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초 록 

본 학위연구에서는 부유식 구조물의 정적 및 동적해석을 통합하기 위한 효과적인 

수치해석 방법을 제안한다. 일반적으로 부유식 구조물의 흘수선은 정적해석을 통해 

계산되며 부유식 구조물의 동적 해석을 위한 접수면의 메쉬 모델을 구성하는데 사용된다. 

다양한 하중 조건을 경험하는 부유식 구조물의 경우 하중 조건의 개수만큼 메쉬모델을 

작성해야 하므로 많은 어려움이 있다. 이 연구는 단윌 메쉬모델을 이용하여 다양한 

하중조건을 가진 부유식 구조물의 동적해석을 수행하고자 한다. 구조물은 유한요소법을 

사용하여 모델링하고 외부유체는 경계요소법을 사용하여 모델링하며, 단일 메쉬는 정수 

및 동적 해석 모두에 사용됩니다. 일치하지 않는 메쉬 처리 기술을 채택하여 부유 구조의 

젖은 표면 메쉬가 자유 표면과 일치할 필요가 없으며 이에 따라 다양한 하중 조건에서 

re-meshing 없이 강체 및 탄성 부유식 구조물에 대한 해석이 가능하다. 

 

또한 주파수 도메인에서 수행되는 유탄성 해석에서 응력의 전달함수를 효율적으로 

계산하는 방법에 대하여 소개하고자 한다. 주파수 도메인에서 유탄성 해석을 수행하면 

실수부와 허수부로 구성된 조화응답 형태의 성분별 응력값이 도출된다. 구조물의 강도를 

평가하기 위하여 응력 성분값을 조합하여 사용한다. 대표적인 응력이 von-Mises 응력과 

주응력이다. 이들 응력은 비조화응답이므로 한주기 동안 최대값을 찾기 위해서는 시간의 

변화에 대한 값들을 직접 계산하여 구하여야 한다. 본 연구에서는 이러한 어려움을 

해결하기 위해, 주파수 도메인에서 강도평가를 위한 응력의 전달함수를 효율적으로 구할 

수 있는 방법을 제안한다. 이 방법은 구조물의 최종강도 및 피로강도 등 건전성 분석 및 

실시간 모니터링 시스템 등을 구현하기 위한 중요한 도구로 활용될 수 있을 것으로 

기대된다. 

 

핵심낱말 유한요소법, 경계요소법, 유탄성, 유체-구조 상호작용, 응력전달함수, 비조화함수 
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Abstract 

This dissertation proposes an effective numerical method to integrate hydro-static and dynamic analysis 

of floating structures. In general, the waterline of floating structures is calculated through hydrostatic 

analysis and is used to construct wet-surface meshes for hydrodynamic analysis of floating structures. 

Those are time consuming and complicated tasks, in particular, when various loading conditions are 

considered. This study focuses on resolving the difficulties. A floating structure is modeled using the 

finite element method and the external fluid is modeled using the boundary element method. A single 

mesh is used for both hydro-static and dynamic analyses. Adopting a non-matching mesh treatment 

technique, the wet surface mesh of the floating structure does not need to match with free surface. 

Hydrodynamic analysis considering both rigid and flexible floating structures is possible without 

remeshing in various loading conditions. The effectiveness of the proposed method is demonstrated 

through several numerical examples. 

 

In addition, we propose an efficient method for calculating the transfer function of stress in the 

frequency domain for hydroelastic analysis. After performing hydroelastic analysis in the frequency 

domain, stress values in the form of harmonic response with real and imaginary components are 

obtained. These stress values need to be combined to calculate representative stresses such as von-Mises 

stress and principal stress, which are non-harmonic responses, and require direct calculation of values 

over time to find the maximum value during one period. To overcome this challenge, this study proposes 

a method to efficiently obtain the transfer function of stress in the frequency domain for evaluating the 

strength of structures. This method is expected to be a valuable tool for implementing integrity analysis 

and real-time monitoring systems for structures, as well as evaluating the ultimate strength and fatigue 

strength of structures in reliability analysis. 

 

Keywords Structural analysis, Finite element method, Fluid structure interaction, Hydroelasticity, 

Hydrodynamic Hydrostatic 
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Chapter 1.  Introduction 

 

  

Analyzing the motion of ships and offshore structures due to various external loads is a very important 

task not only in the design stage but also in the operation process. Numerous related studies have been 

conducted focusing on complex interactions between floating structures and external flow through 

experimental, analytical, and numerical approaches [2-7]. For a long time, hydrodynamic analysis has 

been performed under the assumption that the structure is a rigid body [4, 5]. Over the past decade, the 

enlargement of ships and offshore structures has triggered the development of hydroelastic analysis 

techniques, and related research is progressing quite successfully [8-18]. 

 

In general, the hydrodynamic response is calculated using the hydrostatic equilibrium state as a 

reference configuration. Therefore, in order to perform hydrodynamic analysis, hydrostatic analysis 

must be performed in advance [12,16,34-36]. In other words, the waterline of a floating structure is 

calculated through hydrostatic analysis, a wet-surface mesh matching with the waterline is created, and 

hydrodynamic analysis is performed. In the design of ships and offshore structures, many loading 

conditions are considered. Performing hydrostatic analysis and creating a wet-surface mesh 

corresponding to each loading condition is a very complicated and time-consuming task. 

 

In order to overcome the aforementioned difficulties, it is necessary to integrate hydrostatic analysis 

and hydrodynamic analysis and use a single mesh model. To do so, we should resolve a problem of non-

matching between the waterline and the wet-surface mesh that inevitably occurs. There have been 

several attempts to deal with such non-matching mesh problems in fluid-structure interaction analysis 

[16, 31-33]. 

 

In the frequency domain, the stress of a structure is calculated using the displacement, velocity, 

acceleration, and other parameters obtained through hydroelastic analysis. The stress components of a 
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structure are harmonic functions. To evaluate the strength of a structure, the stress components are 

combined and evaluated[41-50], with representative examples being von-Mises stress and principal 

stress. These stresses are no longer harmonic functions. In the conventional method, the one period is 

divided into equal time intervals, and the maximum value obtained through individual calculations is 

used in the design[42].  

 

The goal of this dissertation is to present novel methods that overcome the drawbacks mentioned above. 

We propose a method for Integrated hydro-static and dynamic analysis of floating structures through 

non-matching mesh treatment. Also, we intend to propose an effective method for obtaining the stress 

transfer function for evaluating the strength of a structure obtained through frequency domain elastic 

analysis. 

 

In Chapter 2, we propose an effective method for hydrodynamic analysis of floating structures with 

various load conditions using a single mesh model. To deal with the non-matching mesh problem, we 

adopt a special numerical integration method, in which remeshing is not necessarily [16]. Through this, 

hydrostatic analysis and hydrodynamic analysis were completely integrated. We demonstrate the 

numerical scheme based on the direct coupling method for 3D hydorelastic analysis, where the structure 

is model using the finite element method, the external fluid is modeled using the boundary element 

method. The direct coupling method can also be used for hydrodynamic analysis of rigid body motion. 

Since hydro-static and -dynamic analyses conducted separately in engineering practice are integrated, 

the time and effort required for hydrodynamic analysis can be significantly reduced, especially when 

various loading conditions are considered. 

 

In Chapter 3, Direct calculation of stress RAOs in hydroelastic analysis is presented. The response of a 

ship or floating structure to unit waves is referred to as the Response Amplitude Operator (RAO), and 

the responses are statistically combined to calculate the structural response in real sea states, which are 

irregular waves[44,51,52]. While the stress components for regular waves are in harmonic function 
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form, we propose a method for finding the maximum value of combined stress, which is in non-

harmonic function form, for evaluating the strength of the structure. Through this approach, we aim to 

improve computational speed compared to conventional methods.  

 

In Chapter 4, conclusions and future works are provided. 
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Chapter 2.  Integrated hydrostatic and hydrodynamic analysis of flexible 

floating structures 

 

We present the Integrated hydrostatic and hydrodynamic analysis of flexible floating structures in this chapter. 

The mathematical formulation in Section 2.1 and the numerical procedure in Section 2.2 are presented. 

In Section 2.3, the effective numerical integration methods are introduced. In Section 2.4, the feasibility 

of the proposed numerical procedure is demonstrated through various problems corresponding to rigid 

and elastic body cases. Finally, the concluding remarks are given. 

 

2.1.  Integrated hydrostatic and hydrodynamic formulation 

 

This section provides the integrated hydrostatic and hydrodynamic formulation based on the hydrostatic 

formulation in Ref. [15] and hydrodynamic formulation in Refs. [11,13,18]. All possible external forces 

that floating structures may be subjected to are taken into account. We adopt mathematical notations in 

Ref. [26] 

 

Fig. 2-1. Floating body at times   and  +   

  

1x

2x

3x

SV

SV +

ix

ix +

iu

DS

WS

SS



5 

 

2.1.1.  Incremental equilibrium equation 

 

As shown in Fig. 2-1, a structure floating in the water is positioned in a fixed Cartesian coordinate 

system with coordinates 
ix  , the origin of which is located on the water plane. The volume of the 

structure is denoted as 
SV  and its surface is represented by 

S D WS S S= , where 
DS  and 

WS  denote 

dry and wet surfaces, respectively. The material for the floating structure is assumed to be homogeneous, 

isotropic, and linear elastic. 

 

The Lagrangian description is employed to obtain the integrated hydrostatic and hydrodynamic 

formulation [26]. Two different configurations at times    and  +    are considered as a known 

(reference) and unknown configurations, respectively. 

 

The structure is subjected to a water pressure field at time  +  

3W DP g x P     + + += − +  (2-1) 

where 
3W g x  +−  and 

DP +  denote the hydrostatic and hydrodynamic pressures, respectively, 
W  

is the fluid density, and g  is the gravitational acceleration. 

