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기법 개발. School of Mechanical and Aerospace Engineering, Department of Mechanical

Engineering . 2016. 106p. Advisor Prof. Lee, Phill-Seung. Text in English.

ABSTRACT

In this work, a numerical method for a 3D linear hydroelastic analysis of floating structures with

liquid tanks subjected to surface regular water waves is developed and compare the numerical results

with experimental tests. Considering direct couplings among structural motion, sloshing, and water

waves, a mathematical formulation and a numerical method are developed. The finite element method

is employed for the floating structure and internal fluid in tanks, and the boundary element method is

used for the external fluid. The resulting formulation completely incorporates all the interaction terms

including hydrostatic stiffness and the irregular frequency effect is removed by introducing the extended

boundary integral equations.

Important issues of the 3D hydroelastic problem are the complete inclusion of hydrostatic stiffness

and hydrostatic equilibrium of elastic floating structures. The hydrostatic stiffness is composed of the

sum of the hydrostatic pressure and initial stress effects. Therefore, an explicit expression of geometric

stiffness that is related to the hydrostatic pressure is required, and the hydrostatic analysis should be

pre-performed before the hydrodynamic analysis to obtain the initial stress fields.

An updated Lagrangian finite element (FE) formulation for a geometrically nonlinear hydrostatic

analysis of flexible floating structures subjected to buoyancy, self-weight, and various external static

loads is developed. The nonlinear equation is linearized with respect to a reference configuration and the

resulting FE formulation is iteratively solved using the Newton-Raphson method. A special numerical

integration technique is developed to handle the wet-surface change without re-meshing. Through the

proposed numerical method, the hydrostatic equilibrium can easily be calculated considering various

static and quasi-static loading conditions and the stress field of elastic bodies is more accurately evaluated

in a large deformation case.
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Chapter 1. Introduction

For a long time, the hydrodynamic analysis of floating structures has been typically based on the

rigid body assumption. The rigid body hydrodynamic analysis has been deemed adequate for the design

of floating structures where rigid body motions are dominant. However, as the size of floating structures

is getting larger to the extent that the flexible motions of floating structures account for a substantial

portion of the hydrodynamic responses, the rigid body assumption is no longer resonable for the hydro-

dynamic analysis of floating structures.

More recently, the hydrodynamic analysis of floating liquid storage structures subjected to surface

regular waves has been widely studied due to the significant increase in demand for floating production

storage and offloading (FPSO) units, floating liquefied natural gas (FLNG) units, and other related

structures. Recently, the size and the weight of floating liquid storage structures are becoming increas-

ingly greater in tandem with growing market demand and on the basis of their economic benefits. In

such floating structural systems, the assumption of rigid body motions is no longer suitable because, as

the dimensions of floating structures increase, the overall stiffness decreases, resulting in relatively low

resonant frequencies close to the range of excitation frequencies and sloshing resonance frequencies.

Most previous studies mainly addressed the coupling effect between rigid body motions and sloshing.

However, the size and the weight of floating liquid storage structures are becoming increasingly greater

in tandem with growing market demand and on the basis of their economic benefits. In such floating

structural systems, the assumption of rigid body motions is no longer suitable because, as the dimen-

sions of floating structures increase, the overall stiffness decreases, resulting in relatively low resonant

frequencies close to the range of excitation frequencies and sloshing resonance frequencies. In spite of

the increasing importance of the hydroelastic behavior of floating liquid storage structures, few related

studies have been reported. Accordingly, a complete mathematical formulation has not been developed

and the numerical results have not been verified by experimental studies.
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Important issues for the general 3D hydroelastic problem are the explicit inclusion of hydrostatic

stiffness and the use of accurate hydrostatic equilibrium of elastic floating structures. The hydrostatic

stiffness is related to the sum of the hydrostatic pressure and initial stress effects. Therefore, an explicit

expression of geometric stiffness that is related to the hydrostatic pressure is essential, and the hydro-

static analysis should be pre-performed before the hydrodynamic analysis.

Until now, the hydrostatic equilibrium has been calculated based on the rigid body assumption

using various methods, where floating structures are assumed to be rigid. While those methods are sim-

ple, they are not always applicable to flexible structures and require additional works (such as pressure

projection) to calculate the stress fields of floating structures caused by hydrostatic pressure. Recently,

the importance of hydrostatic stiffness in hydroelastic analyses has been extensively investigated. A hy-

drostatic analysis has become a prerequisite to obtain stress fields required for constructing the complete

hydrostatic stiffness in hydroelastic analyses.

Nevertheless, it is hard to find methods to accurately calculate the hydrostatic equilibrium (and

stress fields) of flexible floating structures. Basically, the hydrostatic analysis of floating structures is

nonlinear, mainly because of large motion and wet-surface change. Furthermore, when floating structures

are modeled using finite elements, difficulty arises from non-matching between the finite element mesh

and the free surface. Such non-matching mesh problems frequently occur in the analysis of fluid-structure

interaction problems and proper treatment is an important issue in numerical analyses

.

Therefore, a general method to calculate the hydrostatic equilibrium of 3D flexible floating struc-

tures, by which accurate draft and stress fields of structures should be developed in collaborate with the

development of numerical method for 3D hydroelasticity.
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Chapter 2. Hydrostatic analysis

2.1 Introduction

In ocean environments, floating structures such as ships, offshore platforms, and offshore facilities

are always subjected to various hydrostatic and quasi-static loads (e.g. structural weight, ballast water

weight, and cargo weight) [1]. Calculating hydrostatic equilibrium is basic and important for analyzing

the stability and strength of floating structures.

For a long time, hydrostatic equilibrium has been calculated based on the rigid body assumption us-

ing various methods [2, 3, 4, 5, 6, 7, 8, 9], where floating structures are assumed to be rigid. While those

methods are simple, they are not always applicable to flexible structures and require additional works

(such as pressure projection) to calculate the stress fields of floating structures caused by hydrostatic

pressure. Recently, the importance of hydrostatic stiffness in hydroelastic analyses has been extensively

investigated [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A hydrostatic analysis has become a prereq-

uisite to obtain stress fields required for constructing the complete hydrostatic stiffness in hydroelastic

analyses [10, 11, 12].

Nevertheless, it is hard to find methods to accurately calculate the hydrostatic equilibrium (and

stress fields) of flexible floating structures. Basically, the hydrostatic analysis of floating structures is

nonlinear, mainly because of large motion and wet-surface change. Furthermore, when floating structures

are modeled using finite elements, difficulty arises from non-matching between the finite element mesh

and the free surface. Such non-matching mesh problems frequently occur in the analysis of fluid-structure

interaction problems and proper treatment is an important issue in numerical analyses [22, 23, 24].

The objective of this study is to develop a general method to calculate the hydrostatic equilibrium

of 3D flexible floating structures, by which accurate draft and stress fields of structures are obtained. We

employ an updated Lagrangian finite element formulation [25, 26] for a nonlinear hydrostatic analysis
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of flexible floating structures. After nonlinear terms are linearized, we obtain incremental equilibrium

equations, which are iteratively solved using the Newton-Raphson method. Wet-surface change, normal

vector change, and buoyancy change due to structural displacement are completely considered [10, 12].

To efficiently handle the non-matching mesh problem without re-meshing, a special numerical integra-

tion technique is developed. The proposed formulation and numerical method also can be used for a

hydrostatic analysis of rigid floating structures as well as flexible floating structures.

The incremental equilibrium equations are presented in Section 2.2. The finite element discretization

procedure and the equations for a rigid body analysis are derived in Section 2.3. In section 2.4, an effective

numerical integration technique is developed and the feasibility of the proposed numerical procedure is

demonstrated through various nonlinear hydrostatic problems in rigid and elastic body cases in Section

2.5.
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2.2 Incremental equilibrium equation

As shown in Figure 2.1(a), a three-dimensional (3D) flexible structure is floating in calm water and

a fixed Cartesian coordinate system (x1, x2, x3) is introduced. The structural material is assumed to be

homogeneous, isotropic, and linear elastic. In the initial state, the floating structure does not interact

with water. Through a nonlinear hydrostatic analysis, we can obtain the hydrostatic equilibrium, where

the external forces (e.g. surface force, body force, and hydrostatic pressure) are balanced, as shown in

Figure 2.1(b). The volume and surface of the floating structure are denoted by V and S, respectively.

In particular, hydrostatic pressure is applied on the wet-surface, Sw.

The incremental equations for the freely floating structure are obtained through the updated La-

granagian formulation [25, 26]. In Figure 2.2, two configurations are demonstrated and they are denoted

by the left superscripts t and t+∆t, respectively. The material point vectors for the floating structure in

the configuration at time t and t + ∆t are expressed by txi and t+∆txi, respectively. The displacement

vectors of the floating structure are then defined by

t+∆t
t ui = t+∆txi − txi, (2.1)

Also, the hydrostatic pressure fields are defined as

tP = −ρwgtx3,
t+∆tP = −ρwgt+∆tx3, (2.2)

where ρw is the density of water and g is the gravitational acceleration.
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Figure 2.1: Hydrostatic analysis of flexible floating structure.
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Figure 2.2: Two configurations of flexible floating structure.
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The local equilibrium equations at time t+ ∆t are given by

∂t+∆tσij
∂t+∆txj

− t+∆tρsgδi3 = 0 in t+∆tV,

t+∆tσij
t+∆tnj = −t+∆tP t+∆tni on t+∆tSw,

t+∆tσij
t+∆tnj = t+∆tfsi

t+∆tni on t+∆tS, (2.3)

where σij is the Cauchy stress tensor, fsi is the surface force, ρs is the density of the floating structure,

ni is the unit normal vector outward from the floating structure, and δi3 is the Kronecker delta.

