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Abstract

Hydro-elastoplastic analysis of floating plate structures subjected to time-dependent external loads is presented,
in which elastoplastic material behaviors are coupled with linear surface gravity waves. Time-domain
incremental coupled equations for the analysis are derived as formulating incremental equilibrium equations of
floating plate structure and impulse responses functions associated with hydrodynamic pressures in the time
domain. The present formulation can describe the interactions between fluids and structures with material
nonlinearity. Also, a time-domain incremental nonlinear solution procedure is proposed. In the solution
procedure, an implicit return mapping algorithm to simulate plastic behaviors of floating plate structures and a
direct coupling method to construct frequency-wave inddependent metrics, which can be converted to IRFs by
Fourier transformation, are employed. Through numerical examples of plate structures floating on the free

surface of water, the capability and the performance of the proposed solution procedure are demonstrated.

Keywords Hydro-elastoplastic analysis, Floating plate structures, Very large floating structure(VLFS), Impulse
response function, Nonlinear structural analysis, Finite element method, Boundary element method, Direct

coupling method.
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Chapter 1. Introduction

1.1 Research Background

For a long time, hydrodynamic analysis of floating structures, like ships and offshore structure, has been
conducted in order to investigate the structures’ safe and economic design [1-9]. One of the most important
issues in hydrodynamic analysis is how to deal with complicated interactions between floating structures and
any surrounding fluid. The interactions are associated with the motions of structures responding to wave-
induced forces and simultaneously the water waves generated due to the motions of the wetted surface of the
structures. The problems of coupled fluid and structural dynamics need to be solved. As a result, analytical,

experimental and numerical methods have been continuously developed and improved.

Most previous analysis methods are based on the assumption of rigid body motions and have been applied
successfully in the design of floating structures where these motions are dominant. However, as flexible motions
of floating structures are weighted more heavily in the hydrodynamic responses, this assumption becomes less
valid and hydroelasticity that is concerned with coupling effects between elastic deformation of structures and
fluid motion for the hydrodynamic analysis of the floating structures can be more crucial. The fundamental

theory of hydroelastic analysis was established for ship design in the1980s by Bishop and Price [5].

Recently, very large floating structures (VLFSs) have attracted people’s attentions for use as floating airports,
storage facilities for oil and natural gas, floating bridges, floating islands, and so on [9-55]. The types of
VLFSs may be divided into pontoon-type (e.g. Meg-floats in Japan) and semi-submersible-type (e.g. Mobile
offshore Base (MOB) in USA) with regard to their geometry [10]. In the design of VLFSs, due to their
hydrodynamic features as huge horizontal size compared to the wavelengths and relatively small bending

rigidity, hydroelastic analysis should be performed to accurately predict their responses in waves.

Many methods of hydroelastic analysis of pontoon-type VLFSs, which are mostly modeled as plate structure, in
the frequency domain or in the time domain have been proposed. Commonly adopted approach for the
hydroelastic analysis of floating plate structures in the frequency domain separates hydrodynamic analysis based
on the potential flow theory and dynamic response analysis of floating plate structures in terms of structural
modes [5, 10, 22, 30]. On the other hand, several researchers have developed a direct coupling method, in which
the structural and fluid equations are directly coupled with each other, and the coupled equations are solved
simultaneously [39-44]. Compared to the commonly adopted approach, the coupling method has simpler

solution procedure [42].

The hydroelastic analysis of floating plate structures in the time domain has been less well-studied than that in

the frequency domain. However, several investigators have used the connection between the time-domain and

frequency-domain solution for time-dependent hydroelastic problems. Two approaches have been mainly

applied for the time-domain analysis. One is based on a direct time integration, which is solving time-dependent
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structure and fluid equations by a direct integration [56-59], and the other is based on a memory effect kernel
and is known as the Cummins method [60]. Cummins derives time-dependent equations of rigid body motions
for floating bodies, which involve so-called “impulse response functions (IRF),” such as memory functions and
added mass at infinite frequency. The Cummins method is by far the more popular because there are some
disadvantages in the direct time integration approaches, such as necessity of discretizing the entire structure and

fluid domain and the relative high computational cost and time.

In large-scale bending structures with long spans like bridges, hinge connections have been very effectively
used to reduce the bending moment of cross-sections. To obtain economically more effective structural designs,
the same principle for VLFSs can be adopted. The hydroelastic analysis of floating plate structures with hinge
connections or interconnected floating structures with hinges or rotational springs have been studied [44-55].
Previous studies usually focused on both numerical procedures to model the hinge connections and the
hydroelastic responses of the floating plate structures with hinge connections. In addition, although the
maximum responses are very important in the design of VLFSs, the effect of the number of hinge connections
used on the maximum responses has not been studied well. It has also not been well known that the hydroelastic

responses could increase due to the use of hinge connections.

When severe external loads are applied, nonlinear behaviors of floating structures (e.g. yielding, buckling, and
fracturing) can occur. For safer and more economically effective designs, it is essential to accurately predict
hydrodynamic responses beyond elastic limit for considering such nonlinear behaviors. Despite this, little
related research for hydro-elastoplastic analysis, which is concerned with the interactions between elastoplastic

behaviors with water waves, has been conducted [12, 14, 61-66].

In order to evaluate plastic behaviors of floating plate structure in waves, commonly used approach is to
perform two step analysis: firstly, hydroelastic analysis is carried out for calculating wave loads, and then plastic
analysis using quasi-static methods is performed, in which waves loads are statically applied in a structural
model. That is, plastic behaviors of VLFS are obtained in quasi-static manner as applying the time history of
pressure distribution and inertia force previously calculated from hydroelastic analysis [12]. In this approach,
plastic behaviors are not considered when calculating wave loads. Hydro-elastoplasticity methods of a ship have
been proposed. In these methods, an approach is that hydroelastic analysis is combined with quasi-static
methods. ship’s responses and wave loads are calculated by hydroelastic analysis and bending stiffness is
determined by the quasi-static method and then modified in the hydroelastic equation [65]. Another approach is
that ship is modeled by two rigid body with a nonlinear rotation spring and hydrodynamic forces are evaluated
taking account of plastic deformations of the spring by a nonlinear strip theory [63, 64]. However, for more
accurate and effective nonlinear structural analysis of floating plate structures, it is necessary to develop directly

interactive approaches between elastoplastic responses and hydrodynamic forces in the time domain.



1.2 Research Purpose

The main objective of this thesis is to present hydro-elastoplastic analysis of floating plate structures subjected
to time-dependent external loads, in which elastoplastic material behaviors are coupled with linear surface
gravity waves. In order to calculate linear hydrodynamic forces induced by the waves interacting with the
surface of floating plate structures, Cummins method is employed as constructing IRFs from the corresponding
forces in the frequency domain by Fourier transformation. Thus, it is important to accurately and effectively

calculate hydrodynamic responses of floating plate structures subjected to incident regular waves.

For this purpose, a numerical procedure for hydroelastic analysis of floating plate structures based on a direct
coupling method is firstly proposed. The finite element method (FEM) and boundary element method (BEM)
are employed to discretize floating plates and surrounding fluids, respectively. The numerical results are in good
agreement with the previous experimental results by Yago and Endo [15], thereby confirming the validity of the

proposed hydroelastic analysis of floating plate structures

Furthermore, in order to solve the hydroelastic problems of floating plate structures with multiple hinge
connections, a complete condensation method is derived for modeling hinge connections, in which the rotational
degrees of freedom (DOFs) of the plate finite elements are released. The proposed formulation is
mathematically complete because structural mass and stiffness matrices and fluid-structure interaction matrix
are consistently condensed. The numerical analyses show the effect of the number of hinge connections used on
the maximum bending moment and deflection of the floating plate structures according to the aspect ratio,

bending stiffness and incident wavelength.

For hydro-elastoplastic analysis, time-domain incremental coupled equations are formulated. The present
formulation can describe the interactions between fluids and structures with material nonlinearity. Also, a time-
domain incremental nonlinear solution procedure is proposed, in which the floating plate structure is discretized
using the finite element method, and the surrounding fluid is modeled using the boundary element method. The
plastic behaviors of the floating plate structures are simulated using an implicit return mapping algorithm based
on von Mises plasticity model with isotropic hardening. For hydroelastic and hydro-elastoplastic problems, the
solutions of proposed procedure agree well with numerical results obtained with commercial software, LS-
DYNA.

Finally, to investigate the performance of the numerical method for hydro-elastoplastic analysis, hydrodynamic
problems of floating plate structures subjected to external forces in two or three dimensions are solved. For two
dimensional problems, a series of benchmark calculations for the time-dependent motion of a floating elastic
plate structure released from rest is considered and hydroelastic and hydro-elastoplastic responses are studied.
Also, hydrodynamic problems of the experimental model used by Endo and Yago [16] are solved. For three
dimensional problems, a floating double plate structure subjected to two load cases (i.e. impact load or dead

weight and an incident wave-induced loads) are considered.
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The proposed approach for hydro-elastoplastic analysis is applicable to hydroelastic as well as hydro-
elastoplastic problems for floating beam or plate structures subjected to external loads such as impact, incident
regular and irregular waves, and so on. Compared to LS-DYNA, it provides reasonable numerical solutions with
relatively low computational cost. In addition, it is expected to easily extend the proposed method for hydro-

elastoplastic analysis of three dimensional floating structures with other material nonlinearity model.
1.3 Dissertation Organization

This thesis consists of total 6 chapters as follows:

In Chapter 2, the mathematical formulations for hydroelastic analysis of floating plate structures interacting with
incident gravity waves are presented. Equations of motion for floating plate structures and fluid are derived from
principle of virtual work and the boundary integral equations, respectively. And then the directly coupled
equations of motion for the hydroelastic analysis are discretized by the boundary element method for fluid and
the finite element method for plate structures. Comparing to the previous experimental results, validation of the

proposed numerical method is demonstrated.

In Chapter 3, hydroelastic problems of floating plate structures with multiple hinge connections in incident
regular waves are considered. For modeling hinge connections, a complete condensation method is derived, in
which the rotational DOFs of the plate finite elements are released. The most important feature of the proposed
hinge model is its modeling capability, which is shown in numerical examples: floating plate problems with 1-
and 2-directional multiple hinge connections. Thus, it is able to easily deal with the hydroelastic responses of
floating plate structures with arbitrarily positioned multiple hinge connections. Through various numerical
analyses, effects of the number of hinge connections used on the maximum bending moment and deflection of

the floating plate structures are studied as considering aspect ratio, bending stiffness and incident wavelength.

In Chapter 4, the time-domain incremental coupled equations for hydro-elastoplastic analysis of floating plate
structures subjected to external loads are presented. Incremental equilibrium equations of floating plate structure
considering the three dimensional von Mises plasticity model with isotropic hardening are derived.
Hydrodynamic pressures in the time domain are obtained by employing IRFs in Cummins method. And then a
time-domain incremental nonlinear solution procedure is proposed. Through comparisons with the numerical

results of LS-DYNA, the capability of the proposed numerical procedure is investigated.

In Chapter 5, the performance and capability of the numerical method for hydro-elastoplastic analysis are
demonstrated. Hydrodynamic problems for floating plate structures in two and three dimensions are solved. The
impact, dead weight, and incident wave-induced loads are considered as external loads acting on floating plate

structures.

Chapter 6 present the conclusions of this thesis.



Chapter 2. Hydroelastic Analysis of Floating Plate Structures
Based on a Direct Coupling Method

In this chapter, a formulation for hydroelastic analysis of floating plate structures in regular waves by employing
a direct coupling method is presented. The finite element method is used to model floating plate structures. On
the other hand, the boundary element method is employed to model surrounding fluid. The modeling capability

of the proposed formulation is demonstrated through numerical examples.
2.1 Mathematical Formulations

The problem of a floating plate structure subjected to incident regular waves is considered, as shown in Figure
2.1. The floating plate structure is assumed to have homogeneous, isotropic and linear elastic material and the
fluid flow is incompressible, inviscid, and irrotational. The motions of the floating plate structure and the
amplitudes of incident regular waves are small enough to use the linear theory. In addition, the surface tension

effect is ignored and for simplicity, the atmospheric pressure is assumed to be zero.

The plate structure (LxBx H ) is floating on the free surface of calm water with draft d . A fixed Cartesian
coordinate system (x,,X,,X;) is placed on the free surface and the flat bottom seabed is at x, =—h. The
volume of the plate structure is Vy and of fluid is V.. The fluid domain consists of the free surface S, the
wet surface of the floating plate structure S;, the surface S_, which is a circular cylinder with a sufficiently
large radius R, and the seabed surface S;. An incident regular wave with small amplitude a and angular

frequency @ comes continuously from the positive x, axis with an angle 6.

To express the components of tensors and adopt the Einstein summation convention, subscripts i and j are

introduced, which vary from 1 to 3. For simplicity, the draft is assumed to be zero. Thus, the condition for the
static equilibrium at time t=0 is automatically satisfied, which are described below in detail. Then, the

components of the displacement vector u attime t are defined by
u; (x;t) = %, (t) — %, (0) , (2.1)
where x. are the components of the material point vector x.
The total pressure fields in the fluid are
p(x;t) =-p, 9% (t) at t=0, (2.2a)
POGt) = —p, 9%, (1) + Py (X;1) s (2.2b)

where p, isthe density of the fluid, g is the acceleration of gravity, and p, is the hydrodynamic pressure.



(@)

Incident wave

Floating plate structure

®

Figure 2.1. Problem description for floating plate structure subjected to an incident regular wave: (a) floating

plate structure and (b) fluid domain.
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The equilibrium equations of the floating plate structure at time t

00;; . .
K_psgé‘m_psui =0 In VS’ (233.)

]
o;n; =—pn; on Sg, (2.3b)

where o; are components of the Cauchy stress tensor, p, is the structural density, &,; is the Kronecker

delta, n. denotes the unit normal vector outward from the plate structure to the fluid. Also, overdots denote the

time derivative (i.e. () =%' ()= 5;(2)

).