 

The equilibrium equations of the floating structure at time  +  are given by 

3 0
ij B

S i S i i

j

x g f
x

 

   

 


  

+

+ +

+


− − + =


  in 

SV + , 

S

ij j in f     + + +=   on 
SS + , 

ij j in P n       + + + += −   on 
WS + , (2-2) 

where ij

 +
 is the Cauchy stress tensor at time  + , 

S  is the density of the floating structure, 

ij   is the Kronecker delta ( 1ij =   if i j=   and 0ij =   otherwise), 2 2( ) ( ) /d dt=   with time 

variable t  , 
in +   is the unit normal vector outward from the structure to the fluid at time  +  , 

B

if
 +  denotes the body force at time  +  except for inertia and gravity forces and, and S

if
 +  

denotes the surface force at time  +  except for the water pressure. 

 

The principle of virtual work at time  +  can be stated as 

S
ij ij S

V
e d V

 

   

  
+

+ +

+ =   (2-3a) 

3
S S

S i i S S S
V V

x u d V g u d V
   

        
+ +

+ + +− −    (2-3b) 
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3
W W

W i i W D i i W
S S

g x n u d S P n u d S
   

             
+ +

+ + + + + ++ −   (2-3c) 

S S

B S

i i S i i S
V S

f u d V f u d S
   

        
+ +

+ + + ++ +  , (2-3d) 

where 
iu  denotes the virtual displacement vector, and ije  +  is the corresponding virtual strain 

tensor 

1
( )

2

ji
ij

j i

uu
e

x x
     


 + + +


= +

 
. (2-4) 

Eq. (2-3a) denotes the internal virtual work and Eqs. (2-3b)-(2-3d) denote the external virtual works 

corresponding to inertia, gravity, water pressure and other external body and surface forces. Note that 

the variational operator   denotes virtual variables. 

 

The internal virtual work in Eq. (2-3a) can be rewritten for the reference configuration at time   

S S
ij ij S ij ij S

V V
e d V S d V

  

        

      
+

+ + + +

+ =   (2-5) 

with 

det( )ij ij im jn mnS x x x       

      + + +

+ += , 

1

2

ji k k
ij

j i i j

uu u u

x x x x

 

    
+

   
= + + 

     

, 

in which ijS 



+
 and ij

 

 +
 denote the second Piola-Kirchhoff stress tensor and the Green-Lagrange 

strain tensor, respectively, at time  +   with respect to the reference configuration at time   , 

i
ij

j

x
x

x

 
 

 

+
+ 

=


 is the deformation tensor, and 
iu  denotes the displacement at time  +  measured 

from the reference configuration at time  . That is, 
i i iu x x  += − . 

 

The second Piola-Kirchhoff stress tensor is decomposed as 

ij ij ij ij ijS S S S   

   + = + = + , (2-6) 

in which ij ijS 

 =  and ijS  is the incremental second Piola-Kirchhoff stress tensor. 

 

The Green-Lagrange strain tensor is also decomposed as  

ij ij ij ij

  

      + = + = , (2-7) 

where 0ij



  =  and ij   is the incremental Green-Lagrange strain tensor. 
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The incremental Green-Lagrange strain tensor consists of the linear ( ije ) and nonlinear ( ij ) parts 

ij ij ije   = +  (2-8) 

with 
1

( )
2

ji
ij

j i

uu
e

x x
  


= +

 
, 

1

2

k k
ij

i j

u u

x x
  


 
=

 
. 

 

Substituting Eqs. (2-6)-(2-8) into Eq. (2-5) and assuming ij ijrs rsS C e   , the resulting equation is 

linearized with respect to 
iu . The linearized internal virtual work is obtained as 

S S S S
ij ij S ijkl kl ij S ij ij S ij ij S

V V V V
S d V C e e d V d V e d V

   

         

            + +  + +    .  (2-9) 

 

It is important to carefully linearize the first term in Eq. (2-3c). Substituting the following relations into 

Eq. (2-3c) 

3 3 3x x u  + = + , (2-10) 

det( )i W ij ji j Wn d S x x n d S        

  

+ + +

+= ,  (2-11) 

the first term in Eq. (2-3c) becomes 

3 3 3( )det( )
W W

W i i W W ij ji j i W
S S

g x n u d S g x u x x n u d S
  

           

     
+

+ + + +

+= +  .  (2-12) 

 

In Eq. (2-12), the term det( )ij jix x  

  

+

+  can be approximated as 

det( )ij ji ij ijx x Q  

   +

+  +   with 
jk

ij ij

k i

uu
Q

x x
  




= −
 

  (2-13) 

by utilizing the following relations 

det( ) 1 ......k
ij

k

u
x

x

 

 

+ 
 + +


 and ......i

ij ij

j

u
x

x



  
+


 − +


. 

 

Substituting Eq. (2-13) into Eq. (2-12) and linearizing the resulting equation with respect to 
iu , the first 

term in Eq. (2-3c) becomes 

3
W

W i i W
S

g x n u d S
 

      
+

+ + +     

3 3
W W

W i i W W ij j i W
S S

g x n u d S g x Q n u d S
 

     

   +    

3
W

W i i W
S

gu n u d S


  + . (2-14) 
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Similarly, the second term in Eq. (2-3c) is linearized with respect to 
iu  and 

DP +  as 

W
D i i W

S
P n u d S

 

     
+

+ + +− =  

det( )
W

D ij ji j i W
S

P x x n u d S


      

   + +

+−   

( )
W

D ij ij j i W
S

P Q n u d S


   

 +− +   

W
D i i W

S
P n u d S



   +− . (2-15) 

 

Other terms in Eqs. (2-3b) and (2-3d) are simply linearized by setting 
S SV V  + → , 

S SS S  + → , 

and 
W WS S  + → . Using 

i ix u + =  in Eq. (2-3b) and substituting Eqs. (2-14) and (2-15) into Eq. (2-

3), the following incremental equilibrium equation is finally obtained 

S S S
S i i S ijkl kl ij S ij ij S

V V V
u u d V C e e d V d V

  

   

       + +    

3 3
W W W

W ij j i W W i i W D i i W
S S S

g x Q n u d S gu n u d S P n u d S
  

        

    +− − + =    

3 3
S W S

B

S S W i i W i i S
V S V

g u d V g x n u d S f u d V
  

          +− + +    

S S

S

i i S ij ij S
S V

f u d S e d V
 

    

  ++ −   (2-16) 

 

The hydrostatic and hydrodynamic equilibrium equations are subsequently derived from Eq. (2-16) in 

an integrated manner. Eq. (2-16) considers all the external forces which can be applied to floating 

structures. 
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2.1.2.  Hydrostatic equilibrium equation 

 

 

Fig. 2-2. Three equilibrium states: initial state, hydrostatic equilibrium state, and hydrodynamic 

equilibrium state. 

 

Let us define three states, namely, the initial state, hydrostatic equilibrium state, and hydrodynamic 

equilibrium state, as shown in Fig. 2-2. The initial state is an arbitrary configuration in which the 

structure does not contact the external fluid. In the hydrostatic equilibrium state, the structure is floating 

in the external fluid without motion. The structure is moving due to incident waves in the hydrodynamic 

equilibrium state. 

 

From a given initial state at time 0 , we can find the hydrostatic equilibrium state at time 0  through 

incremental nonlinear analysis, allowing large displacements and large rotations. The hydrostatic 

equilibrium equation can be derived with the condition of zero acceleration ( 0iu =  ) and zero 

hydrodynamic pressure ( 0DP + = ). The following incremental equilibrium equation for the nonlinear 

hydrostatic static analysis can be obtained from Eq. (2-16), 

S S
ijkl kl ij S ij ij S

V V
C e e d V d V

 

  

     +   

3 3
W W

W ij j i W W i i W
S S

g x Q n u d S gu n u d S
 

    

   − − =   

3 3
S W

S S W i i W
V S

g u d V g x n u d S
 

      − +   

S S S

B S

i i S i i S ij ij S
V S V

f u d V f u d S e d V
  

       

   + ++ + −   .  (2-17) 

 

The hydrostatic equilibrium equation involves nonlinear effects mainly due to the wet surface change. 

Therefore, an iterative solution procedure should be employed. After the hydrostatic analysis, we obtain 

the hydrostatic equilibrium configuration from the initial state configuration. 

 

In the hydrostatic equilibrium state, the following equation is satisfied 

0

SV t

SV

0

3wg x− t P

0 s

if
0

SV

(a) (b) (c)

t s

if

0 B

if t B

if
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0 0

0 0 0 0

3 3
S W

S S W i i W
V S

g u d V g x n u d S   − +   

0 0 0

0 0 0 0 0 0

0 0
S S S

B S

i i S i i S ij ij S
V S V

f u d V f u d S e d V   + + − =   . (2-18) 

That is, the right hand side of Eq. (2-18) becomes zero in the hydrostatic equilibrium configuration at 

time 0 . 
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2.1.3.  Hydrodynamic equilibrium equation 

 

Fig. 2-3. Floating structure under incident wave. 

 

As shown Fig. 2-3, there is a floating structure on the water of depth h . Fluid flow is assumed to be 

irrotational, inviscid, and incompressible, allowing the use of potential flow theory. The incident regular 

wave comes continuously from the positive 
1x -axis with an angle   and its amplitude is small enough 

to adopt the linear wave theory. Only gravity waves are considered, neglecting the surface tension effect. 

The atmospheric pressure is assumed to be zero. 

 

The volumes occupied by the structure and fluid are denoted as 
SV  and 

FV , respectively. The fluid 

volume 
FV  is surrounded by the wet surface 

WS , free surface 
FS , seabed 

GS , and infinite boundary 

S
. 

 

Hydrodynamic analysis is performed in the frequency domain. It is assumed that the motion of the 

floating structure is small and wet surface change is negligible [11, 18]. 