After applying the principle of virtual work at time t+ ∆t, the following weak formulation can be

obtained:

∫
t+∆tV

t+∆tσijδt+∆teijd
t+∆tV =−

∫
t+∆tV

t+∆tρsgδu3dt+∆tV

+

∫
t+∆tSw

ρwg
t+∆tx3

t+∆tniδuid
t+∆tS

+

∫
t+∆tSw

t+∆tfsi g
t+∆tniδuid

t+∆tS (2.4)

where δt+∆teij is the virtual linear strain tensor that corresponds to the virtual displacements δui,

δt+∆teij =
1

2

(
∂δui

∂t+∆txj
+

∂δuj
∂t+∆txi

)
. (2.5)
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We then obtain the incremental equilibrium equation for a nonlinear hydrostatic analysis after lin-

earizing all the terms in Equation 2.4 with respect to the configuration at time t,

∫
tV

Cijrs
t+∆t

tersδteijd
tV +

∫
tV

tσijδ
t+∆t

tηijd
tV

−
∫
tSw

ρwg
t+∆t

tu3
tniδuid

tS −
∫
tSw

ρwg
tx3

tnj
t

t+∆tQijδuid
tS

=−
∫
tV

tρsg δu3dtV −
∫
tV

tσijδeijd
tV +

∫
tSw

ρwg
tx3

tniδuid
tS +

∫
tS

tfsi
tniδuid

tS (2.6)

with

t+∆t
teij =

1

2

(
∂t+∆t

tδui

∂txj
+
∂t+∆t

tδuj

∂txi

)
, δt+∆t

tηij =
1

2

(
∂δuk
∂txi

∂t+∆t
tδuk

∂txj
+
∂t+∆t

tδuk

∂txi

∂δuk
∂txj

)
,

t
t+∆tQij = δij

∂t+∆t
tδuk

∂txk
+
∂t+∆t

tδuj

∂txi
, (2.7)

where t+∆t
tui is the displacement from the configuration at time t to the configuration at time t + ∆t,

t+∆t
tηij is the virtual nonlinear strain tensor, and Cijrs is the stress-strain relation tensor. In Equa-

tion 2.6, all the static and kinematic variables refer to the configurations denoted by tV , tSw, and tS.
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The iterative form of Equation 2.6, for the Newton-Raphson method, is for n=1, 2, . . . ,

∫
t+∆tV (n−1)

Cijrs∆t+∆te
(n)
rs δt+∆teijd

t+∆tV +

∫
t+∆tV (n−1)

t+∆tσ
(n−1)
ij δ∆t+∆tη

(n)
ij dt+∆tV

−
∫
t+∆tS

(n−1)
w

ρwg∆t+∆tu
(n)
3

t+∆tn
(n−1)
i δuid

t+∆tS

−
∫
t+∆tS

(n−1)
w

ρwg
t+∆tx

(n−1)
3

t+∆tn
(n−1)
j ∆t+∆tQ

(n)
ij δuid

t+∆tS

= −
∫
t+∆tV (n−1)

t+∆tρ(n−1)
s gδu3dt+∆tV −

∫
t+∆tV (n−1)

t+∆tσ
(n−1)
ij δeijd

t+∆tV

+

∫
t+∆tS

(n−1)
w

ρwg
t+∆tx

(n−1)
3

t+∆tn
(n−1)
i δuid

t+∆tS +

∫
t+∆tS(n−1)

t+∆tfsi
t+∆tn

(n−1)
i δuid

t+∆tS, (2.8)

where ∆t+∆te
(n)
ij , ∆t+∆tη

(n)
ij , and ∆t+∆tQ

(n)
ij are defined by substituting t+∆t

tui and txi with ∆ui and

t+∆tx
(n−1)
i in Equations 2.6 and 2.7, respectively, and ∆ui refers to the increment of the structural

displacement at the iteration n.

Note that in Equations 2.8, all the quantities with superscripts (n − 1) and (n) are evaluated

to the configuration updated at the iteration n, i.e., t+∆tV (n−1), t+∆tS
(n−1)
w , and t+∆tS(n−1), where

t+∆tV (0) = tV , t+∆tS
(0)
w = tSw, and t+∆tS(0) = tS. Also, for n=1, t+∆tσ

(0)
ij = tσij .
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The material point vector is updated as

t+∆tx
(n)
i = t+∆tx

(n−1)
i + ∆u

(n)
i ; t+∆tx

(0)
i = txi. (2.9)

The structural density and the Cauchy stress tensor should be updated during iterations using the

following relations:

t+∆tρ(n)
s =

t+∆tρ
(n−1)
s

det
(

∆t+∆tF
(n)
ij

) for the structural density,

t+∆tσ
(n)
ij =

t+∆tρ
(n)
s

t+∆tρ
(n−1)
s

∆t+∆tF
(n)
ik

t+∆tS
(n)
kl ∆t+∆tF

(n)
jl for the Cauchy stress tensor, (2.10)

where ∆t+∆tF
(n)
ij and t+∆tS

(n)
ij are the deformation gradient and the second Piola-Kirchhoff stress ten-

sors at the iteration n.

The second Piola-Kirchhoff stress tensor t+∆tS
(n)
ij is obtained through the following relation:

t+∆tS
(n)
ij = t+∆tσ

(n−1)
ij + ∆S

(n)
ij ; with ∆S

(n)
ij = Cijrs∆e

(n)
rs , (2.11)

where ∆S
(n)
ij and ∆e

(n)
rs are the second Piola-Kirchhoff stress increment tensor and the linear part of the

Green-Lagrange strain increment tensor, respectively.
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2.3 Finite element discretization

In this section, we discretize the incremental equilibrium equation using the standard finite element

procedure. In addition, the incremental equation for rigid floating structures is derived by introducing

the generalized coordinates.

2.3.1 General flexible body hydrostatics

In the iteration n, for the finite element (e), the increment of the structural displacement ∆u
(n)
i is

approximated as,

∆u(n)(e) = t+∆tH(n)(e)∆U(n), (2.12)

where ∆U(n) is the nodal incremental displacement vector and H is the displacement interpolation

matrix used in the finite element method. The same interpolation matrix is also used for the virtual

displacement.

Substituting Equation 2.12 into Equation 2.8 and applying the standard finite element assemblage

process, the following incremental equation in matrix form is obtained:

[
t+∆tK

(n)
L + t+∆tK

(n−1)
NL − t+∆tK

(n)
HD −

t+∆tK
(n)
HN

]
∆U(n)

= −t+∆tR
(n−1)
B − t+∆tR

(n−1)
I + t+∆tR

(n−1)
HS + t+∆tR

(n−1)
S (2.13)
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where the matrices are evaluated by

t+∆tK
(n)
L =

∑
e

∫
t+∆tV (n−1)(e)

t+∆tB
T (n)(e)
L C(e) t+∆tB

(n)(e)
L dt+∆tV,

t+∆tK
(n−1)
NL =

∑
e

∫
t+∆tV (n−1)(e)

t+∆tB
T (n)(e)
NL

t+∆tσ(n−1)(e) t+∆tB
(n)(e)
NL dt+∆tV,

t+∆tK
(n)
HD =

∑
e

∫
t+∆tS

(n−1)(e)
w

ρwg
t+∆tHT (n)(e) t+∆tn(n−1)(e) t+∆tH

(n)(e)
3 dt+∆tS,

t+∆tK
(n)
HN =

∑
e

∫
t+∆tS

(n−1)(e)
w

ρwg
t+∆tx

(n−1)
3

t+∆tHT (n)(e) t+∆tQ
(n−1)(e)
N

t+∆tH(n)(e)dt+∆tS,

t+∆tR
(n−1)
B =

∑
e

∫
t+∆tV (n−1)(e)

t+∆tρ(n−1)(e)
s g t+∆tH

T (n)(e)
3 dt+∆tV,

t+∆tR
(n−1)
I =

∑
e

∫
t+∆tV (n−1)(e)

t+∆tB
T (n)(e)
L

t+∆tσ̂(n−1)(e) dt+∆tV,

t+∆tR
(n−1)
HS =

∑
e

∫
t+∆tS

(n−1)(e)
w

ρwg
t+∆tx

(n−1)
3

t+∆tHT (n)(e) t+∆tn(n−1)(e) dt+∆tS,

t+∆tR
(n−1)
S =

∑
e

∫
t+∆tS(n−1)(e)

t+∆tHT (n)(e) t+∆tfs(e) t+∆tn(n−1)(e) dt+∆tS, (2.14)

where C is the stress-strain law matrix, BL is the linear strain-displacement relation matrix, BNL is the

nonlinear strain-displacement relation matrix, H3 is the interpolation matrix for the component ∆u3,

and σ̂ is the vector form of the Cauchy stress tensor σij . The matrix t+∆tQ
(n−1)(e)
N is defined by

t+∆tQ
(n−1)(e)
N = δik

t+∆tx
(n−1)
k

∂

∂t+∆tx
(n−1)
j

− t+∆tx
(n−1)
k

∂

∂t+∆tx
(n−1)
i

(ei ⊗ ej) , (2.15)
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Note that the matrix
[
t+∆tK

(n)
L + t+∆tK

(n−1)
NL − t+∆tK

(n)
HD − t+∆tK

(n)
HN

]
in Equation 2.13 is a sin-

gular matrix, because there is no stiffness for the rigid translational motion in the x1- and x2- directions.

Therefore, a proper boundary condition is required for the directions.

Equation 2.13 should be iterated until the linearization error satisfies the following criteria:

∥∥∥∥∥∆uT (n) · (−t+∆tR
(n−1)
B − t+∆tR

(n−1)
I + t+∆tR

(n−1)
HS + t+∆tR

(n−1)
S )

∆uT (1) · (−t+∆tR
(0)
B − t+∆tR

(0)
I + t+∆tR

(0)
HS + t+∆tR

(0)
S )

∥∥∥∥∥ 2 ≤ εE (2.16)

where εE is an energy criterion in the iterative solution procedure.
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2.3.2 Rigid body hydrostatics

In this section, we derive equations for the nonlinear hydrostatic analysis of rigid floating structures.

The equations for the rigid body hydrostatic analysis can be derived by modifying the Equation 2.6.

Basically, in the rigid body case, the linear strain tensor eij in Equation 2.6 is no longer valid. Therefore,

the first and sixth terms in Equation 2.6 are equal to zero.

In addition, using Equation 2.3, we modify the second term in Equation 2.6 as follows, see Reference

[10]:

∫
tV

tσijδ
t+∆t

tηijd
tV =

∫
tSw

ρwg
tx3

tni
∂t+∆t

tuk

∂txi
δukdtS −

∫
tV

tρsg
∂t+∆t

tuk

∂tx3
δukdtV. (2.17)

Substituting Equation 2.17 into Equation 2.6 and applying the usual finite element assemblage pro-

cess, we obtain the following incremental equation for the rigid body hydrostatic analysis:

[
ΨRT

(
t+∆tK

(n)
L + t+∆tK

(n−1)
NL − t+∆tK

(n)
HD −

t+∆tK
(n)
HN

)
ΨR
]

∆qR(n)

= −t+∆tR
(n−1)
B + t+∆tR

(n−1)
HS + t+∆tR

(n−1)
S (2.18)

where

t+∆tK
(n)
HS =

∑
e

∫
t+∆tS

(n−1)(e)
w

ρwg
t+∆tx

(n−1)
3

t+∆tHT (n)(e) ∂H(n)(e)

∂t+∆tx
(n−1)
i

t+∆tn(n−1)(e) dt+∆tS,

t+∆tK
(n)
HB =

∑
e

∫
t+∆tV (n−1)(e)

t+∆tρ(n−1)(e)
s gt+∆tHT (n)(e) ∂H(n)(e)

∂t+∆tx
(n−1)
3

t+∆tn(n−1)(e)dt+∆tV, (2.19)

and
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uR = ΨRqR = qR1 ΨR
1 + · · ·+ qR6 ΨR

6 (2.20)

in which ΨR
i (i = 1, 2, ...6) is the nodal displacement vector for the i-th rigid body mode, and the dis-

placement vector (uR) of six rigid body motions (surge (R1), sway (R2), heave (R3), roll (R4), pitch

(R5), and yaw (R6)) can be constructed about the origin of the Cartesian coordinate system as follows:

uR1
i = qR1 δ1i, uR2

i = qR2 δ2i, uR3
i = qR3 δ3i, uR4

i = qR4 εijkδ1j
0xk,

uR5
i = qR5 εijkδ2j

0xk, uR6
i = qR6 εijkδ3j

0xk; i, j, k = 1, 2, 3 and εijk = permutation symbol. (2.21)

Equation 2.18 should be iterated until the error due to linearization satisfies the following criterion:

∥∥∥∥∥∆qR(n) · (−t+∆tR
(n−1)
B + t+∆tR

(n−1)
HS + t+∆tR

(n−1)
S )

∆qR(1) · (−t+∆tR
(0)
B + t+∆tR

(0)
HS + t+∆tR

(0)
S )

∥∥∥∥∥ 2 ≤ εE (2.22)

If Equation 2.22 is satisfied, we can obtain the hydrostatic equilibrium of rigid floating bodies. In

other words, the body force RB , the buoyancy force RHS , and the surface force RS are in equilibrium.

