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초 록 

본 학위논문에서는 PU 기반 2차원 및 3차원 솔리드 유한요소(4절점 사각형 요소, 8절점 육면체 

요소, 6절점 오면체 요소, 5절점 오면체 요소)를 제안한다. PU 기반 유한요소의 

선형종속문제(linear dependence problem)를 해결하기 위해서 각 요소별 부분 선형 

형상함수(piecewise linear shape function)를 제시하고, 이를 형상 및 변위 보간에 적용하였다. 다양한 

격자에서 선형종속문제가 발견되지 않았으며, 좋은 수렴 성능을 나타내었다. 또한, 다양한 예제를 

통해 요소의 성능 및 효율성을 입증하였다. 추가적으로 커버 함수(cover function)의 선택적 적용을 

통해 유한요소 해석 결과의 정확도를 자동으로 개선하는 절차를 구현하고, 그 적용 가능성을 

확인하였다. 이 해석 절차는 기존에 사용되었던 격자 재구성 또는 절점 추가가 필요 없으며, 일부 

자유도의 증가만으로 유한요소 해석의 정확도를 크게 개선하였다. 

 

핵 심 낱 말  PU 기반 유한요소, 선형종속문제, 4절점 사각형 요소, 8절점 육면체 요소, 6절점 

오면체 요소, 5절점 오면체 요소, 수렴 성능 

 

Abstract 

The partition of unity based 2D 4-node quadrilateral and 3D 8-node hexahedral, 6-node prismatic, 5-node 

pyramidal elements are presented. To resolve the linear dependence problem, sets of piecewise linear shape 

functions are proposed and adopted for the geometry and displacement interpolations. The rank deficiency was not 

observed with various mesh patterns and excellent convergence behaviors were observed, even when distorted 

meshes are used. The feasibility of the automatic procedure that improves the solution accuracy using the adaptive 

use of cover functions is also illustrated through several problems. Based on the error indicator proposed, the 

scheme automatically selects the order of cover functions in the procedure. The procedure provides good 

predictions for strain energy and stress with small increment of DOFs instead of any traditional local mesh 

refinement.  
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Chapter 1. Introduction 

 

 

1.1. Research background 

 

The finite element method can effectively model complex geometries using meshes and is considered robust and 

effective compared to other numerical methods. During the last decades, the finite element method has been 

widely used for numerical analysis of solids, fluids, and multi-physics problems [1-3]. However, the accuracy of 

solutions depends on the quality of the meshes used, and in engineering practice, it takes considerable effort to 

obtain a suitable mesh. Also, mesh refinements are often necessary to secure reliable solutions with required 

accuracy when non-smooth, near-singular, and high-gradient solutions are sought [1-4].  

 

In order to obtain reliable solutions, the partition of unity methods have been developed in recent years. The 

partition of unity methods include the hp-cloud method [5-11], the numerical manifold method [7-18], the 

extended finite element method [9-27], the generalized finite element method [28-33], and enriched finite element 

method [34-37]. The partition of unity method forms the solution space by multiplying enrichment functions and 

the partition of unity functions. Babuska and Melenk showed a mathematical background for the partition of unity 

methods [38]. Applying enrichment functions suitable for a particular problem, a reliable solution can be obtained. 

To account for discontinuities and various singularities in solid mechanics problems, Belytschko and Black [19], 

Moes et al. [20], Duarte et al. [39], and Rabczuk et al. [40] incorporated enrichment functions. Harmonic functions 

were applied as enrichment function by Ham and Bathe [41] to solve wave propagation problem. For pipe analysis, 

special enrichment functions were embedded to represent pipe ovalization effect accurately [42,43]. Bathe and 

Chaudhary [44] and Yoon et al. [45] developed the beam finite element incorporated with warping functions. 

 

There has also been studies of applying polynomials as enrichment functions that generally improve element 

performance rather than specific problems. Kim and Bathe [34,35] and Jeon et al. [36,37] studied and developed 

a finite element enriched by interpolation covers for solid and shell analysis. The enriched element showed 

improved convergence performance with low order finite element mesh, and the higher order enrichment is 

available. That is, enriched element can capture the high gradient of stress and reduce inter-element stress jump. 

In addition, adaptive use of the cover function can improve the solution accuracy without remeshing or adding 

nodes to the edge or center of the element. 

 

However, linear dependence (LD) problem, in which global stiffness matrix becomes singular, can occur when 

functions in the enriched displacement interpolation become linearly dependent. The LD problem was first 

reported by Babuska and Melenk [38]. An at al. [46,47] proposed approach to predict rank deficiency of global 

stiffness matrix due to the LD problem in the partition of unity methods for 2D and 3D analyses, and various 
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attempts have been made to alleviate the LD problem. 

 

Babuška and Melenk [38] designed partition of unity functions in order that the LD problem could be overcome 

in 1D analysis. Oden et al. [9] suggested the elimination of linear polynomial terms in the local approximation 

functions. Duarte et al. [39] and Stouboulis et al. [29] showed that such treatments are not enough to avoid the 

LD problem; then adopted special equation solvers in 2D and 3D analyses. Tian [48] suggested suppressing 

enriched degrees of freedoms (DOFs) corresponding to enriched functions at essential boundary and it is effective 

for 3-node 2D triangular and 4-node 3D tetrahedral elements [34,48].  

 

Babuska et al. [49] suggested the stable generalized finite element method (SGFEM) that local approximation 

functions are modified by subtracting the standard finite element interpolation of local approximation functions 

to deal with the conditioning of the global stiffness matrix. In SGFEM, the LD problem is avoided by applying 

the flat top partition of unity functions for 1D and 2D analyses when polynomial is used as local approximation 

function [50]. A study using the flat-top partition of unity function was also conducted by Lee and Hong [51,52], 

expanded from earlier work of Babuška and Melenk [39], but construction of the flat-top partition of unity 

functions is not easy and requires artificial constant that effects matrix condition and solution accuracy. [51,52]. 

 

For 2D solid mechanics problem, 4-node element meshes are most widely used and 8-node hexahedral element 

meshes are widely used with 6-node prismatic, 5-node pyramidal, and 4-node tetrahedral element meshes for 

analysis of 3D solid mechanics problems. Therefore, it is still necessary to effectively resolve the linear 

dependence problem of the enriched solid finite elements. In this thesis, we aim to develop, in a simple and 

effective way, solid finite element enriched by interpolation covers, which are free from the linear dependence 

problem. The developed enriched elements can be used for 2D and 3D mechanics problem and effectively improve 

the finite element solution accuracy. 
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1.2. Research purpose & contents 

 

The first objective of this thesis is to develop 2D and 3D solid finite elements (4-node quadrilateral, 8-node 

hexahedral, 6-node prismatic, and 5-node pyramidal elements) enriched by interpolation covers. The linear 

dependence problem of the enriched elements should be resolved in a simple and effective way, and the developed 

elements are require to pass the patch, zero energy mode, and isotropy tests for arbitrary enrichment. In addition, 

these elements should show good convergence behaviors and cover function should be applicable to local area to 

improve the solution accuracy. 

 

The second objective in this thesis is to demonstrate the feasibility of the adaptive use of cover functions, an 

important advantage of the enriched elements. By applying cover function adaptively, the solution accuracy can 

be improved without any traditional local mesh refinement or adding nodes. If a procedure to automatically 

improve finite element solutions with the adaptive use of cover functions is developed, it will be useful in 

performing finite element analyses for various purposes. To implement this automatic procedure, an algorithm 

that determines appropriate orders of the cover functions for each node is required. 

 

In the following chapter, the formulation of the enriched finite element is briefly reviewed, and the enriched 4-

node 2D solid finite element which is free from the linear dependence problem is presented. The linear dependence 

problem is tested using various mesh patterns and the effectiveness and performance of developed element is 

demonstrated through several problems: an ad hoc problem, a tool jig problem, a slender beam problem, 

automotive wheel problem, a cantilever beam with fillets problem, and an wrench problem. 

 

In chapter 3, we present the enriched 3D solid finite elements (including 8-node hexahedral, 6-node prismatic, 

and 5-node pyramidal elements). Similar to the previous section, investigations of the linear dependence problem 

of the enriched 3D elements are presented. The performance and effectiveness of the developed elements are 

tested through several problems: an ad hoc problem, a tool jig problem, a straight beam problem, a curve beam 

problem, a gear problem, and a connecting rod problem. 

 

In chapter 4, we show the feasibility of a procedure to automatically improve finite element solutions with the 

adaptive use of cover functions. For this automatic procedure, we present an error indicator and a scheme that 

select appropriate orders of cover functions based on the error indicator. We consider 3-node triangular and 4-

node quadrilateral 2D solid finite elements. Through several 2D problems, the automatic procedure, that is based 

on the error indicator and the adaptive use of cover functions, is demonstrated. 
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In chapter 5, we propose the strain-smoothed 3-node triangular element enriched by interpolation covers. Strain 

of the enriched 3-node triangular element is divided into two parts. Then, the strain-smoothed element (SSE) 

method is applied for the strain part corresponding to the standard DOFs. The effectiveness and performance of 

developed element is tested through a cook beam problem and a tool jig problem. 

 

In chapter 6, the conclusions and future works are presented. 
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Chapter 2. The enriched 4-node 2D solid finite element 

 

 

In this chapter, formulation of enriched finite element is first reviewed. Then, we present the enriched 4-node 2D 

solid finite element for linear analysis. The investigations of the linear dependence problem and element 

performance are demonstrated through several numerical examples.  

 

 

2.1. Formulation of the enriched 2D solid finite elements 

 

2.1.1. Enriching finite elements by interpolation covers 

The enriched finite element solution procedure is theoretically clear but some researches has been proceeded to 

overcome difficulties such as the linear dependence problem. In this section, 2D analysis problem is briefly 

considered to introduce the basic procedure for the enrichment scheme used here. 

 

Let’s 1{ }n n
i iQ x  be a set of N nodal point position vectors [ ] Ω,i i ix y Τ x  and let 1{ } { }m q

h mλ φ   be a 

family of q quadrangles generated by nQ . The quadrangles corresponds to the domain Ω,  in which we seek the 

solution variable u 

1

Ω.
q

m

m

φ


                               (2.1) 

The quadrangles do not overlap, that is, j kφ φ     for j k  .  Fig. 2.1(a) shows the usual interpolation 

function ( , )ih x y  which construct the partition of unity. Let iC  be the support domain of ih , i.e. ( ),i iC supp h  

1, , ,i n    which we call the cover region. Hence the cover region iC  corresponds to the union of elements 

attached to the node i, see Fig. 2.1(b).  

 

 

 
 
Figure 2.1 Description of sub-domain for enriched cover interpolations : (a) usual interpolation function, (b) cover 

region or elements affected by the interpolation cover, and, (c) an element. 

 

 

(a) (b) (c)
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i

j k

l



- 6 - 

For each mφ , let ( )ci m  be the set of cover indices defined by 

( ) { : }.m
c ii m i C φ      (2.2)

  

For the 4-node quadrilateral element, the overlapped region of the four cover regions iC  , jC  , kC   and lC  

constitutes element m and hence ( ) { , , , }ci m i j k l  , see Fig. 2.1(c). To enrich the standard finite element 

interpolation for the solution variable u, we use interpolation cover functions 

2 2[ ]d
i i i i i i i i iu u ξ η ξ ξ η η η  a   

with 
( )

,i
i

i

x x
ξ

χ


  

( )
,i

i
i

y y
η

χ


   (2.3) 

where iu  is the standard nodal point variable, 1 2[ ]i i ia aa   lists the additional degrees of freedom for the 

cover region, d is the order of the complete polynomial used, and iχ  is the diameter of the largest finite element 

sharing the node i. The use of iχ  can improve the conditioning of the coefficient matrix [34,37]. 

 

The enriched cover approximation of a field variable u is given by  

1 ( ) 1 ( ) ( )c c c

q q

i i i i i i
m i i m m i i m i i m

u hu hu
    

 
    

 
     H a  

with 2 2[ ].d
i i i i i i i i ih ξ η ξ ξ η η ηH                   (2.4) 

 

When i iu u  is used for Eq. (2.4), then the enriched cover approximation of a field variable reduces to the 

standard linear finite element interpolation. The enriched interpolation consists of the standard finite element 

interpolation and enriched higher order interpolation. This procedure can be derived in a variety of different ways 

[5-8,12,15]. 

 

In order to obtain some insight into the enrichment scheme described above, let us consider the enriched cover 

approximation of a field variable u in element 1 shown in Fig. 2.2 

{1,2,4,5}

1 2 3
{1,2,4,5}

[ ].

i i
i

i i i i i i i i
i

u h u

h u a ξ a η a ξ η







    








                           (2.5) 

 

The coefficients in Eq. (2.5) can be determined by differentiating interpolation cover functions in Eq. (2.3) at each 

node ( 0, 0i iξ η  ) with respect to the nodal coordinate variables as follows: 

( )
( 1)( 2)/2 1
0

( , ) (0,0) 0

1
{ }

! !

α β d
α β

j d d i
ij j α β

i i ξ η α β

u
a

α β ξ η

 


   


  

    
   


,                     (2.6) 

in which 0i ia u  , the subscript j refers to the set of coefficients used, α   and β   are integers such that 
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0 ,α β d   and for 0α   and 0β  , respectively, no derivative is taken. Substituting Eq. (2.6) into Eq. (2.5), 

the enriched cover approximation of a field variable u is given by 

2
2

0 2
{1,2,4,5} ( , ) (0,0) ( , ) (0,0) ( , ) (0,0)

1
.

2
i i i i i i

i i i
i i i i i

i i i iξ η ξ η ξ η

u u u
u h a ξ η ξ

ξ η ξ   

        
    


  

      (2.7) 

 

This enriched approximation in the quadrilateral element can be interpreted as a bilinear interpolation of four 

cover functions that are defined by Taylor polynomials expanded along each cover coordinate variable. This 

interpolation spans higher spatial bases than the standard finite element interpolation [34]. 

 

 

 

 

Figure 2.2. Finite element model consisting of four quadrilateral elements. 

 

 

2.1.2. The enriched 2D solid finite elements 

In this section, we present the geometry and displacement interpolations of 2D solid finite elements enriched by 

interpolation covers. The enriched displacement interpolation is based on the enriched cover approximation 

described in previous section. Then, the static equilibrium equation of the enriched finite elements in matrix form 

is presented. 

 

The geometry interpolation of the enriched 2D solid finite elements is identical to that of the corresponding 

standard finite element 

1

( , ) ( , )
n

i i
i

r s h r s


 x x  with [ ]T
i i ix yx ,                      (2.8) 

where n is the number of nodes in each element, ix   is the position vector of node i in the global Cartesian 

coordinate system shown in Fig. 2.3(a), and ( , )ih r s  are the shape functions of standard isoparametric procedure 
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corresponding to node i defined in the natural coordinate systems in Fig. 2.3(b). The linear shape functions of 

standard 3-node triangular elements are 

1( , ) (1 )h r s r s   , 2 ( , )h r s r , 3( , )h r s s .                  (2.9) 

The bilinear shape functions of the standard 4-node quadrilateral elements are 

1( , ) (1 )(1 ) / 4h r s r s   , 2 ( , ) (1 )(1 ) / 4h r s r s   , 

3 ( , ) (1 )(1 ) / 4h r s r s   , 4 ( , ) (1 )(1 ) / 4h r s r s   .                    (2.10) 

 

The 2D shape functions, ih  satisfy the partition of unity requirement, 
1

1
n

ii
h


 . Therefore, the displacement 

interpolation of the enriched 2D solid finite element is given by multiplying the shape functions by cover functions 

defined in the cover region iC  as follows [28,34,36,38]: 

1

( , ) ( , )
n

i i
i

r s h r s


u u  with [ ]T
i i iu vu   ,                       (2.11) 

in which iu  and iv  are cover functions corresponding to the displacements in the x- and y-directions, respectively, 

and the cover iC  is the union of elements attached to node i (see Fig. 2.1). 

 

 

 

 
Figure 2.3 Coordinate systems for a 3-node triangular and a 4-node quadrilateral elements: (a) Global Cartesian 

coordinate system ( , )x y  and nodal local coordinate systems ( , )i iξ η , and (b) Natural coordinate systems. 
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The cover functions are given by 

( ) u
i i iu  p x u , ( ) v

i i iv  p x u  in iC   (2.12) 

with 

2( ) [1 ]d
i i i i iξ η ξ ηp x  , 

( )i
i

i

x x
ξ

χ


 , 

( )
,i

i
i

y y
η

χ


  

21[ ]
du ξ η ξ η T

i i i i i iu u u u uu  , 
21[ ]

dv ξ η ξ η T
i i i i i iv v v v vu  ,  (2.13) 

in which ( )p x  is a polynomial basis vector for node i, d is the degree of polynomial bases, iχ  is the largest edge 

length of elements attached to node i, and 
u
iu  and 

v
iu  are the degrees of freedom (DOFs) vectors corresponding 

to polynomial bases for the displacements u and v, respectively.  

 

Substituting Eq. (2.12) into Eq. (2.11), the displacement interpolation of the enriched 2D solid finite element is 

obtained 

1 1

ˆˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )
n n

i i i i
i i

r s r s r s h r s r s
 

    u u u u H u   (2.14) 

with 

i
i

i

u

v

 
  
 

u , 
ˆ

ˆ
ˆ

u
i

i v
i

 
  
 

u
u

u
, 

ˆ ( , )ˆ ( , )
ˆ ( , )

i
i

i

r s
r s

r s

 
  
  

h 0
H

0 h
,   (2.15) 

in which iu  is the standard nodal displacement vector at node i in the global Cartesian coordinate system, and ˆ iu  

and ˆ ( , )i r sH  are the enriched DOFs vector and the corresponding interpolation matrix, respectively. 

 

For the linear cover functions used (i.e., 1d  ), the components of the interpolation matrix and the enriched DOFs 

vector become 

ˆ ( , ) ( , )[ ]i i i ir s h r s ξ ηh , ˆ ˆ ˆ[ ]u ξ η T
i i iu uu , ˆ ˆ ˆ[ ]v ξ η T

i i iv vu .            (2.16) 

 

When the quadratic cover functions are used ( 2d  ), the following components and vector are employed 

2 2ˆ ( , ) ( , )[ ]i i i i i i i ir s h r s ξ η ξ ξ η ηh ,  

2 2

ˆ ˆ ˆ ˆ ˆ ˆ[ ]u ξ η ξ ξη η T
i i i i i iu u u u uu , 

2 2

ˆ ˆ ˆ ˆ ˆ ˆ[ ]v ξ η ξ ξη η T
i i i i i iv v v v vu .          (2.17) 

 

The principle of virtual work for linear elastic solid mechanics [1] is 

f

f

S TT T B S

V V S

δ dV δ dV δ   ε τ u f u f ,  (2.18) 

where ε  is the strain vector, τ  is the stress vector, Bf  and fSf  are the body force vector and surface traction 

vector, respectively, and the δ  denotes a virtual quantity. The displacement vector in Eq. (2.14) can be written in 

matrix form for an element m as follows: 

( ) ( ) ( )m m mu H u ,                           (2.19) 
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where ( )mH  is the interpolation matrix corresponding to the nodal DOFs vector ( )mu , and the nodal DOFs vector 

( )mu  includes iu  and ˆ
iu . Using the displacement-strain relation, the strain vector and the stress vector for an 

element m  is obtained by [34] 

( ) ( ) ( )m m mε B u ,                           (2.20) 

( ) ( ) ( ) ( )m m m m τ Cε CB u ,                           (2.21) 

in which ( )mB  is the displacement-strain relation matrix and C is the material law matrix. 

 

Substituting Eqs. (2.19), (2.20) and (2.21) into the principle of virtual work in Eq. (2.18), the following matrix 

equation (static equilibrium equation) is obtained 

B S  KU R R R ,      (2.22) 

with 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 m

e e
m T m m m T m T m m

m m V

dV
 

   K L K L L B C B L  

( )

( ) ( ) ( ) ( )

1 1 m

e e
m T m m T m T B

B B
m m V

dV
 

   R L R L H f , 

( )

( ) ( ) ( ) ( )

1 1 m
f

e e
m T m m T m T S

S S
m m S

dV
 

   R L R L H f ,      (2.23) 

where K  and R  are the global stiffness matrix and load vector, U is the vector of the nodal DOFs of the entire 

finite element model, ( )mL  is the assemblage Boolean matrix for element m, e is the number of elements used, 

and summation signs denote the assembly procedure [1-3]. 

 

Note that the enriched displacement interpolation consists of the standard finite element interpolation u  and the 

additional enriched higher order interpolation û  . This polynomial enrichment scheme produces convergence 

behavior similar to the p-version of the finite element method. In addition, cover functions of the different 

polynomial degrees can be applied to each node. 

 

When both the partition of unity functions and cover functions are composed of polynomial bases, the linear 

dependence (LD) problem occurs in some mesh topologies and leads to singular global stiffness matrices. To 

alleviate the LD problem, we enforce not only i u 0 , but also ˆ
i u 0  when imposing the essential boundary 

condition at nodes [34,36,48]. When a finite element model consists of 3-node triangular elements, such treatment 

derives a well-conditioned stiffness matrix irrespective of mesh topology. However, if a finite element model 

consists only of 4-node quadrilateral elements or contains 4-node quadrilateral elements, the rank deficiency could 

appear in the global stiffness matrix depending on the mesh topology. 
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2.2. Piecewise linear shape functions for 4-node quadrilateral element 

 

In order to resolve the LD problem of the enriched 4-node element formulated in the previous section, we here 

derive new shape functions ˆ
ih  satisfying the following requirements: 

 

 Kronecker delta property: ˆ ( , )i ijh r s δ  at node j   with , 1, 2,3, 4i j  , 

( 1ijδ   if i j  and 0, otherwise), see Fig. 2.2. 

