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ABSTRACT

In this work, a numerical method for a 3D linear hydroelastic analysis of floating structures with
liquid tanks subjected to surface regular water waves is developed and compare the numerical results
with experimental tests. Considering direct couplings among structural motion, sloshing, and water
waves, a mathematical formulation and a numerical method are developed. The finite element method
is employed for the floating structure and internal fluid in tanks, and the boundary element method is
used for the external fluid. The resulting formulation completely incorporates all the interaction terms
including hydrostatic stiffness and the irregular frequency effect is removed by introducing the extended

boundary integral equations.

Important issues of the 3D hydroelastic problem are the complete inclusion of hydrostatic stiffness
and hydrostatic equilibrium of elastic floating structures. The hydrostatic stiffness is composed of the
sum of the hydrostatic pressure and initial stress effects. Therefore, an explicit expression of geometric
stiffness that is related to the hydrostatic pressure is required, and the hydrostatic analysis should be

pre-performed before the hydrodynamic analysis to obtain the initial stress fields.

An updated Lagrangian finite element (FE) formulation for a geometrically nonlinear hydrostatic
analysis of flexible floating structures subjected to buoyancy, self-weight, and various external static
loads is developed. The nonlinear equation is linearized with respect to a reference configuration and the
resulting FE formulation is iteratively solved using the Newton-Raphson method. A special numerical
integration technique is developed to handle the wet-surface change without re-meshing. Through the
proposed numerical method, the hydrostatic equilibrium can easily be calculated considering various
static and quasi-static loading conditions and the stress field of elastic bodies is more accurately evaluated

in a large deformation case.
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Chapter 1. Introduction

For a long time, the hydrodynamic analysis of floating structures has been typically based on the
rigid body assumption. The rigid body hydrodynamic analysis has been deemed adequate for the design
of floating structures where rigid body motions are dominant. However, as the size of floating structures
is getting larger to the extent that the flexible motions of floating structures account for a substantial
portion of the hydrodynamic responses, the rigid body assumption is no longer resonable for the hydro-

dynamic analysis of floating structures.

More recently, the hydrodynamic analysis of floating liquid storage structures subjected to surface
regular waves has been widely studied due to the significant increase in demand for floating production
storage and offloading (FPSO) units, floating liquefied natural gas (FLNG) units, and other related
structures. Recently, the size and the weight of floating liquid storage structures are becoming increas-
ingly greater in tandem with growing market demand and on the basis of their economic benefits. In
such floating structural systems, the assumption of rigid body motions is no longer suitable because, as
the dimensions of floating structures increase, the overall stiffness decreases, resulting in relatively low

resonant frequencies close to the range of excitation frequencies and sloshing resonance frequencies.

Most previous studies mainly addressed the coupling effect between rigid body motions and sloshing.
However, the size and the weight of floating liquid storage structures are becoming increasingly greater
in tandem with growing market demand and on the basis of their economic benefits. In such floating
structural systems, the assumption of rigid body motions is no longer suitable because, as the dimen-
sions of floating structures increase, the overall stiffness decreases, resulting in relatively low resonant
frequencies close to the range of excitation frequencies and sloshing resonance frequencies. In spite of
the increasing importance of the hydroelastic behavior of floating liquid storage structures, few related
studies have been reported. Accordingly, a complete mathematical formulation has not been developed

and the numerical results have not been verified by experimental studies.



Important issues for the general 3D hydroelastic problem are the explicit inclusion of hydrostatic
stiffness and the use of accurate hydrostatic equilibrium of elastic floating structures. The hydrostatic
stiffness is related to the sum of the hydrostatic pressure and initial stress effects. Therefore, an explicit
expression of geometric stiffness that is related to the hydrostatic pressure is essential, and the hydro-

static analysis should be pre-performed before the hydrodynamic analysis.

Until now, the hydrostatic equilibrium has been calculated based on the rigid body assumption
using various methods, where floating structures are assumed to be rigid. While those methods are sim-
ple, they are not always applicable to flexible structures and require additional works (such as pressure
projection) to calculate the stress fields of floating structures caused by hydrostatic pressure. Recently,
the importance of hydrostatic stiffness in hydroelastic analyses has been extensively investigated. A hy-
drostatic analysis has become a prerequisite to obtain stress fields required for constructing the complete

hydrostatic stiffness in hydroelastic analyses.

Nevertheless, it is hard to find methods to accurately calculate the hydrostatic equilibrium (and
stress fields) of flexible floating structures. Basically, the hydrostatic analysis of floating structures is
nonlinear, mainly because of large motion and wet-surface change. Furthermore, when floating structures
are modeled using finite elements, difficulty arises from non-matching between the finite element mesh
and the free surface. Such non-matching mesh problems frequently occur in the analysis of fluid-structure

interaction problems and proper treatment is an important issue in numerical analyses

Therefore, a general method to calculate the hydrostatic equilibrium of 3D flexible floating struc-
tures, by which accurate draft and stress fields of structures should be developed in collaborate with the

development of numerical method for 3D hydroelasticity.



Chapter 2. Hydrostatic analysis

2.1 Introduction

In ocean environments, floating structures such as ships, offshore platforms, and offshore facilities
are always subjected to various hydrostatic and quasi-static loads (e.g. structural weight, ballast water
weight, and cargo weight) [I]. Calculating hydrostatic equilibrium is basic and important for analyzing

the stability and strength of floating structures.

For a long time, hydrostatic equilibrium has been calculated based on the rigid body assumption us-
ing various methods [2, B, 4 [5] [6] [7, [8, @], where floating structures are assumed to be rigid. While those
methods are simple, they are not always applicable to flexible structures and require additional works
(such as pressure projection) to calculate the stress fields of floating structures caused by hydrostatic
pressure. Recently, the importance of hydrostatic stiffness in hydroelastic analyses has been extensively
investigated [0} [T}, 12} 13}, 14}, 15} 16 17, 018, 19, 20, 21]. A hydrostatic analysis has become a prereq-
uisite to obtain stress fields required for constructing the complete hydrostatic stiffness in hydroelastic

analyses [10, 111 12].

Nevertheless, it is hard to find methods to accurately calculate the hydrostatic equilibrium (and
stress fields) of flexible floating structures. Basically, the hydrostatic analysis of floating structures is
nonlinear, mainly because of large motion and wet-surface change. Furthermore, when floating structures
are modeled using finite elements, difficulty arises from non-matching between the finite element mesh
and the free surface. Such non-matching mesh problems frequently occur in the analysis of fluid-structure

interaction problems and proper treatment is an important issue in numerical analyses [22] 23] 24].

The objective of this study is to develop a general method to calculate the hydrostatic equilibrium
of 3D flexible floating structures, by which accurate draft and stress fields of structures are obtained. We

employ an updated Lagrangian finite element formulation [25] [26] for a nonlinear hydrostatic analysis



of flexible floating structures. After nonlinear terms are linearized, we obtain incremental equilibrium
equations, which are iteratively solved using the Newton-Raphson method. Wet-surface change, normal
vector change, and buoyancy change due to structural displacement are completely considered [10} [12].
To efficiently handle the non-matching mesh problem without re-meshing, a special numerical integra-
tion technique is developed. The proposed formulation and numerical method also can be used for a

hydrostatic analysis of rigid floating structures as well as flexible floating structures.

The incremental equilibrium equations are presented in Section 2.2. The finite element discretization
procedure and the equations for a rigid body analysis are derived in Section 2.3. In section 2.4, an effective
numerical integration technique is developed and the feasibility of the proposed numerical procedure is
demonstrated through various nonlinear hydrostatic problems in rigid and elastic body cases in Section

2.5.



2.2 Incremental equilibrium equation

As shown in Figure a)7 a three-dimensional (3D) flexible structure is floating in calm water and
a fixed Cartesian coordinate system (x1, x2, x3) is introduced. The structural material is assumed to be
homogeneous, isotropic, and linear elastic. In the initial state, the floating structure does not interact
with water. Through a nonlinear hydrostatic analysis, we can obtain the hydrostatic equilibrium, where
the external forces (e.g. surface force, body force, and hydrostatic pressure) are balanced, as shown in
Figure b). The volume and surface of the floating structure are denoted by V and S, respectively.

In particular, hydrostatic pressure is applied on the wet-surface, S,,,.

The incremental equations for the freely floating structure are obtained through the updated La-
granagian formulation [25], [26]. In Figure two configurations are demonstrated and they are denoted
by the left superscripts ¢ and ¢+ At, respectively. The material point vectors for the floating structure in
the configuration at time ¢ and t + At are expressed by ‘z; and 2%z, respectively. The displacement

vectors of the floating structure are then defined by

t+At t+At t
t+ U; = + Ty — Xy, (2-1)

Also, the hydrostatic pressure fields are defined as

'P=—puges, THP=—p,g" e (2.2)

9

where p,, is the density of water and g is the gravitational acceleration.



Floating structure Hydrostatic analysis
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(a) Initial state (b) Hydrostatic equilibrium

Figure 2.1: Hydrostatic analysis of flexible floating structure.



(a) Configuration at time t (b) Configuration at time t+At

Figure 2.2: Two configurations of flexible floating structure.
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The local equilibrium equations at time ¢t + At are given by

tHAL
9 Tij  t+At

— di3 =0 in (ALY,
t+At X psg 3 b
oAty
t+AtUijt+At’rLj — _t+AtP t+Atni on t+AtSw,
t+AtJijt+Atnj — t+AtfiSt+Atni on t-‘,—Atsv7 (23)

where o;; is the Cauchy stress tensor, f? is the surface force, ps is the density of the floating structure,

n; is the unit normal vector outward from the floating structure, and d;3 is the Kronecker delta.