Note that it is not necessary to consider the update procedure of the structural density in Equation 2.10

because the density of the floating body does not change.
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2.4 Numerical integration

Numerical integration is essential to evaluate stiffness matrices and load vectors in the finite element

formulation derived in the previous sections. In this section, we develop a special numerical integration

technique to effectively consider the non-matching mesh problem in a nonlinear hydrostatic finite ele-

ment analysis of floating structures. In particular, the integration technique is applied to the surface

integration of partially submerged finite elements, whereas the conventional Gaussian quadrature scheme

is used for the surface and volume integrations of non- or fully submerged finite elements.

When the floating structure experiences large motions, the wet-surface changes significantly. The

structural mesh then does not match with the free-surface of water in general. When the mesh matches

with the free-surface well, as depicted in Figure 2.3(a), it is easy to discretize the structural wet and

dry surfaces by locating all wet nodes at the free surface. As shown in Figure 2.3(a), when the mesh

and free-surface are not matched, the numerical integration should be carefully performed. For example,

the mesh can be reconstructed using a re-meshing technique, which is computationally expensive and

complicated.

To handle the non-matching mesh problem without modifying the initial mesh, an effective nu-

merical integration technique is developed, as shown in Figure 2.4. We consider four different cases of

wetted situations of 4-node finite elements. CASE 1 is a fully wetted element case whereas others are

partially wetted element cases. In the following, we explain the numerical integration strategies in detail.
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Figure 2.3: Wet-surface change of finite element meshes: (a) Matching mesh and (b) non-matching

mesh.
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Figure 2.4: Numerical integration strategies for a 4-node wet-element.
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• CASE 1 (all nodes are submerged): As depicted in Figure 2.4(a), the fully wetted element connected

by nodes 1-2-3-4 can be numerically integrated over the wet surface Sew using the conventional 2×2

Gaussian quadrature technique in natural coordinates.

• CASE 2 (2 of 4 nodes are submerged): Figure 2.4(b) shows a partially wetted element case, in

which two of four nodes are submerged under the free surface. The wetted part of the element

connected by nodes 1-2-3-4 is defined as 1∗-2∗-3-4 by introducing the assumed nodes 1∗ and 2∗ at

the free surface. The assumed nodes 1∗ and 2∗ are used only for numerical integration. That is,

there is no increase in DOFs in the hydrostatic analysis. Using the new elemental connectivity, we

can integrate the wetted surface S
(e∗)
w through the conventional 2×2 Gaussian quadrature.

• CASE 3 (1 of 4 nodes are submerged): One of four nodes is submerged under the free surface. In

this case, the connectivity of the wetted part is defined as 1∗-2∗-3-4∗ by introducing the assumed

nodes 1∗, 2∗, and 4∗, as shown in Figure 2.4(c). The assumed nodes 1∗ and 4∗ are exactly located

at the free surface and node 1∗ is placed slightly higher (0 < ε� 1) than the free surface to avoid

the geometric singularity of the 4-node finite element.

• CASE 4 (3 of 4 nodes are submerged): As shown in Figure 2.4(d), we consider the case in which

three of four nodes are submerged. We here subdivide the pentagon-shape wetted part into two

rectangular subparts
(
S

(e∗)
w = S

(e∗+)
w ∪(e∗−)

w

)
. The connectivity of the two parts is defined as 1∗-2-

3-4∗ and 1∗-2∗-3-4, respectively. In this case, the terms KHD, KHN , and RHS in Equation 2.13

and the term KHS in Equation 2.18, can be integrated over the wet-surfaces (e∗) as follows:
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K
(e)
HD ≈K

(e∗)
HD

=

∫
S

(e+)
w

ρwgH
T (e∗+) n(e∗+) H

(e∗+)
3 dS +

∫
S

(e−)
w

ρwgH
T (e∗−) n(e∗−) H

(e∗−)
3 dS,

K
(e)
HN ≈K

(e∗)
HN

=

∫
S

(e∗+)
w

ρwgx3 HT (e∗+) Q
(e∗+)
N H(e∗+)dS +

∫
S

(e∗−)
w

ρwgx3 HT (e∗−) Q
(e∗−)
N H(e∗−)dS,

R
(e)
HS ≈R

(e∗)
HS

=

∫
S

(e∗+)
w

ρwgx3 HT (e∗+) n(e∗+) dS,+

∫
S

(e∗−)
w

ρwgx3 HT (e∗−) n(e∗−) dS,

K
(e)
HS ≈K

(e∗)
HS

=

∫
S

(e∗+)
w

ρwgx3 HT (e∗+) ∂H(e∗+)

∂xi
n(e∗+) dS +

∫
S

(e∗−)
w

ρwgx3 HT (e∗−) ∂H(e∗−)

∂xi
n(e∗−) dS. (2.23)

Here, the numerical integration procedure is explained for 4-node rectangular elements. The situa-

tions of partially submerged 3-node elements also can be easily considered through a similar numerical

integration scheme. Finally, Equation 2.13 for elastic bodies and Equation 2.18 for rigid bodies are

iteratively solved without adjustment of the initial finite element mesh. This means that a re-meshing

scheme is not required in the present nonlinear hydrostatic analysis of floating structures.
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2.5 Numerical examples

In this section, several numerical tests are performed to validate the proposed numerical method

and to demonstrate its capabilities through various nonlinear hydrostatic problems.

A freely floating box barge is considered to obtain hydrostatic equilibrium states in both flexible

and rigid body cases. The usual hydrostatic stability curve is evaluated and compared with the ORCA

3D [31] in the rigid body case. In addition, the importance of a nonlinear hydrostatic analysis in the

stress analysis of flexible floating structures is demonstrated.

We then perform a nonlinear hydrostatic analysis of a flexible cargo barge in freely floating and

grounded cases. Various results including center of gravity (COG), center of buoyancy (COB), buoy-

ancy, total weight of the floating structure, displaced volume, and strain energy are presented and the

stress distributions are plotted. In the following, the parameter ε in CASE 3 of Section 4 is set to

1.0× 10−8 for the numerical integrations.
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2.5.1 Freely floating rigid box barge

A box barge of length 200m, width 100m, and height 60m is considered; see Figure 2.5. The barge

consists of three parts: the bottom, side hulls (bow, stern, starboard and port), and the top deck. The

geometric and material properties are listed in Table 2.1, and it is ensured that the draft d is 40m

with a vertical center of gravity (COG) -4.3m, vertical center of buoyancy -20.0m, and displaced volume

80,000m3 in the rigid body case. The density of water ρw is 1000kg/m3 and the gravitational accelera-

tion g is 9.8m/s2. The barge model is discretized using 4-node MITC (Mixed Interpolation of Tensorial

Components) shell finite elements [27, 28, 29, 30]; see Figure 2.5(b).

In Figure 2.6(a), the box barge is initially positioned in the water with a trim angle of 20 degrees.

The initial configuration does not correspond to the hydrostatic equilibrium. An incremental rigid body

hydrostatic analysis is performed using Equation 2.18 until Equation 2.22 is satisfied (ε = 1.0 × 10−8).

As shown in Figure 2.6(c), the hydrostatic equilibrium is found after 5 iterations and the details of in-

cremental solutions are listed in Table 2.2. In the hydrostatic equilibrium, the buoyancy (7.840× 109N)

is balanced with the self-weight of the floating structure. In addition, the numerical results quickly

converge to the analytical results.

The proposed formulation also can be used to calculate hydrostatic stability curves (GZ-curves).

Figure 2.7 shows the GZ-curves of the box barge for the transverse and longitudinal directions. There is

good agreement between the results of the proposed formulation and those obtained using ORCA 3D [31].
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Figure 2.5: A box barge: (a) dimensions and (b) finite element mesh.
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Table 2.1: Material properties of box barge. (∗For simplicity, the density of the bottom hull is set to

zero.)

Bottom Top Sides

Thickness (m) 0.4 0.2 0.2

Density (kg/m3) 0∗ 3.8× 104 9.0× 104

Young’s modulus (Pa) 2.0× 1013 2.0× 1013 1.0× 1012

Poisson’s ratio 0.3 0.3 0.3
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Figure 2.6: Hydrostatic analysis of the rigid box barge: (a) initial configuration, (b) instantaneous

configuration (after 1 iteration), and (c) configuration for hydrostatic equilibrium (after 5 iterations).
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Table 2.2: Incremental solutions for hydrostatic analysis of the rigid box barge.

Iteration Buoyancy (N) COG (m) COB (m) Energy criteria

(xg1, x
g
2, x

g
3) (xb1, x

b
2, x

b
3) (εE)

1 7.779×109 (-0.627,0,-4.254) (9.373,0,-20.682) -

2 7.842×109 (-0.072,0,-4.297) (1.068,0,-20.009) 3.062×10−1

3 7.841×109 (-0.010,0,-4.298) (0.151,0,-20.001) 1.125×10−4

4 7.840×109 (-0.002,0,-4.299) (0.011,0,-20.000) 6.223×10−8

5 7.840×109 (0,0,-4.300) (0,0,-20.000) 6.436×10−9

Ref. 7.840×109 (0,0,-4.300) (0,0,-20.000) -

(Self-weight)
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Figure 2.7: Comparison of GZ-curves.
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2.5.2 Freely floating flexible box barge

In the case of a flexible body, the box barge deforms and thus the configuration in Figure 2.6(c) is

no longer in equilibrium. The structural deformation causes a change of the displaced volume, resulting

in a buoyancy change, while the structural self-weight does not change. A new hydrostatic equilib-

rium should be then found. We here start the hydrostatic analysis of the flexible box barge from the

configuration obtained in the hydrostatic analysis of the rigid box barge, as shown in Figure 2.8(a).

The x1- and x2- directional displacements are fixed at the nodal position (0, 0, -d). The convergence

of the incremental hydrostatic analysis of flexible bodies highly depends on the initial configuration given.

Figure 2.8(b) presents the configuration calculated for the hydrostatic equilibrium of the flexible

box barge. The details of incremental solutions are summarized in Table 2.3. We can observe that the

buoyancy is varying during the iterations whereas the self-weight is not changed because the structural

density is correctly updated using Equation 2.10. After 5 iterations, the buoyancy is balanced with the

self-weight and the energy criterion defined in Equation 2.16 is satisfied (εE = 1.0× 10−8).

We then demonstrate the importance of a nonlinear hydrostatic analysis in the stress analysis. In

order to calculate the stress distribution of floating structures in usual engineering practice, the hydro-

static pressure is first calculated through the rigid body hydrostatic analysis. The pressure distribution is

then projected into the flexible floating body as an external load, and the stress distribution is evaluated.

This procedure would be adequate for relatively rigid floating structures, but results in larger errors as

the structure becomes more flexible.

Using the present formulation, we can accurately calculate the stress distribution at the hydrostatic

equilibrium of flexible floating structures. The distribution of von Mises stress is plotted in Figures 2.8(c)

and (d), obtained after 1 iteration and 5 iterations, respectively. Note that Figure 2.8(c) is equivalent

to the results of the usual stress analysis based on the rigid body hydrostatic analysis because the in-

cremental analysis starts from the configuration for the hydrostatic equilibrium of the rigid box barge.

