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초록 

해상 항공, 폰툰 타입의 해양 플랜트나 교량 등과 같은 부유식 구조물 설계 시 해양 파랑과 

구조체의 상호 작용을 반드시 고려해야 한다. 본 논문에서는 파랑 및 충격 하중에 의한 평판형 

부유식 구조물의 탄소성 거동과 구조물 주변 유체 유동의 상호 작용에 관해 연구 하였다. 

구조물의 비선형 동적 거동 묘사를 위한 증분 평형 방정식과 선형 표면 중력파에 의한 유체력 

산정을 위한 임펄스 응답 함수와 중첩 적분을 연성시킨 유탄소성 해석 기법을 고안하였다. 부유식 

평판 구조물의 선형 및 비선형 문제들에 대해 기존의 수치 및 실험 결과와 비교함으로써 제안한 

유탄소성 해석 기법의 유효성과 성능을 검증하였다.   

 

핵 심 낱 말 유탄소성 해석, 부유식 평판 구조물. 초대형 부유식 구조물, 임펄스 응답 함수, 

비선형 구조 해석, 유한요소법, 경계요소법, 직접연성법. 

 

Abstract 

Hydro-elastoplastic analysis of floating plate structures subjected to time-dependent external loads is presented, 

in which elastoplastic material behaviors are coupled with linear surface gravity waves. Time-domain 

incremental coupled equations for the analysis are derived as formulating incremental equilibrium equations of 

floating plate structure and impulse responses functions associated with hydrodynamic pressures in the time 

domain. The present formulation can describe the interactions between fluids and structures with material 

nonlinearity. Also, a time-domain incremental nonlinear solution procedure is proposed. In the solution 

procedure, an implicit return mapping algorithm to simulate plastic behaviors of floating plate structures and a 

direct coupling method to construct frequency-wave inddependent metrics, which can be converted to IRFs by 

Fourier transformation, are employed. Through numerical examples of plate structures floating on the free 

surface of water, the capability and the performance of the proposed solution procedure are demonstrated.  

 

Keywords Hydro-elastoplastic analysis, Floating plate structures, Very large floating structure(VLFS), Impulse 

response function, Nonlinear structural analysis, Finite element method, Boundary element method, Direct 

coupling method. 
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Chapter 1. Introduction 
 

1.1 Research Background 
 

For a long time, hydrodynamic analysis of floating structures, like ships and offshore structure, has been 

conducted in order to investigate the structures’ safe and economic design [1-9]. One of the most important 

issues in hydrodynamic analysis is how to deal with complicated interactions between floating structures and 

any surrounding fluid. The interactions are associated with the motions of structures responding to wave-

induced forces and simultaneously the water waves generated due to the motions of the wetted surface of the 

structures. The problems of coupled fluid and structural dynamics need to be solved. As a result, analytical, 

experimental and numerical methods have been continuously developed and improved. 

 

Most previous analysis methods are based on the assumption of rigid body motions and have been applied 

successfully in the design of floating structures where these motions are dominant. However, as flexible motions 

of floating structures are weighted more heavily in the hydrodynamic responses, this assumption becomes less 

valid and hydroelasticity that is concerned with coupling effects between elastic deformation of structures and 

fluid motion for the hydrodynamic analysis of the floating structures can be more crucial. The fundamental 

theory of hydroelastic analysis was established for ship design in the1980s by Bishop and Price [5]. 

 

Recently, very large floating structures (VLFSs) have attracted people’s attentions for use as floating airports, 

storage facilities for oil and natural gas, floating bridges, floating islands, and so on [9-55].  The types of 

VLFSs may be divided into pontoon-type (e.g. Meg-floats in Japan) and semi-submersible-type (e.g. Mobile 

offshore Base (MOB) in USA) with regard to their geometry [10]. In the design of VLFSs, due to their 

hydrodynamic features as huge horizontal size compared to the wavelengths and relatively small bending 

rigidity, hydroelastic analysis should be performed to accurately predict their responses in waves.  

 

Many methods of hydroelastic analysis of pontoon-type VLFSs, which are mostly modeled as plate structure, in 

the frequency domain or in the time domain have been proposed. Commonly adopted approach for the 

hydroelastic analysis of floating plate structures in the frequency domain separates hydrodynamic analysis based 

on the potential flow theory and dynamic response analysis of floating plate structures in terms of structural 

modes [5, 10, 22, 30]. On the other hand, several researchers have developed a direct coupling method, in which 

the structural and fluid equations are directly coupled with each other, and the coupled equations are solved 

simultaneously [39-44]. Compared to the commonly adopted approach, the coupling method has simpler 

solution procedure [42]. 

 

The hydroelastic analysis of floating plate structures in the time domain has been less well-studied than that in 

the frequency domain. However, several investigators have used the connection between the time-domain and 

frequency-domain solution for time-dependent hydroelastic problems. Two approaches have been mainly 

applied for the time-domain analysis. One is based on a direct time integration, which is solving time-dependent 
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structure and fluid equations by a direct integration [56-59], and the other is based on a memory effect kernel 

and is known as the Cummins method [60]. Cummins derives time-dependent equations of rigid body motions 

for floating bodies, which involve so-called “impulse response functions (IRF),” such as memory functions and 

added mass at infinite frequency. The Cummins method is by far the more popular because there are some 

disadvantages in the direct time integration approaches, such as necessity of discretizing the entire structure and 

fluid domain and the relative high computational cost and time. 

 

In large-scale bending structures with long spans like bridges, hinge connections have been very effectively 

used to reduce the bending moment of cross-sections. To obtain economically more effective structural designs, 

the same principle for VLFSs can be adopted. The hydroelastic analysis of floating plate structures with hinge 

connections or interconnected floating structures with hinges or rotational springs have been studied [44-55]. 

Previous studies usually focused on both numerical procedures to model the hinge connections and the 

hydroelastic responses of the floating plate structures with hinge connections. In addition, although the 

maximum responses are very important in the design of VLFSs, the effect of the number of hinge connections 

used on the maximum responses has not been studied well. It has also not been well known that the hydroelastic 

responses could increase due to the use of hinge connections.  

 

When severe external loads are applied, nonlinear behaviors of floating structures (e.g. yielding, buckling, and 

fracturing) can occur. For safer and more economically effective designs, it is essential to accurately predict 

hydrodynamic responses beyond elastic limit for considering such nonlinear behaviors. Despite this, little 

related research for hydro-elastoplastic analysis, which is concerned with the interactions between elastoplastic 

behaviors with water waves, has been conducted [12, 14, 61-66].  

 

In order to evaluate plastic behaviors of floating plate structure in waves, commonly used approach is to 

perform two step analysis: firstly, hydroelastic analysis is carried out for calculating wave loads, and then plastic 

analysis using quasi-static methods is performed, in which waves loads are statically applied in a structural 

model. That is, plastic behaviors of VLFS are obtained in quasi-static manner as applying the time history of 

pressure distribution and inertia force previously calculated from hydroelastic analysis [12]. In this approach, 

plastic behaviors are not considered when calculating wave loads. Hydro-elastoplasticity methods of a ship have 

been proposed. In these methods, an approach is that hydroelastic analysis is combined with quasi-static 

methods. ship’s responses and wave loads are calculated by hydroelastic analysis and bending stiffness is 

determined by the quasi-static method and then modified in the hydroelastic equation [65]. Another approach is 

that ship is modeled by two rigid body with a nonlinear rotation spring and hydrodynamic forces are evaluated 

taking account of plastic deformations of the spring by a nonlinear strip theory [63, 64]. However, for more 

accurate and effective nonlinear structural analysis of floating plate structures, it is necessary to develop directly 

interactive approaches between elastoplastic responses and hydrodynamic forces in the time domain. 
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1.2 Research Purpose 
 

The main objective of this thesis is to present hydro-elastoplastic analysis of floating plate structures subjected 

to time-dependent external loads, in which elastoplastic material behaviors are coupled with linear surface 

gravity waves. In order to calculate linear hydrodynamic forces induced by the waves interacting with the 

surface of floating plate structures, Cummins method is employed as constructing IRFs from the corresponding 

forces in the frequency domain by Fourier transformation. Thus, it is important to accurately and effectively 

calculate hydrodynamic responses of floating plate structures subjected to incident regular waves.  

 

For this purpose, a numerical procedure for hydroelastic analysis of floating plate structures based on a direct 

coupling method is firstly proposed. The finite element method (FEM) and boundary element method (BEM) 

are employed to discretize floating plates and surrounding fluids, respectively. The numerical results are in good 

agreement with the previous experimental results by Yago and Endo [15], thereby confirming the validity of the 

proposed hydroelastic analysis of floating plate structures 

 

Furthermore, in order to solve the hydroelastic problems of floating plate structures with multiple hinge 

connections, a complete condensation method is derived for modeling hinge connections, in which the rotational 

degrees of freedom (DOFs) of the plate finite elements are released. The proposed formulation is 

mathematically complete because structural mass and stiffness matrices and fluid-structure interaction matrix 

are consistently condensed. The numerical analyses show the effect of the number of hinge connections used on 

the maximum bending moment and deflection of the floating plate structures according to the aspect ratio, 

bending stiffness and incident wavelength. 

 

For hydro-elastoplastic analysis, time-domain incremental coupled equations are formulated. The present 

formulation can describe the interactions between fluids and structures with material nonlinearity. Also, a time-

domain incremental nonlinear solution procedure is proposed, in which the floating plate structure is discretized 

using the finite element method, and the surrounding fluid is modeled using the boundary element method. The 

plastic behaviors of the floating plate structures are simulated using an implicit return mapping algorithm based 

on von Mises plasticity model with isotropic hardening. For hydroelastic and hydro-elastoplastic problems, the 

solutions of proposed procedure agree well with numerical results obtained with commercial software, LS-

DYNA. 

 

Finally, to investigate the performance of the numerical method for hydro-elastoplastic analysis, hydrodynamic 

problems of floating plate structures subjected to external forces in two or three dimensions are solved. For two 

dimensional problems, a series of benchmark calculations for the time-dependent motion of a floating elastic 

plate structure released from rest is considered and hydroelastic and hydro-elastoplastic responses are studied. 

Also, hydrodynamic problems of the experimental model used by Endo and Yago [16] are solved. For three 

dimensional problems, a floating double plate structure subjected to two load cases (i.e. impact load or dead 

weight and an incident wave-induced loads) are considered.  
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The proposed approach for hydro-elastoplastic analysis is applicable to hydroelastic as well as hydro-

elastoplastic problems for floating beam or plate structures subjected to external loads such as impact, incident 

regular and irregular waves, and so on. Compared to LS-DYNA, it provides reasonable numerical solutions with 

relatively low computational cost. In addition, it is expected to easily extend the proposed method for hydro-

elastoplastic analysis of three dimensional floating structures with other material nonlinearity model. 

 

1.3 Dissertation Organization 
 

This thesis consists of total 6 chapters as follows: 

 

In Chapter 2, the mathematical formulations for hydroelastic analysis of floating plate structures interacting with 

incident gravity waves are presented. Equations of motion for floating plate structures and fluid are derived from 

principle of virtual work and the boundary integral equations, respectively. And then the directly coupled 

equations of motion for the hydroelastic analysis are discretized by the boundary element method for fluid and 

the finite element method for plate structures. Comparing to the previous experimental results, validation of the 

proposed numerical method is demonstrated. 

 

In Chapter 3, hydroelastic problems of floating plate structures with multiple hinge connections in incident 

regular waves are considered. For modeling hinge connections, a complete condensation method is derived, in 

which the rotational DOFs of the plate finite elements are released. The most important feature of the proposed 

hinge model is its modeling capability, which is shown in numerical examples: floating plate problems with 1- 

and 2-directional multiple hinge connections. Thus, it is able to easily deal with the hydroelastic responses of 

floating plate structures with arbitrarily positioned multiple hinge connections. Through various numerical 

analyses, effects of the number of hinge connections used on the maximum bending moment and deflection of 

the floating plate structures are studied as considering aspect ratio, bending stiffness and incident wavelength. 

  

In Chapter 4, the time-domain incremental coupled equations for hydro-elastoplastic analysis of floating plate 

structures subjected to external loads are presented. Incremental equilibrium equations of floating plate structure 

considering the three dimensional von Mises plasticity model with isotropic hardening are derived. 

Hydrodynamic pressures in the time domain are obtained by employing IRFs in Cummins method. And then a 

time-domain incremental nonlinear solution procedure is proposed. Through comparisons with the numerical 

results of LS-DYNA, the capability of the proposed numerical procedure is investigated. 

 

In Chapter 5, the performance and capability of the numerical method for hydro-elastoplastic analysis are 

demonstrated. Hydrodynamic problems for floating plate structures in two and three dimensions are solved. The 

impact, dead weight, and incident wave-induced loads are considered as external loads acting on floating plate 

structures.  

 

Chapter 6 present the conclusions of this thesis. 
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Chapter 2. Hydroelastic Analysis of Floating Plate Structures           

Based on a Direct Coupling Method 

 

In this chapter, a formulation for hydroelastic analysis of floating plate structures in regular waves by employing 

a direct coupling method is presented. The finite element method is used to model floating plate structures. On 

the other hand, the boundary element method is employed to model surrounding fluid. The modeling capability 

of the proposed formulation is demonstrated through numerical examples.  

