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ABSTRACT

In this study, we analyze floating structures under regular (time-harmonic) surface water waves.

Under the appropriate assumptions, the coupled equations that represent three dimensional hydroelastic

behavior of the structures are derived. The structural domain is modeled by shell finite elements,

and the fluid-structure interface boundary surface is also discretized to solve the coupled equations.

To validate our mathematical formulation, we compare the representative results with the experiment

results for a mat-like floating structure, and the quite satisfactory results are produced. We also carry

out additional two models, a box-like floating structure and a Wigley hull, for three dimensional aspects

of hydroelasticity, and get the reasonable results.
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Chapter 1. Introduction

Typically the dynamics of a floating structure has been based on the assumption of rigid motion,

because it could produce acceptable results with more simple and efficient analysis. But as the size of

ships and offshore structures is getting larger, the elasticity of the floating structure becomes dominant,

so this assumption could not support the analysis any longer. Hydroelastic analysis which considers

the effect of the structure’s elasticity in wave-structure interaction problems has attracted considerable

interests in the last ten years and developed well recently. The representative example of this study

is the analysis of a mat-like very large floating structures such as a floating air port, a pontoon-type

bridge, large floating offshore structures, ice floes, and so on. Kashiwagi M. [7] and Watanabe E. et

al. [20] presented reviews of these works. In these works, the floating structure is modeled as a thin

large plate or beam and the potential fluid is adopted. The motions of the structure and the amplitude

of the incident wave are assumed small, and the most of the analysis was carried out in the frequency

domain. The commonly used solving technique for these seakeeping problems are the modal expansion

method and the direct method. To determine the motion of the structure, the modal expansion method

use a sum of modal functions such as products of free-free beam modes, B-spline functions, the modes of

vibrations of a free plate, and so on. In the direct method, the motion of the equation is directly solved

without the modal functions.

The classical approach for the fluid problem in wave-structure interaction analysis decomposes the

fluid velocity potential into diffraction and radiation potential, and this procedure extended to hydroelas-

tic analysis by Bishop and Price [4]. The other approach just couples the motion of the structure and the

fluid pressure which relates to the fluid velocity potential without separating the problem into diffraction

and radiation components. Most of the recent hydroelastic analysis of floating structures have used the

second approach, and representative works have been done by Khabakhpasheva T.I. and Korobkin, A.A.

[8] ; Taylor R.E. [18] where they solved the whole equations by using the Galerkin method.

The hydroelastic studies performed up to recently are mainly for the beam structures or plate

structures. There are, however, many different shape of structures in the ocean environment. It is

evident that there are limitations in modeling the ships and the offshore structures as beam or plate

structures. To extend the hydroelastic analysis into these various shape of structures, we studied a

hydroelastic behavior of floating structures in three dimensional case. We modeled the floating structure

as shell structure, because most of the ships or the offshore structures are thinner in one direction than

in the other directions. The potential fluid was adopted and we didn’t separate it. Overall schema of the

problems and assumptions we applied are described in chapter 2. In this chapter, we also derive a general

coupled equations where the displacements of the structure and the fluid pressure are connected. Using

this mathematical formulation, in chapter 3, we transform the coupled equation to a discrete linear

system to solve it. Finally in chapter 4, we evaluate our mathematical formulation using a mat-like

model and compare the results with an experiment data. To see the three dimensional aspects of the

hydroelasticity, we also consider a box-like model and a Wigley hull. In the Wigley hull example, we

compare our results with the other numerical results performed by Riggs H.R. et al. [15].
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Chapter 2. General theory

This chapter describes the general procedure of physical and mathematical modeling of the problem.

First we present the assumptions which are valid for this analysis, and then derive the governing equations

where the structure equation and the fluid eqatuion are coupled each other. The final coupled equations

are the variational forms for the finite and boundary element procedure which will be introduced next

chapter.

2.1 Overall description and assumptions

Incident wave

Fluid

A floating structure

Bottom

Figure 2.1: Overall schema of the problem

Fig. 2.1 represents an overall schema of the physical problem that we are going to analyze. A

structure is floating on the water in a fixed Cartesian coordinate system, the origin of which is located

on the centroid of the water plane area corresponded to a original configuration. The water depth is h,

and a wave is coming with an incident angle θ. The incident angle θ is the angle between the x-axis and

the incident wave, and positive value when it rotates counterclockwise.

We assume that the material is homogeneous, isotropic, and linear elastic. The displacements and

strains are small, so all related computations can be performed over original reference frame. This

assumption is also applied to the fluid, but in this case velocities and rate of strains are corresponded

physical parameters. The fluid is assumed that it is Newtonian isotropic, incompressible, inviscid, and

irrotational fluid. The incident wave is assumed that it is coming continuously with angular frequency ω,

as a result the motion of the structure and the fluid are time harmonic with same frequency, if we assume

that the system of that is linear. We assume also the amplitude of the wave is very small compared with
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the wave length. This make it possible that the free surface boundary condition can be linearized at

x3 = 0, which will be explained later.
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2.2 Modeling of the floating structure

Ο
The reference water plane

The current water plane

Figure 2.2: The floating structure in current state

Consider the equilibrium state of the floating structure as shown in Fig. 2.2. The reference means

the original configuration of the structure. tV denotes the volume that the structure occupies currently

and SB the wet surface. The Cartesian coordinate system is fixed on the centroid of the reference water

plane area, the point O. From now on, in this coordinate system we express some vector ’v’ as v or viei

or vi and some matrix ’M ’ as M or Mij where the indices i and j vary from 1 to 3 respectively, and

we adopt Einstein summation convention. We define the vector 0x as a material point in the reference

configuration, the vector tX as a material point in the current configuration. So we can express a

displacement vector U as U = tX− 0x if 0x and tX represent a same particle.

The balance law of linear momentum gives the following differential equation:

∂σ′ij
∂xj

+ ρsFi − ρsÜi = 0 in the structure domain (2.1)

where σ′ij is Cauchy’s stress tensor, ρs is the density of the structure, and Fi is the applied body force

per unit mass. For simplicity, we introduce ’ ˙ ’ to represent the material time derivative, and we define

σ′ij = σij(x)T (t) and U = u(0x)T (t) where T (t) is a arbitrary function of time and x is a spatial

point. If we multiply (2.1) by the virtual displacements ui, integrate by parts, and apply the divergence

theorem, we get ∫
tV

ρsÜiūi dtV +

∫
tV

σ′ij
∂ūi
∂xj

dtV =

∫
tV

ρsFiūi dtV +

∫
tS

σ′ijnj ūi dtS (2.2)

where n denotes unit normal vectors outward from the structure domain, tS is the surface of the structure.

From the symmetry of the stress tensor which comes from the balance law of angular momentum, we

have

σij
∂ūi
∂xj

= σij

(
∂ūi
∂xj

+
∂ūj
∂xi

)
= σij ε̄ij (2.3)

and therefore ∫
tV

ρsÜiūi dtV +

∫
tV

σ′ij ε̄ij dtV =

∫
tV

ρsFiūi dtV +

∫
tS

σ′ijnj ūi dtS (2.4)

where ε̄ij is the virtual strains.
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(2.4) is the variational formulation for the structure part. The most important fact and the difference

from the ordinary structural problem are that neither tractions nor displacements are specified on the

wet surface. We just know that structure’s tractions and velocities are same with fluid’s on this surface.

So we need another information that is related to the fluid.

2.2.1 Initial stress problem

Before the floating structure undergoes the incident wave, we have to find the displacements in

the statically equilibrium state. We define this problem as ’Initial stress problem’. This problem is

straightforward because on the wetted surface the traction distributions are replaced with a function of

displacements. That is:

T = −


Pn1

Pn2

Pn3

 on the wet surface (2.5)

where T means the traction and P is the water pressure(Gauge pressure). In static fluid the pressure is

nothing but P = −ρwgx3 where ρw is the density of the fluid, and

F =


0

0

−g

 in tV (2.6)

where g is the acceleration of gravity. So we obtain∫
tV

σij ε̄ij dtV = −
∫
tV

ρsgū3 dtV +

∫
tSB

ρw(0x3 + u3)niūi dtSB (2.7)

If we introduce the following stress and engineering strain vector:

σT = [σ11 σ22 σ33 σ12 σ23 σ31 ]

εT = [ ε11 ε22 ε33 γ12 γ23 γ31 ] where γij =
∂ui
∂xj

+
∂uj
∂xi

(2.8)

then we finally get ∫
tV

ε̄Tσ dtV = −
∫
tV

ρsgū3 dtV +

∫
tSB

ρw(0x3 + u3)ūTn dtSB (2.9)

If the geometry of the structure is simple and the draft is very small, it doesn’t need to compute

(2.9) because we can easily find out the statically equilibrium state of it and the initial stress is negligibly

small.