 Partition of unity: 
4

1
ˆ ( , ) 1ii
h r s


  

 Compatibility: linear variation along edges of the element 

 Completeness: displacement interpolations able to represent rigid body modes and constant strain states. 

 

Satisfying the Kronecker delta property and the partition of unity, boundary conditions can easily be imposed as 

mentioned in Section 2.1 [1,34,36,48], and the shape functions can be used as the partition of unity functions 

[38,39]. Compatibility and completeness are required for monotonic convergence [1-3]. 

 

The key idea to avoiding the LD problem is to employ piecewise linear shape functions. This idea comes from the 

fact that enriched 3-node triangular elements with linear shape functions do not suffer from the LD problem. 

 

The bilinear shape function of the standard 4-node elements for node i in Eq. (2.7) has the following form 

( , )i i i i ih r s a b r c s d rs                      (2.24) 

with four coefficients ia , ib , ic , and id  determined to satisfy the Kronecker delta property.  

 

 

 

 

Figure 2.4. Triangular subdivision of the 4-node quadrilateral element. 

 

 

Let us define the center point corresponding to 0r s  . Then, the quadrilateral domain can be divided into four 

4

12

3

T2

T3 center point

r

s

T1

T4
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triangular sub-domains as shown in Fig. 2.4. Note that at the center point, the bilinear shape function gives the 

value of 0.25. 

 

In each triangular sub-domain, the linear interpolation for node i can be given as 

ˆ ˆˆ ˆ( , )i i i ih r s a b r c s   ,                  (2.25) 

where three coefficients îa , ˆ
ib , and îc  are determined to satisfy the Kronecker delta property. Note that, unlike 

the bilinear shape functions in Eq. (2.10), the bilinear term ( r s ) is not included. 

 

For example, the coefficients for the linear shape function 1ĥ  for node 1 on the sub-domain T1 is determined with 

the following three conditions 

1
ˆ (1,1) 1h  , 1

ˆ ( 1,1) 0h   , 1
ˆ (0,0) 0.25h  ,              (2.26) 

and the resulting shape function is 

1
ˆ (1 2 ) / 4h r s    on T1.  (2.27) 

The linear shape function 2ĥ  for node 2 on the sub-domain T1 should satisfy the following three conditions 

2
ˆ (1,1) 0h  , 1

ˆ ( 1,1) 1h   , 1
ˆ (0,0) 0.25h  ,          (2.28) 

and the resulting shape function is 

2
ˆ (1 2 ) / 4h r s    on T1.   (2.29) 

 

Similarly, the linear shape functions are obtained in all the triangular sub-domains 

1
ˆ (1 2 ) / 4h r s   , 2

ˆ (1 2 ) / 4h r s   , 3
ˆ (1 ) / 4h s  , 4

ˆ (1 ) / 4h s    on T1, 

1
ˆ (1 ) / 4h r  , 2

ˆ (1 2 ) / 4h r s   , 3
ˆ (1 2 ) / 4h r s   , 4

ˆ (1 ) / 4h r    on T2, 

1
ˆ (1 ) / 4h s  , 2

ˆ (1 ) / 4h s  , 3
ˆ (1 2 ) / 4h r s   , 4

ˆ (1 2 ) / 4h r s     on T3, 

1
ˆ (1 2 ) / 4h r s   , 2

ˆ (1 ) / 4h r  , 3
ˆ (1 ) / 4h r  , 4

ˆ (1 2 ) / 4h r s     on T4.   (2.30) 

 

These piecewise linear shape functions satisfy all the requirements previously mentioned and also the element 

isotropy, that is, the element behavior does not depend on the sequence of node numbering [53]. The piecewise 

linear shape functions provide linear variation along edges of the element, shown in Fig. 2.5(c), like the linear and 

bilinear shape functions that are used for standard 3- and 4-node finite elements, respectively. Therefore, inter-

elemental compatibility is satisfied with the standard elements. 

 

Substituting the bilinear shape functions in Eq. (2.10) with the piecewise linear shape functions in Eq. (2.30), a 

new enriched 4-node finite element is simply constructed. When using the piecewise linear shape functions for 

geometry and displacement interpolations, the linear dependence (LD) problem is resolved. Analytical and 

numerical studies on this issue will be presented in Section 2.3. 
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Figure 2.5. Interpolation functions of 4-node quadrilateral elements on the cover region iC : (a) Cover region 

(shaded) corresponding to node i, (b) and (c) Interpolation functions constructed by the bilinear and piecewise 

linear shape functions, respectively, on the cover region. 

 

 

To evaluate the element stiffness matrix and load vector, the Gauss integration is separately adopted for each 

triangular sub-domain in an element, because 1C  continuity is only satisfied in each triangular sub-domain, not 

between sub-domains. The triangular Gaussian integrations of degree 2 (3-point integration) and 4 (6-point 

integration) are adopted in each triangular sub-domain as shown in Fig. 2.6 to evaluate element stiffness matrices 

with linear and quadratic cover functions, respectively [54]. 

 

The piecewise linear shape functions are similar to the combination of shape functions of four triangular elements 

in a quadrilateral domain. However, when one quadrilateral element is replaced by four triangular elements, an 

additional node is necessary at the center of the quadrilateral element. The total degrees of freedom in a whole 

finite element model increases by almost twice. Of course, one quadrilateral element may be replaced by two 

triangular elements. In this case, the solution depends on the direction of the element and thus element isotropy is 

not satisfied. On the other hand, the new enriched element does not require any additional node and maintains the 

isotropy. 
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Figure 2.6. Gauss integration points used for the new enriched element with (a) Linear and (b) Quadratic covers. 
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2.3. Investigation of the linear dependence problem 

 

We investigate the linear dependence (LD) problem of the new enriched 4-node element proposed in this thesis. 

We analytically identify whether the new enriched interpolation functions of a square element are linearly 

independent. Then the rank deficiency (RD) of the global stiffness matrix due to the LD problem is numerically 

evaluated by counting the number of zero eigenvalues in various finite element mesh topologies. 

 

Two enriched 4-node quadrilateral elements are considered: the previous enriched element using the bilinear shape 

functions and the new enriched element using the piecewise linear shape functions. For comparison, the enriched 

3-node triangular element is also considered. 

 

For a single square element shown in Fig. 2.7, it is easy to find the analytical expressions for the enriched 

displacement interpolation. The essential boundary conditions are enforced for both iu  (standard DOFs) and ˆ iu  

(enriched DOFs) at nodes. When the previous element is enriched by the linear cover function for the single square 

element, the enriched displacement interpolations u and v are given by 

1 1 1

2 2 2

4

ˆ ˆ(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )(1 )

ˆ ˆ(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )(1 )

(1 )(1 )

ξ η

ξ η

u α r s u β r r s u β r s s u

α r s u β r r s u β r s s u

α r s u

          

          

  

,                 (2.31) 

1 1 1

2 2 2

ˆ ˆ(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )(1 )

ˆ ˆ(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )(1 )

ξ η

ξ η

v α r s v β r r s v β r s s v

α r s v β r r s v β r s s v

          

          
,            (2.32) 

where 0.25α   , 0.125β    and the underlined functions corresponding to DOFs 1̂
ξu  , 2ˆ

ξu   and 1̂
ξv  , 2ˆ

ξv   are 

identical each other; that is, the functions are linearly dependent [34].  

 

 

 
 

Figure 2.7. A single square element for the investigation of the linear dependence (LD) problem. 
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On the contrary, with the new enriched element, we obtain the linearly independent displacement interpolation u 

on each sub-domain as follows: 

1 1 1

2 2 2 4

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 ) (1 )

ξ η

ξ η

u α r s u β r s r u β r s s u

α r s u β r s r u β r s s u α s u

          

            
 on T1, 

1 1 1

2 2 2 4

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 ) (1 )

ξ η

ξ η

u α r u β r r u β r s u

α r s u β r s r u β r s s u α r u

       

            
 on T2, 

1 1 1

2 2 2 4

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 ) (1 2 )

ξ η

ξ η

u α s u β s r u β s s u

α s u β s r u β s s u α r s u

       

          
 on T3, 

1 1 1

2 2 2 4

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 ) (1 2 )

ξ η

ξ η

u α r s u β r s r u β r s s u

α r u β r r u β r s u α r s u

          

          
 on T4.   (2.33) 

The enriched displacement interpolation v of the new enriched element is also linear independent as follows: 

1 1 1

2 2 2

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ξ η

ξ η

v α r s v β r s r v β r s s v

α r s v β r s r v β r s s v

          

          
 on T1, 

1 1 1

2 2 2

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ξ η

ξ η

v α r v β r r v β r s v

α r s v β r s r v β r s s v

       

          
 on T2, 

1 1 1

2 2 2

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ξ η

ξ η

v α s v β s r v β s s v

α s v β s r v β s s v

       

       
 on T3, 

1 1 1

2 2 2

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ξ η

ξ η

v α r s v β r s r v β r s s v

α r v β r r v β r s v

          

       
 on T4.   (2.34) 

 

We then consider plane stress problems modeled using various quadrilateral and triangular mesh patterns in Figs. 

2.8 and 2.9. Two boundary condition cases described in Table. 2.1 are considered. In the boundary condition case 

(i), regardless of the mesh topology and the shape functions used, the enriched 2D solid finite elements yield the 

RD including the three rigid body modes and numerical results are given in the Tables 2.2 and 2.4. Except for 

zero eigenvalues corresponding to the three rigid body modes, the RD is calculated due to the LD of the additional 

DOFs.  

 

 

Table 2.1. The boundary condition cases for the meshes shown in the Figs. 2.8, 2.9, and 2.10. 

 Boundary conditions 

Case Node m Node n 

(i) - - 

(ii) 0mu  , 0mv  , ˆ m u 0  0nv  , ˆ m u 0  
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The analytical prediction of the RD for square and regular (right-angled triangle) meshes due to the LD was given 

by An [46] as follows: 

RD( ) ( 2)d d d   for right-angled triangle meshes, (2.35) 

2RD( ) ( )(( 1)(4 ) / 2 1) ( 1) 1d N E d d d         for square meshes, (2.36) 

where N, E are the numbers of nodes and elements, respectively, d is the degree of cover functions. Note that 

analytical prediction in Eqs. (2.35) and (2.36) are for one variable. Considering that the stiffness matrices used to 

calculated RD in Tables 2. 2 and 2.4 take into account two variables (u,v) and include three rigid body modes, the 

numerical results are in good agreement with the analytical predictions. 

 

Table 2.3 shows the calculated rank deficiencies (RD) for various quadrilateral meshes shown in Fig. 8 when the 

boundary condition case (ii) is applied. When the previous enriched 4-node element is used in square and 

trapezoidal meshes (i.e., meshes with parallel edges), the RD increases as the number of element layers, or the 

degree of the cover functions, increases [46,48]. On the other hand, when the new enriched element is used with 

the boundary condition case (ii), the RD is not observed regardless of mesh patterns, the degree of the cover 

functions, or the number of element layers. Table 2.5 shows that the enriched 3-node triangular element does not 

exhibit the RD [34,36,48]. 

 

The new enriched 4-node element is compatibly usable with the enriched 3-node element to construct a finite 

element model. Quadrilateral and triangular mixed mesh patterns in Fig. 2.10 are also considered. The LD problem 

does not occur when the new enriched 4-node element is used with the enriched 3-node elements in the mixed 

mesh patterns, see Table 2.6. As in the meshes in Figs. 2.8 and 2.10, no rank deficiency is observed in the meshes 

used in the following sections, when using the new enriched element with the boundary condition case (ii). 
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Figure 2.8. Quadrilateral meshes for the investigation of the LD problem: (a) Square meshes, (b) Trapezoidal 

meshes, and (c) Distorted meshes. 

 

 

 
 

Figure 2.9. Triangular meshes for the investigation of the LD problem: (a) Regular and (b) Distorted meshes. 
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Table 2.2. Rank deficiency (RD) of the global stiffness matrices when the enriched 4-node finite elements are 

used with the meshes shown in Fig. 2.8 (d: degree of cover functions). The boundary condition case (i) is applied. 

Element Number of 
element layers 
 

 RD / Total DOFs 

  Square mesh Trapezoidal mesh  Distorted mesh 

   d = 1 d = 2 d = 1 d = 2  d = 1 d = 2 

Previous 1  11/24 25/48 11/24 25/48  9/24 19/48 

 2  15/54 37/108 15/54 37/108  9/54 19/108 

 4  23/150 61/300 23/150 61/300  9/150 19/300 

 8  39/486 109/972 39/486 109/972  9/486 19/972 

New 
 
 

1  9/24 19/48 9/24 19/48  9/24 19/48 

2  9/54 19/108 9/54 19/108  9/54 19/108 

 4  9/150 19/300 9/150 19/300  9/150 19/300 

 8  9/486 19/972 9/486 19/972  9/486 19/972 

 

 

Table 2.3. Rank deficiency (RD) of the global stiffness matrices when the enriched 4-node finite elements are 

used with the meshes shown in Fig. 2.8 (d: degree of cover functions). The boundary condition case (ii) is applied. 

Element Number of 
element layers 
 

 RD / Total DOFs 

  Square mesh Trapezoidal mesh  Distorted mesh 

   d = 1 d = 2 d = 1 d = 2  d = 1 d = 2 

Previous 1  2/13 6/25 2/13 6/25  0/13 0/25 

 2  6/43 18/85 6/43 18/85  0/43 0/85 

 4  14/139 42/277 14/139 42/277  0/139 0/277 

 8  30/475 90/949 30/475 90/949  0/475 0/949 

New 
 
 

1  0/13 0/25 0/13 0/25  0/13 0/25 

2  0/43 0/85 0/43 0/85  0/43 0/85 

 4  0/139 0/277 0/139 0/277  0/139 0/277 

 8  0/475 0/949 0/475 0/949  0/475 0/949 
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Table 2.4. Rank deficiency (RD) of the global stiffness matrices when the enriched 3-node elements are used with 

the meshes shown in Fig. 2.9 (d: degree of cover functions). The boundary condition case (i) is applied. 

Number of 
element  
layers 

 

 RD / Total DOFs 

 Regular mesh Distorted mesh 

 d = 1 d = 2 d = 1 d = 2 

1  9/18 19/36 9/18 19/36 

2  9/24 19/48 9/24 19/48 

4  9/54 19/108 9/54 19/108 

8  9/150 19/300 9/150 19/300 

 

 

Table 2.5. Rank deficiency (RD) of the global stiffness matrices when the enriched 3-node elements are used with 

the meshes shown in Fig. 2.9 (d: degree of cover functions). The boundary condition case (ii) is applied. 

Number of 
element  
layers 

 

 RD / Total DOFs 

 Regular mesh Distorted mesh 

 d = 1 d = 2 d = 1 d = 2 

1  0/13 0/25 0/13 0/25 

2  0/43 0/85 0/43 0/85 

4  0/139 0/277 0/139 0/277 

8  0/475 0/949 0/475 0/949 
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Figure 2.10. Mixed mesh patterns for the investigation of the LD problem. 

 

 

Table 2.6. Rank deficiency (RD) of the global stiffness matrices when the new enriched 4-node and the enriched 

3-node elements are used together with the meshes shown in Fig. 2.10 (d: degree of cover functions). The 

boundary condition case (ii) is applied. 

Number of 
element layers 
 

RD / Total DOFs 

Mesh (a) Mesh (b) Mesh (c) 

 d = 1 d = 2 d = 1 d = 2 d = 1 d = 2 

2 0/43 0/85 0/43 0/85 0/43 0/85 

4 0/139 0/277 0/139 0/277 0/139 0/277 
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2.4. Numerical examples 

 

The new enriched element passes the isotropy, zero energy mode, and patch tests considering three constant stress 

states ( xxτ , xyτ , yyτ ) for arbitrary enrichment, see Fig. 2.11 [1,36]. In all the tests, the enriched DOFs ˆ
iu  are 

suppressed at two boundary nodes (nodes 3 and 4) in Fig. 2.11 [48]. 

 

 

 
 

Figure 2.11. Finite element models for isotropy, zero energy mode and patch tests: (a) Single element for isotropy 

and zero energy mode tests and (b) Mesh for patch tests. 

 

 

In the following sections, we investigate the performance and effectiveness of the new enriched 4-node element. 

Convergence is explored using the ad hoc and tool jig problems. The slender beam problem is considered with 

three different meshes. We illustrate the adaptive use of cover functions in the automotive wheel problem. The 

essential boundary conditions are imposed as mentioned in Sections 2.2 and 2.3, and the nodal loads corresponding 

not only to the standard DOFs but also to the enriched DOFs are considered. In addition, through free vibration 

analysis of a cantilever beam problem, we show that the new enriched element is suitable not only for static 

analysis but also for dynamic analysis. 

 

In the ad hoc problem, the convergence study is performed using the s-norm defined as follows [32] 

2 T
h s

dV
Ω

Δ Δ  u u ε τ  with hΔ  ε ε ε , hΔ  τ τ τ ,   (2.37) 

where u  is the exact solution, and hu  is the solution obtained using the finite element discretization. The s-

norm is suitable for identifying whether the finite element formulation satisfies the consistency and inf-sup 

conditions [55-58]. When the exact solution is not available, a fine mesh reference solution can be used. 

 

For the relative error hE , the theoretical convergence behavior can be estimated to be 

2

2

h ks
h

s

E ch


 
u u

u
,                                                       (2.38) 
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in which h indicates the element size and c is a constant. If an element is uniformly optimal, the k represents the 

optimal order of convergence: k  2, 4, and 6 for linear, quadratic and cubic elements.  

 

2.4.1. Ad hoc problem 

Considering the ad hoc plane stress problem shown in Fig. 2.12 [1,36], we investigate the convergence behavior 

with regular and distorted meshes. 

 

 

 

 

Figure 2.12. Ad hoc problem: (a) Problem domain, 7 21.0 10 /E N m  , 0.3ν  , (b) Mesh distortion types, (c) 

Regular quadrilateral and triangular meshes when 4N  , and (d) Quadrilateral and triangular meshes of the 

distortion type 2 when 8N   ( N : the number of element layers along an edge). 

 

 

The following body forces that satisfy equilibrium equations are applied in the problem domain 

xyB xx
x

ττ
f

x y

 
   

  
, yy yxB

y

τ τ
f

y x

  
   

  
,             (2.39) 

in which the stress components are obtained from the in-plane displacements given by 

2 2 2 2(1 ) (1 ) cosmyu x y e mx   , 2 2 2 2(1 ) (1 ) sinmyv x y e mx    with 5m  (2.40) 

and material constants: Young’s modulus 7 21.0 10 /E N m   and Poisson’s ratio 0.3ν  . The body forces are 

applied to the finite element model through the load vector in Eq. (2.23) and the fixed boundary condition 

( 0u v  ) is imposed along the line 1y   . 

 

We consider three quadratic elements (QUAD9, QUAD4-d1, TRI3-d1): 

 QUAD9: standard 9-node quadrilateral element, 
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 QUAD4-d1: new 4-node quadrilateral element enriched by linear covers, 

 TRI3-d1: 3-node triangular element enriched by linear covers, 

and three cubic elements (QUAD16, QUAD4-d2, TRI3-d2): 

 QUAD16: standard 16-node quadrilateral element, 

 QUAD4-d2: new 4-node quadrilateral element enriched by quadratic covers, 

 TRI3-d2: 3-node triangular element enriched by quadratic covers. 

Note that the order of the displacement interpolations of the enriched elements with linear and quadratic covers 

are quadratic and cubic, respectively. Therefore, the optimal order of convergence of the enriched elements with 

linear covers (QUAD4-d1, TRI3-d1) is the same as the standard quadratic element (QUAD9). The optimal order 

of convergence of the three cubic elements (QUAD4-d2, TRID-d2, QUAD16) is the same and is 6. 
 

Fig. 2.12(c) shows the regular quadrilateral and triangular meshes used for the convergence studies when 4N  . 

We also consider the three different types (Types 1,2,3) of distorted meshes. Each square domain in Fig. 2.12(b) 

is subdivided into four quadrilateral subdomains by the lines AA and BB; then the edges of each quadrangle are 

subdivided into equal lengths to form the meshes. The distorted quadrilateral and triangular meshes of type 2 

when 8N   are shown in Fig. 2.12(d). 

 

Figs. 2.12 and 2.13 show the convergence curves of the quadratic and cubic elements for the ad hoc problem. All 

2D solid elements present similarly good convergence behaviors in regular and distorted meshes. Note that the 

convergence behavior of the new enriched 4-node element is better and less affected by mesh distortion than that 

of the enriched 3-node element. 
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Figure 2.13. Convergence curves of the quadratic elements for the ad hoc problem with the meshes shown in Fig. 

2.12: The bold line represents the optimal convergence rate, which is 4.0 for quadratic elements. 

 

 
 

Figure 2.14. Convergence curves of the cubic elements for the ad hoc problem with the meshes shown in Fig. 

2.12: The bold line represents the optimal convergence rate, which is 6.0 for cubic elements. 
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2.4.2. Tool jig problem 

A tool jig is subjected to a constant pressure on its top surface (line AB) and the fixed boundary condition is 

applied along the line AC as shown in Fig. 2.15(a) [59]. The standard 4-node element (QUAD4), the new enriched 

4-node elements (QUAD4-d1 and QUAD4-d2), and the 4-node incompatible mode element 

(QUAD4+incompatible) in ADINA are considered with four different meshes, see Fig. 2.15(c) [60-63]. The 

reference solution is calculated using a fine mesh of 12,800 standard 9-node quadrilateral elements (QUAD9) 

leading to 103,518 DOFs, and the maximum stress occurs at point P. 