Figure 2.8(d) is obtained at the final hydrostatic equilibrium of the flexible box barge.
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It is observed that the distribution of von Mises stress is totally different between both results and

the maximum value in Figure 2.8(d) is almost four times larger than that in Figure 2.8(c). Therefore, the

use of a nonlinear hydrostatic analysis is recommended for the stress analysis of general flexible floating

structures.
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Figure 2.8: Hydrostatic analysis results of the flexible box barge: (a) initial configuration (configuration

for hydrostatic equilibrium of the rigid box barge), (b) configuration for hydrostatic equilibrium (after 5

iterations), (c) distribution of von Mises stress (after 1 iteration, maximum value: 2.0328×108 N), and

(d) distribution of von Mises stress (after 5 iterations, maximum value: 8.3839×108 N).
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Table 2.3: Incremental solutions for hydrostatic analysis of the flexible box barge.

Iteration Buoyancy (N) COG (m) COB (m) Energy criteria

(xg1, x
g
2, x

g
3) (xb1, x

b
2, x

b
3) (εE)

1 7.788302×109 (0,0,-8.7259) (0,0,-21.774) -

2 7.840521×109 (0,0,-9.4776) (0,0,-22.052) 1.030899×101

3 7.840042×109 (0,0,-9.4669) (0,0,-22.075) 3.382075×10−1

4 7.840003×109 (0,0,-9.4683) (0,0,-22.079) 1.023977×10−4

5 7.840000×109 (0,0,-9.4682) (0,0,-22.080) 9.436614×10−9

Ref. 7.840000×109 - - -

(Self-weight)
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2.5.3 Cargo barge problems

In this section, various nonlinear hydrostatic analyses are conducted for freely floating and grounded

flexible cargo barge models. The cargo barge model (thickness is 1m, Poisson’s ratio is 0.37, Young’s

modulus is 1.0×109 Pa, and structural density ρs is 2655.06 kg/m3) is presented in Figure 2.9(a) and

it is discretized with 2,300 shell finite elements, as shown in Figure 2.9(b). The “cargo hold” is the

area where the surface force will be applied. The various floating and loading conditions considered here

are summarized in Table 2.4 and Figure 2.10. Note that, in the freely floating cases, the x1- and x2-

directional nodal displacements are clamped at (0, 0, -d).

We first conduct a flexible body hydrostatic analysis using a freely floating cargo barge model. The

initial draft d is set to 8.0 m. The hydrostatic equilibrium of the flexible cargo barge can be obtained after

5 iterations; see Table 2.5. The corresponding configuration is depicted in Figure 2.11(a), in which local

bending deformation is observed. Figure 2.11(b) presents the distribution of von Mises stress calculated.

In addition, we consider the case where the barge is subjected to cargo loading. Uniform surface

force (1.0×105N/m2) is applied on the “cargo hold” shown in Figure 2.10(b). In this case, the hydro-

static equilibrium is obtained after 6 iterations. Figure 2.12 shows the deformed configuration and the

distribution of von Mises stress. In the loaded case, the buoyancy equals the sum of self-weight and

external forces; see Table 2.5.

Finally, we consider two grounded situations of cargo barge, as described in Figures 2.10(c) and (d).

To model these situations, we introduce the pin-support boundary condition and therefore no displace-

ments are introduced at the nodes of grounding points. The initial draft d is set to be 6m for both cases

and the corresponding initial configurations are presented in Figures 2.13(a) and (b), respectively.

On top of Figures 2.14(a) and (b), the deformed configurations of two grounded cases are presented.

In these hydrostatic equilibriums, the weight of the floating structure should be equal to the sum of

buoyancy and reaction force at the grounding point; see Table 2.6. The distributions of von Mises
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stress are presented on the bottom of Figures 2.14(a) and (b), respectively. A symmetric deformation

and stress fields are obtained in grounded case-1, as shown in Figure 2.14(a). In grounded case-2, as

shown in Figure 2.14(b), an asymmetric deformation including a twisting mode is observed and thus the

transverse COB (xb2) is no longer zero.
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Figure 2.9: A flexible cargo barge: (a) dimensions and (b) finite element mesh used.
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Table 2.4: Floating and loading conditions in the cargo barge problems.

Initial draft Weight External force (N)/

(m) (N) Grounding points (m)

(a) Freely floating (w/o loading) 8.0 6.272×108 -

(b) Freely floating (Loaded) 8.0 6.272×108 Cargo hold : 1.600×108 N

(c) Grounded case-1 6.0 6.272×108 (80,0,-6)

(d) Grounded case-2 6.0 6.272×108 (80,-20,-6)
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Figure 2.10: Various floating and loading conditions.
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Table 2.5: Hydrostatic analysis results of the freely floating cargo barge.

Analysis condition Freely floating (w/o loading) Freely floating (loaded)

Number of iterations 5 6

Buoyancy (N) 6.272×108 7.872×108

Weight (N) 6.272×108 6.272×108

External force (N) - 1.600×108

COB (xb1, x
b
2, x

b
3) (0,0,-3.726) (-12.073,0,-4.751)

Total strain energy (N·m) 3.061×108 8.700×108

Energy criteria 3.221×10−9 1.889×10−9
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Figure 2.11: Hydrostatic analysis results of the freely floating cargo barge (w/o loading): (a) deformed

configuration and (b) distribution of von Mises stress (maximum value: 5.7788×106 N).
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Figure 2.12: Hydrostatic analysis results of the freely floating cargo barge (loaded): (a) deformed con-

figuration and (b) distribution of the von Mises stress (maximum value: 7.4338×106 N).
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Figure 2.13: Initial configurations of grounded cargo barge: (a) grounded case-1 and (b) grounded case-2.
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Figure 2.14: Hydrostatic equilibrium and distribution of the von Mises stress: (a) grounded case-1

(maximum stress: 1.7485×107 N) and (b) grounded case-2 (maximum stress: 5.9431×106 N).– 42 –



Table 2.6: Hydrostatic analysis results of the grounded cargo barge.

Analysis condition Grounded case-1 Grounded case-2

Number of iterations 4 6

Buoyancy (N) 5.544×108 6.061×108

Weight (N) 6.272×108 6.272×108

Reaction force at grounding point (N) 0.728×108 0.211×108

COB (xb1, x
b
2, x

b
3) (-10.506,0,-3.412) (-3.262,-1.348,-3.639)

Total strain energy (N·m) 5.149×108 8.099×108

Energy criteria 7.155×10−9 4.423×10−9

– 43 –



2.6 Summary

In this chapter, we proposed a numerical method for a nonlinear hydrostatic analysis of flexible

floating structures. The incremental equilibrium equation for rigid and flexible (elastic) floating bodies

was derived using the updated Lagrangian formulation, which is discretized using the finite element pro-

cedure. An effective numerical integration technique was developed to treat the significant wet surface

change and thus the non-matching mesh problem is resolved without re-meshing.

The feasibility of the proposed numerical procedure was demonstrated through various hydrostatic

problems considering both rigid and flexible body cases. The importance of the nonlinear solution proce-

dure in the stress analysis of flexible floating structures was discussed. The configurations in hydrostatic

equilibrium and the corresponding stress distributions were presented for various floating and loading

conditions.

The proposed numerical method can be easily used for the stress analysis of damaged ships and

offshore platforms with various loading conditions. Moreover, it can be extended to the transient analysis

of flexible floating structures in flooded conditions by considering the inertia forces and internal free

surface effect.
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Chapter 3. Hydroelastic analysis of floating

structures with liquid tanks

3.1 Introduction

Since the early 2000s, the hydrodynamic analysis of floating liquid storage structures subjected to

surface regular waves has been widely studied due to the significant increase in demand for floating

production storage and offloading (FPSO) units, floating liquefied natural gas (FLNG) units, and other

related structures. One of the important design issues is the influence of sloshing in liquid tanks on

the dynamic response of floating structures during offloading operations, see Refs. [32, 33] for com-

prehensive reviews of sloshing phenomena and their importance. Related mathematical, numerical, and

experimental studies are presented in Refs. [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

Most previous studies mainly addressed the coupling effect between rigid body motions and sloshing.

However, the size and the weight of floating liquid storage structures are becoming increasingly greater

in tandem with growing market demand and on the basis of their economic benefits. In such floating

structural systems, the assumption of rigid body motions is no longer suitable because, as the dimen-

sions of floating structures increase, the overall stiffness decreases, resulting in relatively low resonant

frequencies close to the range of excitation frequencies and sloshing resonance frequencies. In spite of

the increasing importance of the hydroelastic behavior of floating liquid storage structures, few related

studies have been reported [50, 51, 52]. Accordingly, a complete mathematical formulation has not been

developed and the numerical results have not been verified by experimental studies.

A direct coupling method was first developed for 1D and 2D linear hydroelastic problems [13, 14,

15, 16]. The main idea is that the structural and fluid equations are directly coupled to each other and

the coupled equations are solved simultaneously. The solution procedure is consequently simpler than

that of the conventional method [34, 37, 43, 44, 47], which requires radiation and diffraction analysis

procedures to obtain the interaction coefficients. Recently, this method was generalized for a 3D linear
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hydroelastic analysis of floating structures by Kim et al. [10]. Since the 3D formulation is obtained by

consistently linearizing nonlinear solid mechanics equations, all the interaction terms including hydro-

static stiffness are included [10, 11, 12].

In this chapter, we extend the direct-coupled formulation developed in Ref. [10, 17, 18] for a

hydroelastic analysis of floating structures with liquid tanks. The structural formulation is based on

the updated Lagrangian approach, which is consistently applied to hydrostatic and steady state hydro-

dynamic analyses. The velocity potential is employed to model both internal and external fluid flows

without decomposing them into the diffraction and radiation potentials. The finite element method is

employed for the structure and the internal fluid, and the boundary element method is used for the

external fluid. The structural equation is then directly coupled with the fluid equations. The use of the

mode superposition method for the discrete structural and internal fluid equations is also introduced

to improve the computational efficiency. Of course, all the interaction terms among structural motions,

sloshing and water waves are completely included in the formulation. In particular, the initial stress is

correctly considered in the geometric stiffness [10, 11]. In the fluid formulation, we use the extended

boundary integral equations to remove the well-known irregular frequency effect [53, 54, 55].

To verify the proposed formulation, various numerical tests including free-vibration, rigid body hy-

drodynamic and hydroelastic analyses are conducted for a box barge with three rectangular liquid tanks.

We then present the 3D hydroelastic experiments performed to verify the proposed formulation. A float-

ing production unit (FPU) model with three rectangular sloshing tanks was designed and fabricated for

the experimental tests in an ocean basin. An overall description of the experimental setup and the test

model are provided in detail. The measured dynamic responses are compared with the numerical results

obtained using the proposed formulation.

