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ABSTRACT 

Beams are very important and widely used structural members in engineering practice. Recently, applica-

tions of beams have been rapidly extended from classical metallic structures to nano- and bio-structures, in which 

finite element method is a tool dominantly adopted for analysis and design. To cover such new applications, the 

modeling capability and nonlinear performance become more important in finite element analysis of beams. 

First, we develop continuum mechanics beam elements in which fully coupled 3-D behaviors among 

stretching, bending, shearing, twisting and warping are considered. The beam element is directly degenerated from 

an assemblage of 3-D solid elements. The element has cross-sectional discretization which provides enhanced 

modeling capabilities for complicated 3-D geometries including curved and twisted geometries, varying cross-

sections, and arbitrary cross-sectional shapes. 

Second, we propose a new and efficient displacement model to ensure the continuity of warping in beams 

with discontinuously varying arbitrary cross-sections. The entire warping displacement field is constructed by a 

combination of the three basis warping function, one free warping function and two interface warping functions, 

with warping degrees of freedom (DOFs). A new method to simultaneously calculate the free warping function 

and the corresponding twisting center is also introduced. Based on this method, the interface warping functions 

and the twisting centers at the interface cross-sections are obtained by solving a set of coupled equations at the 

interface of two different cross-sections. 

Third, we present the nonlinear formulation and performance of continuum mechanics based beam ele-

ments, in which fully coupled 3D behaviors of stretching, bending, shearing, twisting, and warping are automati-

cally considered. The beam elements are directly degenerated from assemblages of 3D solid elements under the 

assumptions of Timoshenko beam theory. Therefore, cross-sectional discretization is possible and the elements 

can model complicated 3D beam geometries including curved and twisted geometries, varying cross-sections, 

eccentricities, and arbitrary cross-sectional shapes. In particular, the proposed nonlinear formulation can accurately 

predict large twisting behaviors coupled with stretching, bending, shearing, and warping. Through various numer-

ical examples, we demonstrate the geometric (and material) nonlinear performance of the continuum mechanics 

based beam elements. 

Finally, we propose a new numerical method to improve nonlinear performance: the eigen recomposition. 

We classify and investigate the miss leading phenomena in internal virtual work via eigenvalue analysis. In order 

to improve the internal virtual work, the obtained nonlinear stiffness matrix is recomposed by the assumed eigen-

vector and the corresponding estimated eigenvalue. The performance of the recomposed stiffness matrix is demon-

strated through several beam element examples. 

 

Keywords: Finite element method; Beam element; Torsion; Twisting; Warping; 
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Chapter 1. Introduction 

 

1.1 Research Motivation 
 

The finite element method is widely used to predict physical phenomena in various engineering analyses, for 

example, solids and structures, heat transfer, fluids, electromagnetic fields. Although a voluminous amount of 

information on these techniques are published, the development of more effective procedures is still an im-

portant undertaking.  

 

The classes of structural elements (truss, beam, plate, shell, and so on) are significant developments among the 

various methods to achieve an effective analysis. In particular, beam finite elements can be exploited to accom-

plish an efficient quantitative analysis to predict the global behavior of large scale problems. 

 

Practical applications are increasingly involoving more complicated geometries and small stressed regions for 

more efficient and economical material usage. Furthermore, new applications, such as nano- and bio-structures, 

aggravate difficulties encountered in beam finite element analyses. To address such complexity, the modeling 

capability and linear and nonlinear performance become more important. 

 

Considerable efforts have been made over a number of years to develop beam theories and beam finite elements 

[1-22]. On the foundation of classical beam theories, recent works have focused on developing high-perfor-

mance beam finite elements. As a result, modeling and analysis capabilities have been continuously improved, 

for example, see Refs. [23-49].  

 

Continuum mechanics based formulations, meanwhile, have been very successfully used for the analysis of 

general beam structures [25-28]. They can easily represent general 3-D curved and twisted geometries including 

fully coupled complete strain states. Furthermore, the formulation is simple and straightforward. In spite of 

these great advantage, the original degenerated continuum beam elements can, in general, consider only rectan-

gular cross-sections. While several studies has been made to overcome the limitations of the continuum beam 

element [25-28], the resulting new beams could not express arbitrary beam cross-sections. 

 

In general, when a non-circular cross-section beam is subjected to twisting, the beam cross-sections do not 

remain in-plane during the deformations, and out-of-plane displacements occur. The effect is called warping. 

The behavior of warping is coupled with bending, shearing, and stretching under various loading conditions. 

The twisting and the coupling behaviors cannot be accurately predicted without considering warping. The in-

clusion of the warping effect in the beam element formulation is very important. To consider the fully coupled 

warping effect, the warping displacements can be included in the beam element formulation as additional dis-

placement fields with corresponding degrees of freedom. 
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As discussed above, beam elements with high performance and modeling capabilities are required for more 

efficient analysis of new applications. In the present research, we develop new continuum mechanics based 

beam elements for linear and nonlinear analyses. The developed beam elements can contribute to analysis of 

complicated beam applications. 

 
1.2 Overview 
 

In this section, a short overview on the foundations of degenerated beam elements and on the mathematical 

warping theory is given. 

 

1.2.1 On Degenerated Beam Elements 
 

The concepts of geometry and displacement interpolations that have been employed in the formulation of con-

tinuum elements can also be employed in the evaluation of beam element matrices. However, whereas in the 

formulation of the continuum elements the displacements are interpolated in terms of nodal displacements, in 

the formulation of degenerated beam elements, the displacements are interpolated in terms of mid-point dis-

placements and rotations, see Fig. 1-1. 

 

The degeneration concept offers a simple and straightforward approach to incorporate geometric and material 

nonlinearity, as formulated directly from the continuum setting. Also, it inherently has superior modeling capa-

bility, easily and precisely representing complicated 3D geometries, curved and twisted geometries, and arbi-

trary and varying cross-sections. Furthermore, fully coupled stretching, bending, shearing, twisting, and warp-

ing behaviors can be automatically considered due to the fully coupled 3D strain states. Despite its superior 

characteristics, the degenerated beam formulation has not been dominantly used because of limitations related 

to difficulty in degeneration of complicated cross-sections and performance of geometric nonlinear analyses. 

 

 

 

 
 

Figure 1-1. The concept of the general degenerated element. 
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The original formulation of degenerated beam elements is interpolated by mid-point displacements and rotations 

of rectangular cross-sections. In order to encompass various beam cross-sections, a new degeneration method 

using a square frame that includes the cross-sectional domain is introduced, as illustrated in Fig. 1-2. However, 

the resulting beams do not clearly model arbitrary cross-sections, and accompany complexity and difficulties in 

numerical integration. 

 

Most of beam elements introduce problems that impede the performance of nonlinear analysis. For a long time, 

considerable efforts have been made to improve upon existing geometric nonlinear analyses. Although novel 

numerical methods have been successfully introduced, limitations remain. Furthermore, all of these studies 

solely focused on the non-vectorial nature of rotational variables. There is consequently still need for more 

insight into nonlinear analyses by adopting various perspectives and clearer guidelines. 

 

1.2.2 On Mathematical Warping Theory 
 

The inclusion of the warping effect in a beam finite element formulation is essential for predicting twisting 

actions, see Fig. 1-3 and 1-4. Various mathematical equations for modeling warping and twisting have been 

developed [19-23, 29-49]. In this section, four representative warping theories, St. Venant theory, Vlasov’s thin-

walled beam theory, Benscoter theory, and Jourasky theory, are introduced. The formulation and modeling 

capability of these theories are illustrated in Table 1-1. 

 

In 1853 the French engineer Adhemar Jean Barrede Saint-Venant presented the classical torsion theory to the 

French Academy of Science. This theory is the basis for present-day analyses. St. Venant proved that a cross-

section does not remain in-plane after twisting. The cross-section becomes a warped surface. In St. Venant 

torsion theory, the cross-section is assumed to warp freely out of its plane and the rate of the twisting angle is 

assumed to be constant. The warping deformation is modeled by a free warping function and constant twisting 

rate [19-21]. The free warping function can be obtained by solving the well-known St. Venant equations. This 

theory leads to some error in the case of non-uniform torsion, where the rate of the twisting angle varies along 

the length of the beam. 

 

 
 

Figure 1-2. The existing degeneration procedure for constructing beam element with a wide flange cross-sec-

tion. 
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Table 1-1. Formulation of mathematical warping theories and its modeling capability. 
 

 St. Venant 
torsion theory 

Vlasov’s 
thin-walled theory 

Benscoter theory Jourawsky theory 

Formulation ( , )wu f y z=  ( , ) ( )w xu f y z xθ ′=
 

( , ) ( )wu f y z xα=  ( , ) ( ) ( , )w xu f y z x y zθ ψ′= +  

Unoform 
torsion 

○ ○ ○ ○ 

Non-uniform 
torsion 

X ○ ○ ○ 

Secondary 
warping 

X X ○ ○ 

 

 

In Vlasov’s thin-walled beam theory [22], the warping deformation is modeled by a free warping function and 

the rate of the twisting angle. This theory can consider the non-uniform warping deformation effect but the 

transverse shear strain is neglected. Because of neglecting the transverse shear deformations through the wall 

thickness, some error arises in the case of closed cross-sections, where the shear stresses are statically indeter-

minate. This additional shear stress distribution is called the secondary shear effect. 

 

In Benscoter theory, the warping deformation is modeled by a free warping function and longitudinal function 

as an arbitrary parameter. The employment of the arbitrary parameter allows approximation of the secondary 

shear effect. De ville De Goyet presented some examples to compare solution of a shell element model and an 

analytical solution based on Benscoter theory with a closed cross-section. These examples show the efficiency 

and sufficient accuracy of Benscoter theory. 

 

In Jourawsky theory, the warping deformation is modeled by a free warping function with a longitudinal func-

tion according to the rate of the twisting angle and secondary warping function. The secondary warping function 

is evaluated from an equilibrium equation with St. Venant torsion and an induced secondary shear stress distri-

bution. The consideration of the secondary warping function makes it possible to precisely take into account 

the secondary warping effect. However, evaluating this function also requires additional efforts and cost. 

 

 

 

Figure 1-3. A cantilever beam subjected to torsional moment with wide flange cross-section and its warped 

cross-section. 
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1.3 Research Object & Contents 
 

The objective of this research is to develop continuum mechanics based beam element for linear and nonlinear 

analysis. The developed element should satisfy following requirements: 

 The warping effects fully coupled with stretching, bending, shearing, twisting are included. 

 The formulation can handle all complicated 3D geometries including curved and twisted geometries, 

varying cross-sections, and arbitrary cross-sectional shapes. 

 Inter-elemental continuity of warping displacement is ensured. 

 High modeling capabilities and performance is available. 

 

In the following chapter, we present the fundamental formulation of the continuum mechanics based beam 

elements in linear analysis. The superior modeling capability is demonstrated through the means of several 

numerical examples. 

 

In chapter 3, we present a new and efficient method to model continuous warping displacement field in beam 

with discontinuously varying cross-sections. New equations to calculate the free warping function and the in-

terface warping function are introduced. 

 

In chapter 4, we present a geometric and material nonlinear formulation of the continuum mechanics based 

beam elements. The superior performance and modeling capability in nonlinear applications, particularly in 

large twisting problem, is demonstrated through the well-established numerical examples. 

 

In chapter 5, we present a new method to improve nonlinear performance. The superior performance of the 

eigen recomposition method is illustrated through the several numerical examples. 

 

Finally, in chapter 6, we present the conclusions and future works. 
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Chapter 2. Continuum Mechanics Based Beam Elements 

 

In this chapter, we present the fundamental formulation of the continuum mechanics based beam elements in 

linear analysis. The superior modeling capability is demonstrated through the means of several numerical ex-

amples. [50] 

 

2.1 Kinematic Description 

 
In this section, we present the kinematics of the continuum mechanics based beam finite element which directly 

derived by degenerating an assemblage of 3-D solid finite elements.  

 

 

 

 

 

Figure 2-1. The concept of the continuum mechanics based beam finite element with sectional discretization. 
In this figure, the beam is modeled by nine 3-D solid elements and the model has 3 cross-sectional planes along 
the beam length. 
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Figure 2-2. Continuum mechanics beam finite element with cross-sectional mesh. (a) 3-node beam finite ele-
ment, (b) Cross-sectional mesh at beam node k . 

 

 

2.1.1 Interpolation of Geometry 

 
Starting with an arbitrary geometry of a beam discretized by 3-D solid finite elements, as shown in Fig. 2-1. 

The material fiber vector for solid element m  is defined in the global Cartesian coordinate system is given by 

( ) ( )

1
( , , )

n
t m t m

i i
i

h r s t
=

= ∑x x ,                             (2-1) 
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where t  is time parameter which characterizes the configuration, n  is the total number of solid model nodes, 

( , , )ih r s t  3-D interpolation functions for the usual isoparametric procedure, and ( )t m
ix  are the coordinates of 

node i . Since the nodes of the solid model are aligned on the cross-sectional plane k , Eq. (2-1) can be divided 

into the multiplication of 1-D ( )kh r  and 2-D shape function ( , )jh s t , 

( ) ( )

1 1
( ) ( , )

q p
t m t j m

k j k
k j

h r h s t
= =

= ∑ ∑x x ,                                                          (2-2) 

in which q  is the number of the cross-sectional planes, p  is the number of the nodes of the solid element 

m  (shaded in Fig. 2-1) positioned at each cross-sectional plane and ( )t j m
kx  are the coordinate of the j th 

cross-sectional node in cross-sectional plane k  corresponding to the solid element m . The assumption of 

Timoshenko beam theory can be enforced at all the cross-sectional nodes by 
( ) ( ) ( )t j m t j m t k j m t k

k k k y k zy z= + +x x V V ,                                                       (2-3) 

where t
kx  are the position of origin at point kC  corresponding to the beam nodes, t k

yV  and t k
zV  are the 

orthogonal director vectors at cross-sectional plane k , and ( )j m
ky  and ( )j m

kz  represent the material position 

of the j th cross-sectional node of the solid element m  in the cross-sectional Cartesian coordinate system 

described by the basis vectors t k
yV  and t k

zV . The vector relation in Eq. (2-3) is graphically represented in 

Figs. 2-1 and 2-2. 

 

Applying Eq. (2-3) to Eq. (2-2), the material fiber vector of the continuum mechanics based beam finite elements 

corresponding to the solid element m  at configuration t  is obtained as 

( ) ( ) ( )

1 1 1
( ) ( ) ( )

q q q
t m t m t k m t k

k k k k y k k z
k k k

h r h r y h r z
= = =

= + +∑ ∑ ∑x x V V                                        (2-4) 

with   ( ) ( )

1
( , )

p
m j m

k j k
j

y h s t y
=

= ∑ ,  ( ) ( )

1
( , )

p
m j m

k j k
j

z h s t z
=

= ∑ ,                                       (2-5) 

where ( )m
ky  and ( )m

kz  denote the position in the cross-sectional Cartesian coordinate system in the cross-sec-

tional plane k . Then, Eq. (2-4) becomes the position vector of the sub-beam m  corresponding to the solid 

beam m . The continuum mechanics based beam finite element consists of the m  number of sub-beams. It is 

important to know that Eq. (2-4) is the geometry interpolation of the solid element m  aligned in the beam 

length direction in which the kinematic assumption of the Timoshenko beam theory is enforced. 

 

Then, the point kC  corresponds to the k th beam node. The beam node at point kC  can be arbitrarily posi-

tioned on cross-sectional plane k  defined by the two director vectors t k
yV  and t k

zV  in Fig. 2-1. The longi-

tudinal reference line that is used to define the geometry of the beam is created by connecting the beam nodes. 

In this paper, it is important to know the difference between beam nodes and cross-sectional nodes, see Figs. 2-

1 and 2-2. 
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As mentioned, the geometry interpolation of the beam element in Eq. (2-4) corresponds to the solid element 

m . The simple assemblage of the interpolation functions corresponding to all the solid elements aligned along 

the beam length direction represents the geometry interpolation of the whole beam element. As a result, the 

beam finite element shown in Fig. 2-2(a) can have a cross-sectional discretization in Fig. 2-2(b) at each beam 

node. The size and shape of the cross-sections can arbitrarily vary but the cross-sectional mesh pattern should 

be the same to maintain the continuity of the geometry on all the cross-sectional planes. 

 

2.1.2 Interpolation of Displacement 
 

From the interpolation of geometry in Eq. (2-4), the interpolation of displacements corresponding to the solid 

element m  is derived as in [50] 

( ) ( ) 0 ( ) 0

1 1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
q q q

m m k k m k k
k k k k y k k z

k k k
h r h r y h r z

= = =
= + +∑ ∑ ∑u u R θ V R θ V                               (2-6) 

with 
k

k k

k

u
v
w

 
 =  
  

u , 

k
x

k k
y
k
z

θ
θ
θ

 
 

=  
 
 

θ  and 
0

ˆ ( ) 0
0

k k
z y

k k k
z x

k k
y x

θ θ
θ θ
θ θ

 −
 

= − 
 − 

R θ ,                                (2-7) 

where ku  is the displacement vector of node k , kθ  is the rotation vector of node k , and R̂  is skew-sym-

metric matrix operator. 

 

Eq. (2-6) indicates that the displacement fields of all the solid elements that compose the whole beam is deter-

mined by the three translations and three rotations (six degrees of freedom) at each beam node because the 

nodes of the solid elements are placed on the cross-sectional planes and the kinematic assumption of the Timo-

shenko beam theory is enforced. Therefore, the assemblage of the solid elements can act like a single beam 

element and the beam element can have the cross-sectional discretization. 

 

The basic displacement field in Eq. (2-6) can be enriched by adding various displacement patterns and then the 

generalized interpolation of displacements is obtained 
( ) ( ) ( )m m m
g a= +u u u ,                                                                     (2-8) 

in which ( )m
au  is the additional interpolation of displacements, which could include warping displacements, 

displacements for cross-sectional distortions and so on. 

 

- 9 - 



 
Figure 2-3. Directions of warping displacements. (a) and (b) Correct and wrong warping directions at a sharing 
node, (c) Warping direction same to the longitudinal direction of beam elements, (d) and (e) Uniform and var-
ying warping directions at varying beam cross-sections. 

 

 

2.1.3 Interpolation of Warping Displacement 
 

In order to consider the warping displacements, we use the enriched displacements 
( ) ( ) ( )m m m
g w= +u u u ,                                                                     (2-9) 

with ( ) ( )

1
( ) ( , )

q
m m k

w k k x
k

h r f s t
=

= ∑u V ,                                                        (2-10) 

where ( )j m
kf  are the so-called warping function which obtained by solving St. Venant equations. k

xV  is di-

rector vector normal to cross-sectional plane k  and is defined by the director vectors k
yV  and k

zV  

k k k
x y z= ×V V V  or k k k

x y z= − ×V V V .                                                      (2-11) 

 

The sign of the directions in Eq. (2-11) should be carefully chosen to enforce the continuity of the longitudinal 

displacements at beam nodes shared by beam elements. Figs. 2-3(a) and (b) show the correct and wrong warping 

directions, respectively. 
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Note that the numerical solutions depend on the directions of the warping displacements chosen. When varying 

cross-sections are considered, the warping directions we use correspond to Fig. 2-3(d). Figs. 2-3(c) and (e) show 

alternative choices of the warping directions, which are defined by the longitudinal direction of the beam ele-

ments, but the directions in Figs. 2-3(a) and (d) give better numerical results, in particular, when few beam 

elements are used. Some numerical results that show the effect of the warping direction will be presented in 

numerical studies. 

 

Based on the cross-sectional discretization at beam node k  in Fig. 2-2(b), we introduce the interpolation of 

warping displacements. The natural choice is to use 

( ) ( )

1
( , ) ( , )

p
m j m

k j k
j

f s t h s t f
=

= ∑ ,                                                             (2-12) 

where ( )j m
kf are warping degrees of freedom at beam node k  corresponding to the solid element m . In this 

case, the total number of degrees of freedom for warping at each beam node is the same as the number of cross-

sectional nodes on each cross-sectional plane. Therefore, Eq. (2-12) requires many additional warping degrees 

of freedom at beam nodes depending on the cross-sectional meshes used and the resulting element is similar to 

the beam element in [29]. 

 

In order to use only one additional degree of freedom for warping displacements at each beam node, we then 

use 

( ) ( )

1
( , ) ( , )

p
m j m

k j k k
j

f s t h s t f α
=

= ∑ ,                                                           (2-13) 

in which kα  is the warping degree of freedom at beam node k  and ( )j m
kf  is the pre-calculated warping 

values on cross-sectional plane k  by solving St. Venant equations. Then, the continuum mechanics based 

beam finite element with cross-sectional discretization that allows for the warping effect has only seven degrees 

of freedom at each beam node. Through the warping degree of freedom kα  in Eq. (2-13), the inter-elemental 

continuity of the warping displacements is ensured since adjacent beam elements connect to the same beam 

node. Without considering the inter-elemental continuity, non-uniform warping behaviors along beam length 

due to non-uniform torsion or constrained warping conditions cannot be properly predicted. 

 

Note that the interpolation of warping displacements in Eq. (2-12) does not require pre-calculation, that is, the 

warping is automatically considered in the beam formulation. However, a special treatment is required to re-

move redundant rigid body modes that occur due to the warping degrees of freedoms ( )j m
kf  [29]. 

