in order that Equation (3.2) have a solution when homogenous solution is the non-trivial solution. By 

substituting integral domain, known function, and the non-trivial solution of the homogenous equation, the 

compatibility equation becomes 

 ( ) ( ) ( )
( ) ( ) ( ) 04; =













+
∂
∂

∫∫ dxdS
n

G I
SS BB

xξ
ξ
ξξxx πφφϕ , (3.23) 

where ( )xϕ  is the non-trivial solution of the homogenous adjoint equation: 

( ) ( ) ( )
( ) ( ) 0;

2
122

*
=























∂
∂

+ ∫ ξ
ξ
ξxξx dS

n
G

BS
π

πϕπϕ , for x  on BS   (3.24) 

corresponding to Equation (3.2). Proof of Equation (3.23) can be shown by introducing the adjoint 

homogenous equation and the interior Dirichlet problem considering potential φ̂  that satisfies the Laplace 

equation, the free-surface boundary condition on IS , and homogeneous Dirichlet boundary condtion on BS . 

Detail proof is written in section 3.1.4. However, even if Equation (3.23) is satisfied, Equation (3.2) has 

infinite solution because Equation (2.19) cannot be determined uniquely, that is, the solution of inhomogenous 

Equation (3.2) contains the solution of homogeneous equation that has at least one linearly independent 

solution that makes infinite cases of homogeneous solution. This non-trivial solution of Equation (3.22) is a 

solution of interior Dirichlet problem. We present how Equation (3.22) and the interior Dirichlet problem are 

connected in section 3.1.4. 

In summary, the solution of Equation (3.2) always exists, and is unique only when the solution of Equation 

(3.22) is the trivial solution. Therefore, the irregular frequency is the wave frequency that make the solution of 

Equation (3.22) the non-trivial solution. 
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3.1.3 Interior Dirichlet Problem 

 

In this section, we show that Equation (3.22) is related to the interior Dirichlet problem which is fictitious and 

has nothing to with physical sloshing of interior domain. Interior problem domain is shown in Figure 3.2. 

 

 

Figure 3.2. Domain of Interior Dirichlet Problem. 

Let’s apply Equation (2.14) for interior potential φ̂  that satisfies the free surface boundary condition and G  

in fluid domain IV  surrounded by surfaces: BS  and IS , and then we obtain 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) .0
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φφφπ  for x  on BS    (3.25) 

Because G  has the same boundary condition on IS  with φ̂ , we get 
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φφφπ  for x  on BS   (3.26) 

The differentiation of Equation (3.26) with respect to the normal vector at field point x  on BS  is 

( )
( ) ( ) ( ) ( )
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 for x  on BS   (3.27) 

- 19 - 



 

One should note that whereas the sign of parameter λ  in Equation (2.19) is positive, the sign of parameter 

λ  in Equation (3.25) is negative, because the direction of n  of FV  and the direction of 'n  of IV  are 

opposite. Now, let’s consider the Dirichlet and Neumann boundary conditions on BS . When 0ˆ =∂∂ nφ , the 

interior potential means the physical sloshing and Equation (3.26) becomes 

( ) ( ) ( )
( ) ( ) 0;ˆˆ2 =








∂

∂
− ∫ ξ

ξ
ξxξx dS

n
G

BS

φφπ , for x  on BS   (3.28) 

so it has nothing to do with Equation (3.2). When 0ˆ =φ , the interior potential does not have the physical 

relationship with Neumann exterior boundary value problem that presented in chapter 2, and Equation (3.27) 

becomes 

. ( )
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( ) ( ) .0;
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+
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x
ξx

ξ
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x
x dS

n
G

nn
BS

π
φπφπ  for x  on BS   (3.29) 

Kernel, parameter, and integral surface of Equation (3.29) and Equation (3.2) are equal, so the relation 

between the exterior Neumann problem and the interior Dirichlet problem is presented. 

 

3.1.4 Adjoint Homogenous Equation 

 

In this section, we show that the compatibility equation that assures the existence of solution of Equation (3.2) 

when homogeneous solution is non-trivial is valid. To prove that, we first compare the adjoint homogeneous 

equation of the interior Dirichlet problem and the exterior Neumann problem that are represented in the 

integral Equations (3.24) and (3.2) respectively. The adjoint homogenous form of Equation (3.2) is 
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πϕπϕ  for x  on BS  (3.30) 

and the adjoint homogenous form of Equation (3.24) is 
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π
ϕπϕπ  for x  on BS   (3.31) 

The identity 

( ) ( )
( )x
xx

n∂
∂

=
ϕϕ
ˆ  (3.32) 

is established by comparison Equations (3.30) and (3.31). 