2.1.1 Formulation of the Floating Plate Structure

Then, the principle of virtual work at time t can be stated as [67]

Ivs o;0e;dV = _Ivs PsgauLdV + ISB PuI%sN; U, dS — LB Py ou,dS _Ivs ploudv (2.4)
where
1{ ooy, 0d;
oy ==| —+—|, (2.5)
2{ ox; X

in which du, are components of the virtual displacement vector imposed on the configuration at time t, and
oe; are components of the virtual strain tensor corresponding to the virtual displacements. In the static
equilibrium at time t =0, in which the hydrodynamic pressure p, and the acceleration U, are equal to zero,

Equation (2.4) becomes

J.Vs ooy dV + J.Vs P9 dV — LB PuI%sniou;dS = 0. (2.6)

According to assumptions, which is that the motion of the floating plate structure is small, and the linear elastic

material is considered, the integral term on the left-hand side of Equation (2.4) can be written as
jvs i D)y = jvs(o)cuk,ek,&ijdv + jvs(o) o, (x;0)8,dV 2.7)
where

1( au, GU,}
& = —t+—L|, (2.8)
J 2[axj ox,

1
in which e; are components of the linear strain tensor, and C,, are components of the elastic stress-strain

relation tensor.



Also, the second integral term on the right-hand side of Equation (2.4) can be written as
PuXs ()N (1)U, dS = LB(O) Pu9%:(0)N; (x;0)0U;dS + LB(O) Pu9UsN; (X;,0)0U,dS (2.9)

S (t)

in which the change of wet surface is assumed to be negligible.

After substituting Equation (2.7) and (2.9) into the terms and applying the condition (2.6) for the static

equilibrium, Equation (2.4) becomes:

JVS psU;oudv +-[Vs Cin€a®;dV _LB Pu9U;N;AU;dS +ISB paMoudS =0. (2.10)

Invoking a harmonic response to the excitation of an incident regular wave with angular frequency o, the

steady state equation can be finally obtained as
- a)zj\/s psﬁiéﬁidv + jVs Cijklgklégijdv _JSB pwgasniéﬁids + JSB 5d nou,ds =0, (2.11)
where

u (x;t) = Re{l, (e |, e,(xt) = Re{&, (e }, p, (x;t) = Re{ P, (x)e’*}, j=+-1. (2.12)

2.1.2 Formulation of the Fluid

In the steady state, the velocity potential #(x;t) is governed by

H(x;t) = Re{q?(x)ej‘”‘}, (2.13a)
V2% =0 in V., (2.13b)
2—22%25 for x;,=0 on S, (2.13¢)
9 _0 on s, (2.13d)

OXq
\/E(aiR”kJ(g_;'):o on S, (R—-w), (2.13e)
9 o, on Sy, (2.131)

on

where V2 is the Laplace operator, k is the wave number, and ¢' is the velocity potential for the incident
wave. The condition (2.13c) is the combined free surface boundary condition linearized on x, =0 [68, 69], the

condition (2.13e) is the Sommerfeld radiation condition [68]. The body boundary condition (2.13f) means that
the normal velocities of plate structure and fluid on the wet surface should be the same. The conditions (2.13b)

and (2.13f) are approximated on the configuration of the static equilibrium at time t=0.



The incident velocity potential ¢' and dispersion relationship according to water depths are given in Table 2-1

[68, 69].

Table 2.1. Definitions of incident velocity potentials and dispersion relationships.

Cases Incident velocity potential ¢ Dispersion relationship
2
Finite depth JE cosh k(X + h) ejk (% cos 6+x, cos 0) k tanh kh _C()_ -0
@  coshkh g
i . al X3  JK (X, COS O+X, COS 2
Infinite depth J—gek s k(i cos0x cos0) k-2 _o
@ g

The Laplace equation and boundary conditions of the velocity potential ¢ in Equation (2.13) can be
transformed in a useful integral form, i.e., as the boundary integral equation by the Green’s theorem. The

Green’s second identity for the velocity potential 4 and the Green’s function, which is generated by a source

potential pulsated at position & with angular frequency @ and strength —4x , takes the following form:

B8 290) 5
[, V350960 -F (VG xRV, = [, [4»() s o O a)]ds (2.14)

where S. is closed surface bounding the fluid domain V., and the subscript x means the variable of

integration.

If the free surface Green’s function é, see Appendix A, is employed, the boundary integral equation for the

spatial position x, on the wet surface S, can be given by

4ﬂ5(x)+p.v.j55[g(g)“; a"’((gJG(x s, =axp' (9, (215

where puv. indicates the Cauchy principal value. The detailed procedure of formulation of the boundary

integral equation can be found in Reference [42].

For the boundary element approximations, Equation (2.15) is multiplied by a test function 55 , and integrated

over the wet surface S . Then, the following equation are obtained:

TN ST " ? a¢(3i)
4ﬂjSB¢(X)§¢dSX+ LB p.v.jss(mg)“; e Je(x £)dS,54dS, _4ﬂj $'(X)54dS, . (2.16)



2.1.3 Coupled Equations

To obtain coupled equations, the Bernoulli equation and the body boundary condition (2.13f) are applied to the
formulations for the floating plate structure (2.11) and fluid (2.16). Using the linearized Bernoulli equation at

the static equilibrium configuration, the hydrodynamic pressure p, can be represented as

Pe=—Jop,$ . (2.17)

Then, by substituting Equation (2.17) and (2.13f) with (2.11) and (2.16), respectively, the following coupled

equations are obtained:

- WZIVS pusdV + Ivs Cijk|€k|5€ijdv _.[sB £,,9Usn;60;,dS — jw...ss pwgnia’jids =0, (2.18)

and

arf, popds, + [ pvf ({5 %+ jooll,n, Jédsfaﬁfdsx = axf_§'spos, (2.19)

Alternatively, the coupled equations can be derived with respect to the total water pressure p and

displacement U, :

e .[vs pUdV + jvs Ci€udV — jse poLdS =0, (2.20)
and
~ [ G,0pds, -—— | papds, - o’ [ pu. PGds.ds, = j2[ ¢'spds 2.21)
0T pg e Y odzp,gtis s T T g v '

where p(x;t):Re{'ﬁ(x)ej“"}, and &p is a test function.

2.2 Numerical Procedure

In this section, the matrix formulation for the hydroelaistc problem of floating plate structures subjected to
incident waves. The coupled equations (2.20) and (2.21) are discretized by the finite and boundary element

methods and result in the following matrix form

-~w’Sy +S,  —-C, m_{o} 2.22)
_CZp _FM_FG ﬁ RI ’ .

inwhich 0 and p are the unknown displacement and pressure vectors, respectively, and the submatrices and
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subvectors are defined as follows

jVF pasidv = &S, 0, (2.233)

J|, CuaBa BV =S, 0, (2.23b)

J Palids =d0,"C,yp, (2.230)

%LB PopdS = 'R P, (2.23d)
ﬁf pv.[, PGS, dS, = P Fep . (2.23¢)
J%Lﬁ'éﬁds =0p'R, , (2.23f)

where S, and S, are the matrices for structural mass and stiffness, C,, is the symmetric matrix for the

fluid-structure interaction, in which the total water pressure p and structural displacement U are directly

coupled.

For the finite element model of Mindlin type plate structures, the 4-node MITC plate finite element (MITC4) is
employed, in which the MITC (Mixed Interpolation of Tensorial Components) method is applied to alleviate
undesired shear locking phenomenon [70-78]. For the boundary element model of fluid, a 4-node quadrilateral
boundary element is used, in which the isoparametric procedure is adopted for the geometry and pressure

interpolations on boundary surface.

By condensing out the total water pressure p in Equation (2.22), the condensed structural equation with added

mass, radiated wave damping, wave excitation force vector, and hydrostatic stiffness is obtained:

[~ @(Sy +Sua) + i@Scy +S¢ +Su fi=Ry, » (2.24)
where
1 1T
Syn =——xRe{C, (Fy +F5)"Cl =S, |, (2.25a)
w
1 AT
Sew =—xIm{C,, (F, +Fs)*Cl =S, |, (2.25b)
w
Ry =-C,(Fy +Fs) 'R, (2.25¢)
0,580 = LB P 9U;NUdS (2.25d)

in which S,,,, S.,, and S, are the matrices for added mass, radiated wave damping, and hydrostatic

stiffness, and R, is wave excitation force vector.
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2.3 Numerical Examples

In this section, to verify the formulation proposed, numerical solutions are compared with experimental results
conducted by Yago and Endo [15]. The details of the floating plate model used in the hydroelastic experiments

are given in Table 2.2. In all the numerical examples, the water depth is assumed to be finite, the density of

water p, is 1000kg/m?* and the acceleration of gravity g is 9.8m/s’.

Table 2.2. Details of the floating plate model used in the hydroelastic experiments by Yago and Endo

Parameter Value
Length (L) 9.75m
Width (B) 1.95m
Thickness(H ) 0.0545m
Draft (d) 0.0167m
Water depth(h) 1.9m
Bending stiffness ( El ) 17.522kNm*

32 (in length) x 6 (in breadth) mesh of the MITC4 plate elements and the 4-node node quadrilateral boundary
element is used. Hydroelastic analysis of the floating plate structure subjected to incident regular waves with
four angles (0°, 30°, 60° and 90°) and six different wavelengths (4/L =0.1, 0.2, 0.3, 0.4, 0.5 and
0.6) is performed as shown in Figure 2.2. The numerical and experimental results are comparison in the

following Figures 2.3 ~ 2.6 and Tables 2.3 ~ 2.6. The numerical results agree well with the experimental results.
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Figure 2.3. RAOs of deflection of the floating plate structures under incident regular waves with an angle
(6 =0°) and six wavelengths (1/L=0.1, 0.2, 0.3, 0.4, 05 and 0.6).
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Table 2.3. RAOs of deflection of the floating plate structures under incident regular waves with an angle
(6 =0°) and six wavelengths (1/L=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) obtained by the present procedure
and the experiments.

Calculation Experiment
AlL Points
Starboard Center Portside  Starboard Center Port side
0.000 0.189 0.197 0.189 0.183 0.183 0.183
0.125 0.038 0.030 0.038 0.026 0.026 0.026
0.250 0.101 0.090 0.101 0.089 0.089 0.089
0.375 0.047 0.044 0.047 0.024 0.024 0.024
0.1 0.500 0.111 0.103 0.111 0.096 0.096 0.096
0.625 0.061 0.056 0.061 0.040 0.040 0.040
0.750 0.120 0.107 0.120 0.112 0.112 0.112
0.875 0.093 0.092 0.093 0.083 0.083 0.083
1.000 0.303 0.308 0.303 0.302 0.302 0.302
0.000 0.192 0.195 0.192 0.174 0.174 0.174
0.125 0.045 0.044 0.045 0.037 0.037 0.037
0.250 0.106 0.096 0.106 0.082 0.082 0.082
0.375 0.086 0.079 0.086 0.064 0.064 0.064
0.2 0.500 0.109 0.101 0.109 0.101 0.101 0.101
0.625 0.145 0.133 0.145 0.119 0.119 0.119
0.750 0.129 0.117 0.129 0.119 0.119 0.119
0.875 0.240 0.236 0.240 0.229 0.229 0.229
1.000 0.461 0.460 0.461 0.448 0.448 0.448
0.000 0.133 0.135 0.133 0.242 0.242 0.242
0.125 0.064 0.062 0.064 0.101 0.101 0.101
0.250 0.105 0.096 0.105 0.063 0.063 0.063
0.375 0.118 0.109 0.118 0.136 0.136 0.136
0.3 0.500 0.134 0.125 0.134 0.116 0.116 0.116
0.625 0.181 0.166 0.181 0.181 0.181 0.181
0.750 0.205 0.187 0.205 0.245 0.245 0.245
0.875 0.342 0.338 0.342 0.327 0.327 0.327
1.000 0.681 0.682 0.681 0.717 0.717 0.717
0.000 0.219 0.220 0.219 0.213 0.213 0.213
0.125 0.097 0.097 0.097 0.082 0.082 0.082
0.250 0.091 0.086 0.091 0.072 0.072 0.072
0.375 0.134 0.126 0.134 0.135 0.135 0.135
0.4 0.500 0.162 0.151 0.162 0.162 0.162 0.162
0.625 0.225 0.204 0.225 0.207 0.207 0.207
0.750 0.284 0.260 0.284 0.280 0.280 0.280
0.875 0.440 0.433 0.440 0.436 0.436 0.436
1.000 0.831 0.832 0.831 0.833 0.833 0.833
0.000 0.175 0.174 0.175 0.147 0.147 0.147
0.125 0.047 0.041 0.047 0.028 0.028 0.028
0.250 0.126 0.113 0.126 0.101 0.101 0.101
0.375 0.173 0.157 0.173 0.147 0.147 0.147
0.5 0.500 0.235 0.215 0.235 0.239 0.239 0.239
0.625 0.325 0.296 0.325 0.258 0.294 0.294
0.750 0.360 0.331 0.360 0.359 0.359 0.359
0.875 0.536 0.528 0.536 0.571 0.571 0.571
1.000 0.982 0.982 0.982 1.031 1.031 1.031
0.000 0.588 0.588 0.588 0.543 0.543 0.543
0.125 0.263 0.255 0.263 0.284 0.284 0.284
0.250 0.265 0.236 0.265 0.228 0.228 0.228
0.375 0.332 0.302 0.332 0.282 0.282 0.282
0.6 0.500 0.334 0.306 0.334 0.354 0.354 0.354
0.625 0.417 0.382 0.417 0.330 0.376 0.376
0.750 0.467 0.433 0.467 0.472 0.472 0.472
0.875 0.608 0.597 0.608 0.655 0.655 0.655
1.000 1.065 1.065 1.065 1.040 1.040 1.040
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Table 2.4. RAOs of deflection of the floating plate structures under incident regular waves with an angle
(€ =30°) and six wavelengths (1/L =0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) obtained by the present procedure
and the experiments.