 

2.2 Calculation of Warping Function 
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Here we present the procedure for calculating the warping values ( )j m
kf  in Eq. (2-13). The warping values are 

numerically calculated by solving St. Venant equations in the 2-D cross-sectional domain kΩ  with its bound-

ary k∂Ω  on cross-sectional plane k , see Fig. 2-4 

2 2

2 2 0k k

k k

f f
y z

∂ ∂
+ =

∂ ∂
    in kΩ ,                                                           (2-14) 

k k k kk k
y z y k z k

k k

f f
n n n z n y

y z
∂ ∂

+ = −
∂ ∂

    on k∂Ω ,                                               (2-15) 

in which kf  is the warping function defined in the cross-sectional Cartesian coordinate system with the point 

of origin kC , and k
yn  and k

zn  are the components of the vector normal to the cross-sectional boundary 

k∂Ω . Note that, in general, the position of origin kC  does not coincide with the center of twist of the cross-

sectional plane. 

 

St. Venant equations can be easily solved by the standard finite element formulation 

( )
k k

k kk k k k
y k z k

k k k k

f f f f
d n z n y dS

y y z z
δ δ

Ω ∂Ω

 ∂ ∂ ∂ ∂
+ Ω = − 

∂ ∂ ∂ ∂ 
∫ ∫ ,                                      (2-16) 

 

 

 

Figure 2-4. A cross-section to solve St. Venant equations. (a) Cross-sectional Cartesian coordinate system (point 
of origin kC ) and a vector normal to cross-sectional boundary, (b) Cross-sectional mesh and the center of twist 

kT . 
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where kfδ  is the variation of the warping function discretized by the same mesh as shown in Fig. 2-2(b) and 

the interpolation of warping in the cross-sectional element m  (corresponding to the solid element m ) is the 

same as in Eqs. (2-5), (2-12) and (2-13) 

( ) ( )

1
( , )

p
m j m

k j k
j

f h s t f
=

= ∑ ,                                                                (2-17) 

where ( )j m
kf  are the values of the warping function at cross-sectional nodes. Note that when we solve Eq. (2-

16), one warping degree of freedom that is arbitrarily chosen should be prescribed to avoid the singularity of 

the system matrix obtained by Eq. (2-16). 

 

If the origin of the cross-sectional Cartesian coordinate system kC  is moved, the boundary condition term in 

the right hand side of Eqs. (2-15) and (2-16) is changed. As a result, the solution of St. Venant equations (warp-

ing function ( )m
kf ) depends on where we position the origin of the cross-sectional Cartesian coordinate system. 

 

The proper warping function ( )m
kf  is the solution calculated when the center of twist coincides with the origin 

of the cross-sectional Cartesian coordinate system because the beam cross-sections subjected to torsion rotate 

about the center of twist with the resulting warping. Therefore, the proper warping function ( ( )m
kf ) correspond-

ing to the center of twist should be transformed from the warping function ( ( )m
kf ) corresponding to the origin 

kC , 

( ) ( ) ( ) ( )( ) ( ) ( )m m T m T m
k k k k k kf M f y M z z M y= + −  

with 
( )

( ) ( ) ( )

1

1( )
m

k

d
m m m

m
M g g g da

A = Ω

= − ∑ ∫ ,                                                   (2-18) 

where T
ky  and T

kz  represent the position of the center of twist kT  on cross-sectional plane k , ( )m
kΩ  is the 

domain of the cross-sectional element m , d  is the number of cross-sectional elements and A  is the cross-

sectional area 
( )1 m
k

d

m
A da

= Ω

= ∑ ∫ . This is the key step to reach an effective element formulation. 

 

From the solution of the warping function ( ( )m
kf ) corresponding to the origin kC , the position of the center of 

twist in Eq. (2-18) can be calculated [18] by, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2 ( ) ( )

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , )

m m m m m m m m
T k k k k k k k k
k m m m m m m

k k k k k k

I f y I y z I f z I y y
y

I y y I z z I y z
−

=
−

, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 2 ( ) ( )

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , )

m m m m m m m m
T k k k k k k k k
k m m m m m m

k k k k k k

I f y I z z I f z I y z
z

I y y I z z I y z
−

=
−

,                                    (2-19) 

in which an integration operator I  is defined by 
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( )

( ) ( ) ( ) ( )
1 2 1 2

1
( , ) ( ) ( )

m
k

d
m m m m

m
I g g M g M g da

= Ω

 =  ∑ ∫ .                                               (2-20) 

All the integrations in Eqs. (2-18), (2-19) and (2-20) are numerically calculated. 

 

It is important to note that, although the calculated center of twist is the approximated one for the actual beam 

cross-section, it is the exact center of twist for the discretized beam cross-section; that is, when torsion is applied 

at the center of twist in the discretized beam cross-section, no transverse displacements occur. 

 

2.3 Numerical Integration 
 

With the interpolations of the geometry and the displacements given, the procedure to construct the strain-

displacement matrix, the stiffness matrix and the load vector is standard as in Ref. [3]. 

 

When the width and height of a beam cross-section are small compared to the beam length, the beam finite 

element locks, that is, the element is too stiff in bending. However, the locking can be easily removed using a 

mixed formulation that is effectively implemented by using reduced integration corresponding to the r -direc-

tion [3]. We use this procedure in our implementation. 

 

 
Figure 2-5. Straight cantilever beam problems (a) Uniform torsion problem (a straight beam subjected to tor-
sional moment at the free tip) (b) Non-uniform torsion problem (a straight beam subjected to uniformly distrib-
uted torsional moment). 
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Figure 2-6. Various cross-sectional discretizations with different interpolation functions and meshes. (a) Single 
element meshes (1st, 2nd, 3rd and 4th order interpolations), (b) 1x1, 3x3, 6x6 and 12x12 linear meshes, (c) 
Distorted meshes ( tan 0θ = , / 4b a , 2 / 4b a  and 3 / 4b a ) of 16-node cross-sectional elements. 
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Figure 2-7. Relative errors in angle of twist at the loaded tip for various aspect ratios ( /a b ); (a) Corresponding 
to the interpolation orders in Fig. 2-6(a); (b) Corresponding to the meshes of linear cross-sectional elements in 
Fig. 2-6(b); (c) Corresponding to the distorted cross-sectional meshes in Fig.2-6(c). 

 

 

2.4 Numerical Studies 
 
To verify the proposed formulation and to study the twisting behavior of the beam element depending on ge-

ometries, boundary conditions and cross-sectional meshes, we perform various numerical analyses using our 

beam elements. The results are compared with available analytical solutions and solutions of equivalent finite 
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element models. Young’s modulus 11 22.0 10 /E N m= ×  and Poisson’s ratio 0ν =  are used for all the beam 

problems considered in this section2. 

 

2.4.1 Rectangular cross-section beam problems 
 

A straight cantilever beam of 20L m=  with a rectangular cross-section is subjected to torsional moment 

1.0xM N m= ⋅  at the center of twist at the free tip ( x L= ) as shown in Fig. 2-5(a). Then, uniform torsion 

occurs on all the beam cross-sections. Various aspect ratios of width to height ( a b ) are considered for the 

rectangular cross-section, see Fig. 2-6. Warping is free at both ends and along the beam length. The boundary 

condition is given as 

0x y zu v w θ θ θ= = = = = =    at 0x = .                                                 (2-21) 

 

We model the problem with the proposed single 2-node beam finite element, and various cross-sectional dis-

cretizations shown in Fig. 2-6 are tested. It is very important to note that in uniform torsion problems of pris-

matic beams with free warping, the same solutions are obtained regardless of the number of beam elements and 

the order of beam elements used. 

 

The angles of twist in these numerical calculations mainly depend on the cross-sectional mesh used. In Fig 2-7, 

we plot the errors in the angle of twist at the loaded tip. The error is calculated by comparing the numerical 

approximations to the converged solutions obtained by the 50x50 mesh of 16-node cross-sectional elements 

because the analytical solutions in [1] do not have enough effective digits. Table 2-1 shows the analytical solu-

tions by Timoshenko and the reference solutions used. 

 

 

 

Table 2-1. Reference values used for angles of twist at the loaded tips for rectangular cross-section beam prob-
lems with free warping 
 

/a b  Timoshenko 50x50 mesh of 16-node cross-sectional elements 

0.01 3.75E-05 3.7645E-05 

0.1 4.01E-08 3.9954E-08 

0.25 2.85E-09 2.8445E-09 

0.5 4.37E-10 4.3690E-10 

1.0 8.89E-11 8.8912E-11 

2 In order to avoid difficulties in specifying the boundary conditions of equivalent shell and solid finite element 
models, zero Poisson’s ratio is used. 
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Fig. 2-7(a) shows the errors according to the order of finite elements used to model the cross-section corre-

sponding to the meshes in Fig. 2-5(a). It is very interesting to note that the 1st and 2nd order interpolations (4-

node and 9-node cross-sectional elements) and the 3rd and 4th order interpolations (16-node and 25-node cross-

sectional elements) give the identical results, respectively. It can be expected that the warping functions of 

rectangular cross-sections have the characteristics of odd functions. When a single 16-node cross-sectional ele-

ment is used, the error is less than 3% in the whole range of the aspect ratio a b . The solutions are also very 

accurate in two extreme cases: the square cross-section ( 1a b = ) and the thin cross-section ( 1a b << ). A more 

accurate solution by a single 36-node cross-sectional element (5th order interpolation) is also presented. 

 

Fig. 2-7(b) shows the error in the angle of twist when 1x1, 3x3, 6x6 and 12x12 meshes of 4-node cross-sectional 

elements in Fig. 2-6(b) are used. The linear element gives good accuracy for the thin cross-section case. While, 

as the mesh is refined, the error decreases in the whole range of a b , the solutions of the 12x12 mesh of the 

linear elements are not better than those of a single 36-node cross-sectional element. 

 

Through the two tests, we can conclude that the use of higher order cross-sectional elements is more effective 

than use of many lower order cross-sectional elements. The use of the 16-node elements for cross-sectional 

discretizations gives reasonable accuracy for general engineering purposes. 

 

 

 

 

Figure 2-8. Tubular and angle cross-sections with various thicknesses and cross-sectional meshes used. (a) 
Tubular cross-sections ( 0.5a = , 2b = ), (b) Angle cross-sections ( 1a = , 2b = ). 
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In general, thin-walled beams are composed of several thin plates that have a ratio 0.1a b < , and the graphs 

in Fig. 2-7(a) show that the 4-node cross-sectional element gives 5% and 9% errors for 0.1a b =  and 

0.2a b = , respectively. The use of one 4-node cross-sectional element for each plate section of thin-walled 

beams gives solutions accurate enough for engineering practices. 

 

Additionally, Fig. 2-7(c) reveals that the effect of mesh distortion on error in the angle of twist is not consider-

able when 16-node cross-sectional elements are used. 

 

 

 

 

 

Figure 2-9. Solid element models and meshes used. (a) Tubular cross-section beam with 128x20 meshes of 27-
node solid elements ( 1 0.125p N= , 2 0.25p N= ), (b) Angle cross-section beam with 76x20 meshes of 27-node 
solid elements ( 1 0.0125 /p N m= , 2 0.025 /p N m= ). 
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2.4.2 Tubular and angle cross-section beam problems 
 

Considering the tubular and angle cross-sections in Fig. 2-8, we analyze the straight cantilever beam problem 

of length 20L =  in Fig. 2-5. Torsional moment 1.0xM N m= ⋅  is applied at the center of twist at x L=  for 

the tubular cross-section problems as in Fig. 2-5(a) and uniformly distributed torsional moment 

1.0 /xm N m m= ⋅  is applied at the center of twist along the beam length for the angle cross-section problems 

as in Fig. 2-5(b). For both problems, the warping of the beam is constrained at the fixed end 

0x y zu v w θ θ θ α= = = = = = =    at 0x = .                                              (2-22) 

 

As shown in Fig. 2-8, for both cross-sections, the cross-sectional dimensions a  and b  are fixed and three 

different thicknesses ( / 0.1t a = , 0.5  and 0.999 ) are considered. As the ratio /t a  goes to 1.0 , the cross-

sections get closer to a rectangular cross-section. Each tubular cross-section is modeled by eight cross-sectional 

elements and each angle cross-section is modeled by three cross-sectional elements, see Fig. 2-8. 

 

Reference solutions are calculated by the 27-node solid element models in Fig. 2-9. Note that the solid element 

solutions depend on how we apply the torsional moment on the solid element models. A special point in the 

modeling is that the torsional moments need to be imposed appropriately. We assign the loads described in Fig. 

2-9, where 

i
i i i

t

K
l p M M

K
⋅ = =                                                                    (2-23) 

Here, ip  is the point load exerting a couple-moment iM  on plate section i , il  is the length of the plate 

section i , iK  and tK  are the torsional stiffness of the plate section i  and the complete cross-section, re-

spectively, and M  is the total twisting moment applied. The tubular and angle cross-sections in Fig. 2-9 con-

sist of 4- and 2-plate sections, respectively. In order to approximate iK  and tK , we use the formulas available 

for thin-walled cross-section beams under free warping [1]. The same rule is used for thick-walled cross-section 

cases. 

 

 

 
 

Figure 2-10. Method to measure angles of twist in the solid element models of the tubular and angle cross-
section beams. 
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Fig. 2-10 shows the method used to measure the angles of twist in the solid element models of the tubular and 

angle cross-section beam problems. The angles calculated from translational displacements at two sampling 

points as shown in Fig. 2-10 are averaged. 

 

Tables 2-2 and 2-3 present the numerical results for the tubular cross-section beam problems under uniform 

torsion in the three different thickness cases. The use of 16-node cross-sectional elements gives good agreement 

with the reference solutions in all the thickness cases. Tables 2-4 and 2-5 show a similar investigation for the 

angle cross-section beam problems under non-uniform torsion. For both beam problems, two 2-node beam ele-

ments and one 3-node beam element give solutions accurate enough for engineering practice. 

 

 

 

Table 2-2. Angles of twist at the loaded tips for tubular cross-section beam problems under uniform torsion 
with constrained warping. Eight 16-node cross-sectional elements are used and N  denotes the number of 
beam elements used. 
 

N 
/ 0.1t a =  / 0.5t a =  / 0.999t a =  

2-node beam 3-node beam 2-node beam 3-node beam 2-node beam 3-node beam 

1 1.6480E-09 1.6466E-09 5.1020E-10 5.0960E-10 4.3824E-10 4.3751E-10 

2 1.6459E-09 1.6414E-09 5.0930E-10 5.0756E-10 4.3717E-10 4.3525E-10 

4 1.6400E-09 1.6377E-09 5.0707E-10 5.0643E-10 4.3479E-10 4.3430E-10 

8 1.6376E-09 1.6376E-09 5.0642E-10 5.0642E-10 4.3430E-10 4.3430E-10 

16 1.6376E-09 1.6376E-09 5.0642E-10 5.0642E-10 4.3430E-10 4.3430E-10 

Ref. 1.6023E-09 5.0121E-10 4.3053E-10 

 

 

Table 2-3. Angles of twist at the loaded tips for tubular cross-section beam problems under uniform torsion 
with constrained warping. Eight 2-node beam elements are used ( 8N = ). 
 

Cross-sectional elements 

used 
/ 0.1t a =  / 0.5t a =  / 0.999t a =  

1st order (4-node ele.) 1.6269E-09 4.8751E-10 4.0053E-10 

2nd order (9-node ele.) 1.6288E-09 4.9997E-10 4.3047E-10 

3rd order (16-node ele.) 1.6376E-09 5.0642E-10 4.3430E-10 

Ref. 1.6023E-09 5.0121E-10 4.3053E-10 
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Table 2-4. Angles of twist at the loaded tips for angle cross-section beam problems under non-uniform torsion 
with constrained warping. Three 16-node cross-sectional elements are used and N  denotes the number of 
beam elements used. 
 

N 
/ 0.1t a =  / 0.5t a =  / 0.999t a =  

2-node beam 3-node beam 2-node beam 3-node beam 2-node beam 3-node beam 

1 1.0220E-07 1.0065E-07 1.0287E-09 1.0196E-09 2.1845E-10 2.1779E-10 

2 9.9214E-08 9.7687E-08 1.0110E-09 9.9918E-10 2.1716E-10 2.1602E-10 

4 9.6044E-08 9.6469E-08 9.8671E-10 9.8918E-10 2.1479E-10 2.1486E-10 

8 9.5940E-08 9.6073E-08 9.8484E-10 9.8594E-10 2.1437E-10 2.1449E-10 

16 9.5940E-08 9.5973E-08 9.8484E-10 9.8511E-10 2.1437E-10 2.1440E-10 

Ref.  9.7160E-08 1.0008E-09 2.1629E-10 

 

 

Table 2-5. Angles of twist at the loaded tips for angle cross-section beam problems under non-uniform torsion 
with constrained warping. Eight 2-node beam elements are used ( 8N = ). 
 

Cross-sectional elements 

used 
/ 0.1t a =  / 0.5t a =  / 0.999t a =  

1st order (4-node ele.) 9.3925E-08 8.5206E-10 1.8475E-10 

2nd order (9-node ele.) 9.5601E-08 9.5350E-10 2.0308E-10 

3rd order (16-node ele.) 9.5940E-08 9.8484E-10 2.1437E-10 

Reference solutions 9.7160E-08 1.0008E-09 2.1629E-10 

 

 

Figure 2-11. Cross-sectional discretizations of various solid cross-sections modeled on the yz-plane. (a) Trap-
ezoidal cross-section modeled by a single 16-node cross-sectional element ( 2a = , 4b = ), (b) Circular cross-
section modeled by a single 16-node cross-sectional element ( 2R = ), (c) Solid cross-section with four splines 
modeled by seven 16-node cross-sectional elements ( 2R = , 1a = ). 
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Table 2-6. Angles of twist at the loaded tip for various solid cross-section beam problems. 

Cross-section 

1st order 

(4-node cross-sec-

tional el.) 

2nd order 

(9-node cross-sec-

tional ele.) 

3rd order 

(16-node cross-

sectional ele.) 

Reference solu-

tions 

Trapezoidal 8.3158E-12 9.1001E-12 1.0845E-11 1.0632E-11 

Circular 1.8750E-11 8.1482E-12 7.9401E-12 7.9578E-12 

Spline 4.2236E-12 4.3103E-12 4.6444E-12 4.2890E-12 

 

 

 

 
Figure 2-12. Distributions of transverse shear stress-xy in the solid cross-section with four splines. (Left: cross-
sectional meshes used, Right: stress distribution) (a) Solid element solution calculated by 630 27-node solid 
elements. 63 and 10 solid elements are used on cross-sections and in beam length, respectively. (b) Beam ele-
ment solution calculated by three beam elements. Seven 16-node cross-sectional elements are used. 
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2.4.3 Various solid cross-section beam problems 

 
Let us consider straight beam problems with three different solid cross-sections (trapezoidal, circular and spline 

cross-sections) in Fig. 2-11. The beam length is 20L = , the boundary condition for free warping are used as 

in Eq. (2-21) and the torsional moment 1.0xM N m= ⋅  is applied at the center of twist at x L=  as shown in 

Fig. 2-5(a). A single cross-sectional element is used for the trapezoidal and circular cross-sections and seven 

cross-sectional elements are used for the spline cross-section. In the beam length direction, a single 2-node beam 

element is used. Reference solutions are obtained from [5]. 

 

The results in Table 2-6 suggest that the single 16-node cross-sectional element gives good accuracy for the 

trapezoidal and circular sections. For the cross-section with four splines, more cross-sectional elements will 

give better results. To this point, we overall conclude that the 16-node cross-sectional element with the 3rd order 

interpolation function is effective in general cross-section cases including thin- and thick-walled cross-sections.  

 

 

 
Figure 2-13. Curved wide flange cross-section beam problems. (a) Geometry of the curved wide flange cross-
section beam problem and cross-sectional mesh used, (b) Shell finite element models used. 
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Figure 2-14. Angle of twist and displacement w  along the beam length in the curved wide flange cross-section 
beam problems. 
 

 

 

Figure 2-15. Curved wide flange cross-section beam problems with three different /D R . (a) / 0.1D R = , (b) 
/ 0.2D R = , (c) / 0.5D R = . 
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Additionally, we analyze the spline cross-section beam problem with constrained warping by using three beam 

elements with seven 16-node cross-sectional elements. The boundary condition in Eq. (2-22) is used. The results 

are compared with the solutions of the solid element model with 630 27-node solid elements. Fig. 2-12 shows 

the distributions of transverse shear stress-xy on the cross-sectional plane at / 2x L= . The angles of twist 

calculated at the loaded tips are 4.6051E-12 and 4.5968E-12 for the solid and beam element models, respec-

tively. 

 

2.4.4 Curved wide flange cross-section beam problems 
 

We consider the curved wide flange cross-section beam problems shown in Fig. 2-13. The geometry of the 

beam is a quarter arc. The boundary conditions at 0ϕ = °  are 0x y zu v w θ θ θ= = = = = =  for free warping 

and 0x y zu v w θ θ θ α= = = = = = =  for constrained warping. The beam is subjected to the torsional moment 

1.0yM N m= ⋅  at the tip ( 90ϕ = ° ). We use seven 16-node cross-sectional elements for the wide flange cross-

section as shown in Fig. 2-13(a). 

 

 

 

Table 2-7. Angles of twist and displacement w  at the loaded tip for the curved wide flange cross-section beam 
problems according to the warping direction used. Four 2-node beam elements ( 4N = ) and 16-node cross-
sectional elements are used. 
 