After applying the principle of virtual work at time ¢ + At, the following weak formulation can be

obtained:

t+At t+At t+At t+At
/ + Uij6t+Ateijd * V=- / + psgéudd + Vv
t+Aty t+Aty
+ / Pwl t+Atl’3t+Atni5uidt+AtS
t+Atg,

+ / t+Atf7;sg t+Atni5uidt+AtS (24)
t+At g

w

where 04 are;; is the virtual linear strain tensor that corresponds to the virtual displacements du;,

t+AtCij = 5 (‘3“‘“33]- Ot+Aty, |-



We then obtain the incremental equilibrium equation for a nonlinear hydrostatic analysis after lin-

earizing all the terms in Equation with respect to the configuration at time t,

t+At t t t+At t
/ Cijrs + teméteijd 1% +/ aijé + tnijd vV
ty ty

_/ Pwd t+Aiu3tni5uidtS _/ Pwd thtnj tJrAiQij(suidtS
tSw tSw

= 7/ tpsg 5U3dtv */ tO'ij(seijdtV +/ Pwyd t:zzgtni(suidtS +/ tfls tm—&uidtS (26)
tv (A% tS S

t
w

with

a1 [(0700u 0TROw a1 (00w 0 NSy 0720wy Dy
A 2 8t:cj 8t:z:i ’ tnl] h 2 8t:c¢ 8t’l}j 8t’l}i 8tl'j ’

at—&-A:(guk at—i—Aié‘uj

t
t+AtQij = 5ij 8t$k + Ot ) (27)

3
where t+Aiui is the displacement from the configuration at time ¢ to the configuration at time ¢ + At,

t+A§mj is the virtual nonlinear strain tensor, and Cjj,s is the stress-strain relation tensor. In Equa-

tion all the static and kinematic variables refer to the configurations denoted by 'V, tS,,, and 'S.



The iterative form of Equation for the Newton-Raphson method, is for n=1, 2, ...,

" n—1 n
[—%—Atv(n—m Cz’jrsAtJrAteSns)5t+At€ijdt+AtV + / t+At0_§j )(SAtJrAﬂ]z(j )dt+AtV

t+AEY (n—1)

-1
7/ pngHAtugn)HAtngn )5uidt+AtS
t+AtST(U”*1)

-1 -1
_/ Pug t+At$:(3n )t+Atn;n )At-s-AthL)(suidHAtS
t+AtS1(u"_1)
_ -1
_ _ / t+Atpgn D gsuzd Aty — / t+AtUl(?_“L )6eijdt+AtV
t+At)/ (n—1) t+At)/(n—1) J

n—1 n—1 s ne1
+/+Ms<n71> pngAtxg )t+Atnz( )5uidt+AtS+/ t+Atfi t+Atn§ )5uidt+m5, (2.8)

t+At g(n—1)

where AHAteE;L), AHAmZL), and At+AtQ§?) are defined by substituting HAiui and *z; with Awu; and
t+Atx§”71) in Equations and respectively, and Awu; refers to the increment of the structural

displacement at the iteration n.
Note that in Equations all the quantities with superscripts (n — 1) and (n) are evaluated

to the configuration updated at the iteration n, i.e., trAtY (=1 t+atgn=1 "o t+ALG(=1)  here

Aty () = by tHALGD) = 6g, and THAS(O) = tS. Also, for n=1, A1) = toy;.

~10 -



The material point vector is updated as

t+At,(n) :t+Atx§n—1) —|—Au§n)' t+At$1(0) t (2.9)

i ; = Tj.

The structural density and the Cauchy stress tensor should be updated during iterations using the

following relations:

t+Atpg"*1)

tHat pg") = for the structural density,
det (AHAtFi(jn))
t+At (1)
t+At0(;L) = iA”“FS?)HAtS,(J)AHAtF(l") for the Cauchy stress tensor, (2.10)
K t+AL pgn—l) @ J

where A”AtFi(jn) and ”AthL) are the deformation gradient and the second Piola-Kirchhoff stress ten-

sors at the iteration n.

The second Piola-Kirchhoff stress tensor t+AtS’§;L) is obtained through the following relation:

tratgm) — traty D L AST: with  ASTY = CijpAel, (2.11)

where ASZ-(;U and Ael? are the second Piola-Kirchhoff stress increment tensor and the linear part of the

Green-Lagrange strain increment tensor, respectively.

- 11 —



2.3 Finite element discretization

In this section, we discretize the incremental equilibrium equation using the standard finite element
procedure. In addition, the incremental equation for rigid floating structures is derived by introducing

the generalized coordinates.

2.3.1 General flexible body hydrostatics

In the iteration n, for the finite element (e), the increment of the structural displacement Auz(-n) is

approximated as,

AuM(© = At Ay ™), (2.12)

where AU is the nodal incremental displacement vector and H is the displacement interpolation
matrix used in the finite element method. The same interpolation matrix is also used for the virtual

displacement.

Substituting Equation [2.12]into Equation [2.8| and applying the standard finite element assemblage

process, the following incremental equation in matrix form is obtained:

t+AtK%n) + t+AtKS\vagl) _ t+AtK¥Ill)j _ t+AtK(I—?J)V} AU®

_ _t+AthL—1) . t+AtR(In—1) + t+Athl§1) + t+AtR(Sn—1) (2.13)

- 12 —



where the matrices are evaluated by
trArg () :Ee: /wv(n_l)(ﬁ) HAIRT(M() q(e) tHATR(m(e) gty
HEAIK (=) :Ze: AMVWW HAIRT(D() 1481 (n-1)(e) AR gre Aty
t+AtK§§% :ze:[erSfU"D(e) pwgt+AtHT(n)(e) t+AL, (n—1)(e) t+AtHén)(€)dt+AtS7
t+AtKgl])V :g/wts&n_l)(e) pwgt-i-Atxi())n*l) t+ AT (n)(e) t+AtQ§\r]L71)(e) t+AtH(n)(e)dt+At5,
t+AthL—1) _ ; [MV(”,U(E) t+Atpgn71)(€) g t+AtHg”(n)(e)dt+AtV’
t+AtR§n*1) :ze:[erv(nl)(e) t+AtB€(n)(€) t+At g (n—1)(e) dt+Atv,
t+Ath;z§1) :¥[+At&<ﬂn—1><e> wgt-i-Atxi())nfl) AT (n)(e) t+Aty (n-1)(c) gt+Atg
t+Athl—1) _Z;[Mts(n_l)m t+ALET(n)(e) t+Atps(e) t+At, (n—1)(e) dtJrAtS7 (2.14)

where C is the stress-strain law matrix, By, is the linear strain-displacement relation matrix, By, is the
nonlinear strain-displacement relation matrix, Hsz is the interpolation matrix for the component Aug,

and & is the vector form of the Cauchy stress tensor o;;. The matrix ”Ath\?_l)(e) is defined by

t+Aty(n=1)(e) _ ¢ t+At, (n—1) 9 _ t4+At, (n—1) 9 ) )
Qy = o' Ty prveS = ey (ei®ej), (2.15)
J 7

~ 13—



Note that the matrix |FAKSY 4 t+atg (1D _trargln) t+AtK§}‘}V} in Equation [2.13]is a sin-

gular matrix, because there is no stiffness for the rigid translational motion in the z1- and x5- directions.

Therefore, a proper boundary condition is required for the directions.

Equation [2.13| should be iterated until the linearization error satisfies the following criteria:

Aul® . (_t+arg(n=1) At (=1 | trarg(n=1) | Aty (n-1)
H u ( B I + HS + S ) s <ep (2.16)

AuT@) . (_t+AtR53?) _ t+AtR(IO) + t+AtR(h% + t+AtR§SO))

where €g is an energy criterion in the iterative solution procedure.

— 14 —



2.3.2 Rigid body hydrostatics

In this section, we derive equations for the nonlinear hydrostatic analysis of rigid floating structures.
The equations for the rigid body hydrostatic analysis can be derived by modifying the Equation [2:6]
Basically, in the rigid body case, the linear strain tensor e;; in Equation is no longer valid. Therefore,

the first and sixth terms in Equation [2.6] are equal to zero.

In addition, using Equation [2.3] we modify the second term in Equation [2:6|as follows, see Reference

[10]:

6t+Atuk 8t+Atuk
t t+At ty,y t,. t tr t t t t

Substituting Equation [2.17] into Equation [2:6] and applying the usual finite element assemblage pro-

cess, we obtain the following incremental equation for the rigid body hydrostatic analysis:

[‘I,RT <t+AtK(Ln) + t+AtK§\r;L—1) _ t+AtKgL)D B t+AtKgLJ)V) ‘I,R} Agl™

_ 7t+AtR(Bﬂ—1) T t+Athl§1) + t+Athl_1) (2.18)

where

SHM©)

t+Atx:())nfl) t+ AL T (n)(e)
8t+Atx§”*1)

t+Atn(n— 1)(e) dt+At S,

AK =) / Pug

(n-1)(e) ¥
- t+Aat gl

HNK;}% :Z/ t+Atpgn—l)(€) gt+AtHT(n)(e)w“ﬂtn("*)(e)dﬁmw (2.19)
— Jessey i at+Atx§n )

and
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ull = whgl = Rel ... 4 el (2.20)

in which (i = 1,2,...6) is the nodal displacement vector for the i-th rigid body mode, and the dis-
placement vector (uf?) of six rigid body motions (surge (R;), sway (Rsa), heave (R3), roll (Ry4), pitch

(R5), and yaw (Rg)) can be constructed about the origin of the Cartesian coordinate system as follows:

R R R R R R R R 0
S =qU 0, wt =gy 02, Uit =303, wpt = g€l Tk,

u

R R

u; = q§€ijk52j0$k, ;' = q?sijkégjoxk; i,7,k =1,2,3 and ¢;;; = permutation symbol.  (2.21)

Equation should be iterated until the error due to linearization satisfies the following criterion:

AqR(M) . (_t+AtR (1) | At (n=1) | t+Atgp(n—1)
H T et e o e et el PR (2.22)

AqgR1) . (7t+AtR(£) + t+AtR§§)S + t+AthJ))

If Equation [2.22] is satisfied, we can obtain the hydrostatic equilibrium of rigid floating bodies. In
other words, the body force Rp, the buoyancy force Rpyg, and the surface force Rg are in equilibrium.
Note that it is not necessary to consider the update procedure of the structural density in Equation [2.10

because the density of the floating body does not change.
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2.4 Numerical integration

Numerical integration is essential to evaluate stiffness matrices and load vectors in the finite element
formulation derived in the previous sections. In this section, we develop a special numerical integration
technique to effectively consider the non-matching mesh problem in a nonlinear hydrostatic finite ele-
ment analysis of floating structures. In particular, the integration technique is applied to the surface
integration of partially submerged finite elements, whereas the conventional Gaussian quadrature scheme

is used for the surface and volume integrations of non- or fully submerged finite elements.

