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ABSTRACT 

 

In this paper, we suggest method that allows to solve torsional problems of beam structure for arbitrary 

cross sections. To obtain continuous displacements due to warping effect for arbitrary cross sections, we 

numerically solve the St.Venant equations and interpolate the solutions through the longitudinal direction of the 

beam element. Mapping these continuous displacements to standard curved beam displacements, the elements 

can consider free and restrained warping conditions, eccentric load, varying sections, and curved geometries for 

arbitrary cross section. 
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Chapter 1. Introduction 

 

 

Finite beam elements are abundantly used for numerically analyzing behavior of engineering structures. 

However it yet has any problems to solve torsional problems that standard beam formulations can`t describe 

twisting deformations. For considering torsion effect, usually beam modeling is replaced by shell or solid 

elements or ignored. Thus, to develop finite beam elements with warping effect (plane cross-section do not 

remain plane) is needed. Especially in restrained warping case (prevent the member ends from warping freely), 

occur distributed axial normal stress at the end. By following this normal stress, St.Venant shear and bi-moment 

are developed. Thus, we have to solve more complex governing equation than free warping case, and can`t apply 

to varying section and curved structure case. 

 Analytical solution of torsional beam problem in free warping case was reported by Timoshenko(1945). 

Vlasov(1961) established thin-walled beam theory, and obtained solution of restrained warping condition. In 

succession, Reissner(1979, 1983, 1992) suggested method that can consider coupled load for prismatic beam. 

Until recent, it was dominantly used for solving torsional problem by FEM that obtain continuous warping 

function by interpolating warping function at each node with additional warping degree of freedom. In this 

method, Vlasov(1961) gave analytical warping function(contour warping & thickness warping) for thin-walled 

beam. And Bathe(1982) suggested for rectangular cross section case. However, these studies applied just simple 

case that only rectangular or thin-walled cross section.  

 The purpose of this paper is to develop general beam finite elements with arbitrary cross section for fully-

coupled load condition(torsion, bending, stretch) in case of varying section, curved geometry. We suggest 

inventive formulation of iso-parametric beam elements for arbitrary cross sections. In these formulations, 

St.Venant solution is needed for obtaining warping displacement fields term. Thus, we introduce method of 

solving St.Venant equation by using FEM. Lastly, we present various numerical results. 
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Chapter 2. 3-dimensional curved finite beam elements formulation with 

arbitrary sections 

 

 

 

In this section, introduce displacement based three dimensional curved beam interpolation for arbitrary section 

(Fig.1), and application of numerical warping function calculated in previous chapter. Lastly, present about 

integration technique. 

 

 

 

Fig.1. General curved beam element with arbitrary cross-section 
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2.1 Displacement field for arbitrary sections 

 

First of all, translate coordinate system at twisting center which is obtained in previous chapter. For example of 

displacement based beam element, interpolation of rectangular section at time l is well known and as following. 

 

 

x, y, z ∶   Cartesian coordinates of any point in the element 

xi, yi, zi  ∶   Cartesian coordinates of nodal point i 

ai, bi  ∶   rectangular dimensions 

Vs
⃗⃗  ⃗

i
, Vt
⃗⃗  ⃗

i
∶ unit vector in direction  s and t 

hi(r) ∶ interpolation function for longitudinal direction 

 

 

(

 
 

𝑥(𝑟, 𝑠, 𝑡) = ∑ 𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝑖 (

𝑎𝑖

2
𝑡) 𝑉𝑡𝑥

𝑖
 
𝑙𝑘

𝑖=1 + ∑ 𝑖 (
𝑏𝑖

2
𝑠) 𝑉𝑠𝑥

𝑖
 
𝑙𝑘

𝑖=1

𝑦(𝑟, 𝑠, 𝑡) = ∑ 𝑖𝑦𝑖
𝑘
𝑖=1 + ∑ 𝑖 (

𝑎𝑖

2
𝑡) 𝑉𝑡𝑦

𝑖
 
𝑙𝑘

𝑖=1 + ∑ 𝑖 (
𝑏𝑖

2
𝑠) 𝑉𝑠𝑦

𝑖
 
𝑙𝑘

𝑖=1

𝑧(𝑟, 𝑠, 𝑡) = ∑ 𝑖𝑧𝑖
𝑘
𝑖=1 + ∑ 𝑖 (

𝑎𝑖

2
𝑡) 𝑉𝑡𝑧

𝑖
 
𝑙𝑘

𝑖=1 + ∑ 𝑖 (
𝑏𝑖

2
𝑠) 𝑉𝑠𝑧

𝑖
 
𝑙𝑘

𝑖=1

                                   (41) 

 

 

We implement these interpolations for arbitrary section. In rectangular section, y, z directional coordinates are 

easily mapped by 
bi

2
s,

ai

2
t, but in arbitrary section are not. For applying at arbitrary section case, we newly 

introduce sectional node and interpolation (These come from information for calculating warping function in 

chapter2). 
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   Fig.2. Coordinate change for sectional element 

 

 

Before interpolate sectional nodes with natural coordinate system, we translate center of initial coordinates to 

center of load position (coordinate center O mean reference line of beam element). By translating reference line, 

we can apply eccentric load at that position. 

 

 

�̅�, �̅�  ∶   Cartesian coordinates of any point in the element 

 yi̅, zi̅  ∶   Cartesian coordinates of nodal point i  

hi̅(s, t) ∶ interpolation function for sectional element 

 

 

(
Y̅(s, t) = ∑ hi̅(s, t) yi̅

p
i=1

Z̅(s, t) = ∑ hi̅(𝑠, 𝑡)zi̅
p
i=1

                                                                  (42) 

 

 

With above mapping, we can implement interpolation for arbitrary section. 
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(

x(r, s, t) = ∑ hi(𝑟)xi
k
i=1 + ∑ hi(𝑟)Z̅(𝑠, 𝑡) Vtx

i
 
lk

i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡) Vsx
i

 
lk

i=1

y(r, s, t) = ∑ hi(𝑟)yi
k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡) Vty

i
 
lk

i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡) Vsy
i

 
lk

i=1

z(r, s, t) = ∑ hi(𝑟)zi
k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡) Vtz

i
 
lk

i=1 + ∑ hi(𝑟)Y̅(𝑠, 𝑡) Vsz
i

 
lk

i=1

                         (43) 

 

 

With define terms of displacement and rotation angles. 

 

𝑢(𝑟, 𝑠, 𝑡) = ∆𝑥 ,   𝑣(𝑟, 𝑠, 𝑡) = ∆𝑦 ,   𝑤(𝑟, 𝑠, 𝑡) = ∆𝑧  

𝜃𝑘 = [𝜃𝑥
𝑘 𝜃𝑦

𝑘 𝜃𝑧
𝑘]

𝑇
   

 

 

(
𝑉𝑡

𝑘 = 𝑉𝑡
𝑘

 
1 − 𝑉𝑡

𝑘
 
0 = 𝜃𝑘 × 𝑉𝑡

𝑘
 
0

𝑉𝑠
𝑘 = 𝑉𝑠

𝑘
 
1 − 𝑉𝑠

𝑘
 
0 = 𝜃𝑘 × 𝑉𝑠

𝑘
 
0                                                               (44) 

 

 

Finally we obtain the standard displacement field of general curved beam element for arbitrary section with 6 

degree of freedom displacement vector �⃗� = [𝑢 𝑣 𝑤     𝜃𝑥 𝜃𝑦 𝜃𝑧]𝑇 . 