 

2.1 Mathematical Formulations 
 

The problem of a floating plate structure subjected to incident regular waves is considered, as shown in Figure 

2.1. The floating plate structure is assumed to have homogeneous, isotropic and linear elastic material and the 

fluid flow is incompressible, inviscid, and irrotational. The motions of the floating plate structure and the 

amplitudes of incident regular waves are small enough to use the linear theory. In addition, the surface tension 

effect is ignored and for simplicity, the atmospheric pressure is assumed to be zero. 

 

The plate structure ( HBL ×× ) is floating on the free surface of calm water with draft d . A fixed Cartesian 

coordinate system ( 1x , 2x , 3x ) is placed on the free surface and the flat bottom seabed is at hx −=3 . The 

volume of the plate structure is SV  and of fluid is FV . The fluid domain consists of the free surface FS , the 

wet surface of the floating plate structure BS , the surface ∞S , which is a circular cylinder with a sufficiently 

large radius R , and the seabed surface GS . An incident regular wave with small amplitude a  and angular 

frequency ω  comes continuously from the positive 1x  axis with an angle θ . 

 

To express the components of tensors and adopt the Einstein summation convention, subscripts i  and j  are 

introduced, which vary from 1 to 3. For simplicity, the draft is assumed to be zero. Thus, the condition for the 

static equilibrium at time 0=t  is automatically satisfied, which are described below in detail. Then, the 

components of the displacement vector u  at time t  are defined by  

 )0()();( iii xtxtu −=x , (2.1) 

where ix  are the components of the material point vector x . 

The total pressure fields in the fluid are 

 )();( 3 tgxtp wρ−=x  at 0=t , (2.2a) 

 );()();( 3 tptgxtp dw xx +−= ρ , (2.2b) 

where wρ  is the density of the fluid, g  is the acceleration of gravity, and dp  is the hydrodynamic pressure.  
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Figure 2.1. Problem description for floating plate structure subjected to an incident regular wave: (a) floating 

plate structure and (b) fluid domain. 
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The equilibrium equations of the floating plate structure at time t  

 0 3 =−−
∂

∂
isis

j

ij ug
x

ρδρ
σ

 in SV , (2.3a) 

 ijij pnn −=σ  on BS , (2.3b) 

where ijσ  are components of the Cauchy stress tensor, sρ  is the structural density, 3iδ  is the Kronecker 

delta, in  denotes the unit normal vector outward from the plate structure to the fluid. Also, overdots denote the 

time derivative (i.e. 
t∂

∂
=

)()
.

( , 2

2 )()
..

(
t∂

∂
= ). 

 

2.1.1 Formulation of the Floating Plate Structure 

 

Then, the principle of virtual work at time t  can be stated as [67] 

 ∫∫∫∫∫ −−+−=
SBBSS V iisS iidS iiwV sV ijij VuuSunpSungxVugVe ddddd 33 δρδδρδρδσ  , (2.4) 

where 

 












∂

∂
+

∂
∂

=
i

j

j

i
ij x

u
x
ue

δδδ
2
1 , (2.5) 

in which iuδ  are components of the virtual displacement vector imposed on the configuration at time t , and  

ijeδ  are components of the virtual strain tensor corresponding to the virtual displacements. In the static 

equilibrium at time 0=t , in which the hydrodynamic pressure dp  and the acceleration iu  are equal to zero, 

Equation (2.4) becomes 

 0ddd 33 =−+ ∫∫∫
BSS S iiwV sV ijij SungxVugVe δρδρδσ . (2.6) 

 

According to assumptions, which is that the motion of the floating plate structure is small, and the linear elastic 

material is considered, the integral term on the left-hand side of Equation (2.4) can be written as 

 ∫∫∫ +=
)0()0()(

d)0;(dd);(
SSS V ijijV ijklijkltV ijij VeVeeCVet δσδδσ xx , (2.7) 

where  

 












∂

∂
+

∂
∂

=
i

j

j

i
ij x

u
x
ue

2
1 , (2.8) 

in which ije  are components of the linear strain tensor, and ijklC  are components of the elastic stress-strain 

relation tensor. 
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Also, the second integral term on the right-hand side of Equation (2.4) can be written as 

 ∫∫∫ +=
)0( 3)0( 3)( 3 d)0;(d)0;()0(d);()(

BBB S iiwS iiwtS iiw SunguSungxSutntgx δρδρδρ xxx , (2.9) 

in which the change of wet surface is assumed to be negligible.  

 

After substituting Equation (2.7) and (2.9) into the terms and applying the condition (2.6) for the static 

equilibrium, Equation (2.4) becomes:  

  0dddd 3 =+−+ ∫∫∫∫
BBSS S iidS iiwV ijklijklV iis SunpSunguVeeCVuu δδρδδρ  . (2.10) 

 

Invoking a harmonic response to the excitation of an incident regular wave with angular frequency ω , the 

steady state equation can be finally obtained as  

 0d~~d~~d~~d~~
3

2 =+−+− ∫∫∫∫
BBSS S iidS iiwV ijklijklV iis SunpSunugVeeCVuu δδρδδρω , (2.11) 

where 

 { }tj
ii eutu ω)(~Re);( xx = , { }tj

ijij eete ω)(~Re);( xx = , { }tj
dd eptp ω)(~Re);( xx = , 1−=j . (2.12) 

    

2.1.2 Formulation of the Fluid 

 

In the steady state, the velocity potential );( txφ  is governed by 

 { }tjet ωφφ )(~Re);( xx = , (2.13a) 

 0~2 =∇ φ  in FV , (2.13b) 

 
φωφ ~~ 2

3 gx
=

∂
∂  for 03 =x  on FS , (2.13c) 

 
0

~

3

=
∂
∂
x
φ  on GS , (2.13d) 

 ( ) 0~~
=−






 +
∂
∂ Ijk
R

R φφ  on ∞S  ( ∞→R ), (2.13e) 

 
3

~
~

uj
n

ωφ
−=

∂
∂  on BS , (2.13f) 

where 2∇  is the Laplace operator, k  is the wave number, and Iφ~  is the velocity potential for the incident 

wave. The condition (2.13c) is the combined free surface boundary condition linearized on 03 =x  [68, 69], the 

condition (2.13e) is the Sommerfeld radiation condition [68]. The body boundary condition (2.13f) means that 

the normal velocities of plate structure and fluid on the wet surface should be the same. The conditions (2.13b) 

and (2.13f) are approximated on the configuration of the static equilibrium at time 0=t . 
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The incident velocity potential Iφ~  and dispersion relationship according to water depths are given in Table 2-1 

[68, 69]. 

Table 2.1. Definitions of incident velocity potentials and dispersion relationships. 

Cases Incident velocity potential Iφ~  Dispersion relationship 

Finite depth ( )θθ

ω
coscos3 21

cosh
)(cosh xxjke

kh
hxkagj ++  0tanh

2

=−
g

khk ω  

Infinite depth ( )θθ

ω
coscos 213 xxjkkx eeagj +  0

2

=−
g

k ω  

 

The Laplace equation and boundary conditions of the velocity potential φ
~  in Equation (2.13) can be 

transformed in a useful integral form, i.e., as the boundary integral equation by the Green’s theorem. The 

Green’s second identity for the velocity potential φ~  and the Green’s function, which is generated by a source 

potential pulsated at position iξ  with angular frequencyω  and strength π4− , takes the following form: 

 ( ) xSV x dSG
nn

GdVGG
CF
∫∫ 











∂
∂

−
∂
∂

=∇−∇ );(~
)(
)(~

)(
),(~

)(~),(~)(~),(~)(~ 22 ξx
x
x

x
ξxxξxxξxx φφφφ , (2.14) 

where CS  is closed surface bounding the fluid domain FV , and the subscript x  means the variable of 

integration. 

 

If the free surface Green’s function G~ , see Appendix A, is employed, the boundary integral equation for the 

spatial position ix  on the wet surface BS  can be given by   

 
)(~4),(~

)(
)(~

)(~..)(~4
2

xξx
ξ
ξξx I

SB
dSG

ng
vp φπφωφφπ ξ =











∂
∂

++ ∫ , (2.15) 

where ..vp  indicates the Cauchy principal value. The detailed procedure of formulation of the boundary 

integral equation can be found in Reference [42]. 

 

For the boundary element approximations, Equation (2.15) is multiplied by a test function φδ
~

, and integrated 

over the wet surface BS . Then, the following equation are obtained: 

 
∫∫ ∫∫ =











∂
∂

++
BB BB S x

I

S xSS x dSdSdSG
ng

vpdS φδφπφδφωφφδφπ ξ
~)(~4~),(~

)(
)(~

)(~..~)(~4
2

xξx
ξ
ξξx . (2.16) 
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2.1.3 Coupled Equations 
 

To obtain coupled equations, the Bernoulli equation and the body boundary condition (2.13f) are applied to the 

formulations for the floating plate structure (2.11) and fluid (2.16). Using the linearized Bernoulli equation at 

the static equilibrium configuration, the hydrodynamic pressure dp~  can be represented as  

 φωρ
~~

wd jp −= , (2.17) 

 

Then, by substituting Equation (2.17) and (2.13f) with (2.11) and (2.16), respectively, the following coupled 

equations are obtained: 

 0d~~d~~d~~d~~
3

2 =−−+− ∫∫∫∫
BBSS S iiwS iiwV ijklijklV iis SunjSunugVeeCVuu δφρωδρδδρω , (2.18) 

and 

 
∫∫ ∫∫ =








++

BB BB S x
I

S xS iiS x dSdSdSGnuj
g

vpdS φδφπφδωωφφδφπ ξ
~~4~~~~..~~4

2

. (2.19) 

 

Alternatively, the coupled equations can be derived with respect to the total water pressure p~  and 

displacement iu~ : 

 0d~~d~~d~~
3

2 =−+− ∫∫∫
BSS SV ijklijklV iis SupVeeCVuu δδδρω , (2.20) 

and 

 
xS

I

S xS
w

xS
w

xS
Sp

g
jSpSGpvp

g
Spp

g
Spu

BB BBB
d~~d~d~~..

4
d~~1d~~

2

2

3 ∫∫ ∫∫∫ =−−− δφωδ
πρ
ωδ

ρ
δ ξ , (2.21) 

where { }tjeptp ω)(~Re);( xx = , and p~δ  is a test function. 

 

2.2 Numerical Procedure 
 

In this section, the matrix formulation for the hydroelaistc problem of floating plate structures subjected to 

incident waves. The coupled equations (2.20) and (2.21) are discretized by the finite and boundary element 

methods and result in the following matrix form 

 

 








=





















−−−
−+−

IGM
T
up

upKM

R
0

p
u

FFC
CSS

ˆ
ˆ2ω

, (2.22) 

in which û  and p̂  are the unknown displacement and pressure vectors, respectively, and the submatrices and 
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subvectors are defined as follows 

 uSu ˆˆd~~
 M

T
iiV s Vuu

F
δδρ =∫ , (2.23a) 

 uSu ˆˆd~ ~
 K

T
ijV klijkl VeeC

F
δδ =∫ , (2.23b) 

 pCu ˆˆd~~
33 up
T

S
Sup

B
δδ =∫ , (2.23c) 

 
pFp ˆˆd~~1

M
T

S
w B

Spp
g

δδ
ρ

=∫ , (2.23d) 

 
 ˆˆd ~d~~..

4 2

2

pFp G
T

S xS
w B B

SpSGpvp
g

δδ
πρ
ω

ξ =∫ ∫ , (2.23e) 

 
I

T

S

I δSp
g

j
B

Rp̂d~~
=∫ δφ

ω , (2.23f) 

where MS  and KS  are the matrices for structural mass and stiffness, upC  is the symmetric matrix for the 

fluid-structure interaction, in which the total water pressure p̂  and structural displacement û  are directly 

coupled. 

 

For the finite element model of Mindlin type plate structures, the 4-node MITC plate finite element (MITC4) is 

employed, in which the MITC (Mixed Interpolation of Tensorial Components) method is applied to alleviate 

undesired shear locking phenomenon [70-78]. For the boundary element model of fluid, a 4-node quadrilateral 

boundary element is used, in which the isoparametric procedure is adopted for the geometry and pressure 

interpolations on boundary surface. 

 

By condensing out the total water pressure p̂  in Equation (2.22), the condensed structural equation with added 

mass, radiated wave damping, wave excitation force vector, and hydrostatic stiffness is obtained: 

 [ ] WHKCWMAM j RuSSSSS =++++− ˆ)(2 ωω , (2.24) 

where  

 { }H
T
upGMupMA SCFFCS −+×−= −1

2 )(Re1
ω

, (2.25a) 

 { }H
T
upGMupCW SCFFCS −+×= −1)(Im1

ω
, (2.25b) 

 
IGMupW RFFCR 1)( −+−= , (2.25c) 

 ∫=
BS iiwH Sunug d~~ˆˆ 33 δρδuSu , (2.25d) 

in which MAS , CWS , and HS  are the matrices for added mass, radiated wave damping, and hydrostatic 

stiffness, and WR is wave excitation force vector. 

 



- 12 - 

2.3 Numerical Examples 
 

In this section, to verify the formulation proposed, numerical solutions are compared with experimental results 

conducted by Yago and Endo [15]. The details of the floating plate model used in the hydroelastic experiments 

are given in Table 2.2. In all the numerical examples, the water depth is assumed to be finite, the density of 

water wρ  is 3/1000 mkg  and the acceleration of gravity g  is 2/8.9 sm .  

