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ABSTRACT

In this paper, we suggest method that allows to solve torsional problems of beam structure for arbitrary
cross sections. To obtain continuous displacements due to warping effect for arbitrary cross sections, we
numerically solve the St.Venant equations and interpolate the solutions through the longitudinal direction of the
beam element. Mapping these continuous displacements to standard curved beam displacements, the elements
can consider free and restrained warping conditions, eccentric load, varying sections, and curved geometries for

arbitrary cross section.
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Chapter 1. Introduction

Finite beam elements are abundantly used for numerically analyzing behavior of engineering structures.
However it yet has any problems to solve torsional problems that standard beam formulations can’t describe
twisting deformations. For considering torsion effect, usually beam modeling is replaced by shell or solid
elements or ignored. Thus, to develop finite beam elements with warping effect (plane cross-section do not
remain plane) is needed. Especially in restrained warping case (prevent the member ends from warping freely),
occur distributed axial normal stress at the end. By following this normal stress, St.Venant shear and bi-moment
are developed. Thus, we have to solve more complex governing equation than free warping case, and can't apply
to varying section and curved structure case.

Analytical solution of torsional beam problem in free warping case was reported by Timoshenko(1945).
Vlasov(1961) established thin-walled beam theory, and obtained solution of restrained warping condition. In
succession, Reissner(1979, 1983, 1992) suggested method that can consider coupled load for prismatic beam.
Until recent, it was dominantly used for solving torsional problem by FEM that obtain continuous warping
function by interpolating warping function at each node with additional warping degree of freedom. In this
method, Vlasov(1961) gave analytical warping function(contour warping & thickness warping) for thin-walled
beam. And Bathe(1982) suggested for rectangular cross section case. However, these studies applied just simple
case that only rectangular or thin-walled cross section.

The purpose of this paper is to develop general beam finite elements with arbitrary cross section for fully-
coupled load condition(torsion, bending, stretch) in case of varying section, curved geometry. We suggest
inventive formulation of iso-parametric beam elements for arbitrary cross sections. In these formulations,
St.Venant solution is needed for obtaining warping displacement fields term. Thus, we introduce method of

solving St.\Venant equation by using FEM. Lastly, we present various numerical results.



Chapter 2. 3-dimensional curved finite beam elements formulation with

arbitrary sections

In this section, introduce displacement based three dimensional curved beam interpolation for arbitrary section
(Fig.1), and application of numerical warping function calculated in previous chapter. Lastly, present about

integration technique.

Fig.1. General curved beam element with arbitrary cross-section



2.1 Displacement field for arbitrary sections

First of all, translate coordinate system at twisting center which is obtained in previous chapter. For example of

displacement based beam element, interpolation of rectangular section at time | is well known and as following.

x,y,Zz : Cartesian coordinates of any point in the element
X;, Vi, Zi : Cartesian coordinates of nodal point i

aj, b; : rectangular dimensions

Vsi,Vti : unit vector in direction sandt

h;(r) : interpolation function for longitudinal direction

/ x(r,5,6) = Bl b + iy by (6) Wi+ B by (%) Wik
y(r,5,8) = By hyyi + Ty by () Wi, + By e (2s) W (41)
2(r,5,6) = Ty hizg + Dy hy () Wi + Bl by (B5) W

We implement these interpolations for arbitrary section. In rectangular section, y, z directional coordinates are
easily mapped by %s, ?t, but in arbitrary section are not. For applying at arbitrary section case, we newly

introduce sectional node and interpolation (These come from information for calculating warping function in

chapter2).



y
0] )
<Natural coordinate

<Cartesian coordinate> <Translate at load position> of sectional element>

Fig.2. Coordinate change for sectional element

Before interpolate sectional nodes with natural coordinate system, we translate center of initial coordinates to

center of load position (coordinate center O mean reference line of beam element). By translating reference line,

we can apply eccentric load at that position.

Y,Z : Cartesian coordinates of any point in the element
V1, Z, + Cartesian coordinates of nodal point i

h,(s,t) : interpolation function for sectional element

<?(s. =3 his¥ @)
Z(s,t) = X0, h(s, 0z

With above mapping, we can implement interpolation for arbitrary section.



x(r,5,8) = Tl hi (x; + Zisy hi(MZGs, 1) Vi + TS, hi ()Y (5,8)'Vix
y(r,s,t) = T hi(ys + S hi(Z(s, 0V + 2 (DY (s, 0)'Vey (43)
2(r,5,t) = Tisy hi(r)z; + TS hi(Z(s, 'V + 2, hi(1)Y(s,0)'VE,

With define terms of displacement and rotation angles.

u(r,s,t) = Ax, v(r,s,t) = Ay, w(r,s,t) =Az

0, = [0X o6F 0¥

<Vtk — IVtk _ OVtk — gk X OVtk (44)

Vsk — IVSk _ OVSk — gk X OV;k

Finally we obtain the standard displacement field of general curved beam element for arbitrary section with 6

degree of freedom displacement vector i =[u v w 6, 6, 6,].

u(r,s,t) = TS hi(Mw + TS hi(MDZ(s, ) (B X Vi) + ZiS; hi (1Y (s, £) (B X V)
v(r,s, ) = ZiS hi(r)vi + TS hi(r)Z(s, £) (0 X Viy) + XISy hi(r) Y (s, £) (8 X Viy) (45)
w(r,s,t) = ZiS; hi(w; + i hi(r)Z(s, £) 0k X Vi) + TS 1 hi(n)Y (s, £) (B X Vi)

This beam formulation has limitation that cannot describe sectional warping displacement. Because beam finite
elements have common assumption which is cross-section has to remain in plane. Thus, we superpose additional
displacement field for sectional warping. These displacement fields are obtained by interpolation of warping

function which is calculated in chapter 2. Detail explanation is presented in next section.