 

 

(

u(r, s, t) = ∑ hi(𝑟)ui
k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡)(θk × Vtx

i )k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡)(θk × Vsx

i )k
i=1

v(r, s, t) = ∑ hi(𝑟)vi
k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡)(θk × Vty

i )k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡)(θk × Vsy

i )k
i=1

w(r, s, t) = ∑ hi(𝑟)wi
k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡)(θk × Vtz

i )k
i=1 + ∑ hi(𝑟)�̅�(𝑠, 𝑡)(θk × Vsz

i )k
i=1

             (45) 

 

 

This beam formulation has limitation that cannot describe sectional warping displacement. Because beam finite 

elements have common assumption which is cross-section has to remain in plane. Thus, we superpose additional 

displacement field for sectional warping. These displacement fields are obtained by interpolation of warping 

function which is calculated in chapter 2. Detail explanation is presented in next section. 
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2.2 Application of numerical warping function 

  

 

Fig.3. Warping displacement field of rectangular section 

 

 

 As mentioned in chapter2, with assumption k =
dθx

dx
 is constant (prismatic beam), sectional warping 

displacement field is as following. (Fig.3 is example of warping displacement field) 

 

 

uw ∶ Cartesian coordinate of warping displacement 

ψ ∶ Cartesian coordinate of warping function 

𝑉𝑟
𝑖⃗⃗⃗⃗ ∶ 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑟 

 

uw(s, t) = k ∙ ψ̃(s, t) ∙ Vr
𝑖                                                                   (46) 

 

Above displacement field is only validated with prismatic beam condition. Thus we define additional warping 

degree of freedom α each elemental nodes. 

 

uw(s, t) = ∑ ψ̃(s, t) ∙ Vr
𝑖 ∙ hi(𝑟) ∙ 𝛼𝑖

𝑘
𝑖=1                                                          (47) 
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By this interpolation, we obtain continuous warping function which can implement various beam condition. 

(non-uniform torsion, curved geometry, varying section) 

 

We apply this continuous warping displacement field to standard displacement filed mentioned in previous 

section. Then, we obtain final form with 7 degree of freedom at each elemental nodes as following. �⃗� =

[𝑢 𝑣 𝑤     𝜃𝑥 𝜃𝑦     𝜃𝑧 𝛼]𝑇 

 

(

 
 
 
 
 
 

u(r, s, t) = ∑hi(𝑟)ui

k

i=1

+ ∑hi(𝑟)�̅�(s, t)(θk × Vtx
i )

k

i=1

+ ∑hi(𝑟)�̅�(s, t)(θk × Vsx
i )

k

i=1

+ ∑ψ(s, t) ∙ Vrx
𝑖 ∙ hi(𝑟) ∙ 𝛼𝑖

𝑘

𝑖=1

v(r, s, t) = ∑hi(𝑟)vi

k

i=1

+ ∑hi(𝑟)�̅�(s, t)(θk × Vty
i )

k

i=1

+ ∑hi(𝑟)�̅�(s, t)(θk × Vsy
i )

k

i=1

+ ∑ψ(s, t) ∙ Vry
𝑖 ∙ hi(𝑟) ∙ 𝛼𝑖

𝑘

𝑖=1

w(r, s, t) = ∑hi(𝑟)wi

k

i=1

+ ∑hi(𝑟)�̅�(s, t)(θk × Vtz
i )

k

i=1

+ ∑hi(𝑟)�̅�(s, t)(θk × Vsz
i )

k

i=1

+ ∑ψ(s, t) ∙ Vrz
𝑖 ∙ hi(𝑟) ∙ 𝛼𝑖

𝑘

𝑖=1

 

 

                                                                                       (48) 

 

This displacement field can describe fully-coupled deformation (stretch, bending, torsion) for arbitrary section. 
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2.3 Finite elements modeling 

     

 

Fig.4. Mapping of coordinate system 

 

 

For finite elements modeling, firstly we introduce jacobian operator J. 

 

xi, yi, zi  ∶   Cartesian coordinates of nodal point i 

Vs
⃗⃗  ⃗

i
, Vt
⃗⃗  ⃗

i
∶ unit vector in direction  s and t 

hi(r) ∶ interpolation function for longitudinal direction 

�̅�, �̅�  ∶   Cartesian coordinates of any point in section element 

 yi̅, zi̅  ∶   Cartesian coordinates of nodal point i  

hi̅(s, t) ∶ interpolation function for sectional element 

 

J =

[
 
 
 
 
𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕𝑧

𝜕𝑟
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝜕𝑠
𝜕𝑥

𝜕𝑡

𝜕𝑦

𝜕𝑡

𝜕𝑧

𝜕𝑡]
 
 
 
 

= ∑

[
 
 
 
 
𝜕ℎ𝑖

𝜕𝑟

𝜕ℎ𝑖

𝜕𝑟
𝑍�̅�

𝜕ℎ𝑖

𝜕𝑟
𝑌�̅�

0 𝑖
𝜕𝑍�̅�

𝜕𝑠
𝑖

𝜕𝑌�̅�

𝜕𝑠

0 𝑖
𝜕𝑍�̅�

𝜕𝑡
𝑖

𝜕𝑌�̅�

𝜕𝑡 ]
 
 
 
 

  [

𝑥𝑖 𝑦𝑖 𝑧𝑖

𝑉𝑡𝑥
𝑖 𝑉𝑡𝑦

𝑖 𝑉𝑡𝑧
𝑖

𝑉𝑠𝑥
𝑖 𝑉𝑠𝑦

𝑖 𝑉𝑠𝑧
𝑖
]𝑘

𝑖=1                                     (49) 
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With above jacobian matrix and differentiation of displacements respect to natural coordinate, we can change 

displacement field respect to Cartesian coordinate. 

 

[
 
 
 
 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧]
 
 
 
 

= 𝐽−1

[
 
 
 
 
𝜕𝑢

𝜕𝑟
𝜕𝑢

𝜕𝑠
𝜕𝑢

𝜕𝑡]
 
 
 
 

,                

[
 
 
 
 
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧]
 
 
 
 

= 𝐽−1

[
 
 
 
 
𝜕𝑣

𝜕𝑟
𝜕𝑣

𝜕𝑠
𝜕𝑣

𝜕𝑡]
 
 
 
 

,                

[
 
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

= 𝐽−1

[
 
 
 
 
𝜕𝑤

𝜕𝑟
𝜕𝑤

𝜕𝑠
𝜕𝑤

𝜕𝑡 ]
 
 
 
 

                                   (50) 

 

Finally, obtain strain matrix. 

 

[
 
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧

𝛾𝑧𝑥 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧]
 
 
 
 
 
 
 
 
 

                                                                         (51) 
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2.4 Numerical integration 

 For obtaining stiffness matrix, we integrate strain matrix with material law matrix. Displacement based 

formulation, which we use, encounter „shear locking‟ problem. For releasing „shear locking‟, we apply reduced 

integral technique which is mathematically equal with MITC technique in beam interpolation. Because 3-

dimensional curved beam finite elements have only 1-dimensional interpolation function. (longitudinal direction 

„r‟)  

For integrating eccentric stiffness matrix, just input s and t gauss point in natural coordinate, we obtain eccentric 

�̅�, �̅�. Example of L-section (multi-elements case) is in Fig.5. 

 

 

 

Fig.5. Example of gauss quadrature points for multi-elements case 
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Chapter 3. Numerical solution of warping function 

 

 

There are many numerical schemes to obtain St.Venant solutions. However we solve the equation own method 

by FEM. In this section, we introduce St.Venant equation which is governing equation of twisting section, derive 

variational formulation of St.Venant equation, and obtain warping displacement field by solving the formulation 

with finite element method. Finally, find coordinate of twisting center with pre-calculated solution of St.Venant. 