2.2.2 Steady state problem

The incident wave that the angular frequency is ω would excite the floating structure with same

frequency. This is valid when the system is linear, and this means that the relation of input(ex. force)

and output(ex. displacement) satisfies the linearity. We define the steady state such that time goes

enough so that the initial conditions of the structure have no effects on it. This problem is a little

difficult because as we mentioned before it requires one more equation related to the fluid.
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Inserting (2.5) into (2.4) with linearized Bernoulli’s equation P = −ρw ∂Φ
∂t − ρwgx3 where Φ is the

velocity potential (a scalar valued function) that we will explain later, then we have∫
tV

ρs
sÜiūi dtV +

∫
tV

(iσij +s σ′ij)ε̄ij dtV = −
∫
tV

ρsgū3 dtV +

∫
tSB

ρw
∂Φ

∂t
niūi dtSB

+

∫
tSB

ρwg(0x3 +i u3 +s U3)niūi dtSB (2.10)

where the left superscript i and s mean ’Initial stress problem’ and ’Steady state problem’ respectively.

Because of (2.7) or (2.9), (2.10) becomes∫
tV

ρsÜiūi dtV +

∫
tV

σ′ij ε̄ij dtV =

∫
tSB

ρw
∂Φ

∂t
niūi dtSB +

∫
tSB

ρwgU3niūi dtSB (2.11)

or ∫
tV

ρsū
T D

2U

Dt2
dtV +

∫
tV

ε̄Tσ′ dtV =

∫
tSB

ρw
∂Φ

∂t
ūTn dtSB +

∫
tSB

ρwgU3ū
Tn dtSB (2.12)

As you can easily find in the above equation, the unknown variables that we have to find are the

displacements vector function u and the velocity potential function Φ. To solve this variational equation,

we need to derive the variational formulation for the fluid.

Finally if we assume that T (t) = eiωt, that is:

Φ = φ(x)eiωt

σ′ij = σij(x)eiωt

U = u(0x)eiωt (2.13)

then we obtain

−
∫
tV

ω2ρsū
Tu dtV +

∫
tV

ε̄Tσ dtV =

∫
tSB

iωρwφū
Tn dtSB +

∫
tSB

ρwgu3ū
Tn dtSB (2.14)

As you can see in the final equation of motion for the structure, (2.14), the velocity potential of the

fluid is included. This velocity potential comes from linearized Bernoulli’s equation and has to do with

the external fluid pressure.

– 6 –



2.3 Modeling of the fluid

With the continuity equation which comes from the mass conservation, the assumption of incom-

pressible fluid, and the assumption of irrotational fluid, we start Laplace’s equation for the velocity

potential:

∇2Φ = 0 in the fluid domain (2.15)

From the linear momentum conservation with the above assumptions and additional assumptions of

Newtonian, isotropic, and inviscid fluid, we can derive Bernoulli’s equation for the potential fluid:

∂Φ

∂t
+

1

2
∇Φ · ∇Φ +

P

ρw
+ gx3 = 0 in the fluid domain (2.16)

x is a spatial point, Φ = Φ′ +
∫
C(t)dt where Φ′ is a potential, and C(t) is a function of time. From the

time harmonic assumption, the time related function can be excluded like (2.13).

2.3.1 Boundary conditions

Fluid region

O

Figure 2.3: Schema of the fluid region

Fig. 2.3 represents the region of the fluid. SB is the surface of interface between fluid and structure,

SF is the free surface, S∞ is the surface that envelops the fluid region laterally, and SG is the bottom

surface.

On SB , the normal velocity of the structure and the fluid should be same because if not the fluid

would penetrate into the structure region and this situation is impossible. So we can give a condition

(body boundary condition):
∂φ

∂n
= iωu · n on SB (2.17)

where n is normal to SB from the fluid region and n is corresponded unit vector.

On SF , we can think two conditions. First if we observe the free surface with following it, it does

not change. This is a similar explanation to the body boundary condition. Second the pressure is same

with the given pressure distribution that we assume it is zero. Typically these two conditions are called

– 7 –



”kinematic free surface boundary condition” and ”dynamic free surface boundary condition”. If we

express these conditions mathematically, then

DF

Dt
= 0 on SF (2.18)

∂Φ

∂t
+

1

2
∇Φ · ∇Φ + gx3 = 0 on SF (2.19)

where F ≡ x3 − ζ = 0, ζ means the elevation of the free surface, and we neglect the surface tension

effect. If we linearize (2.18) and (2.19) at x3 = 0, then

∂φ

∂x3
= iωζ at x3 = 0 on SF (2.20)

iωφ = −gζ at x3 = 0 on SF (2.21)

If we combine the above equations, then we have

∂φ

∂x3
=
ω2

g
φ at x3 = 0 on SF (2.22)

You should be reminded that the linearized conditions, (2.20) and (2.21), are valid for waves with

infinitesimally small amplitude and velocity.

On SG, the same kinematic condition is applied. So if the bottom does not move, we obtain

∂φ

∂x3
= 0 on SG (2.23)

Let’s think the problem physically. The wave that is scattered from the structure and the wave

caused by motion of the structure have a directivity. That is, they should be radiated from the structure’s

position to the infinity. This is called Sommerfeld radiation condition.

lim
R→∞

√
R

(
∂

∂R
+ ik

)
(φ− φI) = 0 (2.24)

where R =
√

(x2
1 + x2

2), and k is the wave number. Because the Laplace’s equation is linear, as you can

see in (2.24), we can just represent the scattered and radiated potential as φ − φI where ΦI = φIe
iωt

and ΦI is the velocity potential of the incident wave which satisfies all boundary condition except the

body boundary condition and Sommerfeld radiation condition. The incident potential that the wave is

coming from the positive e1 axis is

ΦI = i
ga

ω

cosh[k(x3 + h)]

cosh(kh)
eik[cos(θx1)+sin(θx2)]eiωt (2.25)

for finite depth case

ΦI = i
ga

ω
ekx3eik[cos(θx1)+sin(θx2)]eiωt (2.26)

for infinite depth case where a denotes the wave amplitude.
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2.3.2 Green’s function

The time harmonic free surface Green’s function is a basis of this analysis. It is nothing but a kind

of the source potential located at ξ that satisfies

∇2G = 0 for − h 5 x3 5 0 except at ξ

∂G

∂x3
=
ω2

g
G at x3 = 0

∂G

∂x3
= 0 at x3 = −h

lim
R→∞

√
R

(
∂

∂R
+ ik

)
G = 0 for − h 5 x3 5 0 (2.27)

In infinite depth and finite depth with the source potential of strength −4π, it is defined by following

expression [21]

G =
1√

R2 + (x3 − ξ3)2
+ P.V.

∫ ∞
0

k +K

k −K
e−k|x3+ξ3|J0(kR)dk

− 2πKe−K|x3+ξ3|J0(KR)i (2.28)

for infinite depth case where K = ω2

g , J0 is Bessel functions of the first kind of order 0, and P.V. means

the Cauchy principal value.

G =
1√

R2 + (x3 − ξ3)2
+

1√
R2 + (2h+ x3 + ξ3)2

+ 2P.V.

∫ ∞
0

(k +K) cosh k(x3 + h) cosh k(ξ3 + h)

k sinh kh−K cosh kh
e−khJ0(kR)dk

+ 2π
K2 − k2

0

k2
0h−K2h+K

cosh k0(x3 + h) cosh k0(ξ3 + h)J0(k0R)i (2.29)

for finite depth case where k0 is the positive real root of the equation, K = k tanh(kh).

The derivatives of the Green’s function are

∂G

∂R
= − R

(R2 + (x3 − ξ3)2)
3
2

−K2

(
R

K2(R2 + (x3 + ξ3)2)
3
2

− πe−K|x3+ξ3|(H1(KR) + Y1(KR)− 2

π
)

+
2e−K|x3+ξ3|

KR

∫ K|x3+ξ3|

0

tet√
(KR)2 + t2

dt− 2|x3 + ξ3|
KR

√
(R2 + (x3 + ξ3)2

)
+ 2πK2e−K|x3+ξ3|J1(KR)i (2.30)

∂G

∂ξ3
= − (ξ3 − x3)

(R2 + (x3 − ξ3)2)
3
2

+K2
( 1

K
√
R2 + (x3 + ξ3)2

+ P.V.