When the floating structure experiences large motions, the wet-surface changes significantly. The
structural mesh then does not match with the free-surface of water in general. When the mesh matches
with the free-surface well, as depicted in Figure a), it is easy to discretize the structural wet and
dry surfaces by locating all wet nodes at the free surface. As shown in Figure a), when the mesh
and free-surface are not matched, the numerical integration should be carefully performed. For example,
the mesh can be reconstructed using a re-meshing technique, which is computationally expensive and

complicated.

To handle the non-matching mesh problem without modifying the initial mesh, an effective nu-
merical integration technique is developed, as shown in Figure We consider four different cases of
wetted situations of 4-node finite elements. CASE 1 is a fully wetted element case whereas others are

partially wetted element cases. In the following, we explain the numerical integration strategies in detail.
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|:| Dry-surface . Wet-surface ® Structural node
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Matching mesh Non-matching mesh
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Figure 2.3: Wet-surface change of finite element meshes: (a) Matching mesh and (b) non-matching

mesh.
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(a) CASE 1

i x,-x,-x, : Cartesian coordinate i

! -5 : Natural coordinate

u

i % : Integration points

® : Real node

O : Assumed node

3 i

Connectivity of element (¢) i i
<1-2-3-4> i S Partially wetted element

(b) CASE 2

S© : Fully wetted element

~
3
Connectivity of element (e*)
<1-2"-3-4>
(¢c) CASE 3
~
Connectivity of element (e*)
<1-2'-3-4">
(d) CASE 4
~
3 3
(Sff*) — S‘(Ve*+) U SEfL)) Connectivity of element (e*+) Connectivity of element (e *-)
<1'-2-3-4"> <1°-2"-3-4>

Figure 2.4: Numerical integration strategies for a 4-node wet-element.
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e CASE 1 (all nodes are submerged): As depicted in Figure[2.4((a), the fully wetted element connected
by nodes 1-2-3-4 can be numerically integrated over the wet surface S¢, using the conventional 2x2

Gaussian quadrature technique in natural coordinates.

e CASE 2 (2 of 4 nodes are submerged): Figure b) shows a partially wetted element case, in
which two of four nodes are submerged under the free surface. The wetted part of the element
connected by nodes 1-2-3-4 is defined as 1*-2*-3-4 by introducing the assumed nodes 1* and 2* at
the free surface. The assumed nodes 1* and 2* are used only for numerical integration. That is,
there is no increase in DOF's in the hydrostatic analysis. Using the new elemental connectivity, we

can integrate the wetted surface Si(,f R through the conventional 2x2 Gaussian quadrature.

e CASE 3 (1 of 4 nodes are submerged): One of four nodes is submerged under the free surface. In
this case, the connectivity of the wetted part is defined as 1*-2*-3-4* by introducing the assumed
nodes 1%, 2%, and 4%, as shown in Figure c¢). The assumed nodes 1* and 4* are exactly located
at the free surface and node 1* is placed slightly higher (0 < € < 1) than the free surface to avoid

the geometric singularity of the 4-node finite element.

e CASE 4 (3 of 4 nodes are submerged): As shown in Figure 2.4(d), we consider the case in which
three of four nodes are submerged. We here subdivide the pentagon-shape wetted part into two
rectangular subparts (Sq(f*) = Sq(l,e*Jr)USf *_)). The connectivity of the two parts is defined as 1*-2-
3-4* and 1*-2%-3-4, respectively. In this case, the terms Kyp, Kgyn, and Ryg in Equation |T1_’5|

and the term Kpyg in Equation can be integrated over the wet-surfaces (e*) as follows:
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Kl =)

Kl =K

( :  OHET)
= TN pe) T(er ) IR T (e)
/Sff*ﬂ pwgrs H Ox; n dsS + /(6*_) pwgrs H oz, n ds.  (2.23)

Here, the numerical integration procedure is explained for 4-node rectangular elements. The situa-
tions of partially submerged 3-node elements also can be easily considered through a similar numerical
integration scheme. Finally, Equation for elastic bodies and Equation for rigid bodies are
iteratively solved without adjustment of the initial finite element mesh. This means that a re-meshing

scheme is not required in the present nonlinear hydrostatic analysis of floating structures.

— 21 —



2.5 Numerical examples

In this section, several numerical tests are performed to validate the proposed numerical method

and to demonstrate its capabilities through various nonlinear hydrostatic problems.

A freely floating box barge is considered to obtain hydrostatic equilibrium states in both flexible
and rigid body cases. The usual hydrostatic stability curve is evaluated and compared with the ORCA
3D [31] in the rigid body case. In addition, the importance of a nonlinear hydrostatic analysis in the

stress analysis of flexible floating structures is demonstrated.

We then perform a nonlinear hydrostatic analysis of a flexible cargo barge in freely floating and
grounded cases. Various results including center of gravity (COG), center of buoyancy (COB), buoy-
ancy, total weight of the floating structure, displaced volume, and strain energy are presented and the
stress distributions are plotted. In the following, the parameter ¢ in CASE 3 of Section 4 is set to

1.0 x 1078 for the numerical integrations.
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2.5.1 Freely floating rigid box barge

A box barge of length 200m, width 100m, and height 60m is considered; see Figure The barge
consists of three parts: the bottom, side hulls (bow, stern, starboard and port), and the top deck. The
geometric and material properties are listed in Table and it is ensured that the draft d is 40m
with a vertical center of gravity (COG) -4.3m, vertical center of buoyancy -20.0m, and displaced volume
80,000m? in the rigid body case. The density of water p,, is 1000kg/m? and the gravitational accelera-
tion g is 9.8m/s%. The barge model is discretized using 4-node MITC (Mixed Interpolation of Tensorial

Components) shell finite elements [27, 28, 29, [30]; see Figure 2.5(b).

In Figure (a), the box barge is initially positioned in the water with a trim angle of 20 degrees.
The initial configuration does not correspond to the hydrostatic equilibrium. An incremental rigid body
hydrostatic analysis is performed using Equation until Equation is satisfied (¢ = 1.0 x 107%).
As shown in Figure c), the hydrostatic equilibrium is found after 5 iterations and the details of in-
cremental solutions are listed in Table In the hydrostatic equilibrium, the buoyancy (7.840 x 10°N)
is balanced with the self-weight of the floating structure. In addition, the numerical results quickly

converge to the analytical results.
The proposed formulation also can be used to calculate hydrostatic stability curves (GZ-curves).

Figure [2.7] shows the GZ-curves of the box barge for the transverse and longitudinal directions. There is

good agreement between the results of the proposed formulation and those obtained using ORCA 3D [31].
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Figure 2.5: A box barge: (a) dimensions and (b) finite element mesh.
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Table 2.1: Material properties of box barge. (*For simplicity, the density of the bottom hull is set to

zero.)

Bottom Top Sides
Thickness (m) 0.4 0.2 0.2
Density (kg/m3) 0* 3.8x10* 9.0 x 104

Young’s modulus (Pa) 2.0 x 10*® 2.0 x 10 1.0 x 1012

Poisson’s ratio 0.3 0.3 0.3
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(a) Initial configuration

(c) After 5 iterations

(b) After 1 iteration

(a) initial configuration, (b) instantaneous

Hydrostatic analysis of the rigid box barge:

Figure 2.6:

configuration (after 1 iteration), and (c) configuration for hydrostatic equilibrium (after 5 iterations).
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Table 2.2: Incremental solutions for hydrostatic analysis of the rigid box barge.

Iteration Buoyancy (N) COG (m) COB (m) Energy criteria
(21,23, 28) (:L'l{,xg,xg) (er)

1 7.779%10° (-0.627,0,-4.254)  (9.373,0,-20.682) -
2 7.842x10? (-0.072,0,-4.297)  (1.068,0,-20.009) 3.062x10~1
3 7.841x10°  (-0.010,0,-4.208)  (0.151,0,-20.001)  1.125x10~*
4 7.840%10° (-0.002,0,-4.299)  (0.011,0,-20.000) 6.223x1078
5 7.840%x10° (0,0,-4.300) (0,0,-20.000) 6.436x107°

Ref. 7.840%x10° (0,0,-4.300) (0,0,-20.000) -

(Self-weight)
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Figure 2.7: Comparison of GZ-curves.
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2.5.2 Freely floating flexible box barge

In the case of a flexible body, the box barge deforms and thus the configuration in Figure c) is
no longer in equilibrium. The structural deformation causes a change of the displaced volume, resulting
in a buoyancy change, while the structural self-weight does not change. A new hydrostatic equilib-
rium should be then found. We here start the hydrostatic analysis of the flexible box barge from the
configuration obtained in the hydrostatic analysis of the rigid box barge, as shown in Figure a).
The x1- and z5- directional displacements are fixed at the nodal position (0, 0, -d). The convergence

of the incremental hydrostatic analysis of flexible bodies highly depends on the initial configuration given.