Secondly, we consider the adjoint homogenous form of Equation (3.26): 
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and adopt the boundary condition on 0ˆ =ϕ  on BS  Equation (3.33), and get 
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Thirdly, we apply Equation (2.14) for incident wave potential Iφ  and adjoint interior potential ϕ̂  in fluid 

domain IV  surrounded by surfaces: BS , and IS . Incident wave potential satisfies the free-surface 

boundary condition on IS  and adjoint interior potential satisfies the free-surface boundary condition on IS  

and the homogeneous Dirichlet condition on BS . We obtain 
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Finally, we can prove Equation (3.23). By substituting Equation (3.32) into Equation (3.23), we obtain 
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and the first term of Equation (3.36) becomes 
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by changing order of integral and substituting Equation (3.34). The second term of Equation (3.36) becomes 
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by using Equation (3.35) and boundary condition 0ˆ =ϕ . 

 

3.1.5 Occurrence of the Irregular Frequency 

 

As discussed in the several previous sections, Equation (3.2) representing the exterior Neumann problem 

always has a solution and is unique only if solution of the interior Dirichlet problem of which solution vary 

according to wave frequency is trivial. Therefore, when a solution of the Dirichlet problem is non-trivial, a 

solution of the exterior Neumann problem is not a unique, and corresponding wave frequencies that make a 

solution of the exterior Neumann problem not unique are called the irregular frequencies. 
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In other words, the interior Dirichlet problem could have the trivial or non-trivial solution depending on a 

wave frequency. Therefore, if we know the analytical solution of the interior Dirichlet problem, it is possible 

to distinguish the irregular frequencies. However, it is difficult to solve the interior Dirichlet problem 

analytically except simple geometry problem like barge, and circular cylinder. Accordingly, it is not possible 

to predict the irregular frequency in most cases. 

 

3.2 Location of the Irregular Frequency 

 

In this section, we present the location of the irregular frequencies for barge and circular cylinder by solving 

the interior Dirichlet problem analytically. 

 

3.2.1 Barge 

 

We assumed a harmonic time dependence, so we define the velocity potential as [ ]tjBB e ωτ ϕϕ Re= . For a 

barge with the length L , the breadth B , and the draft T  as shown in Fig. 3.3, the velocity potential Bϕ  

satisfies the Laplace equation: 
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the linearized free-surface boundary condition: 
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 on IS  (3.40) 

the homogeneous Dirichlet condition: 

( ) ( ) ( ) ( ) ,0,,,0,,,,,0 31313232 ==== xBxxxxxLxx BBBB ϕϕϕϕ  on BS  (3.41) 

( ) .00,, 21 =xxBϕ  on BS  (3.42) 

By assuming the velocity potential as 
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The series form of the velocity potential (3.43) satisfies the boundary condition (3.42), and its double 

derivatives with respect to  1x ,  and 2x  are 
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By substituting Equations (3.44) and (3.45) into the Laplace equation, Equation (3.40) becomes 
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If we introduce the parameter: 
2/122
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The general solution of Equation (3.47) is 

 ( ) 33
3

x
nm

x
nmnm eCeAxb γγ −+= , (3.48) 

where nmA  and nmC  are the arbitrary constants should be determined by adopting the boundary condition. 

Now, we find the relation that is nmnm CA =  by applying the boundary condition (3.42), and we obtain 
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ππ

γϕ  for ,2,1, =mn  (3.49) 

Finally with the linearized free-surface boundary condition, we have the equation: 

 ( )TgB
irr γγω coth=  (3.50) 

that represents the irregular frequencies of the barge problem [14]. 
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Figure 3.3. Schema of the Interior Dirichlet Problem (Barge). 

 

3.2.2 Circular Cylinder 

 

We define the velocity potential as [ ]tjCC e ωτ ϕϕ Re=  by assuming a time harmonic dependence. For a 

circular cylinder the radius R , and the draft T  as shown in Fig. 3.4, the velocity potential Cϕ  satisfies the 

Laplace equation: 
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(3.51) 

the linearized free-surface boundary condition: 

  ( ) ( ),0,,0,, 2
θϕωθϕ r

gz
r C

C
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∂

 
on IS  (3.52) 

the homogeneous Dirichlet condition: 

( ) ,0,, =zRC θϕ  on BS   (3.53) 

( ) .0,, =−TrC θϕ  on BS  (3.54) 

By assuming the velocity potential as 

 ( ) ( ){ }[ ] ( ) ( ){ } ( ),sincossinh,,
1 1
∑∑
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=

∞
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+×+=
m n

mmn
C nrJmmTznAzr θθθϕ

 
(3.55) 

where mJ  is the Bessel function of order m . The series form of the velocity potential (3.55) satisfies the 

boundary condition (3.54). To satisfy the boundary condition (3.53), we define n  that satisfies ( ) 0=nRJ m . 

