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Abstract

Topology optimization is one of the structural optimization methodologies, which has been widely used
in the conceptual design stage. In this thesis, in order to improve the boundary representation of the
density based topology optimization, a new stiffness matrix is proposed by placing design variables at
the nodes of the element. In the existing element density method, there is a limit to the boundary
expression because of the characteristic that the density is constant in an element. Element density based
method could provide smooth boundary with mesh refinement.

In this proposed methodology, each node has density values which are linearly interpolated to divide
the element at the threshold density by an iso-density line. The proposed stiffness matrix enables stable
convergence using strain energy in sensitivity analysis. Verification of the proposed methodology was
performed through several numerical examples in topology optimization.

Keywords structural optimization, topology optimization, iso-density line, continuous boundary, structural

analysis
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Chapter 1. Introduction

Topology optimization is one of the structural optimization methodologies that suggest how to place
materials to obtain the most optimal performance. This has gained popularity over the past decades and
has been applied in various fields such as fluid, acoustics, and metamaterial design as well as structural
optimization. In addition, various topological optimization design techniques have been developed, and
actual manufacturable design techniques have been considered with the development of additive
manufacturing. When considering manufacturability, it is important to obtain a clear boundary in the

topology optimization design result.

The method mainly used in the density approach of topology optimization is element density based
topology optimization. Because the density is constant within the element, element density based
method has a jagged boundary or smeared at the boundary. This jagged boundary also has difficulties
in actual manufacturing. Also, it is not physically desirable. In the element-based density topology
optimization, as the number of elements increases, the jagged boundary can be smoothed. As mesh

becomes fine, the computational cost of optimization increases rapidly.

Various methods have been studied to solve such jagged boundaries problems. There are methods to
reduce the number of elements used through an adaptive mesh refinement scheme [1]. Methodology of
obtaining smooth boundaries using shape optimization after topology optimization ended [2]. In
addition, a method of using a multiresolution scheme that distinguishes mesh discretization level was
also studied [3]. In addition to these methodology, there is a level set method was proposed to get clear

boundary [4]. The level set method expresses the geometry of the structure as an implicit function.

There is also methodology for represent the geometry of the structure by using iso-line. This
methodology describes the boundary of the structure by using the iso-line of the physical quantity. Lee

et al. proposed methodology which use nodal density variables and 0.5 threshold iso-line as post process

1



[5]. Victoria et al. proposed methodology using iso line with minimum criteria level [6]. This
methodology changed the threshold value to satisfy the target volume. Abdi et al. proposed strain energy

density iso-line for boundary representation with evolutionary topology optimization method [7].

In this study, iso-density line is used to represent the geometry of the structure. Design variables are
directly updated with nodal density method. The author proposes modified stiffness matrix with penalty
factor to prevent numerical instabilities. In addition, this proposed stiffness matrix is easy to implement.
By using this modified stiffness matrix, strain energy term is considered when calculating sensitivity
analysis. This term allows objective function to stably converge optimal design during the optimization
procedure. Without mesh refinement scheme and post processing, this methodology represents

continuous boundary which is optimum.

This paper is organized as follows. In chapter 2, this paper deals with research background such as
structural optimization and density based topology optimization approach. In chapter 3, methodology
is described to obtain a continuous boundary representation with iso-density line and modified stiffness
matrix. In chapter 4, the proposed methodology was verified by solving numerical examples for the
benchmark problem in topology optimization. In chapter 5, conclusion for this methodology is

described and future works are also presented.



Chapter 2. Research background

2.1. Structural optimization

Prior to structural optimization, the design was mainly performed by the designer’s intuition or
experience. However, as the design of the structure became complicated, a systematic methodology for
the optimal design of the structure was required. Structural Optimization began in 1904 when Michell
published a paper about truss with minimum weight in the design domain [8]. During the past decades,
many methods of structural optimization have been studied. Thus, as many studies have been conducted,

structural optimization has played an important role in the design process.

There are three types of optimization methods for structural optimization. First, design variables in size
optimization are the dimensions of the structure. Size optimization is an optimization method that
determines dimensions without changing the shape and topology of structure. Shape optimization is a
method to find optimum shape of member using the boundaries of the member as design variables. The
size optimization and shape optimization in which the topology of the structure is determined in advance

have limitations in the optimized results.

Topology optimization is an optimization technique that determines how materials are distributed [9].
This optimization method has no assumptions about the results of optimization, so it is possible to obtain
an innovative design that was unexpected than other methods. Therefore topology optimization is

mainly used in the conceptual design stage of structures.



2.2. Topology optimization method

In the field of topology optimization, many studies have been conducted on the discrete structurer and
continuum structure. For studies on topology optimization of discrete structures, Rozobany and Prager

have been extensively studied for decades [10].

2.2.1. Homogenization method

The topology optimization methodology for the continuum structure was studied by Bendsoe and
Kikuchi [11]. In this method, Bendsoe and Kikuchi introduced a microstructure with a rectangle
structure. Then, the effective material properties were calculated through homogenization, which is a

methodology to find relation between the modulus of elasticity and the density of a given material.