2.2 Application of numerical warping function

Fig.3. Warping displacement field of rectangular section

As mentioned in chapter2, with assumption k=% is constant (prismatic beam), sectional warping

displacement field is as following. (Fig.3 is example of warping displacement field)

u,, : Cartesian coordinate of warping displacement
 : Cartesian coordinate of warping function

V! unit vector in direction r

Uy, (s, t) = k- (s, t) - Vi (46)

Above displacement field is only validated with prismatic beam condition. Thus we define additional warping

degree of freedom o each elemental nodes.

Uy (s, ) = X, Uis, ) - Vi hy(r) - e (47)



By this interpolation, we obtain continuous warping function which can implement various beam condition.

(non-uniform torsion, curved geometry, varying section)

We apply this continuous warping displacement field to standard displacement filed mentioned in previous
section. Then, we obtain final form with 7 degree of freedom at each elemental nodes as following. u =

u v w 0, 6, 6, a]

k k k k
WS 0 = ) W+ ) hZ( 06X VR + ) bV (5 90 X Vi) + ) (5,0 Vi (1) - e

k k k k
V(S0 = Y Wi+ Y WZE D0 X V) + D WIT(s 00 X Vi) + > (5,0 Viy - (1) - e

k k k k
W50 = D W+ D ZE, D0 X V) + ) hiT (590 X Vi) + ) (5,0 V- hi(r) -
i=1 i=1 i=1 i=1

(48)

This displacement field can describe fully-coupled deformation (stretch, bending, torsion) for arbitrary section.



2.3 Finite elements modeling

<Cartesian coordinate>

<Natural coordinate>

Fig.4. Mapping of coordinate system

For finite elements modeling, firstly we introduce jacobian operator J.

XYz ¢

—i —i

Cartesian coordinates of nodal point i

Vs, V¢ : unit vector in direction sandt

h;(r) : interpolation function for longitudinal direction

Y,Z : Cartesian coordinates of any point in section element

Yoz

Cartesian coordinates of nodal point i

h,(s,t) : interpolation function for sectional element

dx 0y Oz ohy
or Odr Or [a‘r
— %% % 9z| _ vk
]_|as ds  os| l:1|0
x oy oz
lat at atJ [O

ahi— oh; =

—7Z, =Y

ar 7t ar 't Xi
az av, i

he p 2 Vi
L as L as ;

B2 g, 25| L
Lot Lot

Vi %
i i
Vty Vtz
i i
Voy Vaz

(49)



With above jacobian matrix and differentiation of displacements respect to natural coordinate, we can change

displacement field respect to Cartesian coordinate.

u
ox
|2+
oy
(o]

0z

B

ou

or
u

as |’
u
at

Finally, obtain strain matrix.

Vxy
Vyz
Vax

ou
ay
v
oz

ow

ou
dx
v
oy
ow
0z

Lox

v
ox
ow
oy
ou

324

(50)

(51)



2.4 Numerical integration

For obtaining stiffness matrix, we integrate strain matrix with material law matrix. Displacement based
formulation, which we use, encounter ‘shear locking’ problem. For releasing ‘shear locking’, we apply reduced
integral technique which is mathematically equal with MITC technique in beam interpolation. Because 3-
dimensional curved beam finite elements have only 1-dimensional interpolation function. (longitudinal direction
‘r’)
For integrating eccentric stiffness matrix, just input s and t gauss point in natural coordinate, we obtain eccentric

Y,Z. Example of L-section (multi-elements case) is in Fig.5.

(
fize}

1
1
1
1
1
:
1
PR B
1
1
1
1
1
|
1

e P

X

Fig.5. Example of gauss quadrature points for multi-elements case
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Chapter 3. Numerical solution of warping function

There are many numerical schemes to obtain St.Venant solutions. However we solve the equation own method
by FEM. In this section, we introduce St.VVenant equation which is governing equation of twisting section, derive
variational formulation of St.Venant equation, and obtain warping displacement field by solving the formulation
with finite element method. Finally, find coordinate of twisting center with pre-calculated solution of St.Venant.
Obtained displacement field map onto displacement field of standard beam formulation. Detail procedure is as in

the following.

3.1 St.Venant Equation and variational formulation

Fig.6. Kinematics of twisting displacement

By fig.6 and defining warping function, we can obtain displacement field. Warping function { is defined as

longitudinal displacement of cross section. Assume that beam is subjected by constant moments.

- 11 -



k = % = const. 0, = kx (D)

d
u=kxy(y,z)
v = Z0y )
w = —y0,

Above defined displacements, we can calculate strain and stress.

our [Eoa] [0
[ ] Ee 0
Oyy ; vy 0
Oyz | _ | E€zz — — ., oy
lcyz | | Gey, | 0
Ozx .
Gszx _Gk(—y + E |

Apply above stress into local equilibrium state.

doxx , 90xy | oxz _ (62_4’ 62_“’) =
aX+ay+ai—0 = Gk ayz+a22 =0
607,( 00‘yy ao'yi _ . .
o T oy t— = 0 = Identity Equation 4
00‘2)( 60'2}7 00‘22 _ . .
o Ty T - 0 = Identity Equation

By kinematics and local equilibrium equation, we obtain Laplace equation. Also boundary condition, which

means zero outward stress of surface, is as following. (i = (m,n) is outward unit vector of surface in Fig.1)

o-n=0 on 9Q ®)
MOyy + Noy; =0 (6)
mGk (z+ %) + nGk (—37 + %) =0 @)
m%+n%=m2—ny 8

-12 -



As above, Laplace equation and boundary condition give us St.Venant equation which is governing equation of
twisting deformation.
%y

—2+6—¢_0 withB.C.  1-V{ = mZ —ny ©)

ay

This governing equation has limitation of valid only with constant moment with assuming k = % is constant.