We rewrite Equation (3.55) as in the field of 
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(3.56) 

Finally with the linearized free-surface boundary condition, we have the equation: 

 ( ) .tanh nT
ngC

irr =ω  (3.57) 

that represents the irregular frequencies of the circular cylinder problem. 

 

 

Figure 3.4  Schema of the Interior Dirichlet Problem (Circular Cylinder). 

 

3.3 Irregular Frequency Removal Method 

 

Since the existence of the irregular frequencies was reported by Lamb [2], several IRR methods have been 

suggested in the field of acoustics and water wave problems. These methods can be classified into two 

categories [4]: 

(1) Modification of the integral operator 

(2) Modification of the domain of the integral operator. 

Representative methods in the first category are the Modified Green function method [15], the Null-field 
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equation method [16], and the Modified integral-equation method [6]. In the second category, there are two 

typical methods: the Combined boundary integral equation(CBIE) method, and the Extended boundary 

integral equation(EBIE) method, and the principle is the same [4, 17]. The ease of implementation, the 

computational cost aspect, and general applicability should be considered when choosing one of methods. 

Methods in the first category increase relatively small computational cost and are applicable for three-

dimensional body, but not suitable for arbitrary shape body. Meanwhile, the CBIE method and the EBIE are 

applicable for three-dimensional structure, and the EBIE method are suitable for a structure of arbitrary shape. 

However, the increment of computational cost of the EBIE method is relatively larger than methods in the first 

category. Detailed contents are described in related papers and we summarize that briefly in Table 3.4. In 

Table 3.4, the quantitative comparison is presented because comparison of cost increment is related to several 

factors, and △ means that it is difficult to apply to structure of arbitrary shape because particular factors such 

as field point, arbitrary constant are involved. 

 

Table 3.4. Comparison of irregular frequency removal methods. 

 Three Dimension Arbitrary Shape Cost Increment 

Modified Green-

function Method 
Available △ Low 

Null-field       

equation Method 
Available Not Available Low 

Modified Integral-

equation Method 
Available △ Mid 

CBIE Method Available △ Low 

EBIE Method Available Available High 

 

Although the EBIE method increases the computational cost considerably, it is applicable to the three 

dimensional floating structure of arbitrary shape. Therefore, we use the EBIE method for procedure to remove 

the irregular frequency effect in numerical analysis presented in the chapter 4. The principle of the CBIE and 
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EBIE methods is suppressing the non-trivial solution of the interior Dirichlet problem by imposing 

homogenous Dirichlet boundary condition on IS . Through the EBIE method, Equation (2.19) is transformed 

into 
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where Bφ  and Iφ  are the velocity potentials on BS  and IS , respectively. For detail procedure, please refer 

the paper written by Lee [17]. We construct the discrete linear system of equation through variational 

formulation, and boundary element discretization, then 
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where 
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for flexible floating body analysis. In the aforementioned expressions, Bφ̂  and Iφ̂  are the nodal velocity 

potential vectors on BS  and IS  , respectively. By expressing the displacement field by the six degrees of 

freedom, and condensing out the fluid variables, we obtain the following equation: 
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of which mass and hydrostatic stiffness matrix are equal to those of equation (3.37). Added mass, radiated 

wave damping matrices, and wave excitation force vector are 
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respectively. 
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Chapter 4. Cost Reduction Procedure for the Irregular Frequency 

Removal Method 

 

The EBIE method is applicable to the three dimensional floating structure of arbitrary shape as mentioned in 

the previous chapter, but it increases the computational cost, Increment of the computational cost depends on 

the degree of freedom on the interior free-surface, because the EBIE method include the interior free-surface 

as part of domain. The degree of freedom on the interior free-surface vary depending on type of and floating 

structure. Here we present representative two examples: ship-shaped offshore unit, and ISSC tension-leg 

platform(TLP). Numerical hydrodynamic analyses are conducted under equivalent computational condition 

by WAMIT in frequency range from 0.2 ~ 1.5 srad /  and constant panel method [18] is used. The 

discretization of the ship-shaped offshore unit and ISSC TLP are shown in Figures 4.1 and 4.2. Table 4.1 

summarize the degree of freedom on the wet surface and the internal free-surface, the computational time of 

original boundary integral equation(OBIE) method and extended boundary integral equation(EBIE) method. 

 

 

Figure 4.1. Discretization of the wet surface of ISSC TLP and the interior free-surface. 
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Figure 4.2. Discretization of the wet surface of ship-shaped offshore unit and the interior free-surface. 

 

Table 4.1. Analysis condition and computational time of ship-shaped offshore unit and ISS TLP. 