As the size and direction of the microstructure rectangle change, the microstructure distribution that
minimize the objective function is optimized under a given boundary condition and load. In addition,
Bendsoe introduced rank-2 material instead of microstructure with rectangle structure [12]. Bendsoe
and Sigmund suggested the condition of power term that microstructure can make fictitious material of

SIMP (Solid Isotropic Material with Penalization) [13].

2.2.2. ESO (Evolutionary Structural Optimization) method

Xie and Steven proposed the ESO (Evolutionary Structural Optimiation) method for topology
optimization [14]. The presence of material is considered inefficient for elements subjected to low stress
in the structure. By removing the materials of the inefficient elements, optimization is performed
without additional sensitivity analysis. This ESO method has the advantage of simple concept and easy
application. However, the disadvantage of this ESO method is that the removed elements are not

regenerated.



Yang proposed the BESO (Bidirectional evolutionary method for stiffness optimization) algorithm for
topology optimization [15]. BESO is an algorithm that is more advanced than the ESO algorithm.
Inefficient elements are removed, efficient elements are added, and the optimal structure can be obtained

gradually.

2.2.3. Level set method

Sethain and Wiegmann proposed a topology optimization method using the level set method [4]. Level
set method topology optimization introduces a level set function. The presence or absence of a material
1s determined based on the zero contour of the level set function. Also, the zero contour of the level set
function is determined as the boundary of the design. Because of these characteristics, the level set

method can obtain clear boundary.

2.2.4. SIMP (Solid Isotropic Material with Penalization) method

Unlike the homogenization method, this method uses an explicit function for density and material
properties without introducing microstructure [12]. If the density variable has an intermediate density

other than 0 and 1, a penalty is applied to the material property.

Although it has the disadvantage of a little lack of mathematical rigor, this has the advantages of
computational efficiency and easy implementation. This methodology is widely applied to various

topology optimization problem. The formula of the classical SIMP method is as follows.

E (p,)=(p.) E, p,€(0,1] @.1)

E, is the stiffness of the material. Density value p, has lower bound p,;, . This value allows small

stiffness in the void region. Due to the stiffness in this void region, a singular problem does not occur

during finite element analysis. Penalty factor p imposes a penalty so that an element with intermediate
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density has less young’s modulus. Modified SIMP approach is as follows.

Ee(pe) :Emin +pep(E0 _Emin)> pe € [09 1] (22)

E

min

means young’s modulus of the element in void region. The modified SIMP method has the
following advantages. In this modified SIMP approach, it is useful to implement in various filters and

E . has a value regardless of the penalty factor.

2.3. Topology optimization formulation

2.3.1 Minimum compliance problem

Obtaining a structure with minimum compliance means obtaining a design that maximizes the stiffness
of the structure. Obtaining the maximizing stiffness of structure while considering the limited amount

of material used is one of the major issues in various engineering problems.

2.3.2 Mathematical formulation for the minimum compliance problem

The mathematical of topology optimization formulation for the minimum compliance problem is

defined as follows.

N
min: ¢(p) =U'KU=> (p,)"u,k,u,
p

e=l1

:KU=f
:0<pmiu SPSI

where ¢ is compliance, K is the global stiffness matrix, K, is the element stiffness matrix which

has unit young’s modulus material, p, is element density, f is load vector, U is global



displacement vector, U, is element displacement vector, V' is volume constraint.

The element stiffness matrix is defined as follows.

k.= [B'CBaQ 2.4)

B matrix means strain-displacement matrix and C matrix is constitutive matrix. For a plane stress

problem, C matrix is defined as follows.

1 v 0
E
C:(_pi) v 10 (2.5)
1-v .
0 0 v

For gradient based optimization approach, sensitivity analysis is required. Objective function and
constraint of sensitivities with respect to design variables can be calculated using the adjoint method.
In general topology optimization problems, the number of design variables is much greater than the

number of constraints. In such a case, the adjoint method is useful for sensitivity analysis.

oc

— == a’k u

2, p(p.)" u Kk,u, (2.6)
8_V_ 1 2.7
o, @7

In Eq. (2.6), since the stiffness matrix is positive definite, it can be seen that the sensitivities of the
objective function always has the same sign. This is one of the features of the minimum compliance
problem. As the density of the material increases, the compliance decreases. This is also physically
consistent. Eq. (2.7) is due to the assumption that the volume of all elements is one. Another feature is
that the volume constraint is monotone and linear. Because of this characteristic, the minimum

compliance problem can be solved relatively more easily than other topology optimization problems



such as compliant force inverter problem [16].

2.4. Optimizer for topology optimization

Topology optimization problem is one of the types of large-scale nonlinear problems. Various
optimizers have been studied to solve the topology optimization problem. A comparison of the wide

range of optimizers is well researched in the following paper [17].
2.4.1. Optimality criteria method

The Optimality Criteria (OC) method is one of the widely used method of solving structural

optimization problems. Bendsge proposed a heuristic method to update design variables as follows [18].

max(0, p, —m) if p,B] <max (0, p, = m)

new

p. = min(l, p, +m) if p B! > min(l, p, +m) (2.8)

p, B! otherwise

where m is move limit and 7} is damping coefficient. The roles of move limit and damping

coefficient prevent rapid design variable update. B, can be calculated from the Eq. (2.9).