Figure b) presents the configuration calculated for the hydrostatic equilibrium of the flexible
box barge. The details of incremental solutions are summarized in Table 2:3] We can observe that the
buoyancy is varying during the iterations whereas the self-weight is not changed because the structural
density is correctly updated using Equation [2:10] After 5 iterations, the buoyancy is balanced with the

self-weight and the energy criterion defined in Equation is satisfied (eg = 1.0 x 1078).

We then demonstrate the importance of a nonlinear hydrostatic analysis in the stress analysis. In
order to calculate the stress distribution of floating structures in usual engineering practice, the hydro-
static pressure is first calculated through the rigid body hydrostatic analysis. The pressure distribution is
then projected into the flexible floating body as an external load, and the stress distribution is evaluated.
This procedure would be adequate for relatively rigid floating structures, but results in larger errors as

the structure becomes more flexible.

Using the present formulation, we can accurately calculate the stress distribution at the hydrostatic
equilibrium of flexible floating structures. The distribution of von Mises stress is plotted in Figures (c)
and (d), obtained after 1 iteration and 5 iterations, respectively. Note that Figure c) is equivalent
to the results of the usual stress analysis based on the rigid body hydrostatic analysis because the in-
cremental analysis starts from the configuration for the hydrostatic equilibrium of the rigid box barge.

Figure d) is obtained at the final hydrostatic equilibrium of the flexible box barge.
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It is observed that the distribution of von Mises stress is totally different between both results and
the maximum value in Figure d) is almost four times larger than that in Figure C). Therefore, the
use of a nonlinear hydrostatic analysis is recommended for the stress analysis of general flexible floating

structures.
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Figure 2.8: Hydrostatic analysis results of the flexible box barge: (a) initial configuration (configuration
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Table 2.3: Incremental solutions for hydrostatic analysis of the flexible box barge.

Iteration Buoyancy (N)  COG (m) COB (m) Energy criteria

(2,23, 25) (2%, 25,28) (ek)
1 7.788302x10°  (0,0,-8.7259)  (0,0,-21.774) -
2 7.840521x10°  (0,0,-9.4776) (0,0,-22.052)  1.030899x 10"
3 7.840042x10°  (0,0,-9.4669) (0,0,-22.075)  3.382075x 10"
4 7.840003x10°  (0,0,-9.4683) (0,0,-22.079) 1.023977x10~*
5 7.840000x10°  (0,0,-9.4682) (0,0,-22.080) 9.436614x 10~

Ref. 7.840000x 10? - - -
(Self-weight)
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2.5.3 Cargo barge problems

In this section, various nonlinear hydrostatic analyses are conducted for freely floating and grounded
flexible cargo barge models. The cargo barge model (thickness is 1m, Poisson’s ratio is 0.37, Young’s
modulus is 1.0x10° Pa, and structural density ps is 2655.06 kg/m?) is presented in Figure a) and
it is discretized with 2,300 shell finite elements, as shown in Figure b). The “cargo hold” is the
area where the surface force will be applied. The various floating and loading conditions considered here
are summarized in Table and Figure Note that, in the freely floating cases, the z1- and zo-

directional nodal displacements are clamped at (0, 0, -d).

We first conduct a flexible body hydrostatic analysis using a freely floating cargo barge model. The
initial draft d is set to 8.0 m. The hydrostatic equilibrium of the flexible cargo barge can be obtained after
5 iterations; see Table The corresponding configuration is depicted in Figure a), in which local

bending deformation is observed. Figure [2.11|(b) presents the distribution of von Mises stress calculated.

In addition, we consider the case where the barge is subjected to cargo loading. Uniform surface
force (1.0x10°N/m?) is applied on the “cargo hold” shown in Figure 2.10(b). In this case, the hydro-
static equilibrium is obtained after 6 iterations. Figure shows the deformed configuration and the
distribution of von Mises stress. In the loaded case, the buoyancy equals the sum of self-weight and

external forces; see Table 2.5

Finally, we consider two grounded situations of cargo barge, as described in Figures[2.10|c) and (d).
To model these situations, we introduce the pin-support boundary condition and therefore no displace-
ments are introduced at the nodes of grounding points. The initial draft d is set to be 6m for both cases

and the corresponding initial configurations are presented in Figures a) and (b), respectively.
On top of Figures[2.14{(a) and (b), the deformed configurations of two grounded cases are presented.

In these hydrostatic equilibriums, the weight of the floating structure should be equal to the sum of

buoyancy and reaction force at the grounding point; see Table The distributions of von Mises
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stress are presented on the bottom of Figures a) and (b), respectively. A symmetric deformation
and stress fields are obtained in grounded case-1, as shown in Figure a). In grounded case-2, as
shown in Figure b), an asymmetric deformation including a twisting mode is observed and thus the

transverse COB (24) is no longer zero.
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Figure 2.9: A flexible cargo barge:
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Table 2.4: Floating and loading conditions in the cargo barge problems.

Initial draft Weight External force (N)/
(m) (N) Grounding points (m)
(a) Freely floating (w/o loading) 8.0 6.272x108 -
(b) Freely floating (Loaded) 8.0 6.272x10%  Cargo hold : 1.600x10% N
(¢) Grounded case-1 6.0 6.272x108 (80,0,-6)
(d) Grounded case-2 6.0 6.272x108 (80,-20,-6)
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(a) Freely floating cargo barge : w/o loading (b)Freely floating cargo barge : partially loaded
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Figure 2.10: Various floating and loading conditions.
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Table 2.5: Hydrostatic analysis results of the freely floating cargo barge.

Analysis condition Freely floating (w/o loading)  Freely floating (loaded)
Number of iterations 5 6
Buoyancy (N) 6.272x108 7.872x108
Weight (N) 6.272x 108 6.272x 108
External force (N) - 1.600x 10%
COB (2%, 25, 28) (0,0,-3.726) (-12.073,0,-4.751)
Total strain energy (N-m) 3.061x108 8.700x108

Energy criteria 3.221x1079 1.889x107°
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(a) Grounded case-1
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<

Figure 2.13: Initial configurations of grounded cargo barge: (a) grounded case-1 and (b) grounded case-2.
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(a) Grounded case-1
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Figure 2.14: Hydrostatic equilibrium and distribution of the von Mises stress:



Table 2.6: Hydrostatic analysis results of the grounded cargo barge.

Analysis condition Grounded case-1 Grounded case-2
Number of iterations 4 6
Buoyancy (N) 5.544x108 6.061x108
Weight (N) 6.272x108 6.272x108
Reaction force at grounding point (N) 0.728 %108 0.211x108
COB (2%, 25, 28) (-10.506,0,-3.412)  (-3.262,-1.348,-3.639)
Total strain energy (N-m) 5.149x 108 8.099x 108
Energy criteria 7.155%107? 4.423x1079
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2.6 Summary

In this chapter, we proposed a numerical method for a nonlinear hydrostatic analysis of flexible
floating structures. The incremental equilibrium equation for rigid and flexible (elastic) floating bodies
was derived using the updated Lagrangian formulation, which is discretized using the finite element pro-
cedure. An effective numerical integration technique was developed to treat the significant wet surface

change and thus the non-matching mesh problem is resolved without re-meshing.

The feasibility of the proposed numerical procedure was demonstrated through various hydrostatic
problems considering both rigid and flexible body cases. The importance of the nonlinear solution proce-
dure in the stress analysis of flexible floating structures was discussed. The configurations in hydrostatic
equilibrium and the corresponding stress distributions were presented for various floating and loading

conditions.

The proposed numerical method can be easily used for the stress analysis of damaged ships and
offshore platforms with various loading conditions. Moreover, it can be extended to the transient analysis
of flexible floating structures in flooded conditions by considering the inertia forces and internal free

surface effect.
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Chapter 3. Hydroelastic analysis of floating

structures with liquid tanks

3.1 Introduction

Since the early 2000s, the hydrodynamic analysis of floating liquid storage structures subjected to
surface regular waves has been widely studied due to the significant increase in demand for floating
production storage and offloading (FPSO) units, floating liquefied natural gas (FLNG) units, and other
related structures. One of the important design issues is the influence of sloshing in liquid tanks on
the dynamic response of floating structures during offloading operations, see Refs. [32] [33] for com-
prehensive reviews of sloshing phenomena and their importance. Related mathematical, numerical, and

experimental studies are presented in Refs. [34 [35] 36}, 37, 38|, 39] 40| [4T], 42} [43] [44), [45] [46], (47, 48], [49].

Most previous studies mainly addressed the coupling effect between rigid body motions and sloshing.
However, the size and the weight of floating liquid storage structures are becoming increasingly greater
in tandem with growing market demand and on the basis of their economic benefits. In such floating
structural systems, the assumption of rigid body motions is no longer suitable because, as the dimen-
sions of floating structures increase, the overall stiffness decreases, resulting in relatively low resonant
frequencies close to the range of excitation frequencies and sloshing resonance frequencies. In spite of
the increasing importance of the hydroelastic behavior of floating liquid storage structures, few related
studies have been reported [50, 51, [52]. Accordingly, a complete mathematical formulation has not been

developed and the numerical results have not been verified by experimental studies.

A direct coupling method was first developed for 1D and 2D linear hydroelastic problems [13] [I4,
5l [T6]. The main idea is that the structural and fluid equations are directly coupled to each other and
the coupled equations are solved simultaneously. The solution procedure is consequently simpler than
that of the conventional method [34] [37) [43] [44] [47], which requires radiation and diffraction analysis

procedures to obtain the interaction coefficients. Recently, this method was generalized for a 3D linear
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hydroelastic analysis of floating structures by Kim et al. [I0]. Since the 3D formulation is obtained by
consistently linearizing nonlinear solid mechanics equations, all the interaction terms including hydro-

static stiffness are included [10} 1T} [12].