 

As seen in Fig. 2.16, the new enriched element with the course mesh (1,866 DOFs, i.e., only about 22% of the 

DOFs of the standard element with fine-1 mesh) predicts the von Mises stress (effective stress) at the point P more 

accurately than does the standard element using the fine-1 mesh (8,638 DOFs). Fig. 2.17 shows the calculated y-

displacement (v) and the von Mises stress (averaged at the nodes) along the line AB, when similar DOFs are used 

for finite element models of QUAD4 and QUAD4-d1. It is observed that QUAD4-d1 provides better solution 

accuracy compared to QUAD4. 

 

The new enriched elements, QUAD4-d1 and -d2, are additionally compared with the 4-node incompatible mode 

element (QUAD4+incompatible) in ADINA. In Fig. 2.18, the calculated y-displacement (v) and the von Mises 

stress (averaged at the nodes) along the line AB are given when the coarse, medium, and fine-1 meshes are used. 

In all the cases, the results of the new enriched elements (QUAD4-d1 and -d2) and the 4-node incompatible mode 

element (QUAD4+incompatible) converge well to the reference value, and all three elements provide better 

solutions than the standard element (QUAD4) does. 
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Figure 2.15. The tool jig, material properties: 11 22.0 10 /E N m  , 0.3ν  : (a) Problem description, (b) von 

Mises stress ( vτ ) distribution of the reference solution, and (c) Coarse, medium, fine-1, and fine-2 meshes used. 

 

 

 
 

Figure 2.16. von Mises stress distributions for the tool jig problem: The von Mises stress and its error at point P 

are presented for each solution. (DOFs = the number of degrees of freedom used, Error
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, , ,/ 100v ref v h v refτ τ τ   %, 2
, 13,193 /v refτ N m ). 

 

 

 
 

Figure 2.17. Comparison of results for the tool jig problem along the line AB when the standard 4-node element 

(QUAD4) and the new enriched element with linear covers (QUAD4-d1) are used for (a) medium and coarse 

meshes, respectively, and for (b) fine-2 and fine-1 meshes, respectively. 
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Figure 2.18. Comparison of numerical results for the tool jig problem along the line AB using: (a) Coarse mesh, 

(b) Medium mesh, and (c) Fine-1 mesh. 
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shear force and a moment at the free tip), see Fig. 2.19. The beam has length 6L m  and width 0.2W m . Its 

material properties are Young’s modulus 7 21.0 10 /E N m    and Poisson’s ratio 0.3v   . The reference 

solutions of the y-displacement at point P are 0.1081  and 0.0054  for the shear force and moment load cases, 

respectively [64]. 

 

The finite element models are constructed using the standard 4-node element (QUAD4), the 4-node incompatible 

mode element (QUAD4+incompatible), and the new enriched 4-node element with linear and quadratic covers 

(QUAD4-d1 and -d2) for three different meshes, shown in Fig. 2.19. Tables 2.7 and 2.8 show the normalized y-

displacements at the point P for shear force and moment load cases, respectively. Numerical results of the standard 

4-node element and the 4-node incompatible mode element are affected by mesh distortion, while the new 

enriched 4-node elements show highly accurate solutions regardless of the mesh used. 

 

 

 
 

Figure 2.19. Slender beam under two load cases: shear force ( F 1 N ) and moment ( M 0.2 N m  ) at the free 

tip. 

 

 

Table 2.7. Normalized y-displacement (v) at the point P for the slender beam subjected to shear force ( F 1 N ) at 

the free tip. The meshes (a-c) are shown in Fig. 2.19 ( 0.1081refv m  ). 
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Mesh (a) 0.0933 0.9929 0.9821 0.9946 
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Table 2.8. Normalized y-displacement (v) at the point P for the slender beam subjected to moment ( M 0.2 N m  ) 

at the free tip. The meshes (a-c) are shown in Fig. 2.19 ( 0.0054refv m  ). 

 

Standard 

4-node element 

(QUAD4) 

4-node incompatible mode 

element 

(QUAD4+incompatible) 

The new enriched elements 

Linear covers 

(QUAD4-d1) 

Quadratic covers 

(QUAD4-d2) 

Mesh (a) 0.0933 1.0000 0.9916 0.9965 

Mesh (b) 0.0308 0.7250 0.9919 0.9966 

Mesh (c) 0.0223 0.0472 0.9920 0.9966 

 

 

2.4.4. Automotive wheel problem 

We here illustrate the adaptive use of cover functions, an advantage of the enriched finite elements [19,20,60]. It 

is very effective to apply cover functions to nodes in the area where high stress gradients are observed. Numerical 

results obtained employing the enriched elements with quadratic covers (QUAD4-d2) and the adaptive use of 

no/linear/quadratic covers, are compared with results of the standard element (QUAD4) and the 4-node 

incompatible mode element (QUAD4+incompatible) in ADINA [38-40]. 

 

Consider an automotive wheel with a radius of 0.2 m, in which a lower part of the outer circle is subjected to a 

pressure load and the inner circle is fixed, as shown in Fig. 19(a). The 2D wheel structure is modeled using 3-

node triangular and 4-node quadrilateral elements. Two different meshes are considered: coarse mesh (360 

quadrilateral and 546 triangular elements, in total 906 elements) and fine mesh (2,289 quadrilateral and 198 

triangular elements, in total 2,487 elements), see Figs. 2.20(b) and (c). 

 

 

We perform the following six different cases of finite element analyses: 

 (Case 1) No cover enrichment is adopted in the coarse mesh. That is, the standard 3- and 4-node finite 

elements (TRI3 and QUAD4) are used. 

 (Case 2) In the fine mesh, the standard elements (TRI3 and QUAD4) are used without cover functions. 

 (Case 3) The 4-node incompatible mode elements are adopted in the fine mesh and no cover enrichment 

is applied (QUAD4+incompatible). 

 (Case 4) Quadratic covers are applied at entire nodes in the coarse mesh. 

 (Case 5) No, linear and quadratic covers are adaptively used, see Fig. 2.20(d). 

 (Case 6) As shown in Fig. 2.20(e), linear and quadratic covers are adaptively used. 

 

The fine mesh is used only for Cases 2 and 3, and the coarse mesh is applied in all other cases. In Case 2, the 

standard 3- and 4-node elements are used for elements without cover enrichment. The 4-node incompatible mode 

elements and the standard 3-node elements are used for the fine mesh in Case 3. The adaptive use of cover 

functions in Cases 5 and 6 is determined by investigating the stress solutions obtained using the standard finite 
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elements in Case 1. Higher order covers are chosen for nodes where relatively higher von Mises stresses are 

predicted. The reference solutions are calculated using a mesh of standard 9-node quadratic finite elements, in 

which 9,058 elements and 74,414 DOFs are used. 

 

 

 
 

Figure 2.20. The Automotive wheel problem: (a) Problem description, 11 22.0 10 /E N m  , 0.3ν  , (b) and (c) 

Coarse and fine meshes, (d) No, linear, and quadratic covers adaptively used in Case 5, and (e) Linear and 

quadratic covers adaptively applied in Case 6. 

 

 

We compare the strain energy and the von Mises stress (effective stress) at point P, shown in Fig. 2.20(a). Fig. 

2.21(a) presents the distribution of the von Mises stress obtained from the reference solution. The number of DOFs 

used and errors in the results are summarized in Table 2.9. The von Mises stress fields obtained from Cases 1, 2, 

and 6 are presented in Fig. 21(b).  

 

The solution accuracy is improved by using finer mesh or by applying the cover functions and the 4-node 

incompatible mode element. Comparing Cases 2, 3, and 5 using similar DOFs, it can be clearly observed that the 

adaptive use of the cover function is very effective in accurately predicting strain energy and von Mises stress. 
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Figure 2.21. von Mises stress distributions for the automotive wheel problem: (a) Reference solution obtained by 

using 9,058 standard 9-node quadratic elements, (b) von Mises stress distributions calculated in analysis Cases 1, 

2, and 6. (DOFs = the number of degrees of freedom used, Error
, , ,/ 100v ref v h v refτ τ τ   %). 
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Table 2.9. Relative errors in von Mises stresses at point P and strain energies for the automotive wheel problem 

shown in Fig. 2.20(a). Relative error (%) in von Mises stresses, 
, , ,/ 100vτ

h v ref v h v refE τ τ τ   . Relative error (%) 

in strain energies, / 100e
h ref h refE e e e   . 

 Standard linear element Enriched element (coarse mesh) 

 
 

Coarse mesh Fine mesh 
 

Quadratic 
covers 

Adaptive use of  
interpolation covers 

 

Standard 
4-node 
element 
 

4-node 
incompatible 
mode 
element 

No/linear/ 
quadratic 
covers 

Linear/ 
quadratic 
overs 

Analysis Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

DOFs 1,532 5,268 5,268 9,192 5,148 6,420 

Relative error in 

von Mises stress  
19.59% 3.75% 1.76% 0.08% 0.66% 0.44% 

Relative error in 

strain energy  
9.04% 2.66% 1.54% 0.99% 1.33% 1.02% 

Reference 
refv , = 710384.1  2/ mN , 

refe = 110970.6  mN   

 

 

2.4.5. Cantilever beam with fillets 

A cantilever beam problem subjected to the line load is solved, see Fig. 2.22(a). In this example, quadrilateral and 

triangular elements are used together and different interpolation covers are applied over the domain considered. 

The mixed mesh pattern composed of 114 quadrilateral meshes and 168 triangular meshes and the von Mises 

stress contour of the reference solution using 1970 standard 9-node quadrilateral elements are shown in in the Fig. 

2.22, where the high stress gradients in the fillets can be seen. 

 

Fig. 2.22(c) and (d) show two available cases that different interpolation covers are applied and these cases are 

referred to as Case 1 and 2, respectively. Note that the choices of interpolation cover are determined based on the 

results of standard elements. In addition, the cases where the linear and quadratic interpolation covers are applied 

to all nodes are also considered, and these results are summarized in the Table 2.10. 

 

As expected, the accuracy of the solution increased with increasing the order of the interpolation cover. In 

particular, applying different interpolation covers, the strain energy is well predicted with a much smaller number 

of degrees of freedom. 

 



- 35 - 

 
 

Figure 2.22. The cantilever beam with large fillet radius: (a) problem description, material properties  

6 27.2 10 /E N m  , 0.3ν  , (b) von Mises stress field of the reference solution, (c) analysis Case 1, and (d) 

analysis Case 2.  

 

 

Table 2.10. Relative errors in strain energy in the cantilever beam with large fillets problem for the six cases. 

Relative error  (%) / 100ref h refE E E   . 

 Standard element Enriched element 

 9-node 
(reference) 

3-node & 
4-node 

Linear 
covers 

Quadratic 
covers 

Mixed covers 

 Case 1 Case 2 

DOFs 16204 468 1404 2808 1086 1842 

Relative 
error (%) 

0.00 12.97 0.60 0.56 2.47 0.58 

 

 

2.4.6. Wrench problem 

The wrench problem shown in Fig. 2.23(a) is solved. Wrench is subjected to a uniform pressure load on line AA. 

We first perform the linear static analysis using 143 4-node standard finite elements, and then we selectively enrich 

nodes that are in high stress gradient area as shown in Fig. 2.23(b). The number of degrees of freedom in each 

case are 360 and 666. Calculated effective stress along line BB are presented in Fig. 2.24. By applying enrichment 

functions adaptively, the accuracy of solution is improved effectively. 
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Figure 2.23. Wrench problem: (a) problem description and (b) mesh used ( 7 21.0 10 /E N m   and 0.3ν  ). 

 

 

 

 

Figure 2.24. Effective stress ( 2/N m ) distribution along line BB shown in Fig. 2.23(a). 

 

 

2.4.5. Thick-walled cylinder problem 

A thick-walled cylinder subjected to a internal pressure is under plane strain condition, see Fig. 2.25. Due to 

symmetry, only a one-quarter model is considered and the inner and outer radius (R1 and R2) are 3 and 9, 

respectively. When the Poisson’s ratio 0.45, 0.49, 0.499v  , the corresponding radial displacement at r = R1 are 

3 3 34.9481 10 , 5.0399 10 , 5.0602 10      , respectively. The corresponding strain energy are 21.1659 10 ,

2 21.1875 10 , 1.1923 10   , respectively [65]. 
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(QUAD4-d1 and QUAD4-d2) are considered with mesh shown in Fig. 2.25. The normalized radial displacement 

at r = R1 and the normalized strain energy are summarized in Tables 2.10 and 2.11, respectively. It is shown that 

the volumetric locking can be avoided by using the new enriched elements  

 

 

Figure 2.25. Thick-walled cylinder problem (R1=3.0. R2=9.0, thickness = 1.0, 1000E  , 0.45,0.49, 0.499v  ). 

 

 

Table 2.11. Normalized radial displacement at r = R1 for a thick-walled cylinder problem shown in Fig. 2.25 [65]. 

  0.45v   0.49v    0.499v   

Standard element 4-node 0.9616 0.8458  0.3592 

 9-node 0.9997 0.9986  0.9864 

Enriched element Linear cover 0.9912 0.9819  0.9582 

 Quadratic cover 0.9967 0.9973  0.9975 

 

 

Table 2.12. Normalized strain energy for a thick-walled cylinder problem shown in Fig. 2.25 [65]. 

  0.45v   0.49v    0.499v   

Standard element 4-node 0.9579 0.8425  0.3578 

 9-node 0.9997 0.9986  0.9864 

Enriched element Linear cover 0.9963 0.9938  0.9762 

 Quadratic cover 0.9974 0.9974  0.9970 
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2.4.7. Vibration analysis 

In earlier studies, it has been reported that when using the previous enriched 4-node finite element, the global 

matrices become singular or ill-conditioned due to the linear dependence of some functions in the enriched 

interpolation function [38,41,46,48]. Therefore, the previous enriched element is inappropriate, especially for 

dynamic analyses. Here, a free vibration analysis is performed to show that the new enriched element can be used 

for dynamic analysis as well as for static analysis. 

 

The free vibration analysis of a cantilever beam with length 1 m and width 0.1 m is considered, see Fig. 2.26(a). 

The fixed boundary condition is imposed along the line AB, and the enriched DOFs ˆ
iu  of all nodes on the line 

AB are suppressed, as mentioned in Sections 2.2 and 2.3. 

 

The generalized eigenvalue problem is given as 

i i iλKφ Mφ   with 2
i iλ ω  for 1, 2, , ,i n    (2.41) 

where K   and M   are the global stiffness and mass matrices, respectively; iω  , iλ   and iφ   are the 

eigenfrequency, eigenvalue, and eigenvector corresponding to the ith mode, respectively; and n is the number of 

DOFs in the finite element model [1]. 

 

In Eq. (2.41), the global mass matrix is constructed in the same way as the global stiffness matrix in Eq. (2.23) as 

follows: 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 m

e e
m T m m m T m T m m

m m V

ρ dV
 

   M L M L L H H L ,    (2.42) 

in which ρ  is the material density. 

 

The finite element models are constructed using the previous and new enriched 4-node elements with quadratic 

covers for the coarse mesh (720 DOFs) in Fig. 2.26(b), and the 4-node incompatible mode element 

(QUAD4+incompatible) for the fine mesh (840 DOFs) shown in Fig. 2.26(c). We calculate the eigenfrequencies 

and eigenvectors corresponding to the 1st~5th modes. The reference solutions are obtained with a 5 40 mesh of 

the standard 25-node quadrilateral finite elements (6,720 DOFs), see Fig. 2.26(d). 

 

Table 2.13 and Fig. 2.27 show the calculated eigenfrequencies and mode shapes, respectively. The previous 

enriched 4-node element exhibits inaccurate eigenfrequencies and spurious energy modes. However, when the 

new enriched 4-node element is used, spurious energy modes do not occur. The results show that the new enriched 

element can be used not only for static analysis, but also for vibration analysis with good solution accuracy. 
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Table 2.13. Eigenfrequencies ( / )rad s  corresponding to the 1st~5th modes for the cantilever beam problem in 

Fig. 2.26.  

Mode 

number 

Reference Coarse mesh  Fine mesh 

Enriched 4-node element with quadratic 

covers (720 DOFs) 

4-node incompatible 

mode element 

(840 DOFs) Previous New 

1 5.0857E2 5.0879E2 5.0884E2 5.0881E2 

2 3.0509E3 3.0526E3 3.0529E3 30560E3 

3 7.9327E3 7.9339E3 7.9339E3 7.9340E3 

4 8.0360E3 7.9650E3 8.0418E3 8.0640E3 

5 1.4603E4 8.0412E3 1.4615E4 1.4687E4 

 
 

 
 

Figure 2.26. Cantilever beam problem: (a) Problem description, 11 22.0 10 /E N m   , 0.3ν   , and 

37860 /ρ kg m , (b) Coarse mesh, (c) Fine mesh, and (d) Mesh used for reference solution. 
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Figure 2.27. Mode shapes corresponding to the 1st~5th modes for the cantilever beam problem in Fig. 2.26. 
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2.5. Computational efficiency 

 

In this section, numerical costs are compared considering the standard 9- and 16-node quadrilateral finite elements 

and the enriched 4-node finite elements with linear and quadratic covers. In all the cases, symmetric stiffness 

matrices are generated. To obtain valuable insight into the computational cost needed in the respective solutions, 

we consider the process of constructing the stiffness matrix (including the calculation of elemental stiffness 

matrices) and of obtaining a solution of the linear equations. The computational cost is tested considering the 

regular meshes shown in Fig. 2.12(c). 

 

We first compare the number of numerical integration points used for the standard finite elements and the new 

enriched 4-node elements. The 9- and 16-integration points (3×3 and 4×4 Gauss integrations) are adopted for the 

standard 9-node and 16-node elements, respectively. For the new enriched element with linear and quadratic 

covers, the 12 (3 integration points × 4 sub-triangles) and 24 (6 integration points × 4 sub-triangles) integration 

points are used, respectively. The new enriched element with linear and quadratic covers require approximately 

1.3 and 1.5 times, respectively, the number of integration points as the standard finite elements of the same order. 

 

We also investigate how the size of the stiffness matrices increases as a function of the number of element layers. 

Fig. 2.28 shows that, considering the same displacement interpolation order, the new enriched 4-node elements 

have fewer DOFs than do the standard finite elements. 

 

 

 
 
Figure 2.28. The total number of DOFs when increasing the number of element layers, N, along an edge: p denotes 

the number of solution variables considered, hence 2p   (u and v) for the plane stress problem. 
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Tables 2.14 and 2.15 list the sparseness of the stiffness matrices and the total number of DOFs, respectively. Fig. 

2.29 shows the structures of the stiffness matrices with meshes used when 16N  . In the comparison between 

the standard finite elements and the new enriched elements of the same order, it can be seen that the half-bandwidth 

of the stiffness matrix using the enriched elements is smaller, but the number of non-zero entries in the stiffness 

matrices is larger than that of the standard finite elements. The results show that the enriched finite elements 

generate the stiffness matrices with a smaller half-bandwidth and size than the standard finite elements. 

 

 

 
 
Figure 2.29. Meshes used and stiffness matrix structures when 16N  : Non-zero entries are colored in black. 

 

 

We measured the actual calculation time for constructing the stiffness matrix and solving the linear equations 

using direct Gauss elimination, in which the factorization of the stiffness matrices represents the major expense. 

A quad-core machine (Intel(R) Core i7-3770 CPU@ 3.40 GHz, 32 GB RAM, Windows 10 64bit) was used for all 

solution cases and the results are summarized in Tables 2.16 and 2.17. 

 

As expected, in the comparison between finite elements of the same order, the new enriched elements take more 

time to construct the stiffness matrix than do the standard finite elements, while solving the linear equations 

generally takes less time. Also, as the number of elements used increases, the solving time becomes dominant. 

New enriched 4-node element
with linear covers

1,632

2,112

# of non-zero entries : 63,814

Half-bandwidth:137

# of non-zero entries : 81,138

Half-bandwidth:113

16 by16 16 by16

Standard  9-node element
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When a mesh of more than 32 32  elements is used, the new enriched finite elements require less computational 

cost than do the standard finite elements. 

 

 

Table 2.14. Stiffness matrices when using the quadratic elements (QUAD9 and QUAD4-d1) for the ad hoc 

problem shown in Fig. 2.12 (DOFs: degrees of freedoms, HB: half-bandwidth, NNZ: number of non-zero entries). 

N 
 

Standard 9-node finite element 
(QUAD9) 

New enriched 4-node element 
with linear covers (QUAD4-d1) 

 DOFs HB NNZ DOFs HB NNZ 

8 544 73 1.5E4 432 65 1.9E4 

16 2,112 137 6.4E4 1,632 113 8.1E4 

32 8,320 265 2.6E5 6,336 209 3.3E5 

64 33,024 521 1.0E6 24,960 401 1.3E6 

128 131,584 1,033 4.2E6 99,072 785 5.3E6 

 

 

Table 2.15. Stiffness matrices information when using the cubic elements (QUAD16 and QUAD4-d2) for the ad 

hoc problem shown in Fig. 2.12 (DOFs: degrees of freedoms, HB: half-bandwidth, NNZ: number of non-zero 

entries). 

N 
 

Standard 16-node finite element 
(QUAD16) 

New enriched 4-node element 
with quadratic covers (QUAD4-d2) 

 DOFs HB NNZ DOFs HB NNZ 

8 1,200 157 5.5E4 864 131 7.9E4 

16 4,704 301 2.3E5 3,264 227 3.2E5 

32 18,624 589 9.1E5 12,672 419 1.3E6 

64 74,112 1,165 3.7E6 49,920 803 5.3E6 

128 295,680 2,317 1.5E7 195,072 1,559 2.1E7 
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Table 2.16. Solution times (in seconds) for constructing the stiffness matrix and solving the linear equations when 

using the quadratic elements (QUAD9 and QUAD4-d1) for the ad hoc problem shown in Fig. 2.12. 