We present the mathematical formulation in Section 3.2 and the numerical procedure in Section 3.3,

and several numerical test results are provided in Section 3.4. In Section 3.5, the overall description of

the experimental setup is presented and the test results are compared with the numerical results.
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3.2 Mathematical formulation

Figure 3.1 shows the problem description considered in this study. It is assumed that the floating

structure has a homogeneous, isotropic, and linear elastic material and the fluid flow is incompressible,

inviscid, and irrotational and thus the potential flow theory can be used. An incident regular water

wave comes continuously from the positive x1 direction with an angle θ and the amplitude is assumed

to be small enough to use the linear wave theory. Also, the resulting motions of the floating structure

and sloshing in tanks are assumed to be small. All the waves are gravity waves with a zero atmospheric

pressure assumption and the surface tension effect is ignored.

The volumes occupied by the floating structure, the internal fluid in tanks, and the external fluid

are denoted by VS , VFI , and VFE , respectively. The surface of the floating structure SS consists of dry,

internal wet, and external wet surfaces, which are denoted by SD, SWI , and SWE , respectively. The

internal fluid is bounded by the internal wet surface and the internal free surface and the external fluid

is enveloped by the external wet surface SWE , the external free surface SFE , the surface S∞ which is

a circular cylinder with a sufficiently large radius R, and a flat bottom surface SG. The external water

depth hE is measured from the flat bottom to the external free surface of calm water. The internal water

depth (hI = hI(x1, x2)) is the distance from the wet surface (SWI) to the free surface (SFI) at rest in

tanks.
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Figure 3.1: Problem description: a floating structure with a liquid tank in an incident water wave.
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The fixed Cartesian coordinate system (x1, x2, x3) on the external free surface of calm water is

introduced. For clear and compact notation, the subscripts i and j, which vary from 1 to 3, are used to

express the components of tensors and the Einstein summation convention is adopted.

Figure 3.2 shows three important states: initial state, hydrostatic equilibrium state, and hydro-

dynamic equilibrium state. The initial state is a virtual configuration in which the structure does not

contact the external and internal fluids. These three states are denoted by the left superscripts 0̃, 0, and

t, respectively. The material point vectors for the floating structure in each state are then expressed by

0̃xi,
0xi, and txi, respectively. The displacement vectors of the floating structure are defined by

0
0̃
ui = 0xi − 0̃xi,

t
0̃
ui = txi − 0̃xi,

t
0ui = txi − 0xi. (3.1)

The total pressure fields of the external and internal fluids are defined as

0PE = −ρEgx3,
tPE = −ρEgx3 + tPDE ,

0PI = −ρIgxI3, tPI = −ρIgxI3 + tPDI ; xI3 = x3 − zT , (3.2)

where ρE is the density of the external fluid, ρI is the density of the internal fluid, g is the gravitational

acceleration, zT is the vertical position of the internal free surface, and tPDE and tPDI are the hydro-

dynamic pressures for the external and internal fluids.

In the following sections, the mathematical formulations of the floating structure, the external fluid,

and the internal fluid are briefly derived. The detailed derivation of the formulations for the floating

structure and the external fluid can be found in [10].
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Figure 3.2: Three equilibrium states.
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3.2.1 Equations for the floating structure

Note that a hydrostatic analysis is an essential procedure to find the hydrostatic equilibrium state

referred to the configuration of the initial state. Through a hydrodynamic analysis, we find the hydro-

dynamic equilibrium state referred to the configuration of the hydrostatic equilibrium state.

The updated Lagranagian formulation [25] is consistently applied to the hydrostatic and hydrody-

namic analyses. The equilibrium equations at time τ + ∆τ are

∂τ+∆τσij
∂τ+∆τxj

− τ+∆τρsgδi3 − τ+∆τρs
τ+∆τ ẍi = 0 in τ+∆τVS ,

τ+∆τσij
τ+∆τnj = −τ+∆τPE

τ+∆τni on τ+∆τSWE ,

τ+∆τσij
τ+∆τnj = −τ+∆τPI

τ+∆τni on τ+∆τSWI ,

τ+∆τσij
τ+∆τnj = 0 on τ+∆τSD, (3.3)

where σij is the Cauchy stress tensor, ρs is the density of the floating structure, τ+∆τni is the unit

normal vector outward from the floating structure to both the internal and external fluids, δij is the

Kronecker delta, and the over-dot represents the material time derivative.
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After linearizing the principle of virtual work at time τ + ∆τ referred to the configuration at time

τ , the following weak form can be obtained

∫
τVS

τρs
τ+∆τ

0 üiūi dV +

∫
τVS

Cijkl
τ+∆τ

τekl τ ēij dV +

∫
τVS

τσij
τ+∆τ

τ η̄ij dV

−
∫
τSWE

ρEg
τ+∆τ

τu3
τniūi dS −

∫
τSWI

ρIg
τ+∆τ

τu3
τniūi dS

−
∫
τSWE

ρEg
τx3

τnj
τ

τ+∆τQij ūi dS −
∫
τSWI

ρIg
τxI3

τnj
τ

τ+∆τQij ūi dS

+

∫
τSWE

τ+∆τPDE
τniūi dS +

∫
τSWI

τ+∆τPDI
τniūi dS

= −
∫
τVS

τρsgū3 dV −
∫
τVS

τσijτ ēij dV +

∫
τSWE

ρEg
τx3

τniūi dS +

∫
τSWI

ρIg
τxI3

τniūi dS, (3.4)

where

τ+∆τ
τeij =

1

2

(
∂τ+∆τ

τui

∂τxj
+
∂τ+∆τ

τuj

∂τxi

)
, τ ēij =

1

2

(
∂ūi
∂τxj

+
∂ūj
∂τxi

)
,

τ+∆τ
τ η̄ij =

1

2

(
∂ūk
∂τxi

∂τ+∆τ
τuk

∂τxj
+
∂τ+∆τ

τuk

∂τxi

∂ūk
∂τxj

)
, τ

τ+∆τQij = δij
∂τ+∆τ

τuk

∂τxk
−
∂τ+∆τ

τuj

∂τxi
, (3.5)

in which τ+∆τ
τui is the displacement from the configuration at time τ to the configuration at time τ+∆τ ,

ūi is the virtual displacement vector, τ ēij and τ+∆τ
τ η̄ij are the virtual linear and nonlinear strain tensors,

and Cijkl is the stress-strain relation tensor.
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In the hydrostatic analysis, the acceleration üi and the hydrodynamic pressures PDE and PDI are

equal to zero. Setting τ = 0̃ and τ + ∆τ = 0 in Equation 3.4, we obtain the following nonlinear incre-

mental equation for the hydrostatic analysis:

∫
0̃VS

Cijkl
0
0̃
ekl 0ēij dV +

∫
0̃VS

0̃σij
0
0̃
η̄ij dV

−
∫

0̃SWE

ρEg
0
0̃
u3

0̃niūi dS −
∫

0̃SWI

ρIg
0
0̃
u3

0̃niūi dS

−
∫

0̃SWE

ρEg
0̃x3

0̃nj
0̃
0Qij ūi dS −

∫
0̃SWI

ρIg
0̃xI3

0̃nj
0̃
0Qij ūi dS

= −
∫

0̃VS

0̃ρsgū3 dV −
∫

0̃VS

0̃σij 0̃ēij dV +

∫
0̃SWE

ρEg
0̃x3

0̃niūi dS +

∫
0̃SWI

ρIg
0̃xI3

0̃niūi dS. (3.6)

Note that an iterative solution scheme like the Newton-Raphson method is required to find the

hydrostatic equilibrium state using Equation 3.6.
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Once the hydrostatic equilibrium state is obtained, the right hand side of. Equation 3.4 vanishes.

We then set τ = 0 and τ+∆τ = t in Equation 3.4 and invoke a harmonic response with angular frequency

ω (t0ui = Re
{
ui(

0x)ejωt
}

; j =
√
−1). Finally, the following equation is obtained for a hydrodynamic

analysis in the steady state:

−ω2

∫
0VS

0ρsuiūi dV +

∫
0VS

Cijklekl 0ēij dV +

∫
0VS

0σij η̄ij dV

−
∫

0SWE

ρEgu3
0niūi dS −

∫
0SWI

ρIgu3
0niūi dS −

∫
0SWE

ρEg
0x3

0njQij ūi dS

−
∫

0SWI

ρIg
0xI3

0njQij ūi dS +

∫
0SWE

PDE
0niūi dS +

∫
0SWI

PDI
0niūi dS = 0, (3.7)

where

t
0eij = Re

{
eij(

0xk)ejωt
}
, t

0η̄ij = Re
{
η̄ij(

0xk)ejωt
}
,

0
tQij = Re

{
Qij(0xk)ejωt

}
, tPDE = Re

{
PDE(0xk)ejωt

}
tPDI = Re

{
PDI(

0xk)ejωt
}
. (3.8)

Since we assume that the motion of the floating structure is small and the change of the wet surface

is negligible, Equation 3.7 can be solved without an iterative solution scheme.

– 54 –



3.2.2 Equations for the external fluid

In the steady state, the governing equation and boundary conditions for the external fluid, which

are approximated at the configuration of the hydrostatic equilibrium state, are given as

tφ
′

E = Re
{
φ
′

E(xi)e
jωt
}
, (3.9a)

∂2φ
′

E

∂xi∂xi
= 0 in 0VFE , (3.9b)

∂φ
′

E

∂x3
=
ω2

g
φ
′

E for x3 = 0 on SFE , (3.9c)

∂φ
′

E

∂x3
= 0 on SG (x3 = −hE), (3.9d)

√
R

(
∂

∂R
+ jk

)
(φ
′

E − φI) = 0 on S∞ (R→∞), (3.9e)

∂φ
′

E

∂n
= jωuini on 0SWE , (3.9f)

where φ
′

E is the velocity potential for the external fluid, k is the wave number, φI is the velocity potential

for an incident wave, Equation 3.9c is the combined free surface boundary condition linearized at x3 = 0

[56, 57], and Equation 3.9e is the Sommerfeld radiation condition [56]. The body boundary condition

in Equation 3.9f means that the normal velocities of the structure and the external fluid should be the

same on the external wet surface.
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The corresponding boundary integral equation is

2πφ
′

E−P.V.
∫

0SWE

∂G(xi; ξi)

∂n(ξi)
φ
′

E(ξi)dSξ

= −P.V.
∫

0SWE

G(xi; ξi)
φ
′

E(ξi)

∂n(ξi)
dSξ + 4πφI(xi) for xi on 0SWE , (3.10)

where P.V. refers to the Cauchy principal value, the subscript ξ denotes that the integral is conducted

with respect to the variable ξi, and G(xi; ξi) is the Green’s function, which is located at position ξi and

generated by a source potential with strength −4π and angular frequency ω. The detailed procedure to

obtain the Green’s function in finite and infinite depth cases is described by Wehausen and Laitone [57].

It should be noted that Equation 3.10 could result in the irregular frequencies and thus the coefficient

matrix in the corresponding discrete equation becomes ill-conditioned near these frequencies. In order to

remove the irregular frequency effects, several methods have been developed by Ohmatsu [53], Kleinman

[54], and Lee et al. [55]. We here employ the extended boundary integral equations [55].

