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ABSTRACT

In this study, we analyze floating structures under regular (time-harmonic) surface water waves.
Under the appropriate assumptions, the coupled equations that represent three dimensional hydroelastic
behavior of the structures are derived. The structural domain is modeled by shell finite elements,
and the fluid-structure interface boundary surface is also discretized to solve the coupled equations.
To validate our mathematical formulation, we compare the representative results with the experiment
results for a mat-like floating structure, and the quite satisfactory results are produced. We also carry
out additional two models, a box-like floating structure and a Wigley hull, for three dimensional aspects

of hydroelasticity, and get the reasonable results.
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Chapter 1. Introduction

Typically the dynamics of a floating structure has been based on the assumption of rigid motion,
because it could produce acceptable results with more simple and efficient analysis. But as the size of
ships and offshore structures is getting larger, the elasticity of the floating structure becomes dominant,
so this assumption could not support the analysis any longer. Hydroelastic analysis which considers
the effect of the structure’s elasticity in wave-structure interaction problems has attracted considerable
interests in the last ten years and developed well recently. The representative example of this study
is the analysis of a mat-like very large floating structures such as a floating air port, a pontoon-type
bridge, large floating offshore structures, ice floes, and so on. Kashiwagi M. [7] and Watanabe E. et
al. [20] presented reviews of these works. In these works, the floating structure is modeled as a thin
large plate or beam and the potential fluid is adopted. The motions of the structure and the amplitude
of the incident wave are assumed small, and the most of the analysis was carried out in the frequency
domain. The commonly used solving technique for these seakeeping problems are the modal expansion
method and the direct method. To determine the motion of the structure, the modal expansion method
use a sum of modal functions such as products of free-free beam modes, B-spline functions, the modes of
vibrations of a free plate, and so on. In the direct method, the motion of the equation is directly solved
without the modal functions.

The classical approach for the fluid problem in wave-structure interaction analysis decomposes the
fluid velocity potential into diffraction and radiation potential, and this procedure extended to hydroelas-
tic analysis by Bishop and Price [4]. The other approach just couples the motion of the structure and the
fluid pressure which relates to the fluid velocity potential without separating the problem into diffraction
and radiation components. Most of the recent hydroelastic analysis of floating structures have used the
second approach, and representative works have been done by Khabakhpasheva T.I. and Korobkin, A.A.
[8] ; Taylor R.E. [18] where they solved the whole equations by using the Galerkin method.

The hydroelastic studies performed up to recently are mainly for the beam structures or plate
structures. There are, however, many different shape of structures in the ocean environment. It is
evident that there are limitations in modeling the ships and the offshore structures as beam or plate
structures. To extend the hydroelastic analysis into these various shape of structures, we studied a
hydroelastic behavior of floating structures in three dimensional case. We modeled the floating structure
as shell structure, because most of the ships or the offshore structures are thinner in one direction than
in the other directions. The potential fluid was adopted and we didn’t separate it. Overall schema of the
problems and assumptions we applied are described in chapter 2. In this chapter, we also derive a general
coupled equations where the displacements of the structure and the fluid pressure are connected. Using
this mathematical formulation, in chapter 3, we transform the coupled equation to a discrete linear
system to solve it. Finally in chapter 4, we evaluate our mathematical formulation using a mat-like
model and compare the results with an experiment data. To see the three dimensional aspects of the
hydroelasticity, we also consider a box-like model and a Wigley hull. In the Wigley hull example, we

compare our results with the other numerical results performed by Riggs H.R. et al. [15].



Chapter 2. General theory

This chapter describes the general procedure of physical and mathematical modeling of the problem.
First we present the assumptions which are valid for this analysis, and then derive the governing equations
where the structure equation and the fluid eqatuion are coupled each other. The final coupled equations
are the variational forms for the finite and boundary element procedure which will be introduced next

chapter.

2.1 Overall description and assumptions

Afloating structure

Incidentwave

1<

Bottom \

Figure 2.1: Overall schema of the problem

Fig. 2.1 represents an overall schema of the physical problem that we are going to analyze. A
structure is floating on the water in a fixed Cartesian coordinate system, the origin of which is located
on the centroid of the water plane area corresponded to a original configuration. The water depth is h,
and a wave is coming with an incident angle . The incident angle # is the angle between the x-axis and
the incident wave, and positive value when it rotates counterclockwise.

We assume that the material is homogeneous, isotropic, and linear elastic. The displacements and
strains are small, so all related computations can be performed over original reference frame. This
assumption is also applied to the fluid, but in this case velocities and rate of strains are corresponded
physical parameters. The fluid is assumed that it is Newtonian isotropic, incompressible, inviscid, and
irrotational fluid. The incident wave is assumed that it is coming continuously with angular frequency w,
as a result the motion of the structure and the fluid are time harmonic with same frequency, if we assume

that the system of that is linear. We assume also the amplitude of the wave is very small compared with



the wave length. This make it possible that the free surface boundary condition can be linearized at

x3 = 0, which will be explained later.



2.2 Modeling of the floating structure

The current water plane

The reference water plane

Figure 2.2: The floating structure in current state

Consider the equilibrium state of the floating structure as shown in Fig. 2.2. The reference means
the original configuration of the structure. !V denotes the volume that the structure occupies currently
and Sp the wet surface. The Cartesian coordinate system is fixed on the centroid of the reference water
plane area, the point O. From now on, in this coordinate system we express some vector v’ as v or v;€;
or v; and some matrix ‘M’ as IM or M;; where the indices i and j vary from 1 to 3 respectively, and
we adopt Einstein summation convention. We define the vector °x as a material point in the reference
configuration, the vector *X as a material point in the current configuration. So we can express a
displacement vector U as U = *X — %x if 9x and *X represent a same particle.

The balance law of linear momentum gives the following differential equation:

do’. .
3 Yot psFy — psUi =0 in the structure domain (2.1)
Lj

where agj is Cauchy’s stress tensor, ps is the density of the structure, and F; is the applied body force
per unit mass. For simplicity, we introduce ’ "’ to represent the material time derivative, and we define
oi; = 0i5(x)T(t) and U = u(®x) T(t) where T'(t) is a arbitrary function of time and x is a spatial
point. If we multiply (2.1) by the virtual displacements %;, integrate by parts, and apply the divergence

theorem, we get

. A,
/V psUsti; 'V + /V o} aZ- d'v = /V psFii; d'V + /S oiingt; d'S (2.2)
t t J t t

where n denotes unit normal vectors outward from the structure domain, *S is the surface of the structure.

From the symmetry of the stress tensor which comes from the balance law of angular momentum, we

have 54 54 54
U U U4 _
Tij g = Tij <8x + 63:]) = 0ij€ij (2.3)
J J i
and therefore
/ psUiﬂi dtv —|—/ Ugjéij d'v = / psFit; dtv —|—/ cr;jnjﬂi dts (24)
tv tv tV tS

where €;; is the virtual strains.



(2.4) is the variational formulation for the structure part. The most important fact and the difference
from the ordinary structural problem are that neither tractions nor displacements are specified on the
wet surface. We just know that structure’s tractions and velocities are same with fluid’s on this surface.

So we need another information that is related to the fluid.