Obtained displacement field map onto displacement field of standard beam formulation. Detail procedure is as in 

the following. 

 

 

3.1 St.Venant Equation and variational formulation 

 

 

 

Fig.6. Kinematics of twisting displacement 

 

 By fig.6 and defining warping function, we can obtain displacement field. Warping function ψ is defined as 

longitudinal displacement of cross section. Assume that beam is subjected by constant moments.  

 

 

�̅� 

𝑧 ̅ 
�⃗� = (𝑚,𝑛) 

�̅� 

𝑧 ̅ 

𝜙 
𝜃𝑥 𝜙 

(�̅�, 𝑧 ̅) 

𝑟 =  �̅�2 + 𝑧 ̅2 

𝑟𝜃𝑥 

𝑟𝜃𝑥𝑐𝑜𝑠𝜙

𝑟𝜃𝑥𝑠𝑖𝑛𝜙
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k =
dθx

dx
= const.    θx = kx                                                                 (1) 

u = k × ψ(y̅, z̅)  

v = z̅θx                                                                                 (2) 

w = −y̅θx  

 

Above defined displacements, we can calculate strain and stress. 

 

[
 
 
 
 
 
σxx

σyy

σzz
σxy

σyz

σzx]
 
 
 
 
 

=

[
 
 
 
 
 
 
Eεxx

Eεyy

Eεzz

Gεxy

Gεyz

Gεzx]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0
0
0

Gk(z̅ +
∂ψ

∂y̅
)

0

Gk(−y̅ +
∂ψ

∂z̅
)]
 
 
 
 
 
 

                                                            (3) 

 

Apply above stress into local equilibrium state. 

 

(

  
 

∂σxx

∂x
+

∂σxy̅

∂y̅
+

∂σxz̅

∂z̅
= 0              ⟹        Gk (

∂2ψ

∂y̅2 +
∂2ψ

∂z̅2
) = 0

∂σy̅x

∂x
+

∂σy̅y̅

∂y̅
+

∂σy̅z̅

∂z̅
= 0               ⟹        Identity Equation       

∂σz̅x

∂x
+

∂σz̅y̅

∂y̅
+

∂σz̅z̅

∂z̅
= 0               ⟹         Identity Equation        

                                   (4) 

 

By kinematics and local equilibrium equation, we obtain Laplace equation. Also boundary condition, which 

means zero outward stress of surface, is as following. (�⃗� = (𝑚, 𝑛) is outward unit vector of surface in Fig.1 ) 

 

σ ∙ n⃗ = 0     on  ∂Ω                                                                        (5) 

 

mσxy̅ + nσxz̅ = 0                                                                         (6) 

 

mGk (z̅ +
𝜕𝜓

𝜕�̅�
) + 𝑛𝐺𝑘 (−�̅� +

𝜕𝜓

𝜕�̅�
) = 0                                                         (7) 

 

m
∂ψ

∂y̅
+ n

∂ψ

∂z̅
= mz̅ − ny̅                                                                    (8) 
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As above, Laplace equation and boundary condition give us St.Venant equation which is governing equation of 

twisting deformation. 

 

∂2ψ

∂y̅2 +
∂2ψ

∂z̅2
= 0  with B.C.    n⃗ ∙ ∇ψ = mz̅ − ny̅                                               (9) 

 

 This governing equation has limitation of valid only with constant moment with assuming k =
∂θx

∂x
 is constant. 

Thus, distributed torsion problem and restrained warping problem has different governing equation. For solving 

these problems, we apply technique which is to interpolate k with each elemental node. Explain in detail is 

presented in beam formulation chapter. 

 

 

Introduce variation of warping function δψ, and derive variational formulation as following. 

 

∫ (
∂2ψ

∂y̅2 +
∂2ψ

∂z̅2
) δψ   dV = 0                                                                 (10) 

 

∫(
∂

∂y̅
(
∂ψ

∂y̅
δψ) −

∂ψ

∂y̅

∂δψ

∂y̅
) + (

∂

∂z̅
(
∂ψ

∂z̅
δψ) −

∂ψ

∂z̅

∂δψ

∂z̅
)  dV = 0                                        (11) 

 

∫(
∂

∂y̅
(
∂ψ

∂y̅
δψ) +

∂

∂z̅
(
∂ψ

∂z̅
δψ))  dV − ∫(

∂ψ

∂y̅

∂δψ

∂y̅
+

∂ψ

∂z̅

∂δψ

∂z̅
)  dV = 0                                    (12) 

 

∫(
∂ψ

∂y̅

∂δψ

∂y̅
+

∂ψ

∂z̅

∂δψ

∂z̅
)  dV = ∫(m

∂ψ

∂y̅
δψ + n

∂ψ

∂z̅
δψ)  dS                                            (13) 

 

∫(
∂ψ

∂y̅

∂δψ

∂y̅
+

∂ψ

∂z̅

∂δψ

∂z̅
)  dV = ∫(mz̅ − ny̅)δψ  dS                                                  (14) 
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3.2 Finite element model of cross-section 

 

 

        Fig.7. Sectional finite element model for solving St.Venant equation 

 

Using the natural coordinate system of sectional element, we interpolate warping function respect to Cartesian 

coordinates with k nodal point. 

 

ψ(s, t) = ∑ hi̅(𝑠, 𝑡)ψi
k
i=1                                                                   (15) 

 

Where the hk(s, t) are the shape functions, and ψk are nodal value of warping function. Also we introduce 

jacobian operator J which map Cartesian coordinate onto natural coordinate. 

 

J = [

∂y̅

∂s

∂z̅

∂s
∂y̅

∂t

∂z̅

∂t

] = ∑ [

∂hi̅̅ ̅

∂s

∂hi̅̅ ̅

∂t

] [y̅i zi̅]
k
i=1                                                            (16) 

 

With above jacobian operator and differentiation of ψ respect to natural coordinate, we can obtain derivation of 

ψ in Cartesian coordinate as following. 

 

 

�̅� 

𝑧 ̅ 

O 

 s 

t 

 

<Cartesian coordinate> 
<Natural coordinate 

of sectional element> 
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[

∂ψ

∂y̅

∂ψ

∂z̅

] = J−1 [

∂ψ

∂s
∂ψ

∂t

] = ∑ J−1 [

∂hi̅̅ ̅

∂s

∂hi
̅̅ ̅

∂t

] [ψi]
k
i=1                                                         (17) 

 

By above differential matrix of warping function, obtain matrix form of L.H.S of variational formulation 

(e.q.[14]) 

 

∫(
∂ψ

∂y̅

∂δψ

∂y̅
+

∂ψ

∂z̅

∂δψ

∂z̅
)  dV = ∫ (

∂ψ

∂y̅

∂δψ

∂y̅
+

∂ψ

∂z̅

∂δψ

∂z̅
)  |det J|dsdt                                        (18) 

 

 

Lastly, we derive matrix form of R.H.S of variational formulation (e.q.[14]), (boundary condition term). We 

operate at each boundary face in natural coordinate system. 

 

 

 

Fig.8. outward normal vector for elemental surface 

 

We can obtain outward normal vector for general curved surface (Fig.8) and changing domain of surface line 

integration as following. 
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○1  Outward normal vector & coordinate change at face1 ( at  s = −1  &  t = [−1,1] ) 

 

dy̅

dz̅
=

∂y̅

∂s

ds

dz̅
+

∂y̅

∂t

dt

dz̅
=

∂y̅

∂t
∂z̅

∂t

=
∑

∂hi̅̅ ̅

∂t
y̅i

∑
∂hi̅̅ ̅

∂t
z̅i

                     (∵  
dz̅

dt
=

∂z̅

∂s

ds

dt
+

∂z̅

∂t

dt

dt
=

∂z̅

∂t
)                               (19) 

 

By above differentiation, we can get slope (tangential vector) of surface curve. 