2πφ
′

E(xi)− P.V.
∫

0SWE+0SEXTFI

∂G(xi; ξi)

∂n(ξi)
φ
′

E(ξi)dSξ

= −P.V.
∫

0SWE

G(xi; ξi)
∂φ
′

E(ξi)

∂n(ξi)
dSξ + 4πφI(xi) for xi on 0SWE , (3.11a)

−4πφEXTE (xi)− P.V.
∫

0SWE+0SEXTFI

∂G(xi; ξi)

∂n(ξi)
φEXTE (ξi)dSξ

= −P.V.
∫

0SWE

G(xi; ξi)
∂φEXTE (ξi)

∂n(ξi)
dSξ + 4πφI(xi) for xi on 0SEXTFI , (3.11b)

where 0SEXTFI is the extended internal free surface described in Figure 3.3 and φEXTE is the velocity

potential on the extended boundary 0SEXTFI .
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Multiplying test functions φ̄
′

E and φ̄EXTE to Equations 3.11a and 3.11b, respectively, and integrating

over the external wet surface 0SWE and the internal free surface 0SEXTFI , the following equations are

obtained:

2π

∫
0SWE

φ
′

Eφ̄
′

EdS −
∫

0SWE

P.V.

∫
0SWE+0SEXTFI

(
∂G

∂nξ
φ
′

E −G
∂φ
′

E

∂nξ

)
dSξ φ̄

′

E dSx

= 4π

∫
0SWE

φI φ̄
′

EdS for xi on 0SWE , (3.12a)

−4π

∫
0SEXTFI

φEXTE φ̄EXTE dS −
∫

0SEXTFI

P.V.

∫
0SWE+0SEXTFI

(
∂G

∂nξ
φEXTE −G∂φ

EXT
E

∂nξ

)
dSξ φ̄

EXT
E dSx

= 4π

∫
0SEXTFI

φI φ̄EXTE dS for xi on 0SEXTFI . (3.12b)
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Figure 3.3: Extended internal free surface (0SEXTFI ).
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3.2.3 Equations for the internal fluid

In the steady state, the governing equation and boundary conditions for the internal fluid in tanks,

which are approximated at the configuration of the hydrostatic equilibrium state, are given as

tφI = Re
{
φI(xi)e

jωt
}
, (3.13a)

ρI
∂2φI
∂xi∂xi

= 0 in 0VFI , (3.13b)

∂φI
∂x3

=
ω2

g
φI on 0SFI (x3 = zT ), (3.13c)

∂φI
∂n

= jωuini on 0SWI , (3.13d)

where tφI is the velocity potential in time domain and φI are the velocity potentials in the steady state.

By multiplying a test function φ̄I to 3.13b and integrating over the volume of the internal fluid

0VFI , the following equation can be obtained:

∫
0VFI

ρI
∂2φI
∂xi∂xi

dV = 0. (3.14)

After Equation 3.14 is integrated by part and the divergence theorem and the boundary condition

in Equation 3.13c are applied to Equation 3.14, the weak form equation of the internal fluid is obtained

∫
0SFI

ρI

(
ω2

g

)
φI φ̄IdS −

∫
0SWI

ρI
∂φI
∂n

φ̄IdS −
∫

0VFI

ρI
∂φI
∂xi

∂φ̄I
∂xi

dV = 0. (3.15)
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3.2.4 Direct-coupled equations

To obtain the direct-coupled equations, Equation 3.7 for the floating structure, Equation 3.12a and

3.12b for the external fluid, and Equation 3.15 for the internal fluid are considered with the interaction

conditions in Equations 3.9f and 3.13d. Using the linearized Bernoulli equations, the hydrodynamic

pressures PDE and PDI can be expressed as

PDE = −jωρEφ
′

E , PDI = −jωρIφI . (3.16)

Substituting Equation 3.16 into Equation 3.7, Equation 3.9f into Equation 3.12a and 3.12b, and

Equation 3.13d into Equation 3.15, the following coupled equations are obtained:

−ω2

∫
0VS

0ρsuiūi dV +

∫
0VS

Cijklekl 0ēij dV +

∫
0VS

0σij η̄ij dV

−
∫

0SWE

ρEgu3
0niūi dS −

∫
0SWI

ρIgu3
0niūi dS

−
∫

0SWE

ρEg
0x3

0njQij ūi dS −
∫

0SWI

ρIg
0xI3

0njQij ūi dS

−
∫

0SWE

jωρEφ
′

E
0niūi dS −

∫
0SWI

jωρIφI
0niūi dS = 0, (3.17)
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2π

∫
0SWE

φ
′

Eφ̄
′

EdS −
∫

0SWE

P.V.

∫
0SWE+0SEXTFI

(
∂G

∂nξ
φ
′

E − jωGuini
)

dSξ φ̄
′

E dSx

= 4π

∫
0SWE

φI φ̄
′

EdS for xi on 0SWE , (3.18a)

−4π

∫
0SEXTFI

φEXTE φ̄EXTE dS −
∫

0SEXTFI

P.V.

∫
0SWE+0SEXTFI

(
∂G

∂nξ
φEXTE − jωGuini

)
dSξ φ̄

EXT
E dSx

= 4π

∫
0SEXTFI

φI φ̄EXTE dS for xi on 0SEXTFI , (3.18b)

and

∫
0SFI

ρI

(
ω2

g

)
φI φ̄IdS − jω

∫
0SWI

ρIuiniφ̄IdS −
∫

0VFI

ρI
∂φI
∂xi

∂φ̄I
∂xi

dV = 0. (3.19)

– 61 –



3.3 Numerical methods

In this section, the direct-coupled equations are discretized by using the finite and boundary element

methods. In addition, for efficient computation, reduced linear equations are introduced by using the

mode superposition method. We also extract added mass matrices, the radiated wave damping matrix,

and the wave exciting force vector for the 3D hydroelastic analysis of floating structures with liquid tanks.

3.3.1 Finite and boundary element discretization

The finite element method is employed for the floating structure and internal fluid in tanks, and the

boundary element method is used for the external fluid. The finite and boundary element meshes and

the mesh matching scheme are depicted in Figure 3.4.
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Figure 3.4: Finite and boundary element discretization and mesh matching scheme.
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The fields of structural displacements and velocity potentials are interpolated using the nodal dis-

placement vector (u) and the nodal velocity potential vectors (ΦI and ΦE) for internal and external

fluids, in which ΦE = [Φ
′

E ΦEXT
E ]T, and Φ

′

E and ΦEXT
E corresponds to the velocity potentials φ

′

E and

φEXTE , respectively.

The term-by-term finite element discretization of Equation 3.17 yields:

ω2

∫
0VS

0ρsuiūidV = ūTω2SMu, (3.20a)

∫
0VS

Cijklekl0ēijdV = ūTSKu, (3.20b)

∫
0VS

0σij η̄ijdV = ūTSKNu, (3.20c)

∫
0SWE

ρEgu3
0niūidS = ūTSEHDu,

∫
0SWI

ρIgu3
0niūidS = ūTSIHDu, (3.20d)

∫
0SWE

ρEg
0x3

0njQij ūidS = ūTSEHNu,

∫
0SWI

ρIg
0xI3

0njQij ūidS = ūTSIHNu, (3.20e)

jω

∫
0SWE

ρEφE
0niūidS = ūTjωSEDΦE , jω

∫
0SWI

ρIφI
0niūidS = ūTjωSIDΦI . (3.20f)
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Similarly, the boundary element discretization of Equation 3.18a and 3.18b yields

2π

∫
0SWE

φ
′

Eφ̄
′

EdS − 4π

∫
0SEXTFI

φEXTE φ̄EXTE dS = Φ̄
T
EFEMΦE , (3.21a)

∫
0SWE

P.V.

∫
0SWE+0SEXTFI

∂G

∂nξ
φ
′

EdSξ φ̄
′

E dSx

+

∫
0SEXTFI

P.V.

∫
0SWE+0SEXTFI

∂G

∂nξ
φEXTE dSξ φ̄

EXT
E dSx = Φ̄

T
EFEGnΦE , (3.21b)

jω

∫
0SWE

P.V.

∫
0SWE+0SEXTFI

GuinidSξ φ̄
′

E dSx

+jω

∫
0SEXTFI

P.V.

∫
0SWE+0SEXTFI

GuinidSξ φ̄
EXT
E dSx = Φ̄

T
EjωFGu, (3.21c)

4π

(∫
0SWE

φI φ̄
′

EdS +

∫
0SWE

φI φ̄
′

EdS

)
= Φ̄

T
E4πRI . (3.21d)

Finally, the finite element discretization of Equation 3.19 yields

∫
0SFI

ρI

(
ω2

g

)
φI φ̄IdS = Φ̄

T
I ω

2FIM Φ̄I , (3.22a)

jω

∫
0SWI

ρIuiniφ̄IdS = Φ̄
T
I jωFIWu, (3.22b)

∫
0VFI

ρI
∂φI
∂xi

∂φ̄I
∂xi

dV = Φ̄
T
I FIKΦ̄I , (3.22c)

The final discrete coupled equation for the steady state 3D hydroelastic analysis of floating struc-

tures with liquid tanks is given by
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−ω2SM + SK + SCH −jωSED −jωSID

jωFG FEM − FGn 0

−jωFIW 0 ω2FIM − FIK




u

ΦE

ΦI

 =


0

4πRI

0

 , (3.23)

with SCH = SKN − SEHD − SIHD − SEHN − SIHN .

where the matrix SCH is the complete hydrostatic stiffness of the floating liquid storage structure.

The terms SEHD, SEHN , SIHD, and SIHN are the hydrostatic pressure stiffnesses and SKN is the geometric

stiffness. In particular, the contributions of the internal fluid to the hydrostatic pressure stiffness are

SIHD and SIHN , and a hydrostatic analysis should be performed in advance to properly obtain the geo-

metric stiffness SKN . Note that no artificial damping is considered in Equation 3.23.

Since the extended boundary integral method is applied in the external fluid part of Equation 3.23,

the resonance phenomena induced by sloshing and structural elasticity can be distinguished from the

resonances caused by the irregular frequency effects.
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3.3.2 Reduced equation

We now apply the standard mode superposition method in Equation 3.23. First, the following two

eigenvalue problems should be solved

SKΨi = λiSMΨi; i = 1, 2, ..., Na for the floating structure, (3.24a)

FIKγi = µiF
I
Mγi; i = 1, 2, ..., Ma for the internal fluid, (3.24b)

where Na and Ma are the numbers of degrees of freedom in the floating structure and internal fluid,

respectively, Ψi and γi are the eigenvectors which are othonormalized with respect to the matrices SM

and FIM , respectively, and, λi and µi are the corresponding eigenvalues.

The nodal displacement vector of the floating structures and the nodal potential vector of the internal

fluid are approximated as

u ≈ q1Ψ1 + q2Ψ2 + · · ·+ qN̂aΨN̂a
= Ψq, N̂a < Na, (3.25a)

ΦI ≈ y1γ1 + y2γ2 + · · ·+ yM̂a
γM̂a

= γy, M̂a < Ma, (3.25b)

in which q and y are the generalized coordinate vectors.
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Substituting Equation 3.25a and 3.25b into Equation 3.23 and pre-multiplying ΨT and γT to the

structural and internal fluid parts of Equation 3.23, respectively, the following reduced equation is ob-

tained:


−ω2I + Λ + SGCH −jωΨTSED −jωΨTSIDγ

jωFGΨ FEM − FGn 0

−jωγTFIWΨ 0 ω2I− Ω




q

ΦE

y

 =


0

4πRI

0

 , (3.26)

where Iij = δij , Λij = λiδij , and Ωkl = µkδkl (no summation); i, j = 1, 2, ..., N̂a and k, l = 1, 2, ..., M̂a.