Calculation Experiment
AlL Points
Starboard Center Portside  Starboard Center Port side
0.000 0.096 0.051 0.021 0.018 0.018 0.018
0.125 0.037 0.004 0.044 0.037 0.037 0.037
0.250 0.012 0.022 0.049 0.037 0.037 0.037
0.375 0.023 0.007 0.039 0.037 0.037 0.037
0.1 0.500 0.040 0.024 0.072 0.037 0.037 0.037
0.625 0.074 0.011 0.065 0.055 0.055 0.055
0.750 0.105 0.024 0.049 0.064 0.064 0.064
0.875 0.098 0.020 0.070 0.074 0.074 0.074
1.000 0.115 0.068 0.109 0.037 0.037 0.037
0.000 0.199 0.192 0.181 0.212 0.212 0.204
0.125 0.036 0.025 0.030 0.028 0.028 0.019
0.250 0.070 0.082 0.115 0.101 0.101 0.083
0.375 0.023 0.060 0.114 0.074 0.074 0.111
0.2 0.500 0.099 0.082 0.123 0.083 0.083 0.130
0.625 0.170 0.107 0.122 0.147 0.147 0.148
0.750 0.214 0.090 0.019 0.248 0.110 0.009
0.875 0.302 0.192 0.168 0.331 0.212 0.148
1.000 0.422 0.348 0.350 0.405 0.359 0.491
0.000 0.310 0.324 0.358 0.347 0.291 0.347
0.125 0.082 0.101 0.151 0.028 0.038 0.094
0.250 0.081 0.090 0.129 0.103 0.103 0.131
0.375 0.126 0.123 0.147 0.122 0.131 0.150
0.3 0.500 0.130 0.111 0.128 0.094 0.084 0.113
0.625 0.241 0.180 0.166 0.234 0.216 0.197
0.750 0.312 0.208 0.145 0.347 0.225 0.150
0.875 0.392 0.320 0.306 0.431 0.328 0.328
1.000 0.652 0.642 0.670 0.722 0.722 0.703
0.000 0.211 0.305 0.398 0.232 0.324 0.407
0.125 0.039 0.052 0.114 0.047 0.084 0.121
0.250 0.167 0.134 0.140 0.150 0.150 0.169
0.375 0.128 0.154 0.218 0.161 0.161 0.235
0.4 0.500 0.192 0.205 0.268 0.208 0.227 0.301
0.625 0.344 0.280 0.278 0.321 0.302 0.311
0.750 0.404 0.286 0.223 0.433 0.313 0.238
0.875 0.512 0.456 0.468 0.545 0.480 0.490
1.000 0.819 0.842 0.901 0.917 0.898 0.907
0.000 0.756 0.820 0.900 0.741 0.852 0.907
0.125 0.250 0.338 0.454 0.250 0.352 0.454
0.250 0.247 0.277 0.385 0.250 0.296 0.361
0.375 0.358 0.342 0.396 0.315 0.352 0.380
0.5 0.500 0.338 0.297 0.309 0.324 0.324 0.352
0.625 0.443 0.370 0.366 0.389 0.389 0.398
0.750 0.507 0.415 0.403 0.528 0.454 0.417
0.875 0.566 0.547 0.587 0.602 0.583 0.611
1.000 0.901 0.966 1.052 0.954 0.991 1.083
0.000 1.046 1.052 1.084 0.950 0.969 1.030
0.125 0.483 0.537 0.642 0.410 0.475 0.550
0.250 0.346 0.423 0.570 0.307 0.373 0.494
0.375 0.488 0.493 0.576 0.447 0.512 0.559
0.6 0.500 0.507 0.449 0.456 0.429 0.447 0.429
0.625 0.553 0.452 0.425 0.401 0.429 0.354
0.750 0.618 0.518 0.513 0.587 0.503 0.522
0.875 0.668 0.654 0.710 0.680 0.671 0.717
1.000 0.950 1.034 1.145 0.913 1.020 1.100
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Table 2.5. RAOs of deflection of the floating plate structures under incident regular waves with an angle
(€ =60°) and six wavelengths (1/L =0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) obtained by the present procedure
and the experiments.

Calculation Experiment
AlL Points
Starboard Center Portside  Starboard Center Port side
0.000 0.045 0.022 0.032 0.049 0.049 0.049
0.125 0.025 0.018 0.053 0.040 0.040 0.040
0.250 0.022 0.015 0.052 0.055 0.055 0.055
0.375 0.044 0.019 0.030 0.046 0.046 0.046
0.1 0.500 0.034 0.020 0.023 0.049 0.049 0.049
0.625 0.050 0.019 0.009 0.040 0.040 0.040
0.750 0.071 0.023 0.018 0.080 0.080 0.080
0.875 0.053 0.028 0.074 0.046 0.046 0.046
1.000 0.045 0.064 0.105 0.074 0.074 0.074
0.000 0.163 0.251 0.336 0.245 0.245 0.282
0.125 0.058 0.024 0.044 0.063 0.063 0.051
0.250 0.116 0.115 0.189 0.150 0.126 0.199
0.375 0.084 0.065 0.196 0.066 0.115 0.213
0.2 0.500 0.242 0.156 0.182 0.215 0.166 0.227
0.625 0.261 0.103 0.033 0.216 0.094 0.032
0.750 0.276 0.132 0.214 0.291 0.132 0.193
0.875 0.273 0.151 0.279 0.268 0.170 0.281
1.000 0.212 0.171 0.345 0.208 0.172 0.282
0.000 1.264 1.260 1.317 1.320 1.330 1.340
0.125 0.354 0.441 0.656 0.387 0.461 0.660
0.250 0.330 0.398 0.607 0.314 0.438 0.612
0.375 0.487 0.413 0.437 0.477 0.452 0.452
0.3 0.500 0.416 0.240 0.110 0.416 0.267 0.143
0.625 0.533 0.356 0.323 0.505 0.380 0.306
0.750 0.521 0.328 0.330 0.556 0.332 0.345
0.875 0.394 0.326 0.487 0.421 0.346 0.520
1.000 0.480 0.610 0.829 0.522 0.646 0.870
0.000 1.579 1.409 1.284 1.930 1.700 1.530
0.125 0.760 0.704 0.773 0.859 0.834 0.933
0.250 0.443 0.562 0.769 0.512 0.674 0.910
0.375 0.625 0.624 0.695 0.675 0.762 0.849
0.4 0.500 0.638 0.487 0.378 0.764 0.590 0.453
0.625 0.670 0.436 0.346 0.766 0.529 0.405
0.750 0.720 0.499 0.546 0.854 0.606 0.655
0.875 0.669 0.549 0.733 0.781 0.644 0.880
1.000 0.627 0.718 1.014 0.770 0.869 1.160
0.000 1.650 1.356 1.109 1.930 1.570 1.310
0.125 1.021 0.826 0.776 1.210 1.000 0.952
0.250 0.712 0.685 0.818 0.830 0.830 0.954
0.375 0.743 0.729 0.825 0.832 0.881 0.980
0.5 0.500 0.758 0.664 0.657 0.883 0.809 0.784
0.625 0.736 0.579 0.552 0.860 0.736 0.650
0.750 0.750 0.604 0.671 0.898 0.750 0.812
0.875 0.758 0.709 0.888 0.863 0.850 1.070
1.000 0.808 0.922 1.191 0.938 1.110 1.390
0.000 1.625 1.275 0.988 1.660 1.320 0.981
0.125 1.141 0.882 0.791 1.140 0.896 0.759
0.250 0.885 0.766 0.850 0.860 0.748 0.823
0.375 0.852 0.791 0.894 0.899 0.800 0.899
0.6 0.500 0.855 0.766 0.822 0.814 0.752 0.826
0.625 0.818 0.701 0.748 0.803 0.679 0.728
0.750 0.782 0.695 0.814 0.804 0.680 0.817
0.875 0.777 0.800 1.017 0.769 0.781 1.000
1.000 0.861 1.036 1.331 0.820 1.010 1.290
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Table 2.6. RAOs of deflection of the floating plate structures under incident regular waves with an angle
(€ =90°) and six wavelengths (1/L=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) obtained by the present procedure
and the experiments

Calculation Experiment
AlL Points
Starboard Center Portside  Starboard Center Port side
0.000 0.287 0.082 0.412 0.256 0.061 0.317
0.125 0.281 0.092 0.423 0.270 0.099 0.355
0.250 0.281 0.098 0.430 0.247 0.113 0.393
0.375 0.292 0.090 0.425 0.285 0.090 0.407
0.1 0.500 0.299 0.083 0.419 0.299 0.067 0.372
0.625 0.292 0.090 0.425 0.300 0.093 0.398
0.750 0.281 0.098 0.430 0.277 0.119 0.436
0.875 0.281 0.092 0.423 0.279 0.084 0.401
1.000 0.287 0.082 0.412 0.293 0.061 0.341
0.000 0.804 0.253 1.124 0.852 0.247 1.100
0.125 0.789 0.257 1.132 0.816 0.273 1.140
0.250 0.786 0.264 1.134 0.830 0.262 1.140
0.375 0.798 0.267 1.124 0.832 0.276 1.150
0.2 0.500 0.807 0.268 1.117 0.858 0.265 1.130
0.625 0.798 0.267 1.124 0.860 0.292 1.130
0.750 0.786 0.264 1.134 0.836 0.281 1.170
0.875 0.789 0.257 1.132 0.838 0.282 1.160
1.000 0.804 0.253 1.124 0.839 0.259 1.140
0.000 1.217 0.444 1.471 - 0.733 -
0.125 1.199 0.437 1.479 - 0.773 -
0.250 1.189 0.446 1.490 - 0.863 -
0.375 1.190 0.462 1.498 - 0.953 -
0.3 0.500 1.192 0.470 1.500 - 0.944 -
0.625 1.190 0.462 1.498 - 0.897 -
0.750 1.189 0.446 1.490 - 0.814 -
0.875 1.199 0.437 1.479 - 0.767 -
1.000 1.217 0.444 1.471 - 0.857 -
0.000 1.328 0.623 1.439 1.400 0.654 1.490
0.125 1.312 0.610 1.444 1.360 0.644 1.500
0.250 1.301 0.611 1.454 1.350 0.657 1.520
0.375 1.295 0.619 1.466 1.360 0.684 1.550
0.4 0.500 1.294 0.624 1.471 1.380 0.697 1.540
0.625 1.295 0.619 1.466 1.390 0.699 1.540
0.750 1.301 0.611 1.454 1.380 0.676 1.530
0.875 1.312 0.610 1.444 1.380 0.653 1.500
1.000 1.328 0.623 1.439 1.380 0.667 1.480
0.000 1.312 0.746 1.347 1.290 0.745 1.330
0.125 1.300 0.733 1.346 1.290 0.734 1.360
0.250 1.291 0.729 1.351 1.290 0.761 1.380
0.375 1.284 0.730 1.359 1.270 0.775 1.380
0.5 0.500 1.282 0.731 1.363 1.310 0.776 1.390
0.625 1.284 0.730 1.359 1.300 0.753 1.370
0.750 1.291 0.729 1.351 1.300 0.755 1.360
0.875 1.300 0.733 1.346 1.300 0.731 1.330
1.000 1.312 0.746 1.347 1.300 0.758 1.320
0.000 1.273 0.822 1.277 1.290 0.845 1.290
0.125 1.263 0.810 1.273 1.300 0.820 1.290
0.250 1.255 0.805 1.274 1.280 0.820 1.270
0.375 1.249 0.803 1.278 1.280 0.820 1.290
0.6 0.500 1.247 0.802 1.280 1.250 0.820 1.270
0.625 1.249 0.803 1.278 1.270 0.832 1.300
0.750 1.255 0.805 1.274 1.270 0.807 1.290
0.875 1.263 0.810 1.273 1.270 0.807 1.290
1.000 1.273 0.822 1.277 1.270 0.820 1.280
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2.4 Closure

In this chapter, a formulation for the hydroelastic analysis of floating plate structures in incident regular waves
based on a direct coupling method is presented. The directly coupled equations of motion for the hydroelastic
analysis are discretized the finite element method for plate structures and by the boundary element method for

fluids and. The capability of the proposed numerical procedure was investigated through comparisons with the

experimental results.
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Chapter 3. Consideration of Multiple Hinge Connections

It is well known that the use of hinge connections can reduce the hydroelastic responses. That is, bending
moment, deflection and strain energy stored in floating plate structures due to waves can be reduced depending
on structural and wave parameters [44-52]. However, although the maximum responses are very important in
the design of VLFSs, the effect of the number of hinge connections used on the maximum responses has not
been studied well [48]. It has also not been well known that the hydroelastic responses could increase due to the

use of hinge connections.

The hydroelastic analysis of floating structures with hinge connections or interconnected floating structures with
hinges or rotational springs have been studied. In hydroelastic analysis of floating structures using the modal
expansion method, hinge deflection modes have been used to model hinge connections [45-51, 54, 55]. The
hinge deflection modes can be obtained analytically for simple problems [45-49] and numerically for
complicated problems [50, 51, 54, 55]. The conditions for hinge connections can be enforced by adopting the

penalty technique [52]. However, the numerical procedures have not been verified by experimental studies.

In order to solve the hydroelastic problems of floating plate structures with multiple hinge connections, the
direct coupling method is employed and a complete condensation method is derived for modeling hinge
connections, in which the rotational degrees of freedom (DOFs) of the plate finite elements are released. Hinge
deflection modes are not used explicitly. The proposed formulation is mathematically complete because
structural mass and stiffness matrices and fluid-structure interaction matrix are consistently condensed. To
assess the validity of the proposed numerical procedure, the numerical calculations are compared with the

experimental results.

The most important feature of the proposed hinge model is its modeling capability, which is shown in numerical
examples: floating plate problems with 1- and 2-directional multiple hinge connections. Thus, it is able to easily
deal with the hydroelastic responses of floating plate structures with arbitrarily positioned multiple hinge
connections. The numerical analyses show the effect of the number of hinge connections used on the maximum
bending moment and deflection of the floating plate structures according to the aspect ratio, bending stiffness

and incident wavelength.

3.1 Modeling of Hinge Connections

Figure 3.1 shows the problem description of a floating plate structure with hinge connections in incident regular
waves. The interaction between the floating plate structure and an incident regular wave is handled by the direct
coupling method. For the finite element model of plate structures, the MITC4 plate element is employed. On the

other hand, for the boundary element model of fluid, a 4-node quadrilateral boundary element is used. Thus, in
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the discretized coupled equation (2.22), the Nodal DOFs vectors for unknown structural displacement U and
total water pressure p of the elements is as follows

a=lt ¢ 0w @ & & & & u ¢ o (3.2)

X

1 2

p=[p* p* P P, (3.2)

in which u;, Hil and lez are the one translational and two rotational DOFs at the plate element local node 1,

and p' isthe pressure DOF at the boundary element local node 1.
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Figure 3.1. A floating plate structure with multiple hinge connections
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Since the bending moments are zero at hinge connections, they can be modeled by releasing the rotational DOFs
associated with the bending moment at the element local nodes. In static analysis, a stiffness matrix is
condensed to release specific DOFs [67]. This technique is named as static condensation. In order to release
DOFs in dynamic analysis, however, the mass matrix also need to be condensed through the dynamic
condensation technique [79]. Similar to the dynamic condensation procedures, the rotational DOFs are released

by condensing structural mass and stiffness matrices, and fluid-structure interaction matrix in Equation (2.22).