-1
B -2, 2.9)
op.\ op.

A is Lagrange multiplier value which is satisfied volume constraint. This value of A can be obtained

with bi-section method or other numerical algorithms.

2.4.2. The method of moving asymptotes

Since Svanverg proposed the method of moving asymptotes (MMA) algorithm in 1987, this algorithm

8



has become a widely used algorithm for structural optimization [19]. The MM A algorithm is particularly
effective when there are many design variables compared to constraints. In the MMA algorithm, the
objective function of the given nonlinear optimization and the constraint are approximated by a convex
function. The convex function is approximated using the gradient value of the current iteration and

moving asymptotes parameter information.

The approximated function is defined as Eq. (2.10).

(k) (k)

£0 (%) = 10 +'21( Pj 4y
o =R A T

) for each i=0.,1,...m (2.10)

where p;k’ and ql;k) are defined as Egs. (2.11) - (2.13), k is the iteration number of optimization,

J means the number of design variables.

if of, /ox, > 0 then pi” = (U'" —x"') f, [ox  and ¢ = 0. (2.11)
if of, /ox; <0 theng =—(x\"' = L) of, /ox, and p{’ = 0. (2.12)
if of, /ox, =0 then ¢ = pi" = 0. (2.13)
=[O0~ Y AR/ 2.14)

" _ G
= Uy —x, x, =L

A new iteration point can be obtained by solving the sub problem using approximated objective
functions and constraints. Then this new iteration point can be used to create a sub problem.
The process of solving these sub problems and generating them is repeated until the stopping criteria

are satisfied.



2.5. Filtering scheme

In density based topology optimization, various filtering schemes have been studied to avoid the
numerical instabilities such as checkerboard pattern and mesh dependency. A checker board pattern
means that the black and white elements are repeated so that it looks like a checker board pattern. The
mesh dependency problem means that the result of topology optimization obtained depends on the
degree of discretization of the mesh. To solve these numerical instabilities problem, a higher order
element or restriction method must be used. Among the restriction methods, filtering scheme is widely

used because it is easy to implement and simple.

2.5.1 Sensitivity filter

Sigmund proposed the sensitivity filtering scheme to avoid numerical instabilities [20]. This sensitivity

filter is defined as follows.

oc
~ Z w(Xx,)p, —
dc _ ien., o, 2.15)
6pe pe Z W(Xl)
ieN,

where — is the original sensitivities, —— is modified sensitivities, Ne is the set of elements

ap i ap e
within the filter radius from the center of element e. W(X;) is a weight function and is defined as

follows.

W(Xi) = }:nin - ||Xi - Xe (216)

where is filter radius, X; and X, are the position of the centers of each element e and 1.

Finin

10



In the modified SIMP formulation, unlike the classic SIMP method, the value of the design variable can

be 0. If the density value of design variable is less than ¥, ¥ is used instead of the density value to

avoid singularity. Usually, the value of ¥ is0.001. So the Eq. (2.17) is used for modified SIMP method.

oc
~ Z w(X,)p, —
Oc __ien, %, 2.17)
op, max(p,,y) Y w(x,)
ieN,
2.5.2 Density filter

Density filter was proposed by Bruns, Tortorelli and Borudin[21-22]. The density filter modifies the

original density using the following equation.

Z w(x,)p;

ieN,

P =Sy

ieN,

(2.18)

The important thing in this equation is that /z is the physical density variables. p, has no longer a

physical meaning, it only functions as an intermediate density. Therefore, volume constraints must be

calculated as variables that have physical meaning. Sensitivities can be obtained with Eq (2.19) by using

chain rule.
oy _ Ziﬂi (2.19)
ap/ ieN, ape apj

where ¥ is compliance or volume constraint.
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2.5.3. Heaviside projection filter

The above-described sensitivity filter and density filter have the advantage of being easy to implement,
but when these filters are used, the density variable has an intermediate value. In particular, the
intermediate density at the boundary has no physical meaning and it is difficult to recognize the
boundary. Guest proposed the following filter with Heaviside step function to obtain the 0-1 solution
[23]. The Heaviside step function is replaced with the following function along with the continuation

scheme and parameter [ .

p.=l-¢’?4+pe’ (2.20)

e

where ;): is filtered density with density filter and p, is physical density with projection filter. Eq.
(2.20) approximates the Heaviside projection functionas [ increases. Since nonlinearity increases as

the approximation to the Heaviside projection filter increases, a continuation scheme that gradually

increases value of £ should be used. The sensitivities value with respect to the intermediate density

variable can be obtained using the chain rule.