2.2.1 Initial stress problem

Before the floating structure undergoes the incident wave, we have to find the displacements in
the statically equilibrium state. We define this problem as ’Initial stress problem’. This problem is
straightforward because on the wetted surface the traction distributions are replaced with a function of
displacements. That is:

Pny
T=-| Pny on the wet surface (2.5)
Pns

where T means the traction and P is the water pressure(Gauge pressure). In static fluid the pressure is

nothing but P = —p,,gr3 where p,, is the density of the fluid, and
F=1| 0 in 'V (2.6)

where g is the acceleration of gravity. So we obtain
/ O—ijgij dtV = — / psgﬂg dtV +/ ,()w(ofﬂg + Ug)ni’l_l,i dtSB (27)
ty JtY tSB

If we introduce the following stress and engineering strain vector:

T

o' = [o11 022 033 012 023 031 ]
Oou;  Ou;
T i j
— h i = 2.8
€ [€11 €22 €33 Y12 Y23 V31 ] where v, oz, + oz, (2.8)
then we finally get
/ elod'Vv = —/ psgls AV + / pw(ox;; + ug)ﬁTn d*Sp (2.9)
ty ty tSp

If the geometry of the structure is simple and the draft is very small, it doesn’t need to compute
(2.9) because we can easily find out the statically equilibrium state of it and the initial stress is negligibly

small.

2.2.2 Steady state problem

The incident wave that the angular frequency is w would excite the floating structure with same
frequency. This is valid when the system is linear, and this means that the relation of input(ex. force)
and output(ex. displacement) satisfies the linearity. We define the steady state such that time goes
enough so that the initial conditions of the structure have no effects on it. This problem is a little

difficult because as we mentioned before it requires one more equation related to the fluid.



Inserting (2.5) into (2.4) with linearized Bernoulli’s equation P = fpwaa—‘f — pwgxs where @ is the

velocity potential (a scalar valued function) that we will explain later, then we have
s{.a,; d i s 1 \z . gt o e,
ps “Ust; A"V + (‘oij +° 0};)E; AV = — psgiis 'V + P s At
ty ty ty tSp 6t
+/ pwg(0$3 +i us +° Ug)’nzﬂl dtSB (2]_0)
tSB

where the left superscript i and s mean ’Initial stress problem’ and ’Steady state problem’ respectively.
Because of (2.7) or (2.9), (2.10) becomes

/ psU;u; d'v +/ Uzl‘jgij dtv = / pwaniﬂi dtSB +/ PwgUsn;; dtSB (211)
% (A% tSp tSp

or

D?*U od
/ psi’ —— dtV+/ elo’ d'V = pw—ﬁTl’ldtSB—f—/ pwgUsu’n d'Sg (2.12)
tV Dt tV tSB 8t tSB

As you can easily find in the above equation, the unknown variables that we have to find are the
displacements vector function u and the velocity potential function ®. To solve this variational equation,
we need to derive the variational formulation for the fluid.

Finally if we assume that T'(t) = €™, that is:

b = ¢(X>eiwt
J;j =. 0Oij (X)ei‘“t
U = u(’x)e! (2.13)
then we obtain
—/ w?psaludv —|—/ elo dV = / iwpwpuln dtSy —|—/ pwgustln d'Sy (2.14)
2% 2% tSp *Sp

As you can see in the final equation of motion for the structure, (2.14), the velocity potential of the
fluid is included. This velocity potential comes from linearized Bernoulli’s equation and has to do with

the external fluid pressure.



2.3 Modeling of the fluid

With the continuity equation which comes from the mass conservation, the assumption of incom-
pressible fluid, and the assumption of irrotational fluid, we start Laplace’s equation for the velocity
potential:

V2® =0  in the fluid domain (2.15)

From the linear momentum conservation with the above assumptions and additional assumptions of

Newtonian, isotropic, and inviscid fluid, we can derive Bernoulli’s equation for the potential fluid:

0 1 P
St Ve Vet - +gr3=0  in the fluid domain (2.16)

x is a spatial point, ® = ®' + [ C(t)dt where @’ is a potential, and C(¢) is a function of time. From the

time harmonic assumption, the time related function can be excluded like (2.13).

2.3.1 Boundary conditions
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Figure 2.3: Schema of the fluid region

Fig. 2.3 represents the region of the fluid. Sg is the surface of interface between fluid and structure,
S is the free surface, S, is the surface that envelops the fluid region laterally, and Sg is the bottom
surface.

On Sp, the normal velocity of the structure and the fluid should be same because if not the fluid
would penetrate into the structure region and this situation is impossible. So we can give a condition

(body boundary condition):
0¢
on

where n is normal to Sp from the fluid region and n is corresponded unit vector.

=ijwu-n on Sp (2.17)

On Sg, we can think two conditions. First if we observe the free surface with following it, it does
not change. This is a similar explanation to the body boundary condition. Second the pressure is same

with the given pressure distribution that we assume it is zero. Typically these two conditions are called

-7 -



”kinematic free surface boundary condition” and ”dynamic free surface boundary condition”. If we

express these conditions mathematically, then

DF
d 1
%+§V¢~V@+gz3 =0 on Sp (2.19)

where F' = x3 — ( = 0, ( means the elevation of the free surface, and we neglect the surface tension
effect. If we linearize (2.18) and (2.19) at z3 = 0, then

0 )
a—i = iw( at z3 =0on Sg (2.20)
wop = —g(¢ at x3 =0 on Sg (2.21)

If we combine the above equations, then we have

2
% = %qb at x3 =0 on Sp (2.22)

You should be reminded that the linearized conditions, (2.20) and (2.21), are valid for waves with
infinitesimally small amplitude and velocity.
On Sg, the same kinematic condition is applied. So if the bottom does not move, we obtain

v’

28 0 on S¢ (2.23)

Let’s think the problem physically. The wave that is scattered from the structure and the wave
caused by motion of the structure have a directivity. That is, they should be radiated from the structure’s
position to the infinity. This is called Sommerfeld radiation condition.

lim VA (- + ik (p— 1) =0 (2.24)
R—o0 OR
where R = /(22 + 3), and k is the wave number. Because the Laplace’s equation is linear, as you can
see in (2.24), we can just represent the scattered and radiated potential as ¢ — ¢; where ®; = ¢ret?
and ®; is the velocity potential of the incident wave which satisfies all boundary condition except the
body boundary condition and Sommerfeld radiation condition. The incident potential that the wave is

coming from the positive e; axis is

.ga COSh[k(x?) + h)] ik[cos(0x1)+sin(0x2)] jiwt
P, == S 1 2 2.25
! w  cosh(kh) ¢ ¢ (2:25)
for finite depth case
O, = Z-%ekacgeik[cos(é’xl)+sin(9x2)]eiwt (2.26)
w

for infinite depth case where a denotes the wave amplitude.



2.3.2 Green’s function

The time harmonic free surface Green’s function is a basis of this analysis. It is nothing but a kind

of the source potential located at & that satisfies

VG =0 for —h < 23 <0 except at &

2
G _ W0 ates=0
O0x3 g
oG
871'3_0 atl’g—_h
0
i — ) = —h < <
RIEI;O\/R<8R+ZI€>G 0 for —h<xz320 (2.27)

In infinite depth and finite depth with the source potential of strength —4, it is defined by following

expression [21]

o K
cpy. [ EEE
2+ (23 — &)? o k-K

— o Ke Klest&sl 1 (K R)i (2.28)

e Flzst&al Jo(kR)dE

for infinite depth case where K = “’?2, Jo is Bessel functions of the first kind of order 0, and P.V. means

the Cauchy principal value.
oo 1 . 1
VR + (25— &) /R*+ (2h + 23 + &3)?
LoPV /oo (k + K) cosh k(x5 + h) cosh k(&5 + h)
0

—kh
ksinh kh — K cosh kh ™" Jo(kR)dk

K2_k2

M0
L K+ K

cosh kg (a3 + h) cosh ko(&5 + h)Jo(koR)i (2.29)

for finite depth case where kg is the positive real root of the equation, K = k tanh(kh).

The derivatives of the Green’s function are

G _ R 2< i e Kl ([ (KR + Vi (KR) — 2)
OR (R? + (73 — &)%) K2(R? + (x3 +&3)%)2 T
2e—Klest+es|  pKles+es| tet 2|xs + &3
) |
KR 0 (KR)? + {2 KR\/(R?+ (3 + &)?