Thus, distributed torsion problem and restrained warping problem has different governing equation. For solving
these problems, we apply technique which is to interpolate k with each elemental node. Explain in detail is

presented in beam formulation chapter.

Introduce variation of warping function &y, and derive variational formulation as following.

f(%+§)&p dv =0 (10)
IG5 Gyow) — 550 + G (Grov) - 55D dv =0 (1)
[5Gy ow) +5; (Gr00)) av = JEHH+ 50D dv =0 12)

ST+ 5220 v = [(m T8y +n5l6y) dS (13)

oY 08 oy 08
i a—‘; a;" L) v = [(mz - ny)sy dS (14)

- 13 -



3.2 Finite element model of cross-section

N

@)
<Cartesian coordinate>

<Natural coordinate

of sectional element>

Fig.7. Sectional finite element model for solving St.Venant equation

Using the natural coordinate system of sectional element, we interpolate warping function respect to Cartesian

coordinates with k nodal point.

U(s 0 = T, (s, OW; (15)

Where the hy(s,t) are the shape functions, and . are nodal value of warping function. Also we introduce

jacobian operator J which map Cartesian coordinate onto natural coordinate.

_|0s 0s| _ vk Js | ro =
]_ ay oz| — 4i=1 oh, [YI Zl] (16)
at ot ot

With above jacobian operator and differentiation of s respect to natural coordinate, we can obtain derivation of

y in Cartesian coordinate as following.

- 14 -



oy oy oh,

[ [
ou| =17 u| = Zhead | | L) (7
oz at ot

By above differential matrix of warping function, obtain matrix form of L.H.S of variational formulation

(e.q.[14])
O 9By | WIS G (20U | 0w 0y
ST+ ST v = [ (S50 +512Y) |det)ldsdt (18)

Lastly, we derive matrix form of R.H.S of variational formulation (e.q.[14]), (boundary condition term). We

operate at each boundary face in natural coordinate system.

90°

902

Normal vector
9Q°

<facel> <face2> <face3> <faced>

Fig.8. outward normal vector for elemental surface

We can obtain outward normal vector for general curved surface (Fig.8) and changing domain of surface line

integration as following.

- 15 -



@ Outward normal vector & coordinate change at facel ( at s=—-1 & t=[-1,1] )

dy _ ayds

ay oh,_

aydt _ 3¢ _ XV (- dz _ 9zds |, 9zdt _ az)

dz ~ dsdz  otdz 02 ohy_ T dt 4sdt  atdt ot
at at 1

By above differentiation, we can get slope (tangential vector) of surface curve.

. dy
tangential vector : (d—;, 1)

By rotating tangential vector C.C.W (Fig.3), we can obtain outward normal vector.

.
normal vector : (—1, d—}_’

Change differential domain Cartesian coordinate to natural coordinate.

2

iy, oh
(Z§£> +1 (2507) dt

0

ds = /(dy)? + (d2)? = /(g)zﬂ dz = /(g)zﬂ < de=

- 16 -
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® Outward normal vector & coordinate change at face2 ( at t=—-1 & s =[-1,1] )

NI

0
dz_ozds | ozdt _ 5 Yo% (- W _0yds  oyde_ oy 1)
dy  odsdy odtdy Ohy_ dt  dsdt otdt ot

s 9s Vi

By above differentiation, we can get slope (tangential vector) of surface curve.
. dz
tangential vector : (1’d_y)
By rotating tangential vector C.W (Fig.3), we can obtain outward normal vector.
dz

normal vector : (d_y’_l)

Change differential domain Cartesian coordinate to natural coordinate.

— 2
_ = - az\? _ dz\? dy _ Z—aahlii oh, _
ds= @2+ @2 = |1+ (%) dy= |1+ (d—y) 2 ds = /1 + (z‘f;‘i‘yi OESARE (22)

-17 -



® Outward normal vector & coordinate change at face3 ( at s=1 & t=[-1,1] )

ay oh, _
dy _dyds , dydt _ 3¢
dz  9sdz = oatdz 92

@l@
o+ | Ni|+
1 ™M
E=
e

(23)

By above differentiation, we can get slope (tangential vector) of surface curve.

. dy
tangential vector : (d—;, 1)

By rotating tangential vector C.W (Fig.3), we can obtain outward normal vector.

.
normal vector : (1,—d—};

Change differential domain Cartesian coordinate to natural coordinate.

N\ 2 2 - b\ 2
as = @7+ @7 = (&) +1 az= () +1 L a= (2_

oh; _

-18 -



@ Outward normal vector & coordinate change at faced ( at t=1 & s =[-1,1] )

_ _ _ ik ohy_

dz _ozds  dzdt 5 _ Yoo"i (25)
' v v 9y oh,_

dy dsdy = otdy 5% Za_sly‘

By above differentiation, we can get slope (tangential vector) of surface curve.
. dz
tangential vector : (1’d_y)
By rotating tangential vector C.C.W (Fig.3), we can obtain outward normal vector.
dz

normal vector : (_d_y’ 1)

Change differential domain Cartesian coordinate to natural coordinate.