Oc ~o Oc Op,
op; ien,0p. Op,

.21
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2.5.4. Alternative sensitivity filter

Alternative sensitivity filter is proposed by Borrvall [24]. The purpose of this filter is to get 0-1
solutions by modifying the original sensitivity filter. Original sensitivity filter is modified as follows
Eq. (2.22). This filter is not a mesh independent filter. However, by using this alternative sensitivity

filter, a discrete solution can be obtained.

oc
~ Z w(X,)p, =
oc _ieN, op; (2.22)
ape z plW(Xl)
ieN,
QF
e

7

min

Fig. 2.1 Projection scheme within filter radius from element e

Fig. 2.2 Linear projection scheme weight function
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2.6. Introduction of iso-density line

Nodal density is design variables in the element and have values from P, to 1. To avoid singularity,

Puin Was implemented. Using a linear interpolation method, an element is divided based on the point at

which the density equals the threshold value. Fig 2.3 shows how to divide elements into solid and void
domain using interpolation of nodal density. A black node has a density value greater than the threshold
value. A gray node has a density value less than the threshold value. The dark area means the solid
domain and light gray area means the void domain. The shape that can be expressed differs depending

on the location of the node that exceeds the threshold value.

P

P=h

3 >

Fig. 2.3 Implementation of iso-density line

Lorensen proposed marching cube algorithm [25]. Marching square algorithm is an algorithm that
considers the marching cube algorithm in two dimensions. The marching squares algorithm gives case
of contour line. Fig 2.4 shows 16 cases using the Marching square algorithm. Cases 5 and 10 have
ambiguous cases because of their symmetry. As can be seen in Fig 2.5, This was classified using the

average of the nodal density.

14



Case 0 ® Case | Case 2 Case 3
& ™
. \\t”

Case 4 Case 5 Case 7

Case 11

Case 12

Case 14 Case 15

Fig. 2.4 Iso-density line case in marching square algorithm

Case 5

Py Py P TP, S

@ @ Z 0
4
Case 10 +p, +p; +
‘ ; ®) M< o
4
(1) (2

P <p,;, node

o P=p;, node

Fig. 2.5 Ambiguous case in marching square algorithm
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Fig 2.6 shows a typical case of how the domain of an element can be divided. There is triangle,
quadrilateral, pentagon, two triangles, and hexagon domains. For other cases, it can be obtained by
rotating cases in Fig 2.6. Therefore, Numerical integration for stiffness matrix and sensitivity analysis

were calculated only in the case of Fig 2.6 in this thesis.

» mA'S

Fig. 2.6 Typical case of divided domain
2.7. Numerical integration scheme

Stiffness matrix can be calculated using Eqs. (2.23-2.24). The subscript s means solid and v means void
domain. Because C, is related to young’s modulus and it has negligible value, the integral function is

calculated only in the solid domain. The advantage of this strategy is that there is no need for a re-
meshing technique. This method of calculating the stiffness of the sub domain has been applied in
extended finite element method or fluid structure interaction problems. [26-27]. The red point means

gauss point in solid domain.

k, = [B'CBdQ (2.23)

k, = [B'CBdQ, +[B'C BdQ, (2.24)

2.7.1. Triangle domain

This method integrates the integrand in a given domain by performing mapping twice with two natural
coordinates. In physical coordinates, the mesh of an element is a square with length 1. In natural

coordinate & —7, the mesh size is a square of size 2. The stiffness matrix calculation for triangle

16



domain is defined as follows Eq. (2.25)

1 3
k, = 3 ;B(ggi,ngi)TCB(ggi,ngi)w,. det(J ) det(J,) (2.25)
& @) (1
y - ot 08| |2 0 (2.26)
e ), L
on 0on 2

& =ré +s&+(1-r—s)S;

n=rm, +sn,+(1-r—s)n, 2.27)
ds on

Jq _ or or _ [51 _53 m _773j (2.28)
as on & =& M,
Os Os

&8 =8(r5,,8%,), n%, =n(rs,,s%) (2.29)

where r€,,5%, are gauss points of the triangular domain in r-s natural coordinates. W, is weight
factors of triangle element. £ %,, 1, are points that are mapped to gauss points in r-s natural coordinates

and these values can be obtained using Eq. (2.27). Jacobian matrices J, and J_ can be obtained by

using the Eq. (2.26) and Eq. (2.28)

2.7.2. Quadrilateral domain

Like the triangle domain, it can be obtained using mapping. This method integrates the integrand in a
given domain by performing mapping twice with two natural coordinates. The stiffness matrix

calculation for triangle domain is defined as follows Eq. (2.30)

17



4
k, = B(&%,n°) CB(&¥,,n*,)det(d ) det(J ) (2.30)

i=1

Jacobian matrix J , 1s the same as previously defined as Eq. (2.26). Jacobian matrix J , 1safunction

of r and s.
95 on
or or
J = 2.31
p 8_§ 5_77 (2.31)
Os Os

i
M- 1M

i
AN

hl.(r,s)ﬁi

(2.32)

3
Il

hi(’”as)ni

where /.(7,s) is shape function of bi-linear four node element in r-s coordinate. The stiffness matrix

of the quadrilateral domain can also be obtained similarly to the method described above.

2.7.3. Other domains

For pentagon, two triangles and hexagon domain, the stiffness matrix can be calculated by dividing the

triangle and quadrilateral sub-domains. k_,,, means element stiffness matrix for quadrilateral domain.

k,. means element stiffness matrix for triangle domain.