∫ ∞
0

k + 1

k − 1
e−kK|x3+ξ3|J0(kKR)dk +

|x3 + ξ3|
K2(R2 + (x3 + ξ3)2)

3
2

)
− 2πK2e−K|x3+ξ3|J0(KR)i (2.31)

for infinite depth case where J1, Y1, and H1 are Bessel functions of the first, second and Struve function
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of order 1 respectively, and

∂G

∂R
= − R

(R2 + (x3 − ξ3)2)
3
2

− R

(R2 + (2h+ x3 + ξ3)2)
3
2

− 2P.V.

∫ ∞
0

(k +K) cosh k(x3 + h) cosh k(ξ3 + h)

k sinh kh−K cosh kh
e−khkJ1(kR)dk

− 2π
K2 − k2

0

k2
0h−K2h+K

cosh k0(x3 + h) cosh k0(ξ3 + h)k0J1(k0R)i (2.32)

∂G

∂ξ3
= − (ξ3 − x3)

(R2 + (x3 − ξ3)2)
3
2

− 2h+ x3 + ξ3

(R2 + (2h+ x3 + ξ3)2)
3
2

+ 2P.V.

∫ ∞
0

(k +K) cosh k(x3 + h)k sinh k(ξ3 + h)

k sinh kh−K cosh kh
e−khJ0(kR)dk

+ 2π
K2 − k2

0

k2
0h−K2h+K

cosh k0(x3 + h)k0 sinh k0(ξ3 + h)J0(k0R)i (2.33)

for finite depth case.

A special attention should be given to the Green’s function. As you can see in this subsection,

evaluating the Green’s function doesn’t come easy. To overcome the complexity of the Green’s function,

many researchers have found the other forms of it, but they are very slow to compute numerically.

With based on these forms of the Green’s function, a efficient algorithm [13] has developed to solve this

extremely time-consuming problem , and we adopt this algorithm to compute the Green’s function.

2.3.3 Boundary integral equation

Starting point is the Green’s theorem. If two potentials denoted ϕ and ψ satisfy the Laplace’s

equation in the fluid region, it is easy to show that∫
SC

(
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

)
dSC = 0 (2.34)

where n is normal to SC from the fluid region, and SC is a smooth closed surface surrounding the fluid

domain. When one of two potentials has points or regions where it does not satisfy the Laplace’s equation,

especially exhibits singularity, we can apply some technique to (2.34), and derive useful equations [9].

That equations are following:

∫
SC

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSC(ξ) =


0 for x outside SC

−2πφ(x) for x on SC

−4πφ(x) for x inside SC

(2.35)

The right side of (2.35) comes from the contribution of the integration over very small surface that

surrounds the point source singularity of the Green’s function.

Consider first a volume VO surrounded by SB , SFO, SG, and S∞ as shown in Fig.2.4. We can apply

(2.35) to this region, and then obtain

−2πφ(x) =

∫
SB+SFO+SG+S∞

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSC(ξ) for x on SB (2.36)

Because G has same boundary conditions with φ on SFO and SG,and with φ− φI on S∞, so we have

−2πφ(x) =

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ)

+

∫
S∞

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dS∞(ξ) for x on SB (2.37)
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Figure 2.4: The fluid boundary description

If we apply same procedure to φI , then

−2πφI(x) =

∫
SB

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dSB(ξ)

+

∫
S∞

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dS∞(ξ) for x on SB (2.38)

Next, subtract (2.38) from (2.37), then we get

−2πφ(x) + 2πφI(x) =

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ)

−
∫
SB

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dSB(ξ) for x on SB (2.39)

We also think same process for φI in VI because φI and G satisfy the Laplace’s equation in VI . So

we can derive the following:

2πφI(x) =

∫
SB

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dSB for x on SB (2.40)

where the sign for 2πφI(x) is plus because the normal direction ’n’ is to SB from VO. So we finally

obtain, if add (2.39) and (2.40)

−2πφ(x) + 4πφI(x) =

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ) for x on SB (2.41)

and variational formulation:

−
∫
SB

2πφ(x)φ̄(x)dSB(x)+

∫
SB

4πφI(x)φ̄(x)dSB(x) =∫
SB

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ)φ̄(x)dSB(x) (2.42)

where φ̄ means the virtual velocity potential.
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(2.41) is similar with the classical approach [19]. In the classical point of view, φ is divided like

φ = φD + φR (2.43)

where

φD = φI + φS (2.44)

In above equations, φR means the potential caused by the motion of the structure and φS is the scattered

potential by the incident wave when the structure is fixed. The body boundary condition becomes

∂φR
∂n

= iωu · n on SB

∂φD
∂n

= 0 on SB (2.45)

If we try the same procedure as described previously, we have

−2πφR(x) =

∫
SB

(
φR(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φR(ξ)

∂n(ξ)

)
dSB(ξ) for x on SB (2.46)

and

−2πφD(x) + 4πφI(x) =

∫
SB

φD(ξ)
∂G(x; ξ)

∂n(ξ)
dSB(ξ) for x on SB (2.47)

Typically (2.46) and (2.47) are called ”radiation problem” and ”diffraction problem” respectively. The

result of adding (2.46) and (2.47) is same with (2.41).
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2.4 Coupled equations for the frequency analysis

Let’s start with the variational formulations for the floating structure (2.14) and the fluid (2.42).

Because of the body boundary condition (2.17), we can rewrite that equations as

−
∫
tV

ω2ρsū
Tu dtV +

∫
tV

ε̄Tσ dtV = −
∫
tSB

iωρwφū
Tn dtSB −

∫
tSB

ρwgu3ū
Tn dtSB (2.48)

and

−
∫
tSB

2πφ(x)φ̄(x)dtSB(x) +

∫
tSB

4πφI(x)φ̄(x)dtSB(x) =∫
tSB

∫
tSB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
− iωG(x; ξ)u(ξ) · n(ξ)

)
dtSB(ξ)φ̄(x)dtSB(x) (2.49)

Because the direction of the normal vector n in (2.48) and (2.49) is outward from the fluid domain, we

put a minus sign into the right hand side of (2.48).

The actual volume and surface the structure occupies at time t changes periodically from the static

equilibrium state, but because of the assumptions of small displacements the variation of that is very

small. So we can assume that tV ≈ V and tSB ≈ SB where V and SB are the volume and the surface

in the static equilibrium state. Then the final form of coupled equations are

−
∫
V

ω2ρsū
Tu dV +

∫
V

ε̄Tσ dV = −
∫
SB

iωρwφū
Tn dSB −

∫
SB

ρwgu3ū
Tn dSB (2.50)

and

−
∫
SB

2πφ(x)φ̄(x)dSB(x) +

∫
SB

4πφI(x)φ̄(x)dSB(x) =∫
SB

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
− iωG(x; ξ)u(ξ) · n(ξ)

)
dSB(ξ)φ̄(x)dSB(x) (2.51)
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Chapter 3. Numerical methods

In this chapter we apply (2.50) and (2.51) into shell structures. The basic assumption of the shell

structures is that the undeformed material line initially normal to the midsurface of the shell structures

keeps its straight and remains unstretched during the deformations [5]. With this shell structure, we

discrete the domain of problem, i.e., finite shell elements for the structure and boundary elements for

the fluid.

3.1 Shell elements for the structure

A element

Midsurface

Figure 3.1: A shell element geometry

Let’s consider the geometry of shell elements. Fig. 3.1 shows a four nodes shell element. With the

assumption of the shell structures, which is mentioned before, we can represent a material point in the

state equilibrium configuration 0x and a displacement u using the natural coordinate system r1, r2, and

r3 for a four node shell element

0x(r1, r2, r3) =
4∑
k=1

hk(r1, r2)0xk +
4∑
k=1

hk(r1, r2)
r3ak

2
0Vk

n (3.1)

and

u(r1, r2, r3) =
4∑
k=1

hk(r1, r2)uk +
4∑
k=1

hk(r1, r2)
r3ak

2
δVk

n (3.2)

where 0xk, ak, 0Vk
n, δVk

n, and hk are the nodal material points vector, the nodal thickness of shell in

r3 direction, the nodal unit normal vector to the midsurface, the differences of tVk
n and 0Vk

n, and the

interpolation functions respectively.