= @2 + (@) = /1 +(%) jy Y ogs= |1+ <Z§;1) EDy) ds (26)

¥redl

By above 4 steps, we can obtain R.H.S of variational formulation (e.q.[14]). Also in multi-element case, inside
surface boundary conditions are automatically eliminated each other. Because absolute values are same, and

outward normal vectors are opposite each other. (Fig.9)

Fig.9. Elimination of inside surface boundary condition

-19 -



Different coordinate origin gives us different nodal coordinate ¥,, z;. By above whole procedure we obtain
warping function at origin O Cartesian coordinate (it means rotating center is O). However generally we need
warping function at center of twist. Thus, we introduce getting coordinate of twisting center and warping

function at twisting center by translating coordinate center.

3.3 Calculation of twisting center with warping function

N

U

<=

O

<Coordinate at O> <Coordinate at twisting center>

Fig.10. Translation of coordinate center of warping function at twisting center

As previously stated, St.Venant solution has different values according to center of coordinate. However these
different values have relation, and are easily changed. Simple translation of coordinate system don't affect L.H.S
of variational formulation (governing equation). Therefore, cause of difference of solution is nodal coordinates

¥i,Z; in boundary condition term. For derivation, firstly we define some terms.

- 20 -



Y : Warping function at O, / : Warping function at twisting center,

V1. Zt : coordinates of twisting center

Yo=y—1fpdA,  F,=y-1fydA,  zZ,=7-1[zdA

Derivation starts with boundary condition term as following.

W W e
may+nai—mz ny
oy Y

— =7, 0‘: =—y  (~ mandn are each independent )

Wz, Wy
W _ - - @——_+_ (at 0Q)
ay_z ZT, 2z YTYr

Integrate above differential equation (e.q.[31])

U=y -7y + (), U=y +5Z+ )

Above two equation give

—z7y + C1(2) = yrZ + C2(¥)
-21 -

@7)

(28)

(29)

(30)

(31

(32)

(33)



(Cd@zyﬁ+c
C.(¥) = —Zy +C

(- identical equation)

Plug in e.q.[32] and e.q.[34].

U=Y+1Z -7y +C

To arrange constant terms with e.q.[27], we obtain e.q.[36].
U =y + J1Zn — Zr¥n + C'

[PdA= [P,dA= [§,dA= [Z,dA=0 (~e.q.[27])

To apply e.q.[37] at e.q.[36], obtain transformation relation.

For getting center of twist, continuously,

f‘TJ}_’ dA = flTJ}_’n dA = qun}_’n + Y1ZnYn — zT}_’n2 da,

f‘]ﬁ dA = flTJZn dA = flljnzn + yTan — Z1YnZy dA

Finally, obtain coordinate of twisting center yp, zp with define integration product Ay, y,, = [WZdA.

— AynznA¥nIn = AunynA¥nzn _ AYnynAznzn ~AynznAynzn
Yo = Ay yhga—AZ 0 DT T A A, o A2
ynyn‘Znin Ynyn ynyn‘Znin Ynin

(34)

(35)

(36)

37)

(38)

(39)

(40)

By above derivation, alternative representations with s, { are possible. We can easily translate rotation center,

and get the corresponding warping function.

-22 -



Chapter 4. Numerical results

We present mathematically indefective formulation by this time. In this section, demonstrate various cases by
using Fortran, and optimize sectional finite element model. Through rectangular section case, show improvement
of performance and decide optimal sectional model. In open and closed section case, verify results, with
analytical solution and MITC4 shell model, for free and restrained warping condition. Also, in distributed torsion

problem, verify results likewise. Lastly, eccentric end tip load problem is compared with shell model.
4.1. Rectangular section

We demonstrate rectangular cross section for determining optimized interpolation order and number of
elements. accuracy and operating time are in inverse proportion. Accuracy of numerical warping function is

determined by sectional interpolation order (number of elemental node), and number of element. Thus we have

to optimize these two parameters. Demonstrate condition of beam is as following.

E =200 x 10°

Fig.11. Demonstration condition of beam, free warping cantilever with torsion at end tip

- 23 -



4.1.1. Effect of sectional interpolation order

We compare x-directional rotation value, with analytical solution and ADINA, as changing interpolation order
and a/b ratio using only one sectional element. (Fig.12) Analytical solutions are obtained by following

formulations.

9, =2 for square K = 0.140625a*
GK
_ 1316 b b*
for rectangle K = ab [? - 3.36;(1 — 12a4)]
for very thin K = %ﬁ
o ————o o r——= —— 0 —/;.—a—.
p e ° o p
y L] [ ] y
[ . © P o o o
p L ] [ ] p
p e ° @ p
*o——0 o ——90 @——@ —\ﬁm

Fig.12. Interpolation condition of rectangular section

- 24 -



Table.1. Result of 6, as changing slenderness of rectangular section with various interpolation order

(Each cases use only 1 sectional element)

a/b | Analytical  ADINA 1% order 2" order 3" order 4" order

ratio | Sol. Interpol. Interpol. Interpol. Interpol.