1

2.7.3.1 Pentagon domain

K, =K o1 +K a2 (2.33)

e~ ™Mquadl

2.7.3.2 Two triangles domain

k =k, +k, , (2.34)

tril
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2.7.3.3 Hexagon domain

k, =k

e quadl

+k (2.35)

quad?2

A
A
P

Fig. 2.7 Summation of domain for stiffness calculation



Chapter 3. Nodal density based topology optimization

To have a continuous boundary representation, nodal density based approach was implemented. The
iso-density line was used to represent boundary. Each node was used as a design variable and
optimization performed. Based on an arbitrary threshold value, the element by linear interpolation along
the edges was divided into solid and void regions by linear interpolation scheme. The stiffness of only
the part where the material exists was calculated and implemented into the optimization procedure. To
enable objective function more stable convergence, the proposed stiffness matrix was modified with

penalty factor.

3.1. Formulation of proposed method for minimum compliance

In this research, modified stiffness matrix is proposed inthe equation (3.1). p, is the average of the

node density in an element. Using this modified stiffness matrix, this formulation has the advantage of

being able to stably converge during the optimization process.

k,=(p,)" k, 3.1)

where K, is the stiffness matrix of element considering only the solid region. K, means modified

stiffness matrix with penalty factor. p means penalty factor.

In the case of minimum compliance problem, the problem is defined as follows Eq. (3.2)

N
min . C(p) = UTKU = Z(:[_)e)pueTkeue
p

e=]
st Zp,.—V <0 3.2)

: KU=f
:0<pminspgl
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Sensitivity formulation can be obtained using adjoint method.

oc P = \pa, T r,—p OK
—=) = u, ku,—u F—u
o, ZQ 4(Pe) c ku,—u(p,) o (3.3)

1 1

Domain €. is a set of elements with the i-th design variable as a node. As can be seen in Fig 3.1, The

number of elements in the domain set is three cases.

Case of domain{)

Element 3 Element 3

Element 2| Element 4

Element 1 Element 1,2 Element 1,2.3.4

n(Q)=1 n(Q) =2 nQ) =4

Fig. 3.1 Case of domain set
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3.2. Sensitivity Analysis

The sensitivity can be calculated by a semi-analytic method. When performing sensitivity analysis, it is
assumed that the domain case does not change even if the design variable changes. Because sensitivities
implies a change in the objective function with respect to infinitesimal change of design variables, this

assumption is reasonable. This assumption makes the sensitivity analysis easier.

Node 3

T

Fig. 3.2 Case for location of node

Node 1 means that all elements of the domain sets € are solid region. Node 3 means that all

elements of the domain sets €2 are void region. The element of the domain set of Node2 has solid

and void regions. Without modified stiffness matrix, sensitivity analysis formulation is as follows.

ﬁ—Z:—u'f%u 3.4
api ecQ); ¢ 8p ¢ B4

1
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This term is the derivative of the stiffness matrix of the design variable. This term is zero where e-th
element is solid element or void element. When the case for location of node is 1 or 3, this term is
zero due to the aforementioned assumption. During optimization, convergence may be difficult
because there is no difference in the sensitivity of the node in solid and void elements. When the case

for location of node is only 2, sensitivity has not zero values. This leads to numerical instabilities.

With the proposed modified stiffness, sensitivity formulation is Eq. (3.3). The first term in the
modified sensitivity formulation is related to strain energy term. The second term is the derivative of
the stiffness matrix of the design variables. With the strain energy term, the sensitivity of the solid
region can be obtained higher than that of the void region. It is physically more meaningful that the
sensitivity in the solid region is greater than that in the void region. Nodal design variables converge
to 0-1 easily due to the penalty factor. Because design variables converge to 0-1, the aforementioned

assumptions make it more reasonable.

Derivatives of stiffness matrix with respect to design variables can be obtained by using chain rule as

follows Eq. (3.5)

Z ok, 0, ok, O,

P 3.5
8x 8,0, 8_/. op,; G5

ap,

The physical volume can be obtained by calculating the area of the solid domain within an element.

(3.6)
V,=V,(P1sP2:P3:P4)
The derivative of volume constraint can be calculated using chain rule as follows Eq. (3.7)
WV _ 5.
ap i esQ); ap i
: (3.7
Z 6V ax 8 Ve ay I
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3.2.1. Derivatives of stiffness matrix for triangle domain

Derivatives of stiffness matrix for triangle domain can be obtained by using Eq. (3.5). As can be seen
in the Fig 3.3 and Eq. (3.8), the stiffness matrix is a function of the point determined by iso-density line.

Superscript * means that the point can be moved by the density values of the node.

w 3.8)
ke = ke(x29y3)

e

ok, 0ok, ox, L Ok, oy,

op,  ox, dp, v, Op,
ok, _0k, ox, Ok, oy
op, ox, dp, Oy, Op, (3.9)
ok, _ Kk, ox, Lk, o,
dp, 0x, op, dy; op,
ok, _ ok, ox, ok, oy,
dp, ox, Op, Ay, p,

In the case of local node 3, it can be seen that even if the density value of node 3 changes, there is no

change in the value of the stiffness matrix. It means that sensitivity with respect to node 3 is zero.

3.2.2. Derivatives of stiffness matrix for quadrilateral domain

As can be seen in the Fig 3.4 and Eq. (3.10), the stiffness matrix is a function of the following variables.