From the assumption of small displacements, we can express δVk
n like

δVk
n = βk

0Vk
1 − αk 0Vk

2 (3.3)
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where αk and βk are the rotations of 0Vk
n in the direction of 0Vk

1 and 0Vk
2 respectively. 0Vk

1 and 0Vk
2

are defined by

0Vk
1 ≡

e2 ×0Vk
n

‖ e2 ×0Vk
n ‖2

0Vk
2 ≡ 0Vk

n ×0 Vk
1 (3.4)

If 0Vk
n is parallel to e2, then we just set 0Vk

1 equal to e3. So (3.2) becomes

u(r1, r2, r3) =
4∑
k=1

hk(r1, r2)uk +
4∑
k=1

hk(r1, r2)
r3ak

2
(βk

0Vk
1 − αk 0Vk

2) (3.5)

Before we apply finite element methods to the coupled equations using (3.1) and (3.5), there are

important things that we shouldn’t overlook. The first is that we have to consider the basic assumption

of shell structure; i.e., the stress in the direction of thickness is zero, and the second is that we should

avoid the shear locking phenomena. For the first thing we should transform the strain and the stress

that are expressed in the global Cartesian coordinate system to the local Cartesian coordinate system.

For the second thing we use the MITC4 elements proposed by Bathe K. J. and Dvorkin E. N. [2].

It is useful to introduce the covariant basis for applying above two procedures. The covariant base

vectors are

gi =
∂0x

∂ri
(3.6)

and the corresponding contravariant vectors are gi which have the relationships

gi · gj = δij (3.7)

where δij is the Kronecker delta. So the strain tensor is expressed by

ε = ε̃11g
1g1 + ε̃22g

2g2 + ε̃12(g1g2 + g2g1) + ε̃23(g2g3 + g3g2) + ε̃31(g3g1 + g1g3) (3.8)

where ε̃ij mean the linear components of the covariant Green-Lagrange strain tensor, i.e.,

ε̃ij =
1

2

(
∂u

∂ri
· ∂

0x

∂rj
+
∂0x

∂ri
· ∂u
∂rj

)
(3.9)

The key point of the MITC4 elements is that we interpolate the transverse shear strains differently

than the other strains (the bending and the membrane strains) that are evaluated from the displacement

interpolations. It means that we reconstruct the transverse shear stains as the evaluated transverse shear

strains at particular points. That is

ε̃23(r1, r3) =
1

2
(1 + r1)ε̃23(1, 0, r3) +

1

2
(1− r1)ε̃23(−1, 0, r3)

ε̃31(r2, r3) =
1

2
(1 + r2)ε̃31(0, 1, r3) +

1

2
(1− r2)ε̃31(0,−1, r3) (3.10)

With the above strains, the constitutive tensor should contain the shell assumption. So in the

relation σ = QTCQε, we use

C =
E

1− ν2



1 ν 0 0 0 0

ν 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1−ν
2 0 0

0 0 0 0 κ 1−ν
2 0

0 0 0 0 0 κ 1−ν
2


(3.11)
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where E is Young’s modulus, ν is Poisson’s ratio, κ is shear correction factor, and σ and ε are the stress

vector and the engineering strain vector which are defined (2.8). Because the constitutive matrix C is

defined in the local Cartesian coordinate system which contains the unit base vector tangent to r3 line,

we have to transform it to the global Cartesian coordinate system where the stress vectors and the strain

vectors are defined, or the stress vectors and the strain vectors to the local Cartesian coordinate system.

The matrix Q functions as a connection between these two coordinate system, i.e., it transform the local

coordinate system to the global coordinate system.

The local Cartesian coordinate system can be defined by

er =
g2 × g3

‖ g2 × g3 ‖2

es =
g3 × er

‖ g3 × er ‖2
et =

g3

‖ g3 ‖2
(3.12)

and the transformation matrix Q is

Q =

R2
11 R2

21 R2
31 R11R21 R21R31 R31R11

R2
12 R2

22 R2
32 R12R22 R22R32 R32R12

R2
13 R2

23 R2
33 R13R21 R23R33 R33R13

2R11R12 2R21R22 2R31R32 R11R22 +R12R21 R21R32 +R22R31 R31R12 +R32R11

2R12R13 2R22R23 2R32R33 R12R23 +R13R22 R22R33 +R23R32 R32R13 +R33R12

2R13R11 2R23R21 2R33R31 R13R21 +R11R23 R23R31 +R21R33 R33R11 +R31R13


(3.13)

where

R =


e1 · er e1 · es e1 · et
e2 · er e2 · es e2 · et
e3 · er e3 · es e3 · et

 (3.14)
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3.2 Boundary elements for the fluid

The water plane

The midsurface

A element

Figure 3.2: A boundary element geometry

Fig. 3.2 shows a four nodes boundary element of fluid. The boundary surface is the midsurface of

the shell structure in the statically equilibrium state. Because the thickness of shell structure is small,

there is no big difference when we take the midsurface as the boundary surface instead of actual wet

surface. This is for efficient computation of the coupled equations.

Now we can interpolate the velocity potential on the body boundary for a four nodes boundary

element like

φ(r1, r2) =
4∑
k=1

hkφ
k (3.15)

where φk is the nodal velocity potential. The unit normal vector can be obtained by

n(r1, r2) =
g1 × g2

‖ g1 × g2 ‖2
(3.16)

The value of (3.16) is not exactly same with et, but this does not cause big problems in our analysis.

The reason why we define the normal vector differently than it in the shell structure is the evaluations

of the integrations of the singularities that the Green’s function has, which we will explain later.

– 17 –



3.3 Discrete version of the coupled equations

By dividing the structural domain and the fluid boundary domain into finite shell elements and

boundary elements respectively, we can proceed to transform the coupled equations to a matrix form.

So If we divide the structural volume into N elements and the body boundary surface into M elements,

then (2.50) becomes

−
∫
V

ω2ρsū
Tu dV +

∫
V

ε̄Tσ dV +

∫
SB

iωρwφū
Tn dSB +

∫
SB

ρwgu3ū
Tn dSB =

−
N∑
e=1

[∫
V e
ω2ρs eū

T
eu dV e +

∫
V e

eε̄
T
eσ dV e

]
+

M∑
e=1

[∫
SeB

iωρw eφ eū
Tn dSeB +

∫
SeB

ρwg eu3 eū
Tn dSeB

]
=

−
N∑
e=1

[
e ˆ̄uT

∫ 1

−1

∫ 1

−1

∫ 1

−1

ω2ρsH
TH det(J)dr1dr2dr3 eû +e ˆ̄uT

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTQTCQBdet(J)dr1dr2dr3 eû

]

+
M∑
e=1

[
e ˆ̄uT

∫ 1

−1

∫ 1

−1

iωρwH
TnhT ‖ g1 × g2 ‖2 dr1dr2 eφ̂ +e ˆ̄uT

∫ 1

−1

∫ 1

−1

ρwgH
TnhT3 ‖ g1 × g2 ‖2 dr1dr2 eû

]
=

0 (3.17)

and (2.51) is∫
SB

2πφ(x)φ̄(x) dSB(x)−
∫
SB

4πφI(x)φ̄(x) dSB(x)

+

∫
SB

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
− iωG(x; ξ)u(ξ) · n(ξ)

)
dSB(ξ) φ̄(x) dtSB(x) =

M∑
e=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

2πhhT ‖ g1 × g2 ‖2 dr1dr2 eφ̂−e ˆ̄φT
∫ 1

−1

∫ 1

−1

φI ‖ g1 × g2 ‖2 dr1dr2

]

+
M∑
e=1

M∑
é=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

h

(∫ 1

−1

∫ 1

−1

n · ∇ξG(r1, r2; ŕ1, ŕ2)hT ‖ g1 × g2 ‖2 dŕ1dŕ2

)
‖ g1 × g2 ‖2 dr1dr2 éφ̂

]

−
M∑
e=1

M∑
é=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

h

(∫ 1

−1

∫ 1

−1

iωG(r1, r2; ŕ1, ŕ2)hTn ‖ g1 × g2 ‖ dŕ1dŕ2

)
‖ g1 × g2 ‖2 dr1dr2 éû

]
= 0

(3.18)

where

eû
T = [eu

T
1 eα1 eβ1 eu

T
2 eα2 eβ2 eu

T
3 eα3 eβ3 eu

T
4 eα4 eβ4]

eφ̂
T

= [eφ
1

eφ
2

eφ
3

eφ
4]

eu(r1, r2, r3) = H eû

eε(r1, r2, r3) = B eû

eu3(r1, r2) = hT3 eû

eφ(r1, r2) = hT eφ̂

eu · n(r1, r2) = hTn eû

∂

∂r
= J

∂

∂0x
; rT = [r1 r2 r3] (3.19)