 

Setting 0 →  and t +  →  in Eq. (2-16), substituting Eq. (2-18) into the resulting equation, and 

Incident wave

0

FV

GS

S

h

FS

0

wS

0

SV



1x

2x 3x
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using 0t B B t B

i i if f f= +   and 0t S S t S

i i if f f= +  , the following hydrodynamic equilibrium equation is 

obtained 

0 0 0

0 0 0 0

0 0 0
S S S

S i i S ijkl kl ij S ij ij S
V V V

u u d V C e e d V d V     + +    

0 0 0

0 0 0 0 0 0 0

3 0 3
W W W

t

W ij j i W W i i W D i i W
S S S

g x Q n u d S gu n u d S P n u d S    − − + =    

0 0

0 0

S S

t B t S

i i S i i S
V S

f u d V f u d S +  , (2-19) 

in which 0 B

if  and t B

if  are static and dynamic parts of the body force, respectively, and 0 S

if  and 

t S

if  are static and dynamic parts of the surface force, respectively. 

 

It is important to note that the reference configuration for the hydrodynamic analysis is the hydrostatic 

equilibrium configuration. That is, in the hydrodynamic analysis, 
iu   is the displacement from the 

configuration at time 0  to the configuration at time t  ( 0t

i i iu x x= − ).  

 

Invoking a harmonic response for angular frequency   (
ˆ0ˆRe{ ( ) }j t

i i iu u x e = ; ˆ 1j = − ), we obtain 

the following steady state hydrodynamic equilibrium equation 

0 0 0

2 0 0 0 0

0 0 0
ˆˆ ˆ

S S S
S i i S ijkl kl ij S ij ij S

V V V
u u d V C e e d V d V      − + +    

0 0 0

0 0 0 0 0 0 0

3 0 3
ˆ ˆˆ

W W W
W ij j i W W i i W D i i W

S S S
x Q n u d S gu n u d S P n u d S    − − + =    

0 0

0 0ˆ ˆ
S S

t B t S

i i S i i S
V S

f u d V f u d S +   (2-20) 

with 

ˆ0

0 0
ˆRe{ ( ) }j t

ij ij ie e x e = , 
ˆ0

0 0
ˆRe{ ( ) }j t

ij ij iQ Q x e = , 
ˆ0ˆRe{ ( ) }t j t

D D iP P x e = , 

ˆ0

0 0
ˆRe{ ( ) }j t

ij ij ix e  = , 
ˆ0ˆRe{ ( ) }t B B j t

i i if f x e = , 
ˆ0ˆRe{ ( ) }t S S j t

i i if f x e = . 

 

It is important to note that 
0

ij  in Eq (2-20) is obtained from solutions of the hydrostatic analysis. 

Doing so, a complete hydrostatic stiffness can be constructed for hydrodynamic analysis. 

 

In the steady state, the velocity potential 
ˆ0ˆ( ) Re{ ( ) }j t

it x e  =  is governed by 

2 ˆ 0 =                     in 0

FV , (2-21a) 

2

3

ˆ
ˆ

x g

 



=


              on 

FS  (
3 0x = ), (2-21b) 
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3

ˆ
0

x


=


                 on 

GS  (
3x h= − ), (2-21c) 

ˆ ˆ ˆˆ( )( ) 0IR jk
R

 


+ − =


   on S
 ( R →  ), (2-21d) 

0

0

ˆ
ˆ ˆ

i ij u n
n





=


           on 0

WS , (2-21e) 

where k̂   is the wave number and 
ˆ0ˆ( ) Re{ ( ) }I I j t

it x e  =   is the velocity potential for an incident 

wave. Eq. (2-21b) is the combined free surface boundary condition linearized at 
3 0x = , Eq. (2-21d) is 

derived from the Sommerfeld radiation condition, and Eq. (2-21e) describes the condition in which the 

normal velocities of the structure and the external fluid must be the same on the wet surface. 

 

The incident velocity potential ˆ I  is defined by (see, e.g., Refs. [27, 28]) 

( )1 2
ˆˆ cos sin3

ˆcosh ( )ˆ ˆ
ˆcosh

jk x xI k x hga
j e

kh

 




++
=  for the finite depth case,  (2-22) 

and 

( )1 23
ˆˆ ˆ cos sinˆ ˆ jk x xkxI ga

j e e
 




+
=  for the infinite depth case, (2-23) 

where a  is the amplitude of the incident wave. 

 

The corresponding boundary integral equation is given by 

0 0

0 0

ξ ξ0 0

ˆ( ; ) ( )ˆ ˆ ˆ( ) . . ( ) . . ( ; ) 4 ( )
( ) ( )W W

Ii i i
i i i i i

S S
i i

G x
x PV d S PV G x d S x

n n

  
    

 

 
− = − +

    

for 
ix  on 0

WS ,
   

 (2-24) 

in which   is the solid angle, . .PV  refers to the Cauchy principal value, and ( ; )i iG x   is Green’s 

function, which is located at position 
i  and generated by a source potential with strength 4−  and 

angular frequency  . The subscript   shows that the integration is performed with respect to variable 

i  on the wet surface 0

WS . Detailed procedure to obtain the Green’s function in finite and infinite 

depth cases is described well in Ref. [28]. 

 

Multiplying a test function ˆ( )ix   to Eq. (2-24) and integrating over the wet surface 0

WS  , the 

following equations are obtained: 

0 0 0

0 0

0 0

ˆ( ; ) ( )ˆ ˆ ˆ ˆ( ) ( ) . . ( ) ( ; ) ( )
( ) ( )W W W

i i i
i i x i i i i x

S S S
i i

G x
x x d S PV G x dS x d S

n n


  
     

 

  
− − =    

    
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0

0ˆ ˆ4 ( ) ( )
W

I

i i x
S

x x d S     for 
ix  on 0

WS ,  (2-25) 

where the subscript x  denotes that the integration is performed with respect to variable 
ix  on the wet 

surface 0

WS . 

 

Using the linearized Bernoulli equation, the hydrodynamic pressure ˆ
DP  can be expressed as 

ˆˆ ˆ
D WP j = − . (2-26) 

 

Substituting Eq. (2-26) into Eq. (2-20) and Eq. (2-21e) into Eq. (2-25), the following direct-coupled 

equations are finally obtained 

0 0 0

2 0 0 0 0

0 0 0
ˆˆ ˆ

S S S
S i i S ijkl kl ij S ij ij S

V V V
u u d V C e e d V d V      − + +    

0 0 0

0 0 0 0 0 0 0

3 0 3
ˆ ˆˆˆ

W W W
W ij j i W W i i W W i i W

S S S
x Q n u d S gu n u d S j n u d S       − − − =    

0 0

0 0ˆ ˆ
S S

t B t S

i i S i i S
V S

f u d V f u d S +  , (2-27) 

0

0ˆ ˆ( ) ( )
W

i i x
S

x x d S   

0 0

0 0

0

( ; ) ˆ ˆˆ ˆ. . ( ) ( ; ) ( ) ( ) ( )
( )W W

i i
i i i i i i i i x

S S
i

G x
PV j G x u n dS x d S

n



      



 
− − = 

 
   

0

0ˆ ˆ4 ( ) ( )
W

I

i i x
S

x x d S     for 
ix  on 0

WS .  (2-28) 
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2.2.  Discretization  

In this section, the hydrostatic equilibrium equation in Eq. (2-17) is discretized using the finite element 

method for hydrostatic analysis. The direct-coupled equations in Eqs. (2-27)-(2-28) are discretized 

using the finite and boundary element methods for hydrodynamic analysis. 

 

 

2.2.4.  Finite element discretization for hydrostatic analysis  

 

 

Fig. 2-4. Finite element discretization for hydrostatic analysis : (a) initial state; (b) hydrostatic 

equilibrium state. 

 

The floating structure is discretized using   finite elements including   wet elements facing the 

wet surface (including partially or fully wet elements), as shown in Fig. 2-4. For a finite element ( )e , 

the increments of the structural displacements and strains are interpolated as 

( ) ( ) ( )
H u

e e e

i iu = , ( ) ( ) ( )
H u

e e e

i iu = , 

( ) ( ) ( )
B u

e e e

ij ije 

 = , 
( ) ( )T ( ) ( )

u N u
e e e e

ij ij



  = ,                   (2-29) 

where 
( )

u
e

 is the incremental nodal displacement vector for element ( )e , ( )
H

e

i
 is the displacement 

interpolation matrix, and 
( )

B
e

ij


  and 

( )
N

e

ij


  are the linear and nonlinear strain-displacement relation 

matrices, respectively. 

 

Substituting Eq. (2-29) into Eq. (2-17) and applying the standard finite element procedure, the following 

incremental equilibrium equation is obtained 

KU = R F
   + −  (2-30) 

with 

: Dry element : Fully wet element : Partially wet element

( )e

( )e
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K S S S SK KN HN HD

    = + − − ,  

R R R R RG HS B S

         + + + + += − + + + ,        

in which K


  is the tangential stiffness matrix including the linear stiffness ( SK

  ), the nonlinear 

geometric stiffness ( SKN

 ), and the hydrostatic stiffness terms: SHN

  and SHD

  resulting from the wet 

surface change and buoyancy change, respectively, and U   is the incremental nodal displacement 

vector for the whole model. In addition, the external force vector R
 +

 includes the gravity ( RG

 + ), 

buoyancy force ( RHS

 + ), body force ( RB

 + ), and surface force ( RS

 + ) vectors, and F


 is the 

internal force vector. Note that S = S S SCH KN HN HD

   − −  is the complete hydrostatic stiffness for the 

floating structure. 