 

tangential vector ∶   (
dy̅

dz̅
, 1)  

 

By rotating tangential vector C.C.W (Fig.3), we can obtain outward normal vector. 

 

normal vector ∶   (−1,
dy̅

dz̅
 )  

 

Change differential domain Cartesian coordinate to natural coordinate. 

 

dS =  (dy̅)2 + (dz̅)2 = √(
dy̅

dz̅
)
2

+ 1   dz̅ = √(
dy̅

dz̅
)
2

+ 1  
dz̅

dt
  dt = √(

∑
∂h̅i
∂t

y̅i

∑
∂h̅i
∂t

z̅i

)

2

+ 1  (∑
∂h̅i

∂t
z̅i ) dt          (20) 
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○2  Outward normal vector & coordinate change at face2 ( at  t = −1  &  s = [−1,1] ) 

 

dz̅

dy̅
=

∂z̅

∂s

ds

dy̅
+

∂z̅

∂t

dt

dy̅
=

∂z̅

∂s
∂y̅

∂s

=
∑

∂hi̅̅ ̅

∂s
z̅i

∑
∂hi̅̅ ̅

∂s
y̅i

                (∵  
dy̅

dt
=

∂y̅

∂s

ds

dt
+

∂y̅

∂t

dt

dt
=

∂y̅

∂t
)                                  (21) 

 

By above differentiation, we can get slope (tangential vector) of surface curve. 

 

tangential vector ∶   (1,
dz̅

dy̅
)  

 

By rotating tangential vector C.W (Fig.3), we can obtain outward normal vector. 

 

normal vector ∶   (
dz̅

dy̅
, −1 )  

 

Change differential domain Cartesian coordinate to natural coordinate. 

 

dS =  (dy̅)2 + (dz̅)2 = √1 + (
dz̅

dy̅
)
2

   dy̅ = √1 + (
dz̅

dy̅
)
2

  
dy̅

ds
  ds = √1 + (

∑
∂hi̅̅ ̅

∂s
z̅i

∑
∂hi̅̅ ̅

∂s
y̅i

)

2

  (∑
∂hi
̅̅ ̅

∂s
y̅i)  ds         (22) 
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○3  Outward normal vector & coordinate change at face3 ( at  s = 1  &  t = [−1,1] ) 

 

dy̅

dz̅
=

∂y̅

∂s

ds

dz̅
+

∂y̅

∂t

dt

dz̅
=

∂y̅

∂t
∂z̅

∂t

=
∑

∂hi̅̅ ̅

∂t
yi̅

∑
∂hi̅̅ ̅

∂t
z̅i

                                                              (23) 

 

By above differentiation, we can get slope (tangential vector) of surface curve. 

 

tangential vector ∶   (
dy̅

dz̅
, 1)  

 

By rotating tangential vector C.W (Fig.3), we can obtain outward normal vector. 

 

normal vector ∶   (1, −
dy̅

dz̅
 )  

 

Change differential domain Cartesian coordinate to natural coordinate. 

 

dS =  (dy̅)2 + (dz̅)2 = √(
dy̅

dz̅
)
2

+ 1   dz̅ = √(
dy̅

dz̅
)
2

+ 1  
dz̅

dt
  dt = √(

∑
∂hi̅̅ ̅

∂t
yi̅

∑
∂hi̅̅ ̅

∂t
zi̅

)

2

+ 1  (∑
∂hi̅̅ ̅

∂t
z̅i ) dt          (24) 
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○4  Outward normal vector & coordinate change at face4 ( at  t = 1  &  s = [−1,1] ) 

 

dz̅

dy̅
=

∂z̅

∂s

ds

dy̅
+

∂z̅

∂t

dt

dy̅
=

∂z̅

∂s
∂y̅

∂s

=
∑

∂hi̅̅ ̅

∂s
z̅i

∑
∂hi̅̅ ̅

∂s
yi̅

                                                              (25) 

 

By above differentiation, we can get slope (tangential vector) of surface curve. 

 

tangential vector ∶   (1,
dz̅

dy̅
)  

 

By rotating tangential vector C.C.W (Fig.3), we can obtain outward normal vector. 

 

normal vector ∶   (−
dz̅

dy̅
, 1 )  

 

Change differential domain Cartesian coordinate to natural coordinate. 

 

dS =  (dy̅)2 + (dz̅)2 = √1 + (
dz̅

dy̅
)
2

   dy̅ = √(
dy̅

dz̅
)
2

+ 1  
dy̅

ds
  ds = √1 + (

∑
∂hi̅̅ ̅

∂s
z̅i

∑
∂hi̅̅ ̅

∂s
y̅i

)

2

  (∑
∂hi
̅̅ ̅

∂s
y̅i)  ds         (26) 

 

By above 4 steps, we can obtain R.H.S of variational formulation (e.q.[14]). Also in multi-element case, inside 

surface boundary conditions are automatically eliminated each other. Because absolute values are same, and 

outward normal vectors are opposite each other. (Fig.9) 

 

 

 

   Fig.9. Elimination of inside surface boundary condition 
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Different coordinate origin gives us different nodal coordinate yi̅, z̅i. By above whole procedure we obtain 

warping function at origin O Cartesian coordinate (it means rotating center is O). However generally we need 

warping function at center of twist. Thus, we introduce getting coordinate of twisting center and warping 

function at twisting center by translating coordinate center. 

 

 

 

3.3 Calculation of twisting center with warping function 

 

 

 

Fig.10. Translation of coordinate center of warping function at twisting center 

 

 

 

 As previously stated, St.Venant solution has different values according to center of coordinate. However these 

different values have relation, and are easily changed. Simple translation of coordinate system don`t affect L.H.S 

of variational formulation (governing equation). Therefore, cause of difference of solution is nodal coordinates 

y̅i , z̅i in boundary condition term. For derivation, firstly we define some terms. 

 

 

 

�̅� 

𝑧 ̅ 

O 

 

<Coordinate at O> 

𝜓 

(�̅�𝑇 , 𝑧 ̅𝑇) 

 

𝜓  

<Coordinate at twisting center> 

𝑦  

𝑧  
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ψ ∶  Warping function at O, ψ̃ ∶  Warping function at twisting center,

y̅T, z̅T  ∶ coordinates of twisting center 

 

ψn = ψ −
1

A
∫ψdA,    y̅n = y̅ −

1

A
∫ y̅dA,      z̅n = z̅ −

1

A
∫ z̅dA                                 (27) 

 

Derivation starts with boundary condition term as following. 

 

m
∂ψ

∂y̅
+ n

∂ψ

∂z̅
= mz̅ − ny̅                                                                    (28) 

 

∂ψ

∂y̅
= z̅,    

∂ψ

∂z̅
= −y̅        ( ∵ m and n are each independent )                                       (29) 

 

State e.q.[29] each center of coordinates at original center O and twisting center. 