N 
 

Standard 9-node finite element 
(QUAD9) 

New enriched 4-node element 
with linear covers (QUAD4-d1) 

 
Stiffness 
construction 

Equation 
solver 

Total 
Stiffness 
construction 

Equation 
solver 

Total 

8 0.02 0.00 0.02 0.02 0.02 0.03 

16 0.05 0.06 0.11 0.08 0.05 0.13 

32 0.39 0.81 1.20 0.39 0.56 0.95 

64 1.09 12.33 13.42 1.17 8.38 9.55 

128 3.66 175.50 179.16 5.69 115.30 120.99 

 

 

Table 2.17. Solution times (in seconds) for constructing the stiffness matrix and solving the linear equations when 

using the cubic elements (QUAD16 and QUAD4-d2) for the ad hoc problem shown in Fig. 2.12. 

N 
 

Standard 16-node finite element 
(QUAD16) 

New enriched 4-node element 
with quadratic covers (QUAD4-d2) 

 
Stiffness 
construction 

Equation 
solver 

Total 
Stiffness 
construction 

Equation 
solver 

Total 

8 0.05 0.03 0.08 0.09 0.03 0.13 

16 0.28 0.45 0.74 0.38 0.34 0.72 

32 0.77 6.87 7.64 2.52 4.77 7.28 

64 3.95 100.20 104.15 6.97 69.28 76.25 

128 13.74 1,571.00 1,584.74 26.69 999.90 1,026.59 
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2.6. Closure 

 

In this chapter, we proposed a new enriched 4-node 2D solid finite element free from the linear dependence (LD) 

problem. Piecewise linear shape functions were introduced and used for the geometry and enriched displacement 

interpolations. The rank deficiency was not observed with various mesh patterns and excellent convergence 

behaviors were observed, even when distorted meshes were used. The new enriched 4-node element can be used 

with the enriched 3-node element, and the degrees of cover functions can be chosen arbitrarily to increase the 

solution accuracy without mesh refinement or introducing additional nodes. 

 

The piecewise linear shape functions are also applicable for the enriched 4-node plate and shell finite elements. 

Based on the observed features, we expect that enriched 4-node plate and shell finite elements will likely also be 

free from the LD problem. They will also show good convergence performance with distorted meshes, if shear 

locking and membrane locking are properly alleviated as in the enriched MITC3 shell finite element [36,37] using 

the concept of the MITC method [66-72].  
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Chapter 3. The enriched 3D solid finite elements 

 

 

In this chapter, the enriched 3D solid finite elements (8-node hexahedral, 6-node prismatic, and 5-node pyramidal 

elements) for linear analysis are presented. To alleviate the linear dependence problem, sets of piecewise linear 

shape functions for each element are proposed and adopted for geometry and displacement interpolations. We 

verify that the linear dependence problem is resolved in various mesh patterns and show element performance and 

effectiveness through numerical examples. 

 

 

3.1. Formulation of the enriched 3D solid finite elements 

 

The geometry interpolation of the enriched 3D solid finite elements is 

1

( , , ) ( , , )
n

i i
i

r s t h r s t


x x  with [ ]T
i i i ix y zx   (3.1) 

where n is the number of the nodes in each element, ix  is the position vector of node i in the global Cartesian 

coordinate system shown in Fig. 3.1(a), and ( , , )ih r s t   are the shape functions of standard isoparametric 

procedure corresponding to node i defined in the natural coordinate system in Fig. 3.1(b). The shape functions of 

the 8-node hexahedral, 6-node prismatic, 5-node pyramidal, and 4-node tetrahedral elements are summarized in 

Appendix A. 

 

The 3D shape functions, ih  satisfy the partition of unity requirement, 
1

1
n

ii
h


 . Therefore, the displacement 

interpolation of the enriched 3D solid finite element is obtained by multiplying the shape functions with cover 

functions defined in the cover area iC  as follows [11,14,19]: 

1

( , , ) ( , , )
n

i i
i

r s t h r s t


u u  with [ ]T
i i i iu v wu     , (3.2) 

in which iu , iv  and iw  are cover functions corresponding to the displacements in the x-, y- and z-directions, 

respectively, and the cover iC  is the union of elements attached to node i , see Fig. 3.2. 

 

The cover functions are 

( ) u
i i iu p x u , ( ) v

i i iv p x u , ( ) w
i i iw p x u  in iC   (3.3) 

with 

2( ) [1 ]d
i i i i i i i iξ η ζ ξ ξ η ξp x   , 

( )
,i

i
i

x x
ξ

χ


  

( )
,i

i
i

y y
η

χ


  

( )
,i

i
i

z z
ζ

χ


  

21[ ]
du ξ η ζ ξ ξη ξ T

i i i i i i i iu u u u u u uu   , 
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21[ ]
dv ξ η ζ ξ ξη ξ T

i i i i i i i iv v v v v v vu   , 

21[ ]
dw ξ η ζ ξ ξη ξ T

i i i i i i i iw w w w w w wu   ,  (3.4) 

where ( )p x  is a complete polynomial basis vector for node i, d is the degree of complete polynomial bases shown 

in Fig. 3.3, iχ  is the largest edge length of elements attached to node i, and 
u
iu , 

v
iu  and 

w
iu  are the degrees of 

freedom (DOFs) vectors corresponding to the complete polynomial bases for the displacements u, v and w, 

respectively. 

 

 

 
 

Figure 3.1. Coordinate systems for 3D solid finite elements: (a) 8-node hexahedral and 6-node prismatic solid 

elements in the global Cartesian coordinate system ( , , )x y z  and nodal local coordinate systems ( , , )i i iξ η ζ , and 

(b) 8-node hexahedral, 6-node prismatic, 5-node pyramidal, and 4-node tetrahedral solid elements in the natural 

coordinate systems. 

 

 

Substituting Eq. (3.3) into Eq. (3.2), the displacement interpolation of the enriched 3D solid elements is obtained 

1 1

ˆˆ ˆ( , , ) ( , , ) ( , , ) ( , , ) ( , , )
n n

i i i i
i i

r s t r s t r s t h r s t r s t
 

    u u u u H u   (3.5) 

with 
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i

i i

i

u

v

w

 
   
  

u , 

ˆ

ˆ ˆ

ˆ

u
i
v

i i
w
i

 
 

  
 
 

u

u u

u

, 

ˆ ( , , )

ˆ ˆ( , , ) ( , , )

ˆ ( , , )

i

i i

i

r s t

r s t r s t

r s t

 
 

  
 
  

h 0 0

H 0 h 0

0 0 h

,  (3.6) 

where iu  is the standard nodal displacement vector at node i in the global Cartesian coordinate system, and ˆ iu  

and ˆ ( , , )i r s tH  are the enriched DOFs vector and the corresponding interpolation matrix, respectively. 

 

 

 

 

Figure 3.2. Cover regions (shaded area) corresponding to node i when finite element models consist of (a) the 8-

node hexahedral elements and (b) the 4-node tetrahedral elements.  

 

 

 

 
Figure 3.3. Bases of complete polynomials up to degree 2. 

 

 

For the linear cover functions used (i.e., 1d  ), the components of the interpolation matrix and the enriched 

DOFs vector are 
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ˆ ( , , ) ( , , )[ ]i i i i ir s t h r s t ξ η ζh , 

ˆ ˆ ˆ ˆ[ ]u ξ η ζ T
i i i iu u uu ,  ˆ ˆ ˆ ˆ[ ]v ξ η ζ T

i i i iv v vu , ˆ ˆ ˆ ˆ[ ]w ξ η ζ T
i i i iw w wu .  (3.7) 

 

When the quadratic cover functions are used (i.e., 2d  ), the following components and vectors are employed 

2 2 2ˆ ( , , ) ( , , )[ ]i i i i i i i i i i i i i ir s t h r s t ξ η ζ ξ ξ η η η ζ ζ ξ ζh , 

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]u ξ η ζ ξ ξη ξζ T
i i i i i i iu u u u u uu  ,  

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]v ξ η ζ ξ ξη ξζ T
i i i i i i iv v v v v vu  , 

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]w ξ η ζ ξ ξη ξζ T
i i i i i i iw w w w w wu  .  (3.8) 

 

The static equilibrium equations for an enriched 3D finite element model can be obtained using the same way in 

Section 2.1.2. In order to alleviate the LD problem, we enforce both i u 0   and ˆ i u 0   when imposing the 

essential boundary condition at nodes. For a finite element model consisting of 4-node tetrahedral elements, such 

treatment derives a well-conditioned stiffness matrix regardless of mesh topology. However, if a finite element 

model contains 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements, the global stiffness matrix 

could be rank deficient depending on the mesh topology. 
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3.2. Sets of piecewise linear shape functions for 3D solid elements 

 

The previous chapter presented that the use of piecewise linear shape functions resolve the LD problem of the 

enriched 4-node 2D solid element. The key idea is to apply piecewise linear shape functions to geometry and 

displacement interpolations of 3D solid elements. 

 

To derive new shape functions, we use similar requirements in Section 2.2 as follows: 

• Partition of unity: 
1

ˆ ( , , ) 1
n

ii
h r s t


 . 

• Kronecker delta property: ˆ ( , , )i ijh r s t δ  at node j  with , 1, ,i j n  , 

• ( 1ijδ  if i j  and 0, otherwise), see Fig. 3.1. 

• Compatibility: continuous displacement interpolation across the element boundaries. 

• Completeness: displacement interpolations able to represent constant strain states and rigid body modes. 

 

When constructing the displacement interpolation as in Eq. (3.2) by applying the enrichment scheme, the shape 

functions for the enriched finite elements should meet the partition of unity requirement [38]. Satisfying the 

Kronecker delta property, boundary conditions can easily applied in the manner described in Section 2.1 [1,34,48]. 

Compatibility and completeness are required for monotonic convergence of solutions [1-3]. 

 

 

 
 

Figure 3.4. Subdivision of (a) the 8-node hexahedral, (b) 6-node prismatic and (c) 5-node pyramidal elements. 

 

 

To derive piecewise linear shape functions for enriched 3D solid elements, let us define a set of points for each 

element. The set of points contains in total ( 1)p quadn n n     points including n   nodes, quadn   centers of 
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quadrilateral faces, and an element center, see Fig. 3.4. 

 

For an 8-node hexahedral element, 15 points are defined, including 8 nodes, centers of 6 quadrilateral faces and 

an element center. The 6-node prismatic element and the 5-node pyramidal element have 10 (=6+3+1) and 7 

(=5+1+1) points, respectively (see Table B1 in Appendix B). 

 

Those points are used to divide each element into tetrahedral sub-domains. Vertices of each tetrahedral sub-domain 

are defined by four points as shown in Fig. 3.4. The element center is shared as one vertex of all tetrahedral sub-

domains, and the remaining three vertices consist of points excluding the element center. For the 8-node 

hexahedral, 6-node prismatic, and 5-node pyramidal elements, 24, 14 and 8 sub-domains are defined, respectively. 

The points used as vertices of sub-domains of each element are given in Appendix B. 

 

In each tetrahedral sub-domain, the linear shape function can be given as 

ˆ ˆ ˆˆ ˆ( , , ) ( ) /i i i i ih r s t a b r c s d t n    ,   (3.9) 

in which should satisfy the Kronecker delta and partition of unity requirements at four points constituting each 

sub-domain. For each sub-domain, sets of piecewise linear shape functions can be derived by using the 

requirements defined at the four points. 

 

At nodes, the linear shape function in Eq. (3.9) should meet the following Kronecker delta requirements 

ˆ ( , , )i j j j ijh r s t δ  with , 1, ,i j n  ,    (3.10) 

where i and j are is the node numbers. 

 

At the centers of quadrilateral faces, the partition of unity requirements for the linear shape function ˆ
ih  

( 1, ,i n  ) are 

if Ω0ˆ ( , , )
if Ω1 / 4

j
i j j j

j

i
h r s t

i

  
 with 1, , quadj n n n   ,  (3.11) 

in which Ω j  is a set of nodes consisting of the quadrilateral face whose center is considered as point j.  

 

At the element center, the partition of unity requirement is 

ˆ ( , , ) 1/i j j jh r s t n  with pj n .  (3.12) 

 

For an example, consider the sub-domain T24 (defined by points 1, 2, 14, and 15) of the 8-node hexahedral 

element and the linear shape function 1ĥ  corresponding to node 1, see Fig. 2.4(a). To obtain the coefficients of 

the linear shape function in Eq. (3.9) on sub-domain T24, the requirements in Eqs. (3.10) to (3.12) at points 1, 2, 

14, and 15 are used. 

 

The Kronecker delta requirements in Eq. (3.10) apply to points 1 and 2, because the points are nodes. Eq. (3.10) 
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gives the following two conditions 

1
ˆ (1,1, 1) 1h   , 1

ˆ ( 1,1, 1) 0h    .  (3.13) 

 

The points 14 and 15 are the center of quadrilateral face and the element center, respectively. The partition of 

unity requirements in Eqs. (3.11) and (3.12) are used at the points. At point 14 (a center of quadrilateral face), the 

requirement is given by 

1
ˆ (0,0, 1) 1/ 4h   ,  (3.14) 

because node 1 belongs to 14Ω , that is, node 1 is positioned in the quadrilateral face defined by nodes 1, 2, 3 and 

4, see Fig. 3.4(a).  

 

At point 15 (element center), Eq. (3.12) gives the following requirement 

1
ˆ (0,0,0) 1/ 8h  .  (3.15) 

 

The linear shape function 1ĥ  satisfying requirements in Eqs. (3.13) to (15) is obtained by 

1
ˆ (1 4 2 ) / 8h r s t     on T24.  (3.16) 

In this way, we can find the linear shape function corresponding to node 1 in other tetrahedral sub-domains.  

 

For the 6-node prismatic element, the linear shape function 3ĥ  on T4 should satisfy following requirements: 

3
ˆ (0,1, 1) 1h   , 3

ˆ (0,1,1) 0h  , 3
ˆ (0,1/ 2,0) 1/ 4h  , 3

ˆ (1/ 3,1/ 3,0) 1/ 6h  ,  (3.17) 

and the resulting linear shape function is 

3
ˆ ( ) / 2h s t   on T4.  (3.18) 

 

Similarly, the piecewise linear shape functions of the 8-node hexahedral, 6-node prismatic, and 5-node pyramidal 

elements in all sub-domains are obtained and the resulting coefficients are summarized in Appendix C. 

 

Piecewise linear shape functions derived satisfy all the requirements previously described and also the element 

isotropy, that is, the element behavior does not depend on the element orientation [53]. The piecewise linear shape 

functions provide linear variation on triangular face and piecewise linear variation on quadrilateral face, see Fig. 

3.5. Thus, the 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements based on the piecewise linear 

shape functions and the standard 4-node tetrahedral elements are compatible with each other. 

 

Substituting the shape functions of standard isoparametric procedure in Eqs. (3.1) and (3.2) with the piecewise 

linear shape functions derived in this section, new enriched 3D solid elements can be simply constructed. Applying 

the piecewise linear shape functions for geometry and displacement interpolations resolves the LD problem. 

Analytical and numerical studies on this problem will be presented in Section 3.3. 
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Figure 3.5. Shape functions of the 8-node hexahedral, 6-node prismatic and 5-node pyramidal elements 

corresponding to node i: (a) Shape functions of the standard finite elements and (b) piecewise linear shape 

functions. 

 

 

In order to evaluate the element stiffness matrix and load vector, the Gauss integration is separately applied for 

each tetrahedral sub-domain in an element because 1C   continuity is only satisfied in each sub-domain, not 

between sub-domains. The tetrahedral Gaussian integrations of degree 2 (4-point integration) and 4 (11-point 

integration) are adopted in each sub-domain to evaluate element stiffness matrices with linear and quadratic cover 

functions, respectively [73]. 
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3.3. Investigation of the linear dependence problem 

 

In this section, we investigate the LD problem of the enriched 3D solid elements. Two different elements are 

considered: the previous enriched element using the shape functions of the standard finite element procedure and 

the new enriched element using the piecewise linear shape functions. We first analytically verify whether the 

enriched interpolation functions of a cube element are linearly independent. Then the rank deficiencies of the 

global stiffness matrix are numerically evaluated by counting the number of zero eigenvalues in finite element 

models composed of the 8-node hexahedral, 6-node prismatic, 5-node pyramidal, and 4-node tetrahedral elements. 

 

For the analytical study, we consider a single cube element shown in Fig. 3.6 and the essential boundary conditions 

are imposed for both iu   (standard DOFs) and ˆ iu   (enriched DOFs) at nodes 1, 2, and 4. When the previous 

element is enriched with the linear cover functions for the single cube element, the enriched displacement 

interpolation ν  on the shaded plane ( 1r  ) is 

4

5 5 5

8 8 8

( 1, , ) (1 )(1 )

ˆ ˆ(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )(1 )

ˆ ˆ(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )(1 )

η ζ

η ζ

v r s t α s t v

α s t v β s t s v β s t t v

α s t v β s t s v β s t t v

   

          

          

,  (3.19) 

in which 0.25α  , 0.125β   and the underlined functions corresponding to DOFs 5ˆ
ηv  and 8ˆ

ηv  are identical; 

that is, the functions are linearly dependent [35]. 

 

 

 
 

Figure 3.6. A single cube element for the investigation of the LD problem: (a) the single cube element and (b) r = 

1 plane of the cube element. 
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On the other hand, with the new enriched element, the linear independent enriched displacement interpolation 

( 1)v r   is given by 

4

5 5 5

8 8 8

( 1, , ) (1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

η ζ

η ζ

v r s t α t v

α s t v β s t s v β s t t v

α s t v β s t s v β s t t v

  

          

          

 on T1, 

4

5 5 5

8 8 8

( 1, , ) (1 2 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

η ζ

η ζ

v r s t α s t v

α s v β s s v β s t v

α s t v β s t s v β s t t v

   

       

          

 on T2, 

4

5 5 5

8 8 8

( 1, , ) (1 2 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

η ζ

η ζ

v r s t α s t v

α t v β t s v β t t v

α t v β t s v β t t v

   

       

       

 on T3, 

4

5 5 5

8 8 8

( 1, , ) (1 )

ˆ ˆ(1 2 ) (1 2 )(1 ) (1 2 )(1 )

ˆ ˆ(1 ) (1 )(1 ) (1 )(1 )

η ζ

η ζ

v r s t α s v

α s t v β s t s v β s t t v

α s v β s s v β s t v

  

          

       

 on T4,  (3.20) 

where the LD problem does not occur. Similarly, it can be identified that functions corresponding to each DOF 

are linear independent in all domain of the new enriched elements (including the 8-node hexahedral, 6-node 

prismatic, and 5-node pyramidal elements). 

 

Let us then consider finite element models of various mesh patterns. Fig. 3.7 shows hexahedral mesh patterns, 

and prismatic, pyramidal, and tetrahedral meshes are created by dividing each hexahedron domains of hexahedral 

mesh patterns using the division method shown in Fig. 3.8. The enriched DOFs ˆ iu  are suppressed at 1P , 2P  and 

3P . Note that when a hexahedron is divided into six pyramids, additional nodes are added to a center of each 

hexahedron. 

 

Tables 3.1 and 3.2 show the calculated rank deficiencies (RD) for hexahedral and prismatic meshes shown in Fig. 

3.7. When the previous enriched elements are used in meshes (a), (b), and (c) (i.e., meshes with parallel edges), 

the rank deficiency increases as the number of element layers, or the degree of the cover functions, increases [46,-

48]. On the other hand, when the new enriched element is used, the rank deficiency is not observed regardless of 

mesh patterns, the degree of the cover functions, or the number of element layers. 

 

Calculated rank deficiencies for pyramidal meshes shown in Fig. 7 is given in Table 3.3. When the number of 

element layers is more than 2, no rank deficiency is observed in both the previous and new elements. However, 

in meshes with single element layer and parallel edges, rank deficiencies is observed when the previous element 

is used, but not when a new element is used. In Table 3.4, the calculated rank deficiencies for tetrahedral meshes 

shown in Fig. 3.7 is summarized, and no rank deficiency is observed.  

 

The new enriched 8-node hexahedral, 6-node prismatic, 5-node pyramidal elements and enriched 4-node 

tetrahedral element are compatible with each other and can be used together to construct a finite element model. 
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A finite element model based on a mixed mesh pattern shown in Fig. 3.9 is also considered. When the previous 

elements are used, the numbers of zero eigenvalues calculated are 24 and 93 for linear and quadratic covers, 

respectively. On the other hand, when the new enriched elements are used, the LD problem does not occur. As in 

the meshes shown in Figs. 3.7 and 3.9, no rank deficiency is observed in meshes used in the following sections, 

when using the new enriched elements. 

 

 

 
 

Figure 3.7. Hexahedral meshes (solid lines) for the investigation of the LD problem: These hexahedral meshes are 

used as a base mesh to create prismatic, pyramidal, and tetrahedral meshes. The division methods are shown in 

Fig. 3.8 and the dotted lines denote prismatic meshes. 
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Figure 3.8. Division of hexahedron into (a) two prisms, (b) six pyramids and (c) six tetrahedrons. 

 

 

Table 3.1. Rank deficiency (RD) of the global stiffness matrices when the enriched 8-node hexahedral elements 

are used with the meshes shown in Fig. 3.7 (d : degree of the cover functions). 