In order to condense the rotational DOFs, the matrix is partitioned

0T asE —wisEas®  —c® [a,] [o
~0’SE +S%®  — ST +S% -Co g, (= 0 [, (3.3
apT T 0 >
-Co -Co ~Fu-Fs |LP R,
and the matrix in Equation (3.3) is rearranged as follows
oSSy -CP —o’sy+sya,] [0
ap T copT A -
- Cug -Fu —Fg - Cug PI=IRi |, (3.4)
- ’SE +S -Co -o’Sy +S¥ || 0, 0

where G, and G, are the displacement vectors to be retained and condensed, respectively. Therefore, G, is

the vector of the rotational DOFs corresponding to the hinge connections as shown in Figure 3.2.
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Figure 3.2. Nodal DOFs of a MITC4 plate element: (a) a floating plate structure with three hinge connections,

(b) retained and condensed nodal DOFs.

From the third row in Equation (3.4), the following equation can be obtained:
(oS +82)d, -C2 p+ (- 0?SE +5%)a, =0,

p

and

C

Let us transform Equation (3.6) into a matrix form as follows
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A 1]

= T Aa H .
pl=I ]{ 5 } (3.7)
where

| 0
[T]= 0 , , (3.8)
—(~o?sz +57) (osE +52) (~wsE +sT)Ce

inwhich 1, and 1 are the identity matrices corresponding to G, and p, respectively.

By substituting Equation (3.7) into Equation (3.4) and premultiplying [T]T :

—’S% + S -Co —*S%¥ +S%¥ o 0
apT epT a -
[Tf| -c2 -Fy-F,  -CZ [T]Ls}:[T]T R, |, (3.9)
- *Se +S% -Co —*S$ +S 0
the condensed matrix form is finally obtained:
s= c*|a, 0
co Ew | p = él , (3.10)
where
% = 'S +52 - ('St + 5% ) 0’S% +52 ) (- w’SE +52), (3.11a)
al al 2gac ac 2qce cc YL
C® =—C® + (- 0’S% + ST )(- 0’SE +57)'C2, (3.11b)
pp _ cpT( 2¢qce cc)’1 cp 3 11
F®=-F, -F. -C (~oSy +S¢) Co. (3.11c)

By solving Equation (3.10), the hydroelastic responses of floating plate structures with multiple hinge

connections in incident regular waves are directly calculated.

3.2 Verification and Modeling Capability

The proposed numerical procedure can be easily applied to calculate the hydroelastic response of floating plates
with arbitrarily positioned multiple hinge connections. To verify the proposed numerical procedure, we compare

the numerical results with the experimental and previous numerical results. Then, to demonstrate the modeling
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capability of the proposed numerical procedure, the hydroelastic analysis of floating plate structures with 1- and

2- directional multiple hinge connections are conducted.

Three dimensionless parameters are considered: aspect ratio L, (the ratio of the structural length to the width),
dimensionless wavelength « the ratio of the incident wavelength A to the structural length) and
dimensionless bending stiffness S (the ratio of the longitudinal bending stiffness to the hydrostatic restoring

force)

L =—, a:i,and S=—-—+ (3.12)

inwhich E and | denote Young’s modulus and the second moment of area on the x, - axis (1 = BH?®/12).

In addition, two response amplitude operators (RAQOs) of the dimensionless bending moment M and

XX

deflection U, are estimated:

_||v|

and U, :%, (3.13)

puIL
where M, is the RAO of the bending moment per unit width.

XXz

3.2.1 Comparison with Experimental Results

In order to verify the proposed numerical procedure, present results are compared with hydroelastic
experimental results of floating plate structures conducted by Cho [80]. Table 3.1 presents the details of the

floating plate structures used for the hydroelastic experiments.
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Table 3.1. Details of the floating plate model for hydroelastic experiments.

Parameter Value
Length (L) 3m

Width (B) 0.6m
Thickness (H ) 0.04m
Draft (d) 0.011m
Bending stiffness (El ) 30.385Nm?

Dimensionless bending stiffness (S ) 1.244x107°

Figure 3.3 illustrates the experimental setup in the wave tank [80]. In order to measure the wave frequency and
amplitude, one wave probe was installed. The heave motions of the floating plate structures were measured
through four motion capture cameras with IR reflective markers. Figure 3.4 shows the positions of the IR
reflective markers attached on the floating plates. The drift of plate structures due to waves was prevented by
mooring the plates with four strings, see Figures 3.3. Since the strings should prevent the drift without
restraining the heave motions, small tension was introduced so that the strings were horizontally connected to
the plate structures. That is, the connection angle between strings and plate structures is almost 180°, see
Figure 3.3(c).
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Figure 3.3. A schematic of the experimental setup: (a) Top view, (b) Front view, (c) Mooring lines.
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Figure 3.4. Positions of the IR reflective markers on floating structures: (a) no hinge, (b) 1 hinge, and (c) 2

hinges.

In the hydroelastic experiments, zero to two hinge connections in the floating plate structures subjected to
regular waves ( a=0.0lm and «=0.6 ) with four different angles (6 =0°, 30°, 60° and 90°) were
considered. The water depth is 1.5m . Note that incident wave conditions (2a/h=0.0133 and h/A=0.8333)

are included in the range of the linear wave theory in deep water (2a/h<0.1 and h/1=0.5) [81].

Figures. 3.5 and 3.6 show the comparisons between experimental and numerical results for RAOs of deflection
along the longitudinal lines of the plates. For the numerical results, the structural and fluid domains are modeled
by the 60x12 mesh of the MITC4 plate elements and the 60x12 mesh of the boundary elements,

respectively. The numerical results agree well with those obtained by experimental tests.
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Figure 3.5. RAOs of deflection of the floating plates with multiple hinge connections with « =0.6 for two
wave angles (6 =0° and 30°) : (a) no hinge, (b) 1 hinge, and (c) 2 hinges.
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Figure 3.6. RAOs of deflection of the floating plates with multiple hinge connections with « =0.6 for two

wave angles (4=60° and 90°) : (a) no hinge, (b) 1 hinge, and (c) 2 hinges.
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3.2.2 Comparison with Previous Numerical Results

In hydroelastic analysis of floating plate structures with multiple hinge connections, the proposed numerical
procedure is based on the direct coupling formulation in contrast to previous studies. The hydroelastic responses
of a floating plate structure with a hinge connection are calculate, and then the results are compared with those

obtained by S. Fu et al. [50]. A scaled model of the Mega-Float (L=300m, B=60m, H=2m, d=0.5m,
and EI =4.77x10"Nm?) is considered and the water depth is 58.5m [15]. They used the 150x30 mesh of

the plate and boundary elements for modeling the structural and fluid domains, respectively.

The floating plate structure is modeled by the 60x12 mesh of the plate and boundary elements. Figure 3.7
shows u, and I\WX2X2 along the longitudinal centerline of the plate with a hinge connection. The numerical

results are in good agreement with those obtained by S. Fu et al., thereby confirming the validity of the proposed

condensation method for modeling hinge connections.
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Figure 3.7. Hydroelastic responses along the longitudinal centerline: (a) Problem description, (b) RAOs of
deflection for A/L =0.4, (c) RAOs of dimensionless bending moment for A/L =0.48
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3.2.3 Numerical Examples

In this section, the hydroelastic responses of floating plate structures with 1- and 2-directional multiple hinge
connections are presented. The numerical examples demonstrate the modeling capability of the proposed
numerical procedure. Figure 3.8 shows the description of the floating plate structures (S =3.04x107°) with 1-
and 2-directional multiple hinge connections under a regular wave of « =0.6. Hinge connections are uniformly

positioned.

First, the hydroelastic analysis of the floating plate structures (L, =5.0) with 1-directional multiple hinge
connections in a head sea (& = 0°) is performed as shown in Figure 3.8(a). Zero to three hinge connections are
considered and 60x12 mesh is used to model the floating plate. The resulting RAOs of deflection are

presented in Figure 3.9. Figure 3.10 shows the RAOs of dimensionless bending moment and the RAOs of

deflection along the longitudinal centerline of the floating plate structures.
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Figure 3.8. Floating plate problems with (a) 1- and (b) 2-directional multiple hinge connections under an

incident regular wave.
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Figure 3.9. RAOs of deflection of the floating plate structures with 1-directional multiple hinge connections in

a head sea: (a) no hinge, (b) 1 hinge, (c) 2 hinges, and (d) 3 hinges.
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Figure 3.10. Hydroelastic responses along the longitudinal centerline: (a) RAOs of dimensionless bending
moment, (b) RAOs of deflection.

It is obvious that the hydroelastic responses are highly affected by the number of hinge connections used. In
general, the bending moment decreases in the floating plate structures as the number of hinge connections
increases. Each plate partitioned by the hinge connections has the maximum moment around its center. It is
important to note that the maximum bending moment can be larger for floating plates with more hinge

connections. For example, the maximum bending moment of the floating plate structure with one hinge

connection (M, =4.63x107°) is larger than that of the floating plate without any hinge connections

(I\WrnaX =3.93x107) as shown in Figure 3.10(a). That is, the use of hinge connections is not always beneficial

in reducing the maximum bending moment. As the number of hinge connections increases, the deflections in the

floating plates increase in general (see Figure 3.10(b)). The deflections have peaks at hinge connections.

Then, the hydroelastic analysis of the floating plate structures (L, =1.0) with 2-directional multiple hinge

connections under an incident regular wave (8 = 45°) is perform, see Figure 3.8(b). The four configurations of
2-directional hinge connections are considered: no hinge, 1x1 hinges, 2x2 hinges and 3x3 hinges. In the

numerical example, the floating plate models are discretized by 60x 60 mesh.

Figure 3.11 shows the RAOs of deflection of the floating plates. In Figure 3.12, the RAOs of the dimensionless
bending moment and deflection are plotted along the three longitudinal lines (x,/B=0.0, 0.5 and 1.0). The

basic tendency of RAOs is similar to the results of the floating plates with 1-directional multiple hinge

connections. As expected, the larger response is obtained along the starboard side (x,/B =1.0) rather than

along the centerline and port side due to the effect of wave direction.
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Figure 3.11. RAOs of deflection of the floating plate structures with 2-directional multiple hinge connections
under an oblique wave: (a) no hinge, (b) 1 hinge, (c) 2 hinges, and (d) 3 hinges.
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Figure 3.12. Hydroelastic responses along the longitudinal (a) starboard side, (b) centerline, and (c) port side.
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3.3 Effect of Multiple Hinge Connections

To investigate the effect of multiple hinge connections, numerical experiments are conducted for the floating
plate structures with 1-directional multiple hinge connections under several structural and wave conditions. The
maximum value of hydroelastic responses are numerically calculated in the floating plate structures with an

increasing number of hinge connections.

In these numerical analyses, zero to three hinge connections are considered in the floating plate structures
according to three dimensionless bending stiffnesses (S =3.04x10™, 3.04x107°, and 3.04x107°) and two
aspect ratios (L, =1.0 and 5.0). Note that the range of dimensionless bending stiffness is chosen by referring
to the previous experimental and numerical studies. The hinge connections are uniformly positioned in the
floating plates as shown in Figure 3.13. The structures are subjected to an incident wave with four angles
(@=0°, 30°, 45°, and 60°) and seven different wavelengths (¢=0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and

1.4). The water depth is assumed to be infinite.
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Figure 3.13. Floating plate problems with 1-directional multiple hinge connections: (a) no hinge, (b) 1 hinge, (c)
2 hinges, (d) 3 hinges
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The floating plates are modeled by the plate and boundary elements with 60x60 mesh for L/B=1 and with
60x12 mesh for L/B=5. In order to choose appropriate meshes, the convergence study for the maximum
hydroelastic responses were carried out for the smallest wavelength ratio considered (« =0.2). The errors in the

maximum hydroelastic responses for the meshes chosen are less than 1% compared to well-converged solutions.

Note that, although the hydroelastic responses were calculated for many different cases considering various
bending stiffnesses, aspect ratios, wave directions and the configurations of the hinge connections, here the

results of some selected cases only presented.

3.3.1 Effects on the Maximum Bending Moment

The maximum bending moment is very important in the cross-sectional design of VLFSs. To investigate the

effect of the number of hinge connections on the maximum bending moment, the RAO of the dimensionless

maximum bending moment M

max

(the maximum value of I\WX2X2 in the entire floating plate structure) is used.

Figure 3.14 ~ 3.17 show M, for the floating plate structures with two different aspect ratios (L, =1.0 and
5.0) depending on dimensionless bending stiffness, wavelength, and wave angle. In general, as the number of
hinge connections increases, the maximum bending moment decreases. Comparing Figure 3.14(a) with Figure
3.14(c), it is found that the reductions in the maximum bending moment are larger for stiffer floating plates.
Figure 3.14(c) shows that the use of hinge connections in very flexible floating structures is not very effective

in reducing the maximum bending moment.