Then we can obtain [
−SM + SK + SF SC

−FG FM + FGn

][
û

φ̂

]
=

[
0

FI

]
(3.20)
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where

ûT = [uT1 α1 β1 uT2 α2 β2 · · · uTN αN βN ]

φ̂
T

= [φ1 φ2 · · · φM ]

ˆ̄uTSM û =
N∑
e=1

[
e ˆ̄uT

∫ 1

−1

∫ 1

−1

∫ 1

−1

ω2ρsH
TH det(J)dr1dr2dr3 eû

]

ˆ̄uTSK û =
N∑
e=1

[
e ˆ̄uT

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTQTCQBdet(J)dr1dr2dr3 eû

]

ˆ̄uTSF û =
M∑
e=1

[
e ˆ̄uT

∫ 1

−1

∫ 1

−1

ρwgH
TnhT3 ‖ g1 × g2 ‖2 dr1dr2 eû

]

ˆ̄uTSF φ̂ =
M∑
e=1

[
e ˆ̄uT

∫ 1

−1

∫ 1

−1

iωρwH
TnhT ‖ g1 × g2 ‖2 dr1dr2 eφ̂

]
ˆ̄φTFGû =

M∑
e=1

M∑
é=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

h

(∫ 1

−1

∫ 1

−1

iωG(r1, r2; ŕ1, ŕ2)hTn ‖ g1 × g2 ‖ dŕ1dŕ2

)
‖ g1 × g2 ‖2 dr1dr2 éû

]
ˆ̄φTFGnφ̂ =

M∑
e=1

M∑
é=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

h

(∫ 1

−1

∫ 1

−1

n · ∇ξG(r1, r2; ŕ1, ŕ2)hT ‖ g1 × g2 ‖2 dŕ1dŕ2

)
‖ g1 × g2 ‖2 dr1dr2 éφ̂

]
ˆ̄φTFM φ̂ =

M∑
e=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

2πhhT ‖ g1 × g2 ‖2 dr1dr2 eφ̂

]
ˆ̄φTFI =

M∑
e=1

[
e
ˆ̄φT
∫ 1

−1

∫ 1

−1

φI ‖ g1 × g2 ‖2 dr1dr2

]
(3.21)

In the final linear system (3.21), the coefficient matrix is non-Hermitian matrix, so we use the

flexible Generalized RESidual method which is kind of the projection method using a Krylov subspace

to solve this system with variable preconditioning [16] [17]. We use the right preconditioned GMRES as

a preconditioner at each step of the Arnoldi process. We find that the convergence for the linear system

(3.21) is mainly influenced by the right preconditioner of GMRES. The generally used preconditioner,

Incomplete LU factorization with no fill-in and the dual threshold incomplete LU factorization, denoted

ILU(0) and ILUT respectively, did not work well, so we just use the IKJ version of Gaussian elimination

as the right preconditioner with some modifications. But this is inefficient for very large system, so it is

another issue.

– 19 –



3.4 Dealing with the singularities

Because the Green’s function exhibits the singularity when the distance of the spatial point x and

the source point ξ is very short, we have to pay attention to the integrations of it and it’s derivative.

One of the methods to overcome this integrations is well explained in [19], and we adopt it. It is that the

singular components are separated from the Green’s function, then integrations of that are evaluated in

a special manner and then because the rest is regular we can use the Gauss-Legendre quadrature.

The Green’s function can be divided by [10]

G(x; ξ) = S1 + S2 + S3 + G̃ (3.22)

and

∇ξG(x; ξ) = S1 + S2 + S3 +∇ξG̃ (3.23)

where

r =
√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2

r′ =
√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 + ξ3)2

S1 =
1

r
; S1 = ∇ξ S1

S2 =
1

r′
; S2 = ∇ξ S2

S3 = 2KeK(x3+ξ3) ln[r′ − (x3 + ξ3)]; S3 = ∇ξ S3

G̃ and ∇ξG̃ : the regular part of the Green’s function (3.24)

The singular or nearly singular components of the Green’s function, shown in (3.22) and (3.23) are

depend on the distance between x and ξ, so we set up the following algorithm which is almost same with

[19]. This is for evaluating the integration of these components.

Table 3.1: A algorithm for integration of the singular components

when e = é when e 6= é

If x3 and ξ3 = 0 If lé
lp
> 0.5 and lé

lp′
> 0.5

S1, S2, S3 : singular integral S1, S2, S3 : subdivided domain integral

Else if lé
lp′

> 0.5 Else if lé
lp
> 0.5 and lé

lp′
≤ 0.5

S1 : singular integral S1 : subdivided domain integral

S2, S3 : subdivided domain integral

Else Else if lé
lp
≤ 0.5 and lé

lp′
> 0.5

S1 : singular integral S2, S3 : subdivided domain integral

In Table 3.1, e denotes a element where x is defined, e′ is where ξ belongs to, lé is half length of the

element e′ diagonal. The distance between the spatial position x and the centroid of the element e′ is

defined by lp, and between the point (x1, x2,−x3) and the centroid of the element e′ by lp′ .

The subdivided domain integral is nothing but the element e′ is subdivided until the distance ratio

is smaller than some particular value. The distance ratio is lé to lp for S1, and lé to lp′ for S2 and S3.

You should be reminded that lé, lp, and lp′ correspond to the subdivided element. The critical value

that stops subdividing depend on your design criteria, but we choose 0.5 for it because approximately

this value gives reliable results when using four points Gauss-Legendre quadrature.
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A spatial point

A

B

C

D

Figure 3.3: Separating a domain for the singular integrals

To understand the singular integral, consider Fig. 3.3 where a spatial point xp is in the element

that we are going to compute. The singular integrals we have to evaluate are classed as∫ 1

−1

∫ 1

−1

f
1

‖ R ‖2
dr1dr2J : the source type∫ 1

−1

∫ 1

−1

f
n ·R

(‖ R ‖2)
3 dr1dr2J : the dipole type∫ 1

−1

∫ 1

−1

f ln(‖ R ‖2)dr1dr2J : the logarithmic type (3.25)

where

R = x− xp

n =
∂x
∂r1
× ∂x

∂r2

J

J =‖ ∂x
∂r1
× ∂x

∂r2
‖2

f : a regular function (3.26)

We have interpolated like

x =
4∑
k=1

hkx
k

= Cr1r2r1r2 + Cr1r1 + Cr2r2 + C (3.27)

where, Cr1r2 , Cr1 , and Cr2 are corresponding coefficient vectors. So we get

R = Cr1r2(r1r2 − rp1rp2) + Cr1(r1 − rp1) + Cr2(r2 − rp2) (3.28)

and

n ·R =
Cr1r2 ×Cr2 ·Cr1(r1r2 − rp1r2 − rp2r1 + rp1rp2)

J
(3.29)

With (3.28) and (3.29), If we assume like

u ≡ r1 − rp1; uv ≡ r2 − rp2 in the region A (3.30)
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then (3.25) becomes

∫ 1−rp1

0

∫ 1−rp2
1−rp1

−1−rp2
1−rp1

f
J

‖ Cr1r2(uv + vrp1 + rp2) + Cr1 + Cr2v ‖2
dvdu

∫ 1−rp1

0

∫ 1−rp2
1−rp1

−1−rp2
1−rp1

−f Cr1r2 ×Cr2 ·Cr1v

(‖ Cr1r2(uv + vrp1 + rp2) + Cr1 + Cr2v ‖2)3
dvdu

∫ 1−rp1

0

∫ 1−rp2
1−rp1

−1−rp2
1−rp1

fJu ln(‖ Cr1r2(uv + vrp1 + rp2) + Cr1 + Cr2v ‖2 u)dvdu in the region A (3.31)

respectively. The worthy of notice in (3.31) is that the singular integrals become regular integrals, so we

can apply the Gauss-Legendre quadrature for evaluations. The other regions also could be changed by

same procedure, but the substitution variables are different according to the region, i.e.,

u ≡ r1 − rp1; uv ≡ r2 − rp2 in the region A and C

uv ≡ r1 − rp1; u ≡ r2 − rp2 in the region B and D (3.32)
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Chapter 4. Results

In this chapter, we validate our mathematical formulation by comparing with an experiment result.

We also compute additional two models, a box-like model and a Wigley hull, and include the behaviors

of that.

4.1 Comparison with the experiment of a plate model

To validate the numerical formulation, it is recommended to compare with a experiment result.

Fortunately there is a experiment result for hydroelastic response of a mat-like floating structure in

regular waves. It is carried out by Yago K. and Endo H. [22] and the test description is in Fig. 4.1 and

Table 4.1.