Element 
 
 
 

Number of 
element 
layers 
 

RD / Total DOFs 

Mesh (a) Mesh (b) Mesh (c) 

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2 

Previous 1 15/62 57/152 15/62 57/152 0/62 0/152 

 2 60/290 228/722 60/290 228/722 0/290 0/722 

 4 204/1466 786/3662 204/1466 786/3662 0/1466 0/3662 

New 1 0/62 0/152 0/62 0/152 0/62 0/152 

 2 0/290 0/722 0/290 0/722 0/290 0/722 

 4 0/1466 0/3662 0/1466 0/3662 0/1466 0/3662 
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Table 3.2. Rank deficiency (RD) of the global stiffness matrices when the enriched 6-node prismatic elements are 

used with the prismatic meshes shown in Fig. 3.7 (d : degree of the cover functions). 

Element 
 
 
 

Number of 
element 
layers 
 

RD / Total DOFs 

Mesh (a) Mesh (b) Mesh (c) 

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2 

Previous 1 12/62 45/152 12/62 45/152 0/62 0/152 

 2 36/290 138/722 36/290 138/722 0/290 0/722 

 4 102/1466 396/3662 102/1466 396/3662 0/1466 0/3662 

New 1 0/62 0/152 0/62 0/152 0/62 0/152 

 2 0/290 0/722 0/290 0/722 0/290 0/722 

 4 0/1466 0/3662 0/1466 0/3662 0/1466 0/3662 

 

 

Table 3.3. Rank deficiency (RD) of the global stiffness matrices when the enriched 5-node pyramidal elements 

are used with the pyramidal meshes shown in Fig. 3.7 (d : degree of the cover functions). 

Element 
 
 
 

Number of 
element 
layers 
 

RD / Total DOFs 

Mesh (a) Mesh (b) Mesh (c) 

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2 

Previous 1 3/74 15/182 3/74 15/182 0/74 0/182 

 2 0/386 0/962 0/386 0/962 0/386 0/962 

 4 0/2234 0/5585 0/2234 0/5585 0/2234 0/5585 

New 1 0/74 0/182 0/74 0/182 0/74 0/182 

 2 0/386 0/962 0/386 0/962 0/386 0/962 

 4 0/2234 0/5585 0/2234 0/5585 0/2234 0/5585 

 

 

Table 3.4. Rank deficiency (RD) of the global stiffness matrices when the enriched 4-node tetrahedral elements 

are used with the tetrahedral meshes shown in Fig. 3.7 (d : degree of the cover functions). 

Number of 
element 
layers 
 

RD / Total DOFs 

Mesh (a) Mesh (b) Mesh (c) 

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2 

1 0/62 0/152 0/62 0/152 0/62 0/152 

2 0/290 0/722 0/290 0/722 0/290 0/722 

4 0/1466 0/3662 0/1466 0/3662 0/1466 0/3662 

 

 

 

 

 



- 59 - 

 
 
Figure 3.9. Finite element model with a mixed mesh pattern for the investigation of the LD problem: The finite 

element model consists of four 8-node hexahedral, four 6-node prismatic, five 5-node prismatic, and eight 4-node 

tetrahedral elements. 
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3.4. Numerical examples 

 

The new enriched 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements pass the isotropy, zero 

energy mode, and patch tests for arbitrary enrichment [1,36]. Fig. 3.10(a) shows meshes used for the isotropy and 

zero energy mode tests and the hexahedral mesh shown in Fig. 3.10(b) is used for the patch test (prismatic and 

pyramidal meshes are generated from the hexahedral mesh). In all the tests, the enriched DOFs ˆ iu  are suppressed 

at three boundary nodes (nodes 1, 2 and 3) in Fig. 10 [34,48]. 

 

In this section, we investigate the performance and effectiveness of the new enriched 3D elements. Convergence 

behaviors of the new enriched 8-node hexahedral and 6-node prismatic elements are explored using the ad hoc 

and tool jig problems. The straight and curved beam problems are solved using 8-node hexahedral, 6-node 

prismatic, 5-node pyramidal, and 4-node tetrahedral elements. We also demonstrate the adaptive use of cover 

functions in gear and connecting rod problems. The essential boundary conditions are imposed as described in 

previous sections, and the nodal loads corresponding to both the standard DOFs iu  and the enriched DOFs ˆ iu  

are considered. In addition, it is shown that the new enriched elements are suitable not only for static analysis but 

also for dynamic analysis through free vibration analysis of a cantilever beam and the connecting rod. 

 

 

 

 
Figure 3.10. Finite element models used for isotropy, zero energy mode and patch tests: (a) Single hexahedral, 

pyramidal, and prismatic elements for isotropy and zero energy mode tests and (b) hexahedral mesh for patch 

tests. 

 

 

3.4.1. Ad hoc problem  

Considering the ad hoc 3D solid problem shown in Fig. 3.11 [1,34], we investigate the convergence behaviors 

with regular and distorted meshes. 

 

The following body forces that satisfy equilibrium equations are applied in the problem domain 
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,   (3.21) 

in which the stress components are obtained from the displacements given by 

2 2 2 2 2 2(1 ) (1 ) (1 ) cos ( )sin( ) cos( )myu x y z e mx my mz    , 

2 2 2 2 2 2(1 ) (1 ) (1 ) sin( )cos( )cos( )myv x y z e mx my mz    , 

2 2 2 2 2 2(1 ) (1 ) (1 ) cos( )cos( )sin( )myw x y z e mx my mz     with 5m  ,  (3.22) 

and material constants: Young’s modulus 11 22.0 10 /E N m   and Poisson’s ratio 0.3ν  . The body forces are 

applied to the finite element model through the load vector in Eq. (2.23) and the fixed boundary condition 

( 0u v w   ) is imposed on the surface at 1y   . 

 

We consider five quadratic elements (HEX27, HEX8-d1, PRI18, PRI6-d1, TET4-d1): 

 HEX27: standard 27-node hexahedral element, 

 HEX8-d1: new 8-node hexahedral element enriched by linear covers, 

 PRI18: standard 18-node prismatic element, 

 PRI6-d1: new 6-node prismatic element enriched by linear covers, 

 TET4-d1: 4-node tetrahedral element enriched by linear covers, 

and five cubic elements (HEX64, HEX8-d2, PRI40, PRI6-d2, TET4-d2): 

 HEX64: standard 64-node hexahedral element, 

 HEX8-d2: new 8-node hexahedral element enriched by quadratic covers, 

 PRI40: standard 40-node prismatic element, 

 PRI6-d2: new 6-node prismatic element enriched by quadratic covers, 

 TET4-d2: 4-node tetrahedral element enriched by quadratic covers. 

 

The problem domain in Fig. 3.11(a) is subdivided into eight hexahedral sub-domains by three planes A, B and C 

as shown in Fig. 3.11(b); then edges of each sub-hexahedron are subdivided into equal lengths to form the meshes 

as shown in Fig. 3.11(c). The distorted hexahedral meshes of types 2 and 3 when 4N   are shown in Fig. 3.11(d). 

Fig. 3.11(e) shows the regular hexahedral mesh used for the convergence studies when 4N  . Distorted meshes 

of three different types (Types 1, 2, 3) are also used. Prismatic and tetrahedral meshes are generated from the 

hexahedral mesh by dividing each hexahedron element as shown in Fig.8. 

 

To perform the convergence study, we use the s-norm and normalized relative error hE  described in Section 2.4. 

If an element is uniformly optimal, the k represents the optimal order of convergence: k  2, 4, and 6 for linear, 

quadratic and cubic elements. Note that the order of the displacement interpolations of the enriched elements with 

linear and quadratic covers are quadratic and cubic, respectively. Therefore, the optimal order of convergence of 

the enriched elements with linear covers (HEX8-d1, PRI6-d1, TET4-d1) is the same as the standard quadratic 

elements (HEX27, PRI18). The optimal order of convergence of the five cubic elements (HEX64, HEX8d-1, 

PRI40, PRI6-d2, TET4-d2) is the same and is 6. 
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The convergence curves of the quadratic and cubic elements are shown in Figs. 3.12 and 3.13, respectively. All 

3D solid elements provide similarly good convergence behaviors in both regular and distorted meshes. 

 

 

 
Figure 3.11. Ad hoc problem: (a) problem domain, (b) planes A, B and C for mesh distortion, (c) mesh distortion 

types, (d) distorted hexahedral meshes when 4N  , and (e) regular hexahedral mesh when 4N   ( N : the 

number of element layers along an edge). 
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Figure 3.12. Convergence curves of the quadratic elements for the ad hoc problem with the meshes shown in Fig. 

3.11: The bold line represents the optimal convergence rate, which is 4.0 for quadratic elements. 

 

 

 

 
Figure 3.13. Convergence curves of the quadratic elements for the ad hoc problem with the meshes shown in Fig. 

3.11: The bold line represents the optimal convergence rate, which is 6.0 for cubic elements. 
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3.4.2. Tool jig problem 

We here consider a tool jig structure subjected to a constant pressure on its top surface and the fixed boundary 

condition is applied on left surface, see Fig. 3.14(a) [59]. The standard 8-node hexahedral and 6-node prismatic 

elements (HEX8 and PRI6), the new enriched 8-node hexahedral and 6-node prismatic elements (HEX8-d1 and 

PRI6-d1), and the 8-node incompatible mode element (HEX8+incompatible) in ADINA [60-63] are considered 

with four different meshes shown in Fig. 14(b). Meshes for the prismatic elements (PRI6 and PRI6-d1) are 

generated by dividing the hexahedral meshes in Fig. 14(b). The reference solution is obtained using a fine mesh 

of 57,344 standard 27-node hexahedral elements leading to 1,457,181 DOFs, and the maximum stress occurs at 

point P. 

 

 

 

 

Figure 3.14. The tool jig, material properties: 11 22.0 10 /E N m   , 0.3v   : (a) Problem description and (b) 

coarse, medium, fine-1, and fine-2 meshes used. 

 

 

Figs. 3.15 and 3.16 show the von Mises stress results obtained using hexahedral and prismatic elements, 

respectively. The new enriched elements (HEX8-d1 and PRI6-d1) more accurately predict the von Mises stress at 

the point P than the standard elements do. Comparing the calculated z-displacements (w) on the line AB shows 

again that, although less new enriched elements are used with smaller DOFs, the new enriched elements provide 

better solution accuracy compared to the standard elements, see Fig. 3.17. 

 

We additionally compare the new enriched elements (HEX8-d1 and PRI6-d1) with the 8-node incompatible mode 

element (HEX8+incompatible) in ADINA. Fig. 3.18 shows the calculated z-displacement (w) and the von Mises 

stress (averaged at the nodes) along the line AB when the medium and fine-1 meshes are used. In the both cases, 

the results of the new enriched elements (HEX8-d1 and PRI6-d1) and the 8-node incompatible mode element 

(HEX8+incompatible) converge well to the reference value, and all three elements provide better solutions than 

the standard elements (HEX8 and PRI6) do. 
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Figure 3.15. von Mises stress distributions and von Mises stress at the point P for the tool jig problem when using 

hexahedral elements : The von Mises stress and its error at the point P are presented for each solution. (DOFs = 

the number of degrees of freedom used, Error = , ,| | / 100%v ref v v refτ τ τ  , 2
, 832.4 /v refτ N m .) 
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Figure 3.16. von Mises stress distributions and von Mises stress at the point P for the tool jig problem when using 

pyramidal elements : The von Mises stress and its error at the point P are presented for each solution. (DOFs = 

the number of degrees of freedom used, Error = , ,| | / 100%v ref v v refτ τ τ  , 2
, 832.4 /v refτ N m .) 
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Figure 3.17. Comparison of results for the tool jig problem along the line AB when the standard elements (HEX8 

and PRI6) and the new enriched elements with linear covers (HEX8-d1 and PRI6-d1) are used: (a) Results of the 

hexahedral elements and (b) results of the prismatic elements. 
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Figure 3.18. Comparison of numerical results for the tool jig problem along the line AB using: (a) medium mesh, 

and (b) fine-1 mesh. 

 

 

3.4.3. Straight beam problem 

The straight beam problem proposed by MacNeal [64] under four load cases (tension, in-plane and out-of-plane 

shears, and moment at the free tip) is considered, see Fig. 3.19. Young’s modulus E  is 7 21.0 10 /N m  and 

Poisson’s ratio v  is 0.3. Length (L), width (W), and depth (D) of the beam are 6 m, 0.2 m, and 0.1 m, respectively. 

The reference solutions at point P are 53.0 10u m   , 0.1081v m   , 0.4321w m   , and 0.0054v m   

for the tension force, in-plane shear force, out-of-plane shear force, and moment load cases, respectively [64]. 

 

The standard elements (HEX8, PRI6, and PYR5), the 8-node incompatible mode element (HEX8+incompatible), 
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and the new enriched elements with linear covers (HEX8-d1, PRI6-d1, and PYR5-1) are considered with three 

different meshes shown in Fig. 3.19. As shown in Fig. 3.8, the hexahedral meshes are transformed into prismatic 

and pyramidal meshes using the prismatic and pyramidal elements (PRI6, PRI6-d1, PYR5, and PYR5-d1). Tables 

3.5, 3.6, 3.7, and 3.8 show the normalized displacements at the point P for four load cases, respectively. Numerical 

results of the standard elements and the 8-node incompatible mode element are affected by mesh distortion, while 

the new enriched elements provide highly accurate solutions regardless of the mesh used. 

 

 

 

 
Figure 3.19. Straight beam under four load cases: tension force ( 1.0xF N ), in-plane shear force ( 1.0yF N ), 

out-of-plane shear force ( 1.0zF N ) and moment ( 0.2zM N m  ). The solid and dotted lines denote hexahedral 

and prismatic meshes, respectively. 

 

 

Table 3.5. Normalized x-displacement (u) at the point P for the straight beam subjected to tension force 

( 1.0xF N ) at the free tip. The meshes (a-c) are shown in Fig. 3.19 ( 0.00003refu m ). 

 Standard elements HEX8 

+incompatible

Enriched elements 

 HEX8 PRI6 PYR5 HEX8-d1 PRI6-d1 PYR5-d1

Mesh (a) 0.9856 0.9809 0.9838 0.9876 0.9935 0.9935 0.9939 

Mesh (b) 0.9884 0.9797 0.9853 0.9791 0.9935 0.9932 0.9940 

Mesh (c) 0.9835 0.9825 0.9827 0.9769 0.9932 0.9940 0.9936 
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Table 3.6. Normalized y-displacement (v) at the point P for the straight beam subjected to in-plane shear force 

( 1.0yF N ) at the free tip. The meshes (a-c) are shown in Fig. 3.19 ( 0.1081refv m  ). 

 Standard elements HEX8 

+incompatible

Enriched elements 

 HEX8 PRI6 PYR5 HEX8-d1 PRI6-d1 PYR5-d1

Mesh (a) 0.0929  0.0311  0.0542 0.9782  0.9559 0.9587  0.9603 

Mesh (b) 0.0256  0.0144  0.0205 0.0473  0.9375 0.9361  0.9430 

Mesh (c) 0.0315  0.0214  0.0227 0.0315  0.9404 0.9476  0.9464 

 

 

Table 3.7. Normalized z-displacement (w) at the point P for the straight beam subjected to out-of-plane shear force 

( 1.0zF N ) at the free tip. The meshes (a-c) are shown in Fig. 3.19 ( 0.4321refw m  ). 

 Standard elements HEX8 

+incompatible

Enriched elements 

 HEX8 PRI6 PYR5 HEX8-d1 PRI6-d1 PYR5-d1

Mesh (a) 0.0252  0.0255  0.0187 0.9729  0.9519 0.9511  0.9622 

Mesh (b) 0.0105  0.0111  0.0088 0.0302  0.9376 0.9355  0.9481 

Mesh (c) 0.0143  0.0150  0.0110 0.5279  0.9394 0.9412  0.9500 

 

 

Table 3.8. Normalized y-displacement (v) at the point P for the straight beam subjected to moment 

( 0.2zM N m  ) at the free tip. The meshes (a-c) are shown in Fig. 3.19 ( 0.0054refv m  ). 

 Standard elements HEX8 

+incompatible

Enriched elements 

 HEX8 PRI6 PYR5 HEX8-d1 PRI6-d1 PYR5-d1

Mesh (a) 0.0930  0.0306  0.0540 0.9902  0.9736 0.9758  0.9765 

Mesh (b) 0.0211  0.0130  0.0175 0.0438  0.9747 0.9754  0.9774 

Mesh (c) 0.0280  0.0194  0.0200 0.7178  0.9744 0.9780  0.9772 

 

 

3.4.4. Curved beam problem 

The curved beam problem proposed by MacNeal [64] under two load cases (in plane and out-of-plane shears at 

the free tip) is considered, see Fig. 3.20. Young’s modulus E  is 7 21.0 10 /N m  and Poisson’s ratio v  is 0.3. 

The reference solutions at the point P are 0.08734v m   and 0.5022w m  for the in-plane shear force and 

out-of-plane shear force cases, respectively [64]. 
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The standard elements (HEX8, PRI6, and TET4), the 8-node incompatible mode element (HEX8+incompatible), 

and the new enriched elements with linear covers (HEX8-d1, PRI6-d1, and TET4-d1) are considered with three 

different meshes shown in Fig. 3.20. As shown in Fig. 3.8, the hexahedral meshes are transformed into prismatic 

and tetrahedral meshes using the prismatic and tetrahedral elements (PRI6, PRI6-d1, TET4, and TET4-d1). Tables 

3.9 and 3.10 show the normalized displacements at the point P for two load cases, respectively. The enriched 

elements provide more accurate results than the standard elements and the 8-node incompatible mode element. 

 

 

 

Figure 3.20. Curved beam under two load cases:, in-plane shear force ( 1.0yF N ) and out-of-plane shear force 

( 1.0zF N ): 4.12inr m , 4.32outr m , 0.1t m . 

 

 

Table 3.9. Normalized x-displacement (v) at the point P for the curved straight beam subjected to in-plane shear 

force ( 1.0yF N ) at the free tip. ( 0.08734refv m ). 

Standard elements HEX8 

+incompatible

Enriched elements 

HEX8 PRI6 TET4 HEX8-d1 PRI6-d1 TET4-d1 

0.0732 0.0252 0.0251 0.8796 0.9908 0.9861 0.9841 
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Table 3.10. Normalized x-displacement (w) at the point P for the curved straight beam subjected to out-of-plane 

shear force ( 1.0wF N ) at the free tip. ( 0.5022refv m ). 

Standard elements HEX8 

+incompatible

Enriched elements 

HEX8 PRI6 TET4 HEX8-d1 PRI6-d1 TET4-d1 

0.2282 0.0200 0.0067 0.8195 0.9132 0.9084 0.9032 

 

 

3.4.5 Gear problem 

In Sections 3.4.5 and 3.4.6, we illustrate the adaptive use of cover functions, an advantage of the enriched finite 

elements [35,37]. It is very effective to apply cover functions to nodes in the area where solution accuracy needs 

to be improved. Numerical results obtained employing the adaptive use of no/linear/quadratic covers is compared 

with results of the standard linear elements. 

 

Let us consider a gear, in which the inner cylinder (colored in green) is fixed and 1000 N load in the y-direction 

is applied on side of a gear teeth (colored in red), see Fig. 3.21(a). The 3D gear structure is modeled using 8-node 

hexahedral and 6-node prismatic elements. Two different meshes are considered: coarse mesh (1310 hexahedral 

and 328 prismatic elements, in total 1638 elements) and fine mesh (5340 hexahedral and 1062 prismatic elements, 

in total 6402 elements), see Figs. 3.21(b) and (c).  

 

We perform the following three different cases of finite element analysis: 

 (Case 1) No cover enrichment is adopted in the coarse mesh. That is, the standard 8- and 6-node finite 

elements (HEX8 and PRI6) are used. 

 (Case 2) In the fine mesh, the standard elements (HEX8 and PRI6) are used without cover functions. 

 (Case 3) No, linear and quadratic covers are adaptively used as shown in Fig. 3.21(d). 

 

The fine mesh is used only for Cases 2, and the coarse mesh is applied in other two cases. The adaptive use of 

cover functions in Cases 3 is determined by investigating the stress solutions obtained using the standard finite 

elements in Case 1. Higher order covers are chosen for nodes where relatively higher von Mises stresses are 

predicted. The reference solution is obtained using a mesh of standard 10-node tetrahedral finite elements, in 

which 77227 elements and 358689 DOFs are used. 

 

We compare the von Mises stress (effective stress) at the point P shown in Fig. 3.21(a). The reference solution 

and the calculated von Mises stress distributions of Cases 1, 2, and 3 are shown in Fig. 3.22, and the number of 

DOFs used and errors in the results are also summarized. The solution accuracy is improved by using the finer 

mesh or by applying the covers adaptively. Comparing Cases 2, and 3, it can be clearly observed that the adaptive 

use of cover functions is very effective in improving solution accuracy with small DOFs. 
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Figure 3.21. The gear problem: (a) problem description, 11 22.0 10 /E N m  , 0.3v  , (b) and (c) coarse and 

fine meshes, and (d) no, linear, and quadratic covers adaptively used in Case 3. 
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Figure 3.22. von Mises stress distributions for the gear problem: (a) Reference solution obtained by using 77227 

standard 10-node tetrahedral elements, (b), (c), and (d) von Mises stress distributions calculated in analysis Cases 

1, 2, and 3. (DOFs = the number of degrees of freedom used, Error = , ,| | / 100%v ref v v refτ τ τ   , 

, 39.55v refτ MPa ). 

 

 

3.4.6. Connecting rod problem 

We consider the connecting rod, where loads of 100 N are applied on inside of the cylinder (colored in red, see 

Fig. 3.23(a)) in the x and y-directions, respectively. The fixed boundary conditions are imposed on the green 

colored surfaces shown in Fig. 3.23(a). Finite elements models for the 3D connecting rod are constructed using 

8-node hexahedral, 6-node prismatic, 5-node pyramidal, and 4-node tetrahedral elements. Two different meshes 

are considered: coarse mesh (428 hexahedral, 86 prismatic elements, and 1044 tetrahedral elements, in total 1558 

elements) and fine mesh (2540 hexahedral, 8 prismatic, 246 pyramidal, and 3369 tetrahedral elements, in total 
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6163 elements), see Figs. 3.23(b) and (c).  