Warping direc-

tion 

Free warping Constrained warping 

Angle of twist w  Angle of twist w  

Fig. 3(a) 7.5199E-05 2.3273E-05 7.3136E-05 1.7909E-05 

Fig. 3(c) 7.2384E-05 2.2232E-05 7.0503E-05 1.7233E-05 

Ref. 7.5220E-05 2.4925E-05 7.3547E-05 1.9020E-05 

 

 
Table 2-8. Angles of twist and displacement w  at the loaded tip for the curved wide flange cross-section beam 
problems with constrained warping according to /D R . 16-node cross-sectional elements are used and N  
denotes the number of beam elements used. 
 

/D R  
Angle of twist w  

4N =  8N =  Ref. 4N =  8N =  Ref. 

0.1 7.1272E-05 7.1265E-05 7.3547E-05 1.8613E-05 1.8599E-05 1.9020E-05 

0.2 1.5101E-05 1.5102E-05 1.8024E-05 4.0321E-06 4.0296E-06 4.2771E-06 

0.5 2.4656E-07 2.4659E-07 3.9216E-06 6.1726E-08 6.1694E-08 6.1724E-08 
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Figure 2-16. Varying wide flange cross-section beam problems. (a) Geometry of the varying wide flange cross-
section beam problem and cross-sectional mesh used, (b) Shell finite element models used. 
 

 

 
Figure 2-17. Angle of twist and displacement u  along the beam length in the varying wide flange cross-
section beam problems. 
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Since the beam problems have thin-walled cross-sections, shell finite element solutions are used as references. 

Fig. 2-13(b) shows the shell finite element model including the mesh, the boundary conditions for free and 

constrained warping and the external loading equivalent to the beam problem. For each plate, ten MITC9 shell 

elements are used along the beam length. In the figure, the point load is 10 3p N=  and A, B and C denote 

the boundary conditions used. Note that to obtain a proper beam model for free warping, special attention needs 

to be carefully given. The angles of twist for the reference solutions are obtained from the rotation degrees of 

freedom of the shell elements. 

 
Fig. 2-14 shows the distributions of the angle of twist and displacement w  along the beam length correspond-

ing to the point Q when four 3-node beam elements are used. Although the torsional moment is applied at the 

free tip, it is very hard to accurately calculate the response of this beam problem without considering the warping 

effect coupled with bending, shearing and stretching. Note that in the thin-walled cross-section beam problems, 

the results calculated by 4-node or 9-node cross-sectional elements are almost the same. 

 

In the beam problems, we test the effect of the warping direction used. Table 2-7 shows the numerical results 

when the warping directions in Figs. 2-3(a) and (c) are used. To clearly investigate the effect, four 2-node 

elements are used. The warping direction in Fig. 2-3(a) gives better results. However, when the number of the 

beam elements used increases or higher order beam elements are used, the difference becomes smaller. 

 

Table 2-8 shows the numerical results depending on /D R  defined in Fig. 2-15. As /D R  increases (that is, 

the beam becomes deeper), the angles of twist calculated shows a bigger difference from the reference solutions 

because the effect of local deformation that cannot be captured by our beam element becomes more dominant. 

 
 

 

 

 

Table 2-9. Angles of twist at the loaded tips for the varying wide flange cross-section beam problems under 
uniform torsion. Four 3-node beam elements are used ( 4N = ). 

tan 0.5θ  
Free warping Constrained warping 

Present study Ref. Present study Ref. 

0.025 1.3771E-04 1.40641E-04 1.1454E-04 1.16549E-04 

0.095 8.5779E-05 8.74165E-05 5.9483E-05 6.01527E-05 

0.225 3.8829E-05 3.86123E-05 2.0123E-05 1.91705E-05 

0.475 2.0648E-05 1.87122E-05 8.2445E-06 7.11663E-06 
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Figure 2-18. Varying wide flange cross-section beam problems with four different tapering degrees. (a) 
tan 0.5 0.025θ = ( 2.864θ = deg.), (b) tan 0.5 0.095θ = ( 10.854θ = deg.), (c) tan 0.5 0.225θ = ( 25.361θ =
deg.), (d) tan 0.5 0.475θ = ( 50.815θ = deg.). 
 

 

 

Figure 2-19. Displacement v  and angle of twist along the beam length in varying wide flange cross-section 
beam problems with an eccentric end tip load ( tan 0.5 0.025θ = ). 
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2.4.5 Varying wide flange cross-section beam problems 
 

Consider here the straight wide flange beam with a varying cross-section shown in Fig. 2-16. The boundary 

conditions are at , are 0x y zu v w θ θ θ= = = = = =  for free warping and 0x y zu v w θ θ θ α= = = = = = =  for 

constrained warping. The beam dimensions are linearly decreasing from 0x =  to 1.0x =  except for the plate 

thicknesses that remain constant. A torsional moment 1.0xM N m= ⋅  is applied at tip ( 1.0x = ). For the beam 

model, seven 16-node cross-sectional elements for the wide flange cross-section are used as shown in Fig. 2-

16(a). 

 

For the shell finite element model to calculate reference solutions, see Fig. 2-16(b), 20 3p N=  and the bound-

ary conditions for the free and constrained warping cases are the same as in the curved wide flange cross-section 

beam problems. The angles of twist for the reference solutions are obtained from the rotation degrees of freedom 

of the shell elements. 

 

 

 
Figure 2-20. Wind turbine blade problems. (a) Geometry of the wind turbine blade with a NACA airfoil and 
cross-sectional mesh used, (b) Loading conditions. Left: flexural-torsion case, Right: pure torsion case (resultant 
moment: 2.0xM N m= ⋅ ). 
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Figure 2-21. Shell element model for the wind turbine blade problems. 
 

 

 

Figure 2-22. Displacements v , w  and the angle of twist along the beam length in the wind turbine blade 
problems. (a) Flexural-torsion case. The displacements are given at point Q. (b) Pure torsion case. For the shell 
model, the angle of twist is evaluated from the relative displacements between two points A and B because the 
distribution of the angle is not uniform on the cross-section due to the effect of local deformation, but the angle 
of twist for the beam model is given at point A. 
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Fig. 2-17 shows the distributions of the displacements (the angles of twist and the warping displacement) cor-

responding to the point Q when four 3-node beam elements are used. Table 2-9 presents the angles of twist 

calculated for four different tapering degrees defined by  tan 0.5θ  in Fig. 2-18. Until the tapering degree 

tan 0.5 0.225θ = , the numerical results show reasonable accuracy compared with the reference solutions. How-

ever, when the tapering degree is extremely high as in the case of tan 0.5 0.475θ = , the difference between the 

beam and shell solutions are large although more beam finite elements are used. 

 

In Fig. 2-19, we present the displacement distribution when an eccentric lateral force 1.0yP N=  is applied at 

the free tip ( 1.0x = ) in order to result in a flexure-torsion problem as shown in Fig. 2-19(a), and warping is 

constrained at the fixed end and tan 0.5 0.025θ = . 

 

2.4.6 Wind turbine blade problem 
 

We consider the wind turbine blade problem shown in Fig. 2-20(a). The geometry of the blade is described by 

the equations in Appendix A with design parameters 35L m= , 0 8.395c m= , 3.425Lc m= , 0 29deg.β = , 

3.6deg.Lβ = , 0.4p = , 0.04m = , 0.125h = . Three stiffeners are positioned at 0.2s = , 0.5  and 0.75  

along the blade length. The airfoil surfaces and stiffeners have thickness 0.05t m= . 

 

The boundary condition at 0x =  is 0x y zu v w θ θ θ α= = = = = = = , that is, warping is also constrained. Fig. 

2-20(b) shows two different loading conditions on the cross-section at x L= : a transverse point load 

( 1.0zP N= ) to result in flexural-torsion behavior and a uniformly distributed load ( 1.0 /tp N m= ) around the 

airfoil surface to result in pure torsion. 

 

To analyze the wind turbine blade problem using the beam finite elements, we use seven beam finite elements 

and sixty-one 4-node cross-sectional elements for the airfoil cross-section as in Fig. 2-20(a). The number of 

total degrees of freedom used is 56. 

 

Using the MITC9 shell finite elements, reference solutions are calculated, see Fig. 2-21. All the degrees of 

freedom are fixed at 0x = . We use 770 shell elements and 4680 degrees of freedom for the shell model. 

 

Figs. 2-22(a) and (b) show the numerical results for the flexural-torsion case and pure torsion cases, respectively. 

Although, for the beam model, we use only 1.2 percent of the degrees of freedom of the shell models, the beam 

model solutions exhibit excellent accuracy compared with the shell model solutions. 

 

2.5 Concluding Remarks 
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In this chapter, we proposed a continuum mechanics based beam finite element with warping displacements. 

We presented the general formulation including how the geometry and displacements are defined and how 

warping displacements are efficiently accounted for. The novel features of the beam element are the simple and 

straightforward formulation, the inclusion of fully coupled warping effects, the ability of handling complicated 

geometry and only one additional degree of freedom at each beam node. 

 

The various numerical results showed the effectiveness of the beam elements. Especially, excellent modeling 

capabilities and solution accuracy of the proposed beam element were observed. Regarding the beam problems 

considered, we have made the following observations: 

 In order to correctly predict the torsional behaviors of beams with general cross-sections, the use of 

16-node cross-sectional elements is effective. However, thin-walled cross-section beam problems, 4-

node or 9-node cross-sectional elements can be enough. 

 In most of the analyses presented, two 2-node beam elements and one 3-node beam element give 

solutions accurate enough for engineering practices. 

 The use of the warping directions normal to cross-sections at beam nodes is recommended for accurate 

analyses of general curved beam problems. 

 

While we assumed in this paper linear elastic behavior, an important asset of the beam formulation is that it can 

be directly extended to efficient geometric and material nonlinear analyses, see [25, 26, 30], and this will be 

described in future works. The beam element can also consider other patterns of beam deformation by properly 

enriching the basic displacement interpolation in Eq. (2-6). 
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Chapter 3. Continuity of Warping Displacement in Discontinuously Vary-

ing Beam 

 

In this chapter, we propose a new and efficient warping displacement model to ensure the continuity of warping 

in beams with discontinuously varying arbitrary cross-sections. The obtained warping displacement fields are 

not only continuous in the entire domain of the beams, but also fully coupled with the other basic behaviors of 

the beam (stretching, shearing, and bending) [51]. 

 

3.1 Motivation 
 

Beams widely used in many engineering applications have been analyzed by the finite element method. It is 

well known that appropriate consideration of the warping effect in the finite element analysis of non-circular 

cross-section beams is crucial for an accurate prediction of their twisting behavior [1-3]. 

 

In displacement-based beam finite element formulations, warping effects can be accounted for by adding warp-

ing displacement fields to Timoshenko’s basic displacement fields. It is very important to appropriately con-

struct the additional warping displacement fields in the beam formulations and there have been many studies, 

see Refs. [23, 43-50] and therein. Most previous studies have focused on relatively simple continuously varying 

cross-section beams, such as prismatic and tapered beams, see Fig. 3-1 (a). When the cross-section discontinu-

ously varies along the beam length as shown in Fig. 3-1 (b), the variation in the warping displacement is very 

complicated. Most existing formulations cannot properly represent the complicated warping behavior. 

 

To describe the torsional warping effect in discontinuously varying thin-walled cross-section beams, a kine-

matic compatibility condition has been proposed to consider the interaction between two different cross-sections 

at a discontinuous interface [33, 36]. The warping displacement models require a single warping DOF at each 

beam node in thin-walled cross-section beams. When a discontinuously varying cross-section beam is subjected 

to torsion, the twisting center also varies along the beam length. However, this effect is not considered in the 

previous beam formulations. 

 

 
Figure 3-1. Various beam problems. (a) Beam problems with continuous varying cross-section (prismatic and 
tapered beams), (b) Beam problem with discontinuously varying cross-section. 
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An easy and simple method of modeling the warping displacements in discontinuously varying cross-section 

beams is to discretize the beam cross-sections with cross-sectional elements and nodes and to properly construct 

the continuity of nodal warping DOFs between two cross-sectional meshes at the interface [48, 49]. Since, in 

this warping displacement model, a large number of warping DOFs is required at each beam node and the 

number of warping DOFs depends on the cross-sectional meshes used, this warping displacement model has 

not been widely used. 

 

In this study, we develop a new and efficient modeling method to construct the continuous warping displace-

ment fields for discontinuously varying arbitrary cross-section beams. In order to model the continuity of warp-

ing, we define three basis warping functions (one free warping function and two interface warping functions) 

and the corresponding warping DOFs. The basis warping functions are multiplied by the corresponding warping 

DOFs and interpolated along the beam length. Therefore, in our warping displacement model, at most three 

warping DOFs are required at each beam node for torsional warping displacement fields. Furthermore, the three 

warping DOFs can be condensed when the same functions exist among the basis warping functions. 

 

The obtained warping displacement fields are not only continuous in the entire domain of the beams, but also 

fully coupled with the other basic behaviors of the beam (stretching, shearing, and bending) by employing the 

formulation of continuum mechanics based beam finite elements as proposed in our previous study [50]. The 

greatest advantage of the continuum mechanics based beam finite elements is their modeling ability to easily 

deal with very complicated beam geometries. In the warping displacement model, it is crucial to obtain the 

correct twisting centers. Otherwise, the warping effect coupled with stretching, shearing, and bending cannot 

be properly considered and erroneous responses will be obtained. 

 

The most challenging issue in this study is how to calculate the interface warping functions without knowing 

the twisting centers at the interfaces. In order to solve this problem, we develop a new method to simultaneously 

calculate the free warping function and the corresponding twisting center. Based on the method, the interface 

warping functions and the corresponding twisting center are also simultaneously calculated by solving a set of 

coupled equations at interfaces where the cross-section discontinuously varies. In the coupled equations, the 

Lagrange multiplier is employed to enforce the continuity of warping at the interface. 

 

3.2 Modeling of Warping Displacement Fields 

 

In this section, based on the formulation of the continuum mechanics based beam finite element allowing warp-

ing displacements, we introduce a new approach to constructing the continuity of warping with the definition 

of three basis warping functions. In the beam formulation, warping is fully coupled with bending, shearing, and 

stretching. The beam element can consider free/constrained warping conditions and uniform/non-uniform tor-

sions, and model eccentricities, curved geometries, continuously varying cross-sections, as well as arbitrary 

cross-sections (including thin/thick-walled, open/closed, and single/multi-cell cross-sections). 
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3.2.1 New Warping Displacement Model 

 

The variation in warping displacements is very complicated around discontinuous interfaces and the twisting 

center also varies along the beam length direction. Therefore, it is difficult to construct the warping displacement 

field by using only the free warping function obtained by St. Venant equation. The basic idea of this study is 

that the complicated warping displacement field ( )m
wu  in Eq. (2-9) can be represented by a linear combination 

of the free warping function and the warping functions at the discontinuous interface. However, it is challenging 

to find the interface warping functions that satisfy the continuity of warping displacements. In particular, it is 

not easy to find the centers of the twist on the interface cross-sections. These were not found in previous studies. 

 

 

 
Figure 3-2. Warping DOFs used for a discontinuously varying cross-section beam. (a) A discontinuously vary-
ing cross-section beam, (b) Finite element model and warping DOF used at each nodes, (c) Individual amplitude 
of the basis warping functions along the beam length. 
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We here define three basis warping functions: one free warping function ( ( )m
kf ) and two interface warping 

functions ( ( )m
Lf  and ( )m

Rf ) at both beam ends. A combination of these three basis warping functions with the 

corresponding three warping DOFs ( kα , k
Lβ  and k

Rβ ) constructs the continuous warping displacement fields 

for discontinuously varying cross-section beams 

( ) ( ) ( ) ( )

1
( , , ) ( ) ( , ) ( , ) ( , )

q
m m m k m k k

w k k k L L R R r
k

r s t h r f s t f s t f s tα β β
=

 = + + ∑u V .                             (3-1) 

Therefore, in general at most three warping DOFs are required at each beam node. 

 

To demonstrate how to set up the warping DOFs, we consider a beam with a discontinuously varying cross-

section, as shown in Fig. 3-2(a). The beam consists of two regions with different cross-sections. Beam regions 

A and B have cross-sections A and B, respectively. Each region is modeled by four beam finite elements, as 

shown in Fig. 3-2(b). In each beam region, all of the warping DOFs (α , Lβ  and Rβ ) are set to be continuous. 

Each beam region has interfaces at the left and right ends; that is, free and constrained ends are also considered 

as interfaces. At each interface, two warping DOFs except for the warping DOF corresponding to the interface 

are set to be zero, as shown in Fig. 3-2(b). At the interface of both beam regions, the interface warping DOFs 
( ) ( )A B
R Lβ β=  and the other DOFs are set to be zero. Therefore, the interface DOFs make the warping displace-

ments continuous at the interfaces. Fig. 3-2(c) shows the possible distributions of the warping DOFs along the 

beam length. 

 

 

 

 

 
Figure 3-3. Twisting kinematics and twisting center. 
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3.2.2 Free Warping Function 

 

In our previous study [50], to calculate free warping functions, the following three-step calculation is required 

as in Ref. [18]: In the first step, St. Venant equation is solved for a certain arbitrary coordinate system. In the 

second step, the twisting center is calculated using the warping function obtained in the first step. In the third 

step, the final warping function is obtained by the coordinate transformation of the warping function obtained 

in the first step using the twisting center calculated in the second step. 

 

Here we present a newly developed single-step method to simultaneously calculate the free warping function 

and the corresponding twisting center in arbitrary beam cross-sections. 

 

Let us consider the cross-sectional domain Ω  defined in the cross-sectional Cartesian coordinates y  and 

z  with the origin C , as shown in Fig. 3-3. The position of the origin C  can be arbitrarily chosen in the 

cross-section. The cross-sectional domain Ω  is subjected to pure twisting kinematics about the twisting center 

Ĉ , where bending and transverse shearing are not involved. Then, the displacement fields are obtained as 

u kf= ,  ˆ xv zθ= −   and  ˆ xw yθ=        in Ω ,                                          (3-2) 

where xk xθ= ∂ ∂ , ˆ ˆ( , )f y z  is the warping function corresponding to the twisting center and ŷ  and ẑ  are 

the coordinates in the cross-sectional Cartesian coordinate system defined at the twisting center Ĉ . 

 

Note that in general the position of the twisting center ( , )y zλ λ  is unknown. After the warping function cor-

responding to the origin C  is obtained, the twisting center can be calculated, and then the correct warping 

function corresponding to the twisting center Ĉ  can be obtained through a transformation procedure, as in 

Refs. [18, 50]. However, in the method proposed in this study, the warping function and the twisting center are 

obtained at the same time. This is a very important feature in obtaining the interface warping functions. 

 

The displacement field in Eq. (3-2) results in the transverse shear stress fields 

ˆ ˆ
ˆxy
fGk z
y

τ
 ∂

= − ∂ 
 and ˆ ˆ

ˆxz
fGk y
z

τ ∂ = + ∂ 
      in Ω ,                                      (3-3) 

in which G  is the shear modulus. Note that other stresses are zero. 

 

By applying Eq. (3-3) to the local equilibrium equations [18, 50], the well-known St. Venant equations are 

obtained 

2 2

2 2 0
ˆ ˆ
f fG

y z
 ∂ ∂

+ = ∂ ∂ 
   in Ω ,   ˆˆ

ˆ ˆy z y z
f fn n n z n y
y z
∂ ∂

+ = −
∂ ∂

       on Γ ,                      (3-4) 

where ( , )y zn n  is the vector normal to the cross-sectional boundary, see Fig. 3-3. 
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The variational formulation can be easily derived with the variation of the warping function fδ , 

( )ˆˆ
ˆ ˆ ˆ ˆ y z
f f f fG d G n z n y f d
y y z z

δ δ δ
Ω Γ

 ∂ ∂ ∂ ∂
+ Ω = − Γ ∂ ∂ ∂ ∂ 

∫ ∫ .                            (3-5) 

 

Using the relation between the two cross-sectional Cartesian coordinate systems denoted as ( , )y z  and ˆ ˆ( , )y z , 

ˆ yy y λ= −  and ˆ zz z λ= − , in Eq. (3-5), we obtain 

( ) ( ) ( )z y y z y z
f f f fG d G n f d G n f d G n z n y f d
y y z z

δ δ λ δ λ δ δ
Ω Γ Γ Γ

 ∂ ∂ ∂ ∂
+ Ω+ Γ − Γ = − Γ ∂ ∂ ∂ ∂ 

∫ ∫ ∫ ∫ .       (3-6) 

 

 

 

 

 
Figure 3-4. Cross-sections of a discontinuously varying cross-section beam. (a) Cross-sections (I) and (II), and 
their interface CΩ , (b) Interconnected domain and twisting center, (c) Cross-sectional meshes used at the in-
terface. 
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Since the pure twisting kinematics does not produce bending moments in the cross-section, the zero bending 

moment condition 0z yM M= =  gives 

( ) 0aveG y y f f dδ
Ω

− Ω =∫    and   ( ) 0aveG z z f f dδ
Ω

− Ω =∫                                  (3-7) 

with the location of the cross-sectional centroid being 

ave

y d
y

d
Ω

Ω

Ω
=

Ω
∫
∫

   and   ave

z d
z

d
Ω

Ω

Ω
=

Ω
∫
∫

.                                                  (3-8) 

 

In order to discretize the three equations in Eqs. (3-6) and (3-7), the warping function is interpolated as in Eq. 

(2-9). Applying the standard procedure of the finite element method, the matrix equations are obtained 

0
0

y z

y z

z y

G G G G
G
G

λ
λ

 −   
    =    
        

K N N F B
H 0 0
H 0 0

  in Ω ,                                              (3-9) 

where F  is the vector of the unknown nodal warping values, K , yN , and zN  are the matrices obtained 

from the left-hand side of Eq. (3-6), B  is the vector obtained from the right-hand side of Eq. (3-6), and yH  

and zH  are the matrices obtained from Eq. (3-7). Solving Eq. (3-9), we can simultaneously calculate both the 

warping function and the corresponding twisting center. 