1 2.3111E-8  2.309E-8 1.931E-8 1.931E-8 2.309E-8 2.309E-8
2 7.0998E-9  7.047E-9 6.094E-9 6.094E-9 7.080E-9 7.080E-9
4 2.8930E-9  2.816E-9 2.590E-9 2.590E-9 2.846E-9 2.846E-9
10 1.0406E-9  1.006E-9 9.847E-9 9.848E-9 1.011E-9 1.011E-9

100 | 9.75E-11 9.753E-11  9.751E-11  9.751E-11  9.754E-11  9.754E-11

Through tablel and fig.13, we can know that warping function is reliably spanned by 3" order polynomial. Also
1% order interpolation can give us accurate solution with slender structure. Thus we select order of interpolation
by shape of structure. (Additionally tablel verify us warping function of rectangular section have odd function)
And it give us closer value than ADINA's. Also ADINA use two additional warping degree of freedoms «, 3

and formulation is as following. (our study is only one additional warping DOF)

uy = yza +yz(y* — z*)p

Conclusion is that performance is improved with reduced degree of freedom.

- 25 -



18 y T ]

—*—¢ 1st order interpolation
-@—@- 3rd order interpolation
-#—=- ADINA

1 2 3 4 5 6 7 8910 20 30 40 50 60 7080 100

(Ref)—6yx

Fig.13. Error curve of rectangular section as changing slenderness (e = el

)

4.1.2. Effect of number of sectional elements

We compare x-directional rotation value as changing number of sectional element. Beam testing condition is

same as fig.10 and section condition is as fig.14
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Fig.14. Patched rectangular section condition
Table.2. Result of 6, as changing number of sectional elements with rectangular section
(using 3" order interpolation)
a/b ratio Analytical 1 element 2 element 4element 2 element
sol.
Trapezoid
1 2.3111E-8 2.3090E-8 2.3102E-8 2.3111E-8 2.3030E-8
2 7.0998E-9 7.0800E-9 7.0970E-9 7.0980E-9 7.0876E-9
4 2.8930E-9 2.8460E-9 2.8760E-9 2.8761E-9 2.8719E-9
10 1.0406E-9 1.0110E-9 1.0218E-9 1.0218E-9 1.0221E-9
100 9.7500E-11  9.7540E-11  9.7558E-11  9.7558E-11  9.7562E-11

By Table.2, finer mesh gives us more accurate result. Thus, with above two results, we can decide that elements

number are not important when we use 3" order interpolation function.
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4.2. Free/restrained warping condition for open section (L, I, C)

L, I, and C section beam are abundantly used in engineering structures. And also free/restrained warping
analytical solution is well known. Compare Xx-directional rotation as changing thickness for free warping
condition, and as changing number of beam element for restrained warping condition in each 2node and 3node

beam element case. In all case, we use 3" order interpolation.

N
-

a=4

Fig.15. Mesh condition of open section (L, I, C)

4.2.1 Remarks on reference values (shell model and analytical solution)

For verifying performance of present beam elements, we suggest two kind of reference value, analytical solution
(Roark’s formulas for stress and strain), and MITC4 shell model. We design shell model which deform most
similar behavior to beam elements. We get guarantee of shell model from simple cases, and we use the model as
reference value in complex problem that analytical solution is unknown. Method of modeling are as following

Fig16, Fig.17.
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Fig.16. Shell model for L, I, C cross-section
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Fig.17. Boundary condition for L, I, C cross-section
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For calculating analytical solution of thin walled beam structures, we use Bredt's formula in free warping case.

G : shear modulus, L :beam length

l; : length of leg, t; : thickness of leg

In restrained warping, and distributed moment problem, we use ‘Roark’s formulas for stress and strain’.

(B= =)

0, = —— [B(L — x) — tanhpl + b
x = oppr BU—x) —tanhfl+ oo g
Y G
" C,Ep* =
sinhf(l — x) + sinhfx 1
sinhfl ]
::),;\/é 0, = t i [1 — coshB(l — x) + Bl(sinhBl — sinhPBx)
[ \Q“Q C,EpB coshfl
B2 - 27)
+T]
Distributed moment with restrained warping
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Torsional properties of each section are as following.

1
) t K=§(2t3b+t3h)
_hztb3
w24
"
t L
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t3
_h2b3t 2h +3b
I V¥ W~ T 19 1 | £
_ 12 h+6b
T BEEE e
e I B ]

|

—

<Present beam model>

Fig.18 Difference modeling between reference and this study
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By difference of modeling (Fig.18), results have to be shown difference. As thickness is increase, result should

have more difference. We can see that difference results.

4.2.2. Free warping condition for L, I, C section

Thin walled structure is abundantly used, especially L, I, and C section. We compare results with analytical

solutions and MITC4 shell model, as changing thickness of legs. We can generally see that difference of result is

larger as increasing thickness (because of difference of model). Demonstrate condition is as following in Fig.19.

a, b mean dimension of reference rectangle.

E =200 x 10°
v=20

M, =1

L=20

b=2

=4

Fig.19. Demonstration condition of beam, free warping cantilever with torsion at end tip

Each L, I, C sectional demonstration conditions are in Fig.20, Fig.21, Fig.22, and each result are in Table.3,
Table4, Table5. We can see C-section occur more difference than I-section. The reason is in Fig.18. C-section has

larger area out of reference rectangle.
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t=0.01 t=0.05

t=0.1

t=1

Fig.20. Thickness change of L-section

t=1.99

Table.3. L-section result of 6, as changing thickness with free warping condition

Thick Shell solution Analytical solution Present study Difference
ness (only thin case) (only thin case)
1.99 - (2.737E-11) 2.7473E-11 -
1 - - 1.2893E-10 -
0.1 1.0013E-7 1.0000E-7 1.0098E-7 0.980%
0.05 8.0027E-7 8.0000E-7 8.0301E-7 0.376%
0.01 1.0000E-4 1.0000E-4 1.0006E-4 0.06%
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t=0.01 t=0.05 t=0.1 t=1 t=1.99