Note that, in Equation 3.26, SGCH is the complete hydrostatic stiffness in the generalized coordinate

(SGCH = ΦTSCHΦ), and the rigid body hydrodynamic analysis can be conducted when only the rigid

body modes of the floating structure are contained in Equation 3.25a.

Condensing out the fluid variables in 3.26, we can extract added masses, the radiated wave damp-

ing matrix, and the wave exciting force vector in the generalized coordinates. Therefore, the present

direct-coupled formulation can be linked term-by-term to the conventional formulation [10, 14]. The

condensed structural equation becomes

[
−ω2

(
I + SE,GMA − SI,GMA

)
+ jωSGCW + Λ + SGCH

]
q = RG

W , (3.27)

where SE,GMA , SI,GMA, SGCW , and RG
W are the interaction coefficients, which are defined as follows:
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SE,GMA = Re
{

ΨTSED
(
FEM − FGn

)−1
FGΨ

}
: added mass matrix (external fluid),

SI,GMA = ΨTSIDγ
(
ω2I−Ω

)−1
γTFIWΨ : added mass matrix (internal fluid),

SGCW = −ω × Im
{

ΨTSED
(
FEM − FGn

)−1
FGΨ

}
: radiated wave damping matrix,

RG
W = jωΨTSED

(
FEM − FGn

)−1
4πRI : wave exciting force vector. (3.28)

In this section, we finally remark on the solution procedures for the present and conventional for-

mulations as depicted in Figure 3.5. In the present solution procedure, the displacement of the structure

(u) and the velocity potential of the external (ΦE) and internal (ΦI) fluids are obtained by solving the

discrete coupled equations, and one additional step of a modal analysis can be optionally employed to

reduce the number of degrees of freedom. The conventional solution procedure requires four solution

steps. However, both procedures provide theoretically equivalent solutions and their solution efficiency

is also similar.
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Figure 3.5: Solution procedures for the steady state hydrodynamic analysis in the present and conven-

tional formulations.

– 70 –



3.4 Numerical tests

In this section, various numerical tests are presented for a 3D box barge model: free vibration

analyses, a rigid body hydrodynamic analysis, and a hydroelastic analysis. The hydrostatic analysis is

performed prior to the dynamic analysis to include the initial stress effect in the hydroelastic analysis.

In the hydrostatic and hydrodynamic analyses, the reference configuration is assumed as the hydrostatic

equilibrium state calculated for the rigid body case.

Figure 3.6(a) presents a 3D box barge with three liquid tanks (length L is 300m, width W is 50m,

and height H is 30m) used in the numerical tests. The model consists of three parts: the bottom, side

hulls (bow, stern, starboard and port), and four bulkheads. The thicknesses and material properties are

listed in Table 3.1, and it is ensured that the draft d is 10m and the vertical center of gravity (COG)

is -4m in the rigid body case. For simplicity, all three rectangular tanks (length LT is 90m, width W

is 50m, and height H is 30m) are designed to be the same and located from bow to stern in order. In

the tanks, the density of the internal fluid ρI is 500 kg/m3 and the filling height hI is 10 m, which is

measured from the bottom of the tanks. The density of the external fluid ρE is 1000kg/m3 and the

depth hE is assumed to be infinite. Also, the gravitational acceleration g is 9.8m/sec2. Three angles of

incident waves (θ = 0◦, 45◦ and 90◦) and angular frequencies ω from 0.2 to 1.2 rad/sec with a constant

increment (∆ω = 0.01 rad/sec) are considered.

The meshes used for the box barge, internal fluid, and external fluid are shown in Figure 3.6(b),

(c), and (d). A four-node mixed interpolation of tensorial components (MITC) shell finite element

[27, 28, 29, 30] is used for the floating structure, an eight-node brick element is used for the internal fluid

in tanks, and a four-node boundary element is used for the external fluid.
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Figure 3.6: 3D box barge model: (a) overall description, (b) finite element mesh used for the box barge,

(c) boundary element mesh used for the external fluid, and (d) finite element meshes used for the internal

fluid.
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Table 3.1: Material properties of the box barge model.

Bottom Side hulls Bulkheads

Thickness t (m) 0.4 0.2 0.2

Density ρs (kg/m3) 15, 000 15,000 10,000

Young’s modulus E (GPa) 2.0× 1011 2.0× 1011 1.0× 1011

Poisson’s ratio ν 0.3 0.3 0.3
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3.4.1 Free vibration analyses

Free vibration analyses of the box barge and the internal fluid are performed to obtain the natural

frequencies and the mode shapes. The finite element model of the box barge is shown in Figure 3.6(b).

The four elastic dry mode shapes of the box barge that correspond to the first four natural frequencies

are presented in Figure 3.7. It is observed that the first mode shown in Figure 3.7(a) is the torsional mode.

For the internal fluid, the first eight free surface mode shapes and the corresponding natural fre-

quencies (ωNi ; i indicates the free surface mode number) computed here are illustrated in Figure 3.8

and Table 3.2. Figure 3.8(a), (c), and (f) are the first three longitudinal sloshing modes, (b) and (h)

are the first two transverse sloshing modes, and the others are mixed sloshing modes. In Table 3.2,

the computed natural frequencies of the present formulation are compared with the analytical solutions

[32, 33] obtained by

ωAm,n =
√
g km,n tanh km,nhI ; km,n = π

√(
m

LT

)2

+
( n
W

)2

; m,n = 0, 1, 2, ...; m+ n 6= 0, (3.29)

where the subscripts m and n denote the longitudinal and transverse directions, respectively, and ωAm,n

is the analytical solution of the sloshing natural frequencies.
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Figure 3.7: Mode shapes of the box barge.
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Figure 3.8: Computed free surface mode shapes and natural frequencies (ωNi ) of the internal fluid.
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Table 3.2: Numerical (ωNi ) and analytical (ωAm,n) results for the natural frequencies (rad/sec) of the

internal fluid.

Numerical results (ωNi ) Analytical results (ωAm,n)

0.339 (ωN1 ) 0.339 (ωA1,0)

0.588 (ωN2 ) 0.586 (ωA0,1)

0.646 (ωN3 ) 0.642 (ωA2,0)

0.662 (ωN4 ) 0.659 (ωA1,1)

0.827 (ωN5 ) 0.822 (ωA2,1)

0.905 (ωN6 ) 0.895 (ωA3,0)

1.012 (ωN7 ) 1.003 (ωA3,1)

1.038 (ωN8 ) 1.023 (ωA0,2)
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3.4.2 Rigid body hydrodynamic analysis

We perform a rigid body hydrodynamic analysis and the results are compared with the results of

WAMIT [58]. In WAMIT, a higher-order method (using the 4th-order B-spline functions) is employed

for the external and internal fluids. For the spatial discretization, 60, 20, and 4 panels are used for the

box barge in the length, width, and depth directions and 18, 20, and 4 panels are used for each internal

fluid in the three tanks.

Figures 3.9 and 3.10 show the response amplitude operators (RAOs) when the incident wave angles

θ are 0◦, 90◦, and 45◦. In the figures, qi is the generalized coordinates defined with respect to the center

of floatation of the box barge. The subscript i varies from 1 to 6, which denote 6 rigid body motions,

i.e., surge, sway, heave, roll, pitch, and yaw motions.

All the results of the present formulation and WAMIT are in good agreement. However, unlike the

higher-order method used in WAMIT, a bilinear interpolation is employed in the present discretization

and thus small differences can be observed near the resonance points.
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Figure 3.9: RAOs of rigid body motions of the box barge: (a) surge, heave, and pitch motions when

θ = 0◦, and (b) sway, heave, and roll motions when θ = 90◦.
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Figure 3.10: RAOs of rigid body motions of the box barge when θ = 45◦ : (a) surge, sway, and heave,

and (b) roll, pitch, and yaw motions.
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3.4.3 Hydroelastic analysis

The hydroelastic analysis of the box barge model is performed with the mode superposition method

for efficient computation. The dry modes of the box barge and the sloshing modes of the internal fluid

that correspond to the natural frequencies up to
√

1000rad/sec are contained for the reduced equation

and the generalized coordinates are constructed with respect to the center of floatation of the box barge.

As well known, the hydrostatic stiffness plays an important role in hydrodynamic analysis of float-

ing structures in both rigid and elastic body cases. In particular, the geometric stiffness term SKN in

Equation 3.20c should be carefully considered in hydroelastic analysis because Equation 3.20c requires

the initial stress field 0σij due to hydrostatic pressures. Therefore, hydrostatic analysis is prerequisite

for hydroelastic analysis.

Figure 3.11 shows the vertical displacements calculated in both rigid and elastic body cases. In par-

ticular, it is observed that, in the elastic cases, quite different results are obtained when the initial stress

effect is not considered. Table 3.3 shows the differences in hydrostatic stiffness terms. This comparison

study demonstrates the importance of the initial stress in hydroelastic analysis. However, the differences

would be small for relatively rigid floating structures.

Figure 3.11, there are peaks which arise from many different resonance sources (e.g. floating struc-

ture, sloshing, and external waves) and their combinations. It is a hard task to identify the sources of

peaks, in particular, when multiple sloshing tanks are considered.

Finally, some diagonal components of the external and internal added masses SE,GMA,ij and SI,GMA,ij

calculated using Equation 3.28 are presented in Figures 3.12 and 3.13. In contrast to the results in

Figure 3.12, resonance phenomena can be found in Figure 3.13.
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Figure 3.11: RAOs of the vertical displacements (|u3/a) at the bottom of the box barge: (a) center, (b)

bow, and (c) corresponding measuring points.
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Table 3.3: Comparison of the hydrostatic stiffness terms. The subscripts i and j vary from 1 to 10;

1,2,. . . ,6, denote the values corresponding to the six rigid body motions and 7,8,9,10 denote the values

corresponding to the first four elastic modes shown in Figures 3.6.

(i, j) SGCH,ij SGCH,ij (w/o initial stress)

(3,3) 0.98000 0.98000

(4,4) 0.42365 0.69250

(5,5) 0.85619 0.87069

(7,7) 0.41157 0.61645

(8,8) 0.54137 0.03300

(9,9) 0.46628 0.03144

(10,10) 1.81060 0.03505
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Figure 3.12: External added mass coefficients: for the rigid modes (SE,GMA,11 ∼ S
E,G
MA,66) and for the elastic

modes (SE,GMA,77 ∼ S
E,G
MA,1010).
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Figure 3.13: Internal added mass coefficients: for the rigid modes (SI,GMA,11 ∼ S
I,G
MA,66) and for the elastic

modes (SI,GMA,77 ∼ S
I,G
MA,1010).
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3.5 Hydroelastic experiments

To verify the hydroelastic analysis procedure developed in this study, 3D hydroelastic experiments

were conducted using a simplified FPU model with three rectangular liquid tanks. In the following, the

hydroelastic experiment setup and the numerical model are described. The experimental results are then

compared with the numerical results.
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3.5.1 Experimental setup

In this section, we present the overall description of the 3D hydroelastic experiment, including the

experimental conditions, structural model, mooring method, wave conditions, and measuring devices.