 

The following three cases of finite element analysis are performed: 

 (Case 1) No cover enrichment is adopted in the coarse mesh. That is, the standard 8-node, 6-node and 

4-node finite elements (HEX8, PRI6, TET4) are used. 

 (Case 2) In the fine mesh, the standard elements (HEX8, PRI6, PYR5, TET4) are used without cover 

functions. 

 (Case 3) No, linear and quadratic covers are adaptively used, see Fig. 3.23(d). 

 

 

In Cases 1 and 3, the coarse mesh is used and Case 2 applies the fine mesh. The adaptive use of cover functions 

in Cases 3 is determined in the same manner as the gear problem in Section 3.4.4. The reference solution is 

calculated using a mesh of standard 10-node tetrahedral finite elements, in which 18569 elements and 94953 

DOFs are used. 

 

Fig. 3.24 shows the reference solution and the calculated von Mises stress distributions of Cases 1, 2, and 3. The 

number of DOFs used and errors in the von Mises stress at the point P are also summarized in Fig. 3.24. It is also 

shown that the solution accuracy can be improved by using the finer mesh or applying the cover functions 

adaptively, and the adaptive use of cover functions is very efficient. 

  



- 76 - 

 

Figure 3.23. The connecting rod problem: (a) problem description, 11 22.0 10 /E N m   , 0.3v   , 

37850 /ρ kg m  (b) and (c) coarse and fine meshes, and (d) no, linear, and quadratic covers adaptively used in 

Case 3.  
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Figure 3.24. von Mises stress distributions for the connecting rod problem: (a) Reference solution obtained by 

using 18569 standard 10-node tetrahedral elements, (b), (c), and (d) von Mises stress distributions calculated in 

analysis Cases 1, 2, and 3. (DOFs = the number of degrees of freedom used, Error = , ,| | / 100%v ref v v refτ τ τ  , 

, 98.718v refτ MPa ). 

 

 

3.4.7. Vibration analysis 

In this section, we perform the free vibration analysis of a cantilever beam shown in Fig. 3.25 and the connecting 

rod in the previous section. The generalized eigenvalue problem for the free vibration analysis in Eq. (2.39) is 

solved and we obtain the eigenpairs (eigenvalues and eigenvectors) corresponding to the to the 1st~4th modes of 

the cantilever beam and the connecting rod. 

 

For the cantilever beam, the previous and new enriched elements with quadratic covers (HEX8-d2 and PRI6-d2) 

are used to construct the finite element models for the coarse mesh (1800 DOFs) in Fig. 3.25. (b). Figs. 3.26 and 

3.27 show the mode shapes calculated, and the eigenvalues are given in Table 3.11. The previous enriched element 
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exhibits inaccurate eigenmodes and eigenvalues. However, accurate modes and eigenvalues are calculated when 

the new enriched elements are used. 

 

 

 

Figure 3.25. Cantilever beam problem: (a) Problem description, 1.0L m  , 0.1W m  , 0.2D m  , 

11 22.0 10 /E N m  , 0.3v  , 37860 /ρ kg m , (b) and (c) Hexahedral meshes used for enriched elements and 

reference solution., respectively. The dotted line represents prismatic mesh. 

 

 

Table 3.11. Eigenvalues corresponding to 1st~4th modes for the cantilever beam problem in Fig. 3.25. 

Mode 

Number 

 

Reference 

 

 

Enriched 8-node elements 

with quadratic covers (HEX8-d2) 

Enriched 6-node elements 

with quadratic covers (PRI6-d2) 

Previous New Previous New 

1 2.6266E+05 2.6415E+05 2.6414E+05 2.6389E+05 2.6422E+05 

2 9.9843E+05 1.0022E+06 1.0035E+06 8.8175E+05 1.0038E+06 

3 9.4397E+06 3.8753E+06 9.4913E+06 1.0017E+06 9.4966E+06 

4 1.3835E+07 9.4970E+06 1.3964E+07 9.4830E+06 1.3979E+07 

 

 

  



- 79 - 

 

 
Figure 3.26. Mode shapes corresponding to the 1st~4th modes for the cantilever beam problem in Fig. 3.25 when 

the enriched 8-node hexahedral elements with quadratic covers are used. 

 

 

 
Figure 3.27. Mode shapes corresponding to the 1st~5th modes for the cantilever beam problem in Fig. 3.25 when 

the enriched 6-node prismatic elements with quadratic covers are used. 
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For the connecting rod, the previous and new enriched elements with linear covers (HEX8-d1, PRI6-d1 and TET4-

d1) are used to construct the finite element models for the coarse mesh (13740 DOFs) shown in Fig. 3.23(b). Fig. 

3.28 and Table 3.12 show the mode shapes and the eigenvalues calculated, respectively. The previous enriched 

element exhibits wrong modes and eigenvalues. However, the new enriched elements produce correct solutions. 

The results show that the new enriched elements can be used not only for static analysis, but also for dynamic 

analysis. 

 

 

 

Figure 3.28. Mode shapes corresponding to the 1st~4th modes for the connecting rod problem in Fig. 3.23 when 

the enriched elements with linear covers are used with the coarse mesh. 
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Table 3.12. Eigenvalues corresponding to 1st~4th modes for the connecting rod problem in Fig. 3.23. 

Mode 

Number 

 

Reference 

 

 

Enriched 3D solid elements with linear covers 

Previous New 

1 2.7199E+03 6.7027E+02 2.8925E+03 

2 4.7079E+03 2.8764E+03 4.8871E+03 

3 3.7226E+04 4.8734E+03 4.1950E+04 

4 8.4975E+04 7.2706E+03 9.0300E+04 
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3.5. Computational efficiency 

 

In this section, numerical costs of the standard elements and the new enriched elements are compared. We consider 

four quadratic elements (HEX27, HEX8-d1, PRI18, PRI6-d1): 

 HEX27: standard 27-node hexahedral element, 

 HEX8-d1: new 8-node hexahedral element enriched by linear covers, 

 PRI18: standard 18-node prismatic element, 

 PRI6-d1: new 6-node prismatic element enriched by linear covers, 

and four cubic elements (HEX64, HEX8-d2, PRI40, PRI6-d2): 

 HEX64: standard 64-node hexahedral element, 

 HEX8-d2: new 8-node hexahedral element enriched by quadratic covers, 

 PRI40: standard 40-node prismatic element, 

 PRI6-d2: new 6-node prismatic element enriched by quadratic covers. 

 

In all the cases, symmetric stiffness matrices are generated. To obtain valuable insight into the computational cost 

needed in each solution, the number of Gauss points used in each element and the size of the global stiffness 

matrix are considered. Then, the computational cost is tested considering the regular meshes shown in Fig. 3.11(e). 

 

Table 3.13 lists the number of numerical integration points used for the standard elements and the new enriched 

elements. For standard elements, line and triangular integrations are used [1,50]. On the other hand, the tetrahedral 

integrations are adopted for each sub-domain of the new enriched elements [73]. The new enriched element with 

linear and quadratic covers require approximately from 2.6 to 4.1 times the number of integration points compared 

to the standard finite elements of the same order and shape. 

 

Fig. 3.29 shows how the number of degrees of freedom increases as the number of element layers increases. 

Considering the same displacement interpolation order, the new enriched element have fewer DOFs than the 

standard finite elements do. 

 

 

Table 3.13. Number of numerical integration points used for the standard elements and the new enriched elements. 

 Standard elements New enriched elements 

Element order Element 
# of integration 

points 
Element 

# of integration 

points 

Quadratic HEX27 27(=3 3 3) HEX8-d1 96(=24 4) 

 PRI18 21(=3 7) PRI6-d1 56(=14 4) 

Cubic HEX64 64(=4 4 4) HEX8-d2 264(=24 11) 

 PRI40 48(=4 12) PRI6-d2 154(=14 11) 
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Figure 3.29. The total number of DOFs when increasing the number of element layers, N , along an edge: p  

denotes the number of solution variables considered, hence 3p   (u, v, and w) for the 3D problem. 

 

 

The total number of DOFs and the sparseness of the stiffness matrices are listed in Tables 3.14 and 3.15 when 

hexahedral elements are used, and the structures of the stiffness matrices with meshes ( 4N  ) used are shown in 

Fig. 3.30. Comparing the standard finite elements and the new enriched elements of the same order, it can be 

observed that the half-bandwidth and the number of non-zero entries of the stiffness matrix using the enriched 

elements are smaller than that of the standard finite elements. These results show that the stiffness matrices of the 

new enriched elements have a smaller half-bandwidth, non-zero entries and size than the standard finite elements. 

 

 

Table 3.14. Stiffness matrices when using hexahedral quadratic elements (HEX27 and HEX8-d1) for the ad-hoc 

problem shown in Fig. 3.11 (DOFs: degrees of freedom, HB: half-bandwidth, NNZ: number of non-zero entries). 

 
Standard 27-node element 

(HEX27) 

New enriched 8-node element with linear 

covers (HEX8-d1) 

N DOF HB NNZ DOF HB NNZ 

2 300 159 3.1E+04 216 132 2.7E+04 

4 1944 495 2.7E+05 1200 324 2.3E+05 

8 13872 1743 2.3E+06 7776 996 1.8E+06 

16 104544 6543 1.9E+07 55488 3492 1.5E+07 
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Table 3.15. Stiffness matrices when using hexahedral cubic elements (HEX64 and HEX8-d2) for the ad-hoc 

problem shown in Fig. 3.11 (DOFs: degrees of freedom, HB: half-bandwidth, NNZ: number of non-zero entries). 

 
Standard 64-node element 

(HEX64) 

New enriched 8-node element with quadratic 

covers (HEX8-d2) 

N DOF HB NNZ DOF HB NNZ 

2 882 453 2.1E+05 540 330 1.8E+05 

4 6084 1533 1.8E+06 3000 810 1.5E+06 

8 45000 5637 1.5E+07 19440 2490 1.2E+07 

16 345744 21681 1.2E+08 138720 8730 9.9E+07 

 

 

 

 
Figure 3.30. Meshes used and stiffness matrix structures when 4N  ; non-zero entries are colored in black. 

 

 

Actual calculation times are measured when the stiffness matrix is constructed and the linear equations are solved 

using the direct Gauss elimination. A machine (Intel(R) Xeon E5-2667 CPU@ 3.2 GHz, 128 GB RAM, Linux 

64bit) was used for all cases. The measured times are shown in Tables 3.16, 17, 18, and 19. 

 

As expected, when comparing the standard finite elements and the new enriched elements of the same order, the 

new enriched elements take more time to construct the stiffness matrices, and the standard elements requires more 
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time to solve the linear equations. When the number of element layer is more than 8, the equation solving time 

becomes major computational cost, and much less computational cost is required for the new enriched elements. 

 

  

Table 3.16. Solution times (in seconds) for constructing the stiffness matrix and solving the linear equations with 

the direct Gauss elimination when using the hexahedral quadratic elements (HEX27 and HEX8-d1) for the ad hoc 

problem shown in Fig. 3.11. 

 HEX27 HEX8-d1 

 

N 

Stiffness 

construction 

Equation 

Solving 
Total 

Stiffness 

construction 

Equation 

Solving 
Total 

2 0.00 0.00 0.00 0.02 0.00 0.02 

4 0.03 0.04 0.07 0.14 0.01 0.15 

8 0.28 3.09 3.37 1.13 0.93 2.05 

16 2.97 738.76 741.72 9.25 181.91 191.16 

 

 

Table 3.17. Solution times (in seconds) for constructing the stiffness matrix and solving the linear equations with 

the direct Gauss elimination when using the hexahedral cubic elements (HEX64 and HEX8-d2) for the ad hoc 

problem shown in Fig. 3.11. 

 HEX64 HEX8-d2 

 

N 

Stiffness 

construction 

Equation 

Solving 
Total 

Stiffness 

construction 

Equation 

Solving 
Total 

2 0.05  0.01  0.06  0.29  0.00  0.29  

4 0.39  0.87  1.26  2.30  0.20  2.50  

8 3.34  183.05  186.40  18.49  20.47  38.96  

16 35.73  23368.91 23404.64 149.17  2836.93  2986.10 

 

 

Table 3.18. Solution times (in seconds) for constructing the stiffness matrix and solving the linear equations with 

the direct Gauss elimination when using the prismatic quadratic elements (PRI18 and PRI6-d1) for the ad hoc 

problem shown in Fig. 3.11. 

 PRI18 PRI6-d1 

 

N 

Stiffness 

construction 

Equation 

Solving 
Total 

Stiffness 

construction 

Equation 

Solving 
Total 

2 0.00  0.00  0.00  0.01  0.00  0.01  

4 0.04  0.04  0.07  0.10  0.01  0.11  

8 0.31  3.12  3.42  0.79  0.91  1.69  

16 3.11  804.47  807.58  6.52  181.67  188.18  
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Table 3.19. Solution times (in seconds) for constructing the stiffness matrix and solving the linear equations with 

Gauss direction elimination when using the prismatic cubic elements (PRI40 and PRI6-d2) for the ad hoc problem 

shown in Fig. 3.11. 

 PRI40 PRI6-d2 

 

N 

Stiffness 

construction 

Equation 

Solving 
Total 

Stiffness 

construction 

Equation 

Solving 
Total 

2 0.03  0.01  0.04  0.20  0.00  0.20  

4 0.24  0.86  1.11  1.58  0.19  1.77  

8 2.14  182.46  184.60  12.71  19.79  32.50  

16 23.37  22865.38 22888.74 103.07  2826.91  2929.98 
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3.6. Closure 

 

In this chapter, new enriched 8-node hexahedral, 6-node prismatic, and 5-node pyramidal finite elements were 

presented for 3D analysis in solid mechanics problems. The linear dependence (LD) problem is resolved by 

adopting sets of piecewise linear shape functions for geometry and enriched displacement interpolations. The new 

enriched elements pass all basic tests and show good solution accuracy even when distorted meshes are used. The 

new enriched 3D solid finite elements and the enriched 4-node tetrahedral element are compatible with each other 

and can be used together to construct a finite element model. Since the LD problem was resolved, the cover 

functions can be adaptively applied to 3D solid finite element models to effectively improve the solution accuracy 

without introducing additional nodes or mesh refinement. 
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Chapter 4. Procedure to improve finite element solutions automatically          

by the adaptive use of cover functions. 

 

The most important advantage of the enriched finite element method is that it can increase the accuracy of the 

finite element solutions without remeshing or adding nodes by applying the cover function to the mesh used for 

finite element analysis. These advantages can be used for procedure that improves the accuracy of finite element 

analysis results automatically. This procedure is to improve finite element solution with the adaptive use of cover 

functions after performing finite element analysis. That is, the error for each node is estimated with the analysis 

result. Based on the calculated error, the appropriate orders of cover functions are selected. Then, the finite element 

analysis with the cover functions is performed again to obtain an improved solution. Fig. 4.1 shows an example 

of implementing this procedure using enriched MITC3 shell finite elements with linear cover functions [36]. 

 

In this chapter, we propose error indicator and scheme that determines the order of cover function. The error 

indicator and the scheme are used for procedure to improve finite element solutions automatically by the adaptive 

use of cover functions. We demonstrate the automatic procedure through several 2D problems. Note that we 

consider the 3-node triangular and 4-node quadrilateral elements mesh, and the order of cover function up to 

quadratic. 

 

 

4.1. Error indicator and scheme for the adaptive use of cover functions. 

 

The procedure covered in this chapter employs the adaptive use of cover function to improve finite element 

analysis results. This procedure consists of three steps (see Fig. 4.1), and a brief description of the procedure is as 

follows. First, a finite element model consisting of 3-node triangle and 4-node quadrilateral elements is 

constructed, and a finite element analysis is performed. Based on the analysis results, the order of cover function 

for each node is determined using an error indicator. Then, an analysis is performed on the finite element model 

to which the cover function is applied adaptively according to the error indicator, thereby obtaining the improved 

analysis result. 

 

 

Figure 4.1. Description of the automatic procedure to improve finite element solution with the adaptive use of 
cover functions [35]. 
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For the procedure described above, error indicator is very important. Among various studies for estimating the 

error of the finite element solution [74-76], Kim and Bathe [35] suggested the error indicator and the scheme that 

choose the order of cover functions. They solved several examples to illustrate the performance of the procedure. 

In Kim and Bathe’s study, following requirements that they would like to fulfill with the error indicator are 

considered [35]: 

• The indicator should be simple and computationally efficient. 

• The indicator should asymptotically converge as the actual error converges. 

• The indicator should directly tell where covers are best applied and what cover orders are best used, and 

that for a large range of problems. 

• No parameter should be used in the definition of the error indicator. 

In addition, it is determined that a local error measure rather than a global energy-based error measure is suitable 

for the adaptive use of cover functions 

 

Based on the above descriptions, the error indicator was presented as follows using the stress jump for a scalar 

stress quantity of interest (say τ )  at each node 

βτ
τ i
i

e mean c

J h
M

γ τ L

 
  

 
 with max( ) min( )τ

i i iJ τ τ  , (4.1) 

where iτ  and iJ  are the stress and largest stress jump at node i, respectively, meanτ  is the mean stress over the 

finite element model, h   and cL   are a mesh size and a characteristic length, and eγ   and β   are artificial 

coefficients [35]. They suggested the scheme that determine the order of cover functions using the error indicator 

in Eq. (4.1) as follows: 
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, (4.2) 

in which kγ  , 0, 1, 2k    denotes ‘adaptivity threshold constants’ to be set by the user. However, unlike the 

requirements mentioned above, the error indicator contains many coefficients, and only 2D 3-node triangular and 

3D 4-node tetrahedral elements, of which linear dependence problem can be resolved by suppressing enriched 

DOFs at essential boundary, were considered [35,48]. 

 

In this study, referring to the previous error indicator in Eq. (4.1), a new error indicator based on the stress jump 

is given by 

1/2τ
τ i mean i i
i

mean mean mean c

J J τ χ
M

τ τ τ L

          
     

, (4.3) 

where meanJ  is the mean value of iJ  over the finite element model, iχ  is the diameter of the largest finite 

element sharing the node i. The previous error indicator τ
iM  in Eq. (4.1) includes artificial constants, eγ  and β , 
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while the new error indicator τ
iM  in Eq. (4.2) does not have any artificial coefficients. Note that, for the error 

indicators in Eqs. (4.1) and (4.3), any stress quantity of interest can be employed, but we apply the jump of the 

von Mises stress for the new error indicator. 

 

Since the suggested error indicator in Eq. (4.3) is based on the stress jump as in the previous error indicator in Eq. 

(4.1), the suggested error indicator also converges asymptotically as the actual error. For example, if we calculate 

the error indicator with analysis results of the patch test shown in Figure 2.11, there is no stress jump, so the error 

indicator is calculated as zero. On the other hand, when the stress jump is large, the error indicator is also 

calculated in proportion to the stress jump. 

 

To check whether the indicator asymptotically converges as the actual error converges, we consider the ad-hoc 

problem in Section 2.4.1 and regular quadrilateral meshes are used when 8,16, ,128N    . For each finite 

element model, von Mises stress jump value ( max( ) min( )v v
i i iJ τ τ   ), von Mises stress error value 

( , ,
ref h

i v i v ie τ τ  ), and suggested error indicator in Eq. (4.3) are calculated. The average values of all nodes are 

evaluated and shown in Fig. 4.2. As the error converges, the proposed error indicator also converges, and the 

proposed error indicator is simple to calculate. The examples in the next section confirm that the proposed error 

indicator selects appropriate cover orders. 

 

The order of cover functions for each node is determined by following scheme: 

0 0.1

( ) 1 0.1 0.2

2 0.2

τ
i
τ
i
τ
i

if M

d i if M

if M


  
 

. (4.4) 

The coefficients used in this scheme are determined through the tool jig problem in Section 4.2.1. The error 

indicator range for each order of cover function is provided, but these can be changed according to the purpose of 

the user. 

 

 

Figure 4.2. Ad hoc problem: convergence of the averaged stress jump values, stress error values and error 
indicators in the von Mises stress. 
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In the following sections, we demonstrate the procedure to improve finite element solutions automatically by the 

adaptive use of cover functions. The tool jig problem, the wrench problem, and the wheel problem are considered, 

and the 3-node triangular and 4-node quadrilateral elements are used for the finite element model. We apply the 

scheme in Eq. (4.4) without any change of the error indicator range to all problems. Note that, to avoid the linear 

dependence problem, the new enriched 4-node element proposed in Section 2 is used for analysis. 
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4.2. Numerical examples 

 

4.2.1. Tool jig 

Let’s consider a tool jig problem shown in Fig. 4.3(a). The tool jig is subjected to a constant pressure on its top 

surface (the line AB) and the fixed boundary condition is applied along the line AC. Three mesh patterns (Mesh 

1~3) shown in Fig. 4.3(c) are used. 

 

Fig. 4.4 shows the calculated error indicator in Eq. (4.3) when the standard 4-node quadrilateral elements are used 

with three mesh patterns in Fig. 4.3(c). On the horizontal axis, 0 indicates the node with the smallest error indicator, 

and 1 represents the node whose error indicator is the maximum value. The vertical axis represents the error 

indicator value. Using finer mesh (from Mesh 1 to Mesh 3), the error indicator is calculated to a smaller value. 

That is, as the error decreases, the error indicator value also tends to decrease. 