Fig.21. Thickness change of I-section

Table.4. I-section result of 6, as changing thickness with free warping condition

Thick Shell solution Analytical solution Present study Difference
ness (only thin case) (only thin case)
1.99 - (2.737E-11) 2.7300E-11 -

1 ; - 9.5169E-11 -
0.1 7.5159E-8 7.5000E-8 7.4385E-8 0.820%
0.05 6.0035E-7 6.0000E-7 5.9378E-7 1.037%
0.01 7.5002E-5 7.5000E-5 7.4693E-5 0.409%
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t=0.01 t=0.05 t=0.1 t=1 t=1.99

Fig.22. Thickness change of C-section

Table.5. C-section result of 8, as changing thickness with free warping condition

Thick Shell solution Analytical solution Present study Difference
ness (only thin case) (only thin case)
1.99 - (2.737E-11) 2.7300E-11 -
1 - - 1.0278E-10 -
0.1 7.5116E-8 7.5000E-8 7.6092E-8 1.456%
0.05 6.0023E-7 6.0000E-7 6.0349E-7 0.582%
0.01 7.5001E-5 7.5000E-5 7.5065E-5 0.087%
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4.2.3. Restrained warping condition for L, I, C section

We compare results with analytical solutions and MITC4 shell model, likewise above free warping case.
Demonstrate condition is as following in Fig.23. In restrained warping condition, that is distinct with free
warping condition, warping displacement fields are not constant. It means that x-directional (longitudinal
direction) rate of change is occurred. Thus, there are needed some beam elements for convergence of solution.

Therefore we demonstrate as changing number of beam elements, and beam interpolation order. 2-node element

means 1% order interpolation, and 3-node element means 2™ order interpolation.

E =200 x 10°

Fig.23. Demonstration condition of beam, restrained warping cantilever with torsion at end tip

Each L, I, C sectional demonstration conditions are in Fig.20, Fig.21, Fig.22, and each result are in Table.3,

Table4, Table5. We can see higher order element gives us quick convergence.
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Table.6. L-section result of 6, as changing thickness with restrained warping condition

(N : the number of elements used)

Thickness 0.001 0.01 0.1
2-node 3-node 2-node 3-node 2-node 3-node
1 9.8045E-2 9.5128E-2 9.8103E-5 9.5191E-5 9.9077E-8 9.6207E-8
2 9.4194E-2 9.2953E-2 9.4257E-5 9.3013E-5 9.5276E-8 9.4000E-8
4 0.2036E-2 9.2935E-2 9.2996E-5 9.2996E-5 9.3981E-8 9.3981E-8
8 9.2935E-2 9.2935E-2 9.2996E-5 9.2996E-5 9.3981E-8 9.3981E-8
16 0.2035E-2 9.2935E-2 9.2996E-5 9.2996E-5 9.3981E-8 9.3981E-8
Analytical sol. - - -
Shell sol. 9.2987E-2 9.2987E-5 9.3111E-8
Difference - - - - - -

Table.7. I-section result of 8, as changing thickness with restrained warping condition

(N : the number of elements used)

Thickness 0.001 0.01 0.1
2-node 3-node 2-node 3-node 2-node 3-node
1 1.8847E-6 2.5100E-6 1.8886E-7 2.5115E-7 1.5684E-8 1.8633E-8
2 2.3537E-6  2.5100E-6 2.3559E-7 2.5114E-7 1.7909E-8 1.8586E-8
4 24709E-6 2.5100E-6 2.4725E-7 2.5114E-7 1.8417E-8 1.8583E-8
8 2.5002E-6 2.5100E-6 2.5017E-7 2.5114E-7 1.8542E-8 1.8583E-8
16 25075E-6  2.5100E-6 2.5090E-7 2.5114E-7 1.8573E-8 1.8583E-8
Analytical sol. 2.5000E-6 2.4900E-7 1.7880E-8
Shell sol. 2.4566E-6 2.4472E-7 1.7692E-8
Difference 0.304% 0.404% 0.763% 0.859% 3.876% 3.932%
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Table.8. C-section result of 6, as changing thickness with restrained warping condition

(N : the number of elements used)

Thickness 0.001 0.01 0.1
2-node 3-node 2-node 3-node 2-node 3-node

1 1.0809E-6 1.1112E-6 1.0915E-7 1.1214E-7 1.0528E-8 1.0318E-8

2 1.3490E-6 1.3711E-6 1.3614E-7 1.3834E-7 1.2381E-8 1.2420E-8

4 14161E-6 1.4284E-6 1.4289E-7 1.4412E-7 1.2814E-8 1.2876E-8

8 14329E-6 1.4375E-6  1.4457E-7 1.4504E-7 1.2921E-8 1.2948E-8

16 14370E-6 1.4384E-6 1.4499E-7 1.4513E-7 1.2947E-8 1.2955E-8
Analytical sol. 1.4285E-6 1.4253E-7 1.1634E-8
Shell sol. 1.3747E-6 1.3718E-7 1.1299E-8

Difference 0.595% 0.693% 1.697% 1.824% 11.286% 11.355%
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4.3. Closed cross-section

Compare x-directional rotation as changing thickness for free warping condition with analytical solution.

Introduce how to obtain analytical solution.