As shown in Figure 3.14, the hydroelastic experiments of the FPU model are carried out in an ocean

basin and the water depth (hE) is set to 1.5m. The FPU model is made of polycarbonate. Details of

the FPU model are presented in Figure 3.15 and Table 3.4. The lowest elastic mode of the experimental

model is a twisting mode (ωtwistingn =15.66 rad/sec) and the first twenty natural sloshing frequencies are

within a range of 4.95 to 19.22 rad/sec.

Figure 3.16 illustrates the overall experimental setup. In order to measure the incident wave fre-

quency (ω), wave length (λ), and amplitude (a), one wave probe is installed at the free surface, located

a distance of 1.5m in front of the test model. The wave probe measures the wave elevation during the

experiments. The three translations of the floating structure are then measured through four motion

capture cameras with infrared reflective (IR) markers. Figure 3.16(a) shows the positions of the six IR

markers attached on the FPU model.

The incident waves belong to the range of the linear wave theory in deep water condition (2a/hE <

1.0 and hE/λ < 1.0) [59]. The drift of the FPU model due to the incident wave was prevented by

mooring the structure upward with four strings. Since the strings should prevent the drift without re-

straining surge, sway, and heave motions, a small amount of tension is introduced such that the strings

are horizontally connected to the structure. That is, the connection angle between the strings and the

structure is almost 180◦, see Figure 3.16(c).

We then performed the 3D hydroelastic experiments considering eight wave frequencies (ω= 4.3,

5.3, 6.2, 7.4, 8.4 9.5, 10.2, 12.2, and 15 rad/sec) and three different incident wave angles ( θ = 0◦, 45◦,

and 90◦).
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Figure 3.14: Hydroelastic experiment of the FPU model with three liquid tanks in an ocean basin (15m

× 10m × 1.5m).
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Figure 3.15: FPU model.
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Table 3.4: Details of the FPU model.

Length (L) 2.4 m

Width (W ) 0.4 m

Height (H) 0.2 m

Thickness (t) 0.003 m

Draft (d) 0.08 m

Young’s modulus (E) 2 GPa

Tank1 (Lt ×W × hI) 0.6× 0.4× 0.1 m

Tank2 and 3 (Lt ×W × hI) 0.4× 0.4× 0.1 m
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Figure 3.16: A schematic of the experimental setup: (a) top view, (b) front view, (c) mooring lines.
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3.5.2 Comparison between experimental and numerical results

Rigid body hydrodynamic and hydroelastic analyses are conducted using the numerical method

developed in this study. Figure 3.17 shows the meshes used for the FPU model with three rectangular

tanks. The FPU model and internal fluids in tanks are discretized by 5,200 shell elements and 7,000

brick elements, respectively. The external wet surface is discretized by 2,680 boundary elements.

Figures 3.18 and 3.19 show the RAOs of structural displacements (u1, u2 and u3) for three inci-

dent wave angles (θ = 0◦, 45◦, and 90◦). The results of the rigid body hydrodynamic and hydroelastic

analyses are compared with the experimental results. It is observed that the experimental results are in

good agreement with the results of the hydroelastic analysis, especially, when the initial stress effect is

considered. Since artificial damping is not considered in the numerical analyses, the numerical results

over-predict the peaks. In the heading angle (θ = 0◦), the FPU model moves like a rigid body in both

experimental and numerical results due to its relatively large overall bending rigidity.

Figures 3.20 presents the RAOs of the modal coordinate (q7) and phase angle calculated, which

correspond to the first elastic mode (Ψ7, twisting mode) when the incident wave angle is 45◦. Fig-

ures 3.21(a) shows the twisting angles of the FPU model measured in the numerical and experimental

results. The largest twisting angle (θtwisting) is observed at 7.4 rad/sec in the experimental results.

In Figures 3.22, we finally present some snapshots of free surface profiles, shape of structural de-

formation and the corresponding structural displacements when the wave frequency is 7.4 rad/sec. It

is observed that the sloshing motion is not beyond the linear potential theory and the tendency of free

surface profiles in Figures 3.22(a) agrees well with the numerical results.
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Figure 3.17: Meshes used for (a) FPU with three rectangular tanks and (b) internal fluid.
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Figure 3.18: RAOs of the displacements of the FPU model for two incident wave angles (θ = 0◦ and θ

= 90◦).
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Figure 3.19: RAOs of the displacements of the FPU model (θ = 45◦).
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Figure 3.20: Modal responses calculated: (a) RAOs of the modal coordinate (q7/a) and phase angle (θ),

and (b) mode shape (Ψ7).
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Figure 3.21: Twisting angle (θtwisting) of the FPU model (θ = 45◦ and wave amplitude (a = 0.03 m)):

(a) comparison between numerical and experimental results and (b) definition of twisting angle.
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Figure 3.22: Snapshots of hydroelastic response (θ = 45◦, ω=7.4 rad/sec, ×: the measuring point of

structural displacements): (a) experiment and numerical results, and (b) structural displacements (u2/a

and u3/a).

– 98 –



3.6 Summary

In this chapter, we presented a mathematical formulation and a numerical method for a hydroelastic

analysis of floating structures with liquid tanks in the frequency domain, in which the direct-coupling

method was employed to couple structural motions, sloshing, and water waves. The extended boundary

integral equation was adopted in order to avoid the irregular frequency problem. The proposed formu-

lation includes all the terms required for a linear hydroelastic analysis of floating structures with liquid

tanks.

The proposed formulation was verified through a comparison with the analysis results of WAMIT

in a rigid body hydrodynamic analysis. The importance of the initial stress was demonstrated through a

comparative hydroelastic analysis. In addition, 3D hydroelastic experiments were performed for a FPU

model. We also simulated the hydroelastic behavior of the FPU model. The numerical results were

compared with experimental results and good agreement between the results was observed.

In future works, it will be valuable to extend the present direct coupled formulation to nonlinear

hydroelastic analyses, in which we could deal with the large motions of floating structures and fluid and

wet-surface change. Also, it will be an interesting study to identify resonance sources in hydroelastic

analysis of floating structures with liquid tanks.
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Chapter 4. Conclusion

The objectives in this work were to develop the numerical methods to calculate the hydrostatic

equilibrium of 3D flexible floating structures, by which accurate draft and stress fields of structures in

collaborate with the development of numerical method for 3D hydroelastic analysis of floating structure

with liquid sloshing.

In Chapter 2, a numerical method for a nonlinear hydrostatic analysis of flexible floating structures

was proposed. The incremental equilibrium equation for rigid and flexible (elastic) floating bodies was

derived using the updated Lagrangian formulation, which is discretized using the finite element proce-

dure. An effective numerical integration technique was developed to treat the significant wet surface

change and thus the non-matching mesh problem is resolved without re-meshing. The feasibility of the

proposed numerical procedure was demonstrated through various hydrostatic problems considering both

rigid and flexible body cases. The importance of the nonlinear solution procedure in the stress analysis

of flexible floating structures was discussed. The configurations in hydrostatic equilibrium and the cor-

responding stress distributions were presented for various floating and loading conditions. The proposed

numerical method can be easily used for the stress analysis of damaged ships and offshore platforms with

various loading conditions. Moreover, it can be extended to the transient analysis of flexible floating

structures in flooded conditions by considering the inertia forces and internal free surface effect.

In Chapter 3, a mathematical formulation and a numerical method for a hydroelastic analysis of

floating structures with liquid tanks in the frequency domain, in which the direct-coupling method was

employed to couple structural motions, sloshing, and water waves was proposed. The extended boundary

integral equation was adopted in order to avoid the irregular frequency problem. The proposed formu-

lation includes all the terms required for a linear hydroelastic analysis of floating structures with liquid

tanks. The proposed formulation was verified through a comparison with the analysis results of WAMIT

in a rigid body hydrodynamic analysis. The importance of the initial stress was demonstrated through a
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comparative hydroelastic analysis. In addition, 3D hydroelastic experiments were performed for a FPU

model. We also simulated the hydroelastic behavior of the FPU model. The numerical results were

compared with experimental results and good agreement between the results was observed. In future

works, it will be valuable to extend the present direct coupled formulation to nonlinear hydroelastic

analyses, in which we could deal with the large motions of floating structures and fluid and wet-surface

change. Also, it will be an interesting study to identify resonance sources in hydroelastic analysis of

floating structures with liquid tanks.

As an extension of this work, we recommend the following future works:

• In Chapter 2, the proposed numerical method can be easily used for the stress analysis of damaged

ships and offshore platforms with various loading conditions. Moreover, it can be extended to the

transient analysis of flexible floating structures in flooded conditions by considering the inertia

forces and internal free surface effect.

• In Chapter 3, it will be valuable to extend the present direct coupled formulation to nonlinear

hydroelastic analyses, in which we could deal with the large motions of floating structures and

fluid and wet-surface change. Also, it will be an interesting study to identify resonance sources in

hydroelastic analysis of floating structures with liquid tanks.
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Summary

Numerical methods for hydro -static and -dynamic analysis of 3D

elastic floating structures

본 연구를 통해 3차원 부유식 탄성 구조물의 정적/동적 해석을 위한 수치해석 기법을 개발하였다.

2장에서는 3차원 탄성 부유체의 정적 해석을 위한 비선형 구성 방정식을 제안하였다. 비선형 정적 평형

방정식은 Updated Lagrangian 정식화를 통해 incremental equilibrium equation 을 구성하였으며 유한요

소법을 통해 이산화 하였다. 반복 계산 과정 중 자유수면에서 발생하는 non-matching 격자 문제를 해결하기

위해 효과적인 수치 방법을 제안 하였다. 이는 re-meshing 알고리즘을 이용할 때 발생하는 복잡한 수치해석

절차를 간소화 할 수 있다. 다양한 하중 상태 및 부유 조건에서 탄성 및 강체 부유체의 강도 해석을 통해

제안된 수치해석 기법의 가능성을 보여준다. 제안된 수치해석 기법은 탄성 및 강체 부유체의 다양한 정적/

준정적 해석에 적용 가능하며, 손상된 부유체의 강도 해석에도 쉽게 적용 될 것으로 기대된다.

3장에서는 내부유체 효과를 고려한 3차원 탄성 부유식 구조물의 동적해석을 위한 구성방정식을 제안

하였다. 내부유체, 파랑하중, 부유식 탄성 구조물은 직접 연성법을 통해 연성 효과를 고려하였다. 내부유체

및 구조물은 유한요소법을 통해 이산화 하였으며, 파랑하중은 경계요소법을 통해 이산화 하였다. 외부유체

에서 발생하는 irregular frequency 문제를 해결하기 위해 확장된 경계 적분 방정식을 적용하였다. 제안된

수치해석 기법은 강제 부유체에 대하여 WAMIT 과 비교/검증 하였다. 또한, 3차원 탄성 부유체의 동적 해

석에서 geometric stiffness 의 중요성을 보여 줌으로써, 정확한 정적 해석의 필요성을 강조하였다. 내부유체

효과를 고려한 3차원 탄성 부유체 구조물의 유타성 수치해석 결과를 비교/검증을 위해 탄성 부유체를 제작

하였으며, 실험을 통해 수치해석 결과의 정확성을 뒷받침 하였다. 향후, 개발된 수치해석 기법은 다양한

해양 하중을 고려한 비선형 동적 해석에 적용 가능하며, 이를 위해 비선형 내부유체 효과를 고려한 수치해석

기법의 개발이 필요하다.

– 107 –