Bottom

Incident wave

Water depth

Length
Breadth

Thickness

Figure 4.1: Schema of the experimental model [Yago K. and Endo H. (1996)]

Table 4.1: The test model description [Yago K. and Endo H. (1996)]

Test model Prototype

Scale ratio 1
30.77 1

Length (L) 9.75m 300m

Breadth (B) 1.9m 60m

Thickness (T) 0.0545m 2m

Stiffness (EI) 1.788× 103kgf ·m2 4.87× 1010kgf ·m2

Water Depth 1.9m
λ
L & Period 0.1 ∼ 1.0 (0.8 ∼ 2.5sec.)

Wave height 1cm, 2cm, 6 ∼ 7cm

θ 0o, 30o, 60o, 90o

The model that we use for evaluating the our numerical formulation is in Fig. 4.2 and Table 4.2. We
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discrete the body surface 30 elements in e1 direction and 6 elements in e2 direction, so total 180 elements

and 217 nodes. Fig. 4.3 ∼ Fig. 4.14 show the results of the comparison and the vertical displacement

of the numerical model. To easily figure out the vertical displacement, we divide it by the amplitude a

of the incident wave. Fig. 4.3 ∼ Fig. 4.8 represent the results, as the frequency of the incident wave

varies. Fig. 4.9 ∼ Fig. 4.14 is the results in oblique waves. As you can see in the figures, the results of

our numerical formulation are in considerably agreement with the experiment.
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Bottom

Incident wave

h

L

B

T
Starboard

Port side

Figure 4.2: Schema of the numerical plate model

Table 4.2: The numerical plate model description

L 9.75m

B 1.95m

T 0.0545m

Stiffness (EI) 1.788× 103kgf ·m2

Draft 0.0166m

Water Depth 1.9m
λ
L 0.1, 0.5, 0.9

Wave height 1cm

θ
0o for λ

L = 0.1, 0.5, and 0.9

30o, 60o, 90o for λ
L = 0.5

– 25 –



Figure 4.3: Comparison with the experiments, λ
L = 0.1, θ = 0o

Figure 4.4: Vertical displacements of the numerical model, λ
L = 0.1, θ = 0o
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Figure 4.5: Comparison with the experiments, λ
L = 0.5, θ = 0o

Figure 4.6: Vertical displacements of the numerical model, λ
L = 0.5, θ = 0o
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Figure 4.7: Comparison with the experiments, λ
L = 0.9, θ = 0o

Figure 4.8: Vertical displacements of the numerical model, λ
L = 0.9, θ = 0o
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Figure 4.9: Comparison with the experiments, λ
L = 0.5, θ = 30o

Figure 4.10: Vertical displacements of the numerical model, λ
L = 0.5, θ = 30o
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Figure 4.11: Comparison with the experiments, λ
L = 0.5, θ = 60o

Figure 4.12: Vertical displacements of the numerical model, λ
L = 0.5, θ = 60o
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Figure 4.13: Comparison with the experiments, λ
L = 0.5, θ = 90o

Figure 4.14: Vertical displacements of the numerical model, λ
L = 0.5, θ = 90o
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4.2 A box-like model

We have computed our mathematical formulation using another numerical model, a box-like struc-

ture. You should be careful when assembling the total stiffness matrix and mass matrix for the structure

at the node where two or three elements are jointed with a ridge angle, because the normal vector is

different at this node according to elements. One of solutions to this problem is just using six degree of

freedom at this node instead of five degree of freedom.

The numerical simulations have been performed using the model shown in the Fig. 4.15 and Table

4.3 . The discretization for this model is same with the plate model i.e., 180 elements with 217 nodes

on the top and bottom surface, so total 504 elements with 506 nodes. We evaluate the displacements

of the model as vary the incident angle. Fig. 4.16 ∼ Fig. 4.23 show the results of that. We represent

the displacements of the model, which is divided by the incident wave amplitude, denoted a, on the top

surface and bottom surface in each figures.
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Bottom

Incident wave

h

L

B

D

Figure 4.15: Schema of the numerical box-like models

Table 4.3: The numerical box-like model description

L 10m

B 2m

D 0.1m

E 7× 108N/m2

Draft 0.05m

Water Depth Infinite
λ
L 0.5

θ 0o, 30o, 60o, 90o
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Figure 4.16: Displacements of the numerical box-like model (top surface), λ
L = 0.5, θ = 0o

Figure 4.17: Displacements of the numerical box-like model (bottom surface), λ
L = 0.5, θ = 0o
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Figure 4.18: Displacements of the numerical box-like model (top surface), λ
L = 0.5, θ = 30o

Figure 4.19: Displacements of the numerical box-like model (bottom surface), λ
L = 0.5, θ = 30o
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Figure 4.20: Displacements of the numerical box-like model (top surface), λ
L = 0.5, θ = 60o

Figure 4.21: Displacements of the numerical box-like model (bottom surface), λ
L = 0.5, θ = 60o
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Figure 4.22: Displacements of the numerical box-like model (top surface), λ
L = 0.5, θ = 90o

Figure 4.23: Displacements of the numerical box-like model (bottom surface), λ
L = 0.5, θ = 90o
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4.3 A Wigley hull

To reflect three dimensional aspects of hydroelasticity, we studied a simple three dimensional ship-

like structure, a Wigley hull. The Wigley hull has been tested frequently in ship research because of its

simplicity. The geometry of the Wigley hull is defined by

x2 =
B

2

(
1− 4x2

1

L2

)(
1− x2

3

d2

)
(4.1)

where B is breadth, L is length, and d is draft. For comparison, we use same geometrical values and

similar material properties with the model which has been tested already by Riggs H.R. et al.. [15]

The overall description of the numerical model is shown in the Fig. 4.24 and Table. 4.4. It is

difficult to adjust our model to the model generated by Riggs H.R. et al., because the finite shell model

is different with it. The length, breadth, depth, draft, and Young’s modulus are exactly same with it,

but others are not. We set the thickness as physical one for the top deck and the side hull, but it wasn’t.

We set the density uniformly over the whole structure so that the draft would be half of the depth, but

they had gave it only for the top deck. The total number of elements is 2800, 2780 of which are the

four-node quadrilateral shell elements and 20 are three-node triangular shell elements. The number of

quadrilateral and triangular elements is exactly same with his model, but we use the MITC3 and MITC4

shell elements to avoid the shear locking phenomenon. The overall meshes are shown in the Fig. 4.24

where a 10× 100 mesh for the top deck and 9× 100 meshes for the left and the right hulls respectively.

Fig. 4.25 and Fig. 4.26 represent the response amplitude operators for the displacement of bow,

stern at middle of the top deck, and the center of the top deck respectively, where a means the incident

wave amplitude and T means the it’s period. We computed the model for the case that the wave period,

T , is from 2 to 18 step by 2 and the incident angle θ is zero. As you can see in these figures, overall

aspects are similar each other, but don’t exactly same. This may be caused by the difference material

properties and finite shell elements, as mentioned before.

We show the results for different incident angles. For a wave the length of which is half of the length

of the model, Fig. 4.27 ∼ Fig. 4.42 show the displacements of the model. To easily see the displacements,

we divided it by the amplitude of the incident wave and magnify that to ten times.
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Figure 4.24: A Wigley hull model and it’s meshes

Table 4.4: The numerical Wigley hull model description

Length (L) 100m

Breadth (B) 10m

Depth (D) 4.5m

Thickness (t)
0.25m for the top deck

0.15m for the side hull

Draft (d) 2.25m

Density (ρ) 2.353× 103kg/m3

Young’s modulus (E) 7.5× 109N/m2

Water Depth Infinite

– 39 –



T (sec.)

Figure 4.25: Vertical displacements of bow and stern at middle of the top deck (R.A.O.)

T (sec.)