 

Table 2.2. Details of the floating plate model used in the hydroelastic experiments by Yago and Endo 

Parameter Value 

Length ( L ) m75.9  

Width ( B ) m95.1  

Thickness( H ) m0545.0  

Draft ( d ) m0167.0  

Water depth( h ) m9.1  

Bending stiffness ( EI ) 2522.17 kNm  

 

32 (in length) × 6 (in breadth) mesh of the MITC4 plate elements and the 4-node node quadrilateral boundary 

element is used. Hydroelastic analysis of the floating plate structure subjected to incident regular waves with 

four angles ( °0 , °30 , °60  and °90 ) and six different wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 

6.0 ) is performed as shown in Figure 2.2. The numerical and experimental results are comparison in the 

following Figures 2.3 ~ 2.6 and Tables 2.3 ~ 2.6. The numerical results agree well with the experimental results. 
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Figure 2.2. Description of hydroelastic problems and finite and boundary element meshes 
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Figure 2.3. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 0θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ). 
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Figure 2.4. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 30θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ). 
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Figure 2.5. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 60θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ). 
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Figure 2.6. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 90θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ). 
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Table 2.3. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 0θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ) obtained by the present procedure 
and the experiments. 

L/λ   Points 
Calculation Experiment 

Starboard Center Port side Starboard Center Port side 

0.1 

0.000 0.189 0.197 0.189 0.183 0.183 0.183 
0.125 0.038 0.030 0.038 0.026 0.026 0.026 
0.250 0.101 0.090 0.101 0.089 0.089 0.089 
0.375 0.047 0.044 0.047 0.024 0.024 0.024 
0.500 0.111 0.103 0.111 0.096 0.096 0.096 
0.625 0.061 0.056 0.061 0.040 0.040 0.040 
0.750 0.120 0.107 0.120 0.112 0.112 0.112 
0.875 0.093 0.092 0.093 0.083 0.083 0.083 
1.000 0.303 0.308 0.303 0.302 0.302 0.302 

0.2 

0.000 0.192 0.195 0.192 0.174 0.174 0.174 
0.125 0.045 0.044 0.045 0.037 0.037 0.037 
0.250 0.106 0.096 0.106 0.082 0.082 0.082 
0.375 0.086 0.079 0.086 0.064 0.064 0.064 
0.500 0.109 0.101 0.109 0.101 0.101 0.101 
0.625 0.145 0.133 0.145 0.119 0.119 0.119 
0.750 0.129 0.117 0.129 0.119 0.119 0.119 
0.875 0.240 0.236 0.240 0.229 0.229 0.229 
1.000 0.461 0.460 0.461 0.448 0.448 0.448 

0.3 

0.000 0.133 0.135 0.133 0.242 0.242 0.242 
0.125 0.064 0.062 0.064 0.101 0.101 0.101 
0.250 0.105 0.096 0.105 0.063 0.063 0.063 
0.375 0.118 0.109 0.118 0.136 0.136 0.136 
0.500 0.134 0.125 0.134 0.116 0.116 0.116 
0.625 0.181 0.166 0.181 0.181 0.181 0.181 
0.750 0.205 0.187 0.205 0.245 0.245 0.245 
0.875 0.342 0.338 0.342 0.327 0.327 0.327 
1.000 0.681 0.682 0.681 0.717 0.717 0.717 

0.4 

0.000 0.219 0.220 0.219 0.213 0.213 0.213 
0.125 0.097 0.097 0.097 0.082 0.082 0.082 
0.250 0.091 0.086 0.091 0.072 0.072 0.072 
0.375 0.134 0.126 0.134 0.135 0.135 0.135 
0.500 0.162 0.151 0.162 0.162 0.162 0.162 
0.625 0.225 0.204 0.225 0.207 0.207 0.207 
0.750 0.284 0.260 0.284 0.280 0.280 0.280 
0.875 0.440 0.433 0.440 0.436 0.436 0.436 
1.000 0.831 0.832 0.831 0.833 0.833 0.833 

0.5 

0.000 0.175 0.174 0.175 0.147 0.147 0.147 
0.125 0.047 0.041 0.047 0.028 0.028 0.028 
0.250 0.126 0.113 0.126 0.101 0.101 0.101 
0.375 0.173 0.157 0.173 0.147 0.147 0.147 
0.500 0.235 0.215 0.235 0.239 0.239 0.239 
0.625 0.325 0.296 0.325 0.258 0.294 0.294 
0.750 0.360 0.331 0.360 0.359 0.359 0.359 
0.875 0.536 0.528 0.536 0.571 0.571 0.571 
1.000 0.982 0.982 0.982 1.031 1.031 1.031 

0.6 

0.000 0.588 0.588 0.588 0.543 0.543 0.543 
0.125 0.263 0.255 0.263 0.284 0.284 0.284 
0.250 0.265 0.236 0.265 0.228 0.228 0.228 
0.375 0.332 0.302 0.332 0.282 0.282 0.282 
0.500 0.334 0.306 0.334 0.354 0.354 0.354 
0.625 0.417 0.382 0.417 0.330 0.376 0.376 
0.750 0.467 0.433 0.467 0.472 0.472 0.472 
0.875 0.608 0.597 0.608 0.655 0.655 0.655 
1.000 1.065 1.065 1.065 1.040 1.040 1.040 
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Table 2.4. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 30θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ) obtained by the present procedure 
and the experiments. 

L/λ   Points 
Calculation Experiment 

Starboard Center Port side Starboard Center Port side 

0.1 

0.000 0.096  0.051  0.021  0.018  0.018  0.018  
0.125 0.037  0.004  0.044  0.037  0.037  0.037  
0.250 0.012  0.022  0.049  0.037  0.037  0.037  
0.375 0.023  0.007  0.039  0.037  0.037  0.037  
0.500 0.040  0.024  0.072  0.037  0.037  0.037  
0.625 0.074  0.011  0.065  0.055  0.055  0.055  
0.750 0.105  0.024  0.049  0.064  0.064  0.064  
0.875 0.098  0.020  0.070  0.074  0.074  0.074  
1.000 0.115  0.068  0.109  0.037  0.037  0.037  

0.2 

0.000 0.199  0.192  0.181  0.212  0.212  0.204  
0.125 0.036  0.025  0.030  0.028  0.028  0.019  
0.250 0.070  0.082  0.115  0.101  0.101  0.083  
0.375 0.023  0.060  0.114  0.074  0.074  0.111  
0.500 0.099  0.082  0.123  0.083  0.083  0.130  
0.625 0.170  0.107  0.122  0.147  0.147  0.148  
0.750 0.214  0.090  0.019  0.248  0.110  0.009  
0.875 0.302  0.192  0.168  0.331  0.212  0.148  
1.000 0.422  0.348  0.350  0.405  0.359  0.491  

0.3 

0.000 0.310  0.324  0.358  0.347  0.291  0.347  
0.125 0.082  0.101  0.151  0.028  0.038  0.094  
0.250 0.081  0.090  0.129  0.103  0.103  0.131  
0.375 0.126  0.123  0.147  0.122  0.131  0.150  
0.500 0.130  0.111  0.128  0.094  0.084  0.113  
0.625 0.241  0.180  0.166  0.234  0.216  0.197  
0.750 0.312  0.208  0.145  0.347  0.225  0.150  
0.875 0.392  0.320  0.306  0.431  0.328  0.328  
1.000 0.652  0.642  0.670  0.722  0.722  0.703  

0.4 

0.000 0.211  0.305  0.398  0.232  0.324  0.407  
0.125 0.039  0.052  0.114  0.047  0.084  0.121  
0.250 0.167  0.134  0.140  0.150  0.150  0.169  
0.375 0.128  0.154  0.218  0.161  0.161  0.235  
0.500 0.192  0.205  0.268  0.208  0.227  0.301  
0.625 0.344  0.280  0.278  0.321  0.302  0.311  
0.750 0.404  0.286  0.223  0.433  0.313  0.238  
0.875 0.512  0.456  0.468  0.545  0.480  0.490  
1.000 0.819  0.842  0.901  0.917  0.898  0.907  

0.5 

0.000 0.756  0.820  0.900  0.741  0.852  0.907  
0.125 0.250  0.338  0.454  0.250  0.352  0.454  
0.250 0.247  0.277  0.385  0.250  0.296  0.361  
0.375 0.358  0.342  0.396  0.315  0.352  0.380  
0.500 0.338  0.297  0.309  0.324  0.324  0.352  
0.625 0.443  0.370  0.366  0.389  0.389  0.398  
0.750 0.507  0.415  0.403  0.528  0.454  0.417  
0.875 0.566  0.547  0.587  0.602  0.583  0.611  
1.000 0.901  0.966  1.052  0.954  0.991  1.083  

0.6 

0.000 1.046  1.052  1.084  0.950  0.969  1.030  
0.125 0.483  0.537  0.642  0.410  0.475  0.550  
0.250 0.346  0.423  0.570  0.307  0.373  0.494  
0.375 0.488  0.493  0.576  0.447  0.512  0.559  
0.500 0.507  0.449  0.456  0.429  0.447  0.429  
0.625 0.553  0.452  0.425  0.401  0.429  0.354  
0.750 0.618  0.518  0.513  0.587  0.503  0.522  
0.875 0.668  0.654  0.710  0.680  0.671  0.717  
1.000 0.950  1.034  1.145  0.913  1.020  1.100  
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Table 2.5. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 60θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ) obtained by the present procedure 
and the experiments. 

L/λ   Points 
Calculation Experiment 

Starboard Center Port side Starboard Center Port side 

0.1 

0.000 0.045  0.022  0.032  0.049  0.049  0.049  
0.125 0.025  0.018  0.053  0.040  0.040  0.040  
0.250 0.022  0.015  0.052  0.055  0.055  0.055  
0.375 0.044  0.019  0.030  0.046  0.046  0.046  
0.500 0.034  0.020  0.023  0.049  0.049  0.049  
0.625 0.050  0.019  0.009  0.040  0.040  0.040  
0.750 0.071  0.023  0.018  0.080  0.080  0.080  
0.875 0.053  0.028  0.074  0.046  0.046  0.046  
1.000 0.045  0.064  0.105  0.074  0.074  0.074  

0.2 

0.000 0.163  0.251  0.336  0.245  0.245  0.282  
0.125 0.058  0.024  0.044  0.063  0.063  0.051  
0.250 0.116  0.115  0.189  0.150  0.126  0.199  
0.375 0.084  0.065  0.196  0.066  0.115  0.213  
0.500 0.242  0.156  0.182  0.215  0.166  0.227  
0.625 0.261  0.103  0.033  0.216  0.094  0.032  
0.750 0.276  0.132  0.214  0.291  0.132  0.193  
0.875 0.273  0.151  0.279  0.268  0.170  0.281  
1.000 0.212  0.171  0.345  0.208  0.172  0.282  

0.3 

0.000 1.264  1.260  1.317  1.320  1.330  1.340  
0.125 0.354  0.441  0.656  0.387  0.461  0.660  
0.250 0.330  0.398  0.607  0.314  0.438  0.612  
0.375 0.487  0.413  0.437  0.477  0.452  0.452  
0.500 0.416  0.240  0.110  0.416  0.267  0.143  
0.625 0.533  0.356  0.323  0.505  0.380  0.306  
0.750 0.521  0.328  0.330  0.556  0.332  0.345  
0.875 0.394  0.326  0.487  0.421  0.346  0.520  
1.000 0.480  0.610  0.829  0.522  0.646  0.870  

0.4 

0.000 1.579  1.409  1.284  1.930  1.700  1.530  
0.125 0.760  0.704  0.773  0.859  0.834  0.933  
0.250 0.443  0.562  0.769  0.512  0.674  0.910  
0.375 0.625  0.624  0.695  0.675  0.762  0.849  
0.500 0.638  0.487  0.378  0.764  0.590  0.453  
0.625 0.670  0.436  0.346  0.766  0.529  0.405  
0.750 0.720  0.499  0.546  0.854  0.606  0.655  
0.875 0.669  0.549  0.733  0.781  0.644  0.880  
1.000 0.627  0.718  1.014  0.770  0.869  1.160  

0.5 

0.000 1.650  1.356  1.109  1.930  1.570  1.310  
0.125 1.021  0.826  0.776  1.210  1.000  0.952  
0.250 0.712  0.685  0.818  0.830  0.830  0.954  
0.375 0.743  0.729  0.825  0.832  0.881  0.980  
0.500 0.758  0.664  0.657  0.883  0.809  0.784  
0.625 0.736  0.579  0.552  0.860  0.736  0.650  
0.750 0.750  0.604  0.671  0.898  0.750  0.812  
0.875 0.758  0.709  0.888  0.863  0.850  1.070  
1.000 0.808  0.922  1.191  0.938  1.110  1.390  

0.6 

0.000 1.625  1.275  0.988  1.660  1.320  0.981  
0.125 1.141  0.882  0.791  1.140  0.896  0.759  
0.250 0.885  0.766  0.850  0.860  0.748  0.823  
0.375 0.852  0.791  0.894  0.899  0.800  0.899  
0.500 0.855  0.766  0.822  0.814  0.752  0.826  
0.625 0.818  0.701  0.748  0.803  0.679  0.728  
0.750 0.782  0.695  0.814  0.804  0.680  0.817  
0.875 0.777  0.800  1.017  0.769  0.781  1.000  
1.000 0.861  1.036  1.331  0.820  1.010  1.290  
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Table 2.6. RAOs of deflection of the floating plate structures under incident regular waves with an angle 
( °= 90θ ) and six wavelengths ( 1.0/ =Lλ , 2.0 , 3.0 , 4.0 , 5.0  and 6.0 ) obtained by the present procedure 
and the experiments 