 

(

∂ψ

∂y̅
= z̅ ,       

∂ψ

∂z̅
= −y̅                   

∂ψ̃

∂y̅
= z̅ − z̅T  ,      

∂ψ̃

∂z̅
= −y̅ + y̅T

                (at  ∂Ω )                                              (30) 

 

Substitute y̅ and z̅ 

 

∂ψ̃

∂y̅
=

∂ψ

∂y̅
− z̅T  ,    

∂ψ̃

∂z̅
=

∂ψ

∂z̅
+ y̅T                                                               (31) 

 

Integrate above differential equation (e.q.[31]) 

 

ψ̃ = ψ − z̅Ty̅ + C1(z̅),            ψ̃ = ψ + y̅Tz̅ + C2(y̅)                                               (32) 

 

Above two equation give 

 

−z̅Ty̅ + C1(z̅) = y̅Tz̅ + C2(y̅)                                                               (33) 
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(
C1(z̅) = y̅Tz̅ + C

C2(y̅) = −z̅T�̅� + C
          (∵ identical equation)                                                (34) 

 

Plug in e.q.[32] and e.q.[34]. 

 

ψ̃ = ψ + y̅Tz̅ − z̅Ty̅ + C                                                                    (35) 

 

To arrange constant terms with e.q.[27], we obtain e.q.[36]. 

 

ψ̃ = ψn + y̅Tz̅n − z̅Ty̅n + C′                                                                (36) 

 

∫ ψ̃dA = ∫ψndA = ∫ y̅ndA = ∫ z̅ndA = 0      (∵ e. q. [27])                                        (37) 

 

To apply e.q.[37] at e.q.[36], obtain transformation relation. 

 

ψ̃ = ψn + y̅Tz̅n − z̅Ty̅𝑛                                                                     (38) 

 

For getting center of twist, continuously,  

 

∫ ψ̃y̅ dA = ∫ ψ̃y̅𝑛 dA = ∫ψny̅n + y̅Tz̅𝑛y̅n − z̅Ty̅𝑛
2 dA,                                                 

∫ ψ̃z̅ dA = ∫ ψ̃z̅𝑛 dA = ∫ψnz̅n + y̅Tz̅𝑛
2 − z̅Ty̅𝑛z̅𝑛  𝑑𝐴                                            (39) 

 

Finally, obtain coordinate of twisting center yD, zD with define integration product Aψnψn
= ∫ψn

2dA. 

 

yD = −
Aψnz̅𝑛Ay̅𝑛y̅𝑛−Aψny̅𝑛Ay̅𝑛z̅𝑛

Ay̅𝑛y̅𝑛Az̅𝑛z̅𝑛−Ay̅𝑛y̅𝑛
2 ,    zD =

Aψny̅𝑛Az̅𝑛z̅𝑛−Aψnz̅𝑛Ay̅𝑛z̅𝑛

Ay̅𝑛y̅𝑛Az̅𝑛z̅𝑛−Ay̅𝑛z̅𝑛
2                                      (40) 

 

By above derivation, alternative representations with ψ, 𝜓  are possible. We can easily translate rotation center, 

and get the corresponding warping function. 
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Chapter 4. Numerical results 

 

 

 

We present mathematically indefective formulation by this time. In this section, demonstrate various cases by 

using Fortran, and optimize sectional finite element model. Through rectangular section case, show improvement 

of performance and decide optimal sectional model. In open and closed section case, verify results, with 

analytical solution and MITC4 shell model, for free and restrained warping condition. Also, in distributed torsion 

problem, verify results likewise. Lastly, eccentric end tip load problem is compared with shell model. 

 

 

4.1. Rectangular section 

 

 We demonstrate rectangular cross section for determining optimized interpolation order and number of 

elements. accuracy and operating time are in inverse proportion. Accuracy of numerical warping function is 

determined by sectional interpolation order (number of elemental node), and number of element. Thus we have 

to optimize these two parameters. Demonstrate condition of beam is as following. 

 

 

E = 200 × 109  

 υ = 0.3 

 Mx = 200 

L=20 

      b=2 

 

 

Fig.11. Demonstration condition of beam, free warping cantilever with torsion at end tip 
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4.1.1. Effect of sectional interpolation order 

 

We compare x-directional rotation value, with analytical solution and ADINA, as changing interpolation order 

and a/b ratio using only one sectional element. (Fig.12) Analytical solutions are obtained by following 

formulations. 

 

 

θx =
𝑀𝑥𝐿

𝐺𝐾
,               for square K = 0.140625a4 

for rectangle K = ab3 *
16

3
− 3.36

𝑏

𝑎
(1 −

𝑏4

12𝑎4)+ 

for very thin K =
𝑎𝑏3

3
 

 

 

    

Fig.12. Interpolation condition of rectangular section 
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Table.1. Result of θx as changing slenderness of rectangular section with various interpolation order  

(Each cases use only 1 sectional element) 

a/b  

ratio 

Analytical 

Sol. 

ADINA 1
st
 order 

Interpol. 

2
nd

 order 

Interpol. 

3
rd

 order 

Interpol. 

4
th

 order 

Interpol. 

1 2.3111E-8 2.309E-8 1.931E-8 1.931E-8 2.309E-8 2.309E-8 

2 7.0998E-9 7.047E-9 6.094E-9 6.094E-9 7.080E-9 7.080E-9 

4 2.8930E-9 2.816E-9 2.590E-9 2.590E-9 2.846E-9 2.846E-9 

10 1.0406E-9 1.006E-9 9.847E-9 9.848E-9 1.011E-9 1.011E-9 

100 9.75E-11 9.753E-11 9.751E-11 9.751E-11 9.754E-11 9.754E-11 

 

 

Through table1 and fig.13, we can know that warping function is reliably spanned by 3
rd

 order polynomial. Also 

1
st
 order interpolation can give us accurate solution with slender structure. Thus we select order of interpolation 

by shape of structure. (Additionally table1 verify us warping function of rectangular section have odd function) 

And it give us closer value than ADINA`s. Also ADINA use two additional warping degree of freedoms α, β 

and formulation is as following. (our study is only one additional warping DOF) 

 

uw = 𝑦𝑧𝛼 + 𝑦𝑧(𝑦2 − 𝑧2)𝛽 

 

Conclusion is that performance is improved with reduced degree of freedom. 
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Fig.13. Error curve of rectangular section as changing slenderness (e = |
(𝑅𝑒𝑓)−𝜃𝑥

(𝑅𝑒𝑓)
|) 

 

 

 

 

4.1.2. Effect of number of sectional elements 

 

 We compare x-directional rotation value as changing number of sectional element. Beam testing condition is 

same as fig.10 and section condition is as fig.14 

 



- 27 - 

 

 

Fig.14. Patched rectangular section condition 

 

 

Table.2. Result of θx as changing number of sectional elements with rectangular section  

(using 3
rd

 order interpolation) 

 

a/b ratio Analytical 

sol. 

1 element 2 element 4element 2 element 

Trapezoid 

1 2.3111E-8 2.3090E-8 2.3102E-8 2.3111E-8 2.3030E-8 

2 7.0998E-9 7.0800E-9 7.0970E-9 7.0980E-9 7.0876E-9 

4 2.8930E-9 2.8460E-9 2.8760E-9 2.8761E-9 2.8719E-9 

10 1.0406E-9 1.0110E-9 1.0218E-9 1.0218E-9 1.0221E-9 

100 9.7500E-11 9.7540E-11 9.7558E-11 9.7558E-11 9.7562E-11 

 

 

 By Table.2, finer mesh gives us more accurate result. Thus, with above two results, we can decide that elements 

number are not important when we use 3
rd

 order interpolation function. 
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4.2. Free/restrained warping condition for open section (L, I, C) 

 

L, I, and C section beam are abundantly used in engineering structures. And also free/restrained warping 

analytical solution is well known. Compare x-directional rotation as changing thickness for free warping 

condition, and as changing number of beam element for restrained warping condition in each 2node and 3node 

beam element case. In all case, we use 3
rd

 order interpolation. 