Figure 4.26: Vertical displacements of center of the top deck (R.A.O.)
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Figure 4.27: Displacements of the numerical Wigley hull model, overall, λ
L = 0.5, θ = 0o

Figure 4.28: Displacements of the numerical Wigley hull model, the top deck, λ
L = 0.5, θ = 0o
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Figure 4.29: Displacements of the numerical Wigley hull model, the left hull, λ
L = 0.5, θ = 0o

Figure 4.30: Displacements of the numerical Wigley hull model, the right hull, λ
L = 0.5, θ = 0o
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Figure 4.31: Displacements of the numerical Wigley hull model, overall, λ
L = 0.5, θ = 30o

Figure 4.32: Displacements of the numerical Wigley hull model, the top deck, λ
L = 0.5, θ = 30o
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Figure 4.33: Displacements of the numerical Wigley hull model, the left hull, λ
L = 0.5, θ = 30o

Figure 4.34: Displacements of the numerical Wigley hull model, the right hull, λ
L = 0.5, θ = 30o

– 44 –



Figure 4.35: Displacements of the numerical Wigley hull model, overall, λ
L = 0.5, θ = 60o

Figure 4.36: Displacements of the numerical Wigley hull model, the top deck, λ
L = 0.5, θ = 60o
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Figure 4.37: Displacements of the numerical Wigley hull model, the left hull, λ
L = 0.5, θ = 60o

Figure 4.38: Displacements of the numerical Wigley hull model, the right hull, λ
L = 0.5, θ = 60o
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Figure 4.39: Displacements of the numerical Wigley hull model, overall, λ
L = 0.5, θ = 90o

Figure 4.40: Displacements of the numerical Wigley hull model, the top deck, λ
L = 0.5, θ = 90o
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Figure 4.41: Displacements of the numerical Wigley hull model, the left hull, λ
L = 0.5, θ = 90o

Figure 4.42: Displacements of the numerical Wigley hull model, the right hull, λ
L = 0.5, θ = 90o
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Chapter 5. Conclusion

We have studied the three dimensional hydroelastic behavior of shell structures under regular waves.

With appropriate assumptions, we derived the coupled equations for the general three dimensional hy-

droelastic analysis. To solve the coupled equations, we used the finite element method for the shell

structure and boundary element method for the fluid. From comparison with the experiment results, we

validated our mathematical formulation. To confirm the results related to three dimensional aspects of

hydroelasticity, we simulated two additional models, one is the box-like model and another is the Wigley

hull. In both cases, we have obtained satisfying results.
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Chapter A. The algorithm for the free surface

Green’s function

As mentioned before, the integral form of the free surface Green’s function is highly complex and

inefficient to evaluate. To overcome this problem, the Green’s function has been studied a lot and very

useful algorithm has been developed [1], [6], [10], [11], [12], [13], [14], [21]. That algorithms for infinite

and finite depth cases are introduced in this chapter .

A.1 Infinite depth case

G =
1√

R2 + (x3 − ξ3)2
+KF (X,Y )− 2πKe−Y J0(X)i

∂G

∂R
= − R

(R2 + (x3 − ξ3)2)
3
2

−K2

(
X

(X2 + Y 2)
3
2

− πe−Y (H1(X) + Y1(X)− 2

π
)

+
2e−Y

X

∫ Y

0

tet√
X2 + t2

dt− 2Y

X
√
X2 + Y 2

)
+ 2πK2e−Y J1(X)i

∂G

∂ξ3
= − (ξ3 − x3)

(R2 + (x3 − ξ3)2)
3
2

+K2
( 1√

X2 + Y 2
+ F +

Y

(X2 + Y 2)
3
2

)
− 2πK2e−Y J0(X)i

where

K =
ω2

g

R =
√

(x1 − ξ1)2 + (x2 − ξ2)2

X = KR

Y = K ‖ x3 + ξ3 ‖2

F (X,Y ) = P.V.

∫ ∞
0

τ + 1

τ − 1
e−τY J0(τX) dτ

=
1√

X2 + Y 2
− πe−Y (H0(X) + Y0(X))− 2

∫ Y

0

e t−Y√
X2 + t2

dt

and Jn, Yn and Hn are Bessel functions of the first, second kind and Struve function respectively (order

n, n = 0, 1).

(1) In the domain, 8 < X and 20 < Y∫ Y

0

e t−Y√
X2 + t2

dt =
∞∑
n=0

n!Pn(
Y√

X2 + Y 2
)

1

(X2 + Y 2)
1
2 (n+1)
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where Pn is Legendre polynomial.

(2) In the domain, X ≤ 1
2Y

F (X,Y ) =
1√

X2 + Y 2
+ 2

∞∑
n=0

(−X2/4)n

(n!)2

( 2n∑
m=1

(m− 1)!

Y m
− e−Y Ei(Y )

)
where Ei(Y ) is exponential integral.

(3) In the domain, 3.7 < X and 4Y ≤ X∫ Y

0

e t−Y√
X2 + t2

dt =
1

X

(
I0(Y ) +

N∑
n=1

(−1)n
X−2n

n!

(2n− 1)!!

2n
I2n(Y )

)

where

I0 = 1− e−Y

I2n = Y 2n − 2nY 2n−1 + 2n(2n− 1)I2n−2

(4) In the domain, Y ≤ 2 and the rest of X except the above region

F (X,Y ) =
1√

X2 + Y 2
− 2e−Y

(
J0(X) ln

(Y
X

+

√
1 +

Y 2

X2

)
+
π

2
Y0(X) +

π

2X
H0(X)

√
X2 + Y 2 +

√
X2 + Y 2

∞∑
m=0

∞∑
n=1

CmnX
2mY n

)

where

C0n =
1

(n+ 1)(n+ 1)!

Cmn = −
(n+ 2

n+ 1

)
Cm−1,n+2

(5) In the rest domain, 2 < Y < 20∫ Y

0

e t−Y√
X2 + t2

dt =
1

X2 + Y 2
− e−Y

X
+

Y

(X2 + Y 2)
3
2

R(X,Y )

e−Y
∫ Y

0

tet√
X2 + t2

dt =
Y − 1√
X2 + t2

+
e−Y

X
+

Y (Y − 2)

(X2 + Y 2)
3
2

Rx(X,Y )

or

e−Y
∫ Y

0

tet√
X2 + t2

dt =
Y − 1√
X2 + t2

+
e−Y

X
+

Y (Y − 1)

(X2 + Y 2)
3
2

Rx′(X,Y )

where R(X,Y ) and Rx(X,Y ) (or Rx′(X,Y )) are some slowly-varying functions, and could be approxi-

mated by double Chebyshev expansions.
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A.2 Finite depth case

G =
1√

R2 + (x3 − ξ3)2
+

1√
R2 + (2h+ x3 + ξ3)2

+ 2

∫ ∞
0

(k +K) cosh k(x3 + h) cosh k(ξ3 + h)

k sinh kh−K cosh kh
e−khJ0(kR) dk

+ 2π
K2 − k2

0

k2
0h−K2h+K

cosh k0(x3 + h) cosh k0(ξ3 + h)J0(k0R)i

where h is the water depth, and k0 is positive real root of the dispersion relation.

(1) In the domain, 1
2 <

R
h

G = 2π
K2 − k2

0

k2
0h−K2h+K

cosh k0(x3 + h) cosh k0(ξ3 + h)[Y0(k0R) + iJ0(k0R)]

+ 4

∞∑
n=1

k2
n +K2

k2
nh+K2h−K

cos kn(x3 + h) cos kn(ξ3 + h)K0(knR)

∂G

∂R
= 2π

K2 − k2
0

k2
0h−K2h+K

cosh k0(x3 + h) cosh k0(ξ3 + h)[−k0Y1(k0R)− ik0J1(k0R)]

− 4
∞∑
n=1

k2
n +K2

k2
nh+K2h−K

cos kn(x3 + h) cos kn(ξ3 + h)knK1(knR)

∂G

∂ξ3
= 2π

K2 − k2
0

k2
0h−K2h+K

k0 cosh k0(x3 + h) sinh k0(ξ3 + h)[Y0(k0R) + iJ0(k0R)]

− 4
∞∑
n=1

k2
n +K2

k2
nh+K2h−K

kn cos kn(x3 + h) sin kn(ξ3 + h)K0(knR)

where Kn is modified Bessel function of the second kind (order n, n = 0, 1), and kn is positive pure

imaginary roots of the dispersion relation multiplied by −i (n = 1, 2, · · · ).

(2) In the domain, Rh ≤
1
2

Re(G) = KL(X, |Y − Z|, H) +KL(X, 2H − Y − Z,H)

Re(
∂G

∂R
) = K2 ∂L

∂X

∣∣∣
(X,|Y−Z|,H)

+K2 ∂L

∂X

∣∣∣
(X,2H−Y−Z,H)

Re(
∂G

∂ξ3
) = K2 ∂L

∂V

∣∣∣
(X,(Y−Z),H)

+K2 ∂L

∂V

∣∣∣
(X,2H−Y−Z,H)

for Y − Z ≥ 0

= −K2 ∂L

∂V

∣∣∣
(X,(Z−Y ),H)

+K2 ∂L

∂V

∣∣∣
(X,2H−Y−Z,H)

for Y − Z < 0

– 53 –



where the auxiliary function L is defined by

L =
1

(X2 + V 2)
1
2

+ P.V.