L/λ   Points 
Calculation Experiment 

Starboard Center Port side Starboard Center Port side 

0.1 

0.000 0.287  0.082  0.412  0.256  0.061  0.317  
0.125 0.281  0.092  0.423  0.270  0.099  0.355  
0.250 0.281  0.098  0.430  0.247  0.113  0.393  
0.375 0.292  0.090  0.425  0.285  0.090  0.407  
0.500 0.299  0.083  0.419  0.299  0.067  0.372  
0.625 0.292  0.090  0.425  0.300  0.093  0.398  
0.750 0.281  0.098  0.430  0.277  0.119  0.436  
0.875 0.281  0.092  0.423  0.279  0.084  0.401  
1.000 0.287  0.082  0.412  0.293  0.061  0.341  

0.2 

0.000 0.804  0.253  1.124  0.852  0.247  1.100  
0.125 0.789  0.257  1.132  0.816  0.273  1.140  
0.250 0.786  0.264  1.134  0.830  0.262  1.140  
0.375 0.798  0.267  1.124  0.832  0.276  1.150  
0.500 0.807  0.268  1.117  0.858  0.265  1.130  
0.625 0.798  0.267  1.124  0.860  0.292  1.130  
0.750 0.786  0.264  1.134  0.836  0.281  1.170  
0.875 0.789  0.257  1.132  0.838  0.282  1.160  
1.000 0.804  0.253  1.124  0.839  0.259  1.140  

0.3 

0.000 1.217  0.444  1.471  -  0.733  - 
0.125 1.199  0.437  1.479  - 0.773  - 
0.250 1.189  0.446  1.490  - 0.863  - 
0.375 1.190  0.462  1.498  - 0.953  - 
0.500 1.192  0.470  1.500  - 0.944  - 
0.625 1.190  0.462  1.498  - 0.897  - 
0.750 1.189  0.446  1.490  - 0.814  - 
0.875 1.199  0.437  1.479  - 0.767  - 
1.000 1.217  0.444  1.471  - 0.857  - 

0.4 

0.000 1.328  0.623  1.439  1.400  0.654  1.490  
0.125 1.312  0.610  1.444  1.360  0.644  1.500  
0.250 1.301  0.611  1.454  1.350  0.657  1.520  
0.375 1.295  0.619  1.466  1.360  0.684  1.550  
0.500 1.294  0.624  1.471  1.380  0.697  1.540  
0.625 1.295  0.619  1.466  1.390  0.699  1.540  
0.750 1.301  0.611  1.454  1.380  0.676  1.530  
0.875 1.312  0.610  1.444  1.380  0.653  1.500  
1.000 1.328  0.623  1.439  1.380  0.667  1.480  

0.5 

0.000 1.312  0.746  1.347  1.290  0.745  1.330  
0.125 1.300  0.733  1.346  1.290  0.734  1.360  
0.250 1.291  0.729  1.351  1.290  0.761  1.380  
0.375 1.284  0.730  1.359  1.270  0.775  1.380  
0.500 1.282  0.731  1.363  1.310  0.776  1.390  
0.625 1.284  0.730  1.359  1.300  0.753  1.370  
0.750 1.291  0.729  1.351  1.300  0.755  1.360  
0.875 1.300  0.733  1.346  1.300  0.731  1.330  
1.000 1.312  0.746  1.347  1.300  0.758  1.320  

0.6 

0.000 1.273  0.822  1.277  1.290  0.845  1.290  
0.125 1.263  0.810  1.273  1.300  0.820  1.290  
0.250 1.255  0.805  1.274  1.280  0.820  1.270  
0.375 1.249  0.803  1.278  1.280  0.820  1.290  
0.500 1.247  0.802  1.280  1.250  0.820  1.270  
0.625 1.249  0.803  1.278  1.270  0.832  1.300  
0.750 1.255  0.805  1.274  1.270  0.807  1.290  
0.875 1.263  0.810  1.273  1.270  0.807  1.290  
1.000 1.273  0.822  1.277  1.270  0.820  1.280  
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2.4 Closure 

 

In this chapter, a formulation for the hydroelastic analysis of floating plate structures in incident regular waves 

based on a direct coupling method is presented. The directly coupled equations of motion for the hydroelastic 

analysis are discretized the finite element method for plate structures and by the boundary element method for 

fluids and. The capability of the proposed numerical procedure was investigated through comparisons with the 

experimental results.  
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Chapter 3. Consideration of Multiple Hinge Connections 

 

It is well known that the use of hinge connections can reduce the hydroelastic responses. That is, bending 

moment, deflection and strain energy stored in floating plate structures due to waves can be reduced depending 

on structural and wave parameters [44-52]. However, although the maximum responses are very important in 

the design of VLFSs, the effect of the number of hinge connections used on the maximum responses has not 

been studied well [48]. It has also not been well known that the hydroelastic responses could increase due to the 

use of hinge connections.   

 

The hydroelastic analysis of floating structures with hinge connections or interconnected floating structures with 

hinges or rotational springs have been studied. In hydroelastic analysis of floating structures using the modal 

expansion method, hinge deflection modes have been used to model hinge connections [45-51, 54, 55]. The 

hinge deflection modes can be obtained analytically for simple problems [45-49] and numerically for 

complicated problems [50, 51, 54, 55]. The conditions for hinge connections can be enforced by adopting the 

penalty technique [52]. However, the numerical procedures have not been verified by experimental studies. 

 

In order to solve the hydroelastic problems of floating plate structures with multiple hinge connections, the 

direct coupling method is employed and a complete condensation method is derived for modeling hinge 

connections, in which the rotational degrees of freedom (DOFs) of the plate finite elements are released. Hinge 

deflection modes are not used explicitly. The proposed formulation is mathematically complete because 

structural mass and stiffness matrices and fluid-structure interaction matrix are consistently condensed. To 

assess the validity of the proposed numerical procedure, the numerical calculations are compared with the 

experimental results. 

 

The most important feature of the proposed hinge model is its modeling capability, which is shown in numerical 

examples: floating plate problems with 1- and 2-directional multiple hinge connections. Thus, it is able to easily 

deal with the hydroelastic responses of floating plate structures with arbitrarily positioned multiple hinge 

connections. The numerical analyses show the effect of the number of hinge connections used on the maximum 

bending moment and deflection of the floating plate structures according to the aspect ratio, bending stiffness 

and incident wavelength. 

 

3.1 Modeling of Hinge Connections 

 

Figure 3.1 shows the problem description of a floating plate structure with hinge connections in incident regular 

waves. The interaction between the floating plate structure and an incident regular wave is handled by the direct 

coupling method. For the finite element model of plate structures, the MITC4 plate element is employed. On the 

other hand, for the boundary element model of fluid, a 4-node quadrilateral boundary element is used. Thus, in 
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the discretized coupled equation (2.22), the Nodal DOFs vectors for unknown structural displacement û  and 

total water pressure p̂  of the elements is as follows 

 [ ]444
3

333
3

222
3

111
3 21212121

ˆ xxxxxxxx uuuu θθθθθθθθ=u , (3.1) 

 [ ]4321ˆ pppp=p , (3.2) 

 

in which 1
3u , 1

1xθ  and 1
2xθ  are the one translational and two rotational DOFs at the plate element local node 1, 

and 1p  is the pressure DOF at the boundary element local node 1. 

 

 
Figure 3.1. A floating plate structure with multiple hinge connections 
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Since the bending moments are zero at hinge connections, they can be modeled by releasing the rotational DOFs 

associated with the bending moment at the element local nodes. In static analysis, a stiffness matrix is 

condensed to release specific DOFs [67]. This technique is named as static condensation. In order to release 

DOFs in dynamic analysis, however, the mass matrix also need to be condensed through the dynamic 

condensation technique [79]. Similar to the dynamic condensation procedures, the rotational DOFs are released 

by condensing structural mass and stiffness matrices, and fluid-structure interaction matrix in Equation (2.22). 

 

In order to condense the rotational DOFs, the matrix is partitioned 
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and the matrix in Equation (3.3) is rearranged as follows 
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where aû  and cû  are the displacement vectors to be retained and condensed, respectively. Therefore, cû  is 

the vector of the rotational DOFs corresponding to the hinge connections as shown in Figure 3.2. 
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Figure 3.2. Nodal DOFs of a MITC4 plate element: (a) a floating plate structure with three hinge connections, 

(b) retained and condensed nodal DOFs. 

 

From the third row in Equation (3.4), the following equation can be obtained: 

 ( ) ( ) 0uSSpCuSS =+−+−+− c
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and 
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Let us transform Equation (3.6) into a matrix form as follows 
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in which aI  and pI  are the identity matrices corresponding to aû  and p̂ , respectively.  

 

By substituting Equation (3.7) into Equation (3.4) and premultiplying [ ]TT : 
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the condensed matrix form is finally obtained: 
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By solving Equation (3.10), the hydroelastic responses of floating plate structures with multiple hinge 

connections in incident regular waves are directly calculated. 

 

3.2 Verification and Modeling Capability 

 

The proposed numerical procedure can be easily applied to calculate the hydroelastic response of floating plates 

with arbitrarily positioned multiple hinge connections. To verify the proposed numerical procedure, we compare 

the numerical results with the experimental and previous numerical results. Then, to demonstrate the modeling 
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capability of the proposed numerical procedure, the hydroelastic analysis of floating plate structures with 1- and 

2- directional multiple hinge connections are conducted.  

 

Three dimensionless parameters are considered: aspect ratio rL  (the ratio of the structural length to the width), 

dimensionless wavelength α  the ratio of the incident wavelength λ  to the structural length) and 

dimensionless bending stiffness S  (the ratio of the longitudinal bending stiffness to the hydrostatic restoring 

force)  

 
B
LLr = , 

L
λ

α = , and 5gL
EIS
wρ

= , (3.12) 

in which E  and I  denote Young’s modulus and the second moment of area on the 2x - axis ( 12/3BHI = ). 

 

In addition, two response amplitude operators (RAOs) of the dimensionless bending moment 
22xxM  and 

deflection 3u  are estimated: 

 
2

22

22 gL

M
M

w

xx
xx ρ
=  and 

a
u

u 3
3

~
= , (3.13) 

where 
22xxM  is the RAO of the bending moment per unit width. 

 

3.2.1 Comparison with Experimental Results 

 

In order to verify the proposed numerical procedure, present results are compared with hydroelastic 

experimental results of floating plate structures conducted by Cho [80]. Table 3.1 presents the details of the 

floating plate structures used for the hydroelastic experiments. 
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Table 3.1. Details of the floating plate model for hydroelastic experiments. 

Parameter Value 

Length ( L ) m3  

Width ( B ) m6.0  

Thickness ( H ) m04.0  

Draft ( d ) m011.0  

Bending stiffness ( EI ) 2385.30 Nm  

Dimensionless bending stiffness ( S ) 510244.1 −×  

 

Figure 3.3 illustrates the experimental setup in the wave tank [80]. In order to measure the wave frequency and 

amplitude, one wave probe was installed. The heave motions of the floating plate structures were measured 

through four motion capture cameras with IR reflective markers. Figure 3.4 shows the positions of the IR 

reflective markers attached on the floating plates. The drift of plate structures due to waves was prevented by 

mooring the plates with four strings, see Figures 3.3. Since the strings should prevent the drift without 

restraining the heave motions, small tension was introduced so that the strings were horizontally connected to 

the plate structures. That is, the connection angle between strings and plate structures is almost °180 , see 

Figure 3.3(c). 
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Figure 3.3. A schematic of the experimental setup: (a) Top view, (b) Front view, (c) Mooring lines. 
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Figure 3.4. Positions of the IR reflective markers on floating structures: (a) no hinge, (b) 1 hinge, and (c) 2 

hinges. 

 

In the hydroelastic experiments, zero to two hinge connections in the floating plate structures subjected to 

regular waves ( ma 01.0=  and 6.0=α  ) with four different angles ( °= 0θ , °30 , °60  and °90 ) were 

considered. The water depth is m5.1 . Note that incident wave conditions ( 0133.0/2 =ha  and 8333.0/ =λh ) 

are included in the range of the linear wave theory in deep water ( 1.0/2 <ha  and 5.0/ =λh ) [81]. 

 

Figures. 3.5 and 3.6 show the comparisons between experimental and numerical results for RAOs of deflection 

along the longitudinal lines of the plates. For the numerical results, the structural and fluid domains are modeled 

by the 1260×  mesh of the MITC4 plate elements and the 1260×  mesh of the boundary elements, 

respectively. The numerical results agree well with those obtained by experimental tests. 
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Figure 3.5. RAOs of deflection of the floating plates with multiple hinge connections with 6.0=α  for two 
wave angles ( °= 0θ  and °30 ) : (a) no hinge, (b) 1 hinge, and (c) 2 hinges. 
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Figure 3.6. RAOs of deflection of the floating plates with multiple hinge connections with 6.0=α  for two 

wave angles ( °= 60θ  and °90 ) : (a) no hinge, (b) 1 hinge, and (c) 2 hinges. 
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3.2.2 Comparison with Previous Numerical Results 

 

In hydroelastic analysis of floating plate structures with multiple hinge connections, the proposed numerical 

procedure is based on the direct coupling formulation in contrast to previous studies. The hydroelastic responses 

of a floating plate structure with a hinge connection are calculate, and then the results are compared with those 

obtained by S. Fu et al. [50]. A scaled model of the Mega-Float ( mL 300= , mB 60= , mH 2= , md 5.0= , 

and 2111077.4 NmEI ×= ) is considered and the water depth is m5.58  [15]. They used the 30150×  mesh of 

the plate and boundary elements for modeling the structural and fluid domains, respectively. 