 

3.2.3 Interface Warping Function 

 

The warping functions and the position of the corresponding twisting center at interfaces have not been studied 

before. In this section, we present a method to calculate the interface warping functions and the corresponding 

twisting center by solving a set of coupled equations. 

 

 

 
Figure 3-5. Three special cases for the interface warping functions. (a) Free interface, (b) Fully constrained 
interface, (c) Partially constrained interface. 
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Let us define the interface cross-sections, as shown in Fig. 3-4. The cross-sectional domains ( )IΩ  and ( )IIΩ  

have shear moduli 1G  and 2G , respectively. Eq. (3-9) can be rewritten for each cross-sectional domain 

1
1 1 1

1

1

0
0

(I) (I)
(I) (I) (I) (I)

y z
(I) z
y
(I) y
z

G
G G G
G
G

λ
λ

   
 −    
     =     
             

F B
K N N L
H 0 0 0
H 0 0 0

λ 0

   for ( )IΩ ,                                 (3-10) 

2
2 2 2

2

2

0
0

(II) (II)
(II) (II) (II) (II)

y z
(II) z
y
(II) y
z

GG G G
G
G

λ
λ

   
 − −    
     =     
             

F B
K N N L
H 0 0 0
H 0 0 0

λ 0

   for ( )IIΩ ,                            (3-11) 

where (I)L  and (II)L , and λ  are Boolean matrices and the Lagrange multiplier vector, respectively, to enforce 

the constraint condition such that the warping values in both cross-sectional domains should be equal in the 

interconnected area CΩ  

[ ]
( )

( )

I
(I)T (II)T

II

 
 − =  

 

F
L L 0

F
   for CΩ .                                                  (3-12) 

 

Eqs. (3-10), (3-11), and (3-12) finally give a set of five coupled equations in a matrix form 

1 1 1 1

2 2 2 2

1 2

1 2

0
0

(I) (I) (I) (I) (I) (I)
y z

(II) (II) (II) (II) (II) (II)
y z

(I) (II)
y y z
(I) (II)
z z y

(I)T (II)T

G G G G
G G G G

G G
G G

λ
λ

     −
     

− −     
     =
     
     
     −     

K 0 N N L F B
0 K N N L F B
H H 0 0 0
H H 0 0 0

L L 0 0 0 λ 0

,                                (3-13) 

in which the first and second equations are St. Venant equations corresponding to the two different cross-sec-

tional domains, the third and fourth equations correspond to the zero bending moment conditions in Eq. (3-7), 

and the last equation is the constraint equation that enforces the continuity of warping in the interconnected 

cross-sectional area. 

 

Solving Eq. (3-13), we can calculate the interface warping functions, which are used as basis warping functions 

in the warping displacement model for discontinuously varying cross-section beams. 

 

It is essential to note three special cases for the interface warping functions, as shown in Fig. 3-5.  

 Free interface: At the interface, no connected cross-section exists. This means that warping is free and 

the interface warping function thus becomes equal to the free warping function. Therefore, the corre-

sponding interface warping DOF can be condensed out by setting it to zero. 

 Fully constrained interface: The whole interface cross-section is connected to a rigid wall. Thus, 

warping is fully constrained and the corresponding interface warping function vanishes. Therefore, 

the corresponding interface DOF needs to be removed by setting it to zero. 
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 Partially constrained interface: A part of the interface is connected with a rigid wall. To solve this 

case, Eq. (3-13) should be modified. The cross-sectional domain ( )IIΩ  is assumed to be rigid. Using 

the condition 2G →∞  in Eq. (3-13), we then obtain 

   0
0

(I) (I) (I) (I) (I) (I)
y z

(II) (II) (II) (II) (II)
y z

(II)
y z
(II)
z y

(I)T

λ
λ

     −
     

−     
     =
     
     
          

K 0 N N L F B
0 K N N 0 F B
0 H 0 0 0
0 H 0 0 0

L 0 0 0 0 λ 0

.                                 (3-14) 

 

Fig. 3-6 shows the DOFs used for the free-free, constrained-free, and constrained-constrained warping condi-

tions. Finally, we note that when beams have a continuously varying cross-section, as shown in Fig. 3-1(a), two 

interface warping functions ( ( )m
Lf  and ( )m

Rf ) become equal to the free warping function ( ( )m
kf ). Therefore, the 

interface warping functions can be condensed out, and only the free warping function and the corresponding 

DOF are necessary in the beam element formulation. 

 

 
Figure 3-6. Nodal warping DOFs used for (a) free-free, (b) constrained-free, (c) constrained-constrained warp-
ing problems. 
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3.3 Numerical Studies 

 

To verify the performance of the warping displacement model proposed in this study, we numerically solve 

three beam problems: a step varying rectangular cross-section problem, a discontinuously varying thin-walled 

cross-section problem, a partially constrained warping problem, and a curved beam problem with a discontinu-

ously varying cross-section. The results are compared with reference solutions obtained by using refined solid 

and shell element models. In addition, the solutions of the beam element model with the warping displacement 

model in Eq. (2-13) are compared. Note that two-node linear beam finite elements are used for all of the beam 

models and that the well-known reduced integration is employed in order to avoid shear locking [3, 50]. A 

Young's modulus 11 22.0 10 /E N m= ×  and a Poisson's ratio 0ν =  are used for all of the beam problems con-

sidered in this section3. 

 

 

 
Figure 3-7. Step varying rectangular cross-section problem. (a) Problem description (unit: m ), (b) Beam ele-
ment model, cross-sectional mesh used and the number of each nodal DOFs used, (c) Solid element model used. 

3 In order to avoid difficulties in specifying boundary conditions in equivalent shell and solid finite element 
models, zero Poisson's ratio is used. 
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Figure 3-8. Twisting centers in the step varying rectangular cross-section problem. (a) ( , ) (0,0)y zλ λ =  for the 
free warping function of cross-section A , (b) ( , ) (0, 0.0833)y zλ λ = −  for the interface warping function at 

5x m= , (c) ( , ) (0, 0.25)y zλ λ = −  for the free warping function of cross-section B . 

 

 

 
Figure 3-9. Numerical results along the beam length in the step varying rectangular cross-section problem. (a) 
Angle of twist, (b) Transverse displacement v  at Q , (c) Shear stress xyσ at Q , (d) Shear stress xzσ  at Q . 
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3.3.1 Step Varying Rectangular Cross-section Problem 

 
We consider a step varying rectangular cross-section problem with two beam regions corresponding to two 

different cross-sections, A  and B , as shown in Fig. 3-7(a). All of the displacements including warping are 

constrained at 0x m=  and a torsional moment 1.0xM N m= ⋅  is applied at 10x m= . The rectangular cross-

section is discontinuous at 5x m= . The beam problem is modeled by the proposed beam element, as shown in 

Fig. 3-7(b). The cross-sections A  and B  are discretized by two and one 16-node cubic cross-sectional ele-

ments, respectively, and have an interconnected area cΩ  at 5x m= .  

 

The beam region with cross-section A  is modeled by four beam elements that have eight nodal DOFs 

( ) ( ) TA A
x y z Ru v w θ θ θ α β   . The interface warping DOF 

( )A
Lβ  is removed by setting 

( ) 0A
Lβ =  

because beam region A  has a fully constrained interface at its left end ( 0x m= ). The beam region with cross-

section B  is modeled by four beam elements with eight nodal DOFs 

( ) ( ) TB B
x y z Lu v w θ θ θ α β   . Setting 

( ) 0B
Rβ = , the interface warping DOF 

( )B
Rβ  is condensed out 

because beam region B  has a free interface at its right end. At 5x m= , the interface warping function is 

shared through the continuity of interconnected DOFs (
( ) ( )A B
R Lβ β= ) and ( ) ( ) 0A Bα α= =  at the interface node. 

The boundary condition 
( ) ( ) 0A A

x y z Ru v w θ θ θ α β= = = = = = = =  is applied at 0x m= . The numbers of the 

nodal DOFs used are presented in Fig. 3-7(b). 

 

 

 
Figure 3-10. Transverse shear stresses in the cross-section for the step varying rectangular cross-section prob-
lem. (a) xyσ  at 2.5x m= , (b) xyσ  at 7.5x m= , (c) xzσ  at 2.5x m= , (d) xzσ  at 7.5x m= . 
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To calculate the reference solutions, 27-node quadratic solid finite elements are used, as shown in Fig. 3-7(c). 

In the solid element model, point loads ( 0.5p N= ) are applied to obtain the equivalent torsional moment 

1.0xM N m= ⋅  at 10x m=  and all DOFs are fixed at 0x m= . 

 

Fig. 3-8 shows the positions of the twisting center for the free warping function of cross-sections A  and B , 

and for the interface warping function at 5x m= . The variation of the twisting center along the beam length is 

automatically considered through the warping displacement field in Eq. (3-1). 

 

Fig. 3-9 presents the numerical results along the beam length: showing the distribution of the angle of twist, 

displacement v , and transverse shear stresses xyσ  and xzσ  at point Q . Fig. 3-10 shows the distributions of 

transverse shear stresses xyσ  and xzσ  on the cross-sectional planes at 2.5x m=  and 7.5x m= . The numer-

ical results demonstrate the excellent predictive capability of the warping displacement model proposed in this 

study. Note that the numbers of DOFs used are 63 and 4,680 in the beam and solid element models, respectively. 

 

 

 
Figure 3-11. Discontinuously varying thin-walled cross-section beam problem. (a) Problem description (unit:
m ), (b) Beam element model, cross-sectional meshes used and the number of each nodal DOFs used, (c) Shell 
element model used. 
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Figure 3-12. Twisting centers in the discontinuously varying thin-walled cross-section beam problem. (a) 
(0.0037, 0.4952)−  for the free warping function of cross-section A , (b) ( 0.3584, 0.1037)− −  for the interface 
warping function at 4x m= , (c) ( 0.4163,0)−  for the free warping function of cross-section B , (d) 
( 0.3584,0.1037)−  for the interface warping function at 10x m= , (e) (0.0037,0.4952)  for the free warping 
function of cross-section C . 

 

 

 
Figure 3-13. Angle of twist and displacement v  along the beam length in the discontinuously varying thin-
walled cross-section beam problem. (a) Sampling points Q  in the cross-sections, (b) Angle of twist (left) and 
displacement v  (right). 
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3.3.2 Discontinuously Varying Thin-walled Cross-section Problem 

 

Let us consider a beam that consists of three beam regions corresponding to three different thin-walled cross-

sections, A , ( ) ( ) TA A
x y z Ru v w θ θ θ α β    and ( )A

Lβ , see Fig. 3-11(a). All displacements includ-

ing warping are constrained at both ends ( B  and 0x m= ) and a distributed torsional moment 

( ) ( ) ( ) TB B B
x y z L Ru v w θ θ θ α β β    is applied at beam region B . The cross-section are discontin-

uous at 4x m=  and 10x m= . The physical problem is modeled by the proposed beam element model, as 

shown in Fig. 3-11(b). The cross-sections A , B  and C  are discretized by four-node linear cross-sectional 

elements, and the cross-sectional meshes are interconnected at 4x m=  and 10x m= .  

 

Beam region A  is modeled by four beam elements that have eight nodal DOFs 

( ) ( ) TA A
x y z Ru v w θ θ θ α β   . The interface warping DOF 

( )A
Lβ  is set to zero because the warping 

is fully constrained at 0x m= . Beam region B  is modeled by six beam elements with nine nodal DOFs 

( ) ( ) ( ) TB B B
x y z L Ru v w θ θ θ α β β   . Beam region C  is modeled by four beam elements with eight 

nodal DOFs ( ) ( ) TC C
x y z Lu v w θ θ θ α β   . The interface warping DOF 

( )C
Rβ  is set to zero because 

the warping is fully constrained at 14x m= . The interface warping functions are shared at 4x m=  and 

10x m=  for the continuity of interconnected DOFs (
( ) ( )A B
R Lβ β= and 

( ) ( )B C
R Lβ β= ) and ( ) ( ) ( ) 0A B Cα α α= = =  

at the interfaces. The boundary conditions 
( ) ( ) 0A A

x y z Ru v w θ θ θ α β= = = = = = = =  and 

( ) ( ) 0C C
x y z Lu v w θ θ θ α β= = = = = = = =  are applied at 0x m=  and 14x m= , respectively. The numbers 

of the nodal DOFs used are presented in Fig. 3-11(b). 

 

To obtain the reference solutions, MITC9 shell finite elements are used in the shell element model shown in 

Fig. 3-11(c) [31-34]. Point loads ( 1/ 3 /p N m= ) are distributed along beam region B , which produces the 

equivalent distributed torsional moment 1.0 /xm N m m= ⋅ . Therefore, the torsion is non-uniform along beam 

region B . 
 

Fig. 3-12 shows the positions of the twisting centers for the free warping functions in cross-sections A , B , 

and C  and for the interface warping functions at 4x m=  and 10x m= . Fig. 3-13(b) presents the distribu-

tions of the angle of twist and displacement v  along the beam length corresponding to point Q  in Fig. 3-

13(a). The present beam element model (total 113 DOFs) with the proposed warping displacement model gives 

an angle of twist very close to that of the reference shell element model (total 805 DOFs). The figure shows that 
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the transverse displacement of the present beam element model is also correctly calculated, because, in the beam 

element formulation, warping is fully coupled with stretching, shearing, and bending. 

 

In Fig. 3-13(b), we also present the results when the continuity of warping is not properly considered. In the 

beam element models - I and II, only one warping function (the free warping function) and the corresponding 

warping DOF are employed. In the beam element model - I, the warping displacement field is not continuous 

at the interface cross-sections. Therefore, two independent warping DOFs are used at the interface cross-sec-

tions. In the beam element model - II, the warping DOFs are shared at the interface cross-section. Note that 

these two models are only available in most commercial FE software to consider the continuity of warping. Fig. 

3-13(b) demonstrates the importance of the proper modeling of warping displacements. In particular, the dis-

placement v  could be incorrectly approximated when the modeling of warping displacements is not proper. 

 

 

 

 

 

 
Figure 3-14. Partially constrained warping problem. (a) Problem description (unit: m ), (b) Beam element 
model, cross-sectional mesh used, constrained warping area (shaded area) and the numbers of the nodal DOFs 
used, (c) Solid element model used. 
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Figure 3-15. Twisting centers in the partially constrained warping problem. (a) ( , ) (0, 0.4369)y zλ λ = −  for the 
interface warping function at 0x m= , (b) ( , ) (0,0)y zλ λ =  for the free warping function. 

 

 

 
Figure 3-16. Numerical results of the partially constrained warping problem. (a) Angle of twist, (b) Displace-
ment v  at Q , (c) Shear stress xyσ at Q , (d) Shear stress xzσ  at Q . 
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3.3.3 Partially Constrained Warping Problem 
 

We consider a wide flange beam problem with a partially constrained warping condition as shown in Fig. 3-14 

(a). At 0x m= , all displacements including warping are constrained only at the shaded area cΩ  in Figs. 3-

14(a) and (b), and torsional moment 1.0xM N m= ⋅  is applied at 10x m= . 

 

The beam finite element model is shown in Fig. 3-14(b). The wide flange cross-section is discretized by seven 

four-node linear cross-sectional elements, and has a partially constrained interface at 0x m= . The beam is 

modeled by eight beam elements with eight nodal DOFs 
T

x y z Lu v w θ θ θ α β   . The interface 

warping DOF Rβ  is set to zero owing to the free interface at 10x m= . The boundary condition 

0x y zu v w θ θ θ α= = = = = = =  is applied at 0x m= . The numbers of the nodal DOFs used are presented in 

Fig. 3-14(b). 

 

 
Figure 3-17. Curved beam problem. (a) Problem description (unit: m ), (b) Beam element model, cross-sectional 
meshes used and the numbers of nodal DOFs used, (c) Solid element model used ( 1 0.041667p N= , 

2 0.125p N= , 3 1.0p N= ). 
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27-node solid finite elements are used to obtain reference solutions, see Fig. 3-14(c). Point loads ( 1/ 3p N= ) 

are applied in the solid element model for the equivalent torsional moment 1.0xM N m= ⋅ , and all DOFs cor-

responding to the shaded area cΩ  are fixed at 0x m= . 

 

Fig. 3-15 shows the positions of the twisting centers for the interface warping function at 0x m=  and the free 

warping function of the wide flange cross-section. Fig. 3-16 presents the angle of twist, displacement v , and 

transverse shear stresses xyσ  and xzσ  at point Q  along the beam length. The results of the beam element 

model (total 65 DOFs) with the proposed warping displacement model are compared with those the reference 

solid element model (total 8,880 DOFs) and the beam element model (total 174 DOFs) with the warping dis-

placement model in Eq. (2-13), which uses 16 warping DOFs at each beam node in this beam problem. 

 

The results of the two beam element models show good agreement with the reference solution calculated by the 

solid element model. The numbers of DOFs used show the effectiveness of the present beam model. We show 

the results for free and fully constrained warping cases. As expected, the angle of twist of the partially con-

strained case exists between those of both cases. While the displacement v  of the free and fully constrained 

warping cases is zero, the partially constrained warping case results in non-zero displacement v . This indicates 

that the twisting centers are properly considered in the present warping displacement model. 

 

3.3.4 Curved Beam Problem with a Discontinuously Varying Cross-section 

 

We consider a curved beam problem with discontinuously varying cross-sections: from the cross-shaped cross-

section A  to the rectangular cross-section B  as shown in Fig. 3-17(a). 

The cross-section discontinuously varies from A  to B  at 45ϕ = ° . All displacements including warping are 

constrained at 0ϕ = °  and two load cases are considered:  

 (Load case - I) A torsional moment 1.0yM N m= ⋅  is applied at 90ϕ = ° . 

 (Load case - II) An eccentric shear force 1.0xF N=  is applied at 90ϕ = ° .  

 

As shown in Fig. 3-17(b), the cross-sections A  and B  are discretized by 16-node cubic cross-sectional ele-

ments with an interconnected domain cΩ  at 45ϕ = ° . Beam region A  is modeled by four beam elements 

with eight nodal DOFs ( ) ( ) TA A
x y z Ru v w θ θ θ α β   . The interface warping DOF ( )A

Lβ  is set to 

zero due to the fully constrained interface at 0ϕ = ° . Beam region B  is modeled by four beam elements with 

eight nodal DOFs ( ) ( ) TB B
x y z Lu v w θ θ θ α β   . The interface warping DOF ( )B

Rβ  is set to zero 

due to the free interface at 90ϕ = ° . The continuity of the warping displacement is ensured by the condition 
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( ) ( )A B
R Lβ β=  at 45ϕ = ° . The boundary condition ( ) ( ) 0A A

x y z Ru v w θ θ θ α β= = = = = = = =  is used at 

0ϕ = ° . The numbers of the nodal DOFs used are presented in Fig. 3-17(b). 

 

To obtain the reference solutions, 27-node solid elements are used, as shown in Fig. 3-17(c). In the solid element 

model, point loads ( 1 0.041667p N=  and 2 0.125p N= ) are applied for load case - I and a point load 

( 3 1.0p N= ) is applied for load case - II at 90ϕ = ° . All DOFs are fixed at 0ϕ = ° . 

 

Fig. 3-18 shows the angle of twist and displacement v  at point Q  along the beam length. The results of the 

beam element model (total 69 DOFs) with the proposed warping displacement model show good agreement 

with those of the reference solid element model (total 85,536 DOFs). It is very difficult to calculate the response 

of this curved beam problem accurately without properly considering the flexure-torsion coupling effect. 

 

 
Figure 3-18. Numerical results of the curved beam problem along the beam length. (a) Angle of twist ϕθ  for 
the load case - I, (b) Displacement w  for the load case - I, (c) Angle of twist ϕθ  for the load case - II, (d) 
Displacement w  for the load case - II. 
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3.4 Concluding Remarks 
 

In this chapter, we proposed a new modeling method to construct continuous warping displacement fields for 

beams with discontinuously varying arbitrary cross-sections. The warping displacement is represented by a 

combination of three basis warping functions (one free warping function and two interface warping functions) 

accompanying the corresponding three warping DOFs that are interpolated along the beam length. We also 

introduced a new numerical method that calculates the free warping functions and the twisting centers simulta-

neously. Using this method and Lagrange multipliers, a set of coupled equations was formulated to obtain in-

terface warping functions. 

 

All of the methods proposed in this study can be generally used for beams with arbitrary cross-sections including 

solid and thin and thick-walled cross-sections. We presented three numerical examples to show the feasibility 

and effectiveness of the proposed warping displacement model. The proposed modeling method to construct 

the warping displacement fields can significantly reduce the required number of DOFs. 

 

Although the method proposed here was demonstrated the basis of the continuum mechanics based beam finite 

elements, the concept can be easily adopted to other types of beam finite elements allowing warping displace-

ments. A direct extension of the proposed method for nonlinear analyses is a worthwhile topic for future studies, 

as in Refs. [25-27]. Further, it is important to note that in this study we considered only the continuity of primary 

torsional warping displacements in discontinuously varying cross-section beams. However, the same method 

can be employed for secondary torsional warping and shear warping displacements. 
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Chapter 4. General Nonlinear Formulation of Continuum Mechanics 

Based Beam 
 

In this chapter, we present a geometric and material nonlinear formulation of continuum mechanics based beam 

elements, in which fully coupled 3-D behaviors among stretching, bending, shearing, twisting and warping are 

considered [52]. 