 

 

 

 

 

 

 

 

 

 

 

           Fig.15. Mesh condition of open section (L, I, C) 

 

 

4.2.1 Remarks on reference values (shell model and analytical solution) 

 

For verifying performance of present beam elements, we suggest two kind of reference value, analytical solution 

(Roark`s formulas for stress and strain), and MITC4 shell model. We design shell model which deform most 

similar behavior to beam elements. We get guarantee of shell model from simple cases, and we use the model as 

reference value in complex problem that analytical solution is unknown. Method of modeling are as following 

Fig16, Fig.17. 
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Fig.16. Shell model for L, I, C cross-section 
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Fig.17. Boundary condition for L, I, C cross-section 



- 31 - 

 

For calculating analytical solution of thin walled beam structures, we use Bredt`s formula in free warping case. 

 

G ∶ shear modulus ,    L ∶ beam length 

li ∶ 𝑙𝑒𝑛𝑔𝑡 𝑜𝑓 𝑙𝑒𝑔, 𝑡𝑖 ∶ 𝑡𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑙𝑒𝑔 

 

M = (
𝐺

𝐿
∑

𝑙𝑖𝑡𝑖
3

3

𝑛

𝑖=1

) ∙ θ 

 

In restrained warping, and distributed moment problem, we use „Roark`s formulas for stress and strain‟.  

( β = √
𝐾𝐺

𝐶𝑤𝐸
  ) 

 

 

Restrained warping 

θx =
𝑇

𝐶𝑤𝐸𝛽3
[𝛽(𝑙 − 𝑥) − 𝑡𝑎𝑛𝛽𝑙 +

𝑠𝑖𝑛𝛽𝑥

𝑐𝑜𝑠𝛽𝑙
 

 

Distributed moment with free warping 

θx =
𝑡

𝐶𝑤𝐸𝛽4
[
𝛽2(𝑙2 − 𝑥2)

2
 

+
𝑠𝑖𝑛𝛽(𝑙 − 𝑥) + 𝑠𝑖𝑛𝛽𝑥

𝑠𝑖𝑛𝛽𝑙
− 1] 

 

Distributed moment with restrained warping 

θx =
𝑡

𝐶𝑤𝐸𝛽4
[
1 − 𝑐𝑜𝑠𝛽(𝑙 − 𝑥) + 𝛽𝑙(𝑠𝑖𝑛𝛽𝑙 − 𝑠𝑖𝑛𝛽𝑥)

𝑐𝑜𝑠𝛽𝑙
 

 

+
𝛽2(𝑙2 − 𝑥2)

2
] 
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Torsional properties of each section are as following. 

 

 

K =
1

3
(2𝑡3𝑏 + 𝑡3) 

Cw =
2𝑡𝑏3

24
 

 

e =
3𝑏2

 + 6𝑏
 

K =
𝑡3

3
( + 2𝑏) 

Cw =
2𝑏3𝑡

12
  
2 + 3𝑏

 + 6𝑏
 

 

 

 

 

     Fig.18 Difference modeling between reference and this study 
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By difference of modeling (Fig.18), results have to be shown difference. As thickness is increase, result should 

have more difference. We can see that difference results. 

 

 

4.2.2. Free warping condition for L, I, C section 

 

Thin walled structure is abundantly used, especially L, I, and C section. We compare results with analytical 

solutions and MITC4 shell model, as changing thickness of legs. We can generally see that difference of result is 

larger as increasing thickness (because of difference of model). Demonstrate condition is as following in Fig.19. 

a, b mean dimension of reference rectangle. 

 

  

 

  E = 200 × 109 

 υ = 0 

 Mx = 1 

L=20 

      b=2 

a=4 

 

 

Fig.19. Demonstration condition of beam, free warping cantilever with torsion at end tip 

 

 

Each L, I, C sectional demonstration conditions are in Fig.20, Fig.21, Fig.22, and each result are in Table.3, 

Table4, Table5. We can see C-section occur more difference than I-section. The reason is in Fig.18. C-section has 

larger area out of reference rectangle. 
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                              Fig.20. Thickness change of L-section 

 

 

 

 

Table.3. L-section result of θx as changing thickness with free warping condition 

 

Thick

ness 

Shell solution 

(only thin case) 

Analytical solution 

(only thin case) 

Present study Difference 

1.99 - (2.737E-11) 2.7473E-11 - 

1 - - 1.2893E-10 - 

0.1 1.0013E-7 1.0000E-7 1.0098E-7 0.980% 

0.05 8.0027E-7 8.0000E-7 8.0301E-7 0.376% 

0.01 1.0000E-4 1.0000E-4 1.0006E-4 0.06% 
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Fig.21. Thickness change of I-section 

 

 

 

 

Table.4. I-section result of θx as changing thickness with free warping condition 

 

Thick

ness 

Shell solution 

(only thin case) 

Analytical solution 

(only thin case) 

Present study Difference 

1.99 - (2.737E-11) 2.7300E-11 - 

1 - - 9.5169E-11 - 

0.1 7.5159E-8 7.5000E-8 7.4385E-8 0.820% 

0.05 6.0035E-7 6.0000E-7 5.9378E-7 1.037% 

0.01 7.5002E-5 7.5000E-5 7.4693E-5 0.409% 
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                              Fig.22. Thickness change of C-section 

 

 

 

 

Table.5. C-section result of θx as changing thickness with free warping condition 

 

Thick

ness 

Shell solution 

(only thin case) 

Analytical solution 

(only thin case) 

Present study Difference 

1.99 - (2.737E-11) 2.7300E-11 - 

1 - - 1.0278E-10 - 

0.1 7.5116E-8 7.5000E-8 7.6092E-8 1.456% 

0.05 6.0023E-7 6.0000E-7 6.0349E-7 0.582% 

0.01 7.5001E-5 7.5000E-5 7.5065E-5 0.087% 
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4.2.3. Restrained warping condition for L, I, C section 

 

We compare results with analytical solutions and MITC4 shell model, likewise above free warping case. 

Demonstrate condition is as following in Fig.23. In restrained warping condition, that is distinct with free 

warping condition, warping displacement fields are not constant. It means that x-directional (longitudinal 

direction) rate of change is occurred. Thus, there are needed some beam elements for convergence of solution. 

Therefore we demonstrate as changing number of beam elements, and beam interpolation order. 2-node element 

means 1
st
 order interpolation, and 3-node element means 2

nd
 order interpolation. 