In this chapter, we extend the direct-coupled formulation developed in Ref. [10, 17, 18] for a
hydroelastic analysis of floating structures with liquid tanks. The structural formulation is based on
the updated Lagrangian approach, which is consistently applied to hydrostatic and steady state hydro-
dynamic analyses. The velocity potential is employed to model both internal and external fluid flows
without decomposing them into the diffraction and radiation potentials. The finite element method is
employed for the structure and the internal fluid, and the boundary element method is used for the
external fluid. The structural equation is then directly coupled with the fluid equations. The use of the
mode superposition method for the discrete structural and internal fluid equations is also introduced
to improve the computational efficiency. Of course, all the interaction terms among structural motions,
sloshing and water waves are completely included in the formulation. In particular, the initial stress is
correctly considered in the geometric stiffness [10, T1]. In the fluid formulation, we use the extended

boundary integral equations to remove the well-known irregular frequency effect [53] 54, [B5].

To verify the proposed formulation, various numerical tests including free-vibration, rigid body hy-
drodynamic and hydroelastic analyses are conducted for a box barge with three rectangular liquid tanks.
We then present the 3D hydroelastic experiments performed to verify the proposed formulation. A float-
ing production unit (FPU) model with three rectangular sloshing tanks was designed and fabricated for
the experimental tests in an ocean basin. An overall description of the experimental setup and the test
model are provided in detail. The measured dynamic responses are compared with the numerical results

obtained using the proposed formulation.

We present the mathematical formulation in Section 3.2 and the numerical procedure in Section 3.3,

and several numerical test results are provided in Section 3.4. In Section 3.5, the overall description of

the experimental setup is presented and the test results are compared with the numerical results.
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3.2 Mathematical formulation

Figure [3.1] shows the problem description considered in this study. It is assumed that the floating
structure has a homogeneous, isotropic, and linear elastic material and the fluid flow is incompressible,
inviscid, and irrotational and thus the potential flow theory can be used. An incident regular water
wave comes continuously from the positive z; direction with an angle # and the amplitude is assumed
to be small enough to use the linear wave theory. Also, the resulting motions of the floating structure
and sloshing in tanks are assumed to be small. All the waves are gravity waves with a zero atmospheric

pressure assumption and the surface tension effect is ignored.

The volumes occupied by the floating structure, the internal fluid in tanks, and the external fluid
are denoted by Vg, Vg, and Vig, respectively. The surface of the floating structure Sg consists of dry,
internal wet, and external wet surfaces, which are denoted by Sp, Swr, and Swg, respectively. The
internal fluid is bounded by the internal wet surface and the internal free surface and the external fluid
is enveloped by the external wet surface Sy g, the external free surface Spg, the surface S, which is
a circular cylinder with a sufficiently large radius R, and a flat bottom surface Sg. The external water
depth hg is measured from the flat bottom to the external free surface of calm water. The internal water
depth (h;r = hy(z1,x2)) is the distance from the wet surface (Sw ) to the free surface (Spy) at rest in

tanks.
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Floating structure

Figure 3.1: Problem description: a floating structure with a liquid tank in an incident water wave.
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The fixed Cartesian coordinate system (z1, za, x3) on the external free surface of calm water is
introduced. For clear and compact notation, the subscripts ¢ and j, which vary from 1 to 3, are used to

express the components of tensors and the Einstein summation convention is adopted.

Figure [3.2] shows three important states: initial state, hydrostatic equilibrium state, and hydro-
dynamic equilibrium state. The initial state is a virtual configuration in which the structure does not
contact the external and internal fluids. These three states are denoted by the left superscripts 0, 0, and

t, respectively. The material point vectors for the floating structure in each state are then expressed by

O2,, Oz;, and xz;, respectively. The displacement vectors of the floating structure are defined by

0, _ [Fy— 0 —
oWi = Ti— Ty Ui = Ti— T, Wi = Ti— T

The total pressure fields of the external and internal fluids are defined as

OPp = —ppgrs, '‘Pp=—prgrs+'Ppg,

OP; = —prgzrs, 'Pr=—prgzis+"'Ppr; w13 = a3 — 27, (3.2)

where pg is the density of the external fluid, p; is the density of the internal fluid, g is the gravitational
acceleration, zp is the vertical position of the internal free surface, and *Ppgr and *Pp; are the hydro-

dynamic pressures for the external and internal fluids.
In the following sections, the mathematical formulations of the floating structure, the external fluid,

and the internal fluid are briefly derived. The detailed derivation of the formulations for the floating

structure and the external fluid can be found in [I0].
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Initial state Hydrostatic equilibrium state  Hydrodynamic equilibrium state

Figure 3.2: Three equilibrium states.
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3.2.1 Equations for the floating structure

Note that a hydrostatic analysis is an essential procedure to find the hydrostatic equilibrium state
referred to the configuration of the initial state. Through a hydrodynamic analysis, we find the hydro-

dynamic equilibrium state referred to the configuration of the hydrostatic equilibrium state.

The updated Lagranagian formulation [25] is consistently applied to the hydrostatic and hydrody-

namic analyses. The equilibrium equations at time 7 + A7 are

I gy A A A A
] + + + SO : +
o BT, =TT psgdis =TT p TR =0 in "2V,
Ty
T+A'ra,ij'r+ATnj _ 7T+ATPET+AT’H¢ on TJrATSWE,
T+ATUijT+ATnj _ _T+ATPIT+ATni on T+ATSWI>
T—‘,—ATO_ijT—‘,-A‘rnj -0 on T+ATSD, (33)

where o;; is the Cauchy stress tensor, ps is the density of the floating structure, T+ATn; is the unit
normal vector outward from the floating structure to both the internal and external fluids, d;; is the

Kronecker delta, and the over-dot represents the material time derivative.
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After linearizing the principle of virtual work at time 7 + A7 referred to the configuration at time

7, the following weak form can be obtained

At A _ Ar—
/ TpsT AT dV+/ Cijit” T2 ept €j dV+/ Toy T AT AV
Vg Vg Vg

—/ pEg” A Tus nu; dS — / prg” A Tus n;t; dS

TSwE TSwir

—/ PEG T3 i AT Qijli dS—/ prg" T3 iy a7 Qijtii AS
"Swe TSwi

+/ T+ATPDETTL¢’TLZ‘ dsS + / T+ATPD[Tni’ﬁZ‘ ds
TSwE TSwir

= 7/ Tpsgﬂg dVv — / TO'ij.,—éij dv +/ pEngEgT’fli’ELi ds +/ p]ngE]gT’fli’ELi dS, (34)
Vs Vs TSwE TSwir

where

87:1:j o x; 6ij o™x;

1 (07w, 07 AT 1/ 0w  Ou;
”Aiel‘j:Q( * ok Teij:2< " j>’

renr L[ 0u 07w 0T Ty oy ro, g, 0o Oy o
i =g Ox; Oz; otw; 0wy |’ THATEU TOW 9Ty orx; '
in which T+A:ui is the displacement from the configuration at time 7 to the configuration at time 7+ Ar,

T+AT

U, is the virtual displacement vector, ,€;; and :

7;; are the virtual linear and nonlinear strain tensors,

and Cjjp; is the stress-strain relation tensor.
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In the hydrostatic analysis, the acceleration i; and the hydrodynamic pressures Ppg and Ppjy are
equal to zero. Setting 7 = 0 and 7 + A7 = 0 in Equation we obtain the following nonlinear incre-

mental equation for the hydrostatic analysis:

0 5 0 0-
/ Cijrigert o€ij dV +/ oijgli; AV
UVS UVS

—/ prggus’ni; S —/ prggus’n;i; dS

OSwe OSwr

_/ pEgoxBOnj(O)Qijﬁi ds — / PIQOxIBOnngij'L_Li ds
0Swr OSw

= —/ Opsga3 dVv — / OO'ij()éij dv +f pEgOl‘g,O’l’Lﬂ]i ds —|—/ pjgoxjgoniﬂi ds. (36)
Vs Vs OSwr OSwr

Note that an iterative solution scheme like the Newton-Raphson method is required to find the

hydrostatic equilibrium state using Equation [3.6
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Once the hydrostatic equilibrium state is obtained, the right hand side of. Equation vanishes.
We then set 7 = 0 and 7+ A7 = ¢ in Equation[3.4and invoke a harmonic response with angular frequency
w (hu; = Re {u;(°x)e/' }; j = \/—1). Finally, the following equation is obtained for a hydrodynamic

analysis in the steady state:
—w2/ Opsuiti; AV +/ Cijrieri o€ dV +/ OUijﬁij dv
Vg Vg Vs
0. - 0, - 0,.0 a7
*/ PEJU3 T;U; dS*/ pPIgus nit; dS*/ pEg T3 n;Qit; dS
OSwe OSwr OSwE

PDEOniﬂi ds +/ PDIO’I’LZ‘ﬂi dS =0, (37)

—/ p19°213%1;Q;1; d5+/
OSWI 0 0

Swe Swr

where
oei; = Re { e (zp)e? . i = Re { i Cap)e’" }
7Qi; = Re { Qi;Czr)e’" }, "Ppp =Re{ Ppp("zx)e’"}  'Ppr=Re{ Pp;(Pz)e }.  (3.8)

Since we assume that the motion of the floating structure is small and the change of the wet surface

is negligible, Equation [3.7] can be solved without an iterative solution scheme.
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3.2.2 Equations for the external fluid

In the steady state, the governing equation and boundary conditions for the external fluid, which

are approximated at the configuration of the hydrostatic equilibrium state, are given as

' = Re {op(@)e |,

929

(’)xiaxi -

965 _

65(13

’

995

6:53

VE (g +t) (6 - )

09p
on

=0

= jwun;

in OVFE,

for xt3 =0 on Spg,

on SG (Ig = 7hE),

on Sy (R — 00),

on OSWE,

(3.9a)

(3.9b)

(3.9¢)

(3.9d)

(3.9¢)

(3.9f)

where ¢35 is the velocity potential for the external fluid, k is the wave number, ¢ is the velocity potential

for an incident wave, Equation [3.9¢|is the combined free surface boundary condition linearized at x3 = 0

56, 57, and Equation is the Sommerfeld radiation condition [56]. The body boundary condition

in Equation [3.9f) means that the normal velocities of the structure and the external fluid should be the

same on the external wet surface.
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The corresponding boundary integral equation is

PV, / 0Cwi&) v (e )se

0swe  ON(&:)

—_PV. /S G(xi;gi)gflgfsdsg + 4n¢! (x;) for x; on *Swp, (3.10)

where P.V. refers to the Cauchy principal value, the subscript ¢ denotes that the integral is conducted
with respect to the variable &;, and G(x;;&;) is the Green’s function, which is located at position &; and
generated by a source potential with strength —47 and angular frequency w. The detailed procedure to

obtain the Green’s function in finite and infinite depth cases is described by Wehausen and Laitone [57].