 

Assume that the wet elements are numbered 1 to  , and the remaining elements are assigned numbers 

+1M  through  . The matrices and vectors in Eq. (2-30) are evaluated by 

( )
( )

( )T ( )

1AS B BeK

S

N ee e

ij ijkl kl Se V
C d V



   

=
=  , (2-31a) 

( )
( )

( )

1AS Ne

S

N ee

KN ij ij Se V
d V



   
=

=  , (2-31b) 

( )

( )T ( )

31AS H D
e

W

M e e

HN W i i We S
g x d S



  


=

=  , (2-31c) 

( )

( )T ( ) ( )

31AS H H
e

W

M e e e

HD W i i We S
g n d S



  
=

=  , (2-31d) 

( )
( )

( )T

31AR He

S

N e e

G S Se V
g d V



   +

=
=  , (2-31e) 

( )
( )

( )T

31AR H
e

W

M e e

HS W i i We S
g x n d S



    +

=
=  , (2-31f) 

( )
( )T ( )

1AR H fe

S

N e B e

B i i Se V
d V



    + +

=
=  , (2-31g) 

( )
( )

( )T

1AR H f
e

S

N S ee

S i i Se S
d S



    + +

=
=  , (2-31h) 

( )
( )

( )T

1AF Be

S

N ee

ij ij Se V
d V



   
=

=  ,                                  (2-31i) 

where A   is the finite element (FE) assembly operator, ( )e

WS   denotes the wet surface part of the 

element, 
( )e

ijklC   is the material law tensor, ( )

3H
e   is the interpolation matrix for the displacement 

component 
3u , and 

( )e

ij

  is the Cauchy stress tensor. Note that ( ) ( )
D u

j e ek
j ij i j i

k i

uu
n Q n n

x x



  


= − =

 
 

is used to derive Eq. (2-31c). 

 

From Eq. (2-30), the incremental equilibrium equation is obtained for the rigid body hydrostatic analysis 



17 

 

[15] 

KU R
  +=  (2-32) 

with T
K ψ S ψCH

 = , 
1 1 6 6U ψU ψ ψ
R Rq q= = + + , T

R ψ R
   + += , 

in which ψi
  ( 1,2,...,6)i =   is the basis vector for the i  -th rigid body mode, ψ   is the matrix 

containing 
1ψ   to 

6ψ  , and 
T

1 2 3 4 5 6U
R R R R R Rq q q q q q =     is the generalized coordinate vector 

for six rigid body motions (heave, sway, surge, roll, pitch, and yaw). 

 

The incremental equilibrium equations in Eqs. (2-30) and (2-32) are solved using the standard Newton-

Raphson method until an energy criterion is satisfied [15, 26]. 
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2.2.5.  Finite and boundary element discretization for hydrodynamic analysis 

 

 
Fig. 2.5. Finite element and boundary element discretizations, and mesh connection : (a) fully wet 

element; (b) partially wet element 
 

The floating structure is modeled using   finite elements and the external fluid is modeled using   

boundary elements (corresponding to the wet elements). The finite and boundary element meshes are 

connected through the wet surface, as depicted in Fig. 2-5. The fields of structural displacements and 

fluid velocity potential are interpolated using the nodal displacement vector ( û ) and the nodal velocity 

potential vector ( φ̂ ), respectively. 

 

For an element ( )e , the structural displacement ( )ˆ e

iu  and the velocity potential 
( )ˆ e  are interpolated 

as 

( )e

(a) (b)

Finite element for floating structure

Boundary element for external fluid

: Dry element : Fully wet element : Partially wet element
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( ) ( ) ( )ˆ ˆH u
i

e e e

iu = ,  (2-33) 

( ) ( ) ( )ˆ ˆP φ
e e e = ,                                                  (2-34) 

where 
( )

P
e

 is the velocity potential interpolation matrix used for the boundary element, and 
( )

û
e

 and 

( )
φ̂

e  are the nodal displacement and velocity potential vectors for element ( )e , respectively. 

 

Substituting Eqs. (2-33) and (2-34) into Eqs. (2-27) and (2-28), respectively, the following discrete 

coupled equation for the steady state problem can be obtained 

2 0 0 0 0

0 0 0

ˆˆS S S S

ˆ ˆ 4 RF F F

U R R

Φ

t t

B SM K CH D

t

IG M Gn

j

j

 



    +− + +
=    

−       

 (2-35) 

with 0 0 0 0S = S S SCH KN HN HD− − , 

where Û  and Φ̂  denote nodal displacement and velocity potential vectors, respectively, for the whole 

model, 0
SM

 is the mass matrix, and 0SCH
 is the complete hydrostatic stiffness matrix including the 

hydrostatic stiffness terms ( 0S HN
  and 0S HD

 ) and the geometric stiffness ( 0S KN
 ). Note that the 

superscript 0   denotes the configuration of the hydrostatic equilibrium state. U   is the incremental 

nodal displacement vector for the whole model. 

 

Submatrices and vectors in Eq. (2-35) are obtained using the following equations 

( )
0

0 0 ( )T ( ) 0

1AS H He

S

N e e

M S i i Se V
d V

=
=  , (2-36a) 

( )
( )

0

0 0 ( )T 0 ( ) 0

1AS B Be

S

N ee e

K ij ijkl kl Se V
C d V

=
=  , (2-36b) 

( )
( )

0

0 0 ( ) 0 0

1AS Ne

S

N ee

KN ij ij Se V
d V

=
=  .   (2-36c) 

( )0

0 0 ( )T 0

3 01AS H D
e

W

M e

HN W i i We S
g x d S

=
=  , (2-36d) 

( )0

0 ( )T 0 ( ) ( ) 0

31AS H H
e

W

M e e e

HD W i i We S
g n d S

=
=  , (2-36e) 

( )0

0 ( )T 0 ( ) ( ) 0

1AS H P
e

W

M e e e

D W i i We S
n d S

=
=  , (2-36f) 

( ) ( )0

0 ( )T 0 ( ) 0 0

1 1
;A AF P ( ) H

e e

W W

M Me e

G i i i i xe eS S
G x n d S d S

= =
=   , (2-36g) 

( )0

0 ( ) ( )T ( ) 0

1AF P P
e

W

M e e e

M We S
d S

=
=  , (2-36h) 

( ) ( ) 0 0

0 ( )T ( ) 0 0

1 1
;A AF P ( )P

e e

W W

M Me e

Gn i i xe eS S
G x d S d S 

= =
=   , (2-36i) 

( )
0

( )T ( ) 0

1
ˆAR H fe

S

Nt e t B e

B i i Se V
d V

=
=  , (2-36j) 
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( )
( )

( )T 0

1
ˆAR H f

e

S

N S et e t

S i i Se S
d S

=
=  , (2-36k) 

( )0

( )T 0

1
ˆAR P

e

W

Mt e I

I We S
d S

=
=  , (2-36l) 

where ;( )i iG x   is Green’s function, e  is the element in which 
i  is defined, and ˆ I  is the velocity 

potential for an incident wave. Note that the hydrostatic analysis should be performed in advance to 

properly construct the geometric stiffness 0S KN
, which includes the stress solution obtained from the 

hydrostatic analysis. In Eq. (2-36h), the solid angle 
( )e  is interpolated in element ( )e  from its nodal 

values using the finite element shape functions. 

 

It is computationally efficient to use the mode superposition method [11, 18, 26]. Let us consider the 

generalized eigenvalue problem 

0 0
S ψ S ψK i i M i= ,   1,2,..., ai N=      for the floating structure,                   (2-37) 

where ψi
  is the eigenvectors, 

i   is the corresponding eigenvalues (dry modes), and 
aN   is the 

number of degrees of freedom (DOFs) for the floating structure model. 

 

The nodal displacement vector of the floating structure is approximated as 

ˆ ˆ1 1 2 2
ˆ ˆˆ ˆ ˆU ψ ψ ψ ψq

a aN N
q q q + + + = ,  ˆ

a aN N ,                                (2-38) 

in which ψ  is the eigenvector matrix, q̂  is the corresponding generalized coordinate vectors, and ˆ
aN  

is the number of eigenvectors for approximation. 

 

Substituting Eq. (2-38) into Eq. (2-35) and pre-multiplying ψ  to the structural part (first row) of Eq. 

(2-35), the following reduced equation is obtained: 

2 0 0

0 0 0

ˆ ˆˆ q ( )I+Λ S

ˆˆ 4 RF F F

ψ R RS ψ

ψ Φ

t t

B SCH D

t

IG M Gn

j

j

 



     +− +
=     

−     
,                         (2-39) 

where ij ijI δ=   and ij i ij  =   with ˆ, 1,2,..., ai j N=  . Note that 
0
ŜCH   in Eq. (2-39) is the complete 

hydrostatic stiffness in the generalized coordinates ( 0 0
Ŝ ψ S ψCH CH

=  ). Rigid body hydrodynamic 

analysis can be conducted only when the 6 rigid body modes of the floating structure are contained in 

Eq. (2-39). 
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Fig. 2-6. Integrated hydrostatic and hydrodynamic analysis procedure. 
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Fig. 2-6 shows the procedure for the integrated hydrostatic and hydrodynamic analysis of floating 

structures, see Ref. [11]. The integrated analysis consists of two steps: hydrostatic analysis to find the 

static equilibrium state and hydrodynamic analysis to find the dynamic equilibrium state. Of course, the 

hydrostatic equilibrium state is the reference configuration for the hydrodynamic analysis. 
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2.3.  Non-matching mesh treatment  

 

 

Fig. 2-7. Hydrostatic and hydrodynamic analysis procedure and models required for conventional rigid 

body hydrodynamic analysis. 
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The procedure of the conventional rigid body hydrodynamic analysis is shown in Fig. 2-7. Through 

hydrostatic analysis, waterline and wet surface in the hydrostatic equilibrium state are found. 

Commercial software such as NAPA and ORCA 3D has been widely used for rigid body hydrostatic 

analysis [29,30]. The rigid body hydrodynamic analysis is performed using a panel model, modeling 

only the wet surface. AQWA, HYDROSTAR and WAMIT are popular commercial software for rigid 

body hydrodynamic analysis [31-33]. For this conventional procedure, two different panel models 

(hydrostatic and hydrodynamic panel models) are required for both analyses. When a subsequent 

structural analysis is necessary, a structural FE mesh model is additionally required with hydrostatic 

and hydrodynamic pressure mapped into the model. 
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Fig. 2-8. Hydrostatic and hydrodynamic analysis procedure and mesh models required for hydroelastic 

analysis: (a) analysis procedure and (b) mesh models. 
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In the hydroelastic analysis procedure shown in Fig. 2-8(a), a hydrostatic mesh model is necessary for 

hydrostatic analysis and a hydroelastic mesh model is necessary for hydroelastic analysis. In hydrostatic 

analysis, the structural flexibility needs to be considered as in Ref. [15]. Both hydrostatic and 

hydroelastic mesh models are obtained from the structural FE mesh model, with some modification and 

remeshing. Fig. 2-8(b) shows the remeshing required to prepare the hydroelastic mesh model, in which 

remeshing is performed along the waterline so that the mesh matches the waterline. In general, FE mesh 

models also have meshes for inner structures, and thus the inner meshes need to be modified according 

to the outer hull mesh fitted to the wet surface. It is not an easy task. 