 

 

 

       E = 200 × 109 

 υ = 0 

 Mx = 1 

L=20 

      b=2 

a=4 

 

 

Fig.23. Demonstration condition of beam, restrained warping cantilever with torsion at end tip 

 

 

 

Each L, I, C sectional demonstration conditions are in Fig.20, Fig.21, Fig.22, and each result are in Table.3, 

Table4, Table5. We can see higher order element gives us quick convergence. 
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Table.6. L-section result of θx as changing thickness with restrained warping condition  

(N : the number of elements used) 

N  Thickness 0.001 0.01 0.1 

2-node 3-node 2-node 3-node 2-node 3-node 

1 9.8045E-2 9.5128E-2 9.8103E-5 9.5191E-5 9.9077E-8 9.6207E-8 

2 9.4194E-2 9.2953E-2 9.4257E-5 9.3013E-5 9.5276E-8 9.4000E-8 

4 9.2936E-2 9.2935E-2 9.2996E-5 9.2996E-5 9.3981E-8 9.3981E-8 

8 9.2935E-2 9.2935E-2 9.2996E-5 9.2996E-5 9.3981E-8 9.3981E-8 

16 9.2935E-2 9.2935E-2 9.2996E-5 9.2996E-5 9.3981E-8 9.3981E-8 

Analytical sol. - - - 

Shell sol. 9.2987E-2 9.2987E-5 9.3111E-8 

Difference - - - - - - 

 

 

Table.7. I-section result of θx as changing thickness with restrained warping condition  

(N : the number of elements used) 

N  Thickness 0.001 0.01 0.1 

2-node 3-node 2-node 3-node 2-node 3-node 

1 1.8847E-6 2.5100E-6 1.8886E-7 2.5115E-7 1.5684E-8 1.8633E-8 

2 2.3537E-6 2.5100E-6 2.3559E-7 2.5114E-7 1.7909E-8 1.8586E-8 

4 2.4709E-6 2.5100E-6 2.4725E-7 2.5114E-7 1.8417E-8 1.8583E-8 

8 2.5002E-6 2.5100E-6 2.5017E-7 2.5114E-7 1.8542E-8 1.8583E-8 

16 2.5075E-6 2.5100E-6 2.5090E-7 2.5114E-7 1.8573E-8 1.8583E-8 

Analytical sol. 2.5000E-6 2.4900E-7 1.7880E-8 

Shell sol. 2.4566E-6 2.4472E-7 1.7692E-8 

Difference 0.304% 0.404% 0.763% 0.859% 3.876% 3.932% 

 



- 39 - 

 

Table.8. C-section result of θx as changing thickness with restrained warping condition  

(N : the number of elements used) 

N  Thickness 0.001 0.01 0.1 

2-node 3-node 2-node 3-node 2-node 3-node 

1 1.0809E-6 1.1112E-6 1.0915E-7 1.1214E-7 1.0528E-8 1.0318E-8 

2 1.3490E-6 1.3711E-6 1.3614E-7 1.3834E-7 1.2381E-8 1.2420E-8 

4 1.4161E-6 1.4284E-6 1.4289E-7 1.4412E-7 1.2814E-8 1.2876E-8 

8 1.4329E-6 1.4375E-6 1.4457E-7 1.4504E-7 1.2921E-8 1.2948E-8 

16 1.4370E-6 1.4384E-6 1.4499E-7 1.4513E-7 1.2947E-8 1.2955E-8 

Analytical sol. 1.4285E-6 1.4253E-7 1.1634E-8 

Shell sol. 1.3747E-6 1.3718E-7 1.1299E-8 

Difference 0.595% 0.693% 1.697% 1.824% 11.286% 11.355% 
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4.3. Closed cross-section 

 

Compare x-directional rotation as changing thickness for free warping condition with analytical solution. 

Introduce how to obtain analytical solution. 

 

 

 

K =
2𝑡(𝑎 − 𝑡)2(𝑏 − 𝑡)2

𝑎𝑡 + 𝑏𝑡 − 2𝑡2
 

 

 

θx =
𝑀𝑥𝐿

𝐾𝐺
 

 

 

 

Demonstration beam condition is in Fig.19 same as open section case. Section finite element model and 

demonstration condition of cross-section is in Fig.24. 

 

 

 

Fig.24 Mesh condition & thickness change of rectangular tube cross-section 

 

Result is in Table.9, and has same tendency with open section cases. 
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Table.9. Rectangular tube section result of θx as changing thickness with free warping condition 

Thick

ness 

Analytical solution 

(only thin case) 

Present study Difference 

0.99 (2.737E-11) 2.7426E-11 - 

0.5 - 3.1907E-11 - 

0.1 1.0563E-10 1.0305E-10 2.443% 

0.05 1.9889E-10 1.9616E-10 1.373% 

0.01 9.4853E-10 9.4551E-10 0.318% 
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4.4. Various section 

 

 We demonstrate various section, trapezoid, circle, shaft with four splines. Compare x-directional rotation, and 

testing condition of beam is same as Fig.19. Sectional condition and analytical solutions are in following table. 

 

Section condition Analytical solution 

<Trapezoid> 

3
rd

 order   

1element 

K =
1

12
b(m + n)(m2 + 𝑛2) − 𝑉𝐿𝑚

4 − 𝑉𝑠𝑛
4 

VL = 0.10504 − 0.1𝑠 + 0.0848𝑠2 − 0.06746𝑠3

+ 0.0515𝑠4 

Vs = 0.10504 + 0.1𝑠 + 0.0848𝑠2 + 0.06746𝑠3

+ 0.0515𝑠4 

s =
𝑚 − 𝑛

𝑏
 

θx =
𝑀𝑥𝐿

𝐾𝐺
 

<Circle> 

3
rd

 order 

1element 

R=2 

K =
1

2
𝜋𝑅4 

θx =
𝑀𝑥𝐿

𝐾𝐺
 

<Shaft with four splines> 

3
rd

 order 

7element 

R=2 

a=1 

b=1 

K = 2CR4 

C = K1 + 𝐾2

𝑏

𝑅
+ 𝐾3 (

𝑏

𝑅
)
2

+ 𝐾4 (
𝑏

𝑅
)
3

 

K1 = 0.7854 

K2 = 0.0595 − 0.3397
𝑎

𝑏
+ 0.3239(

𝑎

𝑏
)
2

 

K3 = −0.6008 + 3.1396
𝑎

𝑏
− 2.0693(

𝑎

𝑏
)
2

 

K4 = 1.0869 − 6.2451
𝑎

𝑏
+ 9.4190(

𝑎

𝑏
)
2

 

θx =
𝑀𝑥𝐿

𝐾𝐺
 

 

Numerical result is in Table10. 
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Table.10. Various section result of θx free warping condition 

 Analytical sol. Present study Difference 

Trapezoid 1.0632E-11 1.0845E-11 2.003% 

Circle 2.0700E-9 2.0644E-9 0.271% 

Shaft with four splines 4.2890E-12 4.6444E-12 8.286% 

 

 

 

 

4.4. Distributed torsion problem 

 

Compare x-directional rotation when uniformly distributed torsional moment is applied. Again, we consider the 

situations of free and restrained warping condition with L, I, C sections. MITC4 shell models, and analytical 

solutions are compared with the numerical results. Free/restrained demonstrate conditions of beam are each in 

Fig25 and Fig.26. Also demonstrate conditions of section are same as section4.2. 

 

4.4.1 Free warping condition for L, I, C section 

 

 

 

       E = 200 × 109 

 υ = 0 

 td =
1

20
 

L=20 

      b=2 

a=4 

 

Fig.25. Demonstration condition of beam, free warping cantilever with distributed torsion 
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Table.11. L-section result of θx as changing thickness with free warping condition 

Thick

ness 

Shell solution 

(only thin case) 

Analytical solution 

(only thin case) 

Present study Difference 

1 - - 6.4466E-11 - 

0.1 5.0021E-8 - 5.0495E-8 - 

0.05 3.9971E-7 - 4.0156E-7 - 

0.01 4.9946E-5 - 5.0029E-5 - 

 

 

Table.12. I-section result of θx as changing thickness with free warping condition 

Thick

ness 

Shell solution 

(only thin case) 

Analytical solution 

(only thin case) 

Present study Difference 

1 - - 4.7585E-11 - 

0.1 3.6955E-8 3.7500E-8 3.7192E-8 0.821% 

0.05 3.0419E-7 3.0000E-7 2.9689E-7 1.037% 

0.01 - 3.7500E-5 3.7347E-5 0.408% 

 