N
_2t(a—t)*(b - t)?
~ at 4+ bt —2t?
(1]
— 1—t
v o, = ek
b

Demonstration beam condition is in Fig.19 same as open section case. Section finite element model and

demonstration condition of cross-section is in Fig.24.

t=0.01 t=0.05 t=0.1 t=0.5 t=0.99

Fig.24 Mesh condition & thickness change of rectangular tube cross-section

Result is in Table.9, and has same tendency with open section cases.
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Table.9. Rectangular tube section result of 6, as changing thickness with free warping condition

Thick Analytical solution Present study Difference
ness (only thin case)

0.99 (2.737E-11) 2.7426E-11 -

0.5 - 3.1907E-11 -

0.1 1.0563E-10 1.0305E-10 2.443%
0.05 1.9889E-10 1.9616E-10 1.373%
0.01 9.4853E-10 9.4551E-10 0.318%
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4.4, Various section

We demonstrate various section, trapezoid, circle, shaft with four splines. Compare x-directional rotation, and

testing condition of beam is same as Fig.19. Sectional condition and analytical solutions are in following table.

Section condition Analytical solution
<Trapezoid> 1
apezoid I(=Eb(m+r1)(m2 +n?) —V,m* — V;n*
3" order K
VL, = 0.10504 — 0.1s + 0.0848s% — 0.06746s3
lelement -
% _ + 0.0515s*
1l
N
Vs = 0.10504 + 0.1s + 0.0848s2 + 0.06746s3
b=4 ' +0.0515s%
_ m-—-n
ST
M,L
O = KG
<Ci > 1
Circle K= E”R4
3" order
M,L
lelement O = KG
R=2
<Shaft with four splines> K = 2CR*
3" order b A2 3
C = K1+KZE+K3<E) +K4(E)
7element
K, = 0.7854
R=2 R . w2
\ ! K, = 0.0595 — 0.3397 — + 0.3239 (—)
_ ' b b
a=1 ; a
T a a2
b=1 4 L K; = —0.6008 + 3.13965 —2.0693 (5)
""""" b _ a a2
Ky = 1.0869 — 62451 +9.4190 (E)
M,L
O = KG

Numerical result is in Table10.
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Table.10. Various section result of 8, free warping condition

Analytical sol. Present study Difference
Trapezoid 1.0632E-11 1.0845E-11 2.003%
Circle 2.0700E-9 2.0644E-9 0.271%
Shaft with four splines 4.2890E-12 4.6444E-12 8.286%

4.4. Distributed torsion problem

Compare x-directional rotation when uniformly distributed torsional moment is applied. Again, we consider the
situations of free and restrained warping condition with L, I, C sections. MITC4 shell models, and analytical
solutions are compared with the numerical results. Free/restrained demonstrate conditions of beam are each in

Fig25 and Fig.26. Also demonstrate conditions of section are same as section4.2.

4.4.1 Free warping condition for L, I, C section

E =200 x 10°

a=4

Fig.25. Demonstration condition of beam, free warping cantilever with distributed torsion
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Table.11. L-section result of 0, as changing thickness with free warping condition

Thick Shell solution Analytical solution Present study Difference
ness (only thin case) (only thin case)
1 - - 6.4466E-11 -
0.1 5.0021E-8 - 5.0495E-8 -
0.05 3.9971E-7 - 4.0156E-7 -
0.01 4.9946E-5 - 5.0029E-5 -

Table.12. I-section result of 6, as changing thickness with free warping condition

Thick Shell solution Analytical solution Present study Difference
ness (only thin case) (only thin case)
1 - . 4.7585E-11 -
0.1 3.6955E-8 3.7500E-8 3.7192E-8 0.821%
0.05 3.0419E-7 3.0000E-7 2.9689E-7 1.037%
0.01 - 3.7500E-5 3.7347E-5 0.408%

Table.13. C-section result of 8, as changing thickness with free warping condition

Thick Shell solution Analytical solution Present study Difference
ness (only thin case) (only thin case)
1 - - 5.1392E-11 -
0.1 3.5713E-8 3.7500E-8 3.8046E-8 1.456%
0.05 2.8539E-7 3.0000E-7 3.0175E-7 0.583%
0.01 3.5661E-5 3.7500E-5 3.7532E-5 0.085%
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4.4.2 Restrained warping condition for L, I, C section

E =200 x 10°

Fig.26. Demonstration condition of beam, restrained warping cantilever with distributed torsion

Table.14. L-section result of 0, as changing thickness with restrained warping condition

(N : the number of elements used)

Thickness 0.001 0.01 0.1
2-node 3-node 2-node 3-node 2-node 3-node
1 4.9023E-2 4.5838E-2 4.9051E-5 4.5873E-5 4.9539E-8 4.6408E-8
2 4.4406E-2 4.3899E-2 4.4443E-5 4.3932E-5 4.4987E-8 4.4443E-8
4 4.3427E-2 4.3562E-2 4.3460E-5 4.3595E-5 4.3968E-8 4.4105E-8
8 4.3432E-2 4.3465E-2  4.3465E-5 4.3498E-5 4.3973E-8 4.4006E-8
16 4.3432E-2 4.3440E-2 4.3465E-5 4.3473E-5 4.3973E-8 4.3982E-8
Analytical sol. -
Shell sol. 4.3437E-2 4.3437E-5 4.3509E-8
Difference - - - - - -
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Table.15. I-section result of 6, as changing thickness with restrained warping condition

(N : the number of elements used)