 

 

Fig. 2-9. Wet surface change according to static loading cases. 

 

Mesh modeling and remeshing are time-consuming and labor-intensive tasks, depending on engineer's 

skill level, know-how, and individual abilities. In addition, when hydrodynamic analysis needs to be 

performed for multiple static loading cases, mesh modeling and remeshing should be performed as 

many times as the number of static loading cases; see Fig. 2-9. 

 

 

 

: Wet surface

Loading case 01 Loading case 02 Loading case 03
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Fig. 2-10. Integrated hydrostatic and hydrodynamic analysis procedure for a flexible structure using a 

single integrated mesh model: (a) analysis procedure and (b) integrated mesh model. 
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Fig. 2-10 shows the integrated hydrostatic and hydrodynamic analysis procedure proposed in this study. 

In the analysis procedure, a single integrated mesh model is used for both analyses without remeshing. 

Doing so, non-matching mesh treatment is necessary. Since the mesh is not matched with the free-

surface, as shown in Fig. 2-10(b), the numerical integration should be carefully performed in 

calculations of SHN

  , SHD

   and RHS

 +   in Eq.( 2-30), and 0SHN
 , 0SHD

 , 0SD
 , 0 FG

 , 0 FM
 , 0 FGn

 , and 

R
t

I
 in Eq. (2-35) over the wet surface parts of the partially wet elements. 

 

We present a special numerical integration technique adopted to effectively resolve the non-matching 

mesh problem in the integrated hydrostatic and hydrodynamic analysis of flexible floating structures 

[15]. In particular, the integration technique is applied to the surface integration of the partially 

submerged finite elements and boundary elements as shown in Fig. 2-11. We here consider 3-node and 

4-node elements. 
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Fig. 2-11. 3-node and 4-node wet element classification for numerical integration. 

 

 

  

1

2

3

1’

2

1

3

1

2

3

(a) (b) (c)

: Wet nodes : Dry nodes
: Assumed nodes

(d)

 
( )e

WS

( 1)e

WS
( 2)e

WS

( )e

WS

 
( )e

WS

( 1)e

WS ( 2)e

WS

2’ 1’2’

( )e

WS ( )e

WS



30 

 

Fig. 2-11 shows all cases in which 3-node and 4-node elements are in contact with water: 3 cases for 

the 3-node element and 4 cases for the 4-node element. A node located below the free surface is called 

a wet node and at least one of the element nodes is wet. For the 3-node element, the following procedure 

is employed for numerical integrations in the wet surface part of the element. 

 

 Fig. 2-11(a) shows the case in which the element is partially wet and one node is wet. The 

connectivity of the wet surface part is defined as 1'-2'-3 by introducing the assumed nodes 1' 

and 2' at the free surface. The assumed nodes 1' and 2' are not real nodes but used only for 

numerical integration and thus there is no increase in DOFs in the integrated hydrostatic and 

hydrodynamic analysis. Using the element connectivity, the numerical integration is 

performed over the wet surface ( )e

WS   through the conventional three-point Gaussian 

quadrature. 

 Fig. 2-11(b) shows a partially wet element with 2 wet nodes. The wet surface part of the 

element is divided into two subtriangles ( ( ) ( 1) ( 2)e e e

W W WS S S= ). ( 1)e

WS  and ( 2)e

WS  are defined as 

1'-2'-3 and 1'-3-1 with assumed nodes 1' and 2'. Three-point Gaussian quadrature is performed 

in each subtriangular areas. 

 Fig. 2-11(c) presents a fully wet element in which all nodes are wet. The three-point Gaussian 

quadrature is performed over the wet surface part defined by nodes 1-2-3 ( ( )e

WS ). 

 

In the case of 4-node quadrilateral elements, numerical integration is performed considering four 

different cases according to the number of wet nodes; see Fig. 2-11(d). When only one node is wet, the 

integration over the triangular area is performed as shown in Fig. 2-11(d). The wet surface parts can be 

divided into triangular and/or quadrilateral shapes for convenience of the numerical integration; see Ref. 

[15] for details. 

 

Using the special numerical integration technique explained in this section, the numerical integrations 

in Eqs. (2-30) and (2-35) are effectively performed without modification of the initial element mesh 

prepared for the hydrostatic analysis. That is, a remeshing process is not required regardless of waterline 

change due to static loadings. 

 

  

https://www.google.com/search?rlz=1C1CHBD_koKR976KR976&sxsrf=ALiCzsYGFIFoD-VVHxz_Ncbu246twYx73g:1672293794421&q=quadrilateral&spell=1&sa=X&ved=2ahUKEwiu9s3sk578AhXWAd4KHdDMB7QQkeECKAB6BAgJEAE
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2.4.  Numerical examples  

 

In this section, the validity and effectiveness of the integrated hydrostatic and hydrodynamic analysis 

is demonstrated through various problems. In the proposed numerical procedure, the structures are 

modeled by the well-known MITC3 and MITC4 shell finite elements [26,34-39]. To interpolate fluid 

velocity potential, 3- and 4-node boundary elements are used. 

 

Two hydrodynamic problems are solved: a floating hull [11] and a whole ship. The rigid body 

hydrodynamic analysis is performed using AQWA, a 3D panel frequency domain code in ANSYS [31], 

and the results are compared with those of the proposed method. 

 

The density of the fluid (water) 
W  is 1,000 kg/m3 and the water depth h  is assumed to be infinite. 

The gravitational acceleration g  is 9.8 m/s2. 

 

2.4.1.  Floating hull problem  

 

We here perform both rigid body hydrodynamic and hydroelastic analyses of a floating hull subjected 

to an incident wave [11]. Hull length is 100 m at the top and 90 m at the bottom; the breadth is 10 m, 

and height is 4 m, as shown in Fig. 2-12(a). The thickness is 0.03 m, and the density is 
46.3585 10  

kg/m3 at the bottom area and 
35.0 10  kg/m3 at the other areas, which results in a draft of 2 m in the 

hydrostatic equilibrium state for the rigid body case. Young’s modulus 200E = GPa and Poisson’s 

ratio  =0.3 are used for hydroelastic analysis. We consider two incident wave directions ( ) of 0 and 

45 degrees and with periods of 3 s to 12 s. 
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Fig. 2-12. Floating hull problem: (a) problem description, (b) hydroelastic mesh model (matching 

mesh), and (c) integrated mesh model (non-matching mesh). 
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The numbers of shell finite elements used are 80, 10 and 6 in the length, breadth, and height directions, 

respectively. Initially, the integrated mesh model is positioned to have a draft of 2 m for the hydrostatic 

analysis. After 5 iterations, the buoyancy is balanced with the self-weight within the energy criterion of 

61.0 10− . For hydrodynamic analysis, two meshes are considered: the hydroelastic mesh model used 

in Fig. 2-12(b) as in Ref. [11] and the integrated mesh model in Fig. 2-12(c). Note that the integrated 

mesh model has a non-matching mesh, while the hydroelastic mesh model has a matching mesh. 

 

 

 
Fig. 2-13. Hydrodynamic panel model of floating hull for AQWA 
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Fig. 2-14. Response amplitude operators (RAOs) for surge, heave, and pitch motions of floating hull 

when 0 =  . Rigid body hydrodynamic analysis is performed. 
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We perform integrated hydrostatic and rigid body hydrodynamic analysis using the integrated mesh 

model. The results are compared with thos1e obtained using AQWA and reported in Ref. [11]. For the 

rigid body hydrodynamic analysis of AQWA, the numbers of panels used for modeling only the wet 

surface of the floating hull are 80, 10, and 4 in the length, breadth, and height directions, respectively, 

as shown in Fig. 2-13. The analysis in Ref. [11] employed the matching mesh in Fig. 2-12(b). Fig. 2-14 

shows the calculated response amplitude operators (RAOs). All the results are in good agreement. 
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Fig. 2-15. Vertical displacements at stern, center, and bow of floating hull bottom: (a) measuring 

points, (b) when  = 0°, and (c) when  = 45°. 
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In the hydroelastic analysis, we consider the dry modes of floating structures that correspond to the 

natural frequencies below 1000 rad/s. Fig. 2-15 represents the calculated vertical displacements at 

stern, center, and bow; the results match well with those in Ref. [11]. Also, the displacements obtained 

using the rigid body hydrodynamic analysis are compared. 

 

We here confirm that the proposed method using the integrated mesh model with non-matching mesh 

provides almost the same accuracy as the hydrodynamic panel model and the hydroelastic mesh model 

with matching mesh. 
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2.4.2.  Whole ship problem  

 
Fig. 2-16. Whole ship FE model. 

 

19 m
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
32.2 m
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Fig. 2-17. Tank filling conditions: (a) LC01, (b) LC02, and (c) LC03. 
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We consider a ship with 12 tanks, shown in Fig. 2-16. Length, breadth, and height (bottom to deck) are 

181 m, 32.2 m, and 19 m, respectively. The density of the structure is 7,870 kg/m3, Young’s modulus 

E = 210 GPa, and Poisson’s ratio  = 0.3. The tanker ship is subjected to 3 different static loadings 

(LC01, LC02, and LC03) depending on whether or not the internal tanks are filled with fluid; see the 

tank filling conditions in Fig. 2-17. The internal fluid density is 850 kg/m3. Incident wave angle is 45 

degrees and its period ranges from 8.0 to 26.0 s, with a constant increment ( T  = 1 s). 