 

4.1 Large displacement kinematics 

 
The continuum mechanics based beam elements are degenerated from assemblages of 3D solid finite elements 

[50]. In this section, the large displacement kinematics of the continuum mechanics based beams is presented. 

In the following formulations, a superscript (or subscript) t  is employed to denote time; however, in the static 

nonlinear analyses considered in this study, t  is a dummy variable that indicates the load levels and incremen-

tal variables rather than the actual time as in dynamic analyses [3]. 

 

 

 
Figure 4-1. A 3-node continuum mechanics based beam element with cross-sectional discretization in the con-
figuration at time t . In this figure, the continuum mechanics based beam element consists of 9 sub-beams. 
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Figure 4-2. A continuum mechanics based beam element: (a) beam nodes and coordinate systems used in the 
beam element and (b) cross-sectional nodes and elements in the cross-sectional mesh. 
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Consider a q -node continuum mechanics based beam element that consists of n  sub-beams in the configu-

ration at time t , as depicted in Fig. 4-1. Allowing warping displacements, the geometry interpolation of the 

sub-beam m  (shaded in Fig. 1) is given by 

( ) ( ) ( ) ( )

1 1 1 1
( ) ( ) ( ) ( )

q q q q
t m t m t k m t k m t t k

k k k k y k k z k k k x
k k k k

h r h r y h r z h r f α
= = = =

= + + +∑ ∑ ∑ ∑x x V V V ,                     (4-1) 

in which ( )t mx  is the material position vector at time t , ( )kh r  is the 1D shape function at beam node k , 

t
kx  is the position of beam node k  at time t , t k

xV , t k
yV , and t k

zV  are the unit director vectors at time t  

and are normal to each other, ( )m
ky  and ( )m

kz  denote the position in the beam cross-section at beam node k , 

( )m
kf  is the warping function at beam node k , and t

kα  is the corresponding warping degree of freedom at 

beam node k  at time t ; see Refs. [50, 51] for the detailed derivation of Eq. (4-1). Note that this type of 

warping model has an intrinsic drawback, that is, the inter-elemental continuity of warping cannot be properly 

satisfied at nodes where multiple elements are connected and an angle between adjacent elements is not small, 

see Ref. [53] and therein. 

 

In the continuum mechanics based beam element, a beam cross-section is modeled using a cross-sectional mesh, 

which is defined using cross-sectional nodes and elements, as seen in Fig. 4-2. Considering the p -node cross-

sectional element m  (shaded in Fig. 4-2) that corresponds to the sub-beam m , the position and warping func-

tions at beam node k  are given by 

( ) ( )

1
( , )

p
m j m

k j k
j

y h s t y
=

= ∑ , ( ) ( )

1
( , )

p
m j m

k j k
j

z h s t z
=

= ∑ , ( ) ( )

1
( , )

p
m j m

k j k
j

f h s t f
=

= ∑ ,                           (4-2) 

where ( , )jh s t  is the 2D shape function, ( )j m
ky  and ( )j m

kz  denote the position of the cross-sectional node 

j , and ( )j m
kf  is the warping value at cross-sectional node j . Note that the number of cross-sectional elements 

is equal to the number of sub-beams. 

 

In order to represent the material position in the beam cross-section at beam node k , the cross-sectional Car-

tesian coordinate system is defined using the director vectors t k
yV  and t k

zV , and the origin kC . Note that the 

position of beam node k , t
kx  is located at the origin kC . The warping director t k

xV  in Eq. (4-1) denotes 

the warping direction at beam node k  at time t  and is calculated using t k t k t k
x y z= ×V V V . The warping val-

ues are pre-calculated through solving the St. Venant equations using the finite element procedure with the 

given cross-sectional meshes, see Refs. [50, 51] for more detailed discussions of this method. 

 

For the sub-beam m , the incremental displacement is obtained from the configurations at time t  and t t+ ∆ , 

as follows 
( ) ( ) ( )

0
m t t m t m+∆= −u x x .                                                                 (4-3) 
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Using Eq. (4-1) in Eq. (4-3), the interpolation of the incremental displacement is obtained by 

( ) ( ) ( )
0 0

1 1 1
( ) ( ) ( ) ( ) ( )

q q q
m m t t k t k m t t k t k

k k k k y y k k z z
k k k

h r h r y h r z+∆ +∆

= = =
= + − + −∑ ∑ ∑u u V V V V

( )

1
( ) ( )

q
m t t t t k t t k

k k k x k x
k

h r f α α+∆ +∆

=
+ −∑ V V ,                                                    (4-

4) 

where 0 ku  is the incremental nodal displacement at beam node k  from time t  to t t+ ∆ . 

 

For the parametrization of finite rotations [54-57], the well-known Rodrigues formula is used, as follows 

20 0
0 0 02

0 0

sin 1 cosˆ ˆ( ) ( ) ( )
k k

k k k
k k

θ θ
θ θ

−
= + +R θ I R θ R θ                                            (4-5) 

with 0 0 0 0

Tk k k k
x y zθ θ θ =  θ , 2 2 2

0 0 0 0
k k k k

x y zθ θ θ θ= + + , 

0 0

0 0 0

0 0

0
ˆ ( ) 0

0

k k
z y

k k k
z x

k k
y x

θ θ
θ θ
θ θ

 −
 

= − 
 − 

R θ ,                                                        (4-6) 

where 0
k
xθ , 0

k
yθ , and 0

k
zθ  are the incremental Eulerian angles from time t  to t t+ ∆ , and R̂  is the skew-

symmetric matrix operator. 

 

Then, the director vectors at time t t+ ∆  are defined as 

0( )t t k k t k
x x

+∆ =V R θ V , 0( )t t k k t k
y y

+∆ =V R θ V , and 0( )t t k k t k
z z

+∆ =V R θ V .                          (4-7) 

 

Using Eq. (4-7) in Eq. (4-4), we can obtain the following 

( ) ( ) ( )
0 0 0 0

1 1 1
( ) ( ) ( ( ) ) ( ) ( ( ) )

q q q
m m k t k m k t k

k k k k y k k z
k k k

h r h r y h r z
= = =

= + − + −∑ ∑ ∑u u R θ I V R θ I V  

( )
0 0 0

1
( ) ( ( ) ( ( ) ))

q
m k t k t k

k k k k x
k

h r f α α
=

+ + −∑ R θ R θ I V ,                                            (4-8) 

in which 0 kα  is the incremental warping degree of freedom at beam node k . 

 

Applying the Taylor expansion to Eq. (4-5), the finite rotation tensor 0( )kR θ  can be represented using a pol-

ynomial function with respect to the incremental Eulerian angle vector 0
kθ  

2 3 4
0 0 0 0 0

1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2! 3! 4!

k k k k k= + + + + +R θ I R θ R θ R θ R θ  .                             (4-9) 

 

Substituting Eq. (4-9) into Eq. (4-8) and using the second order approximation for the finite rotation, the incre-

mental displacement in Eq. (4-8) becomes 
( ) ( ) ( )

0 0 1 0 2
m m m≈ +u u u                                                                   (4-10) 
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with 

( ) ( ) ( )
0 1 0 0 0

1 1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
q q q

m m k t k m k t k
k k k k y k k z

k k k
h r h r y h r z

= = =
= + +∑ ∑ ∑u u R θ V R θ V  

( )
0 0

1

ˆ( ) [ ( )]
q

m t k t k
k k k k x

k
h r f α α

=
+ +∑ I R θ V ,                                                    (4-11) 

( ) ( ) 2 ( ) 2
0 2 0 0

1 1

1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

q q
m m k t k m k t k

k k y k k z
k k

h r y h r z
= =

= +∑ ∑u R θ V R θ V  

( ) 2
0 0 0

1

1ˆ ˆ( ) [ ( ) ( ) ]
2

q
m k t k t k

k k k k x
k

h r f α α
=

+ +∑ R θ R θ V ,                                            (4-12) 

in which ( )
0 1

mu  and ( )
0 2

mu  are the linear and quadratic parts, respectively, in the incremental displacement. 

 

In the incremental displacement in Eq. (4-10), seven DOFs (three translations, three rotations, and one warping 

DOF) are employed at beam node k  using the nodal DOFs vector: 

0 0 0 0 0 0 0 0

Tk k k
k k k k x y z ku v w θ θ θ α =  U ,                                      (4-13) 

and the DOFs vector of the q -node beam element is as follows 

0 0 1 0 2 0......
TT T T

q =  U U U U .                                                        (4-14) 

 

Then, ( )
0 1

mu  is represented in terms of the nodal DOFs vector 

( ) ( ) ( ) ( ) ( )
0 1 1 2 0 0......m m m m m

q = = u L L L U L U                                               (4-15) 

with  

( )( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( , )m m t k m t k m t t k m t k
k k k y k z k k x k xh r y z f f s tα = − + + L I R V R V R V V .                 (4-16) 

 

Also, ( )
0 2

mu  is given by 

( ) ( )
0 2 0 1 0

( ) ( ) ( )
0 2 0 2 0 2 0

( ) ( )
0 2 0 3 0

1
2

m T m

m m T m

m T m

u
v
w

   
   

= =   
   
   

U Q U
u U Q U

U Q U
                                                     (4-17) 

with ( ) ( ) ( ) ( )
1 2 ......m m m m

i i i i q =  Q Q Q Q ,     1, 2, 3i = ,                                  (4-18) 

in which 

( ) ( ) ( ) ( ) ( )

( )

ˆ( ) ( ) ( ) ( ) ( )
ˆ ( ) 0

m m t k m t k m t t k m t k T
i k k k i y k i z k k i x k i x

m t k
k i x

h r y z f f

f

α

 
 

= + + − 
 − 

0 0 0

Q 0 ψ V ψ V ψ V R V

0 R V

                (4-19) 

with 

2 3

1 2 1

3 1

0
1( ) 2 0
2

0 2

x x
x x
x x

 
 = − 
 − 

ψ x , 
2 1

2 1 3

3 2

2 0
1( ) 0
2

0 2

x x
x x

x x

− 
 =  
 − 

ψ x , 
3 1

3 3 2

1 2

2 0
1( ) 0 2
2

0

x x
x x

x x

− 
 = − 
  

ψ x ,       (4-20) 
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and [ ]1 3 2
ˆ ( ) 0 x x= −R x , [ ]2 3 1

ˆ ( ) 0x x= −R x , and [ ]3 2 1
ˆ ( ) 0x x= −R x .                  (4-21) 

 

The variations of the incremental displacements are given by: 

( ) ( )
0 1 0

m mδ δ=u L U  and 

( ) ( )
0 2 0 1 0

( ) ( ) ( )
0 2 0 2 0 2 0

( ) ( )
0 2 0 3 0

m T m

m m T m

m T m

u
v
w

δ δ
δ δ δ

δ δ

   
   

= =   
   
   

U Q U
u U Q U

U Q U
.                              (4-22) 

 

4.2 Green-Lagrange strain 
 

The covariant Green-Lagrange strain tensor ( )
0
t m

ijε  for the sub-beam m  at the configuration at time t , re-

ferred to the configuration at time 0 , is defined as follows 

( ) ( ) ( ) 0 ( ) 0 ( )
0

1 ( )
2

t m t m t m m m
ij i j i jε = ⋅ − ⋅g g g g   with 

( )
( )

t m
t m

i
ir

∂
=

∂
xg ,                                  (4-23) 

in which 1 1r = , 2 2r = , and 3 3r = . Since cross-sectional deformations are not allowed in Timoshenko beam 

theory, in the beam formulation, only five strain components ( ( )
0 11
t mε , ( )

0 12
t mε , ( )

0 21
t mε , ( )

0 13
t mε , and ( )

0 31
t mε ) are con-

sidered; that is, ( , )i j  ∈  {(1,1), (1, 2), (2,1), (1,3), (3,1)} . The other strain components ( ( )
0 22
t mε , ( )

0 33
t mε ,

( )
0 23
t mε , and ( )

0 32
t mε ) are zero. It is important to note that, when the covariant base vector ( )t m

ig  is calculated, the 

warping effect in the geometry interpolation in Eq. (4-1) should be considered. Otherwise, the Wagner strain 

term cannot be correctly included in the beam formulation, see Appendix A. 

 

The local Green-Lagrange strain tensor ( )
0
t m

ijε  defined in the local Cartesian coordinate system in Fig. 4-2(a) 

is calculated using the following equation: 
( ) 0 0 ( ) 0 ( ) 0 ( )

0 0( ) ( )t m t m k m l m
ij i j klε ε⊗ = ⊗t t g g ,                                                 (4-24) 

where the base vectors for the local Cartesian coordinate system are given by: 
0 0

1 ( ) k
k xh r=t V , 0 0

2 ( ) k
k yh r=t V  and 0 0

3 ( ) k
k zh r=t V .                                      (4-25) 

Here, the five non-zero components in the local Green-Lagrange strain tensor are also considered: ( )
0 11
t mε , 

( )
0 12
t mε , ( )

0 21
t mε , ( )

0 13
t mε , and ( )

0 31
t mε . In Eq. (4-24), the contravariant base vectors 0 ( )i mg  are calculated using 

0 ( ) 0 ( )i m m i
j jδ⋅ =g g ,                                                                    (4-26) 

in which i
jδ  denotes the Kronecker delta ( 1i

jδ =  if i j= , and 0  otherwise). 

 

Substituting Eq. (4-1) into Eq. (4-23), the incremental covariant Green-Lagrange strain for the sub-beam m  is 

derived as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 , 0 , 0 , 0 ,

1 ( )
2

m t t m t m t m m t m m m m
ij ij ij j i i j i jε ε ε+∆= − = ⋅ + ⋅ + ⋅g u g u u u   with 

( )
( ) 0

0 ,

m
m
i

ir
∂

=
∂
u

u .        (4-27) 
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Retaining only the strain terms up to the quadratic order with respect to the nodal DOFs through substituting 

Eq. (4-10) into Eq. (4-27), the incremental covariant Green-Lagrange strain can be decomposed into the follow-

ing equation 
( ) ( ) ( ) ( )

0 0 0 0
m m m m

ij ij ij ijeε η κ≈ + +                                                             (4-28) 

with  

( ) ( ) ( ) ( ) ( )
0 0 1, 0 1,

1 ( )
2

m t m m t m m
ij j i i je = ⋅ + ⋅g u g u , ( ) ( ) ( )

0 0 1, 0 1,
1
2

m m m
ij i jη = ⋅u u  and  

( ) ( ) ( ) ( ) ( )
0 0 2, 0 2,

1 ( )
2

m t m m t m m
ij j i i jκ = ⋅ + ⋅g u g u ,                                                    (4-29) 

where ( )
0

m
ije  and ( )

0
m

ijη  denote the linear and nonlinear terms, respectively, due to the linear incremental dis-

placement ( )
0 1

mu  in Eq. (4-11), and ( )
0

m
ijκ  denotes the nonlinear term that results from the quadratic incre-

mental displacement ( )
0 2

mu  in Eq. (4-12). 

 

Note that Eqs. (4-28) and (4-29) contain all strain terms up to the quadratic order with respect to the nodal 

DOFs, which therefore leads to a complete expression of the tangent stiffness matrix. 

 

Using Eqs. (4-15) and (4-17) in Eq. (4-29), the following relations between the incremental strains and incre-

mental nodal displacements are obtained 

( ) ( ) ( ) ( ) ( ) ( )
0 , , 0 0

1 ( )
2

m t m m t m m m
ij j i i j ije = ⋅ + ⋅ =g L g L U B U ,                                           (4-30a) 

( ) ( ) ( ) ( )
0 0 , , 0 0 1 0

1 1( )
2 2

m T m T m T m
ij i j ijη = =U L L U U N U ,                                            (4-30b) 

( ) ( ) ( ) ( ) ( ) ( )
0 0 , , 0 0 2 0

1 1ˆ ˆ( )
2 2

m T t m m t m m T m
ij j i i j ijκ = + =U g Q g Q U U N U ,                                  (4-30c) 

in which 
( )

( )
,

m
m
i

ir
∂

=
∂
LL  and 

( )( ) ( )
( ) 31 2
,

ˆ
Tmm m

m
i

i i ir r r
 ∂∂ ∂

=  ∂ ∂ ∂ 

QQ QQ .                            (4-31) 

 

Using Eq. (4-24), the incremental covariant Green-Lagrange strains are transformed into the local Green-La-

grange strains, as follows 
( ) ( ) ( ) ( ) ( )

0 0 0( )( )m m k m l m m
ij ij i j ije = ⋅ ⋅ =B t g t g U B U ,                                             (4-32a) 

( ) ( ) ( ) ( ) ( )
0 0 1 0 0 1 0

1 1( )( )
2 2

m T m k m l m T m
ij ij i j ijη = ⋅ ⋅ =U N t g t g U U N U ,                                 (4-32b) 

( ) ( ) ( ) ( ) ( )
0 0 2 0 0 2 0

1 1( )( )
2 2

m T m k m l m T m
ij ij i j ijκ = ⋅ ⋅ =U N t g t g U U N U ,                                (4-32c) 

and their variations are obtained as follows 
( ) ( )

0 0
m m

ij ijeδ δ= B U , ( ) ( )
0 0 1 0

m T m
ij ijδ η δ= U N U  and ( ) ( )

0 0 2 0
m T m

ij ijδ κ δ= U N U .                   (4-33) 
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4.3 Incremental Equilibrium Equation 

 

The general nonlinear response is calculated using incremental equilibrium equations in which, when the con-

figuration at time t  is known, the principle of virtual work in the configuration at time t t+ ∆  is considered. 

Based on the total Lagrangian formulation, the tangent stiffness matrix and internal force vector are derived for 

the incremental equilibrium equations. A single beam element is considered in this derivation because the in-

cremental equilibrium equations for an entire beam finite element model can be easily constructed using the 

direct stiffness procedure [3]. 

 

The total Lagrangian formulation for the continuum mechanics based beam is given by [3, 11] 

0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0
t t t t t

ijkl ij kl ij ij ij ij ij ijV V V V
C e e d V S d V S d V S e d Vδ δ η δ κ δ+∆+ + = ℜ−∫ ∫ ∫ ∫ ,               (4-34) 

in which 0V  is the volume of the beam element at time 0 , t t+∆ ℜ  is the external virtual work including the 

work due to the applied surface tractions and body forces, and ijklC  and 0
t

ijS  denote the material law tensor 

and second Piola-Kirchhoff stress measured in the local Cartesian coordinate system, respectively. 

 

As mentioned in the previous section, only five strain components (and corresponding stress components) are 

considered in the beam formulation (i.e. ( , )i j ∈  {(1,1), (1, 2), (2,1), (1,3), (3,1)} ) and the material law tensor 

has only five non-zero components ( 1111C E=  and 1212 2121 1313 3131C C C C G= = = = ) with Young’s modulus 

E  and shear modulus G . 

 

Substituting Eqs. (4-32a), (4-32b), (4-32c), and (4-33) into Eq. (4-34), the following discretized equation is 

obtained 

0 ( ) 0 ( ) 0 ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 0 2 0 0
1 1 1

m m m

n n n
T m T m m m t m m t m

ij ijkl kl ij ij ij ijV V V
m m m

C dV S dV S dVδ
= = =

 + +  
∑ ∑ ∑∫ ∫ ∫U B B N N U  

0 ( )
( ) ( )

0 0 0
1

m

n
T t t T m T t m

ij ijV
m

S dVδ δ+∆

=

 = −   
∑ ∫U R U B ,                                            (4-35) 

in which n  is the number of sub-beams considered in the continuum mechanics based beam, 0 ( )mV  is the 

volume of the sub-beam m  at time 0 , and 0 0 ( )

1

n
m

m
V V

=
= ∑ . 

 

Finally, the linearized incremental equilibrium equations are obtained as follows 

0 0
t t t t+∆= −K U R F   with 1 2

t t t t
L NL NL= + +K K K K ,                                       (4-36) 

in which 

0 ( )
( ) ( ) ( )

1
m

n
t m T m m

L ij ijkl klV
m

C dV
=

= ∑ ∫K B B ,                                                      (4-37a) 
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0 ( )
( ) ( )

1 1 0
1

m

n
t m t m

NL ij ijV
m

S dV
=

= ∑ ∫K N ,                                                        (4-37b) 

0 ( )
( ) ( )

2 2 0
1

m

n
t m t m

NL ij ijV
m

S dV
=

= ∑ ∫K N ,                                                        (4-37c) 

0 ( )
( ) ( )

0 0
1

m

n
t m T t m

ij ijV
m

S dV
=

= ∑ ∫F B .                                                          (4-37d) 

Note that, in Eq. (4-36), t t+∆ R  is the external load vector and the tangent stiffness matrix t K  is symmetric 

and complete. 

 

After solving Eq. (4-36) in each incremental step, the incremental displacement 0 U  is obtained. Then, the 

position of beam node k  and the warping degree of freedom at beam node k  are additively updated, as fol-

lows 

0

0 0 0

0

k
t t t

k k k

k

u
v
w

+∆

 
 = +  
  

x x ,  and 0 0 0
t t t

k k kα α α+∆ = + ,                                           (4-38) 

and the director vectors are multiplicatively updated using Eq. (4-7). 