 

Table.13. C-section result of θx as changing thickness with free warping condition 

Thick

ness 

Shell solution 

(only thin case) 

Analytical solution 

(only thin case) 

Present study Difference 

1 - - 5.1392E-11 - 

0.1 3.5713E-8 3.7500E-8 3.8046E-8 1.456% 

0.05 2.8539E-7 3.0000E-7 3.0175E-7 0.583% 

0.01 3.5661E-5 3.7500E-5 3.7532E-5 0.085% 
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4.4.2 Restrained warping condition for L, I, C section 

 

 

 

       E = 200 × 109 

 υ = 0 

 td =
1

20
 

L=20 

      b=2 

a=4 

 

 

Fig.26. Demonstration condition of beam, restrained warping cantilever with distributed torsion 

 

 

Table.14. L-section result of θx as changing thickness with restrained warping condition  

(N : the number of elements used) 

N  Thickness 0.001 0.01 0.1 

2-node 3-node 2-node 3-node 2-node 3-node 

1 4.9023E-2 4.5838E-2 4.9051E-5 4.5873E-5 4.9539E-8 4.6408E-8 

2 4.4406E-2 4.3899E-2 4.4443E-5 4.3932E-5 4.4987E-8 4.4443E-8 

4 4.3427E-2 4.3562E-2 4.3460E-5 4.3595E-5 4.3968E-8 4.4105E-8 

8 4.3432E-2 4.3465E-2 4.3465E-5 4.3498E-5 4.3973E-8 4.4006E-8 

16 4.3432E-2 4.3440E-2 4.3465E-5 4.3473E-5 4.3973E-8 4.3982E-8 

Analytical sol. - - - 

Shell sol. 4.3437E-2 4.3437E-5 4.3509E-8 

Difference - - - - - - 
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Table.15. I-section result of θx as changing thickness with restrained warping condition 

(N : the number of elements used) 

N  Thickness 0.001 0.01 0.1 

2-node 3-node 2-node 3-node 2-node 3-node 

1 9.4236E-7 1.0205E-6 9.4431E-8 1.0212E-7 7.8422E-9 7.6161E-9 

2 9.4235E-7 9.6189E-7 9.4327E-8 9.6254E-8 7.1965E-9 7.1999E-9 

4 9.4235E-7 9.4723E-7 9.4306E-8 9.4788E-8 7.0901E-9 7.0940E-9 

8 9.4235E-7 9.4357E-7 9.4301E-8 9.4422E-8 7.0662E-9 7.0674E-9 

16 9.4235E-7 9.4265E-7 9.4300E-8 9.4330E-8 7.0604E-9 7.0607E-9 

Analytical sol. 9.3746E-7 9.3387E-8 6.7764E-9 

Shell sol. 9.4351E-7 9.3997E-8 6.8602E-9 

Error 0.522% 0.554% 0.978% 1.010% 4.191% 4.195% 

 

 

Table.16. C-section result of θx as changing thickness with restrained warping condition  

(N : the number of elements used) 

N  Thickness 0.001 0.01 0.1 

2-node 3-node 2-node 3-node 2-node 3-node 

1 5.4043E-7 5.8513E-7 5.4574E-8 5.9040E-8 5.2640E-9 5.2975E-9 

2 5.4043E-7 5.1793E-7 5.4540E-8 5.2259E-8 4.9708E-9 4.7093E-9 

4 5.4043E-7 5.3822E-7 5.4533E-8 5.4307E-8 4.9184E-9 4.8831E-9 

8 5.4043E-7 5.4065E-7 5.4531E-8 5.4553E-8 4.9065E-9 4.9045E-9 

16 5.4043E-7 5.4057E-7 5.4531E-8 5.4545E-8 4.9035E-9 4.9038E-9 

Analytical sol. 5.3570E-7 5.3453E-8 4.3896E-9 

Shell sol. 5.3223E-7 5.3111E-8 4.3955E-9 

Error 0.883% 0.909% 2.017% 2.043% 11.707% 11.714% 
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4.5. Eccentric load problems 

 

It is hard to encounter pure torsion in practical engineering problem. Equivalent torsion is Usually applied by 

eccentric load. As increasing number of beam element, we compare v(y-directional displacement), and θx(x-

directional rotation) with restrained warping cantilever, and end tip eccentric load. (Fig.27) Also compare it 

along the beam length. (Fig.29, Fig.30) Demonstration condition of section is in Fig.28. With I and C shape 

section, 

 

 

  E = 200 × 109 

 υ = 0 

 Py = 1 

L=20 

      b=2 

a=4 

 

 

Fig.27. Demonstration condition of beam, restrained warping cantilever with eccentric load at end tip 

 

 

 

 

       Fig28. Position of eccentric load and thickness in each section 
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Table.17. Eccentric load for I-section with restrained warping condition 

N v x-rotation 

2-node 3-node 2-node 3-node 

1 1.4706E-6 2.0021E-6 -3.6828E-7 -5.0105E-7 

2 1.8776E-6 2.0020E-6 -4.7000E-7 -5.0103E-7 

4 1.9709E-6 2.0020E-6 -4.9327E-7 -5.0103E-7 

8 1.9943E-6 2.0020E-6 -4.9909E-7 -5.0103E-7 

16 2.0001E-6 2.0020E-6 -5.0054E-7 -5.0103E-7 

Shell sol. 2.0052E-6 -5.0029E-7 

 

 

Fig29. Displacements along the beam length with I-section in the eccentric load problem 
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Table.18. Eccentric load for C-section with restrained warping condition 

N v x-rotation 

2-node 3-node 2-node 3-node 

1 7.3917E-7 9.8316E-7 -2.1775E-7 -2.8955E-7 

2 9.2218E-7 9.8315E-7 -2.7161E-7 -2.8954E-7 

4 9.6791E-7 9.8315E-7 -2.8506E-7 -2.8954E-7 

8 9.7934E-7 9.8315E-7 -2.8842E-7 -2.8954E-7 

16 9.8220E-7 9.8315E-7 -2.8926E-7 -2.8954E-7 

Shell sol. 9.8043E-7 -2.8763E-7 

 

 

          Fig.30. Displacements along the beam length with C-section in the eccentric load problem 
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Chapter 5. Conclusions 

 

 

 

By using numerically obtained warping function, we could improve performance and numerically allow to solve 

torsional problem for arbitrary section. This paper resolve the problem of beam elements that cross-section have 

to remain plane (original configuration). But it still has limitation which can describe deformation of cross-

section only longitudinal direction. I think it`s possible that solve other directional deformation with certain 

kinematic formulations. 

Suggested method has advantage easy to approach non-linear problems. For considering non-linear behavior, I 

will study about Wagner effect, and apply our beam elements. 
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Summary 

 

Development of general beam finite elements for 

arbitrary section with warping displacement 

 

 

 

본 논문에서는 유핚요소법을 이용하여 임의의 단면을 가지는 빔의 비틀림 문제를 해석 

핛 수 있는 방법론을 제시하였다. 임의의 단면에 대해 고려하기 위해, St.Venant 방정식을 

유핚요소법을 통해 수치적으로 풀어냈으며, wapring effect 에 의핚 연속적인 변위장을 얻기 

위해, 각 절점에 warping 자유도를 정의해 앞서 구핚 해를 보갂 하였다. 이렇게 구해진 

변위장을 기존의 3-D 곡률 빔의 변위장에 중첩시켜, 최종적인 변위장을 얻고 이를 통해 복합 

변형을 고려 핛 수 있는 강성행렬을 구해 낼 수 있다. 
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