It should be noted that Equation [3.10]could result in the irregular frequencies and thus the coefficient
matrix in the corresponding discrete equation becomes ill-conditioned near these frequencies. In order to
remove the irregular frequency effects, several methods have been developed by Ohmatsu [53], Kleinman

[54], and Lee et al. [55]. We here employ the extended boundary integral equations [55].

) G (xi; &) v
2w p(v;) — P.V. /S g aff(g_f)d)E(ﬁi)dsé

=—PV. / 1,51)6%3((;;) dSe + 4n¢! (x;) for x; on *Sy g, (3.11a)
OSwe %
0G (24 &
—4r¢EXT (3,) — PV. / I 37(;? &f ) BXT(¢,)dS,
= —PV/ wu&)a EX(Z()S )ng + 4n¢! (x;) for x; on OSEXT, (3.11b)
OSwe %

where *SEXT is the extended internal free surface described in Figure and ¢EZXT is the velocity

potential on the extended boundary °SEXT.
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Multiplying test functions (;335 and égx T to Equations and |3.11b} respectively, and integrating

over the external wet surface Sy g and the internal free surface "SEXT, the following equations are

obtained:

27r/ ¢/E¢3}3dS—/ P.V./ ﬁ@—e% dSe ¢ dS,
Swe "Swr OSweH+OSEXT Ine One

= 47r/ ¢l dds for 2; on *Sy g, (3.12a)
"Swg

EXT EXT oG EXT a¢§XT ~EXT
—4x PEXTHEXT S — P.V. L EXT _ g=E ) dS, ¢EXT dS,
oSIJ:gIXT OSI{‘Qf(T OSWE_‘_OSI]:;;(T 8n5 8n5

= 47r/ plpEXTAS for ; on °SEXT, (3.12b)
OSE;(T
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XT).

Figure 3.3: Extended internal free surface (°SE;
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3.2.3 Equations for the internal fluid

In the steady state, the governing equation and boundary conditions for the internal fluid in tanks,

which are approximated at the configuration of the hydrostatic equilibrium state, are given as

=Re {¢s(z;)e’"}, (3.13a)
82¢I .0

Pr 0.0 =0 m VFI, (3.13b)
opr  w? 0

87333 = ?(ZSI on SFI (IB = ZT)7 (3130)

% = jwu;n; on *Swi, (3.13d)

where *¢; is the velocity potential in time domain and ¢; are the velocity potentials in the steady state.

By multiplying a test function ¢; to [3.13b| and integrating over the volume of the internal fluid

OVpr, the following equation can be obtained:

%1
=0. .14
A PV =0 (3.14)

After Equation [3.14]is integrated by part and the divergence theorem and the boundary condition

in Equation are applied to Equation the weak form equation of the internal fluid is obtained

/ ( ) ¢1ordS — / Iy, 8¢I rdS — / 8¢I 061 dv =o. (3.15)
DSFI OSwr OVer ax’b Xy
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3.2.4 Direct-coupled equations

To obtain the direct-coupled equations, Equation for the floating structure, Equation and
[3:121 for the external fluid, and Equation [3.15] for the internal fluid are considered with the interaction
conditions in Equations and Using the linearized Bernoulli equations, the hydrodynamic

pressures Ppgr and Pp; can be expressed as

Ppp = —jwppdy, Ppr=—jwpidr. (3.16)

Substituting Equation [3.16] into Equation Equation into Equation [3.12a] and [3.12b] and

Equation [3.13d] into Equation [3.15] the following coupled equations are obtained:
70.)2/ Opsul—ﬁi dv +/ Cijklekl 0€ij dv +/ OUijﬁij dVv
0y 0V 0V
—/ pEgus’n;t; dS — / prgus’n;u; dS
OSwE OSwr
0,00 O 7. 0. .00 O..7.
_/ PEG X3 Ny nguz ds _/ P19 T13 My szuz ds
OSw e OSwr

—/ jwang/EOmﬂi ds — / jwpro®nia; dS =0, (3.17)
OSwe OSwr
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o / ¢ pdpdS — / PV. / (3%; ij’uini> dSe ¢ dS,
"Swe OSwE 0Swp+0SEXT 877‘5

=dr / ¢l dpdS for 2; on *Sy g, (3.18a)
OSwe

5 e i
—dm / B o Tds — / PV. / (a EXT ijumi) dSe ¢EXT ds,
SErT OSERT 0Swr+OSEXT LS

= 47r/ pTPpEXTAS for z; on OSEXT, (3.18b)
0SErT

and

2\ . 861 0
/ pr <“’> drd1dS —jw/ pruin;¢rdS —/ 201991 4y . (3.19)
0Sp; g 0Sw 1 OVpr 6.%'7; Bxi
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3.3 Numerical methods

In this section, the direct-coupled equations are discretized by using the finite and boundary element
methods. In addition, for efficient computation, reduced linear equations are introduced by using the
mode superposition method. We also extract added mass matrices, the radiated wave damping matrix,

and the wave exciting force vector for the 3D hydroelastic analysis of floating structures with liquid tanks.

3.3.1 Finite and boundary element discretization

The finite element method is employed for the floating structure and internal fluid in tanks, and the
boundary element method is used for the external fluid. The finite and boundary element meshes and

the mesh matching scheme are depicted in Figure
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Finite element for the internal fluid

Boundary element for the external fluid

Matching condition

Figure 3.4: Finite and boundary element discretization and mesh matching scheme.
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The fields of structural displacements and velocity potentials are interpolated using the nodal dis-
placement vector (u) and the nodal velocity potential vectors (®; and @) for internal and external
fluids, in which ®g = [@;5 @gXT]T, and <I”E and <I>€XT corresponds to the velocity potentials qb;ﬂ and

EXT | respectively.

The term-by-term finite element discretization of Equation [3.17] yields:

w2/ Opsuin;dV = a'w?Syru, (3.20a)
0Vg
/ Cijrierioéi;dV = a' Sk, (3.20b)
Vg
/ Y0451i;dV = u" Sk yu, (3.20¢)
OVS
/ prgus’niu;ds = atSE Hu, / prgus’n;u;dS = a'S Hu, (3.20d)
"Swr 0Sy 1
/ pEgO.TgoTLJ‘ Q”ﬁldS = I_J.TSEINU, / pIgoxp,Onj QZ]@ZdS = l_lTSZNU., (3.206)
USWE OSW]
jw / pede’niudS = at jwSE® L, jw / pror’niidS = at jwSL®;. (3.20f)
USWE OSWI
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Similarly, the boundary element discretization of Equation [3.18a] and [3.18b| yields

o / brdpdS — A / PEXTGEXT (G — § FE &,
0Swe 0SEr T
oG . i
/ PV. / 6 pdSe ¢ dS,
OSwg OSw g

+OSEXT 8n5

e . .
+ / PV, / S GENTdS, GENT ds, = BLFE, B,
osllgi{T OSWE+OS§})(T Tg

jw / PV. / Guin;dSe ¢y dS,
OSwr 0Swe+OSEXT

+jw / PV. / Guin;dSe ¢EXT dS, = & jwFu,
OSE;(T OSWE+OSI€?{T
dr < / ¢'ddS + / ¢I¢S'Eds> = & 47R;.
°Swe OSwe
Finally, the finite element discretization of Equation [3.19] yields
w? - =T on ] =
Pr| — d)]d)]dS = <I’Iw FM(I’],
0Spr g

jw/ pruiniprdS = @?ij{,Vu,
OSwr

Op1 Obr T =
dV = &, F,. P
[)VFI PI1 oz, O, 1P ™I,

(3.21a)

(3.21b)

(3.21¢)

(3.21d)

(3.22a)

(3.22b)

(3.22¢)

The final discrete coupled equation for the steady state 3D hydroelastic analysis of floating struc-

tures with liquid tanks is given by
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—w?Sy + Sk +Scn —ijg —ijID u 0
jwFq FEZ —Fg, 0 ®; | = | 47R; | > (3.23)

—jwFL, 0 w?Fl, — FL P 0

with SCH:SKN—SED_SLD_SEIN_S%N'

where the matrix Scy is the complete hydrostatic stiffness of the floating liquid storage structure.
The terms S% ,, SE ., SL 1, and S%; 5 are the hydrostatic pressure stiffnesses and Sy is the geometric
stiffness. In particular, the contributions of the internal fluid to the hydrostatic pressure stiffness are
SL , and S, and a hydrostatic analysis should be performed in advance to properly obtain the geo-

metric stiffness Sk . Note that no artificial damping is considered in Equation |[3.23
Since the extended boundary integral method is applied in the external fluid part of Equation |3.23

the resonance phenomena induced by sloshing and structural elasticity can be distinguished from the

resonances caused by the irregular frequency effects.