K, =K, (y:,7,) (3.10)
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ok, Ik, 8y; N ok, 8y:
dp, s dp, Oy, Op,

ok, _ ok, oy Ok, oy,

dp, v, dp, oy, op,
ok, _ ok, oy, K, Oy,

(3.11)

e

dpy O, Opy Oy, Op
ok, _ 0k, oy; Ok, Oy,
dp, Oy, dp, Oy, Op,

3.2.3. Derivatives of stiffness matrix for pentagon domain

As can be seen in the Fig 3.5 and Eq. (3.12), the stiffness matrix is a function of the following variables.

ke = ke(x;_dl ’y3*_d2)

(3.12)
ok, 0k, @C;dl_}_ ok, ay;dz
op, ax;icﬂ op, 6)/;7‘,2 op,
ok, _ ok, 0% . Ok, O
op, ax;:(u op, 5)/;7‘,2 op,
(3.13)

ok, _ ok, %, Ok, O p
op; ax;laﬂ op; ay;fdz op;,

p, -ax;dl p, ay;dz p,

ok, _ ok, 0%y Ok, O

In the case of local node 1, it can be seen that even if the density value of node 1 changes, there is no

change in the value of the stiffness matrix. It means that sensitivity with respect to node 1 is zero.
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3.2.4. Derivatives of stiffness matrix for two triangles domain

As can be seen in the Fig 3.5 and Eq. (3.14), the stiffness matrix is a function of the following variables.

* * * *
K, =K, (X 41505 015X 425 ylidz)

ok, _ ok, ax;_dl ok, ax;_dz Lok, a)’;_[n 4 ok, 5)/;_(12
op, axQ_dl op; a353_4172 op; &)};_dl op; ayl*_dz op,
ok, 0ok, ax;_dl ok, a‘x;_d2+ ok, ay;_dl N ok, 6)/1*_42
op, ax;_a’l op; 6x;_dz op, 8J’;ﬁ_cn op, ayf_dz op,
ok, _ ok, ax;7d1 ok, ax;c/z 8y3 a 8)’1 42
op; ax2_d1 op; 6x;_d2 0p; 5)’3 a1 0ps ayl a2 OP;
kK, _ ok, ax;_dl ok, ax;_d2 5y;_d1+ ok, éyl*_d2
P, ax;_dl 0P ax;_dz P4 @’;_dl 0Py ayf_dz op,

3.2.5. Derivatives of stiffness matrix for hexagon domain

(3.14)

(3.15)

As can be seen in the Fig 3.6 and Eq. (3.16), the stiffness matrix is a function of the following variables.

* * * *
k, =k, (x37(11’y47d13 x27429y37d2)

ok, 0k, ax;_[n ok, ax;_dz ok, 8y4 a ok, 8y3 a2
op, ax;_dl op; ax;_dz op, 5)’4 o opy ay3 a2 9P
ok, Ik, ax;7d1 ok, ax;7d2 ok, ayzjn ok, ay;7d2
op, ax;_[n op, ax;_dz op, 5\)’:_[11 op, ay;_dz op,
ok, _ ok, Gx;dl ok, ax;:IZ ok, ay:7d1 6)’;742
0p; 8x37d1 op5 asz/z op; Qvftdl op; ay;dz op;
ok, 0k, ax;_dl ok, ax;_dz ok, 8y4 a ok, ay;_dz
op, Ox;dl 0P, ax;7d2 0Py 6)’4 a1 9Py ay;dz 0py

26

(3.16)

(3.17)



p4‘_ | Ps

(x;,yJ)l

Py . ':pz
(x;,) (x5,1,)

Fig. 3.3 Triangle domain

Fig. 3.4 Quadrilateral domain
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Fig. 3.5 Pentagon domain
p4 = ® = =
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pl p2 * Domain 1

Fig. 3.6 Two triangles domain

Py Ps

= Domain 2
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Fig. 3.7 Hexagon domain
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3.3. Optimization Procedure

Proposed methodology is as shown in Fig 3.8. This proposed methodology used a penalty factor with
stiffness matrix to avoid numerical instabilities. However, This methodology leads to an
underestimation of the stiffness of the structure. This stiffness underestimation is because the stiffness
matrix of the element in the boundary is penalized. After optimization is completed, compliacne is
obtained through finite element analysis using the original stiffness matrix without penalization. This
compliance does not underestimate the effect of the stiffness of elements in the boundary. In order to

distinguish between the compliance c(p) obtained during the optimization process and the
compliance ¢(p,,,) after optimization, the former was named as nominal compliacne and the latter as

physical compliance. Obviously physical compliance ¢ is not an optimal value because it is not the

objective function of the original problem. Nevertheless, it provides physical meaning about optimized

result p, .
| Initalize ] 7 :
wd 7 C(p) =UKU
"'| Finite Element Analysis |< : K= ka = Z(ﬂ_’e ))) k, ,(0<p,<])

l B :

| Sensitivity Analysis | | " Underestimate stiffness of the structure.
!