+ 27 K2e Klest&sl I (K R)i (2.30)
9G (§3 — w3) i +K2( 1
93 (R? + (23 — &£3)2)2 K+/R? + (23 + &)?

© k41
+ PV. / ktl e FElzat&sl Jo (LK R)dk + 23 + &l - )
o k-1 K2(R? + (23 + §3)?)2
— 2nK2e Klest&al Jo (K R)i (2.31)

for infinite depth case where Jy, Y7, and H; are Bessel functions of the first, second and Struve function



of order 1 respectively, and

oG R R

OR (R + (15— £3)2)3  (R2+ (2h+ w3 + &3)%)3

(k + K) cosh k(z3 + h) cosh k(&5 + h) o=k
- 2PV / k sinh kh — K cosh kh kJy(kf?)dk
k .
m cosh ]f() ($3 + h) cosh ]f() (63 + h)kOJl (kQR)Z (232)
oG _ (€3 — x3) B 2h + x3 + &3

% (R+(@—&)F  (R+(Ch+ay+&)P)°
+2P.V. /Oo (k + K) cosh k(w3 + h)ksinh k(&3 + h)
0

—kh
ksinh kh — K cosh kh e " Jo(kR)dk

K27k2

M 0
R _Kht K

cosh ko (1173 + h)k‘o sinh k0(€3 + h)Jo(koR)l (233)

for finite depth case.

A special attention should be given to the Green’s function. As you can see in this subsection,
evaluating the Green’s function doesn’t come easy. To overcome the complexity of the Green’s function,
many researchers have found the other forms of it, but they are very slow to compute numerically.
With based on these forms of the Green’s function, a efficient algorithm [13] has developed to solve this

extremely time-consuming problem , and we adopt this algorithm to compute the Green’s function.

2.3.3 Boundary integral equation

Starting point is the Green’s theorem. If two potentials denoted ¢ and % satisfy the Laplace’s

equation in the fluid region, it is easy to show that

/SC( g—w— W) c=0 (2.34)

where n is normal to S¢ from the fluid region, and S¢ is a smooth closed surface surrounding the fluid
domain. When one of two potentials has points or regions where it does not satisfy the Laplace’s equation,
especially exhibits singularity, we can apply some technique to (2.34), and derive useful equations [9].

That equations are following;:

9C(x: 9 0 for x outside S¢
/ (¢<£>(X’§> - Gx8) W)) 050(6) = | —omp(x)  forx on So (2.35)
e on(e) on(€) on
—47md(x) for x inside S¢

The right side of (2.35) comes from the contribution of the integration over very small surface that
surrounds the point source singularity of the Green’s function.

Consider first a volume Vp surrounded by Sp, Sro, S, and So, as shown in Fig.2.4. We can apply
(2.35) to this region, and then obtain

—zZTPIX) = M— X 8¢(€) or X on
o) = [ (e G S asee)  frxonsy a0

Because GG has same boundary conditions with ¢ on Spp and Sg,and with ¢ — ¢; on S, so we have

~2no() = [ (as(s)(?g?i’(‘;f) )dsB

IG(x;€) 3¢I
+ /Sco <¢1(£) an(e) () ) dS. (& for x on Sp (2.37)

~10 -



-
.
-
i @ v
!\ \ |
AN \ |
N \ !
~ \ ’
~o \ /
~o \

Seo !

Sa

Figure 2.4: The fluid boundary description

If we apply same procedure to ¢, then

i IC0CE) o 900
2o = [ (o0 Foe) ~ Gl G ) asinle
9G068) 96,(6)

+ /S ) (@(5) s JAT LT £)>dSoo(£) for x on Sy (2.38)

Next, subtract (2.38) from (2.37), then we get

—2mo) + 2mon) = [ (006 5 ~ Gl S0 ) dsine)
IG(x;€) . 3(251( )
/SB (¢I(g) e OGS > dS5(€)  for x on Sp (2.39)

We also think same process for ¢; in V; because ¢; and G satisfy the Laplace’s equation in V;. So

we can derive the following:

0G(x;€)

_ _ Glx 091(§)
i) = [ (o0 G - G

on(§)

where the sign for 2w¢;(x) is plus because the normal direction 'n’ is to Sg from Vp. So we finally
obtain, if add (2.39) and (2.40)

> dSp for x on Sg (2.40)

~2n0(0 + dns0 = [ (00070 - Gxioee asu(e)  forxon Sy (241
and variational formulation:
- [, 2016008000+ | dmor(x)5x)dS () =
L (s0%ae) - oo gas ) asp@atassi) a2

where ¢ means the virtual velocity potential.
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(2.41) is similar with the classical approach [19]. In the classical point of view, ¢ is divided like

¢ =¢p+or (2.43)
where
¢p = ¢1+ ¢s (2.44)

In above equations, ¢ means the potential caused by the motion of the structure and ¢g is the scattered

potential by the incident wave when the structure is fixed. The body boundary condition becomes

Ior _ .

—— =jwu-n on Sp

on

0

% =0 on Sp (2.45)

If we try the same procedure as described previously, we have

“2ron0) = [ (on© %5 60 %nE ) asn(e)  torxonss  (40)
and 5 x.
~2m0p(x) +dmor(x) = [ cst(s)af(‘éf)dsB(a) for x on Sp (2.47)

Typically (2.46) and (2.47) are called "radiation problem” and ”diffraction problem” respectively. The
result of adding (2.46) and (2.47) is same with (2.41).
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2.4 Coupled equations for the frequency analysis

Let’s start with the variational formulations for the floating structure (2.14) and the fluid (2.42).

Because of the body boundary condition (2.17), we can rewrite that equations as
—/ w?palu d'v +/ elo d'v = —/ iwpwduln dtSy — / pwgustn diSy (2.48)
ty ty tSB tSB
and
- [, 200036008500 + [ dmor ()34 S ) =
tSp
6G (x; . _
[ (607558~ iucixeuie) ne)) d'sn(@aasatn) (249
B B

Because the direction of the normal vector n in (2.48) and (2.49) is outward from the fluid domain, we
put a minus sign into the right hand side of (2.48).

The actual volume and surface the structure occupies at time ¢ changes periodically from the static
equilibrium state, but because of the assumptions of small displacements the variation of that is very
small. So we can assume that 'V ~ V and !Sp ~ Sp where V and Sp are the volume and the surface

in the static equilibrium state. Then the final form of coupled equations are
—/VprSﬁTu dV + /V eladV = — /SB iwppouln dSp — /SB pwgustln dSp (2.50)
and
- [ 2mo(IGe0dSae) + [ amor(x)a(dSH(x) =
SB SB
0G(x; -
[ [ (o050 - G @) - n(©)) dsu©dtisat) (@250
Sg JSp on(§)
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Chapter 3. Numerical methods

In this chapter we apply (2.50) and (2.51) into shell structures. The basic assumption of the shell
structures is that the undeformed material line initially normal to the midsurface of the shell structures
keeps its straight and remains unstretched during the deformations [5]. With this shell structure, we
discrete the domain of problem, i.e., finite shell elements for the structure and boundary elements for
the fluid.

3.1 Shell elements for the structure

Midsurface

Aelement

y 12

Figure 3.1: A shell element geometry

Let’s consider the geometry of shell elements. Fig. 3.1 shows a four nodes shell element. With the
assumption of the shell structures, which is mentioned before, we can represent a material point in the
state equilibrium configuration °x and a displacement u using the natural coordinate system r1, r, and

rg for a four node shell element

4 4
raa
Ox(r1,79,73) = Z hi(r1,m2) Xk + Z hy(r1,72) 32 Lok (3.1)
k=1 =1
and
4 4 raa
u(ry,re,m3) = I; hi (71, m2)ug + ;hk(ﬁﬂ“z) 5 sVE (3.2)

where %%y, ar, °VE §VE and hy are the nodal material points vector, the nodal thickness of shell in
rg direction, the nodal unit normal vector to the midsurface, the differences of tVf?L and OVfL7 and the
interpolation functions respectively.