Thickness 0.001 0.01 0.1
2-node 3-node 2-node 3-node 2-node 3-node
1 9.4236E-7 1.0205E-6 9.4431E-8 1.0212E-7 7.8422E-9 7.6161E-9
2 9.4235E-7 9.6189E-7 9.4327E-8 9.6254E-8 7.1965E-9  7.1999E-9
4 9.4235E-7 9.4723E-7 9.4306E-8 9.4788E-8 7.0901E-9 7.0940E-9
8 9.4235E-7 9.4357E-7 9.4301E-8 9.4422E-8 7.0662E-9 7.0674E-9
16 9.4235E-7 9.4265E-7 9.4300E-8 9.4330E-8 7.0604E-9 7.0607E-9
Analytical sol. 9.3746E-7 9.3387E-8 6.7764E-9
Shell sol. 9.4351E-7 9.3997E-8 6.8602E-9
Error 0.522% 0.554% 0.978% 1.010% 4.191% 4.195%

Table.16. C-section result of 6, as changing thickness with restrained warping condition

(N : the number of elements used)

Thickness 0.001 0.01 0.1
2-node 3-node 2-node 3-node 2-node 3-node

1 5.4043E-7 5.8513E-7 5.4574E-8 5.9040E-8 5.2640E-9 5.2975E-9

2 5.4043E-7 5.1793E-7 5.4540E-8 5.2259E-8 4.9708E-9 4.7093E-9

4 5.4043E-7 5.3822E-7 5.4533E-8 5.4307E-8 4.9184E-9 4.8831E-9

8 5.4043E-7 5.4065E-7 5.4531E-8 5.4553E-8 4.9065E-9 4.9045E-9

16 5.4043E-7 5.4057E-7 5.4531E-8 5.4545E-8 4.9035E-9 4.9038E-9
Analytical sol. 5.3570E-7 5.3453E-8 4.3896E-9
Shell sol. 5.3223E-7 5.3111E-8 4.3955E-9

Error 0.883% 0.909% 2.017% 2.043% 11.707% 11.714%
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4.5. Eccentric load problems

It is hard to encounter pure torsion in practical engineering problem. Equivalent torsion is Usually applied by
eccentric load. As increasing number of beam element, we compare v(y-directional displacement), and 6, (x-
directional rotation) with restrained warping cantilever, and end tip eccentric load. (Fig.27) Also compare it

along the beam length. (Fig.29, Fig.30) Demonstration condition of section is in Fig.28. With | and C shape

section,
/‘ E = 200 x 10°
v=0
P, =1
5 L=20
B — b=2
L =4

Fig.27. Demonstration condition of beam, restrained warping cantilever with eccentric load at end tip

3 — >
— — [
t=0.01 t=0.01

Fig28. Position of eccentric load and thickness in each section
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Table.17. Eccentric load for I-section with restrained warping condition

N Vv X-rotation
2-node 3-node 2-node 3-node
1 1.4706E-6 2.0021E-6 -3.6828E-7 -5.0105E-7
2 1.8776E-6 2.0020E-6 -4.7000E-7 -5.0103E-7
4 1.9709E-6 2.0020E-6 -4.9327E-7 -5.0103E-7
8 1.9943E-6 2.0020E-6 -4,9909E-7 -5.0103E-7
16 2.0001E-6 2.0020E-6 -5.0054E-7 -5.0103E-7
Shell sol. 2.0052E-6 -5.0029E-7
21E-6 T T T T T T
l-section eccentric load J,
o O Y-dispalcement Beam model o
0 © X-rotation Beam model .
18E-6|------ Y-displacement Shell model —
—— X-rotation Shell model .
'D
1.5E-6 ’ .
12E-6 -
= O9E-Tt e o
£
S BET| o .
3E-7 -
T’
0
SET
BE-7 1 ] 1 1 1 1 ] 1 1
0 2 4 6 12 14 16 18 20

Fig29. Displacements along the beam length with I-section in the eccentric load problem
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Table.18. Eccentric load for C-section with restrained warping condition

-2E-7

-4E-7

N Vv X-rotation
2-node 3-node 2-node 3-node
1 7.3917E-7 9.8316E-7 -2.1775E-7 -2.8955E-7
2 9.2218E-7 9.8315E-7 -2.7161E-7 -2.8954E-7
4 9.6791E-7 9.8315E-7 -2.8506E-7 -2.8954E-7
8 9.7934E-7 9.8315E-7 -2.8842E-7 -2.8954E-7
16 9.8220E-7 9.8315E-7 -2.8926E-7 -2.8954E-7
Shell sol. 9.8043E-7 -2.8763E-7
1E-6 T T T T T T ﬂ
C-section eccentric load 2
o o Y-dispalcement Beam model
O 0O X-rotation Beam model
------ Y-displacement Shell model
8E-7 | —— X-rotation Shell model = -
6E-7 | A -
O'E-'
_ A4ET - =
2 .
8 .8
@ 2E-7 - =

16 18 20

Fig.30. Displacements along the beam length with C-section in the eccentric load problem
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Chapter 5. Conclusions

By using numerically obtained warping function, we could improve performance and numerically allow to solve
torsional problem for arbitrary section. This paper resolve the problem of beam elements that cross-section have
to remain plane (original configuration). But it still has limitation which can describe deformation of cross-
section only longitudinal direction. | think it’s possible that solve other directional deformation with certain
kinematic formulations.

Suggested method has advantage easy to approach non-linear problems. For considering non-linear behavior, |

will study about Wagner effect, and apply our beam elements.
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Summary

Development of general beam finite elements for

arbitrary section with warping displacement
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