 

 

Figure 4.3. The tool jig problem: (a) problem description, 11 22.0 10 /E N m  , 0.3v  , (b) von Mises stress 

distribution of the reference solution, and (c) Meshes 1, 2, and 3 used. 
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Figure 4.4. The error indicator for the tool jig problem with three different meshes. 

 

For Meshes 1-3, first we perform analysis with the standard 4-node element. Then, based on the error indicator in 

Eq. (4.3) and the scheme in Eq. (4.4), the cover functions are adaptively applied and an improved finite element 

solutions are obtained. Fig. 4.5 and Table 4.1 show how the cover functions are applied and analysis results for 

each quadrilateral mesh. The adaptive scheme with Mesh 1 uses quadratic covers on almost all nodes, while the 

adaptive scheme with Mesh 3 applied linear and quadratic covers to less than half of nodes. Comparing the 

solutions obtained by the adaptive scheme with the solutions of the standard 4-node element, it is clearly observed 

that the adaptive use of cover function is very effective in predicting strain energy and von Mises stress. 

 

We also consider triangular meshes obtained by dividing quadrilateral elements shown in Fig. 4.4(c) into two 

triangular elements. Analysis results of the standard 3-node elements and the adaptive use of cover functions are 

summarized in Fig. 4.6 and Table 4.2. Similar to the quadrilateral mesh results shown in Fig. 4.5, the automatic 

procedure provides much more accurate solutions. 
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Figure 4.5. von Mises stress results of the tool jig problem shown in Fig. 4.4(a): (a) results of the standard 4-node 
element, (b) how the cover functions are applied, and (c) results of the adaptive use of cover functions. (DOFs = 
the number of degrees of freedom used, Error = , , ,| | / 100%v ref v h v refτ τ τ  ) 

 

 

Table 4.1. Computational results for the tool jig problem shown in Fig. 4.4 when 4-node quadrilateral elements 

are used. Relative error (%) in von Mises stress, , , ,| | / 100vτ
h v ref v h v refE τ τ τ    . Relative error (%) in strain 

energies, ,| | / 100e
h ref v h refE e e e    

  
Standard 4-node element 
(QUAD4) 

Adaptive use of  
interpolation covers 

Mesh 1 
 

Relative error in 
strain energy 

64.06 % 6.59 % 

 
Relative error in 
von Mises stress at the point P

51.00 % 14.43 % 

 DOFs 182 962 

Mesh 2 
 

Relative error in 
strain energy 

38.24 % 3.96 % 

 
Relative error in 
von Mises stress at the point P

42.03 % 0.88 % 

 DOFs 655 2606 

Mesh 3 
 

Relative error in 
strain energy 

15.67 % 5.13 % 

 
Relative error in 
von Mises stress at the point P

18.94 % 1.80 % 

 DOFs 2270 5324 

Reference 2
, 13193 /v refτ N m , 73.4538 10refe Nm    
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Figure 4.6. von Mises stress results of the tool jig problem when triangular elements are used: (a) results of the 
standard 3-node element, (b) how the cover functions are applied, and (c) results of the adaptive use of cover 
functions. (DOFs = the number of degrees of freedom used, Error = , , ,| | / 100%v ref v h v refτ τ τ  ) 

 

 

Table 4.2. Computational results for the tool jig problem shown in Fig. 4.4(a) when 3-node triangular elements 

are used. Relative error (%) in von Mises stress, , , ,| | / 100vτ
h v ref v h v refE τ τ τ    . Relative error (%) in strain 

energies, ,| | / 100e
h ref v h refE e e e    

  
Standard 3-node element 
(TRI3) 

Adaptive use of  
interpolation covers 

Mesh 1 
 

Relative error in 
strain energy 

69.29 % 4.93 % 

 
Relative error in 
von Mises stress at the point P

72.15 % 12.32 % 

 DOFs 182 1008 

Mesh 2 
 

Relative error in 
strain energy 

48.56 % 1.92 % 

 
Relative error in 
von Mises stress at the point P

54.29 1.72 % 

 DOFs 655 3068 

Mesh 3 
 

Relative error in 
strain energy 

26.02 % 4.72 % 

 
Relative error in 
von Mises stress at the point P

30.93 % 0.56 % 

 DOFs 2270 6414 

Reference 2
, 13193 /v refτ N m , 73.4538 10refe Nm    
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4.2.2. Wrench 

The wrench problem subjected to a uniform pressure load is solved, see Fig. 4.7(a). We first perform the linear 

static analysis using Meshes 1-2 shown in Fig. 4.7(b), and then using the error indicator in Eq. (4.3) and the 

scheme in Eq. (4.4), the cover functions are applied adaptively. Analysis results are summarized in Fig. 4.8 and 

Table 4.3. Like the tool jig problem in the previous section, smaller cover functions are applied as finer mesh is 

used. It is also shown that the solution accuracy can be improved through the automatic procedure described in 

Section 4.1 

 

 

Figure 4.7. The tool jig problem: (a) Problem description ( 7 21.0 10 /E N m  , 0.3v  ) and (c) Meshes 1 and 2 
used. 
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Figure 4.8. von Mises stress results of the wrench problem when quadrilateral elements are used: (a) results of the 
standard 4-node element, (b) how the cover functions are applied, and (c) results of the adaptive use of cover 
functions. (DOFs = the number of degrees of freedom used, Error = , , ,| | / 100%v ref v h v refτ τ τ  ) 
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Table 4.3. Computational results for wrench problem shown in Fig. 4.7(a) when 4-node quadrilateral elements are 

used. Relative error (%) in von Mises stress, , , ,| | / 100vτ
h v ref v h v refE τ τ τ   . Relative error (%) in strain energies, 

,| | / 100e
h ref v h refE e e e    

  
Standard 4-node element 
(QUAD4) 

Adaptive use of  
interpolation covers 

Mesh 1 
 

Relative error in 
strain energy 

5.88 % 2.45 % 

 
Relative error in 
von Mises stress at the point P

11.04 % 1.20 % 

 DOFs 360 900 

Mesh 2 
 

Relative error in 
strain energy 

2.48 % 2.39 % 

 
Relative error in 
von Mises stress at the point P

12.74 % 4.43 % 

 DOFs 1102 1722 

Reference 2
, 93.86 /v refτ N m , 71.8764 10refe Nm    

 

4.2.3. Wheel 

Let’s consider a 2D automotive wheel with a radius of 0.2m, in which a lower part of the outer circle is subjected 

to a pressure and the inner circle is fixed, see Fig. 4.9(a).The wheel structure is modeled using the 3-node triangular 

and 4-node quadrilateral elements and two difference meshes are considered: Mesh 1 (coarse mesh, 360 

quadrilateral and 546 triangular elements) and Mesh 2 (fine mesh, 2,289 quadrilateral and 18 triangular elements), 

see Fig. 4.9(b). 

 

As in the previous sections, the finite element analyses are performed along the automatic procedure. The results 

of the standard linear elements and automatic procedure, and how the cover functions are applied for Meshes 1-2 

are summarized in Fig. 4.10 and Table 4.4. When the automatic scheme is applied to Meshes 1-2, it can be seen 

that the cover functions are applied to only local areas where high stress gradient occurs. 

 

The automatic procedure provides much more accurate solutions than standard linear element. In addition, when 

the cover functions are applied adaptively on the Mesh 1, a more accurate solution is obtained with smaller DOFs 

than when the standard linear elements used on the Mesh 2. 
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Figure 4.9. The wheel problem: (a) Problem description ( 11 22.0 10 /E N m  , 0.3v  ), (b) Meshes 1 and 2 used. 

 

 

 

 

Figure 4.10. von Mises stress results obtained by applying interpolation covers adaptively: (a) results of the 

standard 3-node and 4-node elements, (b) how the cover functions are applied, and (c) results of the adaptive use 

of cover functions. (DOFs = the number of degrees of freedom used, Error = , , ,| | / 100%v ref v h v refτ τ τ  ). 
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Table 4.4. Computational results for the wheel problem shown in Fig. 4.10(a). Relative error (%) in von Mises 

stress, , , ,| | / 100vτ
h v ref v h v refE τ τ τ   . Relative error (%) in strain energies, ,| | / 100e

h ref v h refE e e e    

  
Standard 4-node and 3-node 
elements (QUAD4, TRI3) 

Adaptive use of  
interpolation covers 

Mesh 1 
 

Relative error in 
strain energy 

9.04 % 2.02 % 

 
Relative error in 
von Mises stress at the point P

19.59 % 1.90 % 

 DOFs 1532 3714 

Mesh 2 
 

Relative error in 
strain energy 

2.66 % 2.09 % 

 
Relative error in 
von Mises stress at the point P

3.75 % 0.14 % 

 DOFs 5268 7240 

Reference 7 2
, 1.384 10 /v refτ N m  , 16.970 10refe Nm    
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4.3. Closure 

 

In this chapter, feasibility of the adaptive use of cover functions to automatically improve solution accuracy was 

demonstrated through several problems. New error indicator based on stress jump and scheme that select the 

appropriate order of cover function for each node were presented. The new error indicator ( τ
iM ) doesn’t have any 

coefficients and asymptotically converge as the actual error converges. To all problems in this chapter, the error 

indicator range in the scheme in Eq. (4.4) is applied identically, and the automatic procedure provides significantly 

improved solution accuracy.  

Further research is required on large finite element models and 3D problems so that the automatic procedure can 

be applied to practical engineering problems in the future. In addition, the adaptive use of cover function and the 

local mesh refinement may be more effective if used properly at the same time. It would also be valuable to 

conduct a study on this to develop more effective ways to improve finite element analysis solutions using both the 

local mesh refinement and the adaptive use of cover functions appropriately. 
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Chapter 5. The strain-smoothed element enriched by interpolation covers 

 

The 3-node triangular element has been widely used for analysis of 2D solid mechanics problem due to their 

simplicity and efficiency. However, the predictive capability of the standard 3-node triangular finite element is 

insufficient to be used for engineering practice [53]. Many researchers have been carried out to develop 3-node 

triangular element with improved accuracy while maintaining its advantages. 

 

The smoothed finite element method (SFEM) was proposed by Liu et al. [77] and has been successfully applied 

to various mechanics problems [77-96]. In the SFEM, smoothing domains are defined and piecewise constant 

strain fields are constructed in each smoothing domain. The cell-based, node-based, edge-based, and face-based 

SFEM methods were developed, and their smoothing domains are defined based on cell, node, edge, and face, 

respectively. The SFEM does not require additional DOFs, and edge-based SFEM is generally known as to be 

most effective among the SFEM methods. Recently, Lee and Lee proposed the new strain-smoothed element (SSE) 

method for the 3-node triangular and 4-node tetrahedral elements which show improved convergence behavior 

compared to the standard and edge-based smoothed elements [97]. 

 

In this chapter, the polynomial enrichment scheme is applied to the strain-smoothed 3-node triangular element 

which shows improved convergence behavior than that of the standard element. The feasibility of improving the 

solution accuracy through the adaptive use of cover functions is demonstrated. 

 

 

5.1. Strain-smoothed 3-node triangular element 

 

Here, we briefly review the formulation of the strain-smoothed element (SSE) method for the 3-node triangular 

element. The geometry interpolation of the standard 3-node triangular 2D solid element is described by 

3

1

( , ) ( , )i i
i

r s h r s


 x x  with [ ]T
i i ix yx ,                      (5.1) 

in which ix  is the position vector of node i in the global Cartesian coordinate system (see Fig. 2.3), ih  is the 

shape function of the standard isoparametic procedure corresponding to node i given by 

1 2 31 , ,h r s h r h s     . (5.2) 

The displacement of the standard 3-node triangular 2D solid element is interpolated by  

3

1

( , ) ( , )i i
i

r s h r s


 u u  with [ ]T
i i iu vu ,                      (5.3) 

where iu  is the standard nodal displacement vector of node i in the global Cartesian coordinate system. Note 

that the standard nodal displacement vector, iu   is expressed using the upper bar to distinguish it from the 

enriched DOFs vector, ˆ iu  with upper hat, see Section 2.1.2. 
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Employing the standard isoparametric finite element procedure, the stain field of the standard 3-node triangular 

element m is obtained using 

( ) ( ) ( )m m mε B u                    

with ( )
1 2 3[ ]m TB B B B , ( )

1 2 3[ ]m Tu u u u ,                  (5.4) 

in which  ( )mB  is the strain-displacement matrix of an element m, ( )mu  is the standard nodal displacement vector 

of an element m, and  iB  is the standard strain-displacement matrix corresponding to node i. The upper bar in 

( )mε  and iB  means that the strain and the strain-displacement matrix in Eq. (5.4) correspond to the standard 

DOFs. 

 

With the strain-smoothed element (SSE) method, the strains of all neighboring elements are used in the strain 

smoothing process. In case of the 3-node triangular element, the strains of up to three neighboring elements can 

be utilized through element edge where ( )mε  is the strain of a target element m and ( )kε  is the strain of the kth 

neighboring element, see Fig. 5.1(a) [97]. 

 

Between the target element m and its neighboring elements, smoothed strain can be defined as follows: 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

1k m m k k
m k

A A
A A

 


ε ε ε
  with 1, 2,3k  ,                  (5.5) 

where ( )mA  and ( )kA  are the areas of the target element m and the kth neighboring element, respectively, see Fig. 

5.1(b). If there is no neighboring element for the kth edge of the target element, we use ( ) ( )m kε ε


. The smoothed 

strain in Eq. (5.1) can also expressed in a matrix and vector form 

( ) ( ) ( )k k kε B u
 

  

with ( )
1 1 1 3

k
k 

   B B B B B
    

, ( )
1 2 3 3

k T
k    u u u u u

 ,          (5.6) 

in which ( )kB


 and ( )ku


 are the strain-displacement matrix and the corresponding displacement vector of the 

element for the smoothed strains ( )kε


. The subscript i in iB


 and iu  denotes the neighboring node number, see 

Fig. 5.1(a). 

 

The strain field of the strain-smoothed 3-node triangular element can be obtained by assigning the smoothed strain 

( )kε


 in Eq. (5.6) into the Gauss integration points (a, b, and c shown in Fig. 5.1(c)) of the target element m, shown 

in Fig. 5.1(a), using the following equations 

     (1) (3) (1) (2) (2) (3)1 1 1
, , .

2 2 2
a b c     ε ε ε ε ε ε ε ε ε

     
 (5.7) 

The obtained strain field of the target element m can be expressed as follows: 

( ) 1
1 ( 2 )m a b cr p s p

r s p
q p q p q p

   
         

ε ε ε ε , (5.8) 

where p = 1/6 and q = 4/6.  

 

When the target element m has three neighboring elements, th strain-displacement relation can be expressed in a 
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matrix and vector form as 

( ) ( ) ( )m m mε B u   (5.9) 

with 

( )
1 2 3 4 5 6

m    B B B B B B B       , (5.10) 

( )
1 2 3 4 5 6

m    u u u u u u u , (5.11) 

in which ( )mB  is the strain-displacement matrix of the strain-smoothed 3-node triangular element m, and ( )mu  is 

the corresponding displacement vector of element m. 

 

The strain-smoothed 3-node triangular element passes the isotropy, zero energy mode, and patch tests and shows 

improved convergence behavior, when compared to the standard and edge-based smoothed elements [97]. 

 

 

 

 

Figure 5.1. Strain-smoothed element method for the 3-node triangular element: (a) Strains of a target element m 

and its neighboring elements. Node numbers are used for explaining the formulation. (b) Strain smoothing 

between the target and each neighboring element. (c) Three Gauss integration points in the natural coordinate 

system (r, s). (d) Construction of the smoothed strain field. 
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5.2. Enriched strain-smoothed 3-node triangular element 

 

In this section, we present an strain-smoothed 3-node triangular element enriched by polynomial cover functions. 

The geometry interpolation of the enriched strain-smoothed 3-node element is identical to that of the 

corresponding standard finite element in Eq. (5.1), while the strain field is modified using the strain-smoothed 

element (SSE) method.  

 

The strain vector of the enriched strain-smoothed 3-node element m is divided into two strain vectors 

corresponding to the standard DOFs ( )mu  and the enriched DOFs ( )ˆ mu , and the strain-smoothed element (SSE) 

method is applied to the strain vector corresponding to the standard DOFs.  

 

The strain vector of the enriched 3-node triangular element is given by 

( ) ( ) ( )ˆm m m ε ε ε  with (5.12) 

( ) ( ) ( )m m mε B u , ( )
1 2 3

m    B B B B , ( )
1 2 3

m T   u u u u , (5.13) 

( ) ( ) ( )ˆˆ ˆm m mε B u , ( )
1 2 3

ˆ ˆ ˆ ˆm    B B B B , ( )
1 2 3ˆ ˆ ˆ ˆm T   u u u u , (5.14) 

in which ( )mε  and ( )ˆ mε  are the strain vectors corresponding to the standard DOFs and the enriched DOFs, 

respectively, ( )mu  is the standard nodal displacement vector of an element m, and ( )mB  is the corresponding 

strain-displacement matrix of an element m, respectively. ( )ˆ mu  and ( )ˆ mB  are the enriched DOFs vector and the 

corresponding strain-displacement matrix of an element m, respectively. Detail explanations for the enrichment 

scheme is given in Section 2.1.2. 

 

By applying SSE method for the strain vector ( )mε  corresponding to the standard DOFs, the strain field of the 

enriched strain-smoothed 3-node element is obtained: 

( ) ( ) ( )ˆm m m ε ε ε   (5.15) 

with  

( ) ( ) ( )m m mε B u  , ( )
1 2 3 4 5 6

m    B B B B B B B       , ( )
1 2 3 4 5 6

m    u u u u u u u , (5.16) 

where ( )mB  is the strain-displacement matrix of the strain-smoothed 3-node triangular element m, and ( )mu  is 

the corresponding displacement vector of element m, see Fig. 5.1(a) and Eqs. (5.10) and (5.11). 

 

Note that the strain vector of the enriched strain-smoothed 3-node element corresponding to the standard DOFs 

( ( )mε ) is the same with that of the strain-smoothed 3-node element (see Section 5.1), and the strain vector of the 

enriched strain-smoothed 3-node element corresponding to the enriched DOFs ( ( )ˆ mε ) is identical to that of the 

enriched 3-node element (see Section 2.1).  
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5.3. Numerical examples 

 

The enriched strain-smoothed 3-node triangular element, presented in previous section, passes the isotropy, zero 

energy mode, and patch tests for arbitrary cover enrichment, see Fig. 5.2 [1,36]. In all tests, to avoid the linear 

dependence problem, enriched DOFs ˆ
iu  are suppressed at nodes on the essential boundary. 

 

 

 

 

Figure 5.2. Finite element models for isotropy, zero energy mode and patch tests: (a) Single element for isotropy 

and zero energy mode tests and (b) Mesh for patch tests. 

 

 

In the following section, we investigate the convergence and effectiveness of the enriched strain-smoothed 3-node 

triangular element. Convergence is explored using the cook beam problem. In the tool jig problem, the finite 

element analyses are performed through the automatic procedure, and the results of the adaptive scheme with the 

strain-smoothed 3-node element are compared with that of the standard 3-node element. 

 

5.3.1 Cook’s skew beam problem 

We solve Cook’s skew beam problem shown in Fig. 5.3. The 2D structure is subjected to distributed shear force 

of total magnitude P = 1 at the right edge, and fixed boundary condition is applied on the left edge. The plane 

stress condition with E = 3ⅹ107 and v = 0.3 are applied. 

 

We consider two linear elements (TRI3, SS-TRI3): 

• TRI3: standard 3-node triangular element, 

• SS-TRI3: strain-smoothed 3-node triangular element. 

and two quadratic elements (TRI3-d1, SS-TRI3-d1): 

• TRI3-d1: enriched 3-node triangular element by linear covers, 

• SS-TRI3-d1: enriched strain-smoothed 3-node triangular element by linear covers, 
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and two cubic elements (TRI3-d2, SS-TRI3-d2): 

• TRI3-d2: enriched 3-node triangular element by quadratic covers, 

• SS-TRI3-d2: enriched strain-smoothed 3-node triangular element by quadratic covers, 

The solutions are obtained with N N  element meshes ( N = 2, 4, 8, 16, and 32). 

 

 

Figure 5.3. Cook’s skew beam problem (2ⅹ2 mesh, E = 3ⅹ107 and v = 0.3). 

 

Fig. 5.4 and Table 5.1 show the strain energy value and convergence curves of the linear, quadratic, and cubic 

elements for the cook’s skew beam problem. The strain-smoothed 3-node triangular element shows much better 

convergence behavior than do the standard 3-node triangular element. The convergence behavior of the enriched 

strain-smoothed elements (SS-TRI3-d1, SS-TRI3-d2) is similar to the convergence behavior of the enriched 

elements (TRI3-d1, TRI3-d2). In Section 2.4.1, it is shown that the enriched elements (TRI3-d1, TRI3-d2) present 

good convergence behaviors. Therefore, the enriched strain-smoothed elements (SS-TRI3-d1, SS-TRI3-d2) can 

be considered to show good convergence behavior. 

 

 

Figure 5.4. Convergence curve of the Cook’s skew beam problem shown in Fig. 5.3. 
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Table 5.1. Computational results for the cook’s skew beam problem shown in Fig. 5.3. Relative error (%) in strain 
energies, ,| | / 100e

h ref v h refE e e e   . ( 73.9999 10refe   ) 

 
Linear elements Quadratic elements Cubic elements 

N TRI3 SS-TRI3 TRI3-d1 SS-TRI3-d1 TRI3-d2 SS-TRI3-d2

2 72.34 48.72 15.96 12.59 2.37 5.48 

4 53.27 11.48 4.17 2.02 0.92 0.14 

8 27.78 2.01 1.13 0.32 0.35 0.31 

16 10.09 0.50 0.38 0.08 0.16 0.09 

32 3.06 0.18 0.17 0.06 0.10 0.01 

 

 

5.3.2 Tool jig 

We here illustrate the automatic procedure, presented in Chapter 4, with a tool jig problem shown in Fig. 5.5(a). 