It is important to note that the maximum bending moment could increase even if more hinge connections are
used. This unexpected phenomenon appears when the wavelength is relatively short. For example, for the case
L, =1.0 in Figure. 3.14(a), the maximum bending moment of the floating plate structure with 1 hinge
connection is larger than that without any hinge connection when « =0.45. A similar phenomenon is shown in

Figures. 3.14(b) and (c), but the range of the wavelength where the phenomenon appears depends on the aspect

ratio and bending stiffness of the floating plate structures.
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Figure 3.14. RAOs of the dimensionless maximum bending moment M __ of floating plate structures with

two different aspect ratios: L, =1.0 and 5.0: (a) S=3.04x10", (b) 3.04x107°, and (c) 3.04x10™° under

an incident regular wave (6 = 0°)
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Figure 3.15. RAOs of the dimensionless maximum bending moment M __ of floating plate structures with
two different aspect ratios: L, =1.0 and 5.0: (a) S=3.04x10", (b) 3.04x107°, and (c) 3.04x10™° under
an incident regular wave (6 = 30°).
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Figure 3.16. RAOs of the dimensionless maximum bending moment M, __ of floating plate structures with

two different aspect ratios: L, =1.0 and 5.0: (a) S=3.04x10", (b) 3.04x107°, and (c) 3.04x10™° under
an incident regular wave (6 = 45°).
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Figure 3.17. RAOs of the dimensionless maximum bending moment M, __ of floating plate structures with

two different aspect ratios: L, =1.0 and 5.0: (a) S=3.04x10", (b) 3.04x107°, and (c) 3.04x10™° under
an incident regular wave (6 = 60°).
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Figure 3.18 ~ 3.21 show the ratio of the maximum bending moments defined by

v
R, = —m (3.14)

~ nanohinge !
Mmax

where M "™ js the maximum bending moment for the no hinge case. In general, as the number of hinge

connections increases, the additional reduction in the maximum bending moment becomes smaller for stiffer
plates. The reduction effect is larger for relatively longer waves. It should be noted that the reduction in the
maximum bending moment by hinge connections can result in smaller size cross-sections and less structural
materials in used VLFSs, that is, it can reduce construction cost. However, considering the additional
implementation cost for hinge connections, it can be expected that there is an optimal number of hinge
connections that can minimize the construction cost. Considering the two aspect ratios studied here, we
conclude that the use of multiple hinge connections is more effective for floating structures with a larger aspect

ratio.
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Figure 3.18. Bending moment ratio R,, of floating plate structures with two different aspect ratios: L, =1.0

and 5.0:(a) S=3.04x10", (b) 3.04x107°,and (c) 3.04x10°° under an incident regular wave (6 = 0°).
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Figure 3.19. Bending moment ratio R,, of floating plate structures with two different aspect ratios: L, =1.0
and 5.0:(a) S=3.04x10", (b) 3.04x10°,and (c) 3.04x10°° under an incident regular wave (& = 30°).
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Figure 3.20. Bending moment ratio R,, of floating plate structures with two different aspect ratios: L, =1.0
and 5.0:(a) S=3.04x10", (b) 3.04x10°,and (c) 3.04x10°° under an incident regular wave (6 = 45°).
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Figure 3.21. Bending moment ratio R,, of floating plate structures with two different aspect ratios: L, =1.0
and 5.0:(a) S=3.04x10", (b) 3.04x10°,and (c) 3.04x10°° under an incident regular wave (6 = 60°).
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3.3.2 Effects on the Maximum Deflection

In this section, we study how the maximum deflection is influenced by the number of hinge connections used.

Figure 3.22 ~ 3.25 present the RAOs of the maximum deflection u,,, for the floating plates with two
different aspect ratios (L, =1.0 and 5.0) depending on dimensionless bending stiffness, wavelength and wave

angle. Figure 3.26 ~ 3.29 show the ratio of the maximum deflection defined by

u
Ry =|3—mhg (3.15)
|us|

max

nohinge

where |u3| is the maximum deflection for the no hinge case.

max

Following figures show the effect of the number of hinge connections on the maximum deflection of floating
plate structures. In particular, the effect is very large in the range of long wave. Recalling the investigation on
the reduction of the maximum bending moment, it is concluded that the use of multiple hinge connections is
very effective for larger wavelengths, because, in this case, the maximum bending moment decreases
significantly and the maximum deflection has little effect. When the floating structure is very flexible, the effect

of multiple hinge connections on the maximum deflection is very small.
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Figure 3.22. RAOs of the maximum deflection u, of floating plate structures with two different aspect

ratios: L, =1.0 and 5.0: (3) S=3.04x10", (b) 3.04x107°, and (c) 3.04x10° under an incident regular

wave (8 =0°).
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Figure 3.23. RAOs of the maximum deflection u,, of floating plate structures with two different aspect

ratios: L, =1.0 and 50: (d) S=3.04x10", (b) 3.04x10°, and (c) 3.04x10°° under an incident regular
wave (8 = 30°).
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Figure 3.24. RAOs of the maximum deflection u,, of floating plate structures with two different aspect

ratios: L, =1.0 and 50: (d) S=3.04x10", (b) 3.04x10°, and (c) 3.04x10°° under an incident regular
wave (6 = 45°).
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Figure 3.25. RAOs of the maximum deflection u,, of floating plate structures with two different aspect

ratios: L, =1.0 and 50: (d) S=3.04x10", (b) 3.04x10°, and (c) 3.04x10°° under an incident regular
wave (6 =60°).
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Figure 3.26. Deflection ratio R, of floating plate structures with two different aspect ratios: L, =1.0 and

5.0:(a) S=3.04x10", (b) 3.04x10°°,and (c) 3.04x10°° under an incident regular wave (8 = 0°).
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Figure 3.27. Deflection ratio R, of floating plate structures with two different aspect ratios: L, =1.0 and

5.0:(a) S=3.04x10", (b) 3.04x10°°,and (c) 3.04x10°° under an incident regular wave (6 = 30°).
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Figure 3.28. Deflection ratio R, of floating plate structures with two different aspect ratios: L, =1.0 and

5.0:(a) S=3.04x10", (b) 3.04x10°°,and (c) 3.04x10"° under an incident regular wave (4 = 45°).
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Figure 3.29. Deflection ratio R, of floating plate structures with two different aspect ratios: L, =1.0 and

5.0:(a) S=3.04x10", (b) 3.04x10°°,and (c) 3.04x10"° under an incident regular wave (8 = 60°).
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3.4 Closure

In this chapter, a numerical procedure is proposed to effectively model hinge connections based on the direct
coupling method for hydroelastic analysis of floating plate problems. In the formulation, the structural mass and
stiffness and fluid-structure interaction terms are completely condensed. The advantage of the procedure exists
in the capability to easily model multiple hinge connections arbitrarily positioned. The validity of the numerical
procedure was confirmed through comparisons with experimental and previous numerical results. The modeling
capability was demonstrated through floating plate problems with 1- and 2-directional multiple hinge

connections.

Then, the numerical analyses are performed to investigate the effect of 1-directional multiple hinge connections
on the maximum bending moment and deflection in floating plate structures according to aspect ratio, bending

stiffness, wavelength, and wave angle. Through this analyses, the following observations have been made:

* In general, as the number of hinge connections increases, the maximum bending moment in the floating
plate structure decreases. However, the moment could increase for the range of short wavelength even if
more hinge connections are used. The hinge connection can more effectively reduce the maximum bending
moment for the stiffer floating plate structure with a larger aspect ratio. Increasing the number of hinge
connections, the additional reduction in the maximum bending moment decreases when the plate structures

are stiffer.

* In general, the change in the maximum deflection due to hinge connections is large in the range of short

wave. It becomes smaller as the wavelength becomes larger.

*  When the floating plate structure is very flexible, the effect of the multiple hinge connections on the
maximum bending moment and deflection is small. Therefore, the use of hinge connections is not effective

in this case.
*  When a floating plate structure is stiff, has a large aspect ratio and is subjected to long waves, the hinge
connections can be more effectively used with a large reduction in the maximum bending moment and a

small change in the maximum deflection.

Finally, the investigation offers valuable information on how to select the number of hinge connections to satisfy

structural design requirements.
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Chapter 4. A Numerical Method for Hydro-elastoplastic Analysis

of Floating Plate Structures

This chapter covers issues for plastic structural behaviors in the hydrodynamic analysis of floating plate
structures. The plastic behavior of structural materials is nonlinear and thus the incremental solution procedure
needs to be employed. In addition, since interactions between the structures with material nonlinearity and

surrounding fluids are a transient phenomenon, a time-domain analysis is necessary.

For the hydro-elastoplastic analysis of floating plate structures subjected to external loads, time-domain
incremental coupled equations are formulated, in which elastoplastic material behavior is considered. In the
solution procedure, the floating plate structure is discretized using the finite element method, and the
surrounding fluid is modeled using the boundary element method. Through comparisons with the numerical

results of LS-DYNA, the capability of the proposed numerical procedure is investigated.

4.1 Mathematical Formulations

Let consider a floating plate structure on water surface under a constant water depth as shown in Figure 4.1.
The basic assumptions used are that the plate structure has homogeneous, isotropic and elastoplastic material,
the fluid flow is incompressible, inviscid, and irrotational, and the motions of the plate structure and the

amplitudes of incident waves are small enough to use linear theory.

Incident wave

Se Seabed

Figure 4.1. Problem description for the hydro-elastoplastic analysis of a floating plate structure
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4.1.1 Incremental Equilibrium Equations of Floating Plate Structures
The structural responses associated with material nonlinearity are generally calculated by using incremental

equilibrium equations [67], in which, assuming that the responses in the configuration at time t are given, the

principle of virtual work in the configuration at time t+ At is considered.

The equilibrium equations of the floating plate at time t+ At are

olept N .
o P90l =0in Vs, (4.1a)
Xi
oy, =—pn; on Sg, (4.1b)
oyn, = fn on S, (4.1c)

where f,° is component of the surface load.

The principle of virtual work for the floating plate at time t+ At can be written as

Ivs G 5t+AteijdV

(4.2)
- LL .5 n,ou,dV —jvs EXLIRY, +LB ,,G%;N, 3, dS —LB PN, dS —jvs plisudV
where
1 . odu.
Sony == o, — (4.3)
2{ ox;(t+At)  Ox (t+At)

Assuming that the motion of the floating plate structure is small, and only the material nonlinearity is considered,

the integral term on the left side of Equation (4.2) can be transformed and linearized as [67]

J;,S (toan i (Xt+At)o, e;dV ~ jVs ® Ci;:k'ID (x;t),e408;dV — .[vs 0 7 (x)og;adv , (4.4)
where
1 oAu; ~ OAu;
& =2 o T o | (4.5)
2 ox;(t)  ox(t)

in which Au, are components of the increments in the displacements from time t to t+At, and CijEk',’ are

components of the elastoplastic stress-strain tensor.
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Then, by substituting Equation (2.9) and (4.4) into the terms in Equation (4.2) and referring to the configuration

of the static equilibrium at time t =0, the following linearized form is obtained:
'[V U (Xt + At)su,dV + L Ciio (1),8,5;dV —L £,9AU,N,8U,dS
= L £ (x;t+ At)n,8u,dS —L Py (X;t+ At)n,ou,dS +L £, 9U; (X; )N, 0u,dS (4.6)

_ .[vs o (xt)sedV .

Note that, in the derivation of Equation (4.6), the following equilibrium condition for the static equilibrium state

is considered as:

[, T conauds [ pgdidv+ [ p,gandids- | o (x0)z,dv =0. @.7)

In order to formulate the material nonlinearity, the tensors of stress o and the elastoplastic stress-strain CijEk',’

in Equation (4.6) are evaluated according to the von Mises plasticity model, which is generally used for

describing metal plasticity, with the associated flow rule and isotropic hardening.
4.1.2 The Mathematical Theory of Plasticity

In general, the theory of plasticity deals with structures that, after being subjected to loads, may sustain
permanent (or plastic) deformations when completely unloaded, and can be divided into two categories:
micromechanical and macromechanical theories, see References [82, 83]. In the former, the mechanism of the
plastic deformations is explained on the microscopic scale based on the conditions in crystals and grains leading
to plastic flow. The latter describes plastic deformations in the aspect of phenomenological behavior of
materials on the marcoscopic scale and establishes relationship between the mechanical quantities (e.g. stresses

and strains) based on general principle of mechanics and experimental observations.

The plasticity model can be formulated based on the properties, which are phenomenologically identified in the

uniaxial experiments of a metal. The properties are enumerated below:
1. A yield function or yield surface, which gives the yield condition that defines the stress state when
plastic flow occurs

2. A plastic flow rule, which describes the relationship between plastic strain and stresses when yielding

occurs
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3. A hardening rule, which specifies how the yield surface changes with plastic deformation.

Von Mises plastic model with isotropic hardening, which is considered as the plastic model of floating plate

structures, is described in detail with the above properties as follows:

1. Yield condition — von Mises criterion, which is appropriate to describe plastic yielding in metals and

proposed by von Mises (1913), can defined as
1,
fy(Jz)=Jz—§0'y =0, (4.8)

where f is von Mises yield function, J, is the second deviatoric stress invariant, and o, is the

yield stress or

1 1
fy(Sij):ESijSij —5(75 :0, (49)

where S, is the deviatoric stress tensor. The von Mises criterion means yielding begins when the von

Mises effective stress (4/3J, ) reaches o, , and implies that the yielding is independent of hydrostatic

stresses.

2. Plastic flow rule — Prandtl-Reuss equations, which use the von Mises yield function to obtain the

increments of plastic strains when yielding, are given by

de’ =dy A _ dzS, (4.10)
Y @O'ij v '

where dy is a positive scalar to be determined. The equations mean that the increments of plastic

strains are in the direction of and proportional to the deviatoric stress.

3. Hardening rule — isotropic hardening rule, which corresponds to the increase in size of the yield

surface, can be defined by

o,=0,E"), (4.11)

— t 2
" =[ ‘/Edeij'.’dei? (4.12)

is the accumulated effective plastic strain.

where

Figure 4.2 shows a geometric interpretation of the von Mises plastic model with isotropic hardening. The yield

condition, defined by Equation (4.9), is represented by the surface of a circular cylinder with the radius
R” =+/2/30, and the hydrostatic axis o, =0, =0, in the principal stress space, and by a circle with the
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radius in the deviatoric plane (7 - plane). If the stress state change from t to t+ At, the increments of plastic

strains are in direction of the current deviatoric stress S, (t +At) in the deviatoric plane.

f,t+an=0

Figure 4.2. A geometric interpretation of the von Mises plastic model.

4.1.3 Hydrodynamic Pressures in the Time Domain

The hydrodynamic analysis of floating plate structures in the time domain has been less well-studied than that in
the frequency domain. However, several investigators have used the connection between the time-domain and
frequency-domain solution for time-dependent problems. Two approaches have been mainly applied for the
time-domain analysis. One is based on a direct time integration and the other is based on a memory effect kernel

and is known as the Cummins method [60].

As a direct time integration approach, time-domain analysis on hydroelastic responses of a floating structure in

waves was performed by Liu and Sakai [56] using time-stepping computation with a predictor-corrector scheme

of the boundary element description for the fluid motions and the finite element model for the structure. Kyoung

et al. [57] developed a finite element method with fully nonlinear free-surface conditions considering horizontal

motion effect of VLFS in time domain. Qiu [58] employed finite element method to discretize both fluid and

structure for analysis the transient hydroelastic responses of an elastic floating beam subjected to dynamic loads.
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Cheng et al. [59] proposed a direct time domain modal expansion method that uses a superposition of modal
functions with time-dependent unknown modal amplitudes and solves hydrodynamic diffraction and radiation

problems by applying the time-dependent free surface Green’s functions.