 

The floating plate structure is modeled by the 1260×  mesh of the plate and boundary elements. Figure 3.7 

shows 3u  and 
22xxM  along the longitudinal centerline of the plate with a hinge connection. The numerical 

results are in good agreement with those obtained by S. Fu et al., thereby confirming the validity of the proposed 

condensation method for modeling hinge connections. 

 

Figure 3.7. Hydroelastic responses along the longitudinal centerline: (a) Problem description, (b) RAOs of 

deflection for 4.0/ =Lλ , (c) RAOs of dimensionless bending moment for 48.0/ =Lλ  
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3.2.3 Numerical Examples 

 

In this section, the hydroelastic responses of floating plate structures with 1- and 2-directional multiple hinge 

connections are presented. The numerical examples demonstrate the modeling capability of the proposed 

numerical procedure. Figure 3.8 shows the description of the floating plate structures ( 51004.3 −×=S ) with 1- 

and 2-directional multiple hinge connections under a regular wave of 6.0=α . Hinge connections are uniformly 

positioned. 

 

First, the hydroelastic analysis of the floating plate structures ( 0.5=rL ) with 1-directional multiple hinge 

connections in a head sea ( °= 0θ ) is performed as shown in Figure 3.8(a). Zero to three hinge connections are 

considered and 1260×  mesh is used to model the floating plate. The resulting RAOs of deflection are 

presented in Figure 3.9. Figure 3.10 shows the RAOs of dimensionless bending moment and the RAOs of 

deflection along the longitudinal centerline of the floating plate structures. 
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Figure 3.8. Floating plate problems with (a) 1- and (b) 2-directional multiple hinge connections under an 

incident regular wave. 
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Figure 3.9. RAOs of deflection of the floating plate structures with 1-directional multiple hinge connections in 

a head sea: (a) no hinge, (b) 1 hinge, (c) 2 hinges, and (d) 3 hinges. 
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Figure 3.10. Hydroelastic responses along the longitudinal centerline: (a) RAOs of dimensionless bending 

moment, (b) RAOs of deflection. 

 

It is obvious that the hydroelastic responses are highly affected by the number of hinge connections used. In 

general, the bending moment decreases in the floating plate structures as the number of hinge connections 

increases. Each plate partitioned by the hinge connections has the maximum moment around its center. It is 

important to note that the maximum bending moment can be larger for floating plates with more hinge 

connections. For example, the maximum bending moment of the floating plate structure with one hinge 

connection ( 3
max 1063.4 −×=M ) is larger than that of the floating plate without any hinge connections 

( 3
max 1093.3 −×=M ) as shown in Figure 3.10(a). That is, the use of hinge connections is not always beneficial 

in reducing the maximum bending moment. As the number of hinge connections increases, the deflections in the 

floating plates increase in general (see Figure 3.10(b)). The deflections have peaks at hinge connections. 

 

Then, the hydroelastic analysis of the floating plate structures ( 0.1=rL ) with 2-directional multiple hinge 

connections under an incident regular wave ( °= 45θ ) is perform, see Figure 3.8(b). The four configurations of 

2-directional hinge connections are considered: no hinge, 11×  hinges, 22×  hinges and 33×  hinges. In the 

numerical example, the floating plate models are discretized by 6060×  mesh. 

 

Figure 3.11 shows the RAOs of deflection of the floating plates. In Figure 3.12, the RAOs of the dimensionless 

bending moment and deflection are plotted along the three longitudinal lines ( 0.0/2 =Bx , 5.0  and 0.1 ). The 

basic tendency of RAOs is similar to the results of the floating plates with 1-directional multiple hinge 

connections. As expected, the larger response is obtained along the starboard side ( 0.1/2 =Bx ) rather than 

along the centerline and port side due to the effect of wave direction. 
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Figure 3.11. RAOs of deflection of the floating plate structures with 2-directional multiple hinge connections 

under an oblique wave: (a) no hinge, (b) 1 hinge, (c) 2 hinges, and (d) 3 hinges. 
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Figure 3.12. Hydroelastic responses along the longitudinal (a) starboard side, (b) centerline, and (c) port side. 
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3.3 Effect of Multiple Hinge Connections 

 

To investigate the effect of multiple hinge connections, numerical experiments are conducted for the floating 

plate structures with 1-directional multiple hinge connections under several structural and wave conditions. The 

maximum value of hydroelastic responses are numerically calculated in the floating plate structures with an 

increasing number of hinge connections. 

 

In these numerical analyses, zero to three hinge connections are considered in the floating plate structures 

according to three dimensionless bending stiffnesses ( 41004.3 −×=S , 51004.3 −× , and 61004.3 −× ) and two 

aspect ratios ( 0.1=rL  and 0.5 ). Note that the range of dimensionless bending stiffness is chosen by referring 

to the previous experimental and numerical studies. The hinge connections are uniformly positioned in the 

floating plates as shown in Figure 3.13. The structures are subjected to an incident wave with four angles 

( °= 0θ , °30 , °45 , and °60 ) and seven different wavelengths ( 2.0=α , 4.0 , 6.0 , 8.0 , 0.1 , 2.1 , and 

4.1 ). The water depth is assumed to be infinite. 

 

 

Figure 3.13. Floating plate problems with 1-directional multiple hinge connections: (a) no hinge, (b) 1 hinge, (c) 

2 hinges, (d) 3 hinges 
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The floating plates are modeled by the plate and boundary elements with 6060×  mesh for 1/ =BL  and with 

1260×  mesh for 5/ =BL . In order to choose appropriate meshes, the convergence study for the maximum 

hydroelastic responses were carried out for the smallest wavelength ratio considered ( 2.0=α ). The errors in the 

maximum hydroelastic responses for the meshes chosen are less than 1% compared to well-converged solutions. 

 

Note that, although the hydroelastic responses were calculated for many different cases considering various 

bending stiffnesses, aspect ratios, wave directions and the configurations of the hinge connections, here the 

results of some selected cases only presented. 

 

3.3.1 Effects on the Maximum Bending Moment 

 

The maximum bending moment is very important in the cross-sectional design of VLFSs. To investigate the 

effect of the number of hinge connections on the maximum bending moment, the RAO of the dimensionless 

maximum bending moment maxM (the maximum value of 
22xxM  in the entire floating plate structure) is used. 

 

Figure 3.14 ~ 3.17 show maxM  for the floating plate structures with two different aspect ratios ( 0.1=rL  and 

0.5 ) depending on dimensionless bending stiffness, wavelength, and wave angle. In general, as the number of 

hinge connections increases, the maximum bending moment decreases. Comparing Figure 3.14(a) with Figure 

3.14(c), it is found that the reductions in the maximum bending moment are larger for stiffer floating plates. 

Figure 3.14(c) shows that the use of hinge connections in very flexible floating structures is not very effective 

in reducing the maximum bending moment. 

 

It is important to note that the maximum bending moment could increase even if more hinge connections are 

used. This unexpected phenomenon appears when the wavelength is relatively short. For example, for the case 

0.1=rL  in Figure. 3.14(a), the maximum bending moment of the floating plate structure with 1 hinge 

connection is larger than that without any hinge connection when 45.0=α . A similar phenomenon is shown in 

Figures. 3.14(b) and (c), but the range of the wavelength where the phenomenon appears depends on the aspect 

ratio and bending stiffness of the floating plate structures. 
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Figure 3.14. RAOs of the dimensionless maximum bending moment maxM  of floating plate structures with 

two different aspect ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under 

an incident regular wave ( °= 0θ ) 
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Figure 3.15. RAOs of the dimensionless maximum bending moment maxM  of floating plate structures with 

two different aspect ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under 
an incident regular wave ( °= 30θ ). 
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Figure 3.16. RAOs of the dimensionless maximum bending moment maxM  of floating plate structures with 

two different aspect ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under 
an incident regular wave ( °= 45θ ). 
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Figure 3.17. RAOs of the dimensionless maximum bending moment maxM  of floating plate structures with 

two different aspect ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under 
an incident regular wave ( °= 60θ ). 
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Figure 3.18 ~ 3.21 show the ratio of the maximum bending moments defined by 

 
hingenoM M

MR
max

max= , (3.14) 

where hingenoM max  is the maximum bending moment for the no hinge case. In general, as the number of hinge 

connections increases, the additional reduction in the maximum bending moment becomes smaller for stiffer 

plates. The reduction effect is larger for relatively longer waves. It should be noted that the reduction in the 

maximum bending moment by hinge connections can result in smaller size cross-sections and less structural 

materials in used VLFSs, that is, it can reduce construction cost. However, considering the additional 

implementation cost for hinge connections, it can be expected that there is an optimal number of hinge 

connections that can minimize the construction cost. Considering the two aspect ratios studied here, we 

conclude that the use of multiple hinge connections is more effective for floating structures with a larger aspect 

ratio. 
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Figure 3.18. Bending moment ratio MR  of floating plate structures with two different aspect ratios: 0.1=rL  

and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 0θ ). 
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Figure 3.19. Bending moment ratio MR  of floating plate structures with two different aspect ratios: 0.1=rL  

and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 30θ ). 
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Figure 3.20. Bending moment ratio MR  of floating plate structures with two different aspect ratios: 0.1=rL  

and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 45θ ). 
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Figure 3.21. Bending moment ratio MR  of floating plate structures with two different aspect ratios: 0.1=rL  

and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 60θ ). 
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3.3.2 Effects on the Maximum Deflection 

 

In this section, we study how the maximum deflection is influenced by the number of hinge connections used. 

Figure 3.22 ~ 3.25 present the RAOs of the maximum deflection max3u  for the floating plates with two 

different aspect ratios ( 0.1=rL  and 0.5 ) depending on dimensionless bending stiffness, wavelength and wave 

angle. Figure 3.26 ~ 3.29 show the ratio of the maximum deflection defined by 

 
hingenoM

u

u
R

max3

max3= , (3.15) 

where hingenou
max3  is the maximum deflection for the no hinge case. 

 

Following figures show the effect of the number of hinge connections on the maximum deflection of floating 

plate structures. In particular, the effect is very large in the range of long wave. Recalling the investigation on 

the reduction of the maximum bending moment, it is concluded that the use of multiple hinge connections is 

very effective for larger wavelengths, because, in this case, the maximum bending moment decreases 

significantly and the maximum deflection has little effect. When the floating structure is very flexible, the effect 

of multiple hinge connections on the maximum deflection is very small.  
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Figure 3.22. RAOs of the maximum deflection max3u  of floating plate structures with two different aspect 

ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular 

wave ( °= 0θ ). 
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Figure 3.23. RAOs of the maximum deflection max3u  of floating plate structures with two different aspect 

ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular 
wave ( °= 30θ ). 
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Figure 3.24. RAOs of the maximum deflection max3u  of floating plate structures with two different aspect 

ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular 
wave ( °= 45θ ). 
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Figure 3.25. RAOs of the maximum deflection max3u  of floating plate structures with two different aspect 

ratios: 0.1=rL  and 0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular 
wave ( °= 60θ ). 
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Figure 3.26. Deflection ratio 
3uR  of floating plate structures with two different aspect ratios: 0.1=rL  and 

0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 0θ ). 
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Figure 3.27. Deflection ratio 
3uR  of floating plate structures with two different aspect ratios: 0.1=rL  and 

0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 30θ ). 
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Figure 3.28. Deflection ratio 
3uR  of floating plate structures with two different aspect ratios: 0.1=rL  and 

0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 45θ ). 
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Figure 3.29. Deflection ratio 
3uR  of floating plate structures with two different aspect ratios: 0.1=rL  and 

0.5 : (a) 41004.3 −×=S , (b) 51004.3 −× , and (c) 61004.3 −×  under an incident regular wave ( °= 60θ ). 
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3.4 Closure 

 

In this chapter, a numerical procedure is proposed to effectively model hinge connections based on the direct 

coupling method for hydroelastic analysis of floating plate problems. In the formulation, the structural mass and 

stiffness and fluid-structure interaction terms are completely condensed. The advantage of the procedure exists 

in the capability to easily model multiple hinge connections arbitrarily positioned. The validity of the numerical 

procedure was confirmed through comparisons with experimental and previous numerical results. The modeling 

capability was demonstrated through floating plate problems with 1- and 2-directional multiple hinge 

connections. 

 

Then, the numerical analyses are performed to investigate the effect of 1-directional multiple hinge connections 

on the maximum bending moment and deflection in floating plate structures according to aspect ratio, bending 

stiffness, wavelength, and wave angle. Through this analyses, the following observations have been made: 

 

 In general, as the number of hinge connections increases, the maximum bending moment in the floating 

plate structure decreases. However, the moment could increase for the range of short wavelength even if 

more hinge connections are used. The hinge connection can more effectively reduce the maximum bending 

moment for the stiffer floating plate structure with a larger aspect ratio. Increasing the number of hinge 

connections, the additional reduction in the maximum bending moment decreases when the plate structures 

are stiffer. 

 

 In general, the change in the maximum deflection due to hinge connections is large in the range of short 

wave. It becomes smaller as the wavelength becomes larger. 

 

 When the floating plate structure is very flexible, the effect of the multiple hinge connections on the 

maximum bending moment and deflection is small. Therefore, the use of hinge connections is not effective 

in this case. 