 

The whole ship structure is modeled using 17,029 shell finite elements as shown in Fig. 2-16. The 

internal fluid is modeled by simply increasing the density of the surrounding tank structure. The whole 

ship model has finite element meshes for inner structures and outer hull, and the meshes are intricately 

connected. It is a very difficult task to construct a waterline matching mesh model considering such 

mesh connections. However, the proposed procedure does not require a waterline matching mesh model. 

 

Initially, the integrated mesh model is positioned to have a draft of 13.3 m for the hydrostatic analysis. 

The buoyancy is balanced with the self-weight within the energy criterion of 
61.0 10− . Table 2-1 shows 

the hydrostatic equilibrium states calculated for the three static loading cases. 
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Table 2-1. Hydrostatic analysis results of whole ship model according to three loading cases. 

Loading cases LC01 LC02 LC03 

Number of iterations 10 9 9 

Displacement [m3] 52,525 27,025 25,750 

Radius of 

gyration 

[m] 

Roll 12.3 12.2 12.6 

Pitch 40.7 40.9 46.6 

Yaw 41.2 41.0 46.9 

C 

O 

G 

[m] 

x 94.35 91.489 112.03 

y 0.000 2.573 -0.002 

z -1.400 0.588 2.1915 

C 

O 

B 

[m] 

x 94.35 91.489 112.03 

y 0.000 2.573 -0.002 

z -5.385 -3.543 -3.518 

Trim angle [◦] 0.0 0.0 3.6 

Heel angle [◦] 0.0 29.9 0.0 
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Fig. 2-18. Integrated mesh model in hydrostatic equilibrium states according to loading cases: (a) 

LC01, (b) LC02, and (c) LC03. 
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Fig. 2-19. Three different hydrodynamic panel models for AQWA according to loading cases : (a) 

LC01, (b) LC02, and (c) LC03. 
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Fig. 2-20. Response amplitude operators (RAOs) for surge, sway, heave, roll, pitch and yaw motions of 

hull ship for LC01 when 45 =  . Rigid body hydrodynamic analysis is performed. 
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Integrated hydrostatic and rigid body hydrodynamic analysis is performed using the integrated mesh 

model, as shown in Fig. 2-16. Fig. 2-18 and Table 2-1 show the hydrostatic equilibrium states calculated 

for the three static loading cases. Unlike the proposed method, AQWA requires three different 

hydrodynamic panel models corresponding to the three static loading cases, as shown in Fig. 2-19. Fig. 

2-20 presents the calculated response amplitude operators (RAOs) for the static loading case LC01 

when incident wave angle is 45 degrees. The analysis results obtained using the proposed method are 

in good agreement with those of AQWA. 
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Fig. 2-21. Vertical displacements of whole ship when 45 =  : (a) measuring points, (b) LC01, (c) 

LC02, and (d) LC03. 
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Fig. 2-22. Normalized von-Mises stress distribution for whole ship at LC01 when 11T s= : (a) t mT= , (b) 

4

T
t mT= +  with an integer m . 
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Integrated hydrostatic and hydroelastic analysis is then carried out. We consider the dry modes of the 

ship structure that correspond to the natural frequencies below 1000 rad/s. Fig. 2-21 presents the 

calculated vertical displacements at bow and center for three static loading cases (LC01, LC02 and 

LC03) when incident wave angle is 45 degrees. The results are compared with those of the integrated 

hydrostatic and rigid body hydrodynamic analysis. In addition, Fig. 2-22 shows the von-Mises stress 

distribution normalized by the yield stress (355 MPa) for the static loading case LC01 when an incident 

wave comes with angle 45 degrees, amplitude 1 m, and period 11 seconds. 

  

https://en.dict.naver.com/#/entry/enko/2e6df6c55a64480a82ddc6d481054dda
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Table 2-2. Modeling and computation times estimated for hydrostatic and hydrodynamic 

(hydroelastic) analyses of whole ship model. 

ORCA3D/AQWA/ANSYS 

(Procedure in Fig. 2-7) 

Kim et. al., 2013 

(Procedure in Fig. 2-8) 

Proposed method 

(Procedure in Fig. 2-10) 

Hydrostatic panel modeling: 

30 min * 

Hydrostatic mesh modeling: 

20 min * 

Integrated mesh modeling: 

20 min * 

Hydrostatic analysis 

3×3 min 

Hydrostatic analysis: 

3×15 min 

Hydrostatic analysis: 

3×15 min 

Hydrodynamic panel modeling: 

3×30 min * 

Hydroelastic mesh modeling: 

3×60 min * 

 

 

Hydrodynamic analysis: 

3×4 min 

Hydroelastic analysis: 

3×12 min 

Hydroelastic analysis: 

3×12 min 

Structural mesh modeling: 

3×60 min* 

 

 

 

 

Structural FE analysis: 

3×2 min 

 

 

 

 

Total time: 327 min (100 %) Total time: 281 min (85.9 %) Total time: 101 min (30.9 %) 

* Manual operations are involved. 
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Finally, we have measured the total modeling and computation times required for hydrostatic and 

hydrodynamic (hydroelastic) analyses, taking into account three static loading cases. These values are 

found in Table 2-2. We considered three approaches, as shown in Figs. 7, 8, and 10, and assumed that 

the CAD and FE models were already available. The time and effort required for manual operations, 

such as mesh modeling and remeshing, vary depending on the engineer's individual abilities. To 

estimate the time required for manual operations, we consulted with experienced ship design engineers. 

 

The first approach is a traditional method that sequentially utilizes three commercial codes: ORCA3D 

for rigid body hydrostatic analysis, AQWA for rigid body hydrodynamic analysis, and ANSYS for 

structural FE analysis. The second approach follows the procedure used by Kim et. al. for conventional 

hydroelastic analysis, while the third approach employs the proposed method. Manual operations are 

inevitable for transferring information between the different models. 

 

The required times consist of modeling and calculation times. Modeling time includes time to create 

hydrostatic panel/mesh model, hydrodynamic panel/mesh model, and structural mesh model. 

Remeshing is performed using Altair Hypermesh [40]. Mesh modelings and calculations are performed 

on a personal computer (PC) with Intel Core i7-8700, 3.20 GHz CPU, and 64 GB RAM. Modeling time 

to create the hydrodynamic mesh model is not necessary for the proposed method. The proposed method 

significantly reduces total time required, although the amount of reduction varies depending on 

engineer's skill level and know-how. 
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2.5.  Concluding remarks 

 

we proposed a method for the hydro-elastic analysis considering various loading conditions, in which 

the direct-coupling method was employed to couple structural motions and water waves. When the 

cargo loading conditions of the floating structures change, the wet surface changes according to 

changing the hydrostatic equilibrium state. The remeshing is inevitable process to perform 

hydrodynamic analysis for each loading condition. The special numerical integration method was 

adopted to resolve the non-matching mesh problem without remeshing process.  The proposed method 

was verified through numerical examples. As numerical examples, we solved the problems of simple 

barge and whole ship model with an incident wave and the radiation problem of floating hull. The 

numerical results are verified the high fidelity of the present formulation when compared with the 

experimental results and the numerical results of existing commercial codes based on the conventional 

formulation.  
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Chapter 3.  Direct calculation of the stress transfer function in frequency 

domain 

 

We present the Direct calculation of the stress transfer function in frequency domain in this chapter. The 

stress response for hydroelastic analysis in frequency domain in Section 3.1. In Section 3.2, an effective 

stress RAOs calculation methods are introduced. In Section 2.3, the feasibility of the proposed 

numerical procedure is demonstrated through various problems. Finally, the concluding remarks are 

given. 

 

 

3.1.  Stress response for hydroelastic analysis in frequency domain 

 

  

Fig. 3-1. A sum of many simple sine waves makes an irregular Sea 

 

Irregular waves can be represented as a linear superposition of regular waves, as shown in Fig.3-1. A 

method for analyzing the response by introducing sinusoidal waves with unit amplitude into a motion 

analysis model is used. This allows for the mathematical estimation of the response and loads in 

irregular sea states[41]. 
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(a) 

 

 

(b) 

Fig. 3-2 The evaluation procedures for ship structural strength[44]:  

(a) yield/buckling strength, (b) fatigue Strength. 
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By inputting sinusoidal waves with unit amplitude into the motion analysis model, the response 

amplitude operator (RAO) is obtained. Mathematical extension of the response to short-term and long-

term responses using statistical data for irregular sea states allows for the calculation of response and 

loads in irregular sea[55-58]. In other words, RAO for unit amplitude response is fundamental data for 

the design of ships/offshore structures. The evaluation procedure for yield strength and fatigue strength 

of ships is illustrated in Fig. 3-2. 

 

 

3.1.1.  Hydroelastic(hydrodynamic) equation 

 

In the steady state, the direct-coupled equations are used for this study. The following direct-coupled 

equations are finally obtained, the detailed procedures in Ref. [11-14,18] 

Invoking a harmonic response for angular frequency    (
ˆ0ˆRe{ ( ) }j t

i i iu u x e =  ; ˆ 1j = −  ), we then 

obtain the following steady state equation: 

 

0 0 0

2 0 0 0 0

0 0 0
ˆˆ ˆ

S S S
S i i S ijkl kl ij S ij ij S

V V V
u u d V C e e d V d V      − + +    

0 0 0

0 0 0 0 0 0 0

3 0 3
ˆ ˆˆˆ

W W W
W ij j i W W i i W W i i W

S S S
x Q n u d S gu n u d S j n u d S       − − − =    

0 0

0 0ˆ ˆ
S S

t B t S

i i S i i S
V S

f u d V f u d S +  , (3-1) 

with 

ˆ0

0 0
ˆRe{ ( ) }j t

ij ij ie e x e = , 
ˆ0

0 0
ˆRe{ ( ) }j t

ij ij iQ Q x e = , 
ˆ0ˆRe{ ( ) }t j t

D D iP P x e = , 

ˆ0

0 0
ˆRe{ ( ) }j t

ij ij ix e  = , 
ˆ0ˆRe{ ( ) }t B B j t

i i if f x e = , 
ˆ0ˆRe{ ( ) }t S S j t

i i if f x e = . 