Cummins derives time-dependent equations of rigid body motions for floating bodies, which involve so-called
“impulse response functions (IRF),” such as memory functions and added mass at infinite frequency [60]. The
Cummins method is by far the more popular because there are some disadvantages in the direct time integration
approaches, such as satisfaction of the radiation condition on the outside boundary, necessity of discretizing the
entire structure and fluid domain and the relative high computational cost and time. Moreover, the IRF can be
related to the corresponding terms in the frequency-domain analysis by Fourier transformation. Kashiwagi [84]
developed a numerical method for the time-dependent elastic motion of a plate structure by utilizing a
superposition of mathematical modal functions for impulsive motions. Lee and Choi [85] proposed a hybrid
method to analyze the transient hydroelastic response of a plate structure by the Fourier inverse transform of
harmonic equations, which formulated by boundary element method for fluid domain and FEM for plate domain.
To formulate the time-dependent hydrodynamic pressures acting on floating plate structures in the incremental

equilibrium equation (4.7), IRFs in Cummins method are constructed.

The velocity potential @(x;t) attime t governed by

V¢=0 in V. at t=0, (4.13a)
.0
$+9g—=0 for x,=0 on S., (4.13b)
OXq
o¢
—=0 on S;, )
o . (4.13c)
Z_f::ui(x;t)ni on S, at t=0, (4.13d)
with the initial conditionsat t=0
p(x;t) = f,(x) for x;,=0 on S, (4.143)
d(x;t) = f,(x) for x,=0 on S, (4.14b)

and ¢, ¢, V¢ and V¢ are all uniformly bounded as R — oo [86, 87], where f, and f, are functions

to represent the initial free surface. The initial conditions prescribe the initial values of the velocity potential on

the free surface.

The incremental displacement Au; of the floating plate structure can be represented as
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Au(x,t) = g (O my () = 8 (O, () + G, (Op () +-----, (4.15)

where g, is the generalized coordinates and p, denotes the corresponding basis functions.

Since the fluid motion is assumed to be linear, the velocity potential can be described as the convolution integral
of the arbitrary time-dependent motions with the radiation (4" ) and diffraction (#°) potentials corresponding to

the impulsive velocity of the plate and impulsive wave elevation, respectively [6, 88]

pct) = [ gl =09, (D)dz+ [ 2 (xt-r)n(z)dz, (4.16)

in which @? is the radiation potential for the impulsive velocity corresponding to p, , and 7 is an incident

wave elevation.

From both computational and accuracy points of view, it is effective to use dominant dry modes of the plate for

the basis functions p, . However, in elastoplastic analysis, this approach encounters major difficulty due to the

dominant dry modes continuously varying due to the change of tangential stiffness during plastic deformation.
In order to overcome such difficulty, a set of piecewise linear (hat) functions defined at nodes for the basis
functions is employed. The piecewise linear function has unit value at a node and zero at other nodes (see
Figure 4.3). The function can be constructed using standard 2D shape functions of finite elements sharing the

node.

Figure 4.3. Piecewise linear function at a node and 2D shape functions in finite elements.

The radiation potential 4° in Equation (4.16) can be decomposed as

- 68 -



8 (61) =p (5 + o, (OH (D) , (4.17)
in which H is the Heaviside function, and , is the radiation potential at infinite frequency, satisfying the

boundary value problem with following conditions:

Viw, =0 in V. at t=0, (4.18a)
v, =0 for x;,=0 on S, (4.18b)

oy,

—=0 on S, .

ox, G (4.18c)
oy, _ _

=p,-n on S; at t=0. (4.18d)
OXq

In addition, ¢, in Equation (4.17) is the radiation potential representing the fluid motion subsequent to the

impulsive velocity satisfying the initial-boundary value problem with the boundary and initial conditions:

Vip, =0 in V. at t=0, (4.19a)
o +9 Z(p" =0 for x,=0 on S;, (4.19b)
3
0,
—<=0 on S, .
ox, G (4.19¢)
9 g on's, at t=0 (4.19d)
- B - y .
28
with the initial conditionsat t=0
o, (x;t)=0 for x,=0 on S.. (4.208)
o, (t)=0 for x,=0 on S.. (4.20b)

The diffraction potential ¢° in Equation (4.16) is the sum of the transient incident ¢' and scattered ¢°

potentials which satisfies the initial-boundary value problem with the conditions [6].

VZ® =0 in V. at t=0, (4.21a)
. og® .
#°+g— —=0 for x, =0 on S, (4.21b)
3
D
9% _0 on s, (4.21¢)
OX,
D | S
%=%+6¢ =0 on S, at t=0, (4.21d)
on on  on
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with the initial conditionsat t=0

#°(x;t)=0 for x,=0 on S.. (4.223)

#°(x;t)=0 for x,=0 on S,. (4.22b)

Using the linearized Bernoulli equation, the hydrodynamic pressure p, can be expressed as follows:

Py (X;t) = —pw[wk 08,0+ [ p -G (dz+ [ §o(xit —r)n(r)dr] (4.23)

where ¢, and g, means the acceleration and velocity with respect to the basis functions p, .

Then, by substituting the aforementioned equation into the hydrodynamic pressure p, in Equation (4.6), the

time-domain incremental coupled equations of motion at time t+ At is finally obtained:
[, Pl (t+ADSAV = [ oy (E+ AN, dS
_ J‘_t;m LB 2.2 (Xt +At—7) ¢, (r)n,du,dSd 7 + IVS Cii 0€a0;dV — LB Py0AU;N A, dS
(4.24)

= £ (ot + AOnduds - [, Pud® (t+At=7)n(z)ndudsdr + [ p,gus(t)ndu,ds

_va o; (X1)5e,dV .

4.2 Numerical Procedure

The formulation in Equation (4.24) can be transformed into matrix form using the finite element discretization

as

(M+A)U(t+AD+ [ "Bt +At-1)0()dz +(K(t) +C)AU
(4.25)
=R (t+At)+ [ D(t+At-r)p(r)dr —CU®) - F(1),

in which U, U, U, and AU are the acceleration, velocity, displacement and incremental displacement

vectors, respectively, and the submatrices and subvectors are defined as follows:
jv P (6t + A dudV = SUTMU(t + At) (4.26a)

~ [, PG (t+ADNA,dS = SUTAU(t +AY), (4.26h)
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h Ifét J.s pw¢k (X;t + At — T) gk (T)ni&Jide r=8U" J:HA‘ B(t +At - T)U(T) ! (426C)

jvs Ciread €,V = UTK()AU, (4.26d)

‘LB £, 0AUNAU.dS = SUTCAU (4.26¢)

LL f% (x;t+At)n,cu,dS = U'R, (t+At), (4.26f)

- j": LB 2, 8° (Gt + At —7) (7)n.du,dSd 7 = SUT jfo D(t+At—7)(r)d 7, (4.260)
[, Pugus (it ds =aUTCu(), (4.26h)

jVS oy (X;1)5e;dV = UTF(1), (4.26i)

in which M and K are the structural mass and tangential stiffness matrices, respectively, R, s the

surface load vector and F is the internal force vector, and A, B, and D denote the impulse response
functions corresponding to the added mass at infinite frequency, the memory function and the diffraction

impulse-function, respectively, and is the hydrostatic stiffness matrix.

Figure 4.4 presents a numerical solution procedure developed for the present formulation, in which the

following three important parts are involved
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Time increment loop

( Start

l

) (@)

Compute the impulse response functions
A,B,D

l

Assemble the mass and hydrostatic stiffness
M,C

l

Assemble the external load vectors
J'_mD(t+At—r)n(r ydt

®)

l

Assemble the tangential stiffness matrix
K(t+Af)¢D

©

l

Compute the convolution integral
J':NB(HAt—'c) Ur)Pdz

Compute the freqeuncy-dependent matrices

SMA’ SCW’ RW

l

Perform the inverse Fourier transform

l

Solve the incremental equation and
update the displacement vector

l

Perform the stress integration
o(t+A)ED, CEP(£4+Af)ED

Equilibrium iteration loop

l

Assemble the internal force vector
F(t+AED

Not converged
Check convergence
i=i+l

Converged

Compute the elastic trial stresses
of(t+Ar)

Check yielding

Yes

Solve the nonlinear equation and
update plasticity dependent variables

o(t+ AN, e 1+ AN*D

Not converged
Check convergence
k=k+1

Converged

Continue Chock i 6
PR eck incremental time
< End

Compute the tangent stress-strain matrix
CEP(t+A8)ED

Stress iteration loop

Figure 4.4. Numerical procedure for hydro-elastoplastic analysis: (a) evaluation of impulse response functions,

(b) equilibrium iteration loop and (c) stress integration.
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(a) Evaluation of the impulse response functions
The impulse response functions are evaluated in the beginning of the procedure, where the piecewise linear

function at each node is used for the body boundary condition of the radiation potential as

R
Zﬁk —h (%, %,)5() on S, at t=0, (4.27)
3

where @7 indicates the radiation potential associated with the unit impulsive velocity at node k, and h, is

the piecewise linear function at node k.

(b) Equilibrium iteration loop

Within each time step, the following iterative procedure is carried out to solve the incremental coupled

equations of motion:

(M+A)UE+A)? + [ B(t+At-0) U@ dr+ (K (t+ AT +Clau®

(4.28)
=R, (t+A)+[ D(t+At-7)n(r)dr - CU(t+A)" Y — F(t+ AN,
where the superscript i denotes the iteration number.
After obtaining an incremental solution, the total displacement is updated as follows:
Ut+A)Y = U@t + A + AUD , Ut+AD@ =U(t). (4.29)

The update in the iteration is continued until the convergence within the preset energy tolerance (&.) is

achieved:
AU (R(t + A - +A)Y - Qt+AY ) _ . (.30
AU®" (R(t + At) - F(t) - Q(t))
where
R(t+At) =R (t+At)+ j” D(t + At — 7)p(z)d 7, (4.31a)
Q(t+ADY =(M+ A0 +A)? + [ B(t+At-)U(r)"dr + CU(t+AD . (4.31b)

In addition, the full Newton-Raphson iterative scheme, the composite trapezoidal rule for the convolution
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integral, and Newmark method for the time integrations [67] are employed and Equation (4.29) is transformed

as

L . ) M
{,BAtZ (M A)+5 2B+ (K(t+ Aty + C)}AU

=R (t+A0) - [ D(t+At-7)y(r)dz - F(t+ At
[ N At f )
[ B(t+at-7)U(z)de 5 BANUM - CU(t+AY) .

(U(t + A — U(t))—iU(t) —[i—ljU(t)}

BAL?

-(M+ A){ X 2

_At /4 0 _um)-| Z_1lom =AY 7 _o |
25(0){ﬂm2(ua+m) u()) (ﬂ ljU(t) 2(2 2jua)},

in which g and y parameters in the Newmark method, which can be determined to obtain integration

accuracy and stability.

(c) Stress integration

In equilibrium iterations, the element stress o(t +At)*™ for the calculation of the nodal point force vector

F(t+At)"™® and the elastoplastic stress-strain matrix C® (t+At)"™® to calculate the tangential stiffness

matrix K(t +At)"™® are evaluated using the total strains e(t + At)“™® with known stress and strain at time t.

In the following subsections, the numerical solution procedure to calculate the impulse response functions and

to integrate stress are described in detail.

4.2.1 Impulse Response Functions

Using the Fourier transform, the impulse response functions are obtained from the following relations:

A() =S, (0) =~ [ B()sin(or)dz, (4.332)
1) 0
Sey (@) = jo “B(r)cos(wr)dr, (4.33b)
B(t) = 2 [ @A) Sy (@) ]sin(et)do, (4.33c)
T 0
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B(t) = % [ Sou (@) cos(et)do (4.33d)

D(t) = i jo“’ [Re(R,, ())cos(et) — IM(R,, (@) )sin(et))|de, (4.33¢)

where S,,,, Sqy,and R, are the added mass and radiated wave damping matrices and the wave excitation

force vector at a frequency . The three frequency-dependent matrices are obtained adopting the direct
coupling method for hydroelastic analysis of plate structures, see Section 2.2. Note that the Filon quadrature [89]
is employed to perform the numerical integrations in Equation (4.33), in which higher frequency terms are

neglected after convergence tests [90].

The added mass at infinite frequency A(w) can be computed by solving the boundary value problem for the

velocity potential y, . The boundary integral equations for the infinite depth case are given by

0? 1
k Sf:2ﬂhk ERA) f Sg at t=0. 4.34
Ly (‘u’)axsaés[\/ru(xs—ea)ZJd AL BTN S e @39

For the boundary element approximations, Equation (4.34) is multiplied by a test function Jy , and integrated

over the wet surface S . Then, the following equation are obtained:

o° 1
LLrnossg (\/ rf+ (% -&)’ ]ds@dgx =27, hoyds, (4.35)

If y, is calculated by using the boundary element method, and then substituted into the Equation (4.26b), the

added mass at infinite frequency A(w) can be computed.

4.2.2 Stress Integration

For a given current strain state, we update the stress, plastic strain and other internal variables related to the
plastic behavior by adopting the implicit return mapping algorithm [82, 83, 91]. In this procedure, the elastic
trial stress state, which is obtained under the assumption of only elastic deformation having occurred in the time
step, returns to the yield surface by solving a nonlinear equation derived from the plate state-projected von
Mises model. The Newton-Raphson method is employed to solve the nonlinear equation. Then, the elastoplastic

stress-strain tensor is consistent with the return mapping procedure.
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In order to obtain the internal force vector and tangential stiffness matrix, the evaluations of the stress and the
elastoplastic stress-strain tensors are performed at all integration points of the plate finite element. For better
accuracy in hydro-elastoplastic analysis, higher order integrations are required, in particular, through thickness

direction.

4.3 Numerical Examples

In this section, to investigate the capability of the proposed numerical procedure, numerical examples are solved
and the solutions are compared with available experimental results and numerical results obtained with

commercial software. In all the numerical examples, the water depth is assumed to be infinite, the density of

water p, is 1000kg/m® and the acceleration of gravity g is 9.8m/s’. The convergence tolerance for the

equilibrium iteration in each time step is assigned to &, =10 in Equation (4.30).

Since there are no available previous numerical and experimental results for the elastoplastic behavior of
floating plate structures, the numerical results with those obtained using LS-DYNA 971 R7.1.1, a well-known
commercial software useful for nonlinear dynamic problems, are compared. First, to validate the proposed
numerical procedure and the modeling procedure of LS-DYNA for hydroelastic analysis in time domain, a
hydroelastic experiment conducted by Endo and Yago [16] is considered. This experiment has been dealt with

many times before (see e.g. Reference [84, 85]).

As shown in Figure 4.5(a), a floating plate structure is subjected to an impact load induced by a weight of 196N
dropped on a hit point. Table 4.1 presents the details of the floating plate structures used for the experiments.