 

 

 

Figure 4-3. Gauss integration points in the sub-beam element m  in Fig. 4-1: (a) sub-beam element m  and 
(b) gauss integration points in beam cross-sections. 
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In order to avoid shear and membrane lockings, the well-known assumed strain scheme, namely the MITC 

(Mixed Interpolation of Tensorial Components) scheme, is adopted [25, 28]. Note that, compared with the re-

duced integration scheme, the MITC scheme enables better performance, particularly for complicated beam 

geometries. Therefore, the full Gauss integration is used to evaluate the stiffness matrices and internal force 

vector in Eqs. (4-37a), (4-37b), (4-37c), and (4-37d). For example, Fig. 4-3 illustrates the 3, 4, and 4 integration 

points in the r , s , and t  directions, respectively, for the sub-beam element m  in Fig. 4-1. That is, 3 inte-

gration points for the longitudinal direction and 4 4×  integration points in the sub-beam cross-section are 

used, which will be referred as 3 4 4× ×  integration in the following sections. 

 

4.4 Elastoplastic Material Model 
 

In order to simulate the material nonlinearity, the three-dimensional von Mises plasticity model with the asso-

ciated flow rule and linear isotropic hardening was implemented, see Ref. [57] and Appendix C. The constitutive 

equations for the three dimensional beam are derived from the beam state projected von Mises model. At each 

integration point, the constitutive equations are implicitly solved using the return mapping scheme. Note that 

the beam state projected plasticity model is equivalent to the three-dimensional model with the added beam 

state constraint. 

 

The three-dimensional beam state constraint is characterized by the following constraints on the components of 

the second Piola-Kirchhoff stress tensor, 

22 33 23 32 0S S S S= = = = ,                                                               (4-

39) 

 

Firstly, we define trial components for initial guess at time t , 

0 0
e trial t e

ij ij ijε ε ε= + , 0
p trial t p

ij ijε ε= , trial e trial
ij ijkl klS C ε= ,                                        (4-40) 

where e trial
ijε  and p trial

ijε  are the trial components of the elastic and plastic strain tensor, 0
t e

ijε  and 0
t p

ijε  are 

the elastic and plastic strain components at the configuration at time t , referred to the configuration at time 

0 , 0 ijε  is the incremental strain components at time t , and trial
ijS  is the trial component of the second Piola-

Kirchhoff stress tensor. Five strain and stress components are determined, that is ( , )i j  ∈  {(1,1), (1, 2),

(2,1), (1,3), (3,1)}. 

 

For a conveniently compact representation of the formulation, the matrix notation is introduced here, 

11

12

13

2
2

e trial

e trial e trial

e trial

ε
ε
ε

 
 

=  
 
 

ε , 
11

12

13

trial

trial trial

trial

S
S
S

 
 

=  
 
 

S .                                                      (4-41) 

 

The projection matrix is given by 
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2 3 0 0
0 2 0
0 0 2

 
 =  
  

P .                                                                    (4-42) 

 

The implicit return mapping in the beam state projected condition consists in solving the following system of 

algebraic equations 

( ) 11 1
1 1

1
1 1

1 1

1 1

3
2

trial
n n

p n
n n T

n n
e e trial p
n n

γ

γ

−− −
+ +

+
+ +

+ +

+ +

 = +

 =



= −


S C P C S

PS
ε

S PS
ε ε ε

,                                                         (4-43) 

where 1n+S  is the second Piola-Kirchhoff stress vector at time 1n + , C  is the elastic material law matrix for 

beam, 1
e
n+ε  and 1

p
n+ε  is the elastic and plastic strain vector at time 1n + , 1nγ +  is the plastic multiplier at 

time 1n + , and n  is the pseudo time index for Newton iteration. Also, the initial value of 1
e
n+ε  and 1n+S  

are trial strain and stress value e trialε  and trialS , and 1nγ +  is zero. 

 

For plasticity criteria, the projected version of the von Mises yield function can be defined as  

1 1 1
3 ( )
2

T
n n y nσ γ+ + +Φ = −S PS .                                                           (4-44) 

in which 1( )y nσ γ +  is the yield stress function according to the hardening rule. The projected yield function has 

values identical to those of the three dimensional von Mises function for stress states satisfying the three dimen-

sional Timoshenko beam constraint. 

 

The plastic multiplier is updated as following, 

1 'n nγ γ+
Φ

= −
Φ

  ,                                                                       (4-45) 

where 'Φ  is the differential of von Mises yield function corresponding to the plastic multiplier. 

 

1n+S , 1
e
n+ε  and 1

p
n+ε  is iteratively evaluated by Eq. (4-43) until Eq. (4-44) becomes zero with updating the 

plastic multiplier in Eq. (4-45). Note that, for the material nonlinear analyses, higher order Gauss integrations 

could be required for better accuracy. 

 

4.5 Numerical Studies 
 

In this section, we present several numerical examples to demonstrate the performance and modeling capabili-

ties of the continuum mechanics based beam elements in nonlinear analyses. In this section, 2- and 3-node 
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continuum mechanics based beam elements are considered. The standard full Newton-Raphson iterative scheme 

is employed for the nonlinear solutions in all examples. 

 

The results obtained using the proposed beam elements are compared with the reference solutions obtained from 

the beam, solid, and shell elements in ADINA [58] and the beam element in ANSYS (BEAM188) [59]: 

 ADINA BEAM: The beam element in ADINA is formulated using the Euler beam theory with Her-

mitian polynomials. The Wagner strain term is explicitly contained in the beam formulation. 

 BEAM188: BEAM188 in ANSYS is based on the Timoshenko beam theory. This beam element does 

not consider the Wagner strain effect [30]. 

 

 

 

Table 4-1. Large twisting analysis capability of the beam, shell, and solid element models in the numerical 
examples considered in this study (○: capable, X: incapable). 
 

Beam problems 

Solid  
element 
model 
(ADINA) 

Shell  
element 
model 
(ADINA) 

Beam element models 

ADINA 
BEAM 
(ADINA) 

BEAM188 
(ANSYS) 

Present 
beam 

Cross-shaped cross-section beam prob-
lem (Section 4.4.5, Load Case II) 

○ X X X ○ 

Twisted cantilever beam problem 
(Section 4.4.6, Load Case I) 

○ ○ X X ○ 

Twisted cantilever beam problem 
(Section 4.4.6, Load Case II) 

○ ○ X X ○ 

Twisted cantilever beam problem 
(Section 4.4.6, Load Case III) 

X X X X ○ 

Lateral post-buckling problem 
(Section 4.4.7) 

○ ○ ○ X ○ 

 

 

 

 
Figure 4-4. Patch test with distorted meshes ( 16sϕ π= ) and cross-sectional discretization. 
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Note that the large twisting problems considered here are mostly not easy to solve even though very fine solid 

and shell element models are used; see Table 4-1 for the large twisting capability of the beam, shell, and solid 

element models. 

 

4.5.1 Patch Test 
 

The mesh distortion is a serious problem in finite element analysis. Distorted elements may produce discretiza-

tions with inferior approximation properties leading to inaccurate or even invalid computational analyses. To 

undergo large deformation is one of various sources of mesh distortion. In other words, the performance of large 

deformation analysis is deeply associated with performance for distorted mesh. Through this patch test example, 

indirect proof of the superior nonlinear performance is presented. 

 

A straight cantilever beam of 100L m=  is discretized by equidistant five 2-node beam elements with a dis-

torted director vector zV , as shown in Fig. 4-4. The distortion angle ( 16sϕ π= ) is defined by distortion angle 

parameter s . We use one 4-node linear cross-sectional elements for discretizing the square cross-section shown 

in Fig. 4-4. The displacement boundary condition 0x y zu v w θ θ θ α= = = = = = =  is applied at 0x m= . 

Two different load boundary conditions are considered at 100x m=  with single load step: (a) x -directional 

axial load ( 1000xF kN= ) and (b) y -directional moment load ( 10yM kN m= ⋅ ). We consider the linear elastic 

material with Young’s modulus 7 22.0 10 /E N m= ×  and Poisson’s ratio 0ν = . 

 

 

 

 
 

Figure 4-5. Relative errors for various distortion angle parameter s . (a) x -directional load 1000xF kN=  is 
applied at end tip and the errors are evaluated according to the x -directional displacement u , (b) y -direc-
tional moment 10yM kN m= ⋅  is applied at end tip and the errors are evaluated according to the y -directional 
displacement v . 
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Figure 4-6. 45 degree bend beam problem with square cross-section and its discretization. 

 

 

 

Figure 4-7. Load-displacement curves of free end tip in 45 degree bend beam problem. 

 
 
Table 4-2. Free tip displacements when 600zF N=  in the 45-degree bend beam problem. 

 
Displacements 

u  v  w  

Bathe and Bolourchi [8] -13.4 -23.5 53.4 

Simo and Vu-Quoc [16] -13.49 -23.48 53.37 

Dvorkin et al. [11] -13.6 -23.5 53.3 

Cardona and Geradin [10] -13.74 -23.67 53.5 

Ibrahimbegović et al. [55] -13.668 -23.697 53.498 

Jelenić and Crisfield [62] -13.483 -23.479 53.371 

Schulz and Filippou [60] -13.53 -23.46 53.37 

Ritto-Correa and Camotim [56] -13.668 -23.696 53.498 

Eight 2-node beam elements (present) -13.659 -23.938 53.711 

Four 3-node beam elements (present) -13.729 -23.821 53.615 
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The relative errors of using reduced integration and MITC technique are compared according to the distortion 

angle parameter s  in Fig. 4-5. The relative errors of Fig. 4-5 (a) are evaluated according to the x -directional 

displacement u  at 100x m=  and The relative errors of Fig. 4-5 (b) are evaluated according to the y -direc-

tional displacement v  at 100x m= . The reference is result of 0s = . The result of reduced integration used 

with 4s =  is not converged. Through the results, we can conclude that using MITC methods leads superior 

performance in distorted mesh problems, and also in large deformation problems. When the beams are modeled 

to ignore mesh distortion, the more robust performance can be possible. However it cannot be enforced in short 

or deep beam problems. Note that the present formulation is the closest to the model of 3-D solid elements, and 

also to have superior modeling capabilities. 

 

4.5.2 45 Degree Bend Beam Problem 
 

The classical benchmark problem proposed by Bathe and Bolourchi [8] is considered. A 45-degree circular 

cantilever beam with a radius of 100R =  has a square cross-section, as shown in Fig. 4-6. At 0ϕ = ° , the 

beam is fully clamped: 0x y zu v w θ θ θ α= = = = = = = . The z -directional load 600zF =  is applied at the 

free tip ( 45ϕ = ° ). The linear elastic material with Young’s modulus 71.0 10E = ×  and Poisson’s ratio 0ν =  

is used. The beam is modeled using eight 2-node continuum mechanics based beam elements and the cross-

section is discretized using one 16-node cubic cross-sectional element. 

 

Fig. 4-7 illustrates the load-displacement curves calculated using the 2-node continuum mechanics based beams, 

and the results are compared with the reference solutions obtained from eight ADINA BEAMs with 20 incre-

mental load steps. The present beam element provides good agreement even when only two incremental load 

steps are used. Table 4-2 lists the free tip displacements calculated using the 2- and 3-node continuum mechanics 

based beam elements compared with various previous results [8, 10, 11, 16, 55, 56, 60, 62]. 

 

4.5.3 Curved Beam Problem 
 

The objective of this example is to verify superior modeling capabilities of the present beam finite element 

formulations. For this purpose, curved wide flange cross-section beam problems are proposed as shown in Fig. 

4-8 (a). In order to investigate responses under the extreme condition, we discretize this problem by using eight 

2-node beam elements and increase D R  ratios with fixed 100R m=  (that is, the beam becomes deeper). 

The thickness t  is also increase proportional to the change of D . The wide flange cross-section is discretized 

by seven 2-node linear cross-sectional elements, as shown in Fig. 4-8 (a). The displacement boundary condition 

0x y zu v w θ θ θ α= = = = = = =  is applied at 0ϕ = ° . The load boundary condition z -directional concen-

trate load zF  is considered at end tip 90ϕ = ° . The magnitude of zF  is properly employed to demonstrate 

nonlinear effect in each D R  ratio: 0.1zF N= when 0.01D R = , 200zF N= when 0.05D R = , 
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5.0zF kN= when 0.1D R = , 50zF kN= when 0.2D R =  and 500zF kN= when 0.4D R = . We use the 

linear elastic material with Young’s modulus 6 21.0 10 /E N m= ×  and Poisson’s ratio 0ν = . 

 

To obtain the reference solutions, 8-node 3-D solid elements are used with fine meshes and illustrated the case 

of 0.1D R =  in Fig. 4-8(b). The same magnitude of zF  is applied at 90ϕ = °  in the solid element model, 

and all DOFs are constrained at 0ϕ = ° . For comparison, 2-node ADINA BEAM element solutions are also 

calculated under same condition with present beam model in Fig. 4-8(a). It is representative solution of Hermit-

ian polynomial-based elements. 

 

Fig. 4-9 shows distributions of the displacements v  and w  along the beam length in the case of 0.1D R = . 

The entire solutions of present beam model exhibit excellent accuracy compared with the solutions of the 3D-

solid element model. On the other hand, ADINA BEAM element model is not enforced under these problem 

conditions. 

 

The relative differences of using ADINA BEAM element and present beam element are compared according to 

the increase of D R  ratios in Fig. 4-10. The relative differences are evaluated according to the z -directional 

displacement w  at 90ϕ = ° . Through the results, the excellent modeling capabilities of the present beam for-

mulation is verified. Also, the stiffness matrix obtained by ADINA BEAM elements are non-symmetric condi-

tion, but present formulation gives symmetric stiffness matrix. 

 

 

 
Figure 4-8. Curved deep beam problem for verifying modeling capabilities. (a) Dimensions, beam finite ele-
ment model and cross-sectional discretization, (b) Solid finite element model. 
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Figure 4-9. Numerical results of the curved deep beam problem along the beam length when 0.1D R = . (a) 
Displacement u , (b) Displacement v , (c) Displacement w , (d) Associated deformed shape. 
 
 

 

 
Figure 4-10. Relative difference at the loaded tip for curved deep beam problem according to the various D R  
ratios. 
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4.5.4 Z-shaped Cross-Section Beam Problem 
 

We consider the benchmark problem proposed by Wackerfuß and Gruttmann [47]. As shown in Fig. 4-11, a 

straight cantilever beam of 1L m=  is considered with a Z-shaped cross-section. The beam is modeled using 

two 2-node continuum mechanics based beam elements and the cross-section is discretized using seven 16-node 

cubic cross-sectional elements. The boundary condition 0x y zu v w θ θ θ α= = = = = = =  is applied at 

0x m= . The twist angle xθ  is prescribed at the free tip ( 1x m= ). The elastic-perfectly-plastic material 

( 11 22.1 10 /E N m= × , 0.3ν = , and yield stress 5 2
0 2.4 10Y kN m= × ) is used. 

 

 

 

Figure 4-11. Z-shaped cross-section beam problem and its longitudinal and cross-sectional meshes (unit: m ). 

 

 

Figure 4-12. Numerical results in the Z-shaped cross-section beam problem: (a) load-displacement curves and 
(b) distributions of the von Mises stress obtained from the continuum mechanics based beam elements. 
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Fig. 4-12(a) displays the load-displacement curves calculated using two 2-node beam elements with four dif-

ferent incremental steps (1, 2, 4, and 8 incremental steps) and using eight 2-node beam elements with 8 incre-

mental steps. The numerical results are in good agreement with the reference solution obtained by Wackerfuß 

and Gruttmann [47]. The almost full plastic state is reached with only a single incremental step. Fig. 4-12(b) 

illustrates the von Mises stress distributions on the cross-section at 0.5x m=  obtained from the continuum 

mechanics based beam elements. The propagation of the yield region is observed.  

 

4.5.5 Cross-Shaped Cross-Section Beam Problem 
 

We consider a straight cantilever beam with a length of 1L m=  and a cross-shaped cross-section, as shown in 

Fig. 4-13(a). The beam is modeled using five continuum mechanics based beam elements and the cross-section 

is discretized using five 16-node cubic cross-sectional elements. The boundary condition 

0x y zu v w θ θ θ α= = = = = = =  is applied at 0x m= . Two load cases are considered: 

 Load Case I: The bending moment yM  is applied at the free tip ( 1x m= ). 

 Load Case II: The twisting moment (torsion) xM  is applied at the free tip ( 1x m= ). 

 

 

 
Figure 4-13. Cross-shaped cross-section beam problem (unit: m ): (a) longitudinal and cross-sectional meshes 
used in the beam model (5 beam elements) and (b) solid element model used (4,000 solid elements). 
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To obtain the reference solution for Load Case II, four thousand 27-node solid elements are used in the solid 

element model presented in Fig. 4-13(b). In order to appropriately apply the twisting moment in the cross-

section at the free tip, four rigid beam elements are also modeled and four point loads (4 0.03)xp M= ×  are 

applied at the end tip of each rigid beam element, as seen in Fig. 4-13(b). All degrees of freedom are fixed at 

0x m= . 

 

 

 

 

 

 

 

Figure 4-14. Numerical results for Load Case I in the cross-shaped cross-section beam problem: (a) and (b) 
load-displacement curves and deformed shapes, respectively, when five 2-node beam elements were used; and 
(c) and (d) load-displacement curves and deformed shapes, respectively, when five 3-node beam elements used. 
(Note: The center nodes of the 3-node beam elements are not plotted.) 
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Fig. 4-14 presents the responses calculated for Load Case I with the linear elastic material (Young’s modulus 
11 22.0 10 /E N m= ×  and Poisson’s ratio 0ν = ). Fig. 4-14(a) illustrates the load-displacement curves calcu-

lated using five 2-node beam elements with four different load steps (2, 4, 8, and 16 load steps), and Fig. 4-

14(b) shows the corresponding deformed shapes. The tip rotation 2π  can be reached using only two load 

steps. Fig. 4-14(c) shows the load-displacement curves obtained from five 3-node beam elements with three 

different load steps (6, 12, and 24 load steps), and the corresponding deformed shapes are presented in Fig. 4-

14(d). The tip rotation 4π  can be calculated using only 6 load steps. 

 

 

 
Figure 4-15. Numerical results for Load Case II in the cross-shaped cross-section beam problem (five 2-node 
beam elements): (a) load-displacement curves, (b) distributions of the von Mises stress obtained from the beam 
element model, and (c) distributions of the von Mises stress obtained from the solid element model. 
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Figure 4-16. Twisted cantilever beam problem (unit: m ): (a) problem description and (b) the longitudinal and 
cross-sectional meshes used (8 beam elements). The twisted geometry is modeled simply through changing the 
director vectors of the continuum mechanics based beams ( 0 k

yV  and 0 k
zV ). (c) Shell element model (800 shell 

elements).  

 

 

 
Figure 4-17. Numerical results in the twisted cantilever beam problem: (a) load-displacement curves at the free 
tip for Load Case I and (b) twist angle-stretch relationship for Load Case II when the prescribed displacement 
is applied. 
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Fig. 4-15 shows the responses obtained for Load Case II when the elastic-perfectly-plastic material 

( 11 22.0 10 /E N m= × , 0ν = , and yield stress 6 2
0 1.0 10Y kN m= × ) is used. Fig. 4-15(a) presents the load-

displacement curves calculated using five 2-node beam elements (42 DOFs) with four different load steps (1, 

2, 4, and 8 load steps). The almost full plastic state is reached with only a single load step. The reference solu-

tions are obtained using four thousand 27-node solid elements (111,894 DOFs) with 800 load steps using 

ADINA. In the calculation of the reference solutions, the plastic response cannot be captured with 400 load 

steps, and the analysis with 800 load steps is also terminated early, as seen in Fig. 4-15(a). Figs. 4-15(b) and (c) 

display the von Mises stress distributions on the cross-section at 0.5x m=  in the beam and solid element mod-

els, respectively. It is observed that the yield region is propagating appropriately in the beam element model. 

 

 

 

Figure 4-18. Deformed shapes for Load Case II in the twisted cantilever beam problem: (a) shell element 
model and (b) beam element model. 
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4.5.6 Twisted Cantilever Beam Problem 

 
Consider the twisted cantilever beam with a thin rectangular cross-section as illustrated in Fig. 4-16(a). The 

beam length is 2m  and the total twisted angle is 2π . The boundary condition 

0x y zu v w θ θ θ α= = = = = = =  is applied at 0x m= . The linear elastic material with Young’s modulus 

11 22.0 10 /E N m= ×  and Poisson’s ratio 0ν =  are used. The following three load cases are considered: 

 Load Case I: The shear force yF  is applied at the free tip ( 2x m= ). 

 Load Case II: The displacement u  is prescribed at the free tip ( 2x m= ). 

 Load Case III: The twist angle xθ  is prescribed at the free tip ( 2x m= ). 

 

The twisted cantilever beam is modeled using eight 2-node beam elements, and the thin rectangular cross-sec-

tion is discretized using one 4-node cross-sectional element, as seen in Fig. 4-16(b). In order to consider the 

twisted geometry, the director vectors are initially given as described in Fig. 4-16(b). 

 

 

 
Figure 4-19. Numerical results for Load Case III in the twisted cantilever beam problem: (a) load-displacement 
curve between xM  and xθ  at the free tip, (b) relationship between u  and xθ  at the free tip, and (c) de-
formed shapes when the twist angles at the free tip are 0 , π , 2π , 3π , and 4π . 
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Figure 4-20. Lateral post-buckling analyses of a straight cantilever beam with a mono-symmetric I-section 
(unit: mm ): (a) the longitudinal and cross-sectional meshes used (8 beam elements), (b) four load cases, and (c) 
shell element model (180 shell elements). 
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In order to obtain the reference solutions, the MITC4 shell elements (800 elements) are used in the shell element 

model presented in Fig. 4-16(c). Two point loads 0.5 yp F=  are applied at 2x m=  for Load Case I, and the 

prescribed displacement u  is applied to all nodes at 2x m=  for Load Case II. All degrees of freedom are 

fixed at 0x m= . 