 

0
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


      
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 
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0

0ˆ ˆ4 ( ) ( )
W

I

i i x
S

x x d S     for 
ix  on 0

WS .  (3-2) 

 

The following discrete coupled equation for the steady state problem can be obtained, detail procedure 

is well described in [11-14] 

2 0 0 0 0

0 0 0

ˆˆS S S S

ˆ ˆ 4 RF F F

U R R

Φ

t t

B SM K CH D

t

IG M Gn

j

j

 



    +− + +
=    

−       

 (3-3) 
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with 0 0 0 0S = S S SCH KN HN HD− − , 

where Û  and Φ̂  denote nodal displacement and velocity potential vectors, respectively, for the whole 

model, 0
SM

 is the mass matrix, and 0SCH
 is the complete hydrostatic stiffness matrix including the 

hydrostatic stiffness terms ( 0S HN
  and 0S HD

 ) and the geometric stiffness ( 0S KN
 ). Note that the 

superscript 0   denotes the configuration of the hydrostatic equilibrium state. U   is the incremental 

nodal displacement vector for the whole model. 

 

The condensed structural equation for the steady state 3D hydroelastic problems: 

( )2 0 0 0 0 0 ˆS S S S S U RM MA CH K CH Wj  − + + + + =
  , (3-4) 

where 

( ) 
1

0 0 0 0 0S Re S F F FMA D M Gn G

−

= −       : added mass matrix, 

( ) 
1

0 0 0 0 0S Im S F F FCW D M Gn G
−

= −  −   : radiated wave damping matrix, 

( )
1

0 0 0 0S S F F 4 Rt

W D M Gn Ij 
−

= −        : wave excitation force matrix.  

  

 

3.1.2.  Stress response 

 

The responses obtained from the motion equation derived from the frequency domain Eq. (3-4) can be 

expressed in the form of complex numbers or trigonometric functions. When represented in complex 

number form, it can be expressed as real and imaginary components, or in general trigonometric 

function form as the following equation, assuming the specific frequency   . 

 

Re Imˆˆ ˆ ˆ
i i iu u ju= +  (3-5) 

ˆ
ˆ( ) Re{ }j t

i iu t u e =  

Re Imˆ ˆcos sini iu t u t = − , (3-6) 

in which 

 
ˆ ˆˆ ˆ ˆcos sinj t

i i iu e u t ju t  = − . 

 

For the stress analysis, 

ˆˆ
ij ijrs rsC =  
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Re Imˆˆ ˆ
ij ijj = + , (3-7) 

where, 

Re Reˆˆ
ij ijrs rsC = ,

Im Imˆˆ
ij ijrs rsC = . 

 

In the frequency domain, the components of stress, similar to displacement, are also expressed in the 

form of harmonic response.  

Re Imˆ ˆ( ) cos sinij ij ijt t t    = −  (3-8) 

 

In order to evaluate the yield and fatigue strength of a structure, a combined stress is used. 

Representative combined stresses include von-Mises stress and principal stress. The von-Mises stress 

is a representative stress for evaluating the yield stress, and is a stress using the second-order deviation 

stress invariant. The equation for obtaining the von-Mises stress in the time domain is as follows, and 

the coefficient terms are organized by the following equations 

2
3 1

( ) ( ) ( )
2 3

vM ij ij kkt t t   
 

= − 
 

. (3-9) 

 

The concept of principal stress is commonly used in engineering and mechanics to analyze the failure 

or deformation behavior of materials and structures, such as in structural engineering, geotechnical 

engineering, and solid mechanics. Understanding the principal stresses and their directions is crucial in 

predicting how materials and structures will behave under different loading conditions and designing 

safe and efficient engineering systems. Because crack growth is closely related to the angle of principal 

stress, principal stress is often used for fatigue analysis. Stress consists of normal stress and shear stress, 

and both stresses change according to the angle of the slope. At this time, there is an inclined plane 

where the shear stress is zero and the normal stress is maximum, and this is called the principal stress 

plane, and the maximum normal stress is called the principal stress. The principal stress in a three-

dimensional stress state can be defined by the stress invariants (
1 2 3, ,I I I ) as follows. 

 

( )21
1 1 2

( ) 2
( ) 3 ( ) cos

3 3

I t
P I t I t = + − , 

( )21
2 1 2

( ) 2 2
( ) 3 ( ) cos ( )

3 3 3

I t
P I t I t t




 
= + − − 

 
, 

( )21
3 1 2

( ) 2 4
( ) ( ) 3 ( ) cos ( )

3 3 3

I t
P t I t I t t




 
= + − − 

 
, (3-10) 
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where, 

1( ) ( )iiI t t= , 

 2

1
( ) ( ) ( ) ( ) ( )

2
ii jj ij jiI t t t t t   = − , 

3 1 2 3( ) ( ) ( ) ( )ijk i j kI t t t t   = , 

3
1 1 1 2 3

2 3/2

1 2

2 9 271
cos

3 2( 3 )

I I I I

I I
 −  − +

=  
− 

. 

 

 

3.2.  The proposed method for stress RAO 

 

In this study, we propose the method to calculate the transfer function using the corresponding period 

and maximum value in order to directly compute the stress RAO. We describe the methods for 

evaluating the strength of ships and offshore structures using two types of stress that are commonly 

used in the field of structural analysis of ships and offshore structures. Since most ships and floating 

structures are thin shell structures with thin thickness compared to their length, we assume a plane stress 

state for the analysis.  
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Fig. 3-3. The von-Mises stress results obtained from conventional method. 

 

Fig. 3-3 shows the conventional method shows a conventional method for obtaining the stress RAO. 

The following is the method commonly used in practical design to determine the maximum value of 

stress [42]. For the derived non-harmonic von Mises and principal stresses the following values are 
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relevant for presentation:  

• The stress at a given value of the phase ( t ) of the incoming wave. 

• The maximum stress found by stepping through the whole cycle ( 0 t T  ). 

• The value of the phase of the incoming wave giving the maximum stress. 

 

 

3.2.1.  von-Mises stress 

 

The stress components expressed as Eq. (3-8) can be substituted into the von-Mises stress Eq. (3-9), 

and rearranged using trigonometric identities for plane triangles, yielding the following expression: 

 

2 2

1

( )
( ) sin(2 )

2 2
vM

A B C A B
t t  

− + +
= + + , (3-11) 

where 

Re Re Re Re3 1 1
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2 3 3
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  
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  
= − −  

  
, 

( )
1 1

2 2 2 2
sin , cos

( ) ( )

A B C

A B C A B C
 

− −
= =

− + − +
. 

 

The maximum value and corresponding time can be obtained using the coefficients obtained from Eq. 

(3-11), as follows: 

2 2( )
max( ( ))

2 2
vM

A B C A B
t

− + +
= +   when 0 2

4 2
t n

 
   = + −  . (3-12) 

 

 

3.2.2.  Principal stress 

 

By substituting each stress component expressed in Eq. (3-8) into the equation for calculating the 

principal stress Eq. (3-10) and rearranging using trigonometric expressions, the following equation for 

calculating the principal stress in the time domain can be obtained. 
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where  
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Since Eq. (3-13) consists of the sum of harmonic and non-harmonic functions, it is not easy to 

analytically obtain the maximum value. Newton-Raphson method is employed for the maximum value. 

 

In the case of plane stress, the principal stress (
1P ) at a specific time can be defined as follows. 

2 2

2 2
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2
2 2
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As the Eq. (3-13) represents a non-harmonic function, finding the maximum value analytically is 

challenging. Therefore, we attempted to use the Newton-Raphson method [53, 54] to obtain a solution.  

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named 

after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively 

better approximations to the roots (or zeroes) of a real-valued function. We searched for the value 

where the first derivative becomes zero, aiming to locate the maximum value at that position. The first 

derivative of the function can be expressed as follows, 

 

1 2 2

1 2

2 2

cos sin sin cos (cos sin )
sin cos 0

cos sin sin cos

F G HdP
D E

d F G H

     
 

    

− + − −
= − − + =

+ −
. (3-16) 

 

By utilizing the relationship that the maximum value of the function composed of two periodic functions 

occurs between the maximum value positions of the two functions, we can predict the interval where 

the maximum value will occur in advance. For this purpose, we use the t  that maximizes the first 

term on the right is used as the initial and search for the maximum value accordingly. 

 

 

3.3.  Numerical examples 

 

In this section, the validity and effectiveness of the direct calculation of stress RAO in hydroelastic 

analysis demonstrated through various problems. In the proposed numerical procedure, the structures 

are modeled by the well-known MITC4 shell finite elements [34-39].  

 

Two problems for showing the procedure are solved: the von-Mises stress calculation method and the 

principal stress calculation method, and the results are compared with those of the previous method. 

 

 

3.3.1.  von-Mises stress 

 

In order to validate the effectiveness of the proposed method, the results obtained from the conventional 

method and the proposed method are compared. The stress components obtained from elastoplastic 

analysis will be used for calculations. 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Joseph_Raphson
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
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The stress components are given below, 
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In order to utilize the conventional method, the period was divided into 36 equal increments from 0 to 

T . The stress components and the corresponding von-Mises stress for each time step were calculated. 

 

The maximum value during one cycle, calculated using the Eq. (3-12), is as follows.  

4236A = ,  250B = , 30C = − . 
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2 2
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A B

A B C
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−
= =

− +
, 

2 2
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−
= =

− +
 

2 2( )
max( ( )) 65.0850

2 2
vM

A B C A B
t

− + +
= + = , when 0.4974t T=  

 

Within one cycle ( 0 t T  ), the value of von-Mises stress and its corresponding time are obtained as 

shown above. It can be observed that the maximum value may vary depending on the spacing of time 

steps in the conventional method. 
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Fig. 3-4. The von-Mises stress results obtained from conventional method and proposed method. 