From the assumption of small displacements, we can express § V¥ like

SVE = . 0VF — ), OVE (3.3)

— 14 —



where oy, and f3;, are the rotations of “V¥ in the direction of °V¥ and °V¥ respectively. °V¥ and V%

are defined by

OVlf = €9 XOOVE
| €2 X0V |2
Ovh = OvE <0y (3.4)

If V% is parallel to eq, then we just set V¥ equal to e3. So (3.2) becomes

r3ag
2

4 4
u(ry,re,r3) = Z hi(r1,ro)ug + Z hi(r1,72) (B OVE — . OVE) (3.5)
k=1 k=1

Before we apply finite element methods to the coupled equations using (3.1) and (3.5), there are
important things that we shouldn’t overlook. The first is that we have to consider the basic assumption
of shell structure; i.e., the stress in the direction of thickness is zero, and the second is that we should
avoid the shear locking phenomena. For the first thing we should transform the strain and the stress
that are expressed in the global Cartesian coordinate system to the local Cartesian coordinate system.
For the second thing we use the MITC4 elements proposed by Bathe K. J. and Dvorkin E. N. [2].

It is useful to introduce the covariant basis for applying above two procedures. The covariant base

vectors are

0
g = g :: (3.6)
and the corresponding contravariant vectors are g? which have the relationships
ENR (3.7)
where d;; is the Kronecker delta. So the strain tensor is expressed by
e=éng'g' +éng’s’ +an(s's” +e’e!) + én(g’s’ +2%%) + &(e’s! +2'e’) (3.8)
where €;; mean the linear components of the covariant Green-Lagrange strain tensor, i.e.,
1 0 0

The key point of the MITC4 elements is that we interpolate the transverse shear strains differently
than the other strains (the bending and the membrane strains) that are evaluated from the displacement
interpolations. It means that we reconstruct the transverse shear stains as the evaluated transverse shear
strains at particular points. That is

- 1 N 1 ~
623(T1, 7‘3) = 5(1 + 7“1)623(1, 0,7‘3) + 5(1 — T1)623<—1, 0,7“3)

- 1 N 1 ~
631(T2, 7‘3) = 5(1 + 7“2)631(0, 1,7“3) + 5(1 — T2)€31<0, —1,7“3) (310)

With the above strains, the constitutive tensor should contain the shell assumption. So in the

relation & = QT CQe, we use

1 v 0 0 0 0 ]
v 1 0 0 0 0
E 0 0 0 0 0 0
C=—- 3.11
1—v? o o o L~ 0 0 (311
0o 0 0 0 riz 0
. 0 0 0 0 0 kiZE
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where F is Young’s modulus, v is Poisson’s ratio, k is shear correction factor, and o and € are the stress
vector and the engineering strain vector which are defined (2.8). Because the constitutive matrix C is
defined in the local Cartesian coordinate system which contains the unit base vector tangent to rs line,
we have to transform it to the global Cartesian coordinate system where the stress vectors and the strain
vectors are defined, or the stress vectors and the strain vectors to the local Cartesian coordinate system.
The matrix Q functions as a connection between these two coordinate system, i.e., it transform the local
coordinate system to the global coordinate system.

The local Cartesian coordinate system can be defined by

_ B2Xg3
e =——>- 9%
| g2 x g3 |2
g3 X ep
e, = — T __
| g3 x e |2
23
e =-—— (3.12)
| g3 |2
and the transformation matrix @ is
Q =
R% R3, R3, Ri1 Ry Ry R3y R31 Ryq
R, R3, R3, Ri2Rao RasR3o R32 R0
R, R3, R3, Ri3Ro1 Ra3R33 R33zRq3 (3.13)
2R11R12 2R21Ro2 2R3 R3z RiiRgs + RiaRa1 RoyRzz + RoaR31 Rz Ria + Rz Ry
2R12R13 2R22R23 2R32R33 RiaRa3 + RiglRas  RosRzz + RazR3z R3aRiz + R33li2
| 2R13R11 2Rp3Rp1 2R33R31 RizRor + Ri1Rpz  RoszR3i + Roi1Raz  RazRi + Ra1 Rz |
where
e -e. e;-e; e€e]-e
R=| e -e ey-e, ey -e (3.14)

e3-e. €e3-€e; e3-€
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3.2 Boundary elements for the fluid

The water plane

" Aelement

The midsurface
Figure 3.2: A boundary element geometry

Fig. 3.2 shows a four nodes boundary element of fluid. The boundary surface is the midsurface of
the shell structure in the statically equilibrium state. Because the thickness of shell structure is small,
there is no big difference when we take the midsurface as the boundary surface instead of actual wet
surface. This is for efficient computation of the coupled equations.

Now we can interpolate the velocity potential on the body boundary for a four nodes boundary

element like

4
G(r1,ra) =Y hygt (3.15)
k=1
where ¢* is the nodal velocity potential. The unit normal vector can be obtained by
g1 X 82
n(ry,rg) = ———— 3.16)
Te < |- (

The value of (3.16) is not exactly same with e;, but this does not cause big problems in our analysis.
The reason why we define the normal vector differently than it in the shell structure is the evaluations

of the integrations of the singularities that the Green’s function has, which we will explain later.
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3.3 Discrete version of the coupled equations

By dividing the structural domain and the fluid boundary domain into finite shell elements and
boundary elements respectively, we can proceed to transform the coupled equations to a matrix form.

So If we divide the structural volume into N elements and the body boundary surface into M elements,
then (2.50) becomes

— / wzpsﬁTu dVv +/ elo dV +/ iwpwgbﬁTn dSp +/ png3ﬁTn dSg =
1% 1% SB SB
N -

—Z / prseﬁTeudV€+/ o€ eadVe}—i—Z

e=1

/ iWpw el N dS%—&—/ Puwg Uz U 1 dSg
; 5
1 1 1 1 1 1
a” / / / w?pHTH det(J)dridrydrs (4 +.u” / / / ]BTQTCQ]Bdet(J)drldrgdrgeﬁ}
—1J-1J-1 —-1J-1J-1

1,1 1,1
ﬁT/ / iwprHTnhT Il g1 % g2 ||2 dridrs . +eﬁT/ / pngTnhg Il g1 % g2 ||2 dridre eﬁ] =
—1J-1 —-1J-1

o
Il
—

A

_l’_
NE
.

e=1 "
0 (3.17)
and (2.51) is
. 2ro0otx) a0 - /ﬂ 1rd1(x)3(x) dSp(x)
/ [ (6025258 — i e)uie) n(6) ) dSi(e) 6 a'Sin) =
Sp JSp
R y ) h -1
Z [e¢T/ / 2rhh” | g1 % g2 [[2 dridra ¢ *erT/ / or |l g1 x g2 |2 dT1d7‘2}
-1J-1 —-1J-1
M M TS| )
+ ZZ |:e¢ / / (/ / n- V§G(T1,T2;f1,f2)hT || g1 X 82 HQ dfldfg) || g1 X 8o ||2 d’f’ld’l“g é¢:|
e=1é=1 —1J-1
M M 1o
- ZZ {eqb / / (/ / iwG(r1,m2;71,72)hl || g1 x g2 || df1d7‘2> | g1 x g2 ||2 dridry éﬁ:| =0
e=1é=1 —1J-1
(3.18)
where
eﬁT = [eu,{ e1 eﬁl eug e(X2 eﬁ? eug e(3 eﬁi’) eu,z{ eQ4 6/84]
N
ed) = [e¢1 e¢2 e¢3 e¢4]
cu(ry,ro,r3) = Hett
c€(r1,72,73) = B
cus(ry,m) = hi .
cB(r1,m2) =hT @
ew-n(ry,rg) = hf Rl
0 0 T
8r:J807x; r =[r 7ro 73 (3.19)
Then we can obtain
-3+ 3k +SF Sc lAl _ 0 (3.20)
-Fq Fy +TFan ¢ F;
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' =[u{ ar B ul a B - uf an B
AT
$ =0t & o oM
N
al'$ 0= Z / / / w?pHTH det(J)drydrydrs eu}
e=1
N r 1 1 1
'S =) eﬁT / / / IBTQT(DQIBdet(JI)drldrgdrgeﬁ}
oy 1Jo1J
. M . 1 1
al'$pa= Z eﬁT/ / pwg]HTnh3T | g1 % g2 ||2 dridre eﬁ}
e=1 -1/-1
. R M . 1 1 )
al'Spe = Z ﬁT/ / iwprHTnhT Il g1 % ga ||2 dridre eqb}
—1J1