— 66 —



3.3.2 Reduced equation

We now apply the standard mode superposition method in Equation [3.23] First, the following two

eigenvalue problems should be solved

SkW¥, = \Su¥;; 1=1,2,..., N, for the floating structure, (3.24a)

Fl~, = wF~;; 1=1,2,..., M, for the internal fluid, (3.24b)

where N, and M, are the numbers of degrees of freedom in the floating structure and internal fluid,
respectively, ¥, and -, are the eigenvectors which are othonormalized with respect to the matrices Sy,

and F! | respectively, and, \; and p; are the corresponding eigenvalues.

The nodal displacement vector of the floating structures and the nodal potential vector of the internal

fluid are approximated as

ur ¥+ P+ +qy Uy =¥q, N, <N, (3.25a)

i)[mylvl—i—yg‘yg—i—-“-i-yMa’YMa =Yy, Ma < My, (3.25b)

in which q and y are the generalized coordinate vectors.
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Substituting Equation and |3.25b[into Equation and pre-multiplying T and 4T to the
structural and internal fluid parts of Equation [3.23] respectively, the following reduced equation is ob-

tained:

—w T+ A+SG, —jweTSE  —juwTSly q 0
jwF oW FZ — Fan, 0 &y | = | 47R; | (3.26)
—jwyTFL, ¥ 0 W —Q y 0

where I;; = 6;5, Aij = A\idij, and Qp = pdp (no summation); 4,5 = 1,2, ..., N, and k,1=1,2,..., M,.

Note that, in Equation Sg g is the complete hydrostatic stiffness in the generalized coordinate
(SGy = ®TSc u®), and the rigid body hydrodynamic analysis can be conducted when only the rigid

body modes of the floating structure are contained in Equation
Condensing out the fluid variables in [3.26] we can extract added masses, the radiated wave damp-
ing matrix, and the wave exciting force vector in the generalized coordinates. Therefore, the present

direct-coupled formulation can be linked term-by-term to the conventional formulation [I0 [14]. The

condensed structural equation becomes

[—? (1+ 855 - 1% + jwSdw + A+ 8%, a =R, (3.27)

where S%i SJI\fo, Sgw, and R% are the interaction coefficients, which are defined as follows:
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Sﬁ’i = Re {\IITSg (F& — FGn)_1 FG\II} : added mass matrix (external fluid),

Sgﬁ‘ =wrshy (w’I— Q)_l ~TFL : added mass matrix (internal fluid),
Sgw = —wxIm {\IITS%; (Fﬁ — F(;n)71 FG\II} : radiated wave damping matrix,
R{, = ju¥'SE (F, — an)71 47R; : wave exciting force vector. (3.28)

In this section, we finally remark on the solution procedures for the present and conventional for-
mulations as depicted in Figure In the present solution procedure, the displacement of the structure
(u) and the velocity potential of the external (®g) and internal (®;) fluids are obtained by solving the
discrete coupled equations, and one additional step of a modal analysis can be optionally employed to
reduce the number of degrees of freedom. The conventional solution procedure requires four solution
steps. However, both procedures provide theoretically equivalent solutions and their solution efficiency

is also similar.
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[ Present formulation ] [ Conventional formulation ]

Modal analysis
(Optional)

<Solution procedures>
frmmm e N A PP do o -
) v ) A 4
- Find structural (dry) - Find structural dry or mathematical modes
and sloshing modes
@ A 4
- Solve diffraction (¢”) and radiation (¢*)
problems
® v

- Calculate interaction coefficients

F : Wave exciting force vectors
A : Added mass matrix

C : Radiated wave damping matrix

A, : Added mass matrix (internal fluid)

@ \ 4 @ A\ 4 @ \ 4
- Solve discrete coupled equations - Solve generalized equations of motion
Equation (26) Equation (23) {— @*M+A+A, )+ joC+K +K, }g =F

M, K, K, : Generalized coefficient

matrices for structural mass and stiffness and
hydrostatic stiffness

g : Generalized coefficient vector for

structural mode

Figure 3.5: Solution procedures for the steady state hydrodynamic analysis in the present and conven-

tional formulations.
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3.4 Numerical tests

In this section, various numerical tests are presented for a 3D box barge model: free vibration
analyses, a rigid body hydrodynamic analysis, and a hydroelastic analysis. The hydrostatic analysis is
performed prior to the dynamic analysis to include the initial stress effect in the hydroelastic analysis.
In the hydrostatic and hydrodynamic analyses, the reference configuration is assumed as the hydrostatic

equilibrium state calculated for the rigid body case.

Figure [3.6(a) presents a 3D box barge with three liquid tanks (length L is 300m, width W is 50m,
and height H is 30m) used in the numerical tests. The model consists of three parts: the bottom, side
hulls (bow, stern, starboard and port), and four bulkheads. The thicknesses and material properties are
listed in Table and it is ensured that the draft d is 10m and the vertical center of gravity (COG)
is -4m in the rigid body case. For simplicity, all three rectangular tanks (length L is 90m, width W
is 50m, and height H is 30m) are designed to be the same and located from bow to stern in order. In
the tanks, the density of the internal fluid p; is 500 kg/m? and the filling height h; is 10 m, which is
measured from the bottom of the tanks. The density of the external fluid pg is 1000kg/m® and the
depth hg is assumed to be infinite. Also, the gravitational acceleration g is 9.8m/sec?. Three angles of
incident waves (6 = 0°, 45° and 90°) and angular frequencies w from 0.2 to 1.2 rad/sec with a constant

increment (Aw = 0.01 rad/sec) are considered.

The meshes used for the box barge, internal fluid, and external fluid are shown in Figure b),
(c), and (d). A four-node mixed interpolation of tensorial components (MITC) shell finite element
[277, 28], 29, B0] is used for the floating structure, an eight-node brick element is used for the internal fluid

in tanks, and a four-node boundary element is used for the external fluid.
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Figure 3.6: 3D box barge model: (a) overall description, (b) finite element mesh used for the box barge,

(¢) boundary element mesh used for the external fluid, and (d) finite element meshes used for the internal

fluid.
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Table 3.1: Material properties of the box barge model.

Bottom Side hulls Bulkheads

Thickness t (m) 0.4 0.2 0.2
Density ps (kg/m?) 15,000 15,000 10,000
Young’s modulus E (GPa) 2.0 x 10* 2.0 x 10" 1.0 x 10!

Poisson’s ratio v 0.3 0.3 0.3
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3.4.1 Free vibration analyses

Free vibration analyses of the box barge and the internal fluid are performed to obtain the natural
frequencies and the mode shapes. The finite element model of the box barge is shown in Figure b).
The four elastic dry mode shapes of the box barge that correspond to the first four natural frequencies

are presented in Figure It is observed that the first mode shown in Figure a) is the torsional mode.

For the internal fluid, the first eight free surface mode shapes and the corresponding natural fre-

N.

quencies (w;'; ¢ indicates the free surface mode number) computed here are illustrated in Figure
and Table Figure a), (c), and (f) are the first three longitudinal sloshing modes, (b) and (h)
are the first two transverse sloshing modes, and the others are mixed sloshing modes. In Table
the computed natural frequencies of the present formulation are compared with the analytical solutions

[32, 33] obtained by

2
); myn=0,1,2,... m+n#£0, (3.29)

3
&
7 N
SE
N—

+
—
S

w;?l,n = \/g km,ntanhky, nhr; ko =

A

where the subscripts m and n denote the longitudinal and transverse directions, respectively, and wy;, ,,

is the analytical solution of the sloshing natural frequencies.
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Figure 3.7: Mode shapes of the box barge.
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Table 3.2: Numerical (w}¥) and analytical (w;} ) results for the natural frequencies (rad/sec) of the

internal fluid.

) i)

Numerical results (w Analytical results (w;y, ,

0.339 (wl) 0.339 (wi'y)
0.588 (wd) 0.586 (wg'y)
0.646 (wd) 0.642 (wi'y)
0.662 (w}) 0.659 (wi'))
0.827 (wd) 0.822 (w3'y)
0.905 (wl) 0.895 (wsly)
1.012 (wd) 1.003 (wg'y)
1.038 (wd) 1.023 (wp's)
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3.4.2 Rigid body hydrodynamic analysis

We perform a rigid body hydrodynamic analysis and the results are compared with the results of
WAMIT [58]. In WAMIT, a higher-order method (using the 4th-order B-spline functions) is employed
for the external and internal fluids. For the spatial discretization, 60, 20, and 4 panels are used for the
box barge in the length, width, and depth directions and 18, 20, and 4 panels are used for each internal

fluid in the three tanks.

Figures|3.9/and show the response amplitude operators (RAOs) when the incident wave angles
0 are 0°, 90°, and 45°. In the figures, g; is the generalized coordinates defined with respect to the center
of floatation of the box barge. The subscript ¢ varies from 1 to 6, which denote 6 rigid body motions,

i.e., surge, sway, heave, roll, pitch, and yaw motions.
All the results of the present formulation and WAMIT are in good agreement. However, unlike the

higher-order method used in WAMIT, a bilinear interpolation is employed in the present discretization

and thus small differences can be observed near the resonance points.
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3.4.3 Hydroelastic analysis

The hydroelastic analysis of the box barge model is performed with the mode superposition method
for efficient computation. The dry modes of the box barge and the sloshing modes of the internal fluid
that correspond to the natural frequencies up to v/1000rad/sec are contained for the reduced equation

and the generalized coordinates are constructed with respect to the center of floatation of the box barge.