Update | Filtering |

design variables

| Optimization |

” 2 OO
JYes Ke:Zg:kg:Zg:ke

[ Stop ] q = Physical displacement

p *  Physical compliance
opr

=14

™

Fig. 3.8 Procedure of topology optimization
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Chapter 4. Numerical example

In chapter 4, verification of the proposed methodology is dealt with through numerical examples widely
used in topology optimization. The young’s modulus of the material £, is one. Poisson ratio is 0.3.

Magnitude of load is one. The initial input for every problem in this study has the density uniformly
arranged in the domain as shown in Fig 4.2. It gives 50% volume in domain at initial design. Penalty

factor p is 4. MMA optimizer is used in this study.

4.1. MBB beam problem

The boundary condition and loading given in MBB Beam are as follows.

f

Fig. 4.1. MBB beam problem

0069046600
1 606060660664

4 oottt dd
* L 664
1 6666666606660004
4 L 664
L & *4

! 4

1 666666664
1 6666606864
1 666666664
1 6666604

1 66666666604
6666600000

*
*
*
*
*
*

1 6666666660666006006064

1 6.6.6666660600000000000004¢
*******ﬁ*ﬁ************ﬁ*:
4

Fig. 4.2. Initial design for optimization
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Sigmund introduced measure of discreteness to evaluate the degree of discreteness of an optimized

design [29].

> 4p,(1-p,)
e=l

4.1)
M, =< x100 (%)
n

If the element density is 0 or 1, the measure of discreteness is 0. It can be seen that well discretized
design has small M, value. In the proposed method, there is no intermediate density within an

element, so the Eq. (4.1) cannot be used exactly. Instead, this measure of discreteness equation is slightly
modified to evaluate the degree of penalized stiffness of an optimized design in Eq. (4.2). As shown in

Fig 3.9 elements with intermediate volumes are penalized for stiffness like intermediate density.

S a4y (1-7,)

4.2
M =S 4100 (%) @2
n

nd

SIMP method
p, =05 p,=0
Proposed method
V.=05 v,=0
h{mf =0 Mim’ :]‘ Mm:f' =0

Fig. 4.3 Measure of discreteness of both method
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In these examples with proposed method, alternative sensitivity filter was used. It was shown that the
alternative sensitivity filter can be more stable than the commonly used sensitivity filter and density
filter during the optimization procedure. This is because a more 0-1 solution can be obtained by using
an alternative sensitivity filter. This clear 0-1 solution is far from the threshold density value of 0.5. So
the optimization process using alternative sensitivity filtering is more stable. In particular, density filter

is more unstable than alternative sensitivity filtering because it has the effect of directly smoothing the

density variables.

Table 4.1. MBB problem comparison for 60x20 elements

Proposed method

Reference (SIMP)

Number of finite elements

1,200 (60x20)

1,200 (60x20)

Number of design variables

1,281

1,200

Filter radius 1.5 1.5
Nominal 221.1699 190.4210
Compliance
Physical (170.8496) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 11.08 0.003
Iteration 135 374
Computational cost
CPU time 48.5s 17.12's

Table 4.2. MBB problem comparison for 90x30 elements

Proposed method

Reference (SIMP)

Number of finite elements 2,700 (90x30) 2,700 (90x30)
Number of design variables 2,821 2,700
Filter radius 2.25 2.25
Nominal 209.2133 191.8124
Compliance
Physical (172.1187) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 7.61 1.68
Iteration 142 455
Computational cost
CPU time 137.40 s 31.65s
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Table 4.3. MBB problem comparison for 120x40 elements

Proposed method

Reference (SIMP)

Number of finite elements 4,800 (120x40) 4,800 (120x40)
Number of design variables 4,961 4,800
Filter radius 3 3
Nominal 207.3335 191.0176
Compliance
Physical (172.8602) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 5.96 0.93
Tteration 42 405
Computational cost
CPU time 74.88 s 55.38 s

Table 4.4. MBB problem comparison for 180x60 elements

Proposed method

Reference (SIMP)

Number of finite elements

10,800 (180x60)

10,800 (180x60)

Number of design variables 11,041 10,800
Filter radius 4.5 4.5
Nominal 204.2535 191.8497
Compliance
Physical (173.9615) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 3.83 1.288
Iteration 315 491
Computational cost
CPU time 1324.11 s 120.41 s

Reference (SIMP) method used heaviside projection filter to compare with the proposed method with
binary density in elements. As can be seen from the Table 4.1 to Table 4.4, proposed method has higher
compliance than SIMP method. However, this is due to the underestimation of the stiffness of the
element in the boundary. As the mesh becomes finer, it can be seen that measure of discreteness
decreases. Therefore, the nominal compliance also decrease. Without underestimation of stiffness of
structure, it can be seen that physical compliance has a lower value than the objective function of the

reference.
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4.2. Cantilever beam problem

ALAEARARIRRRRRRRIRRRRARRNNY

Fig. 4.4. Cantilever beam problem

Table 4.5. Cantilever problem comparison for 60X 30 elements

Proposed method

Reference (SIMP)

Number of finite elements

1,800 (60x30)

1,800 (60x30)

Number of design variables

1,891

1,800

Filter radius 1.5 1.5
Nominal 70.6597 62.6725
Compliance
Physical (56.4067) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 9.95 0.006
Iteration 58 324
Computational cost
CPU time 33.10s 20.97 s

The boundary condition and loading for cantilever beam problem is given in Fig 4.4. As shown Table
4.5, Table 4.6, Table 4.7, and Table 4.8, it can be seen that the objective function is minimized and the
given volume constraint (50%) is satisfied. In addition, it can be seen that the nominal compliance

decreases with the measure discreteness value. Physical compliance has a lower vale than reference

method.