M M
&5 ﬁ = ZZ |: </ / ZLOG 7’1,?”2,7"1,7"2) n || g1 X 82 || d’l’ld’l"2> H g1 X 89 ||2 d’rldr2 eu:|
o o
Cb an® = ZZ { (/ / n- VEG(Tl,Tg,’I’l,Tg) Il g1 x g2 |2 drldrg) Il g1 % g2 |2 dridrs e¢]
.
¢ ¢:Z{¢ / / 2rhh” | g1 % g2 |2d7’1d7“2e¢]
s M 1,1
¢'Fr = Z / / or |l g1 x g2 |2 dﬁd?b} (3.21)
] 1/

In the final linear system (3.21), the coefficient matrix is non-Hermitian matrix, so we use the
flexible Generalized RESidual method which is kind of the projection method using a Krylov subspace
to solve this system with variable preconditioning [16] [17]. We use the right preconditioned GMRES as
a preconditioner at each step of the Arnoldi process. We find that the convergence for the linear system
(3.21) is mainly influenced by the right preconditioner of GMRES. The generally used preconditioner,
Incomplete LU factorization with no fill-in and the dual threshold incomplete LU factorization, denoted
ILU(0) and ILUT respectively, did not work well, so we just use the IKJ version of Gaussian elimination
as the right preconditioner with some modifications. But this is inefficient for very large system, so it is

another issue.
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3.4 Dealing with the singularities

Because the Green’s function exhibits the singularity when the distance of the spatial point x and
the source point £ is very short, we have to pay attention to the integrations of it and it’s derivative.
One of the methods to overcome this integrations is well explained in [19], and we adopt it. It is that the
singular components are separated from the Green’s function, then integrations of that are evaluated in
a special manner and then because the rest is regular we can use the Gauss-Legendre quadrature.

The Green’s function can be divided by [10]
G(x;€) = 81+ 92 + 55+ G (3.22)

and
V:G(x;€) = S1 + Sy + S5 + Ve G (3.23)

where

r=/(x1— )2 + (22 — &)2 + (x5 — &)?2
' =/(z1— &)+ (32 — &)2 + (23 + &3)?

1

512;; S1=Ve S
1

5227; So = Ve S5y

Sy = 2K e (#atés) In[r’ — (x5 4+ &)]; Sz = Ve S
G and ViG : the regular part of the Green’s function (3.24)

The singular or nearly singular components of the Green’s function, shown in (3.22) and (3.23) are
depend on the distance between x and &, so we set up the following algorithm which is almost same with

[19]. This is for evaluating the integration of these components.

Table 3.1: A algorithm for integration of the singular components

when e = é when e # é
If x3and &3 =0 Ifﬁ—i>0.5andll7€;>0.5
S1, 55,53 @ singular integral 51,852,855 : subdivided domain integral
T Elseif & >05 | Else if £ > 05 and £ <05 |
St singuI;r integral S1 @ subdivided domai; integral

S5, 53 : subdivided domain integral

Else Else if f—z < 0.5 and ll—el > 0.5

S1 : singular integral S9,S3 @ subdivided domain integral

In Table 3.1, e denotes a element where x is defined, €’ is where £ belongs to, l¢ is half length of the
element e’ diagonal. The distance between the spatial position x and the centroid of the element ¢’ is
defined by {,, and between the point (z1, 2, —z3) and the centroid of the element e’ by I,/.

The subdivided domain integral is nothing but the element ¢’ is subdivided until the distance ratio
is smaller than some particular value. The distance ratio is ls to [, for Si, and l¢ to [,y for Sy and Ss.
You should be reminded that l¢, [,, and [,y correspond to the subdivided element. The critical value
that stops subdividing depend on your design criteria, but we choose 0.5 for it because approximately

this value gives reliable results when using four points Gauss-Legendre quadrature.
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A spatial point )

(rph Tp2)

/T2

Figure 3.3: Separating a domain for the singular integrals

To understand the singular integral, consider Fig. 3.3 where a spatial point xP is in the element

that we are going to compute. The singular integrals we have to evaluate are classed as

1
1
//fmdrldTQJ : the source type
2

—————dridreJ @ the dipole type
/ / IIRII

/ / fIn(|| R ||2)dridred  :  the logarithmic type (3.25)
—1J-1
where

R=x-x"

ox ox
o o ors
J
3x ox
J =
o x o I
f : a regular function (3.26)

We have interpolated like

4
X = Z hkxk
k=1
=C""riry +C"rp + Cry + C (3.27)

where, C™"2, C™_ and C" are corresponding coefficient vectors. So we get

R =C""(rirg — rpirpe) + C™ (r1 — rp1) + C™ (12 — rp2) (3.28)
and
R Cri™2 x C™2 - C™ (r17s ;Tpl’l’g — TpaT1 + Tp17p2) (3.29)
With (3.28) and (3.29), If we assume like
W=T1—Tp1; U0 =Tg —Tpe  in the region A (3.30)
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then (3.25) becomes

1

i ;
dvdu
/0 /*1*"';:2 ! | Crirz(uv + vrpy + 1p2) + C™ 4 Cr20 |2

1*7“1)1

2
1—r L
pl T—rp1

0 —1—7rpo
—rp1

1—r

Crim2 x O™ . Criw
| Cim2(uv + vrpr + 1p2) + C™1 4 CT20 ||2)3

_ dvdu
f(| v

2
1

1—7'1,1 %
/0 /717%2 fJu In(|| C™"2 (uv + vrpy + 1p2) + C™ + C™v || u)dvdu  in the region A (3.31)
.k

1

respectively. The worthy of notice in (3.31) is that the singular integrals become regular integrals, so we
can apply the Gauss-Legendre quadrature for evaluations. The other regions also could be changed by

same procedure, but the substitution variables are different according to the region, i.e.,

UW=T] —Trpi; WU =79 —Tp2  in the region A and C

UV =T —Tp1; W =Ty —Tp2 in the region B and D (3.32)
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Figure 4.1:

Chapter 4. Results

Breadth

Table 4.1: The test model description [Yago K. and Endo H. (1996)]

S

Bottom

In this chapter, we validate our mathematical formulation by comparing with an experiment result.

We also compute additional two models, a box-like model and a Wigley hull, and include the behaviors

4.1 Comparison with the experiment of a plate model

To validate the numerical formulation, it is recommended to compare with a experiment result.
Fortunately there is a experiment result for hydroelastic response of a mat-like floating structure in

regular waves. It is carried out by Yago K. and Endo H. [22] and the test description is in Fig. 4.1 and

— Length

Water depth

Schema of the experimental model [Yago K. and Endo H. (1996)]

Stiffness (ET)

1.788 x 10%kgf - m?

Test model Prototype
Scale ratio 30%77 1
| Lemgth (L) | 9.75m | 300m |
| Breadth (B) | 1om | 60m |
| Thickness (T) | 0.0545m | om |

4.87 x 1010kgf - m?