Ship-shaped offshore unit  ISSC TLP 

Degree of freedom  Computational Time  Degree of freedom  Computational Time 

BS  IS  
BI SS

[%] 
 

OBIE 

[s] 

EBIE 

[s] 

Increment 

[%] 
 

BS  IS  
BI SS

[%] 
 

OBIE 

[s] 

EBIE 

[s] 

Increment 

[%] 

1352 768 56.8  917 2365 157.9  4048 384 9.4  3171 6458 103.7 

 

The computational cost of ship-shaped offshore unit and ISSC TLP increased 350.5% and 145.5% 

respectively. In this chapter, we present the procedure to reduce increment of the computational cost due to the 

EBIE method. The key concept of the cost reduction procedure for the IRR method is applying the EBIE 

method selectively. As shown in Figure 4.3, the numerical error due to the irregular frequencies appears over a 

substantial frequency band around the irregular frequencies. Therefore, the total computational cost can be 

reduced by applying the EBIE method only for discrete wave frequencies in “polluted” frequency band. 

In this chapter, we first compare the numerical analysis procedure of OBIE and EBIE in terms of the 

computational cost. Second, we present the criterion that would be used to detect wave frequencies that are in 

“polluted” frequency band. Then, we finally propose the cost reduction procedure for the IRR method and 

examine feasibility and limitation of this procedure. 
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Figure 4.3. Surge added mass of ship-shaped offshore unit as function of wave frequency and the polluted 

frequency band. 

 

4.1 Comparison of the computational cost between OBIE and EBIE 

 

To carry out the numerical analysis of the interaction of surface wave with floating structure, it is necessary to 

evaluate the free-surface Green function for each wave frequency. The free-surface Green function contains 

the integral of which domain goes infinity, so direct numerical evaluation is inefficient. Several algorithms for 

the free-surface Green function evaluation have been developed [19, 20, 21] to reduce the computational cost, 

and Newman’s algorithm is widely used. The linear system of equations also should be solved for each wave 

frequency. Both the iterative solver and the direct solver are available. When the degree of freedom is large, it 

is recommended to use the iterative solver in terms of the computational cost [18] . These two calculations 

occupy most of the computational cost. It is difficult to calculate the computational cost precisely, because the 

Green function evaluation and solving the linear system of equation vary with the wet surface of floating 

structures. Nevertheless, it is evident that the computational cost increases as the degree of freedom increases. 

Therefore, the EBIE method increases the computational cost, because this method extend its domain. Let’s 
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define BN  is the number of node on BS  and IN  is the number of node on IS . Without the EBIE 

method, the free-surface Green function must be evaluated for each combination nodes on BS , that is ( )2BN  

evaluations should be done for single wave frequency. However, with the EBIE method, the number of 

evaluations increases to ( )2IB NN + . The size of linear system of equations that should be solved to obtain a 

solution increases from BN  to ( )IB NN + . In Figure 4.4 the relation of degree of freedom on BS  and the 

number of the Green function evaluation is shown where x-axis means the degree of freedom on BS , and y-

axis means the number of the free-surface Green function evaluation. The number of Green function 

evaluation is growing according to a quadratic curve. In Figure 4.5 the normalized computational time is 

plotted in y axis, and the degree of freedom is plotted on BS . Each computational time is divided by the 

longest one. Numerical hydrodynamic analysis of barge is carried out for single wave frequency repeatedly 

using WAMIT as increasing the degree of freedom and higher-order method is used.  

 

Table 4.2. Increment of the number of Green function evaluation and the computational time due to the EBIE 

method. WAMIT and higer-order method are used. 

( )%10/ =BI NN   ( )%30/ =BI NN  

BN  

Increment due to EBIE method (%)  
BN  

Increment due to EBIE method (%) 
 

Number of Green 

function evaluation 
Computational time  

 

Number of Green 

function evaluation 
Computational time 

4000 

21 

30.52  1920 

69 

150.52 

5760 33.83  4320 116.67 

7840 33.23  7680 118.17 

 

Table 4.2 gives the increment of the number of Green function evaluation and the computational time 

corresponding to the degree of freedom on the wet surface. As ratio of IN  to BN  increases, the 

computational cost increases as expected. Additionally, the increment of the computational cost is larger than 

the increment of the number of Green function evaluation. This means that not only Green function evaluation 

but also solving of linear system of equations contribute to the increment of the computational cost. 
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Figure 4.4. Number of the Green function evalution corresponding to the degree of freedom on the wet 

surface for single wave frequency. 