Figure 4.5(b) shows the impact load curve during the weight drop.
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Table 4.1. Details of the floating plate model for the weight drop test.

Parameter Value
Length (L) 9.75m
Width (B) 1.95m
Thickness(H ) 0.0545m
Draft (d ) 0.0163m
Water depth(h) 1.9m

Bending stiffness per unit width (EI/B) 8985.62Nm

Dimensionless bending stiffness (S ) 2.029x10°°
(@)
L Hit point=8.68125m K
N 1
z9 Z8 z7 Z6 z5 Z4 Z3 zZ2 Z1
———o~———o———o———O———O———O———‘OL——%IB=1.95»1 4|L1L1=o‘os45m
' s
le N le N
" L=9.75m g r B=195m |
®)
0.8 T T T
0.6 .
5 0.4r .
S
0.2}
0 1 1
0 0.1 0.2 0.3 0.4
Time (sec)

Figure 4.5. Floating plate structure subjected to a weight drop impact: (a) problem description and (b) impact
load curve.
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The plate structure shown in Figure 4.6(a) is modeled by a 24 (in length) x 4 (in breadth) mesh of plate finite
elements, and the same mesh is used for the fluid boundary elements on the interface boundary surface

calculating frequency-dependent matrices. The time step size is chosen as At =0.001 for a duration of 2.5s.

@
~
B
X)L
. / 4
! / N
[ i
/ L
®) A4S at
® ® r ® ® s
> ® > ¢ : Node point
® ® ® ® . .
e : Integration point

Horizontal plane Cross-section

Figure 4.6. Discretization and integration points of the floating plate structure: (a) finite and boundary element

meshes and (b) integration points in an element.

In LS-DYNA, shell elements (48x8) and 3D solid elements (480x80x 72) are used for modeling the plate
structure and surrounding fluid, respectively, for which the multi-material arbitrary Lagrangian-Eulerian
(MMALE) method is applied. The fluid - structure interaction is treated via a constraint formulation referred to
as the “Constrained Lagrange in Solid,” and an explicit time integration is used. Figure 4.8 illustrates the

numerical model used in LS-DYNA.
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Floating plate structure

=

Figure 4.7. Numerical model of a plate structure floating on water in LS-DYNA.

Figure 4.8 shows the deflections obtained using the present numerical procedure and LS-DYNA, and the results
are compared with the measurements of the experiment at points Z1- Z9 indicated in Figure 4.5(a). The

numerical results are in good agreement with the measurements.
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Figure 4.8. The time histories of deflections at points Z1-Z9 in the hydroelastic problem
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Then, the hydro-elastoplastic analysis of the floating plate structure is conducted. In order to obtain the

reference solutions for the hydro-elastoplastic problem, an elastic-perfectly-plastic material of yield stress

o, =30kN /m? is considered. In the present numerical procedure, a 48x8 mesh of plate finite elements is

used. In each plate element, a 2x2 Gauss integration is employed in the element plane (r-s plane) and a 5-
point Newton-Cotes integration is used in the thickness direction (t-direction), as shown in Figure 4.6(b). In
LS-DYNA, the same numerical integration is used in the element plane, but the 5-point Lobatto integration is
used in the thickness direction. Figure 4.9 illustrates the deflections calculated at points Z1-Z9 using the
present numerical procedure and LS-DYNA.
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Figure 4.9. The time histories of deflections at points Z1-Z9 in the hydro-elastoplastic problem.
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Figure 4.10 depicts the distributions of the effective plastic strain at the top surface of the floating plate

structure. The results of the present numerical procedure are in good agreement with the reference solutions

obtained using LS-DYNA.

(a) Present
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Figure 4.10. Distributions of effective plastic strain at the top surface of the floating plate structure: for (a) the

proposed numerical method and (b) LS-DYNA.
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Table 4.2 lists the computation times required using a personal computer (Intel(R) core(TM) i7-2600 3.40GHz
CPU, 16 GB RAM) for the present numerical procedure and a high performance computer (5.3TFLOPS, 248
CPUs - Intel Xeon 2.60GHz, 2TB RAM) of Korea National Institute of Supercomputing and Networks for LS-
DYNA. The Massively Parallel Processing (MPP) with 16 CPUs is employed in LS-DYNA. The computational

efficiency of the present numerical procedure is presented in Table 4.2.

Table 4.2. Computational times for the hydro-elastoplastic problem in Figure 4.5.

Items [hr] Ratio [%]
Present (performed in Evaluation of impulse response
) 1.252 43.685
PC) functions
Performance of the time increment
1.614 56.315
loop
Total 2.866 100.000
LS-DYNA (performed  Element processing 2.581 90.056
in a high performance
computer)
ALE Advection 11.86 413.817
Other 0.934 32.589
Total 15.375 536.462
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4.4 Closure

In this chapter, a nonlinear formulation for the hydro-elastoplastic analysis of floating plate structures is
presented, in which the convolution integral was employed to couple elastoplastic deformation and water waves
in the time domain. The present formulation can describe the interactions between fluids and structures with
material nonlinearity. The fluid is discretized using the boundary element method, and the impulse response
functions are obtained from the corresponding frequency-dependent metrics using the Fourier transformation.
The plastic behavior of the floating plates is simulated using an implicit return mapping algorithm based on the
finite element method. The capability of the proposed numerical procedure was investigated through

comparisons with the numerical results of LS-DYNA.
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Chapter 5. Performance of the Numerical Method for

Hydro-elastoplastic Analysis

5.1 Hydrodynamic Problems for Floating Plate Structures in Two Dimensions

Figure 5.1 illustrate a plate structure, which is assumed to be infinite in the x, direction, floating on water of

constant finite depth h subjected to external loads (impact and wave). To solve the problem, the time-domain
incremental coupled equations (4.24) is discretized by using the 2-node Hermitian beam element based on the
Euler-Bernoulli beam theory. On the other hand, the impulse response functions for hydrodynamic forces is
obtained from the corresponding frequency-dependent metrics in the direct coupling method in two dimensions,

in which the fluid is discretized by using 2-node boundary element.

l_l Incident wave

Fluid domain
VF

So

Figure 5.1. A floating plate structure in two dimensional fluid domain.

The plastic behavior of the floating plate structures is simulated by using an implicit return mapping algorithm,

which is summarized in Table 5.1.
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Table 5.1. Implicit return mapping algorithm for the von Mises model with isotropic hardening

1. Calculate elastic trial stress state. Given total strain tensor e, (t + At) and state variables at time t.

Si (t+At) = 2G[eij (t+ At) —%ekk (t+At)s; —ef (t)}

oE(t+At) = \/gsif (t+At)SF (t+At)
FE(t+At) =55 (t+At) — o, [ (1)]
2. Check for yielding

If f7(t+At)<O then S;(t+At)=S,(t+At), Ag” =0, and exit.

Else then Ag® >0, and next
3. Solve the nonlinear equation f, using iterative method - Return mapping

—E
f(AE7)= G (t+At) .10
o, (t+ At) + EAg” |

4. Update state variables

3 Ag®
Ay=—-—=
20,87 (t+At)
S; (t+At)
S;(t+At)=—"—"—~
1+2GAy

1
o (t+At) = Si (t+At)+ go-kk (t+ At)é‘ij
ef (t+At) = ef (1) + Az (t + At)

5. Calculate elastoplastic stress-strain tensor

da (t+At)

Coi (t+At) =
o (1 41) e, (t + At)
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In this section, several numerical examples for investigating the performance and capability of the proposed
numerical procedure for hydro-elastoplastic analysis of a floating plate structure in two dimension. First, the
previous numerical studies for the time-dependent motion of a floating elastic plate structure is considered. And
then, second problem is the hydrodynamic responses of an elastoplastic beam subjected to two load cases: (1) an

impact load and (1) an incident wave load. In all the numerical examples, convergence tolerance for the

equilibrium iteration in each time step is assigned to ¢, =107°.

5.1.1 Benchmark Problems for Transient Hydroelastic Responses

A series of benchmark calculations for the time-dependent motion of a floating elastic plate structure released
from rest is solved and compare the results with those obtained by Meylan and Sturova[ [92]. Table 5.2 presents

a numerical model of the plate structure, which is considered by them.

Table 5.2. Details of the floating plate model of benchmark problems for the time-dependent motion of a

floating elastic plate structure released from rest

Parameter Value
Length (L) Im

Width (B) 1m
Structural density ( p,) 12.25kg / m®

Dimensionless bending stiffness (S ) 0.005
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Two different initial condition and several water depth cases are considered. First, a symmetric displacement is

given by
U, (x;0) =%[1+ cos(2z(x—L/2)/L)], (5.1)
and second, a non-symmetric displacement is given by
oy=l1 0 O<x<L/2
Us (x:0) = SBecos(er(2(x-LI2)/L-12)]  Ljz<x<L’ (5.2)

There are the six different benchmark problems for the motion of floating plate structures as five water depth
cases (h/L=0.02, 0.04, 2.0, 4.0, and 8.0) with symmetric initial displacement and one water depth
(h/L =0.02) non-symmetric initial displacement. Solutions of the proposed numerical procedure were in good

agreement with the reference solutions as shown Figures 5.2 ~5.7.
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Figure 5.2. Time history of deflections over the floating elastic plate structure with symmetric initial
displacement for h/L=0.02.
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Figure 5.3. Time history of deflections over the floating elastic plate structure with symmetric initial
displacement for h/L=0.04.
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Figure 5.4. Time history of deflections over the floating elastic plate structure with symmetric initial

displacement for h/L=2.
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Figure 5.5. Time history of deflections over the floating elastic plate structure with symmetric initial
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Figure 5.6. Time history of deflections over the floating elastic plate structure with symmetric initial

displacement for h/L=8.
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— Present ¢ ¢ M.H.Meylan
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Figure 5.7. Time history of deflections over the floating elastic plate structure with

displacement for h/L=0.02.
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Then, the hydro-elastoplastic analysis for the benchmark problems is performed. In order to obtain the reference

solutions for the hydro-elastoplastic problem, the bilinear isotropic hardening model (yield stress o, =10kpa

and plastic hardening modulus E .= 0.1E) is adopted. The deflections over the floating elastic plate structure

calculated at 0.5 sec intervals by using hydroelastic and hydro-elastoplastic analyses are depicted in following
Figures 5.8 ~ 5.13.
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---. Hydroelasticanalysis  — Hydro-elastoplastic analysis
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Figure 5.8. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial
displacement for h/L=0.02.
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---. Hydroelasticanalysis  — Hydro-elastoplastic analysis
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Figure 5.9. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial
displacement for h/L =0.04.
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---. Hydroelasticanalysis  — Hydro-elastoplastic analysis

1.0 T T T T 1.0 T T T T
0.5} 0.5
L] U;
0.0 0.0
-0.5 1 1 I 1 -0.5 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
1.0 T T T T 1.0 T T T T
t=1 t=1.5

Figure 5.10. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial
displacement for h/L=2.
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---. Hydroelasticanalysis  — Hydro-elastoplastic analysis
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Figure 5.11. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial
displacement for h/L=4.
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---. Hydroelasticanalysis  — Hydro-elastoplastic analysis
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Figure 5.12. Time histories of deflections over the floating elastoplastic plate structure with symmetric initial
displacement for h/L=8.
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---. Hydroelasticanalysis  — Hydro-elastoplastic analysis
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Figure 5.13. Time histories of deflections over the floating elastoplastic plate structure with non-symmetric
initial displacement for h/L =0.02.
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5.1.2 Floating Plate Model for the Weight Drop Test

Let us consider hydro-elastoplastic responses of the experimental model used by Endo and Yago [16]. Table 4.1

present details of the plate model. Here, an elastic-perfectly-plastic material ( E =0.6661Gpa , and

o, =0.1Mpa) is employed. Hydroelastic and hydro-elastoplastic analysis of the floating plate structure

subjected to an impact load, which is induced by a weight of 196N and dropped on a hit point in Figure 5.14.

l 5.45cm

i

1.9m

8.68125m

9.75m

Load (k)

0.8

0.6

0.4

0.2

0.1

0.2
Time (sec)

Figure 5.14. Floating plate structure subjected to a weight drop impact.

0.3

0.4

Figure 5.15 and 5.16 show the deflections and the distributions of the effective plastic strain over the floating

elastic plate structure at 0.5 sec, respectively.
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Figure 5.15. Time histories of deflections over the floating elastoplastic plate structure subjected to a weight
drop impact.
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Figure 5.16. Distributions of effective plastic strain over the floating elastoplastic plate structure subjected to a
weight drop impact.

- 105 -



5.2 Hydrodynamic Problems for Floating Plate Structures in Three Dimensions

This section present the hydro-elastoplastic responses of floating plate structures subjected to external loads as
shown in Figure 4.1. In the discretized coupled equation (4.25), the MITC4 plate and a 4-node quadrilateral
boundary elements are employed. To simulate the elastoplastic behavior of the floating plate structures, the

implicit return mapping algorithm in Table 5.1 is adopted, in which a nonlinear equation f_  derived from the

plate state-projected von Mises model [83] is solved:

1| loEosf | aof-off +1gotf oS +EF] [ evp
f”(A)‘)_4{[1+ EAy/31-v)f " (1+2GAx) [Uy(e f-0. 69

where v is Poisson’s ratio and G, is shear modulus.

Figure 5.17 gives a double plate model for numerical examples. The dimensions and material of the model are
based on the phase - | Megafloat model in the Reference [11, 15]. The details are listed in Table 5.3. The

following two load cases are considered:

e Load Case I: An impact load is applied.

e Load Case Il: Dead weight and an incident wave-induced loads are applied together.

Z9 Z8 Z17 Z6 zZ5 Z4 Z3 Z2 Z1
B=60m O————O———— Q=== = O === Q=== = O—— —— O —— — -O— — — — O
: %
L =300m
Upper plate Lower plate

/ / itd = 0.0097m

VA

/
'
3 Ttb =0.009m

Figure 5.17. Description of the floating double plate structure with a rectangular cross-section.

T
I
5

Y

B=60m
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Table 5.3. Details of the double plate model.

Parameter Value
Length (L) 300m
Width (B) 60m
Thickness (H ) 3m
Structural density ( p,) 7800kg / m®
Young’s modulus (E) 206Gpa
Yield stress (o, ) 238Mpa

Dimensionless bending stiffness (S ) 2.089x107°

The double plate structure is discretized using a 48x8 mesh of plate finite elements. The upper and lower
plates and the empty space between both plates are modeled by employing 3 layers in the thickness direction of
plate finite elements. The 5-point Newton-Cotes integration is used only for the upper and lower layers in the
thickness direction as shown in Figure 5.18. Note that no numerical integration is performed for the middle layer

of the empty space. The bilinear isotropic hardening model (plastic hardening modulus E.=0.01E ) is used.