Water Depth 1.9m
% & Period | 0.1 ~ 1.0 (0.8 ~ 2.5sec.)
Wave height lcm, 2cm, 6 ~ 7cm

0 0°, 30°, 60°, 90°

—923 —

The model that we use for evaluating the our numerical formulation is in Fig. 4.2 and Table 4.2. We

......2 Incident wave



discrete the body surface 30 elements in e; direction and 6 elements in e, direction, so total 180 elements
and 217 nodes. Fig. 4.3 ~ Fig. 4.14 show the results of the comparison and the vertical displacement
of the numerical model. To easily figure out the vertical displacement, we divide it by the amplitude a
of the incident wave. Fig. 4.3 ~ Fig. 4.8 represent the results, as the frequency of the incident wave
varies. Fig. 4.9 ~ Fig. 4.14 is the results in oblique waves. As you can see in the figures, the results of

our numerical formulation are in considerably agreement with the experiment.
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...... ~~— Incident wave

Figure 4.2: Schema of the numerical plate model

Table 4.2: The numerical plate model description

L 9.75m
B 1.95m
T 0.0545m
Stiffness (ET) 1.788 x 103kgf - m?
Draft 0.0166m
Water Depth 1.9m
2 0.1, 0.5, 0.9
Wave height lem
) 0° for 2 =0.1, 0.5, and 0.9
30°, 60°, 90° for 2 = 0.5
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Figure 4.3: Comparison with the experiments, %
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Figure 4.4: Vertical displacements of the numerical model,
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1.5+
% =0.5 Cal. Exp.
—— O Center
-------- A Port side

————— O Starboard

|us|/a

Figure 4.6: Vertical displacements of the numerical model, % =0.5,0=0°
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1.5 4

% =0.5 Cal. Exp.
—— O Center
=30 v A Port side
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Figure 4.9: Comparison with the experiments, % =0.5, 6 = 30°

Figure 4.10: Vertical displacements of the numerical model, % =0.5, 8 = 30°
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Figure 4.13: Comparison with the experiments, % =0.5, 0 =90°

Figure 4.14: Vertical displacements of the numerical model, % = 0.5, 8 = 90°
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4.2 A box-like model

We have computed our mathematical formulation using another numerical model, a box-like struc-
ture. You should be careful when assembling the total stiffness matrix and mass matrix for the structure
at the node where two or three elements are jointed with a ridge angle, because the normal vector is
different at this node according to elements. One of solutions to this problem is just using six degree of
freedom at this node instead of five degree of freedom.

The numerical simulations have been performed using the model shown in the Fig. 4.15 and Table
4.3 . The discretization for this model is same with the plate model i.e., 180 elements with 217 nodes
on the top and bottom surface, so total 504 elements with 506 nodes. We evaluate the displacements
of the model as vary the incident angle. Fig. 4.16 ~ Fig. 4.23 show the results of that. We represent
the displacements of the model, which is divided by the incident wave amplitude, denoted a, on the top

surface and bottom surface in each figures.
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~~— Incident wave

Figure 4.15: Schema of the numerical box-like models

Table 4.3: The numerical box-like model description

L 10m
B 2m
D 0.1m
E 7 x 108N /m?
Draft 0.05m
Water Depth Infinite
0.5

(>

0°, 30°, 60°, 90°
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Top surface

|us|/a

Figure 4.16: Displacements of the numerical box-like model (top surface), % =0.5,0=0°

Bottom surface |

|us|/a

Figure 4.17: Displacements of the numerical box-like model (bottom surface), % =0.5,0=0°
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Top surface |

xo + |ugl/a © 0

Figure 4.18: Displacements of the numerical box-like model (top surface), % =0.5,0=30°

Bottom Surface, T -

|us|/a

xo + |ugl/a © 0

Figure 4.19: Displacements of the numerical box-like model (bottom surface), % =0.5, 0 = 30°
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Top surface / |

|us|/a

xo + |ugl/a © 0

Figure 4.20: Displacements of the numerical box-like model (top surface), % =0.5, 0 =60°

Bottom surface /\
o ““‘.‘.
< po

|us|/a

xo + |usl/a © 0

Figure 4.21: Displacements of the numerical box-like model (bottom surface), % =0.5, 8 = 60°
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Top surface

|us|/a

xo + |ugl/a © 0

Figure 4.22: Displacements of the numerical box-like model (top surface), % =0.5,0=90°

Bottom surface |

|us|/a

xo + |ugl/a © 0

Figure 4.23: Displacements of the numerical box-like model (bottom surface), % =0.5, 0 =90°
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4.3 A Wigley hull

To reflect three dimensional aspects of hydroelasticity, we studied a simple three dimensional ship-
like structure, a Wigley hull. The Wigley hull has been tested frequently in ship research because of its
simplicity. The geometry of the Wigley hull is defined by

-2

where B is breadth, L is length, and d is draft. For comparison, we use same geometrical values and
similar material properties with the model which has been tested already by Riggs H.R. et al.. [15]

The overall description of the numerical model is shown in the Fig. 4.24 and Table. 4.4. It is
difficult to adjust our model to the model generated by Riggs H.R. et al., because the finite shell model
is different with it. The length, breadth, depth, draft, and Young’s modulus are exactly same with it,
but others are not. We set the thickness as physical one for the top deck and the side hull, but it wasn’t.
We set the density uniformly over the whole structure so that the draft would be half of the depth, but
they had gave it only for the top deck. The total number of elements is 2800, 2780 of which are the
four-node quadrilateral shell elements and 20 are three-node triangular shell elements. The number of
quadrilateral and triangular elements is exactly same with his model, but we use the MITC3 and MITC4
shell elements to avoid the shear locking phenomenon. The overall meshes are shown in the Fig. 4.24
where a 10 x 100 mesh for the top deck and 9 x 100 meshes for the left and the right hulls respectively.

Fig. 4.25 and Fig. 4.26 represent the response amplitude operators for the displacement of bow,
stern at middle of the top deck, and the center of the top deck respectively, where a means the incident
wave amplitude and T means the it’s period. We computed the model for the case that the wave period,
T, is from 2 to 18 step by 2 and the incident angle 6 is zero. As you can see in these figures, overall
aspects are similar each other, but don’t exactly same. This may be caused by the difference material
properties and finite shell elements, as mentioned before.

We show the results for different incident angles. For a wave the length of which is half of the length
of the model, Fig. 4.27 ~ Fig. 4.42 show the displacements of the model. To easily see the displacements,

we divided it by the amplitude of the incident wave and magnify that to ten times.
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Figure 4.24: A Wigley hull model and it’s meshes

Table 4.4: The numerical Wigley hull model description

Length (L) 100m
Breadth (B) 10m
Depth (D) 4.5m

0.25m for the top deck

Thickness (¢
ickness (f) 0.15m for the side hull

Draft (d) 2.25m
Density (p) 2.353 x 103kg/m3
Young’s modulus (E) 7.5 x 10°N/m?
Water Depth Infinite
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|us|/a

1.5+

—v—Bow
—a—Stern
--v--Bow (Riggs H.R.)
--4--Stern (Riggs H.R.)

— 1T 1 T T T 1T T 1
10 12 14 16 18

T (sec.)

Figure 4.25: Vertical displacements of bow and stern at middle of the top deck (R.A.O.)

|us|/a

1.0
0.8 -
0.6
0.4 -
0.2
K —e— Center
_ e --e--Center (Riggs H.R.)
0.0 -— 77—
2 6 8 10 12 14 16 18
T (sec.)