 

 

Figure 4.5. Normalized computational time corresponding to the degree of freedom on the wet surface for 

single wave frequency. 
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4.2 Criterion for Detecting the Irregular Frequency 

 

As described in section 3.1.5, the irregular frequency affects solution when Equation (3.22) has non-trivial 

solution. Therefore, if we know whether solution of Equation (3.22) is non-trivial or not for each frequency, 

we can classify the irregular frequencies that make numerical solution erroneous. This non-trivial solution 

consist of the sum of the eigenfunctions of eigenvalue problem: 

( ) ( ) ( )
( ) ( ) 0,;

2
122 =
















∂

∂
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ξ
ξxξx dS

n
G

BS

eig ω
π

πφλπφ , for x  on BS   (4.1) 

when one of eigenvalues is equal to one that is the parameter of Equation (3.22). In other words, eigenvalue 

problem (4.1) has the kernel that is a function of frequency, so eigenvalue of problem (4.1) vary with 

frequency. Then, at certain wave frequencies, one of eigenvalues becomes ‘1’. In that case, Equation (4.1) 

becomes equation (3.22), then homogeneous solution of equation (3.22) is sum of eigenfunctions multiplied 

by arbitrary constants. Therefore, when one of eigenvalues of problem (4.1) becomes ‘1’, equation (3.2) has 

infinite solution. 

This eigenvalue problem can be transformed into generalized matrix eigenvalue problem: 

 ( )[ ] 0φFF =− ˆ2 ωλπ Gn
eig

M . (4.2) 

with variational formulation and boundary element discretization as we derived the discrete linear system of 

equations. To solve problem (4.1), it is necessary to calculate MF  and ( )ωGnF . However, these are 

calculated in numerical procedure, so additional matrix calculation is not necessary. In addition, we only 

concern the eigenvalue near ‘1’, so the Arnoldi method that approximate a few eigenvalues and corresponding 

eigenvectors effectively could be applied. 

In the discretized problem, continuous frequency range is also discretized and the linear system of equations 

are solved for each discrete frequencies. Then, the linear system of equations becomes ill-conditioned near the 

irregular frequencies. This phenomena can be described in terms of eigenvalue of problem (4.2). As 

eigenvalue that is a function of frequency approach to ‘1’, a numerical solution becomes erroneous. In order 

to distinguish the frequency that is affected by the irregular frequency, it is necessary to define a criterion: 

 ελ <−1eig , (4.3) 

- 34 - 



 

and ε  depends on the discretization of wet-surface and interpolation order of the boundary element. 

eigλ  is complex, because components of ( )ωGnF  are complex. Therefore, the criterion (4.3) becomes 

 ( ) re
eig ελ <−1Re  (4.4a) 

 ( ) im
eig ελ <Im . (4.4b) 

In this thesis, wet-surface is discretized into quadrilateral flat panels of which length is shorter than a quarter 

of wave length. Under theses conditions, we set reε  and imε  as 0.015 that makes error due to the EIBE 

method under 5% through numerical tests. 

 

4.3 Cost Reduction Procedure and Its Limitation 

 

Numerical analysis procedure that solve the Exterior Neumann problem with and without the EBIE method 

are shown in Figure 4.6. Numerical analysis step colored with yellow includes the Green function evaluation 

and numerical analysis step colored with green includes solving the linear system of equations. As explained, 

the number of the Green function evaluation and the size of the linear system increases by adapting the EBIE 

method to remove the irregular frequency effect for every frequency, then the total computational time 

increases as shown in Fiure. 4.5. Therefore, we suggest the cost reduction procedure for the IRR method that 

apply the EBIE method selectively by using the criterion presented in the previous section as shown in Figure 

4.7.  

This procedure, in common with existing numerical analysis procedure, first make mass and hydrostatic 

stiffness matrices that are already mentioned in Equation (2.29), and then build the fluid matrices: ( )ωGnF , 

( )ωGF , and ( )ωIR  for each wave frequency. While the existing numerical analysis procedure with EBIE 

method construct added mass and wave damping matrices, and wave force vector (2.29), the cost reduction 

procedure solve the eigenvalue problem (4.2) and check the criterion (4.4) to identify whether wave frequency 

is in “polluted” frequency band or not for each wave frequency. When the criterion (4.4) is not satisfied, added 

mass and wave damping matrices, and wave force vector are calculated according to Equation (2.29). On the 

other hand, if the criterion (4.4) is satisfied, added mass and wave damping matrices, and wave force vector 

are calculated by adapting the EBIE method.  
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Figure 4.6. Numerical Analysis Procedure (a) with the EBIE method, (b) without the EBIE method. ωN  is 

the number of wave frequency. 
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Figure 4.7. Cost reduction procedure for the irregular frequency removal method. ωN  is the number of wave 

frequency. 

 

 

- 37 - 



 

The cost reduction procedure need to solve eigenvalue problem for every frequency. Then, if it takes more 

time than the computational time increase due to the EBIE method, it is meaningless procedure. We use the 

Arnoldi method [22] to compute one eigenvalue closest to ‘1’, and computational time of it also increases as 

degree of freedom increases. The computational time of eigenvalue problem is relatively small compared to 

the increment of the computational time due to the EBIE method for single frequency analysis as shown in 

Figure. 4.8. Figure 4.8 is equal to Figure 4.5, but include the computational time of eigenvalue analysis using 

Arnoldi method additionally. 