 

 When a floating plate structure is stiff, has a large aspect ratio and is subjected to long waves, the hinge 

connections can be more effectively used with a large reduction in the maximum bending moment and a 

small change in the maximum deflection. 

 

Finally, the investigation offers valuable information on how to select the number of hinge connections to satisfy 

structural design requirements. 
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Chapter 4. A Numerical Method for Hydro-elastoplastic Analysis           

of Floating Plate Structures 

 

This chapter covers issues for plastic structural behaviors in the hydrodynamic analysis of floating plate 

structures. The plastic behavior of structural materials is nonlinear and thus the incremental solution procedure 

needs to be employed. In addition, since interactions between the structures with material nonlinearity and 

surrounding fluids are a transient phenomenon, a time-domain analysis is necessary.  

 

For the hydro-elastoplastic analysis of floating plate structures subjected to external loads, time-domain 

incremental coupled equations are formulated, in which elastoplastic material behavior is considered. In the 

solution procedure, the floating plate structure is discretized using the finite element method, and the 

surrounding fluid is modeled using the boundary element method. Through comparisons with the numerical 

results of LS-DYNA, the capability of the proposed numerical procedure is investigated.  

 

4.1 Mathematical Formulations 

 
Let consider a floating plate structure on water surface under a constant water depth as shown in Figure 4.1. 

The basic assumptions used are that the plate structure has homogeneous, isotropic and elastoplastic material, 

the fluid flow is incompressible, inviscid, and irrotational, and the motions of the plate structure and the 

amplitudes of incident waves are small enough to use linear theory.  

 

 

Figure 4.1. Problem description for the hydro-elastoplastic analysis of a floating plate structure 
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4.1.1 Incremental Equilibrium Equations of Floating Plate Structures 
 

The structural responses associated with material nonlinearity are generally calculated by using incremental 

equilibrium equations [67], in which, assuming that the responses in the configuration at time t  are given, the 

principle of virtual work in the configuration at time tt ∆+  is considered. 

 

 

The equilibrium equations of the floating plate at time tt ∆+  are 
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where LS
if  is component of the surface load. 

 

 

The principle of virtual work for the floating plate at time tt ∆+  can be written as 
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Assuming that the motion of the floating plate structure is small, and only the material nonlinearity is considered, 

the integral term on the left side of Equation (4.2) can be transformed and linearized as [67] 
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in which iu∆  are components of the increments in the displacements from time t  to tt ∆+ , and EP
ijklC  are 

components of the elastoplastic stress-strain tensor. 
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Then, by substituting Equation (2.9) and (4.4) into the terms in Equation (4.2) and referring to the configuration 

of the static equilibrium at time 0=t , the following linearized form is obtained: 

 ∫ ∫∫ ∆−+∆+
S BS V S iiwijkl
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ijklV iis dSunugdVeetCdVuttu δρδδρ 300);();( xx  
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S iiwS iidS ii
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∫−
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(4.6) 

 

Note that, in the derivation of Equation (4.6), the following equilibrium condition for the static equilibrium state 

is considered as: 

 ∫∫∫∫ =−+−
SBSL

L

V ijijS iiwV isS ii
S

i dVedSungxdVugdSunf 0)0;()0;( 3 δσδρδρδ xx . (4.7) 

 

In order to formulate the material nonlinearity, the tensors of stress ijσ  and the elastoplastic stress-strain EP
ijklC  

in Equation (4.6) are evaluated according to the von Mises plasticity model, which is generally used for 

describing metal plasticity, with the associated flow rule and isotropic hardening. 

 

4.1.2 The Mathematical Theory of Plasticity 

 

In general, the theory of plasticity deals with structures that, after being subjected to loads, may sustain 

permanent (or plastic) deformations when completely unloaded, and can be divided into two categories: 

micromechanical and macromechanical theories, see References [82, 83]. In the former, the mechanism of the 

plastic deformations is explained on the microscopic scale based on the conditions in crystals and grains leading 

to plastic flow. The latter describes plastic deformations in the aspect of phenomenological behavior of 

materials on the marcoscopic scale and establishes relationship between the mechanical quantities (e.g. stresses 

and strains) based on general principle of mechanics and experimental observations. 

 

The plasticity model can be formulated based on the properties, which are phenomenologically identified in the 

uniaxial experiments of a metal. The properties are enumerated below: 

 

1. A yield function or yield surface, which gives the yield condition that defines the stress state when 

plastic flow occurs  

 

2. A plastic flow rule, which describes the relationship between plastic strain and stresses when yielding 

occurs 
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3. A hardening rule, which specifies how the yield surface changes with plastic deformation. 

 

Von Mises plastic model with isotropic hardening, which is considered as the plastic model of floating plate 

structures, is described in detail with the above properties as follows:  

 

1. Yield condition – von Mises criterion, which is appropriate to describe plastic yielding in metals and 

proposed by von Mises (1913), can defined as 

 
0

3
1)( 2

22 =−= yy JJf σ , (4.8) 

where yf  is von Mises yield function, 2J  is the second deviatoric stress invariant, and yσ  is the 

yield stress or 

 
0

3
1

2
1)( 2 =−= yijijijy SSSf σ , (4.9) 

where ijS  is the deviatoric stress tensor. The von Mises criterion means yielding begins when the von 

Mises effective stress ( 23J ) reaches yσ , and implies that the yielding is independent of hydrostatic 

stresses. 

 

2. Plastic flow rule – Prandtl-Reuss equations, which use the von Mises yield function to obtain the 

increments of plastic strains when yielding, are given by 
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dde χ
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χ =
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= , (4.10) 

where χd  is a positive scalar to be determined. The equations mean that the increments of plastic 

strains are in the direction of and proportional to the deviatoric stress. 

 

3. Hardening rule – isotropic hardening rule, which corresponds to the increase in size of the yield 

surface, can be defined by   

 )( P
yy eσσ = , (4.11) 

where  

 
∫=
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ij

P
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P dedee
0 3
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is the accumulated effective plastic strain. 

 

Figure 4.2 shows a geometric interpretation of the von Mises plastic model with isotropic hardening. The yield 

condition, defined by Equation (4.9), is represented by the surface of a circular cylinder with the radius 

y
PR σ3/2=  and the hydrostatic axis 321 σσσ ==  in the principal stress space, and by a circle with the 
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radius in the deviatoric plane (π  - plane). If the stress state change from t  to tt ∆+ , the increments of plastic 

strains are in direction of the current deviatoric stress )( ttSij ∆+  in the deviatoric plane. 

 

 

Figure 4.2. A geometric interpretation of the von Mises plastic model. 

 

4.1.3 Hydrodynamic Pressures in the Time Domain 

 

The hydrodynamic analysis of floating plate structures in the time domain has been less well-studied than that in 

the frequency domain. However, several investigators have used the connection between the time-domain and 

frequency-domain solution for time-dependent problems. Two approaches have been mainly applied for the 

time-domain analysis. One is based on a direct time integration and the other is based on a memory effect kernel 

and is known as the Cummins method [60].  

 

As a direct time integration approach, time-domain analysis on hydroelastic responses of a floating structure in 

waves was performed by Liu and Sakai [56] using time-stepping computation with a predictor-corrector scheme 

of the boundary element description for the fluid motions and the finite element model for the structure. Kyoung 

et al. [57] developed a finite element method with fully nonlinear free-surface conditions considering horizontal 

motion effect of VLFS in time domain. Qiu [58] employed finite element method to discretize both fluid and 

structure for analysis the transient hydroelastic responses of an elastic floating beam subjected to dynamic loads. 
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Cheng et al. [59] proposed a direct time domain modal expansion method that uses a superposition of modal 

functions with time-dependent unknown modal amplitudes and solves hydrodynamic diffraction and radiation 

problems by applying the time-dependent free surface Green’s functions.  

 

Cummins derives time-dependent equations of rigid body motions for floating bodies, which involve so-called 

“impulse response functions (IRF),” such as memory functions and added mass at infinite frequency [60]. The 

Cummins method is by far the more popular because there are some disadvantages in the direct time integration 

approaches, such as satisfaction of the radiation condition on the outside boundary, necessity of discretizing the 

entire structure and fluid domain and the relative high computational cost and time. Moreover, the IRF can be 

related to the corresponding terms in the frequency-domain analysis by Fourier transformation. Kashiwagi [84] 

developed a numerical method for the time-dependent elastic motion of a plate structure by utilizing a 

superposition of mathematical modal functions for impulsive motions. Lee and Choi [85] proposed a hybrid 

method to analyze the transient hydroelastic response of a plate structure by the Fourier inverse transform of 

harmonic equations, which formulated by boundary element method for fluid domain and FEM for plate domain. 

To formulate the time-dependent hydrodynamic pressures acting on floating plate structures in the incremental 

equilibrium equation (4.7), IRFs in Cummins method are constructed. 

 

The velocity potential );( txφ  at time t  governed by 

 02 =∇ φ  in FV  at 0=t , (4.13a) 
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with the initial conditions at 0=t  

 )();( 1 xx ft =φ  for 03 =x  on FS , (4.14a) 

 )();( 2 xx ft =φ  for 03 =x  on FS , (4.14b) 

and φ , φ , φ∇  and φ∇  are all uniformly bounded as ∞→R  [86, 87], where 1f  and 2f  are functions 

to represent the initial free surface. The initial conditions prescribe the initial values of the velocity potential on 

the free surface. 

 

 

The incremental displacement iu∆  of the floating plate structure can be represented as 
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 ⋅⋅⋅⋅⋅⋅++=≈∆ )()()()()()(),( 2211 xμxμxμxu tgtgtgt kk , (4.15) 

where kg  is the generalized coordinates and kμ  denotes the corresponding basis functions. 

 

Since the fluid motion is assumed to be linear, the velocity potential can be described as the convolution integral 

of the arbitrary time-dependent motions with the radiation ( Rφ ) and diffraction ( Dφ ) potentials corresponding to 

the impulsive velocity of the plate and impulsive wave elevation, respectively [6, 88] 

 ∫∫
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∞−

∞

∞−
−+−= ττητφτττφφ dtdgtt D
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R
k )();()();();( xxx  , (4.16) 

in which R
kφ  is the radiation potential for the impulsive velocity corresponding to Kμ , and η  is an incident 

wave elevation. 

 

From both computational and accuracy points of view, it is effective to use dominant dry modes of the plate for 

the basis functions Kμ . However, in elastoplastic analysis, this approach encounters major difficulty due to the 

dominant dry modes continuously varying due to the change of tangential stiffness during plastic deformation. 

In order to overcome such difficulty, a set of piecewise linear (hat) functions defined at nodes for the basis 

functions is employed. The piecewise linear function has unit value at a node and zero at other nodes (see 

Figure 4.3). The function can be constructed using standard 2D shape functions of finite elements sharing the 

node.  

 

 

Figure 4.3. Piecewise linear function at a node and 2D shape functions in finite elements. 

The radiation potential R
kφ  in Equation (4.16) can be decomposed as 
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R
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in which H  is the Heaviside function, and kψ  is the radiation potential at infinite frequency, satisfying the 

boundary value problem with following conditions: 

 02 =∇ kψ  in FV  at 0=t , (4.18a) 
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In addition, kϕ  in Equation (4.17) is the radiation potential representing the fluid motion subsequent to the 

impulsive velocity satisfying the initial-boundary value problem with the boundary and initial conditions:  

 02 =∇ kϕ  in FV  at 0=t , (4.19a) 
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with the initial conditions at 0=t  

 0);( =tk xϕ  for 03 =x  on FS . (4.20a) 

 0);( =tk xϕ  for 03 =x  on FS . (4.20b) 

 

The diffraction potential Dφ  in Equation (4.16) is the sum of the transient incident Iφ  and scattered Sφ  

potentials which satisfies the initial-boundary value problem with the conditions [6]. 

 02 =∇ Dφ  in FV  at 0=t , (4.21a) 
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with the initial conditions at 0=t  

 0);( =tD xφ  for 03 =x  on FS . (4.22a) 

 0);( =tD xφ  for 03 =x  on FS . (4.22b) 

 

Using the linearized Bernoulli equation, the hydrodynamic pressure dp  can be expressed as follows: 
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where kg  and kg  means the acceleration and velocity with respect to the basis functions Kμ . 

 

Then, by substituting the aforementioned equation into the hydrodynamic pressure dp  in Equation (4.6), the 

time-domain incremental coupled equations of motion at time tt ∆+  is finally obtained: 
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4.2 Numerical Procedure 
 

The formulation in Equation (4.24) can be transformed into matrix form using the finite element discretization 

as 
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in which U , U , U , and U∆  are the acceleration, velocity, displacement and incremental displacement 

vectors, respectively, and the submatrices and subvectors are defined as follows: 
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in which M  and K  are the structural mass and tangential stiffness matrices, respectively, 
LSR  is the 

surface load vector and F  is the internal force vector, and A , B , and D  denote the impulse response 

functions corresponding to the added mass at infinite frequency, the memory function and the diffraction 

impulse-function, respectively, and is the hydrostatic stiffness matrix. 

 

Figure 4.4 presents a numerical solution procedure developed for the present formulation, in which the 

following three important parts are involved 
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Figure 4.4. Numerical procedure for hydro-elastoplastic analysis: (a) evaluation of impulse response functions, 

(b) equilibrium iteration loop and (c) stress integration. 
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(a) Evaluation of the impulse response functions 

The impulse response functions are evaluated in the beginning of the procedure, where the piecewise linear 

function at each node is used for the body boundary condition of the radiation potential as 
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where R
kφ  indicates the radiation potential associated with the unit impulsive velocity at node k , and kh  is 

the piecewise linear function at node k . 