∫ ∞
0

(k + 1) cosh kV

k sinh kH − cosh kH
e−kHJ0(kX) dk

=
1

(X2 + V 2)
1
2

+ F (X, 2H − V ) + F (X, 2H + V )

+ P.V.

∫ ∞
0

(
1

k sinh kH − cosh kH
− 2e−kH

k − 1

)
(k + 1) cosh kV e−kHJ0(kX) dk

where

X = KR, Y = K|x3|, Z = K|ξ3|, H = Kh

The integral in the above equation L could be approximated by Chebyshev expansions, because we can

evaluate it by using contour integration. One example of contour to evaluate the integral in the equation

L is shown in the Fig. A.1.

Figure A.1: One example of contour for the integral in the equation L

If we define like

f(k) =

(
1

k sinh kH − cosh kH
− 2e−kH

k − 1

)
(k + 1) cosh kV e−kHJ0(kX)

then from Cauchy’s integral theorem ∮
C

f(z) dz = 0, z = x+ yi

where x is real component and y is image component of complex variable z. So, with residue integration

method we can compute the integral in the equation L like

P.V.

∫ ∞
0

f(k) dk

=−
∫
C1

f(z) dz −
∫
C2

f(z) dz −
∫ π

2H

0

f(y)
∣∣∣
x=∞

dy −
∫ 0

∞
f(x)

∣∣∣
y= π

2H

dx−
∫ 0

π
2H

f(y)
∣∣∣
x=0

dy

where ∫
C1

f(z) dz = −πiRes [f(z), z = 1]∫
C2

f(z) dz = −πiRes [f(z), z = k0]
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Chapter B. Special cases

When the body surface, SB , is at x3 = 0, i.e. very thin plate or beam cases, we can modify the

coupled equations, (2.50) and (2.51), more efficiently. In these cases, the final equations are coupled by

the displacements of the structure and the total pressure of the fluid.

B.1 The plate case

Consider the right side of the equations (2.35). As we mentioned before, the coefficient −2π comes

from the integration of the source component of the Green’s function over very small surface. In general

case, as you can see in the equation (3.22), the influence source component for the coefficient is S1

because the integrations of the others over very small surface are just zero. In the plate case, however,

the influence source components are S1 and S2 because x3 and ξ3 are both zero. So∫
Sε

φ(ξ)
∂(S1 + S2)

∂nξ
dSε =

∫
Sε

φ(ξ)
∂

∂nξ

(
2√

(ξ1 − x1)2 + (ξ2 − x2)2

)
dSε

≈ φ(x)

∫
Sε

∂

∂nξ

(
2

r

)
dSε; r ≡

√
(ξ1 − x1)2 + (ξ2 − x2)2

≈ φ(x) 2 2π

= 4πφ(x)

where Sε means the very small half sphere surface that has been cut out, and x is on the plate surface.

So (2.37) becomes

−4πφ(x) =

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ)

+

∫
S∞

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dS∞(ξ) for x on SB

and (2.38) becomes

−4πφI(x) =

∫
S∞

(
φI(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φI(ξ)

∂n(ξ)

)
dS∞(ξ) for x on SB

By adding above two equations, then we get

−4πφ(x) + 4πφI(x) =

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ) for x on SB (B.1)

From the second condition of (2.27), (B.1) becomes

−4πφ(x) + 4πφI(x) =

∫
SB

(
φ(ξ)

ω2

g
− iωu3

)
G(x; ξ) dSB(ξ) for x on SB

and by the Bernoulli’s equation we get

−4π
i

ω

(
P (x)

ρw
+ gu3

)
+ 4πφI(x) =

∫
SB

i
ω

ρwg
P (ξ)G(x; ξ) dSB(ξ) (B.2)
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The variational form of (B.2) is then

−
∫
SB

4π
i

ω

P (x)

ρw
P̄ (x) dSB(x)−

∫
SB

4π
i

ω
gu3P̄ (x) dSB(x) +

∫
SB

4πφI(x)P̄ (x) dSB(x) =∫
SB

∫
SB

i
ω

ρwg
P (ξ)G(x; ξ) dSB(ξ)P̄ (x) dSB(x) (B.3)

The equation for the structure, (2.50), is

−
∫
V

ω2ρsū
Tu dV +

∫
V

ε̄Tσ dV =

∫
SB

P ū3 dSB (B.4)

where P means the total pressure. The advantages of the above coupled equation where the total pressure

and the displacements of the structure are coupled are first, we don’t need to evaluate the derivative of

the Green’s function and second, we can get the symmetric linear system by discretization.

B.2 One dimensional beam case

Figure B.1: Schema of one dimensional beam case

In two dimensional fluid, the free surface Green’s function with strength 2π is defined by [6], [21]

G = ln
√

(x1 − ξ1)2 + (x3 − ξ3)2 + ln
√

(x1 − ξ1)2 + (2h+ x3 + ξ3)2 − 2 lnh

− 2P.V.

∫ ∞
0

[
(K + k)e−kh cosh k(ξ3 + h) cosh k(x3 + h) cos k|x1 − ξ1|

k(k sinh kh−K cosh kh)
+
e−kh

k

]
dk (B.5)

or series representation like

G = −2πi
∞∑
n=0

k2
n −K2

kn(k2
nh−K2h+K)

cosh kn(x3 + h) cosh kn(ξ3 + h)eikn|x1−ξ1| (B.6)
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for finite depth case, and

G = ln
√

(x1 − ξ1)2 + (x3 − ξ3)2 + P.V.

∫ ∞
0

[
(K + k)ek(x3+ξ3) cos k|x1 − ξ1|

k(K − k)
− e−k

k

]
dk (B.7)

for infinite depth case, where h is the water depth, K = ω2

g , k0 is the positive real root of the dispersion

relation, and k1, k2, ... are the positive pure imaginary roots of the dispersion relation multiplied by −i.
(2.35) becomes

∫
SC

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSC(ξ) =


0 for x outside SC

πφ(x) for x on SC

2πφ(x) for x inside SC

(B.8)

With above equations, we can obtain

πφ(x)− 2πφI(x) =

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
−G(x; ξ)

∂φ(ξ)

∂n(ξ)

)
dSB(ξ) for x on SB (B.9)

So, the variational forms of the coupled equations for two dimensional case are

−
∫
V

ω2ρsū
Tu dV +

∫
V

ε̄Tσ dV = −
∫
SB

iωρwφū
Tn dSB −

∫
SB

ρwgu3ū
Tn dSB (B.10)

and ∫
SB

πφ(x)φ̄(x) dSB(x)−
∫
SB

2πφI(x)φ̄(x) dSB(x) =∫
SB

∫
SB

(
φ(ξ)

∂G(x; ξ)

∂n(ξ)
− iωG(x; ξ)u(ξ) · n(ξ)

)
dSB(ξ)φ̄(x) dSB(x) (B.11)

In the beam case where SB is at x3 = 0, above coupled equations with same procedure in the plate

case could be changed like

−
∫
V

ω2ρsū
Tu dV +

∫
V

ε̄Tσ dV =

∫
SB

P ū3 dSB (B.12)

and ∫
SB

2π
i

ω

P (x)

ρw
P̄ (x) dSB(x) +

∫
SB

2π
i

ω
gu3P̄ (x) dSB(x)−

∫
SB

2πφI(x)P̄ (x) dSB(x) =∫
SB

∫
SB

i
ω

ρwg
P (ξ)G(x; ξ) dSB(ξ)P̄ (x) dSB(x) (B.13)

The same advantages of the plate case could be applied to the one dimensional beam case with above

equations.
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Summary

Hydroelastic analysis of three dimensional floating structures

거대한 해양 구조물의 해양파에 대한 거동은 기존의 강체 해석법이 아닌 해양 구조물의 유탄성 효

과를 고려한 해석법이 요구된다. 이에 대한 연구들이 활발히 진행되어 왔으나 해양 구조물의 모델링에

있어서 판이나 보에 국한 되어 왔다. 우리는 보다 발전된 해양 구조물의 유탄성 해석을 위하여 해양

구조물을 쉘 구조물로 모델링하여 그 거동을 살펴보고자 한다. 이를 위하여 먼저 3차원 해양 구조물

의 유탄성 해석에 관한 수학적 모델을 제시한다. 그런 다음 3가지 실험 모델을 토대로 수학적 모델의

결과를 도출하며 실험 모델의 결과 및 상용 유탄성 해석 툴의 결과와 비교를 해 본다.
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