 

 

Figure 4.8. Computational cost of OBIE method, EBIE method, and Eigenvalue problem corresponding to the 

degree of freedom on the wet surface. 

 

Another point should be considered is the number of frequencies that is classified according to the criterion 

(4.4). Present procedure could be effective when a few of frequencies are affected in the frequency range of 

interest. Fortunately, it is well known that general shape of ships has a few irregular frequencies and if wet-

surface discretization is enough, “polluted” frequency bandwidth is relatively small. Therefore, present 

procedure could be effective for hydrodynamic analysis of ships and ship shaped floating structures. 

In this section, we present the cost reduction procedure for IRR method that adapt the EBIE method 

- 38 - 



 

selectively. This procedure could be effective when the number of wave frequency that are affected by the 

irregular frequency are relatively small, and the computational cost of solving the eigenvalue problem (4.2). 

To verity the effectiveness of the cost reduction procedure, examples of barge, circular cylinder, and ship-

shaped offshore unit are presented in the next chapter. 
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Chapter 5. Numerical Results 

 

In this chapter, we consider three examples: barge, circular cylinder, and ship-shaped offshore unit. We 

validate the criterion (4.4) that separate out frequencies that are in polluted solution bandwidth by comparing 

with analytical irregular frequencies of barge and circular cylinder in the frequency range of interest. The 

added mass, and excitation force are calculated and eigenvalue problem (4.2) is solved in frequency range 

from 0.2 to 3.0 srad . We show the feasibility of the cost reduction procedure by applying to the ship-shaped 

offshore unit. 

 

5.1 Barge 

 

The barge of which the length L is 10m, the breadth B is 10m, and the draft T is 2m is considered. The 

irregular frequencies that are in frequency range from 0.2 to 3.0 srad  are 2.48 and 2.79 srad . The 

discretization of barge is shown in Figure 4.1. Figure 4.2 and 4.3 show the added mass, the wave excitation 

forces on the barge for the surge and heave modes, and one of eigenvalues that is closest to ‘1’ of the 

eigenvalue problem (4.2) respectively. As eigenvalue approach to ‘1’, a solution becomes erroneous, and its 

point corresponds with the irregular frequencies well. Therefore, it is shown that the criterion (4.4) presented 

in the previous chapter is applicable to separate out the frequencies that are affected by the irregular 

frequencies. 

 

Figure 5.1. Discretization of Barge. 
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Figure 5.2. Surge added mass, wave excitation force on the barge and eigenvalue of problem (4.2) as function 

of wave frequency. L  is the length of barge, and A  is the amplitude of the incident wave. Added mass and 

wave excitation force are non-dimensionalized by 3Lρ  and 2ALρ  where ρ  is the water density. 
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Figure 5.3. Heave added mass, wave excitation force on the barge and eigenvalue of problem (4.2) as 

function of wave frequency. Other definitions are equal to those of Figure 5.2. 
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5.2 Circular Cylinder 

 

The circular cylinder of which the radius L is 4m, and the draft T is 2m is considered. The irregular frequency 

that are in frequency range from 0.2 to 3.0 srad  is 2.66 srad . The discretization of circular cylinder is 

shown in Figure 5.4. Figures 5.5 and 5.6 show the added mass, the wave excitation forces on the circular 

cylinder for the surge and heave modes, and one of eigenvalues that is closest to ‘1’ of the eigenvalue problem 

(4.2) respectively. In common with barge case, circular cylinder results show that the criterion presented in the 

previous chapter is applicable. 

 

 

Figure 5.4. Discretization of circular cylinder. 
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Figure 5.5. Surge added mass, wave excitation force on the circular cylinder and eigenvalue of problem (4.2) 

as function of wave frequency. L  is the radius of circular cylinder, and A  is the amplitude of the incident 

wave. Added mass and wave excitation force are non-dimensionalized by 3Lρ  and 2ALρ  where ρ  is the 

water density. 
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Figure 5.6. Heave added mass, wave excitation force on the circular cylinder and eigenvalue of problem (4.2) 

as function of wave frequency. Other definitions are equal to those of Figure 5.5. 
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5.3 Ship-shaped offshore unit 

 
Ship-shaped offshore unit shown in Figure 5.7 is considered in order to show feasibility of the cost reduction 

procedure for IRR method. Numerical analysis conditions and results are shown in Table 5.1. Panel model of 

ship-shaped offshore unit is equal to model that is presented in chapter 4, but the interior free-surface panel is 

generated manually not by applying option of WAMIT. Through the cost reduction procedure, 8 frequencies 

out of 81 frequencies are considered as being affected by the irregular frequencies and 29.3% computational 

cost is saved in comparison with numerical analysis procedure with EBIE method. Figures 5.8, 5.9, and 5.10 

show the added mass, the wave radiation damping on ship-shaped offshore unit for the surge, heave, and roll 

modes, and one of eigenvalues that is closest to ‘1’ of the eigenvalue problem (4.2) respectively. 