 

Figs. 4-17(a) and (b) display the load-displacement curves for Load Case I and the twist angle-stretch relation 

for Load Case II. For Load Case II, Figs. 4-18(a) and (b) show the deformed shapes obtained from the shell 

element model and beam element model, respectively. The numerical results of the beam element model exhibit 

good agreement with the reference shell solutions. Note that, in order to obtain appropriate responses in this 

beam problem, the coupled behavior of stretching, bending, shearing, twisting, and warping should be correctly 

considered in the beam formulation. 

 

 

 

Figure 4-21. Lateral post-buckling responses for the four load cases in Fig. 15(b): (a) and (b) elastic material 
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used, and (c) and (d) elastoplastic material used. 
For Load Case III, Figs. 4-19(a) and (b) present the torsional moment xM  and longitudinal displacement u  

at the free tip according to the twist angle at the free tip. The corresponding deformed shapes are plotted in Fig. 

4-19(c). As the twist angle increases, the twisted beam is unwound from 0xθ =  to 2π , and then it is rewound 

from 2xθ π=  to 4π . It is very interesting to observe the snap through phenomenon in Fig. 4-19(a), and the 

lengthening and shortening due to the unwinding and rewinding in Fig. 4-19(b). Note that Load Case III cannot 

be analyzed using the solid and shell element models due to convergence problems. Further studies are required 

for understanding the numerical difficulty as well as the physical phenomenon. 

 

4.5.7 Lateral post-buckling problem 
 

Through lateral post-buckling analyses, this section demonstrates how well the present beam element captures 

the Wagner effect. As illustrated in Fig. 4-20(a), a straight cantilever beam of 1651L mm=  is considered with 

a mono-symmetric I-section, which was used in the lateral post-buckling experiment conducted by Anderson 

and Trahair [63]. Young’s modulus E  is 3 265.123 10 /N mm×  and shear modulus G  is 
3 225.967 10 /N mm× . 

 

The boundary condition 0x y zu v w θ θ θ α= = = = = = =  is applied at 0x mm=  and the following four load 

cases are considered, see Fig. 4-20(b): 

 Load Case I: The upward direction load is applied at the upper flange at the free tip. 

 Load Case II: The downward direction load is applied at the upper flange at the free tip. 

 Load Case III: The upward direction load is applied at the lower flange at the free tip. 

 Load Case IV: The downward direction load is applied at the lower flange at the free tip. 

The loads are applied with the y -directional eccentricity of 0.1e mm=  for the consideration of imperfec-

tions. 

 

The cantilever beam is modeled using eight 2-node beam elements and the mono-symmetric I-section is discre-

tized using seven 16-node cubic cross-sectional elements as shown in Fig. 4-20(a). For each sub-beam element, 

2 4 4× ×  integration is used. In order to obtain the reference solutions, the MITC4 shell elements (180 ele-

ments) are used in the shell element model, as shown in Fig. 4-20(c). In order to consider the load position and 

eccentricity, the rigid beam finite elements with a length of 0.1mm  are inserted at the loaded tip. All degrees 

of freedom are fixed at 0x mm= . 

 

Figs. 4-21(a) and (b) show the lateral post-buckling responses of the cantilever beam calculated for the four 

different load cases. Different bifurcation points are observed depending on the direction and position of the 

load application. To predict this interesting phenomenon accurately, it is important to include the Wagner strain 

in the beam formulation. Note that, in the present beam formulation, the Wagner strain is automatically consid-

ered without pre-calculating Wagner’s coefficient and the buckling modes. The bifurcation points and load-

- 81 - 



displacement curves calculated using the continuum mechanics based beam elements are in good agreement 

with the experimental results and reference shell solutions. 

 

 

 

 
Figure 4-22. Framed dome problem and the finite element discretization using the continuum mechanics based 
beam elements. 

 

 

 

 

Figure 4-23. Numerical results of the framed dome problem: (a) load-displacement curves for the elastic anal-
ysis, (b) load-displacement curve for the elastoplastic analysis, and (c) deformed shapes. 
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For comparison, the same mesh is used for the calculations using ADINA BEAM and BEAM188. Since ADINA 

BEAM cannot consider the load position and eccentricity, rigid beam elements are additionally used at the 

loaded tip to model the eccentricity. ADINA BEAM captures the complicated bifurcations with acceptable 

accuracy but, as mentioned, additional modeling effort is necessary. BEAM188 in ANSYS cannot capture these 

complicated phenomena. Furthermore, Figs. 4-21(c) and (d) present the lateral post-buckling behaviors when 

elastoplastic material is used (Young’s modulus 3 265.123 10 /E N mm= × , shear modulus 

3 225.967 10 /G N mm= × , initial yield stress 2
0 40Y N mm= , and hardening modulus 0.5H E= ). 

 

4.5.8 Framed dome problem 
 

Finally, a framed dome structure that consists of 18 beam members of a rectangular cross-section is considered 

as described in Fig. 4-22 [64, 65]. The boundary condition 0x y zu v w θ θ θ α= = = = = = =  is applied at nodes 

on the gray colored areas in Fig. 17. The z -directional concentrate load zF  is applied at the top of the dome. 

We perform large displacement elastic and elastoplastic analyses. For the elastic analysis, Young’s modulus 

20690E =  and shear modulus 8830G =  are used. For the elastoplastic analyses, Young’s modulus 

20690E = , shear modulus 8830G = , initial yield stress 0 60Y = , and hardening modulus 0.25H E=  are 

considered. Each beam member is modeled using four 2-node beam elements and the rectangular cross-section 

is discretized using one 16-node cubic cross-sectional element. The 2 4 4× ×  integration is used for each beam. 

 

Figs. 4-23(a) and (b) illustrate the load-displacement curves calculated through incrementally controlling the 

vertical displacement δ  with the elastic and elastoplastic materials. Fig. 4-23(c) shows the deformed shapes 

obtained from the elastic analysis. The numerical results are in good agreement with those obtained by Battini 

[64] and Wackerfuß and Gruttmann [65]. 

 

4.6 Concluding remarks 
 

In this chapter, a nonlinear formulation of the continuum mechanics based beam elements was presented and 

their performance in general nonlinear analyses that focused on large twisting behaviors was demonstrated. 

Since the beam elements are derived from assemblages of 3D solid elements, they have inherently advanced 

modeling capabilities in the analysis of complicated 3D beam geometries including curved and twisted geome-

tries, varying cross-sections, eccentricity, and arbitrary cross-sectional shapes [50, 51]. The total Lagrangian 

formulation was used to obtain the complete tangent stiffness matrix and internal load vector with the warping 

displacements. 

 

The resulting formulation can consider the fully coupled nonlinear behaviors of bending, shearing, stretching, 

twisting, and warping. In particular, large twisting and lateral buckling behaviors can be accurately predicted 

and, in the beam formulation, the Wagner effect is implicitly included, unlike other beam elements. Through 
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various numerical examples, the strong modeling and predictive capabilities of the nonlinear formulation of the 

continuum mechanics based beam elements were demonstrated for general nonlinear analysis. The most valu-

able asset of the proposed beam elements is their excellent analysis capability in large twisting problems. 
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Chapter 5. Eigen Recomposition Method to Improve Nonlinear Perfor-

mance 
 

In this chapter, we present a new numerical method to improve nonlinear performance: the eigen recimposition. 

The superior nonlinear performance of proposed method is demonstrated through several numerical examples. 

 

5.1 Motivation 
 

The nonlinear analysis of finite elements is abundantly performed in various branches of engineering design 

and scientific research. In order to achieve a safer and more economical design for more complex system, there 

are continuous demands efficient, robust and reliable numerical tools for nonlinear analysis. 

 

In general, the iterative solution procedure, for example full Newton method, enables to obtain the solution of 

the nonlinear equation. However, the use of the iterative scheme also yields stability, convergence and reliability 

problems. A slow convergence process and an amiss solution are often observed. Also, certain types of problems 

are shown upper bound of solution despite of numerous load steps. The efforts to overcome these difficulties 

can be classified by two approaches; develop finite element models and solution algorithm models. 

 

For a long time, considerable efforts have been made regarding improvement of nonlinear finite element models 

[66, 67]. Although novel numerical methods are successfully introduced, limitations are still remained. Further-

more, all of these studies are only focused on non-vectorial nature of rotational variables. Thus, there is still a 

need for more insight of various perspective and clearer guidelines on the nonlinear analysis. 

 

 

 

 

 

Figure 5-1. The eight eigenpairs for 2D plane stress element. (a) Basic eigenmodes, (b) eigenmodes subjected 
to the uniform stress distribution. 
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In general, the element subjected to the stress distribution shows stiffer behaviors. The consideration of this 

additional stiffness enables faster convergence. However, the stress distribution also makes critical problem by 

yielding parasitic stiffening. Fig. 5-1(a) shows eight eigenpairs of the 2D plane stress element without any stress 

distributions which consists of three rigid body, two bending, two stretching and a single shearing eigenvectors. 

Fig. 5-1(b) shows eight eigenpairs of the 2D plane stress element subjected to the constant x -directional nor-

mal stress distribution. As author’s opinion, the ideal stiffening from stress distributions is to only increase the 

eigenvalues without distortion of the eigenvectors, and three rigid body modes are also remaining. However, 

the eigenpairs for rigid body rotation and shearing action, shown in Fig. 5-1(b), obviously display problems. 

 

5.2 Stiffening of Rigid Body Rotation 
 

In a geometrical nonlinear analysis, a deformation of the rigid body rotation generates parasitic strain energy in 

second order term like a ‘locking phenomena’, and the parasitic strain energy is governed by stress distributions. 

In other words, the eigenvalue of the rigid body rotation is no more zero energy, and developed by stress distri-

butions. In order to identify and analysis the effects of stress distributions on the eigenpair of the rigid body 

rotation, we consider an internal virtual work of an isoparametric body subjected to the eigen deformation, as 

shown in Fig. 5-2. 

 

Based on the total Lagrangian formulation, the increment of the internal virtual work δΠ  is given by [ref], 

0 0
0 0

0 0 0 0
t

ij ijkl kl ij ijV V
e C e d V S d Vδ δ δ ηΠ = +∫ ∫ ,                                                (5-1) 

in which 0V  is the initial area of the isoparametric body, 0 ije  and 0 ijη  denote respectively the linear and 

nonlinear terms of incremental Green-Lagrange strain tensor, ijklC  is the material law tensor, 0
t

ijS  is the sec-

ond Piola-Kirchhoff stress measured, and the left δ  denotes a variation. 

 

 

 

 

 

Figure 5-2. An isoparametric body subjected to the rigid body rotation. 
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Eq. (5-1) can be simplified under assumption of 2D plane stress condition with zero Poisson ratio, 

linear nonlinearδ δ δΠ = Π + Π  

with 0
0

0 11 0 11 0 22 0 22 0 12 0 124linear V
E e e E e e G e e d Vδ δ δ δΠ = + +∫ , 

0
0

0 11 0 11 0 22 0 22 0 12 0 122t t t
nonlinear V

S S S d Vδ δ η δ η δ ηΠ = + +∫ ,                                       (5-2) 

where linearδΠ  is internal virtual work yielded by linear terms of Green-Lagrange strain, nonlinearδΠ  is internal 

virtual work yielded by nonlinear terms of Green-Lagrange strain and second Piola-Kirchhoff stress distribu-

tions, and E  and G  are respectively Young’s modulus and shear modulus. Note that the stress distributions 

only have effects on nonlinear internal virtual work. 

 

In order to calculate the internal virtual work for the rigid body rotation, the nodal eigen deformation vector rφ  

is considered, as shown in Fig. 5-2. 

[ ]1 2 3 4
T

r r r r r=φ φ φ φ φ  and 1T
r r =φ φ , 

with [ ]1
2 1 1

4r = − −φ , [ ]2
2 1 1

4r = −φ , [ ]3
2 1 1

4r = −φ  and [ ]4
2 1 1

4r =φ .              (5-3) 

 

The eigen deformation field rφ  can be obtained from interpolation of the nodal eigen deformation vector, 

r r=φ Hφ ,                                                                           (5-4) 

where H  is the conventional interpolation matrix which consist of shape functions. Then, standard algebraic 

manipulations with Eq. (5-3) and (5-4) yield, 

[ ] [ ]1 2
2

4
T T

r r r y xϕ ϕ= = −φ .                                                         (5-5) 

 

Following the definition of Green-Lagrange strain, the linear and nonlinear strain terms for rφ  are denoted as, 

1
0 11 0 11 0re e

x
ϕ

δ
∂

= = =
∂

, 2
0 22 0 22 0re e

y
ϕ

δ
∂

= = =
∂

, 1 2
0 12 0 12

1 ( ) 0
2

r re e
y x
ϕ ϕ

δ
∂ ∂

= = + =
∂ ∂

,              (5-6) 
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1
8
1
8
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2

r r r r
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y y y y

x y x y x y x y

ϕ δϕ ϕ δϕ
δ η

ϕ δϕ ϕ δϕ
δ η

ϕ δϕ δϕ ϕ ϕ δϕ δϕ ϕ
δ η

 ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂

= + =
∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

.                            (5-7) 

 

Substituting Eqs. (5-6) and (5-7) into Eq. (5-2), the internal virtual work for the rigid body rotation is finally 

obtained as a function of stress distributions, 

0
rlinearδ

=
Π =u φ

 and 0
0

0 11 0 22
1 ( )
8r

t t
nonlinear V

S S d Vδ
=

Π = +∫u φ .                                  (5-8) 
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The internal virtual work for the rigid body rotation should be zero in physically, but the parasitic strain energy 

is generated by nonlinear terms, as shown in Eq. (5-8). The tangent modulus for the rigid body rotation is to be 

stiff as the summation of internal stress 0 11
tS  and 0 22

tS  increases. It means that the global stiffness matrix has 

an accumulated error from the stress distributions in nonlinear analysis, and this accumulated error lead to an 

upper bound of nonlinear convergence. 

 

5.3 Deficiency of Shear Eigenmode 
 

As mentioned in introduction, 4-node 2D plane stress element has only one shear eigenvector, as shown in Fig. 

5-3(a). In linear analysis context, the one shear eigenvector are sufficient to represent other shear deformation 

shapes like Fig. 5-3(b) and (c). However, in nonlinear analysis context, unfortunately the single shear eigenvec-

tor cannot represent other shear deformation shapes due to the difference of the strain energy. In order to inves-

tigate this deficiency problem, we consider internal virtual works of isoparametric body subjected to the three 

types of shear deformation Aφ , Bφ  and Cφ . 

 

The nodal eigen deformation vector Aφ  is written by, 

[ ]1 2 3 4
T

A A A A A=φ φ φ φ φ  and 1T
A A =φ φ , 

with [ ]1
2 1 1

4A = −φ , [ ]2
2 1 1

4A =φ , [ ]3
2 1 1

4A = − −φ  and [ ]4
2 1 1

4A = −φ .             (5-9) 

 

The eigen deformation field for Aφ  is derived from Eq. (5-4) and Eq. (5-9), 

[ ] [ ]1 2
2

4
T T

A A A y xϕ ϕ= =φ .                                                        (5-10) 

Also, the shear deformation field Bφ  and Cφ  is obtained by using rigid body rotation field rφ  in Eq. (5-5), 

[ ]2 0
2

T
B A r y= − =φ φ φ  and [ ]2 0

2
T

C A r x= + =φ φ φ .                                (5-11) 

 

 

 

 

Figure 5-3. Isoparametric bodies subjected to the three types of shear deformation. 
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Following the Eqs. (5-6) and (5-7), the linear and nonlinear terms of the Green-Lagrange strain for Aφ , Bφ  

and Cφ  are denoted as, 

0 11 0 11 0A Ae eδ= = , 0 22 0 22 0A Ae eδ= = , 0 12 0 12
2

4
A Ae eδ= = , 0 11

1
8

Aδ η = , 0 22
1
8

Aδ η = , 0 12 0Aδ η = ,       (5-12) 

0 11 0 11 0B Be eδ= = , 0 22 0 22 0B Be eδ= = , 0 12 0 12
2

4
B Be eδ= = , 0 11 0Bδ η = , 0 22

1
2

Bδ η = , 0 12 0Bδ η = ,        (5-13) 

0 11 0 11 0C Ce eδ= = , 0 22 0 22 0C Ce eδ= = , 0 12 0 12
2

4
C Ce eδ= = , 0 11

1
2

Cδ η = , 0 22 0Cδ η = , 0 12 0Cδ η = .        (5-14) 

 

Substituting Eqs. (5-12), (5-13) and (5-14) into Eq. (5-2), the internal virtual works for three types of shear 

deformation are finally obtained as a function of stress distributions, 

0

0

0

0
0 11 0 22

0
0 22

0
0 11

12 , ( )
8
12 ,
2
12 ,
2

A A

B B

C C

t t
linear nonlinear V

t
linear nonlinear V

t
linear nonlinear V

G S S d V

G S d V

G S d V

δ δ

δ δ

δ δ

= =

= =

= =

 Π = Π = +

 Π = Π =

 Π = Π =


∫

∫

∫

u φ u φ

u φ u φ

u φ u φ

.                                   (5-15) 

 

Here we should remind that 4-node 2D plane element has only one shear eigenvector. In other words, the su-

perposition of two eigenvectors ( Aφ  and rφ ) have to represent shear deformation Bφ  and Cφ . In linear 

analysis or nonlinear analysis without stress distributions, the shear deformations have same internal virtual 

works 2G , and the representation is sufficient. However, when the internal virtual works become different 

each other by the effect of stress distributions, the two eigenvectors cannot represent them anymore. Conse-

quently, the stress distributions yield the deficiency of the shear eigenvector. 

 

5.4 Eigenvalue Analysis 

 

In order to verify the analytical results and to extend the insight, we perform the eigenvalue analysis for plane 

stress elements. Now we use terms; total stiffness matrix, linear stiffness matrix and nonlinear stiffness matrix. 

The total stiffness matrix K  are obtained from the internal virtual work δΠ  in Eq. (5-2), and the linear stiff-

ness matrix LK  and the nonlinear stiffness matrix NK  respectively mean the linear and nonlinear compo-

nent of internal virtual work, linearδΠ  and nonlinearδΠ . 

 

We demonstrate eigenvalue analysis for the nonlinear stiffness matrix NK . Remind that stress distributions 

only have an effect on the nonlinear stiffness matrix NK . In other words, the eigenpairs of the linear stiffness 

matrix LK  are not varied by stress distributions and already known in Fig.5-1. For that reason, to separately 

analyze the nonlinear stiffness matrix NK  is more obvious for considering additional effects from the stress 
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distributions. 

 

We consider a single 4-node plane stress element has isoparametric body. The free displacement boundary 

conditions are applied at all nodes. The linear elastic material with Young’s modulus 610E =  and zero Pois-

son’s ratio is used. The following three case of stress distributions are considered: 

 The constant 0 11 100000tS =  is applied on the whole area. 

 The constant 0 22 100000tS =  is applied on the whole area. 

 The constant 0 12 100000tS =  is applied on the whole area. 

 

In order to investigate physical meaning of the results, we introduce the eigen decomposition of the linear and 

nonlinear stiffness matrix, 

8

1

T
L i i i

i
λ

=
= ∑K φ φ  and 

8

1

T
N i i i

i
λ

=
= ∑K φ φ ,                                                   (5-16) 

in which iφ  and iλ  are the eigenpairs obtained from the linear stiffness matrix in Fig. 5-1, and iφ  and iλ  

are the eigenpairs obtained from the nonlinear stiffness matrix in Fig. 5-4. 

 

 

 

 

Figure 5-4. The numerical results of eigenvalue analysis for nonlinear stiffness matrix with respective stress 
component. 
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Fig. 5-4 displays the evaluated eigenpairs except the eigenpairs which have zero eigenvalue for each demon-

strative condition. Let us consider the numerical results for 0 11
tS . We rewritten the total stiffness matrix K  

by using Eq. (5-16) and numerical results, 

8
11 11 11 11 11 11 11 11

1

T T T T T
i i i A A A B B B C C C D D D

i
λ λ λ λ λ

=
= + + + +∑K φ φ φ φ φ φ φ φ φ φ .                                 (5-17) 

We can easily know that the eigenmodes 11
Aφ , 11

Bφ  and 11
Cφ  are superposed to the eigenmodes 4φ , 5φ , 6φ  

because they are individually same eigenvectors. In other words, the eigenmodes 11
Aφ , 11

Bφ  and 11
Cφ  of the 

nonlinear stiffness matrix make the x -bending, y -bending and x -stretch actions stiffer. In order to investi-

gate the role of 11
Dφ , we split 11

Dφ  into two eigenvectors 3φ  and 8φ  by using Eq. (5-11), 

11
3 8D = +φ φ φ .                                                                        (5-18) 

Then, the last term of Eq. (5-17) is denoted as, 

11 11
3 3 8 8 3 8 8 3

T T T T T
D D D D D D Dλ λ λ λ λ= + + +φ φ φ φ φ φ φ φ φ φ .                                         (5-19) 

The component of the linear eigenvector 3 3
T

Dλφ φ  makes the rigid body rotation action stiffer and the compo-

nent of the linear eigenvector 8 8
T

Dλφ φ  makes the shear action stiffer. The residual components 3 8
T

Dλφ φ  and 

8 3
T

Dλφ φ  make following effects; 

 Considering with analytical investigation in Section 3, they cause the deficiency of the shear eigen-

vector. 