» : Node point

1
I
I
I
I
I
I
?
I
I
I
I
I

o : Integration point

Figure 5.18. Newton-cotes integration points in plate cross-sections.
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5.2.1 Impact Load Cases

An impact load with the history curve in Figure 5.19 is applied at point Z2, which refers to a load time function

for the crash of a Phantom RF-4E (see Reference [93]).

(@)

Hitpoint=262.5m

/[/ ____________________________ z;_zz___//__ _________ 2.

®

1.4E+8 T T T T
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4E+7 | -

2E+7 .

0 | | | | | |
0 001 0.02 0.03 0.04 0.05 0.06 0.07

Time (sec)

Figure 5.19. Description of hydrodynamic problems of the floating double plate structure subject to impact
loads: (2) at a hit point with (b) a load curve.

Figure 5.20 shows the deflections at points calculated by using the hydroelastic and hydro-elastoplastic analyses
with a time step size At =0.001 of for a duration of 3s. In the results of both analyses, a large difference in

deflection at loading point Z2 appears.
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Figure 5.20. Time histories of deflections at points Z1-Z9 for an impact loading at point Z2.
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Figure 5.21 depicts the distributions of the effective plastic strain at the top surface of the upper plate at sec
intervals. The yield region occurs near the loading point. It is observed that the structural wave is propagated in

the longitudinal direction after the impact loading.
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Figure 5.21. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-

elastoplastic problem of an impact loading at point Z2.
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5.2.2 Dead Weight and an Incident Wave-induced Loads Cases

To solve the hydro-elastoplastic problems of the floating double plate structures subjected to the external loads
as shown in Figure 5.22(a), the hydrostatic responses to the dead weight loads are firstly evaluated though the

following equation:

-[vs Cii 080 AV —LB £,9U,(X; 7 +A7)n,éU,dS
(5.4)
:st f5 (7 + A7)n,du,dS —jvs p.9du,dV —jvs o, (%;7)%,dV
where ¢ denotes only the intensity level of dead loads. Subsequently, the hydrodynamic responses with a time
step size of At=0.02 for a duration of 60s are calculated through hydroelastic and hydro-elastoplastic
analyses, in which the static equilibrium state in Equation (5.4) and additional inertia forces applied by the dead

weight loads are included.
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Figure 5.22. Hydrodynamic problems for the floating double plate structure subject to dead weight and incident
wave—induced loads: (a) problem description and (b) distribution patterns of dead weight loads.
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Figure 5.23 ~ 5.25 illustrate the deflections at points Z1-Z9 depending on the distribution patterns, in which an
incident regular wave has « =0.8 and A=0.8). And he distributions of effective plastic strain at the top
surface of the upper plate at 5 sec intervals are depicted in Figure 5.26 ~ 5.28. As passing the incident wave to
the plate, the effective plastic strain near the place of dead loading (Z5) increases in the early stage. A yield line
is observed along the middle of the plate structure. Figure 5.29 ~ 5.30 show the deflections at points Z1-Z9
according to wavelengths (i.e. « =0.6 and 0.8), in which the hydrodynamic problems of floating plate
structures subjected to dead weight loads with distribution pattern I. It is important to note that the effect of
plasticity on the hydrodynamic responses depends on the distribution of dead weight loads as well as amplitude

and length of incident waves.
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Figure 5.24. Time histories of deflections
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distribution pattern Il and an incident regular wave (« =0.8 and A =0.8m) at points Z1-Z9.
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Figure 5.25. Time histories of deflections of floating plate structures subjected to dead weight load with
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Figure 5.26. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-
elastoplastic problem for floating plate structures subjected to dead weight load with distribution pattern | and
an incident regular wave (¢ =0.8 and A=0.8m).
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Figure 5.27. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-
elastoplastic problem for floating plate structures subjected to dead weight load with distribution pattern 11 and
an incident regular wave (¢ =0.8 and A=0.8m).
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Figure 5.28. Distributions of effective plastic strain at the top surface of the upper plate in the hydro-
elastoplastic problem for floating plate structures subjected to dead weight load with distribution pattern 111 and
an incident regular wave (¢ =0.8 and A=0.8m).

- 119 -



Deflaction (m)

Deflaction (m)

Detlaction (m)

Detlaction (m)

Deflaction (m)

Figure 5.29. Time histories of deflections of floating plate structures subjected to dead weight load with

Deflaction (m)

Deflaction (m)

10 20 30 40 50 60
Time(sec)
z5
0.9 . . . . 0.4
E
§
g
&=
Q
[a]
"0 10 20 30 40 50 60
Time(sec)
Z7
0.0 T T T T
g
g
g
(=]
o
[a]
0.6 : : : : : 0.4
0 10 20 30 40 50 60
Time(sec)
Z9
0.6 . . . . .

10 20 30 40 50 60

Time (sec)

10 20 30 40 50 60
Time(sec)

Z4

0 10 20 30 40

0 10 20 30 40 50 60

Time(sec)
Z6

0 10 20 30 40 50 60

Time(sec)

50 60
Time(sec)

———————— Hydproelastic analysis
——— Hydro-elastoplastic analysis

distribution pattern | and an incident regular wave (« = 0.6 and A =0.8m) at points Z1-Z9.

- 120 -



Deflaction (m)

Deflaction (m)

Detlaction (m)

Detlaction (m)

Deflaction (m)

Figure 5.30. Time histories of deflections of floating plate structures subjected to dead weight load with

-0.3

30 60

Time(sec)
z5

-0.6
-0.9
-1.2
-1.5
-1.8
-2.1

-2.4

30
Time(sec)

z7

1.2

30
Time(sec)

Z9

10 20 30 50 60

Time (sec)

40

Deflaction (m)

Deflaction (m)

Deflaction (m)

Deflaction (m)

12 . ) ) . )
0 10 20 30 40 50 60
Time(sec)
Z4
0.0 T T T T T

0.9

0 10

30 60

Time(sec)

30
Time(sec)

zZ8

20 50 60

20 30

Time(sec)

40 50 60

Hydproelastic analysis

——— Hydro-elastoplastic analysis

distribution pattern | and an incident regular wave (« =1.0 and A =0.8m) at points Z1-Z9.

-121 -



5.3 Closure

This chapter presents hydroelastic and hydro-elastoplastic responses of plate structures floating on the surface of
water in two and three dimensions. First, a series of benchmark problems for the time-dependent motion of a
floating elastic plate structure released from rest and weight drop tests for transient elastic responses of a
pontoon type VLFS are considered. And then, hydrodynamic problems of a floating double plate structure

subjected to two load cases (i.e. impact load or dead weight and an incident wave-induced loads) are solved.
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Chapter 6. Conclusions

In this thesis, significant efforts were paid for predicting hydrodynamic responses of floating plate structures in
surface gravity waves. In particular, numerical procedures were developed to solve the problems of the
interactions between floating plate structures and water wave in the frequency domain and in the time domain. It
has been demonstrated that these procedures provide reasonable numerical solution by comparing to

experimental and numerical results, and are effective in hydroelastic and hydro-elastoplastic analyses.

First, hydroelastic analysis of floating plate structures interacting with surface regular waves was performed. A
formulation for the analysis based on a direct coupling method was derived. The directly coupled equations of
motion are discretized by the finite element method for plate structures and the boundary element method for
fluid. Through comparisons with experimental results of a pontoon type VLFS, the validity of the proposed

procedure was confirmed.

Second, hydroelastic responses of floating plate structures with multiple hinge connections in regular waves are
presented. To effectively model hinge connections on the above numerical procedure, a complete condensation
method was derived, in which, the structural mass and stiffness and fluid-structure interaction terms
corresponding to rotational DOFs are completely condensed. The proposed method has the advantage of the
capability to easily model multiple hinge connections arbitrarily positioned. Through various numerical analyses,

the modeling capability and the effects of multiple hinge connections was demonstrated.

Third, a nonlinear formulation for the hydro-elastoplastic analysis of floating plate structure was proposed, in
which the convolution integral was employed to couple elastoplastic deformation and linear surface gravity
waves in the time domain. The present formulation can describe the interactions between structures with material
nonlinearity and the surrounding fluid. An implicit return mapping algorithm was implemented to simulate the
plastic behaviors of the floating plates according to von Mises plastic model. The fluid is discretized by the
boundary element method, and the IRFs are constructed by using the corresponding frequency-dependent metrics

in the direct coupling method.

The capability of the proposed numerical procedure was investigated through comparisons with the numerical
results of LS-DYNA for hydroelastic and hydro-elastoplastic problems. Further experimental studies are required
for verification of the present numerical procedure and for comprehensive understanding of hydro-elastoplastic
behaviors of floating plate structures. It also would be valuable to extend the proposed method for hydro-

elastoplastic analysis of three dimensional ships or offshore platforms.

Finally, through hydrodynamic problems of floating plate structures subjected to external forces in two or three
dimensions, the performance of the numerical method for hydro-elastoplastic analysis is demonstrated. For two
dimensional problems, hydroelastic and hydro-elastoplastic responses for a series of benchmark calculations and
weight drop tests are studied. Three dimensional hydrodynamic problems for a floating double plate structure
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subjected to two load cases (i.e. impact load or dead weight and an incident wave-induced loads) are solved. The
proposed numerical method for hydro-elastoplastic analysis is applicable to hydroelastic as well as hydro-
elastoplastic problems for floating beam or plate structures subjected to time-dependent external loads such as
impact, incident regular and irregular waves, and so on.
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Appendix A. The Free Surface Green’s Functions

This Appendix briefly describes the free surface Green’s functions. The detailed explanations of these functions
are given in Reference [2, 69, 87, 88]. They are a velocity potential generated by a source potential and is used

to efficiently formulate the fluid by the boundary integral equation.
A.1 Time-dependent Free Surface Green’s Functions

The Green’s function G(x,&;t,7) satisfies the following conditions:

VG = —425(%, — &)5(X, — &,)8(x, — &) for —h<x, <0, (A.1a)
. oG
G+9g—=0 for x,=0, )
g o, 3 (A.1b)
oG
—=0 for x,=-h,
8X3 3 (AlC)
G=0 for x,=0 at t=7, (A.1d)
G=0 for x,=0 at t=r, (A.le)

and G and G are to be O™ V™Y at any given time t as /x?+x2 —> oo, in which ¢ is any
1 2

positive number [87, 88], and & is the Dirac’ delta function..

The time-dependent Green’s functions for finite and infinite depth are given by

S — 1 - 1 _, 2]: e " sinh k);3ks;]inh k&, 3, (kr)dk
\/r + (X3 =&,) \/r + (X3 +&5) cos "
o <oKO L DO LI cofgkctannkn ¢ ) Gy
and
G(xEt, ) = L o[ e coslfokt-0)fs (kdk. (A

St 297 i+ (% 427

respectively, where J; is the Bessel function of the first kind of order 0, and r = \/(xl —EY H (-5 ).
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A.2 Frequency-dependent Free Surface Green’s Functions

The Green’s function G(x,&) satisfies the following conditions:

G(x,&t,7) = Re{é(x,cf)ej‘”‘ } (A.4a)
VPG = —4m5(x, = £)5(x, — £,)5(x, — &) for ~h<x, <0, (A.4b)
-,
G _9E for X, =0 and x; #¢&, (A.4c)
0X, g
9 _ 0 for x,=—h and x =&, (A4d)
OX,4
a ) ~
\/F{B_JFJK}GZO as r—ow. (Ade)
.

The frequency-dependent Green’s functions for finite and infinite depth are given by (see, e.g., Reference [2,
69])

= 1 1
G(x.8)= 2 2 * 2 2
\/r + (X3 —&3) \/r +(2h+x,+&;)
(A.5)
+,[ 2(z+®* I g)cosh z(x, + h)cosh z(&, +h) e ™). (2r)dz
L zsinh zh — @? / g cosh zh 0 ’
and
~ 2
G(x,&) = 1 +J~ Z+ 602 /g e—z\xﬁﬁs\\]o(zr)dz ’ (A6)
I’2+(X3—§3)2 ‘- /g

respectively, where zZ means complex numbers, and L is the contour of an integration indented above the

pole ¢, inthe complex plane as shown in Figure A.1. The pole c, is the positive real root of the equations:

2
ztanhzh -2 =0 for the finite depth and
g
(A7)

2
2-% -0 for the infinite depth.
g

A Ly
0 c, Real axis

Figure A.1. Contour of integration in the Green's function.

A.3 Free Surface Green’s Functions in two dimensional fluid
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The time-dependent Green’s functions with strength 2z are defined by

G(Xy, X, &, &ty 7) = INf (=) + (X,=&,)?

2 2 o _p SINhKE, sinh kx,
_In\/(xl—gl) +(X3+<&;) +47zLe W

3 ij coshk(x, +h)coshk(&, +h) 1—cos,/gk tanhkh (t —7) cosk
0 cosh? kh k tanh kh

cosk|x, — & |dk (A.8)

|X1 - §1|dk '

for the finite depth, and

G(X, Xy, &, &3t 7) = Iy (5, =8) 2 + (X,=&)? =Ny (,=&)? + (X, +&,)?

(A.9)
wl—cos\/g_k(t—r)
_ 2J'0 > cosk|x, — & [k,
for the infinite depth.
The frequency-dependent Green’s functions with strength 2z are defined by
G (X, %5061, £5) = INy (=) + (X5=E5) +In4/(x,=&)? + (20 +x+£,)? —2Inh
2 —kh —kh (A.10a)
B 2.[ (0" 1g+ k)e. cosh k(>2<3 +h)coshk(&, +h) cosk|x1 _§1| L8 Lk '
L k(k sinhkh — »® / g cosh kh) k
or
~ = jelial 02 (% /g f coshc, (x, +hycoshc, (& +h
G(lex31§11§3)=_2ﬂ-z J : (a) rg) 2 I( 23 ) 2 4(53 ) (A.].Ob)
E [cih—(a; /g)h+(a) /g)J
for the finite depth, and
GO %, 610 E) = INY(X,=E) + (5-E,)’
2 _k (A11)
f (@ 2/9 +K) gkoan) cosk[x, _§1|_e_ dk
L k(o /g—-k) k

the infinite depth, where c, is the positive pure imaginary roots of Equation (A.7).
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