 

Table 5.1. Analysis conditions and computational times of ship-shaped offshore unit using the numerical 

analysis procedure with EBIE method and the cost reduction procedure that is presented in the chapter 5. 

Wave angle is defined in Figure 2.1. 

Degree of Freedom  Wave Condition  Computational time (s) 

BN  IN   Angle 
(rad) 

Frequency 
(rad/s) 

 Numerical analysis procedure 
with EBIE method 

Cost reduction procedure 

1401 369  0 0.2 ~ 1.8  5629.5 3978.2 

 

 

Figure 5.7. Discretization of Discretization of ship-shaped offshore unit. 
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Figure 5.8. Surge added mass, wave damping on ship-shaped offshore unit and eigenvalue of problem (4.2) as 

function of wave frequency. L  is the length of ship-shaped offshore uint. Added mass and wave damping are 

non-dimensionalized by 3Lρ  and 3Lρω  where ρ  is the water density. 
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Figure 5.9. Surge added mass, wave damping on ship-shaped offshore unit and eigenvalue of problem (4.2) as 

function of wave frequency. Other definitions are equal to those of Figure 5.8. 
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Figure 5.10. Roll added mass, wave damping on ship-shaped offshore unit and eigenvalue of problem (4.2) as 

function of wave frequency. L  and B  are the length and breadth of ship-shaped offshore uint, repectively. 

Added mass and wave damping are non-dimensionalized by BL3ρ  and BL3ρω  where ρ  is the water 

density. 
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Chapter 6. Conclusions 

 

 

We define the irregular frequencies of the boundary integral equation that representing the exterior Neumann 

problem. With the Fredholm’s theorems, we investigate the cause of the irregular frequencies, and review the 

irregular frequency removal method have been developed briefly. Each method has its pros and cons, and the 

extended boundary integral equation method is the only way to remove the irregular frequency effect for three 

dimensional floating structure of arbitrary shape. However, the computational cost increase depending on the 

discretization of the interior free-surface. Therefore, it is necessary to reduce the computational cost, and we 

present the cost reduction procedure for IRR method that adapt the extended boundary integral equation 

method selectively. To distinguish the frequencies that are affected by the irregular frequencies, the cost 

reduction procedure needs to solve the eigenvalue problem. We adopt the Arnoldi method for eigenvalue 

problem, and it is shown that the computational time of eigenvalue problem is relatively small compared to 

the increment of the computational time due to the EBIE method for single frequency. In case of the barge and 

the circular cylinder of which the irregular frequencies can be derived analytically, frequencies are in 

“polluted” freqeuncy band are detected appropriately by adapting the cost reduction procedure. We also apply 

the cost reduction procedure for ship-shaped offshoure unit, and it save 29.3% computational cost in 

comparison with the numerical analysis procedure with EBIE method. 

In this research, we present the cost reduction procedure for IRR method to reduce the computational cost. It 

is expected that this procedure is effective especially to deal with large degree of freedom problem. However, 

it is applicable when single floating structure is considered and it would be effective only when the number of 

frequencies affected by the irregular frequencies in the frequency range of interest is relative small. 

 

 

 

 

- 50 - 



 

 

References 

 

[1] Zhu, X. (1994). “Irregular Frequency Removal from the Boundary Integral 

Equation for the Wave-Body Problem”, M.S. Thesis, Massachusetts Institute of 

Technology. 

 
[2] Lamb, H. (1916). Hydrodynamic, Cambridge University Press. 

 
[3] John, F. (1949). “On the Motion of Floating Bodies Ⅰ,Ⅱ.” Communication on 

Pure and Applied Mathematics, 2(1). 

 
[4] Lau, S. M. and Hearn, G. E. (1989), “Suppression of irregular frequency effects 

in fluid–structure interaction problems using a combined boundary integral equation 

method.” Int. J. Numer. Meth. Fluids, 9(2), pp. 763-782. 

 
[5] Ursell, F. (1981), “Irregular frequencies and the motion of floating bodies.” 

Journal of Fluid Mechanics, 105, pp. 143-156. 

 
[6] Zhu, X., Lee, C.H. (1994), “Removing the Irregular Frequencies in Wave-Body 

Interactions.” 9th International Workshop on Water Waves and Floating Bodies 

(IWWWFB09), Kuju, Fukuoka, Japan, pp. 245-249. 

 
[7] Kim, K.-T., Lee, P.-S. and Park, K. C. (2013), “A direct coupling method for 3D 

hydroelastic analysis of floating structures.” Int. J. Numer. Meth. Engng, 96(13), pp. 

842-866. 