Figure 4.26: Vertical displacements of center of the top deck (R.A.O.)
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1+ 10 x |u1]/a

x5 + 10 x |us|/a

Monso

&

29 + 10 X |us|/a ® -50

Figure 4.27: Displacements of the numerical Wigley hull model, overall, % =0.5,0=0°

50

1+ 10 x |u1|/a

3 + 10 x |us|/a

Nownso

5

22 + 10 X |uzl/a

Figure 4.28: Displacements of the numerical Wigley hull model, the top deck, % =0.5,0=0°
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50

1+ 10 x |u1]/a

x5 + 10 X |us|/a
-50

22 + 10 X |uzl/a 0

Figure 4.29: Displacements of the numerical Wigley hull model, the left hull, % =0.5,0=0°

50

1+ 10 x |u1|/a

x5+ 10 x |ug|/a

Nomnso

0

-50

2 + 10 x \uz\/a-s

Figure 4.30: Displacements of the numerical Wigley hull model, the right hull, % =0.5,0=0°
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Displacements of the numerical Wigley hull model, overall,

Figure 4.31:
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Figure 4.32: Displacements of the numerical Wigley hull model
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Nomsro

5

x4+ 10 X |ug|/a © -50

Figure 4.33: Displacements of the numerical Wigley hull model, the left hull, % =0.5, 0 = 30°
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x5+ 10 x |ug|/a g T 1+ 10 X |uy|/a
0
2

-50

Zo + 10 X |ug|/a’®

Figure 4.34: Displacements of the numerical Wigley hull model, the right hull, % = 0.5, 6 =30°

— 44 —



Q
[re}

3
=~
©
=
X
=
IT
el
B

1+ 10 x |ui|/a

-50

-5

2o + 10 X |uz|/a

0.5, 6 = 60°

A
L

Figure 4.35: Displacements of the numerical Wigley hull model, overall,
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Figure 4.36: Displacements of the numerical Wigley hull model, the top deck,
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0 - 600 . » 50

23 +10 ¥ |uz|/a 5
21+ 10 X |ui|/a

22 + 10 X |us|/a 0 0

Figure 4.37: Displacements of the numerical Wigley hull model, the left hull, & = 0.5, § = 60°

|

50

3 + 10 x |ug|/a

21+ 10 % |uq|/a

-50

5
22 + 10 X |uz|/a

Figure 4.38: Displacements of the numerical Wigley hull model, the right hull, % = 0.5, 8 = 60°
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23+ 10 x |us|/a

1+ 10 x |ui|/a

10 -30

5
-40

0
x2 4+ 10 % |uzl/a -5 -50

Figure 4.39: Displacements of the numerical Wigley hull model, overall, % =0.5,0=90°

50

23+ 10 x |us|/a

1+ 10 x |ui|/a

10 -30

5

o -40

w2 4+ 10 X |ugl/a -5 -50

Figure 4.40: Displacements of the numerical Wigley hull model, the top deck, % = 0.5, 8 = 90°
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0 = 90°

50

x3 + 10 x \ug\/a 5

z1 4+ 10 X |ug|/a

10

5 -50
z2 + 10 X |uz|/a

Figure 4.41: Displacements of the numerical Wigley hull model, the left hull, % =0.5, 0 =90°
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23 + 10 X |us|/a
1 +10 X |ug|/a

-50

x2 + 10 X |uz|/a

Figure 4.42: Displacements of the numerical Wigley hull model, the right hull, % =0.5,0=90°
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Chapter 5. Conclusion

We have studied the three dimensional hydroelastic behavior of shell structures under regular waves.
With appropriate assumptions, we derived the coupled equations for the general three dimensional hy-
droelastic analysis. To solve the coupled equations, we used the finite element method for the shell
structure and boundary element method for the fluid. From comparison with the experiment results, we
validated our mathematical formulation. To confirm the results related to three dimensional aspects of
hydroelasticity, we simulated two additional models, one is the box-like model and another is the Wigley

hull. In both cases, we have obtained satisfying results.
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Appendices
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Chapter A. The algorithm for the free surface

Green’s function

As mentioned before, the integral form of the free surface Green’s function is highly complex and
inefficient to evaluate. To overcome this problem, the Green’s function has been studied a lot and very
useful algorithm has been developed [1], [6], [10], [11], [12], [13], [14], [21]. That algorithms for infinite

and finite depth cases are introduced in this chapter .

A.1 Infinite depth case

1
G = +KF(X,Y)—2rKe ¥ Jy(X)i

R? + (23 — &3)? (X.Y) 0(X)
oG R X 2
== —K2<—7re_YHX+YX—
R~ (wrmognl  \Greyai o TR

2V
+ dt — + oK%Y J(X)i

o | e ) R

8£_ (§3 — 3) 1 Y

) —onK2eY Jo(X)i

06 (R?+ (23— &)?)% \/W+F+ (X2 +Y2)3

where

w2

K=2
g

R=+/(v1 —&)2+ (22 — &)?
X =KR
Y=K]|z3+& |2

> 1
F(X,Y)=PV. / T oY B X)dr
o T—
1 Y t—Y
:7—7T6_Y(H()(X)+K)(X))—2/ 76 dt
\/X2+Y2 0 ,/X2+t2

and J,, Y, and H,, are Bessel functions of the first, second kind and Struve function respectively (order

n,n=0,1).

(1) In the domain, 8 < X and 20 <Y
Y 1

Py (
0 “/X2+t2 Zn L /X2+Y2)(X2+Y2)%(n+1)




where P, is Legendre polynomial.

(2) In the domain, X < Y

1
2

1 X (X2 S (m— 1)y
F(X,Y):\/W+QZ%( (n!)/2) (2_:1( Ym) ., YEZ(Y))

where Ei(Y") is exponential integral.

(3) In the domain, 3.7 < X and 4Y < X

t— N —2n
G 1<10(Y)+Z(1>"X. Mm(Y))

—dt =
0 VX2 +1t2 X
where

Iozl—e_y

Iy, =Y?" —2nY?" 1 4 20 (2n — 1) oo

(4) In the domain, ¥ < 2 and the rest of X except the above region

F(X,Y) ! 2e=Y ( Jo(X)1 (Y+ 1+Y2)
T e—— e n — —_—
’ Jxzrvz o\ X X2
T T o0 o0
“Yo(X) 4+ ——=Hy(X)V/ X2+ Y2 X2 4 Y? X?2Zmyn
# 500+ T ORI YRZ L2 S 3 O™y )
where
1
Cop=——
"+ D) (n+1)!
n+2
Cmn - _(m)cmfl,rwr?
(5) In the rest domain, 2 <Y < 20
Y t—Y -Y
e 1 e Y
dt = - R(X,Y
0 1/)(2_’_152 X2+Y2 X + (X2—|—Y2)% ( ) )
Y t -Y
_ te Yy —1 e Y(Y —2)
Y
e dt = + + ~Rx(X,Y
0 VX242 VXZr2 X (X24Y2)3 %.Y)
or
Y t Yy —1 Yy -1
e Y fe c W=D prx,v)

dt = + +
0o VXZFi2 VXZEe2 X (X24Y2):

where R(X,Y) and Rx(X,Y) (or Ra'(X,Y)) are some slowly-varying functions, and could be approxi-
mated by double Chebyshev expansions.
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A.2 Finite depth case

! 1
= \/R2 l‘3—§3 \/RQ 2h+$3—|—€3)2
* (k+ K)coshk(zs + h) cosh k(& + h) _;p
2 kR)dk
" /0 k sinh kh — K cosh kh e " Jo(kR)
k2h — K2h+ K

+ 2 cosh ko(x3 + h) cosh ko(&5 + h)Jo(koR)i

where h is the water depth, and kg is positive real root of the dispersion relation.