 

The Fig. 3-4 shows the von-Mises stress results obtained from conventional method and proposed 

method. It is confirmed that the proposed method allows us to find the maximum value in just one 

calculation, compared to the previous method which required 36 calculations. This indicates that this 

method is more efficient and faster in finding the maximum value. 
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3.3.2.  Principal stress 

 

The validity of the proposed method is demonstrated for the principal stress case. The stress components 

obtained from elastoplastic analysis will be used for calculations. The results are compared by using 

both the conventional method and the proposed method in this study. 

 

The stress components are given below, 
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Fig. 3-5. The principal stress result obtained from conventional method. 

 

In order to utilize the conventional method, the wave period(T ) was divided into 36 equal increments 

from 0 to T . The stress components and the corresponding principal stress for each time step were 

calculated, and the results are shown in the Fig. 3-5. 
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The coefficients for Eq. (3-14) are obtained as follows. 
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We use the previously computed coefficients to determine the values for equations (3-14) and (3-15). 

The initial value of, which corresponds to the first term on the right-hand side, is set to its maximum 

value( 0.4506t T= ), and the Newton-Raphson method is employed to obtain the overall maximum 

value of the entire equation. The iteration is performed 2 times. The existing method calculates RAO 

through 36 calculations, whereas the proposed method calculates RAO through two calculations. 

1_ max 69.4301, 0.4840P t T= = . 
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Fig. 3-6. Principal stress result obtained from conventional method and proposed method. 

 

The results obtained by each method are shown in Fig. 3-6. We have observed that the maximum 

principal stress value and its corresponding time within a single cycle ( 0 t T   ). While the 

conventional method utilized the result calculated at a time step near the maximum value as the 

maximum value, the proposed method allows for obtaining a more accurate maximum value with fewer 

calculations. 
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3.3.3.  A floating barge problem  

 

 
Fig. 3-7. Floating barge problem: (a) problem description and (b) finite and boundary element meshes used. 

 

Let us consider the floating barge problem shown in Fig.3-7[7]. The barge’s dimensions are the same 

with the one used in the reference [59]; that is, the length 100mL = , the breadth B is 10 m, and the 

depth D is 2 m. A longitudinal bulkhead is additionally installed along the centerline in the barge model. 

Table. 3-1 shows the thickness and density of the floating barge.  
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Table 3-1. Thickness and density distributions of the floating barge. 

 Top deck Bottom deck Side hull Bulk head 

Thickness st  [m] 0.005 0.02 0.02 0.005 

Density s  [kg/m3] 
31.0 10  43.3389 10  43.3389 10  43.3389 10  

 

For the barge model, 100, 10, and 4 shell finite elements are used in the length, breadth, and depth 

directions, respectively, and 100, 10, and 2 boundary elements are used for the fluid interface, 

respectively. We use the elastic modulus 100 GPaE =  , Poisson’s ratio 0.3 =  , wave period 

4 16T s= − , and incident wave angle 0 =  . Then, hydroelastic analyses are carried out. von-Mises 

stress and principal stress RAO are obtained using the calculated component stresses from hydroelastic 

analysis. 

 

 

Fig. 3-8. Von-Mises stress RAO of the floating barge: (a) measuring point and (b) stress RAO.  
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Table 3-2. von-Mises stress RAO Computational time of the floating barge 

  Previous Proposed 

Computational time  
[sec] 

19.36 1.47 (7.6%) 

 

Fig.3-8 shows the von-Mises stress RAO using the proposed method. The RAO is measured the center 

of the bottom of the barge. Table 3-2 shows the results compared with the existing method, and it is 

confirmed that the calculation time is reduced to 7.6% compared to the existing method. 
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Fig. 3-9. von-Mises stress RAO distribution of the floating barge. 

 

Fig. 3-9 show the von-Mises stress RAO when the wave period is 4 seconds. In this figure, the von-

Mises stress RAO for each point of the corresponding wave can be checked. 

 

 

Fig. 3-10. Principal stress RAO of the floating barge: (a) measuring point and (b) stress RAO. 

 

1x

2x

4 6 8 10 12 14 16
0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

S
tr

es
s 

R
A

O
 [

P
a/

m
]

Wave period [sec]

x1

x2

(a)

(b)



69 

 

Table 3-3. Principal stress RAO Computational time of the floating barge 

  Previous Proposed 

Computational time  
[sec] 

19.78 5.42 (27.4%) 

 

Fig.3-10 shows the principal stress RAO using the proposed method. The RAO is measured the center 

of the bottom of the barge. Table 3-3 shows the results compared with the existing method, and it is 

confirmed that the calculation time is reduced to 27.4% compared to the existing method. 

 

 

Fig. 3-11. Maximum principal stress distribution of the floating barge. 

 

Fig. 3-11 shows the principal stress RAO when the wave period is 4 seconds.  
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3.3.4.  Whole ship problem 

 

 

Fig. 3-12. Whole ship FE model 

 

We consider a ship with 12 tanks, shown in Fig. 3-12. Length, breadth, and height (bottom to deck) are 

181 m, 32.2 m, and 19 m, respectively. The density of the structure is 7,870 kg/m3, Young’s modulus 

E = 210 GPa, and Poisson’s ratio  = 0.3. Incident wave angle is 45 degrees and its period ranges from 

8.0 to 26.0 s, with a constant increment ( T  = 1 s). 

 

The whole ship structure is modeled using 17,029 shell finite elements as shown in Fig.3-12. The 

internal fluid is modeled by simply increasing the density of the surrounding tank structure. The whole 

ship model has finite element meshes for inner structures and outer hull, and the meshes are intricately 

connected.  

 

Hydrostatic and hydroelastic analysis are then carried out. Then, hydroelastic analyses are carried out. 

19 m
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Incident wave


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von-Mises stress and principal stress RAO are obtained using the calculated component stresses from 

hydroelastic analysis. 

 

 

Fig. 3-13. Von-Mises stress RAO of the whole ship model: (a) measuring point and (b) stress RAO. 

 

Table 3-4. von-Mises stress RAO Computational time of the whole ship 

  Previous Proposed 

Computational time  
[sec] 

59.76 4.937 (8.2%) 

 

Fig. 3-13 presents the calculated von-Mises stress RAO at bow and center of the bottom. In addition, 

Table 3-4 shows the calculation time of von-Mises stress. Compared to the existing method, it is 

confirmed that the calculation time is reduced by 8.2%. 
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Fig. 3-14. von-Mises stress RAO distribution of the whole ship model. 

 

Fig. 3-14 shows the von-Mises stress RAO when the wave period is 11 seconds. In this figure, the von-

Mises stress RAO for each point of the corresponding wave can be checked. 

 

 

 

Fig. 3-15. Principal stress RAO of the whole ship model: (a) measuring point and (b) stress RAO. 
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Table 3-5. Principal stress RAO Computational time of the whole ship 

  Previous Proposed 

Computational time  
[sec] 

62.76 17.605 (28.0%) 

 

We also confirm the results for principal stress. The calculated principal stress RAO at bow and center 

of the bottom are presented in Fig. 3-15. In addition, Table 3-5 shows the calculation time of principal 

stress. Compared to the existing method, it is confirmed that the calculation time is reduced by 28.0%. 

 

 

 

Fig. 3-16. Principal stress RAO distribution for the whole ship model. 

 

 

Fig. 3-16 shows the principal stress RAO when the wave period is 11 seconds. In this figure, the 

principal stress RAO for each point of the corresponding wave can be checked. 

 

  

https://en.dict.naver.com/#/entry/enko/2e6df6c55a64480a82ddc6d481054dda
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3.4.  Concluding remarks 

 

We proposed a direct calculation method for the stress response amplitude operator (RAO) in the 

frequency domain for hydroelastic analysis. After calculating the component stresses using hydroelastic 

analysis and evaluating the strength using combined stresses such as von-Mises stress and principal 

stresses, the combined stresses are no longer in a harmonic form. Therefore, instead of using the 

conventional method of dividing a single cycle into equal intervals and calculating the maximum value 

within that cycle, we propose a direct method to find the maximum value. This approach allows for 

significant improvement in computational speed. We believe that our proposed method can contribute 

to the enhancement of computational efficiency in various applications such as ship and offshore 

structure design. 
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Chapter 4.  Conclusions 

 

The objective of this dissertation was to present an effective numerical method to integrate hydro-static 

and dynamic analysis of flexible floating structures. In general, hydrodynamic analysis is conducted in 

hydrostatic equilibrium, it is necessary to solve the non-matching mesh problem to propose an 

integrated equation. To deal with the non-matching mesh problem, we adopt an efficient numerical 

integration method, in which remeshing is not necessarily. Through this, hydrostatic analysis and 

hydrodynamic analysis were completely integrated. 

 

In Chapter 2, we proposed a method for the hydro-elastic analysis considering various loading 

conditions, in which the direct-coupling method was employed to couple structural motions and water 

waves. When the cargo loading conditions of the floating structures change, the wet surface changes 

according to changing the hydrostatic equilibrium state. The remeshing is inevitable process to perform 

hydrodynamic analysis for each loading condition. The special numerical integration method was 

adopted to resolve the non-matching mesh problem without remeshing process. 

 

In Chapter 3, we proposed a method for the direct calculation method of stress RAO in frequency 

domain. We proposed a direct calculation method for the stress response amplitude operator (RAO) in 

the frequency domain for hydroelastic analysis. After calculating the component stresses using 

hydroelastic analysis and evaluating the strength using combined stresses such as von-Mises stress and 

principal stresses, the combined stresses are no longer in a harmonic function. Therefore, instead of 

using the conventional method of dividing a single cycle into equal intervals and calculating the 

maximum value within that cycle, we propose a direct method to find the maximum value. This 

approach allows for significant improvement in computational speed. We believe that our proposed 

method can contribute to the enhancement of computational efficiency in various applications such as 

ship and offshore structure design, real-time monitoring. 

 

The proposed numerical method can be easily used for the hydroelastic analysis of floating structures 

with various loading conditions. Moreover, it can be extended to the transient analysis of flexible 

floating structures in flooded conditions by considering the internal free surface effect. Furthermore, it 

will be valuable to extend the present research to nonlinear hydroelastic response, in which we could 

deal with the various loads causing nonlinear behavior of the floating structures. 
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