 

(b) Equilibrium iteration loop 

Within each time step, the following iterative procedure is carried out to solve the incremental coupled 

equations of motion: 
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where the superscript i  denotes the iteration number. 

 

After obtaining an incremental solution, the total displacement is updated as follows: 

 )()1()( )()( iii tttt UUU ∆+∆+=∆+ − , )()( )0( ttt UU =∆+ . (4.29) 

 

The update in the iteration is continued until the convergence within the preset energy tolerance ( Eε ) is 

achieved: 
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In addition, the full Newton-Raphson iterative scheme, the composite trapezoidal rule for the convolution 



- 74 - 

integral, and Newmark method for the time integrations [67] are employed and Equation (4.29) is transformed 

as  
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in which β  and γ  parameters in the Newmark method, which can be determined to obtain integration 

accuracy and stability. 

 

(c) Stress integration 

In equilibrium iterations, the element stress )1()( −∆+ ittσ  for the calculation of the nodal point force vector 

)1()( −∆+ ittF  and the elastoplastic stress-strain matrix )1()( −∆+ iEP ttC  to calculate the tangential stiffness 

matrix )1()( −∆+ ittK  are evaluated using the total strains )1()( −∆+ itte with known stress and strain at time t . 

 

In the following subsections, the numerical solution procedure to calculate the impulse response functions and 

to integrate stress are described in detail. 

 

4.2.1 Impulse Response Functions 
 

Using the Fourier transform, the impulse response functions are obtained from the following relations: 
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where MAS , CWS , and WR  are the added mass and radiated wave damping matrices and the wave excitation 

force vector at a frequency ω . The three frequency-dependent matrices are obtained adopting the direct 

coupling method for hydroelastic analysis of plate structures, see Section 2.2. Note that the Filon quadrature [89] 

is employed to perform the numerical integrations in Equation (4.33), in which higher frequency terms are 

neglected after convergence tests [90]. 

 

The added mass at infinite frequency )(∞A  can be computed by solving the boundary value problem for the 

velocity potential kψ . The boundary integral equations for the infinite depth case are given by 
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For the boundary element approximations, Equation (4.34) is multiplied by a test function δψ , and integrated 

over the wet surface BS . Then, the following equation are obtained: 
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If kψ  is calculated by using the boundary element method, and then substituted into the Equation (4.26b), the 

added mass at infinite frequency )(∞A  can be computed. 

 

4.2.2 Stress Integration 
 

For a given current strain state, we update the stress, plastic strain and other internal variables related to the 

plastic behavior by adopting the implicit return mapping algorithm [82, 83, 91]. In this procedure, the elastic 

trial stress state, which is obtained under the assumption of only elastic deformation having occurred in the time 

step, returns to the yield surface by solving a nonlinear equation derived from the plate state-projected von 

Mises model. The Newton-Raphson method is employed to solve the nonlinear equation. Then, the elastoplastic 

stress-strain tensor is consistent with the return mapping procedure. 
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In order to obtain the internal force vector and tangential stiffness matrix, the evaluations of the stress and the 

elastoplastic stress-strain tensors are performed at all integration points of the plate finite element. For better 

accuracy in hydro-elastoplastic analysis, higher order integrations are required, in particular, through thickness 

direction. 

 

4.3 Numerical Examples 
 

In this section, to investigate the capability of the proposed numerical procedure, numerical examples are solved 

and the solutions are compared with available experimental results and numerical results obtained with 

commercial software. In all the numerical examples, the water depth is assumed to be infinite, the density of 

water wρ  is 3/1000 mkg  and the acceleration of gravity g  is 2/8.9 sm . The convergence tolerance for the 

equilibrium iteration in each time step is assigned to 610−=Eε  in Equation (4.30). 

 

Since there are no available previous numerical and experimental results for the elastoplastic behavior of 

floating plate structures, the numerical results with those obtained using LS-DYNA 971 R7.1.1, a well-known 

commercial software useful for nonlinear dynamic problems, are compared. First, to validate the proposed 

numerical procedure and the modeling procedure of LS-DYNA for hydroelastic analysis in time domain, a 

hydroelastic experiment conducted by Endo and Yago [16] is considered. This experiment has been dealt with 

many times before (see e.g. Reference [84, 85]).  

 

As shown in Figure 4.5(a), a floating plate structure is subjected to an impact load induced by a weight of 196N 

dropped on a hit point. Table 4.1 presents the details of the floating plate structures used for the experiments. 

Figure 4.5(b) shows the impact load curve during the weight drop. 
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Table 4.1. Details of the floating plate model for the weight drop test. 

Parameter Value 

Length ( L ) m75.9  

Width ( B ) m95.1  

Thickness( H ) m0545.0  

Draft ( d ) m0163.0  

Water depth( h ) m9.1  

Bending stiffness per unit width ( BEI / ) Nm62.8985  

Dimensionless bending stiffness ( S ) 510029.2 −×  

 

 

Figure 4.5. Floating plate structure subjected to a weight drop impact: (a) problem description and (b) impact 

load curve. 
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The plate structure shown in Figure 4.6(a) is modeled by a 24 (in length) × 4 (in breadth) mesh of plate finite 

elements, and the same mesh is used for the fluid boundary elements on the interface boundary surface 

calculating frequency-dependent matrices. The time step size is chosen as 001.0=∆t  for a duration of 2.5s.  

 

 

Figure 4.6. Discretization and integration points of the floating plate structure: (a) finite and boundary element 

meshes and (b) integration points in an element. 

 

In LS-DYNA, shell elements ( 848× ) and 3D solid elements ( 7280480 ×× ) are used for modeling the plate 

structure and surrounding fluid, respectively, for which the multi-material arbitrary Lagrangian-Eulerian 

(MMALE) method is applied. The fluid - structure interaction is treated via a constraint formulation referred to 

as the “Constrained Lagrange in Solid,” and an explicit time integration is used. Figure 4.8 illustrates the 

numerical model used in LS-DYNA.  
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Figure 4.7. Numerical model of a plate structure floating on water in LS-DYNA. 

 

Figure 4.8 shows the deflections obtained using the present numerical procedure and LS-DYNA, and the results 

are compared with the measurements of the experiment at points Z1– Z9 indicated in Figure 4.5(a). The 

numerical results are in good agreement with the measurements. 
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Figure 4.8. The time histories of deflections at points Z1-Z9 in the hydroelastic problem 
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Then, the hydro-elastoplastic analysis of the floating plate structure is conducted. In order to obtain the 

reference solutions for the hydro-elastoplastic problem, an elastic-perfectly-plastic material of yield stress 
2/30 mkNy =σ  is considered. In the present numerical procedure, a 848×  mesh of plate finite elements is 

used. In each plate element, a 22×  Gauss integration is employed in the element plane (r-s plane) and a 5-

point Newton-Cotes integration is used in the thickness direction (t-direction), as shown in Figure 4.6(b). In 

LS-DYNA, the same numerical integration is used in the element plane, but the 5-point Lobatto integration is 

used in the thickness direction. Figure 4.9 illustrates the deflections calculated at points Z1–Z9 using the 

present numerical procedure and LS-DYNA. 
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Figure 4.9. The time histories of deflections at points Z1-Z9 in the hydro-elastoplastic problem. 
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Figure 4.10 depicts the distributions of the effective plastic strain at the top surface of the floating plate 

structure. The results of the present numerical procedure are in good agreement with the reference solutions 

obtained using LS-DYNA.  

 

 

Figure 4.10. Distributions of effective plastic strain at the top surface of the floating plate structure: for (a) the 

proposed numerical method and (b) LS-DYNA. 
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Table 4.2 lists the computation times required using a personal computer (Intel(R) core(TM) i7-2600 3.40GHz 

CPU, 16 GB RAM) for the present numerical procedure and a high performance computer (5.3TFLOPS, 248 

CPUs - Intel Xeon 2.60GHz, 2TB RAM) of Korea National Institute of Supercomputing and Networks for LS-

DYNA. The Massively Parallel Processing (MPP) with 16 CPUs is employed in LS-DYNA. The computational 

efficiency of the present numerical procedure is presented in Table 4.2. 

 

Table 4.2. Computational times for the hydro-elastoplastic problem in Figure 4.5. 

 Items [hr] Ratio [%] 

Present (performed in 

PC) 

Evaluation of impulse response 

functions 
252.1  685.43  

 
Performance of the time increment 

loop 
614.1  315.56  

 Total 866.2  000.100  

 

LS-DYNA (performed 

in a high performance 

computer) 

Element processing 581.2  056.90  

ALE Advection 86.11  817.413  

Other 934.0  589.32  

Total 375.15  462.536  
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4.4 Closure 
 

In this chapter, a nonlinear formulation for the hydro-elastoplastic analysis of floating plate structures is 

presented, in which the convolution integral was employed to couple elastoplastic deformation and water waves 

in the time domain. The present formulation can describe the interactions between fluids and structures with 

material nonlinearity. The fluid is discretized using the boundary element method, and the impulse response 

functions are obtained from the corresponding frequency-dependent metrics using the Fourier transformation. 

The plastic behavior of the floating plates is simulated using an implicit return mapping algorithm based on the 

finite element method. The capability of the proposed numerical procedure was investigated through 

comparisons with the numerical results of LS-DYNA.  
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Chapter 5. Performance of the Numerical Method for                 

Hydro-elastoplastic Analysis  
 

5.1 Hydrodynamic Problems for Floating Plate Structures in Two Dimensions 
 

Figure 5.1 illustrate a plate structure, which is assumed to be infinite in the 2x  direction, floating on water of 

constant finite depth h  subjected to external loads (impact and wave). To solve the problem, the time-domain 

incremental coupled equations (4.24) is discretized by using the 2-node Hermitian beam element based on the 

Euler-Bernoulli beam theory. On the other hand, the impulse response functions for hydrodynamic forces is 

obtained from the corresponding frequency-dependent metrics in the direct coupling method in two dimensions, 

in which the fluid is discretized by using 2-node boundary element. 

 

 

Figure 5.1. A floating plate structure in two dimensional fluid domain. 

 

The plastic behavior of the floating plate structures is simulated by using an implicit return mapping algorithm, 

which is summarized in Table 5.1. 
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Table 5.1. Implicit return mapping algorithm for the von Mises model with isotropic hardening 

1. Calculate elastic trial stress state. Given total strain tensor )( tteij ∆+  and state variables at time t . 
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Else then 0>∆ Pe , and next 

3. Solve the nonlinear equation nf  using iterative method - Return mapping 
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5. Calculate elastoplastic stress-strain tensor 
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In this section, several numerical examples for investigating the performance and capability of the proposed 

numerical procedure for hydro-elastoplastic analysis of a floating plate structure in two dimension. First, the 

previous numerical studies for the time-dependent motion of a floating elastic plate structure is considered. And 

then, second problem is the hydrodynamic responses of an elastoplastic beam subjected to two load cases: (I) an 

impact load and (II) an incident wave load. In all the numerical examples, convergence tolerance for the 

equilibrium iteration in each time step is assigned to 610−=Eε . 

 

5.1.1 Benchmark Problems for Transient Hydroelastic Responses 

 

A series of benchmark calculations for the time-dependent motion of a floating elastic plate structure released 

from rest is solved and compare the results with those obtained by Meylan and Sturova[ [92]. Table 5.2 presents 

a numerical model of the plate structure, which is considered by them. 

 

Table 5.2. Details of the floating plate model of benchmark problems for the time-dependent motion of a 

floating elastic plate structure released from rest 

Parameter Value 

Length ( L ) m1  

Width ( B ) m1  

Structural density ( sρ ) 3/25.12 mkg  

Dimensionless bending stiffness ( S ) 005.0  
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Two different initial condition and several water depth cases are considered. First, a symmetric displacement is 

given by 

 [ ])/)2/(2cos(1
2
1)0;(3 LLxu −+= πx , (5.1) 

and second, a non-symmetric displacement is given by 

 

[ ] LxL
Lx

LLxu
<<

<<







−−+=
2/

2/0
))2/1/)2/(2(2cos(1

2
1

0
)0;(3 πx . (5.2) 

 

There are the six different benchmark problems for the motion of floating plate structures as five water depth 

cases ( 02.0/ =Lh , 04.0 , 0.2 , 0.4 , and 0.8 ) with symmetric initial displacement and one water depth 

( 02.0/ =Lh ) non-symmetric initial displacement. Solutions of the proposed numerical procedure were in good 

agreement with the reference solutions as shown Figures 5.2 ~ 5.7. 
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Figure 5.2. Time history of deflections over the floating elastic plate structure with symmetric initial 

displacement for 02.0/ =Lh . 
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Figure 5.3. Time history of deflections over the floating elastic plate structure with symmetric initial 
displacement for 04.0/ =Lh . 
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Figure 5.4. Time history of deflections over the floating elastic plate structure with symmetric initial 
displacement for 2/ =Lh . 
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Figure 5.5. Time history of deflections over the floating elastic plate structure with symmetric initial 
displacement for 4/ =Lh . 
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Figure 5.6. Time history of deflections over the floating elastic plate structure with symmetric initial 
displacement for 8/ =Lh . 
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Figure 5.7. Time history of deflections over the floating elastic plate structure with non-symmetric initial 
displacement for 02.0/ =Lh . 
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Then, the hydro-elastoplastic analysis for the benchmark problems is performed. In order to obtain the reference 

solutions for the hydro-elastoplastic problem, the bilinear isotropic hardening model (yield stress kpay 10=σ  

and plastic hardening modulus EE P 1.0= ) is adopted. The deflections over the floating elastic plate structure 

calculated at 0.5 sec intervals by using hydroelastic and hydro-elastoplastic analyses are depicted in following 

Figures 5.8 ~ 5.13. 
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Figure 5.8. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial 
displacement for 02.0/ =Lh . 