(1) In the domain, § < %

K2 k3

m cosh ko (333 + h) cosh kO (53 + h) [%(kOR) + ZJO(ICOR)]

G =2r

+4i fip + K cos kn (3 + h) cos k(&3 + h) Ko(knR)
K2h+ K2h— K " iss 0%

§—2 ﬂcoshk (x3 4+ h) cosh ko(&3 + h)[—koY1(koR) — ikoJ1(koR)]
6R_7Tk;§h—K2h+K o3 0(&3 oY1 (ko 0J1(ko

- k2 + K2
—4 z:; m cos kn (3 + h) cos k(&3 + h)kn K1 (kn R)

oG K2 k2 . .
8763 = 2kao cosh k’o(.%'g + h) sinh k0(€3 + h) [YO(kOR) + ZJ()(]COR)}
0
0 k2 4+ K2

Z k2h + K2h — Kk cos kn(x3 + h)sink, (&3 + h) Ko (k,R)

where K, is modified Bessel function of the second kind (order n, n = 0,1), and k,, is positive pure

imaginary roots of the dispersion relation multiplied by —i (n =1,2,--+).

(2) In the domain, & <1

Re(G) = KL(X,|Y — Z|,H) + KL(X,2H — Y — Z, H)

oG oL OL
Re K== K==
(BR) 0X l(x,|y—2z|,H) + 0X |(X,2H-Y -2,H)
oG oL 0L
Re 2 — K?— for Y —-2Z2>0
(853) IV l(x,(v-2),H) OV (X,2H-Y —2,H) o -
oL oL
= K = K?— for Y -Z
oV (x,(z-v),H) + OV (X, 2H-Y 2 H) o <0
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where the auxiliary function L is defined by

1 *©  (k+1)coshkV  _,y
L=————F+PV. Jo(kX) dk
(X2 +V2)3 + /0 kesinh kH — cosh kH o(kX)

1

> 1 9e—kH
PV. — k+ 1) cosh kVe * Jy(kX) dk
" V/o (ksinth—costh k‘—l)( + 1) cosh kVe Jy (kX)

where

X =KR, Y =Kl|zs|, Z=K|&|, H=Kh

The integral in the above equation L could be approximated by Chebyshev expansions, because we can
evaluate it by using contour integration. One example of contour to evaluate the integral in the equation
L is shown in the Fig. A.1.

I

Im. ¢
T l,
5H ¢
c, O
7\ 7\ > -_—
1 ko o0

Re.

Figure A.1: One example of contour for the integral in the equation L

If we define like

1 2eFH _LH
F(k) = (ksinhk:H “coshkH k-1 ) (k+ 1) cosh kVe™ 7 Jo(kX)

then from Cauchy’s integral theorem
7{ f(z)dz=0, z=z+yi
c

where z is real component and y is image component of complex variable z. So, with residue integration

method we can compute the integral in the equation L like

P.V./0 F(k) dk
g 0 0
== [Ls@a= [ s@a- [T - [ @] ae [
where
f(z)dz = —miRes[f(2),z = 1]
Cy
f(z)dz = —miRes[f(2), z = ko]
Ca
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Chapter B. Special cases

When the body surface, Sg, is at z3 = 0, i.e. very thin plate or beam cases, we can modify the
coupled equations, (2.50) and (2.51), more efficiently. In these cases, the final equations are coupled by

the displacements of the structure and the total pressure of the fluid.

B.1 The plate case

Consider the right side of the equations (2.35). As we mentioned before, the coefficient —27 comes
from the integration of the source component of the Green’s function over very small surface. In general
case, as you can see in the equation (3.22), the influence source component for the coefficient is Sy
because the integrations of the others over very small surface are just zero. In the plate case, however,

the influence source components are S; and S5 because z3 and &3 are both zero. So

A +%) o KA -
[ o@% s = [ oy (wa —nP G —xz>2> "

~o0) [ o (2)ass r= V@ ar @ er

. Ong \r

~ ¢(x)22m
= 4r(x)

where S, means the very small half sphere surface that has been cut out, and x is on the plate surface.
So (2.37) becomes

rox) — 9G(:8)
o) = [ (o070 ~ G Jos ) d
9G(x; Q — G(x: §) or X on

and (2.38) becomes

_ IG(x:E)
—aror) = [ (o070 - G

oo

) dS (&) for x on Sp

By adding above two equations, then we get

(¢(g)ag7i’(‘éf) ~ G(x; 9%) dSE(€)  for x on Sp (B.1)

From the second condition of (2.27), (B.1) becomes

—Ard(x) + dndr(x) = /

SB

—Arp(x) + dwpr(x) = /

SB

2
<¢(£)a; — ing,) G(x;€£)dSp(¢) for x on Sp

and by the Bernoulli’s equation we get

i (P(x) _ ZL X:
. <pw+gus> +amono = [ i PG €)A55(e) (B.2)
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The variational form of (B.2) is then

_/ 471-Z Px) ) P(x)dSp(x )—/ 47T£gU3P(X)dSB(X)—|—/ 47 (x)P(x)dSp(x) =
SB Se S

W Py =

/sB /SB ’@P G(x;£)dSp(§)P(x)dSp(x)  (B.3)

The equation for the structure, (2.50), is
—/ w?psa’u dvV +/ elocdV = [ PusdSp (B.4)
1% 1% Sp

where P means the total pressure. The advantages of the above coupled equation where the total pressure
and the displacements of the structure are coupled are first, we don’t need to evaluate the derivative of

the Green’s function and second, we can get the symmetric linear system by discretization.

B.2 One dimensional beam case

& Incident wave
<

Abeam structure

h Fluid

Bottom

Figure B.1: Schema of one dimensional beam case

In two dimensional fluid, the free surface Green’s function with strength 27 is defined by [6], [21]

G=Mn\/(z1 — &) + (23 — &)? + In /(21 — &)2 + (2h + 23+ &3)% — 2Inh

(K + k)e *" cosh k(&3 + h) cosh k(z3 + h) cos k|zq — | e kh
—2P.V. dk B.5
/ { k(ksinh kh — K cosh kh) k (B-5)
or series representation like
= —2mi Z — K cosh ky, (23 + h) cosh ky, (€5 + h)et*rlo1 =61l (B.6)
kn k?h K2h + K)
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for finite depth case, and

~Z_ldk (B

® [(K + k)eF@stes) cosk|oy — &| e F
WK —F) z

G=In(z1 - &)+ (v3 — &)2 + P.V./

0

for infinite depth case, where h is the water depth, K = ‘”72, ko is the positive real root of the dispersion
relation, and kq, ko, ... are the positive pure imaginary roots of the dispersion relation multiplied by —i.
(2.35) becomes

0 for x outside S¢

G(x:8) iy ¢ 90(8) _ ) six or X on
[ (0% - e 528 ) asete ke (B.5)
To(x or x inside S¢
With above equations, we can obtain
_ O0G(X8) iy . ¢ 90(E) L x on
mol) ~2ms(x) = [ (06 Gt~ GonO)FAS ) dSs(©)  TrxonsSy (B9

So, the variational forms of the coupled equations for two dimensional case are
- /szpSﬁTu dV + /V elgdV = — /SB iwppoduln dSg — /SB pwgustin dSp (B.10)
and
[ 706660 dSato — [ 2r01()50) dSn(x) =
SB SB
0G(x; _
L[ (0% 58 - isiseuie) ni)) dsn©dxasat0 (B
Sp JSp on(§)

In the beam case where Sg is at 3 = 0, above coupled equations with same procedure in the plate

case could be changed like

f/ w?psalu dV+/ o dV:/ Pig dSp (B.12)
\4 \4 SB

and

/s QWEEP(x)dSB(X)—F/

SB

27r1gu3]5(x)d53(x)—/5 2 (x)P(x) dSp(x) =

/ / z—P G(x;¢)dSp(€)P(x)dSp(x) (B.13)
S JSp

Pw9

The same advantages of the plate case could be applied to the one dimensional beam case with above

equations.
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Summary

Hydroelastic analysis of three dimensional floating structures
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