As well known, the hydrostatic stiffness plays an important role in hydrodynamic analysis of float-
ing structures in both rigid and elastic body cases. In particular, the geometric stiffness term Sk in
Equation should be carefully considered in hydroelastic analysis because Equation requires
the initial stress field %o;; due to hydrostatic pressures. Therefore, hydrostatic analysis is prerequisite

for hydroelastic analysis.

Figure shows the vertical displacements calculated in both rigid and elastic body cases. In par-
ticular, it is observed that, in the elastic cases, quite different results are obtained when the initial stress
effect is not considered. Table shows the differences in hydrostatic stiffness terms. This comparison
study demonstrates the importance of the initial stress in hydroelastic analysis. However, the differences

would be small for relatively rigid floating structures.

Figure there are peaks which arise from many different resonance sources (e.g. floating struc-
ture, sloshing, and external waves) and their combinations. It is a hard task to identify the sources of
peaks, in particular, when multiple sloshing tanks are considered.

Finally, some diagonal components of the external and internal added masses S’f/[’ii ; and S’ﬁ/}i’i j
calculated using Equation [3.28] are presented in Figures and [BI3] In contrast to the results in

Figure [3.12] resonance phenomena can be found in Figure [3.13
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Table 3.3: Comparison of the hydrostatic stiffness terms. The subscripts ¢ and j vary from 1 to 10;
1,2,...,6, denote the values corresponding to the six rigid body motions and 7,8,9,10 denote the values

corresponding to the first four elastic modes shown in Figures [3.6]

(4,7) SEHM SgHJj (w/o initial stress)

(3,3)  0.98000 0.98000
(4,4)  0.42365 0.69250
(5,5)  0.85619 0.87069
(7,7) 041157 0.61645
(8,8)  0.54137 0.03300
(9,9)  0.46628 0.03144
(10,10)  1.81060 0.03505
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3.5 Hydroelastic experiments

To verify the hydroelastic analysis procedure developed in this study, 3D hydroelastic experiments
were conducted using a simplified FPU model with three rectangular liquid tanks. In the following, the
hydroelastic experiment setup and the numerical model are described. The experimental results are then

compared with the numerical results.
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3.5.1 Experimental setup

In this section, we present the overall description of the 3D hydroelastic experiment, including the

experimental conditions, structural model, mooring method, wave conditions, and measuring devices.

As shown in Figure[3.14] the hydroelastic experiments of the FPU model are carried out in an ocean
basin and the water depth (hg) is set to 1.5m. The FPU model is made of polycarbonate. Details of
the FPU model are presented in Figure and Table The lowest elastic mode of the experimental
model is a twisting mode (w!ws*"9=15.66 rad/sec) and the first twenty natural sloshing frequencies are

n

within a range of 4.95 to 19.22 rad/sec.

Figure [3.16] illustrates the overall experimental setup. In order to measure the incident wave fre-
quency (w), wave length (), and amplitude (a), one wave probe is installed at the free surface, located
a distance of 1.5m in front of the test model. The wave probe measures the wave elevation during the
experiments. The three translations of the floating structure are then measured through four motion
capture cameras with infrared reflective (IR) markers. Figure a) shows the positions of the six IR

markers attached on the FPU model.

The incident waves belong to the range of the linear wave theory in deep water condition (2a/hg <
1.0 and hg/A < 1.0) [59]. The drift of the FPU model due to the incident wave was prevented by
mooring the structure upward with four strings. Since the strings should prevent the drift without re-
straining surge, sway, and heave motions, a small amount of tension is introduced such that the strings
are horizontally connected to the structure. That is, the connection angle between the strings and the

structure is almost 180°, see Figure c).

We then performed the 3D hydroelastic experiments considering eight wave frequencies (w= 4.3,

5.3, 6.2, 7.4, 8.4 9.5, 10.2, 12.2, and 15 rad/sec) and three different incident wave angles ( 8 = 0°, 45°,

and 90°).
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Figure 3.14: Hydroelastic experiment of the FPU model with three liquid tanks in an ocean basin (15m
x 10m X 1.5m).
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Table 3.4: Details of the FPU model.

Length (L) 24 m
Width (W) 0.4 m
Height (H) 0.2m
Thickness () 0.003 m
Draft (d) 0.08 m
Young’s modulus (E) 2 GPa
Tankl (Ly x W x hy) 0.6 x04x01m

Tank2 and 3 (Ly x W x hy) 0.4 x 0.4 x 0.1 m
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3.5.2 Comparison between experimental and numerical results

Rigid body hydrodynamic and hydroelastic analyses are conducted using the numerical method
developed in this study. Figure [3.17] shows the meshes used for the FPU model with three rectangular
tanks. The FPU model and internal fluids in tanks are discretized by 5,200 shell elements and 7,000

brick elements, respectively. The external wet surface is discretized by 2,680 boundary elements.

Figures and show the RAOs of structural displacements (u1, us and ug) for three inci-
dent wave angles (0 = 0°, 45°, and 90°). The results of the rigid body hydrodynamic and hydroelastic
analyses are compared with the experimental results. It is observed that the experimental results are in
good agreement with the results of the hydroelastic analysis, especially, when the initial stress effect is
considered. Since artificial damping is not considered in the numerical analyses, the numerical results
over-predict the peaks. In the heading angle (6 = 0°), the FPU model moves like a rigid body in both

experimental and numerical results due to its relatively large overall bending rigidity.

Figures presents the RAOs of the modal coordinate (¢;) and phase angle calculated, which
correspond to the first elastic mode (¥, twisting mode) when the incident wave angle is 45°. Fig-
ures [3.21f(a) shows the twisting angles of the FPU model measured in the numerical and experimental

results. The largest twisting angle (Oyisting) is observed at 7.4 rad/sec in the experimental results.

In Figures we finally present some snapshots of free surface profiles, shape of structural de-
formation and the corresponding structural displacements when the wave frequency is 7.4 rad/sec. It
is observed that the sloshing motion is not beyond the linear potential theory and the tendency of free

surface profiles in Figures a) agrees well with the numerical results.
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3.6 Summary

In this chapter, we presented a mathematical formulation and a numerical method for a hydroelastic
analysis of floating structures with liquid tanks in the frequency domain, in which the direct-coupling
method was employed to couple structural motions, sloshing, and water waves. The extended boundary
integral equation was adopted in order to avoid the irregular frequency problem. The proposed formu-
lation includes all the terms required for a linear hydroelastic analysis of floating structures with liquid

tanks.

The proposed formulation was verified through a comparison with the analysis results of WAMIT
in a rigid body hydrodynamic analysis. The importance of the initial stress was demonstrated through a
comparative hydroelastic analysis. In addition, 3D hydroelastic experiments were performed for a FPU
model. We also simulated the hydroelastic behavior of the FPU model. The numerical results were

compared with experimental results and good agreement between the results was observed.

In future works, it will be valuable to extend the present direct coupled formulation to nonlinear
hydroelastic analyses, in which we could deal with the large motions of floating structures and fluid and
wet-surface change. Also, it will be an interesting study to identify resonance sources in hydroelastic

analysis of floating structures with liquid tanks.
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Chapter 4. Conclusion

The objectives in this work were to develop the numerical methods to calculate the hydrostatic
equilibrium of 3D flexible floating structures, by which accurate draft and stress fields of structures in
collaborate with the development of numerical method for 3D hydroelastic analysis of floating structure

with liquid sloshing.

In Chapter 2, a numerical method for a nonlinear hydrostatic analysis of flexible floating structures
was proposed. The incremental equilibrium equation for rigid and flexible (elastic) floating bodies was
derived using the updated Lagrangian formulation, which is discretized using the finite element proce-
dure. An effective numerical integration technique was developed to treat the significant wet surface
change and thus the non-matching mesh problem is resolved without re-meshing. The feasibility of the
proposed numerical procedure was demonstrated through various hydrostatic problems considering both
rigid and flexible body cases. The importance of the nonlinear solution procedure in the stress analysis
of flexible floating structures was discussed. The configurations in hydrostatic equilibrium and the cor-
responding stress distributions were presented for various floating and loading conditions. The proposed
numerical method can be easily used for the stress analysis of damaged ships and offshore platforms with
various loading conditions. Moreover, it can be extended to the transient analysis of flexible floating

structures in flooded conditions by considering the inertia forces and internal free surface effect.

In Chapter 3, a mathematical formulation and a numerical method for a hydroelastic analysis of
floating structures with liquid tanks in the frequency domain, in which the direct-coupling method was
employed to couple structural motions, sloshing, and water waves was proposed. The extended boundary
integral equation was adopted in order to avoid the irregular frequency problem. The proposed formu-
lation includes all the terms required for a linear hydroelastic analysis of floating structures with liquid
tanks. The proposed formulation was verified through a comparison with the analysis results of WAMIT

in a rigid body hydrodynamic analysis. The importance of the initial stress was demonstrated through a
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comparative hydroelastic analysis. In addition, 3D hydroelastic experiments were performed for a FPU
model. We also simulated the hydroelastic behavior of the FPU model. The numerical results were
compared with experimental results and good agreement between the results was observed. In future
works, it will be valuable to extend the present direct coupled formulation to nonlinear hydroelastic
analyses, in which we could deal with the large motions of floating structures and fluid and wet-surface
change. Also, it will be an interesting study to identify resonance sources in hydroelastic analysis of

floating structures with liquid tanks.

As an extension of this work, we recommend the following future works:

e In Chapter 2, the proposed numerical method can be easily used for the stress analysis of damaged
ships and offshore platforms with various loading conditions. Moreover, it can be extended to the
transient analysis of flexible floating structures in flooded conditions by considering the inertia

forces and internal free surface effect.

e In Chapter 3, it will be valuable to extend the present direct coupled formulation to nonlinear
hydroelastic analyses, in which we could deal with the large motions of floating structures and
fluid and wet-surface change. Also, it will be an interesting study to identify resonance sources in

hydroelastic analysis of floating structures with liquid tanks.
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