The too jig is subjected to a constant pressure on its top surface (the line AB) and the fixed boundary condition is 

applied along the line AC. Four triangular meshes (Mesh 1~4) are considered. 

 

Figure 5.5. The tool jig problem: (a) problem description, 11 22.0 10 /E N m  , 0.3v  , (b) von Mises stress 

distribution of the reference solution, and (c) triangular meshes used (Mesh 1-4) 
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Analysis results of the automatic procedure with the strain-smoothed element (SS-TRI3) and the enriched strain-

smoothed elements (SS-TRI3-d1, SS-TRI3-d2) are shown in Fig. 5.6. In cases of Mesh 1, 2, and 3, improved 

solutions are obtained by applying the cover function adaptively. In particular, the accuracy of the strain energy is 

significantly improved. 

 

 

Figure 5.6. von Mises stress and strain energy results of the tool jig problem shown in Fig. 5.5(a): (a) results of 
the strain-smoothed 3-node element, (b) how the cover functions are applied, and (c) results of the adaptive use 
of cover functions. (DOFs = the number of degrees of freedom used, von Mises stress error = 

, , ,| | / 100%v ref v h v refτ τ τ  , strain energy error = , , ,| | / 100%v ref v h v refe e e  ) 

 

We additionally compare results of the automatic procedure when the standard 3-node element (TRI3) and strain-

smoothed 3-node element (SS-TRI3) are used in the same mesh pattern (Mesh 3-4). The results obtained by 

applying the same automatic procedure for two elements (TRI3 and SS-TRI3) are shown in Figs 5.7 and 5.8. Note 

that the same scheme that determines the order of cover function for each node in Eq. (4.4) are applied to both 

elements.  

 

Since the strain-smoothed element (SS-TRI3) provides a more accurate solution than the stand element (TRI3), 

the cover function is applied less in case of the strain-smoothed element (SS-TRI3). Therefore, the automatic 

procedure with the strain-smoothed element (SS-TRI3) uses smaller DOFs than the automatic procedure with the 

standard element (TRI3). Nevertheless, the strain-smoothed element with the adaptive use of cover function shows 

sufficiently accurate results. 
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Figure 5.7. Computation results of the tool jig problem shown in Fig. 5.5(a) when the automatic procedure applied 
for Mesh 3 with the standard 3-node element (TRI3) and the strain-smoothed 3-node element (SS-TRI3): (a) 
results of the standard 3-node element (TRI3) and the strain-smoothed 3-node element (SS-TRI3), (b) how the 
cover functions are applied, and (c) results of the adaptive use of cover functions. (DOFs = the number of degrees 
of freedom used, von Mises stress error = , , ,| | / 100%v ref v h v refτ τ τ   , strain energy error = 

, , ,| | / 100%v ref v h v refe e e  ) 
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Figure 5.8. Computation results of the tool jig problem shown in Fig. 5.5(a) when the automatic procedure applied 
for Mesh 4 with the standard 3-node element (TRI3) and the strain-smoothed 3-node element (SS-TRI3): (a) 
results of the standard 3-node element (TRI3) and the strain-smoothed 3-node element (SS-TRI3), (b) how the 
cover functions are applied, and (c) results of the adaptive use of cover functions. (DOFs = the number of degrees 
of freedom used, von Mises stress error = , , ,| | / 100%v ref v h v refτ τ τ   , strain energy error = 

, , ,| | / 100%v ref v h v refe e e  ) 
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5.4. Closure 

 

In this chapter, we proposed an strain-smoothed 3-node triangular element enriched by polynomial cover functions. 

The strain field of the enriched 3-node element was divided into two parts, one corresponding to the standard 

DOFs and the other corresponding to the enriched DOFs. The strain-smoothed element (SSE) method, proposed 

by Lee and Lee [97], was applied to the strain field corresponding to the standard DOFs. In the cook’s skew beam 

problem, the enriched strain-smoothed element shows good convergence behavior. In addition, the feasibility of 

improving the solution accuracy through the automatic procedure using the enriched strain-smoothed element was 

shown. 
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Chapter 6. Conclusions and Future works 

 

This dissertation focused on developing the 2D and 3D solid finite elements (4-node quadrilateral, 8-node 

hexahedral, 6-node prismatic, and 5-node pyramidal elements) enriched by interpolation covers. The linear 

dependence problem of the enriched elements was resolved in a simple and effective way. The developed elements 

pass the basic tests (the patch, zero energy mode, and isotropy tests for arbitrary enrichment) and show good 

convergence behaviors. In addition, the adaptive use of cover function, a most important advantage of the enriched 

elements, was demonstrated through several examples. 

 

First, we proposed the new enriched 2D 4-node quadrilateral solid finite elements free from the linear dependence 

problem. To resolve the linear dependence problem, the piecewise linear shape functions for 4-node quadrilateral 

element were proposed and adapted for the geometry and displacement interpolations of the enriched element. 

The linear dependence problem was tested using various mesh patterns and no rank deficiency was observed. The 

effectiveness and performance of proposed element were demonstrated through several problems. 

 

Second, the new enriched 3D 8-node hexahedral, 6-node prismatic, and 5-node pyramidal solid finite elements 

were proposed. The linear problem of the enriched 3D solid elements was avoid in the similar way of the new 

enriched 2D 4-node quadrilateral element. That is, the sets of piecewise linear shape functions for 8-node 

hexahedral, 6-node prismatic, and 5-node pyramidal elements were proposed and applied for the geometry and 

displacement interpolations. It was shown that the new enriched 3D solid element are free from the linear 

dependence problem. Through several problems, the performance and effectiveness of the developed elements 

were tested.  

 

Third, the feasibility of improving solution accuracy with the adaptive use of cover functions was demonstrated. 

To apply the cover functions automatically, we presented the error indicator and the scheme that selects the 

appropriate order of cover functions for each node. The presented error indicator does not include any coefficients 

and asymptotically converges as the actual error converges. The automatic procedure using the error indicator and 

the scheme provided significantly improved solution for several 2D problems. 

 

Finally, the enriched strain-smoothed 3-node triangular element was proposed. The strain components of the 

enriched 3-node element was divided into two parts, one corresponding to the standard DOFs and the other 

corresponding to the enriched DOFs, and the strain-smoothed element (SSE) method was applied to the strain part 

corresponding to the standard DOFs. The enriched strain-smoothed 3-node element shows good convergence 

performance. We also compared the results of the automatic procedure with the standard 3-node element and the 

strain-smoothed 3-node element. It was shown that the automatic procedure with the strain-smoothed element 

provides sufficiently accurate analysis results even with smaller DOFs than the automatic procedure with the 

standard element.  
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In the future work, it would be valuable to develop the enriched 4-node plate and shell finite elements free from 

the linear dependence problem by applying the piecewise linear shape function presented in Chapter 2. We expect 

that they will also show good convergence performance with distorted meshes, if shear and membrane locking 

are properly alleviated using the MITC method. It also expected to expand the new enriched 2D and 3D solid 

finite elements for nonlinear analysis because the enriched elements provide good accuracy in stress prediction. 

 

To use the automatic procedure improving the solution accuracy with the adaptive use of cover functions 

practically, further research is needed. Various 2D and 3D problems and large finite element models should be 

considered to verify and improve the automatic procedure. In addition, the adaptive use of cover function and the 

local mesh refinement may be more effective if used properly at the same time. It would also be valuable to 

conduct a study on this to develop more effective ways to improve solution of the finite element analysis. 
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Appendix 

 

 

Appendix A. The shape functions of the standard isoparametric procedure. 

 

The shape functions of the 8-node hexahedral element shown in Fig. 3.1 are 

1( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 2 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 

3 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 4 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 

5 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 6 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 

7 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 8 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , (A.1) 

where subscript means the node index corresponding to each shape function. 

 

The shape functions of the 6-node prismatic element shown in Fig. 3.1 are 

1( , , ) (1 )(1 t) / 2h r s t r s    , 2 ( , ) (1 t) / 2h r t r  , 3 ( , ) (1 t) / 2h s t s  , 

4 ( , , ) (1 )(1 t) / 2h r s t r s    , 5 ( , ) (1 t) / 2h r t r  , 6 ( , ) (1 t) / 2h s t s  ,   (A.2) 

where subscript means the node index corresponding to each shape function. 

 

The shape functions of the 5-node pyramidal element shown in Fig. 3.1 are 

1( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 2 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 

3 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 4 ( , , ) (1 )(1 )(1 t) / 8h r s t r s    , 5 ( ) (1 t) / 2h t   , (A.3) 

where subscript means the node index corresponding to each shape function. 

 

The shape functions of the 4-node tetrahedral element shown in Fig. 3.1 are 

1( , , ) 1h r s t r s t    , 2 ( )h r r , 3 ( )h s s , ( )th t t ,   (A.4) 

where subscript means the node index corresponding to each shape function. 

 



- 116 - 

Appendix B. The points used as vertices of each tetrahedral sub-domain of the 8-
node hexahedral, 6-node prismatic and 5-node pyramidal elements. 

 

Table B.1. Coordinates of points of the 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements in 

the natural coordinate system shown in Fig. 3.1. 

8-node hexahedral element  6-node prismatic element 5-node pyramidal element 

Point j jr  js  jt   Point j jr  js jt  Point j jr  js  jt  

1 1 1 -1  1 0 0 -1 1 1 1 -1 

2 -1 1 -1  2 1 0 -1 2 -1 1 -1 

3 -1 -1 -1  3 0 1 -1 3 -1 -1 -1 

4 1 -1 -1  4 0 0 1 4 1 -1 -1 

5 1 1 1  5 1 0 1 5 0 0 1 

6 -1 1 1  6 0 1 1 6 0 0 -1 

7 -1 -1 1  7 0 0.5 0 7 0 0 0 

8 1 -1 1  8 0.5 0 0   

9 1 0 0  9 0.5 0.5 0   

10 -1 0 0  10 1/3 1/3 0   

11 0 1 0    

12 0 -1 0    

13 0 0 1    

14 0 0 -1    

15 0 0 0    

 

 

Table B.2. The points used as vertices of each tetrahedral sub-domain (T1~T24) of the 8-node hexahedral element. 

The element center (point 15) is used for all sub-domains. 

Sub-
domain 

Point Sub-
domain

Point Sub-
domain

Point 

(1) (2) (3) (1) (2) (3) (1) (2) (3) 

T1 5 8 9 T9 5 1 11 T17 5 6 13 

T2 8 4 9 T10 1 2 11 T18 6 7 13 

T3 4 1 9 T11 2 6 11 T19 7 8 13 

T4 1 5 9 T12 6 5 11 T20 8 5 13 

T5 6 2 10 T13 8 7 12 T21 1 4 14 

T6 2 3 10 T14 7 3 12 T22 4 3 14 

T7 3 7 10 T15 3 4 12 T23 3 2 14 

T8 7 6 10 T16 4 8 12 T24 2 1 14 

 

 



- 117 - 

 

Table B.3. The points used as vertices of each tetrahedral sub-domain (T1~T14) of the 6-node prismatic element. 

The element center (point 10) is used for all sub-domains. 

Sub-
domain 

Point Sub-
domain

Point Sub-
domain

Point 

(1) (2) (3) (1) (2) (3) (1) (2) (3) 

T1 6 4 5 T6 1 4 7 T11 6 5 9 

T2 1 3 2 T7 5 4 8 T12 5 2 9 

T3 4 6 7 T8 4 1 8 T13 2 3 9 

T4 6 3 7 T9 1 2 8 T14 3 6 9 

T5 3 1 7 T10 2 5 8     

 

 

Table B.4. The points used as vertices of each tetrahedral sub-domain (T1~T8) of the 5-node pyramidal element. 

The element center (point 7) is used for all sub-domains. 

Sub-
domain 

Point Sub-
domain

Point Sub-
domain

Point 

(1) (2) (3) (1) (2) (3) (1) (2) (3) 

T1 4 1 5 T4 3 4 5 T7 3 2 6 

T2 1 2 5 T5 1 4 6 T8 2 1 6 

T3 2 3 5 T6 4 3 6    
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Appendix. C. Coefficients of the piecewise linear shape functions in Eq. (3.9). 

 

Table C.1. Coefficients of the piecewise linear shape functions of the 8-node hexahedral element. ˆ 1ia   for 1~ 8i   on all sub-domains. 

Sub-
domain

i = 1  i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

ˆ
ib îc ˆ

id 
 ˆ

ib îc ˆ
id

ˆ
ib îc ˆ

id
ˆ
ib îc ˆ

id
ˆ
ib îc ˆ

id
ˆ
ib îc ˆ

id
ˆ
ib îc ˆ

id
ˆ
ib îc ˆ

id 

T1 1 0 -2  -1 0 0 -1 0 0 1 0 -2 1 4 2 -1 0 0 -1 0 0 1 -4 2 
T2 1 2 0  -1 0 0 -1 0 0 1 -2 -4 1 2 0 -1 0 0 -1 0 0 1 -2 4 
T3 1 4 -2  -1 0 0 -1 0 0 1 -4 -2 1 0 2 -1 0 0 -1 0 0 1 0 2 
T4 1 2 -4  -1 0 0 -1 0 0 1 -2 0 1 2 4 -1 0 0 -1 0 0 1 -2 0 
T5 1 0 0  -1 2 -4 -1 -2 0 1 0 0 1 0 0 -1 2 4 -1 -2 0 1 0 0 
T6 1 0 0  -1 4 -2 -1 -4 -2 1 0 0 1 0 0 -1 0 2 -1 0 2 1 0 0 
T7 1 0 0  -1 2 0 -1 -2 -4 1 0 0 1 0 0 -1 2 0 -1 -2 4 1 0 0 
T8 1 0 0  -1 0 -2 -1 0 -2 1 0 0 1 0 0 -1 4 2 -1 -4 2 1 0 0 
T9 2 1 -4  -2 1 0 0 -1 0 0 -1 0 2 1 4 -2 1 0 0 -1 0 0 -1 0 
T10 4 1 -2  -4 1 -2 0 -1 0 0 -1 0 0 1 2 0 1 2 0 -1 0 0 -1 0 
T11 2 1 0  -2 1 -4 0 -1 0 0 -1 0 2 1 0 -2 1 4 0 -1 0 0 -1 0 
T12 0 1 -2  0 1 -2 0 -1 0 0 -1 0 4 1 2 -4 1 2 0 -1 0 0 -1 0 
T13 0 1 0  0 1 0 0 -1 -2 0 -1 -2 0 1 0 0 1 0 -4 -1 2 4 -1 2 
T14 0 1 0  0 1 0 -2 -1 -4 2 -1 0 0 1 0 0 1 0 -2 -1 4 2 -1 0 
T15 0 1 0  0 1 0 -4 -1 -2 4 -1 -2 0 1 0 0 1 0 0 -1 2 0 -1 2 
T16 0 1 0  0 1 0 -2 -1 0 2 -1 -4 0 1 0 0 1 0 -2 -1 0 2 -1 4 
T17 0 0 -1  0 0 -1 0 0 -1 0 0 -1 4 2 1 -4 2 1 0 -2 1 0 -2 1 
T18 0 0 -1  0 0 -1 0 0 -1 0 0 -1 2 0 1 -2 4 1 -2 -4 1 2 0 1 
T19 0 0 -1  0 0 -1 0 0 -1 0 0 -1 0 2 1 0 2 1 -4 -2 1 4 -2 1 
T20 0 0 -1  0 0 -1 0 0 -1 0 0 -1 2 4 1 -2 0 1 -2 0 1 2 -4 1 
T21 2 4 -1  -2 0 -1 -2 0 -1 2 -4 -1 0 0 1 0 0 1 0 0 1 0 0 1 
T22 0 2 -1  0 2 -1 -4 -2 -1 4 -2 -1 0 0 1 0 0 1 0 0 1 0 0 1 
T23 2 0 -1  -2 4 -1 -2 -4 -1 2 0 -1 0 0 1 0 0 1 0 0 1 0 0 1 
T24 4 2 -1  -4 2 -1 0 -2 -1 0 -2 -1 0 0 1 0 0 1 0 0 1 0 0 1 
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Table C.2. Coefficients of the piecewise linear shape functions of the 6-node prismatic element. 

Sub-
domain

i = 1  i = 2 i = 3  i = 4 i = 5 i = 6 

îa  ˆ
ib îc  ˆ

id 
 

îa  ˆ
ib îc  ˆ

id îa  ˆ
ib îc  ˆ

id 
 

îa  ˆ
ib îc  ˆ

id îa  ˆ
ib îc  ˆ

id îa  ˆ
ib îc  ˆ

id 

T1 1.0 0.0 0.0 -1.0  1.0 0.0 0.0 -1.0 1.0 0.0 0.0 -1.0  5.0 -6.0 -6.0 1.0 -1.0 6.0 0.0 1.0 -1.0 0.0 6.0 1.0 

T2 5.0 -6.0 -6.0 -1.0  -1.0 6.0 0.0 -1.0 -1.0 0.0 6.0 -1.0  1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 

T3 1.5 -1.5 0.0 -1.5  0.0 3.0 0.0 0.0 1.5 -1.5 0.0 -1.5  4.5 -4.5 -6.0 1.5 0.0 3.0 0.0 0.0 -1.5 1.5 6.0 1.5 

T4 3.0 -3.0 -3.0 0.0  0.0 3.0 0.0 0.0 0.0 0.0 3.0 -3.0  3.0 -3.0 -3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 3.0 3.0 

T5 4.5 -4.5 -6.0 -1.5  0.0 3.0 0.0 0.0 -1.5 1.5 6.0 -1.5  1.5 -1.5 0.0 1.5 0.0 3.0 0.0 0.0 1.5 -1.5 0.0 1.5 

T6 3.0 -3.0 -3.0 -3.0  0.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0  3.0 -3.0 -3.0 3.0 0.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0 

T7 1.5 0.0 -1.5 -1.5  1.5 0.0 -1.5 -1.5 0.0 0.0 3.0 0.0  4.5 -6.0 -4.5 1.5 -1.5 6.0 1.5 1.5 0.0 0.0 3.0 0.0 

T8 3.0 -3.0 -3.0 -3.0  0.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0  3.0 -3.0 -3.0 3.0 0.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0 

T9 4.5 -6.0 -4.5 -1.5  -1.5 6.0 1.5 -1.5 0.0 0.0 3.0 0.0  1.5 0.0 -1.5 1.5 1.5 0.0 -1.5 1.5 0.0 0.0 3.0 0.0 

T10 3.0 -3.0 -3.0 0.0  0.0 3.0 0.0 -3.0 0.0 0.0 3.0 0.0  3.0 -3.0 -3.0 0.0 0.0 3.0 0.0 3.0 0.0 0.0 3.0 0.0 

T11 3.0 -3.0 -3.0 0.0  0.0 1.5 1.5 -1.5 0.0 1.5 1.5 -1.5  3.0 -3.0 -3.0 0.0 0.0 4.5 -1.5 1.5 0.0 -1.5 4.5 1.5 

T12 3.0 -3.0 -3.0 0.0  0.0 3.0 0.0 -3.0 0.0 0.0 3.0 0.0  3.0 -3.0 -3.0 0.0 0.0 3.0 0.0 3.0 0.0 0.0 3.0 0.0 

T13 3.0 -3.0 -3.0 0.0  0.0 4.5 -1.5 -1.5 0.0 -1.5 4.5 -1.5  3.0 -3.0 -3.0 0.0 0.0 1.5 1.5 1.5 0.0 1.5 1.5 1.5 

T14 3.0 -3.0 -3.0 0.0  0.0 3.0 0.0 0.0 0.0 0.0 3.0 -3.0  3.0 -3.0 -3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 3.0 3.0 
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Table C.3. Coefficients of the piecewise linear shape functions of the 5-node pyramidal element. ˆ 1ia   for 1~ 5i   on all sub-domains. 

Sub-
domain

i = 1 i = 2 i = 3 i = 4 i = 5 

ˆ
ib îc  ˆ

id ˆ
ib îc  ˆ

id ˆ
ib îc  ˆ

id ˆ
ib îc  ˆ

id ˆ
ib îc  ˆ

id 

T1 0.50 2.50 -1.00 -2.00 0.00 -1.00 -2.00 0.00 -1.00 0.50 -2.50 -1.00 3.00 0.00 4.00

T2 2.50 0.50 -1.00 -2.50 0.50 -1.00 0.00 -2.00 -1.00 0.00 -2.00 -1.00 0.00 3.00 4.00

T3 2.00 0.00 -1.00 -0.50 2.50 -1.00 -0.50 -2.50 -1.00 2.00 0.00 -1.00 -3.00 0.00 4.00

T4 0.00 2.00 -1.00 0.00 2.00 -1.00 -2.50 -0.50 -1.00 2.50 -0.50 -1.00 0.00 -3.00 4.00

T5 1.25 2.50 -0.25 -1.25 0.00 -0.25 -1.25 0.00 -0.25 1.25 -2.50 -0.25 0.00 0.00 1.00

T6 0.00 1.25 -0.25 0.00 1.25 -0.25 -2.50 -1.25 -0.25 2.50 -1.25 -0.25 0.00 0.00 1.00

T7 1.25 0.00 -0.25 -1.25 2.50 -0.25 -1.25 -2.50 -0.25 1.25 0.00 -0.25 0.00 0.00 1.00

T8 2.50 1.25 -0.25 -2.50 1.25 -0.25 0.00 -1.25 -0.25 0.00 -1.25 -0.25 0.00 0.00 1.00
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