- 98 - 

 
Figure 5.9. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial 
displacement for 04.0/ =Lh . 
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Figure 5.10. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial 
displacement for 2/ =Lh . 



- 100 - 

 
Figure 5.11. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial 
displacement for 4/ =Lh . 
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Figure 5.12. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial 
displacement for 8/ =Lh . 
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Figure 5.13. Time histories of deflections over the floating elastoplastic plate structure with non-symmetric 
initial displacement for 02.0/ =Lh . 
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5.1.2 Floating Plate Model for the Weight Drop Test 

 

Let us consider hydro-elastoplastic responses of the experimental model used by Endo and Yago [16]. Table 4.1 

present details of the plate model. Here, an elastic-perfectly-plastic material ( GpaE 6661.0= , and 

Mpay 1.0=σ ) is employed. Hydroelastic and hydro-elastoplastic analysis of the floating plate structure 

subjected to an impact load, which is induced by a weight of N196  and dropped on a hit point in Figure 5.14. 

 

 

Figure 5.14. Floating plate structure subjected to a weight drop impact. 

 

Figure 5.15 and 5.16 show the deflections and the distributions of the effective plastic strain over the floating 

elastic plate structure at 0.5 sec, respectively.  
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Figure 5.15. Time histories of deflections over the floating elastoplastic plate structure subjected to a weight 
drop impact. 
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Figure 5.16. Distributions of effective plastic strain over the floating elastoplastic plate structure subjected to a 
weight drop impact. 
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5.2 Hydrodynamic Problems for Floating Plate Structures in Three Dimensions 
 

This section present the hydro-elastoplastic responses of floating plate structures subjected to external loads as 

shown in Figure 4.1. In the discretized coupled equation (4.25), the MITC4 plate and a 4-node quadrilateral 

boundary elements are employed. To simulate the elastoplastic behavior of the floating plate structures, the 

implicit return mapping algorithm in Table 5.1 is adopted, in which a nonlinear equation nf  derived from the 

plate state-projected von Mises model [83] is solved: 
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where ν  is Poisson’s ratio and sG  is shear modulus.  

 

Figure 5.17 gives a double plate model for numerical examples. The dimensions and material of the model are 

based on the phase - I Megafloat model in the Reference [11, 15]. The details are listed in Table 5.3. The 

following two load cases are considered: 

 Load Case I: An impact load is applied. 

 Load Case II: Dead weight and an incident wave-induced loads are applied together.  

 

 

 

Figure 5.17. Description of the floating double plate structure with a rectangular cross-section. 
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Table 5.3. Details of the double plate model. 

Parameter Value 

Length ( L ) m300  

Width ( B ) m60  

Thickness ( H ) m3  

Structural density ( sρ ) 3/7800 mkg  

Young’s modulus ( E ) Gpa206  

Yield stress ( yσ ) Mpa238  

Dimensionless bending stiffness ( S ) 510089.2 −×  

 

The double plate structure is discretized using a 848× mesh of plate finite elements. The upper and lower 

plates and the empty space between both plates are modeled by employing 3 layers in the thickness direction of 

plate finite elements. The 5-point Newton-Cotes integration is used only for the upper and lower layers in the 

thickness direction as shown in Figure 5.18. Note that no numerical integration is performed for the middle layer 

of the empty space. The bilinear isotropic hardening model (plastic hardening modulus EE P 01.0= ) is used. 

 

 

Figure 5.18. Newton-cotes integration points in plate cross-sections. 
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5.2.1 Impact Load Cases 
 

An impact load with the history curve in Figure 5.19 is applied at point Z2, which refers to a load time function 

for the crash of a Phantom RF-4E (see Reference [93]).  

 

 

Figure 5.19. Description of hydrodynamic problems of the floating double plate structure subject to impact 
loads: (a) at a hit point with (b) a load curve. 

 

Figure 5.20 shows the deflections at points calculated by using the hydroelastic and hydro-elastoplastic analyses 

with a time step size 001.0=∆t  of for a duration of 3s. In the results of both analyses, a large difference in 

deflection at loading point Z2 appears.  
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Figure 5.20. Time histories of deflections at points Z1-Z9 for an impact loading at point Z2. 



- 110 - 

Figure 5.21 depicts the distributions of the effective plastic strain at the top surface of the upper plate at sec 

intervals. The yield region occurs near the loading point. It is observed that the structural wave is propagated in 

the longitudinal direction after the impact loading. 

 

 

Figure 5.21. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-

elastoplastic problem of an impact loading at point Z2. 
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5.2.2 Dead Weight and an Incident Wave-induced Loads Cases 

 

To solve the hydro-elastoplastic problems of the floating double plate structures subjected to the external loads 

as shown in Figure 5.22(a), the hydrostatic responses to the dead weight loads are firstly evaluated though the 

following equation: 

 ∫∫ ∆+−
BS S iiwV ijij

EP
ijkl dSungudVeeC δττρδ );(300 x  

∫∫∫ −−∆+=
SSL

L

V ijijV isS ii
S

i dVedVugdSunf δτσδρδττ );();( xx , 
(5.4) 

where τ  denotes only the intensity level of dead loads. Subsequently, the hydrodynamic responses with a time 

step size of 02.0=∆t  for a duration of 60s are calculated through hydroelastic and hydro-elastoplastic 

analyses, in which the static equilibrium state in Equation (5.4) and additional inertia forces applied by the dead 

weight loads are included. 
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Figure 5.22. Hydrodynamic problems for the floating double plate structure subject to dead weight and incident 
wave–induced loads: (a) problem description and (b) distribution patterns of dead weight loads. 
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Figure 5.23 ~ 5.25 illustrate the deflections at points Z1–Z9 depending on the distribution patterns, in which an 

incident regular wave has 8.0=α  and 8.0=A ). And he distributions of effective plastic strain at the top 

surface of the upper plate at 5 sec intervals are depicted in Figure 5.26 ~ 5.28. As passing the incident wave to 

the plate, the effective plastic strain near the place of dead loading (Z5) increases in the early stage. A yield line 

is observed along the middle of the plate structure. Figure 5.29 ~ 5.30 show the deflections at points Z1–Z9 

according to wavelengths (i.e. 6.0=α  and 8.0 ), in which the hydrodynamic problems of floating plate 

structures subjected to dead weight loads with distribution pattern I. It is important to note that the effect of 

plasticity on the hydrodynamic responses depends on the distribution of dead weight loads as well as amplitude 

and length of incident waves. 

 



- 114 - 

 

Figure 5.23. Time histories of deflections of floating plate structures subjected to dead weight load with 
distribution pattern I and an incident regular wave ( 8.0=α  and mA 8.0= ) at points Z1-Z9. 
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Figure 5.24. Time histories of deflections of floating plate structures subjected to dead weight load with 
distribution pattern II and an incident regular wave ( 8.0=α  and mA 8.0= ) at points Z1-Z9. 
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Figure 5.25. Time histories of deflections of floating plate structures subjected to dead weight load with 
distribution pattern III and an incident regular wave ( 8.0=α  and mA 8.0= ) at points Z1-Z9. 
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Figure 5.26. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-
elastoplastic problem for floating plate structures subjected to dead weight load with distribution pattern I and 
an incident regular wave ( 8.0=α  and mA 8.0= ). 
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Figure 5.27. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-
elastoplastic problem for floating plate structures subjected to dead weight load with distribution pattern II and 
an incident regular wave ( 8.0=α  and mA 8.0= ). 
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Figure 5.28. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-
elastoplastic problem for floating plate structures subjected to dead weight load with distribution pattern III and 
an incident regular wave ( 8.0=α  and mA 8.0= ). 
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Figure 5.29. Time histories of deflections of floating plate structures subjected to dead weight load with 
distribution pattern I and an incident regular wave ( 6.0=α  and mA 8.0= ) at points Z1-Z9. 
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Figure 5.30. Time histories of deflections of floating plate structures subjected to dead weight load with 
distribution pattern I and an incident regular wave ( 0.1=α  and mA 8.0= ) at points Z1-Z9. 
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5.3 Closure 
 

This chapter presents hydroelastic and hydro-elastoplastic responses of plate structures floating on the surface of 

water in two and three dimensions. First, a series of benchmark problems for the time-dependent motion of a 

floating elastic plate structure released from rest and weight drop tests for transient elastic responses of a 

pontoon type VLFS are considered. And then, hydrodynamic problems of a floating double plate structure 

subjected to two load cases (i.e. impact load or dead weight and an incident wave-induced loads) are solved.  
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Chapter 6. Conclusions 

 

In this thesis, significant efforts were paid for predicting hydrodynamic responses of floating plate structures in 

surface gravity waves. In particular, numerical procedures were developed to solve the problems of the 

interactions between floating plate structures and water wave in the frequency domain and in the time domain. It 

has been demonstrated that these procedures provide reasonable numerical solution by comparing to 

experimental and numerical results, and are effective in hydroelastic and hydro-elastoplastic analyses. 

 

First, hydroelastic analysis of floating plate structures interacting with surface regular waves was performed. A 

formulation for the analysis based on a direct coupling method was derived. The directly coupled equations of 

motion are discretized by the finite element method for plate structures and the boundary element method for 

fluid. Through comparisons with experimental results of a pontoon type VLFS, the validity of the proposed 

procedure was confirmed. 

 

Second, hydroelastic responses of floating plate structures with multiple hinge connections in regular waves are 

presented. To effectively model hinge connections on the above numerical procedure, a complete condensation 

method was derived, in which, the structural mass and stiffness and fluid-structure interaction terms 

corresponding to rotational DOFs are completely condensed. The proposed method has the advantage of the 

capability to easily model multiple hinge connections arbitrarily positioned. Through various numerical analyses, 

the modeling capability and the effects of multiple hinge connections was demonstrated.  

 

Third, a nonlinear formulation for the hydro-elastoplastic analysis of floating plate structure was proposed, in 

which the convolution integral was employed to couple elastoplastic deformation and linear surface gravity 

waves in the time domain. The present formulation can describe the interactions between structures with material 

nonlinearity and the surrounding fluid. An implicit return mapping algorithm was implemented to simulate the 

plastic behaviors of the floating plates according to von Mises plastic model. The fluid is discretized by the 

boundary element method, and the IRFs are constructed by using the corresponding frequency-dependent metrics 

in the direct coupling method.  

 

The capability of the proposed numerical procedure was investigated through comparisons with the numerical 

results of LS-DYNA for hydroelastic and hydro-elastoplastic problems. Further experimental studies are required 

for verification of the present numerical procedure and for comprehensive understanding of hydro-elastoplastic 

behaviors of floating plate structures. It also would be valuable to extend the proposed method for hydro-

elastoplastic analysis of three dimensional ships or offshore platforms. 

 

Finally, through hydrodynamic problems of floating plate structures subjected to external forces in two or three 

dimensions, the performance of the numerical method for hydro-elastoplastic analysis is demonstrated. For two 

dimensional problems, hydroelastic and hydro-elastoplastic responses for a series of benchmark calculations and 

weight drop tests are studied. Three dimensional hydrodynamic problems for a floating double plate structure 
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subjected to two load cases (i.e. impact load or dead weight and an incident wave-induced loads) are solved. The 

proposed numerical method for hydro-elastoplastic analysis is applicable to hydroelastic as well as hydro-

elastoplastic problems for floating beam or plate structures subjected to time-dependent external loads such as 

impact, incident regular and irregular waves, and so on.  
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Appendix A. The Free Surface Green’s Functions 

 

This Appendix briefly describes the free surface Green’s functions. The detailed explanations of these functions 

are given in Reference [2, 69, 87, 88]. They are a velocity potential generated by a source potential and is used 

to efficiently formulate the fluid by the boundary integral equation. 

 

A.1 Time-dependent Free Surface Green’s Functions 
 

The Green’s function ),;,( τtG ξx  satisfies the following conditions: 
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positive number [87, 88], and δ  is the Dirac’ delta function.. 

 
The time-dependent Green’s functions for finite and infinite depth are given by  
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respectively, where 0J  is the Bessel function of the first kind of order 0, and    2 2
1 1 2 2r x xξ ξ    . 
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A.2 Frequency-dependent Free Surface Green’s Functions 

 

The Green’s function ),( ξxG


 satisfies the following conditions: 
 { }tjexGtxG ωξτξ ),(~Re),;,( = , (A.4a) 
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The frequency-dependent Green’s functions for finite and infinite depth are given by (see, e.g., Reference [2, 

69]) 
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respectively, where z  means complex numbers, and L  is the contour of an integration indented above the 

pole 0c  in the complex plane as shown in Figure A.1. The pole 0c  is the positive real root of the equations:  
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(A.7) 

 

 

Figure A.1. Contour of integration in the Green's function. 

 

A.3 Free Surface Green’s Functions in two dimensional fluid 
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The time-dependent Green’s functions with strength 2π  are defined by  
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for the finite depth, and 
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for the infinite depth. 

 

The frequency-dependent Green’s functions with strength 2π  are defined by  
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for the finite depth, and 
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the infinite depth, where ic  is the positive pure imaginary roots of Equation (A.7). 
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