 The total stiffness matrix K  cannot be decomposed by linear eigenvectors iφ  due to the residual 

components 3 8
T

Dλφ φ  and 8 3
T

Dλφ φ . For that reason, they cause the distorted eigenvectors. 

In summary, 0 11
tS  has the role to make the x -bending, y -bending, x -stretch, rigid body rotation and shear 

actions stiffer, and the components 3 3
T

Dλφ φ , 3 8
T

Dλφ φ  and 8 3
T

Dλφ φ  in 11 11T
D D Dλφ φ  yield the drawbacks. 

 

The roles of 0 22
tS  symmetrically same with 0 11

tS . Thus, we skip the consideration of the numerical results for 

0 22
tS . 

 

Consider the numerical results for 0 12
tS , in Fig. 5-4. We rewritten the total stiffness matrix K  by using Eq. 

(5-16) and numerical results, 

8
12 12 12 12 12 12 12 12

1

T T T T T
i i i A A A B B B C C C D D D

i
λ λ λ λ λ

=
= + + + +∑K φ φ φ φ φ φ φ φ φ φ .                                (5-20) 

The eigenvectors 12
Aφ , 12

Bφ , 12
Cφ  and 12

Dφ  can be decomposed by combinations of 3φ , 6φ , 7φ , 8φ  as Eq. 

(5-18). Then, the components of the linear eigenvectors 3 3
Tφ φ , 6 6

Tφ φ , 7 7
Tφ φ , 8 8

Tφ φ  and the residual com-

ponents are obtained by similar expansion in Eq. (5-19). The components of the linear eigenvectors make effects 
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on the each action, the rigid body rotation, x -stretch, y -stretch and shear actions. The residual components 

cause the distorted eigenvectors. 
 

5.5 Eigen Recomposition Method 

 

Based on the studies in above sections, the nonlinear stiffness matrix NK  has intrinsic drawbacks which have 

a bad effect on the nonlinear performance. In order to modify the drawbacks, we propose simple numerical 

method; eigen recomposition. 

 

The incremental equilibrium equation can be stated as 

( )L N+ = ℜ−K K U F ,                                                                 (5-21) 

in which U  is the nodal displacement vector, ℜ  is the external virtual work, and F  is internal force vector, 

as defined in Eq. (4-36). 

 

The nonlinear stiffness matrix NK  can be rewritten by using eigenvalue decomposition theorem, 

6

1

T
N i i i

i
λ

=
= ∑K φ φ ,                                                                     (5-22) 

where iλ  and iφ  are exact eigenvalues and eigenvectors corresponding to the nonlinear stiffness matrix 

NK . 

 

Here we define the assumed eigenvector iφ  and the estimated eigenvalue iλ . In general, the assumed eigen-

vector cannot be predicted due to the mesh distortion. However, in case of 2D beam element, the assumed 

eigenvector can easily denoted as, 

1
2 20 0 0 0

2 2

T
 

= − 
 

φ , 2
2 20 0 0 0

2 2

T
 

= − 
 

φ ,  

and 3
1 1 1 10 0
2 2 2 2

T
 = −  

φ ,                                                     (5-23) 

in which 1φ  is the assumed eigenvector corresponding to the stretch mode, 2φ  is the bending mode, and 3φ  

is the shear mode. The assumed eigenvectors corresponding to the rigid body modes are not considered. Then 

the estimated eigenvalue iλ  is defined as  

T
i i N iλ = φ K φ .                                                                       (5-24) 

 

Finally, the recomposed nonlinear stiffness matrix NK  is obtained by 

8

1

T
N i i i

i
λ

=
= ∑K φ φ  with T

i i N iλ = φ K φ ,                                                    (5-25) 

and the modified incremental equilibrium equation is 
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( )L N+ = ℜ−K K U F .                                                                 (5-26) 

 

5.6 Numerical Studies 
 

In this section, we present four numerical examples to demonstrate the performance of the eigen recomposition 

method: straight cantilever, right angle frame, portal frame, and offshore jacket problems. The standard full 

Newton-Raphson iterative scheme is used in all the examples and the following displacement criterion is used 

to test for convergence, 

0 2

2
dε≤

U
U

,                                                                         (5-27) 

where 0 U  is an incremental displacement vector, U  is a total displacement vector, 2  is Euclidean norm, 

and dε  is an error tolerance. We stop the iterations when 0.0001dε = . 

 

5.6.1 Straight Cantilever Problem 

 

We consider a straight cantilever beam with a length of 100L cm=  and a square cross-section, as shown in 

Fig. 5-5. The beam is modeled by using ten 2-node beam elements. The linear elastic material with Young’s 

modulus 5 22.0 10 /E N cm= ×  and Poisson’s ratio 0ν =  is used. The displacement boundary condition 

0u w θ= = =  is applied at 0x cm= . Two load cases are considered: 

 Load Case I: The shear force zF  is applied at the free tip ( 100x cm= ). 

 Load Case II: The bending moment yM  is applied at the free tip ( 100x cm= ). 

 

Fig. 5-6(a) and (b) shows the numerical results for Load Case I. Fig. 5-6(a) displays the required number of 

Newton-Raphson iterations under the single load incremental step. It exhibits that the proposed method en-

hances the capacity of large load increments and reduces the required number of iterations. Fig. 5-6(b) displays 

the load-displacement curves. The reference is calculated by using 20 load incremental steps without the eigen 

recomposition method. The solution reliability of the proposed methods is observed. 
 

Fig. 5-7(a) and (b) displays the numerical results for Load Case II. Fig. 5-7(a) shows the total number of New-

ton-Raphson iterations required under the five load incremental steps. The proposed method reduces the re-

quired number of iterations. Fig. 5-7(b) shows the load-displacement curves. The reference is calculated by 

using 20 load incremental steps without the eigen recomposition method. The solution reliability of the proposed 

methods is exhibited. 
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Figure 5-5. Straight cantilever problem with the beam element model (10 beam elements) and square cross-
section (unit: cm ). 

 

 

 
Figure 5-6. Numerical results for Load Case I in the straight cantilever problem: (a) number of iteration used 
according to the applied load, (b) load-displacement curves. 
 
 

 
Figure 5-7. Numerical results for Load Case II in the straight cantilever problem: (a) number of iteration used 
according to the applied load, (b) load-displacement curves. 
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Figure 5-8. Right angle frame problem with the beam element model (16 beam elements) and square cross-
section (unit: cm ). 
 
 

 
Figure 5-9. Numerical results in the right angle frame problem: (a) number of iteration used according to the 
applied load, (b) load-displacement curves. 
 
 
 

 
Figure 5-10. Deformed shapes in the right angle frame problem. 
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5.6.2 Right Angle Frame Problem 

 

A right angle frame structure with square cross-section is considered as described in Fig. 5-8. The structure is 

modeled by using 16 beam elements. The linear elastic material with Young’s modulus 5 22.0 10 /E N cm= ×  

and Poisson’s ratio 0ν =  is used. The displacement boundary condition 0u w θ= = =  is applied at the node 

on the gray colored area in Fig. 5-8. The x -directional load xF  is applied at the end tip node. 

 

Fig. 5-9(a) shows the required number of Newton-Raphson iterations under the single load incremental step. It 

exhibits that the proposed method enhances the capacity of large load increments and reduces the required 

number of iterations. Fig. 5-9(b) illustrates the load-displacement curves. The reference is calculated by using 

20 load incremental steps without the eigen recomposition method. The solution reliability of the proposed 

methods is displayed. The corresponding deformed shapes are plotted in Fig. 5-10.  

 

5.6.3 Portal Frame Problem 

 

We consider a portal frame structure with rectangular cross-section, as shown in Fig. 5-11. The structure is 

modeled by using 24 beam elements. The linear elastic material with Young’s modulus 7 22.1 10 /E N cm= ×  

and Poisson’s ratio 0.3ν = , and the cross-sectional shear correction factor 5 6k =  is used. The displacement 

boundary condition 0u w θ= = =  is applied at the nodes on the gray colored area in Fig. 5-11. The y -direc-

tional concentrate load yF  is applied at the center of the structure. 

 

 

 
Figure 5-11. Portal frame problem with the beam element model (24 beam elements) and rectangular cross-
section (unit: cm ). 
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Fig. 5-12 illustrates the load-displacement curves calculated through incrementally controlling the vertical dis-

placement δ . It exhibits that the proposed method works well in displacement control scheme. Also, the nu-

merical results are in good agreement with results of the co-rotational formulation obtained by Li [68]. Note 

that the used beam model without proposed method cannot obtain the solution higher than 40cmδ =  due to 

the convergence problems. The solution procedure terminates even though a lot of increment steps are used. 

This upper bound of the convergence can be broken by the proposed method. The corresponding deformed 

shapes are illustrated in Fig. 5-13. 

 

 
Figure 5-12. Load-displacement curves in portal frame problem. 

 

 

 
Figure 5-13. Deformed shapes in the portal frame problem. 
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5.6.4 Offshore Jacket Problem 

 

Finally, an offshore jacket structure that consists of 22 beam members of a square cross-section is considered 

as described in Fig. 5-14. Each beam member is modeled by using four beam elements. The linear elastic ma-

terial with Young’s modulus 11 22.0 10 /E N m= ×  and Poisson’s ratio 0.3ν =  is used. The displacement 

boundary condition 0u w θ= = =  is applied at the node on the gray colored area in Fig. 5-14. The x -direc-

tional concentrate load xF  is applied at the center of the top beam member. The x -displacement xδ  at the 

node marked by the red dot is observed. 

 

Fig. 5-15 displays the load-displacement curves calculated through controlling the displacement xu . The eigen 

recomposition method enables to accurately predict the complicated buckling behaviors of the structure with 

only two incremental steps. The single incremental step can also give reasonable solution. Fig. 5-16 illustrates 

the deformed shapes obtained using 20 and 40 incremental steps without proposed method, and using single 

and two incremental steps with the proposed method. 

 

 

 

 
Figure 5-14. Offshore jacket problem with the beam element model (88 beam elements) and square cross-
section (unit: m ). 
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Figure 5-15. Load-displacement curves in the offshore jacket problem. 

 

 

 

 

Figure 5-16. Deformed shapes in the offshore jacket problem. 
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5.7 Concluding Remarks 

 

In this chapter, we presented a new numerical method to improve nonlinear performance: the eigen recimposi-

tion. The superior nonlinear performance of proposed method was demonstrated through several numerical 

examples. In this study, we implement only 2D beam element case for feasibility study, but it can be easily 

extended to 3D curved beam element case. Furthermore, the proposed method is element-independent, thus it 

can be easily applied to all of the element. 
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Chapter 6. Conclusions & Future Works 

 

6.1 Conclusions 
 

The objective in this thesis is to develop the continuum mechanics based beam elements for linear and nonlinear 

analysis. 

 

In chapter 2, we introduce continuum mechanics based beam finite elements with warping displacements. We 

present the general formulation including how the geometry and displacements are defined and how warping 

displacements are efficiently accounted for. The novel features of the beam element are the simple and straight-

forward formulation, the inclusion of fully coupled warping effects, the ability of handling complicated geom-

etry and only one additional degree of freedom at each beam node. The various numerical results show the 

effectiveness of the beam elements. Especially, excellent modeling capabilities and solution accuracy of the 

proposed beam element is observed. 

 

In chapter 3, we propose a new modeling method to construct continuous warping displacement fields for beams 

with discontinuously varying arbitrary cross-sections. The warping displacement is represented by a combina-

tion of three basis warping functions (one free warping function and two interface warping functions) accom-

panying the corresponding three warping DOFs that are interpolated along the beam length. We also introduce 

a new numerical method that calculates the free warping functions and the twisting centers simultaneously. 

Using this method and Lagrange multipliers, a set of coupled equations is formulated to obtain interface warping 

functions. 

 

In chapter 4, a nonlinear formulation of the continuum mechanics based beam elements is presented and their 

performance in general nonlinear analyses that focused on large twisting behaviors is demonstrated. Since the 

beam elements are derived from assemblages of 3D solid elements, they have inherently advanced modeling 

capabilities in the analysis of complicated 3D beam geometries including curved and twisted geometries, vary-

ing cross-sections, eccentricity, and arbitrary cross-sectional shapes. The total Lagrangian formulation is used 

to obtain the complete tangent stiffness matrix and internal load vector with the warping displacements. The 

resulting formulation can consider the fully coupled nonlinear behaviors of bending, shearing, stretching, twist-

ing, and warping. In particular, large twisting and lateral buckling behaviors can be accurately predicted and, in 

the beam formulation, the Wagner effect is implicitly included, unlike other beam elements. Through various 

numerical examples, the strong modeling and predictive capabilities of the nonlinear formulation of the contin-

uum mechanics based beam elements were demonstrated for general nonlinear analysis. The most valuable asset 

of the proposed beam elements is their excellent analysis capability in large twisting problems. 
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In chapter 5, we present a new numerical method to improve nonlinear performance: the eigen recomposition. 

The superior nonlinear performance of proposed method is demonstrated through several numerical examples. 

In this study, we implement only 2D beam element case for feasibility study, but it can be easily extended to 

3D curved beam element case. Furthermore, the proposed method is element-independent, thus it can be easily 

applied to all of the element. 

 

6.2 Future Works 
 

While some key points of research in linear and nonlinear analysis of beams are addressed in this thesis, there 

are still a number of outstanding improvements should be pursued in future works. 

 

First, implementation for composite material is recommended. The continuum mechanics based beam elements 

are formulated by integrating the stiffness of individual sub beams. For this reason, the composite material 

model can be easily implemented by applying different material models respectively. However, in order to anal-

ysis a twisting action, a free warping function for the composite cross-section should be suggested. The exten-

sion to the more precise composite model, zigzag or slip composite, is also valuable. 

 

Second, consideration of cross-sectional distortion mode is recommended. In-plane distortion of the cross-sec-

tion is frequently observed in thin-walled beam structures. For accounting the correct critical load for buckling 

failure, the in-plane distortion of the cross-section should be implemented. A crucial point is the evaluation of 

in-plane distortion modes with minimum addition. 

 

Third, implementation of Jourasky warping theory is recommended. According to Jourasky warping theory, the 

consideration of the secondary warping effect will provide more accurate prediction of twisting behaviors. In 

order to implement to the continuum formulation, the evaluation of the secondary warping function for arbitrary 

cross-section is investigated. 

 

Fourth, implementation for dynamic analysis is recommended. The continuum mechanics based beam elements 

have additional warping DOF and corresponding external force component. For evaluating the mass matrix for 

the element, the mass component conjugated with the warping DOF and external force component should be 

obtained. 

 

Fifth, nonlinear implementation for the proposed new warping model for discontinuously varying cross-section, 

is recommended. The proposed model can accurately predict the stress distribution. Thus, the analysis for the 

elastoplastic material condition should be interesting subject. 

 

Sixth, to investigate characteristics of twisting actions is recommended. In new application fields, nano- and 

bio-fields, twisted structures are frequently observed. Accordingly, To investigate the mechanics of twisted 

structure and their properties are attractive subject. Through superior nonlinear performance of the presented 
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beam elements, the nonlinear characteristics of twisting actions, for examples poynting and swift effects, can 

be studied. 

 

Seventh, post-buckling analysis is recommended. Through superior nonlinear performance and modeling capa-

bility of the presented beam elements, the post-buckling behavior of beam members with complicated geome-

tries and material properties is efficiently analyzed. Especially, to predict the buckling response of the twisted 

structure is original and valuable result. 

 

Eighth, extension of the eigen recomposition method is recommended. The eigen recomposition method is ele-

ment-independent. It can be easily applied to all of the element, provided that the assumed eigenvector should 

be correctly chosen. The accurate choice of the assumed eigenvector enable many numerical methods, for ex-

amples in-plane and transverse shear locking treatment, volumetric locking treatments, improvement of mesh 

distortion so on. 
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Appendix 

Appendix A. Geometry of the Wind Turbine Blade 
 

We here give the equations to define the geometry of the wind turbine blade with a NACA airfoil. The equations 

for the airfoil shape are given by the NACA four-digit series. 

 

The chord length c  and blade angle β  (deg.) vary depending on the local radius x  

0 0( )L
xc c c c
L

= − −   and  0 0( )L
x
L

β β β β= − − ,                                           (A-1) 

in which L  is the blade length, 0c  and Lc  are the chord lengths at 0x =  and x L= , respectively, and 

0β  and Lβ  are the blade angles at 0x =  and x L= , respectively. 

 

The height distribution of the airfoil with unit length is 

2 3 4(0.2969 0.1260 0.3516 0.2843 0.1015 )
0.2t
hz s s s s s= − − + − ,                               (A-2) 

where h  is the maximum height of the airfoil. 

 

The mean camber line is defined by the maximum camber m  and its position p , 

2

(2 ), for 0

1 (1 2 ), for 1
(1 )

c

sm p s s p
p

z
sm s p p s
p

 − ≤ ≤=  − + − ≤ ≤
 −

                                              (A-3) 

 

The coordinates for the airfoil upper mid-surface ( ,U Uy z ) and lower mid-surface ( ,L Ly z ) are obtained by 

sincos sin
cossin cos

U t

U c t

y s z
c

z z z
θβ β
θβ β

−−    
=     +    

, 
sincos sin
cossin cos

tL

c tL

s zy
c

z zz
θβ β
θβ β

+−     
=      −    

  

with arctan cdz
ds

θ  =  
 

.                                                                 (A-4) 

 

Appendix B. Wagner Strain Components for Prismatic and Pure Torsion Condition 
 

The Wagner strain is implicitly included in the geometric nonlinear formulation of the continuum mechanics 

based beam elements. In order to verify this, the Green-Lagrange strain in the beam formulation is analytically 

investigated. Two configurations of a rectangular prismatic beam with free warping at time 0  and t  are 

considered: see Fig. A-1. Time 0  and t  correspond to undeformed and twisted configurations, respectively. 
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The material position vector can be rewritten in the following continuum form (non-discretized form) through 

deduction from Eq. (1), as follows 
t t t t t t

r y z xy z f= + + +x x V V V ,                                                         (A-5) 

in which t
rx  is the position of the beam reference line at time t , t

xV , t
yV , and t

zV  are the director vec-

tors y  and z  denote the position in the cross-sectional plane, and t f  is the warping displacement. 

 

Both configurations in Fig. A-1 are defined using the following vectors 

0 0
0

t
r r

x 
 = =  
  

x x , 0

1
0
0

t
x x

 
 = =  
  

V V , 0

0
1
0

y

 
 =  
  

V , 0

0
0
1

z

 
 =  
  

V , 
0

cos
sin

t
y x

x

θ
θ

 
 =  
  

V , 
0

sin
cos

t
z x

x

θ
θ

 
 = − 
  

V .     (A-6) 

 

Using Eq. (A-6) in Eq. (A-5), the material position vectors at time 0  and t  are obtained 

0

x
y
z

 
 =  
  

x  and cos sin
sin cos

t

t
x x

x x

x f
y z
y z

θ θ
θ θ

 +
 

= − 
 + 

x .                                                  (A-7) 

 

Substituting Eq. (A-7) into Eq. (4-23), the covariant base vectors ( 0
1g  and 1

t g ) are obtained 

0
1 0

0

x r∂ ∂ 
 =  
  

g  and 1 ( sin cos )
( cos sin )

t

t
x x x

x x x

x r f r
r y z
r y z

θ θ θ
θ θ θ

 ∂ ∂ + ∂ ∂
 

= ∂ ∂ − − 
 ∂ ∂ − 

g ,                                     (A-8) 

and the covariant Green-Lagrange strain 0 11
tε  in the configuration at time t , referred to the configuration at 

time 0 , is calculated 

2 2 2 2
0 11

1 1( ) ( )( )
2 2

t t
t xx f f y z

r r r r
θ

ε
∂∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

.                                              (A-9) 

 

 

 

Figure A-1. Initial and deformed configurations of a prismatic straight beam. 
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Using Eq. (4-24), the local Green-Lagrange strain 0 11
tε  is given as follows: 

2 2 2 2
0 11

1 1( ) ( )( )
2 2

t t
t xf f y z

x x x
θ

ε
∂∂ ∂

= + + +
∂ ∂ ∂

.                                                (A-10) 

 

In Eq. (A-10), it is easily identified that the Green-Lagrange strain used for the continuum mechanics based 

beam elements automatically contains the Wagner strain term 2 2 21 2( )( )xy z xθ+ ∂ ∂ . 

 

Appendix C. Elastoplastic Constitutive Model 
 

A simple von Mises yield criterion with associated flow rule and linear isotropic hardening is introduced here 

[57]. The constitutive equations used are to be listed: 

 Elastoplastic strain split, e p= +ε ε ε   . 

 Elastic law, e=S Cε . 

 Yield function definition, 2 22 ( )
3

p
v yS σ εΦ = − . 

 Linear isotropic hardening, 0( )p p
y Y Hσ ε ε= + . 

 Plastic flow rule, p

S
γ ∂Φ=
∂

ε  . 

 Hardening variable evolution, 2
3

p
vSγ=ε  . 

 Loading and unloading criterion, 0γ ≥ , 0Φ ≤ , 0γΦ = . 

 

S  is a vector of the second Piola-Kirchhoff stresses, C  is elastic material law introduced in Eq. (4-32), vS  

is the von Mises effective stress, pε  is an accumulated plastic strain, H  is the hardening modulus, γ  is 

the plastic multiplier which is left indeterminate during plastic yielding. The set of evolution equations inte-

grated with the implicit return mapping framework. 
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