 
[8] Yoon, J. S., Cho, S. P., Jiwinangun, R. G., & Lee, P. S. (2014). “Hydroelastic 

analysis of floating plates with multiple hinge connections in regular waves.” Marine 

Structures, 36, pp. 65-87. 

 
[9] Dalrymple, R. A., & Dean, R. G. (1991). Water wave mechanics for engineers 

and scientists. Prentice-Hall. 

 
[10] Wehausen, J.V., and Laitone, E.V. (1960), “Surface waves.” Encyclopedia of 

Physics, 9, pp. 446-778. 

 

 

- 51 - 



 

[11] Newman, J.N. (1977). Marine Hydrodynamics, The MIT press. 

 
[12] Bathe, K.J. (1996). Finite Element Procedures, Prentice Hall. 

 
[13] Ram P, K. (1971). Linear Integral Equations-Theory and Technique, Academic 

Press. 

 
[14] Hong, D. C. (1987). “On the improved Green integral equation applied to the 

water-wave radiation-diffraction problem.” J Soc Nav Archit Korea, 24, pp 1-8. 

 
[15] Sayer, P., and Ursell, F. (1977) "Integral-equation methods for calculating the 

virtual mass in water of finite depth." Proc. 2nd Int. Symp. Numerical Hydro. 

University of California. 

 
[16] Martin, P. A. (1981). “On the null-field equations for water-wave radiation 

problems.” Journal of Fluid Mechanics, 113, pp. 315-332. 

 

[17] Lee, C. H., Newman, J. N., & Zhu, X. (1996). “An extended boundary integral 

equation method for the removal of irregular frequency effects.” International 

Journal for Numerical Methods in Fluids, 23(7), pp. 637-660. 

 

[18] Lee, C. H., & Newman, J. N. (2006). WAMIT® User Manual, Versions 6.3, 6.3 

PC, 6.3 S, 6.3 S-PC. Chestnut Hill, MA: WAMIT. 

 
[19] Newman, J. N. (1985). “Algorithms for the free-surface Green 

function.” Journal of Engineering Mathematics, 19(1), pp. 57-67. 

 
[20] Telste, J. G., & Noblesse, F. (1986). “Numerical evaluation of the Green 

function of water-wave radiation and diffraction.” Journal of ship research, 30(2), 

pp. 69-84. 

 
[21] Yang, S. A. (2000). “On the singularities of Green's formula and its normal 

derivative, with an application to surface‐wave–body interaction problems.” 

International Journal for Numerical Methods in Engineering, 47(11), pp. 1841-1864. 

 
[22] Sorensen, D. C. (1992). “Implicit application of polynomial filters in ak-step 

Arnoldi method.” SIAM Journal on Matrix Analysis and Applications, 13(1), pp. 

357-385. 

 

- 52 - 



 

 

요 약 문 

파랑-구조 상호작용 문제에서 

비정상 주파수 현상 검출 

 

파랑-구조 상호작용 문제는 조선 및 해양공학에서 자주 다루어지는 문제이며, 포텐셜 

이론이 해석을 위해 사용되어왔다. 특히 선형화된 자유표면 경계조건을 만족하는 그린 함수를 

이용한 주파수영역 수치 해석 방법은 부유체 운동 해석에 널리 사용되며, 이와 관련된 많은 

연구들이 수행되어오고 있다. 하지만 해석하는 부유체의 크기가 커지고, 형상이 다양에 짐에 

따라 특정 주파수에서 큰 오차가 발생한다. 이 현상이 일어나는 주파수를 비정상 주파수라 

하며, 이를 제거하기 위한 많은 방법이 개발되어왔다. 

 

비정상 주파수 현상은 물리적 현상이 아니라 수학 모델링 과정에서 발생하는 현상이다. 

이를 제거하기 위한 방법은 초기 이차원 문제에만 적용이 가능한 방법부터 삼차원의 일반적인 

형상까지 적용이 가능반 EBIE 방법까지 개발이 되어왔다. EBIE 방법을 부유체 운동해석에 

많이 적용해오고 있으나, 수치해석에 필요한 시간이 증가하는 문제가 있다.  

 

본 연구에서는 EBIE 을 선택적으로 적용하여 수치해석 시간을 줄이는 절차를 

제시하였다. 주파수 영역 해석에서 비정상 주파수의 영향을 받는 주파수를 판별하는 기준을 

제시하고, 이 기준을 이용한 해석 절차를 제시하였다. 비정상 주파수를 이론적으로 계산할 수 

있는 직육면제와 원형 실린더에 적용하여 비정상 주파수 검출의 가능성을 입증하였다. 또한 

선박형태의 해양구조물에도 제시한 수치해석 절차를 적용하여 수치 해석 시간의 절약 가능성을 

보였다. 

 

핵심어: 파랑-구조 상호작용; 포텐셜 이론; 경계 적분 방정식; 자유표면 그린함수; 비정상 주파수 
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