34



Table 4.6. Cantilever problem comparison for 80x40 elements

Proposed method Reference (SIMP)

Number of finite elements 3,200 (80x40) 3,200 (80x40)
Number of design variables 3,321 3,200
Filter radius 2 2

Nominal 68.2973 62.0119
Compliance

Physical (56.5161) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 7.68 0.032

Iteration 82 324
Computational cost

CPU time 89.89 s 30.80 s

Table 4.7. Cantilever problem comparison for 100x50 elements

Proposed method

Reference (SIMP)

Number of finite elements

5,000 (100x50)

5,000 (100x50)

Number of design variables

5,151

5,000

Filter radius 2.5 2.5
Nominal 68.2439 61.8712
Compliance
Physical (57.0602) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 5.71 0.143
Iteration 47 393
Computational cost
CPU time 94.86 s 44.58 s

Table 4.8. Cantilever problem comparison for 120X 60 elements

Proposed method

Reference (SIMP)

Number of finite elements 7,200 (120%x60) 7,200 (120x60)
Number of design variables 7,381 7,200
Filter radius 3 3

Nominal 67.6001 62.0856
Compliance

Physical (57.1781) -
Volume fraction 0.5 0.5
Measure of discreteness (%) 5.04 0.629

Iteration 80 374
Computational cost

CPU time 227.13 s 59.09 s
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4.3. Michell type structure problem
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Fig. 4.5. Michell type structure problem

Table 4.9. Michell type structure problem comparison for 60x 30 elements

Proposed method

Reference (SIMP)

Number of finite elements 1,800 (60x30) 1,800 (60x30)
Number of design variables 1,891 1,800
Filter radius s 1.5

Nominal 19.6787 15.9945
Compliance

Physical (12.8967) -
Volume fraction 0.25 0.25
Measure of discreteness (%) 7.92 0.050

Iteration 60 307
Computational cost

CPU time 3422 s 21.21s

The boundary condition and loading for Michell type problem is given in Fig 4.5. As shown Table 4.9,
Table 4.10, Table 4.11, and Table 4.12, it can be seen that the objective function is minimized. Initial
design for optimization is uniformly distributed with 50% volume fraction as shown in Fig 4.2 within
a given domain. As optimization proceeds, the given volume constraint 25% is satisfied. In addition, it

can be seen that the nominal compliance decreases with the measure discreteness value. Physical

compliance has a lower vale than reference method.
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Table 4.10. Michell type structure problem comparison for 80X 40 elements

Proposed method Reference (SIMP)

Number of finite elements 3,200 (80x40) 3,200 (80x40)
Number of design variables 3,321 3,200
Filter radius 2 2

Nominal 18.9196 16.2285
Compliance

Physical (13.2522) -
Volume fraction 0.25 0.25
Measure of discreteness (%) 5.94 0.036

Iteration 83 261
Computational cost

CPU time 90.98 s 20.17 s

Table 4.11. Michell type structure problem comparison for 100X 50 elements

Proposed method Reference (SIMP)

Number of finite elements 5,000 (100x50) 5,000 (100x50)
Number of design variables 5,151 5,000
Filter radius 2.5 2.5

Nominal 18.8622 16.3738
Compliance

Physical (13.5942) -
Volume fraction 0.25 0.25
Measure of discreteness (%) 4.82 0.076

Iteration 51 427
Computational cost

CPU time 92.69 s 63.43 s

Table 4.12. Michell type structure problem comparison for 120x 60 elements

Proposed method Reference (SIMP)

Number of finite elements 7,200 (120%x60) 7,200 (120%x60)
Number of design variables 7,381 7,200
Filter radius 3 3

Nominal 18.7169 16.7660
Compliance

Physical (13.8478) -
Volume fraction 0.25 0.25
Measure of discreteness (%) 3.99 0.948

Iteration 60 402
Computational cost

CPU time 174.61 s 76.16 s
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As the mesh became finer, the objective function decreased. If the domain is discretized with coarse
mesh, the ratio of the stiffness subjected to penalized element at the boundary is larger, so the
compliance is higher in the coarse mesh. If domain is discretized with fine mesh, the ratio can be reduced.
Therefore, compliance is lower in fine mesh than in coarse mesh. Optimization results and iterative
process can be seen from Fig.4.6 to Fig.4.41. It can be seen that the proposed method satisfies the

volume constraint and makes objective function converges stably.

Computational cost is heavier than SIMP method. This is because the two methods differ in calculating
stiffness. However, even after the optimization of the SIMP method is finished, the jagged boundary
still remains due to the characteristics of the element density method. This proposed method is
meaningful because the boundary expression is continuous and there is no intermediate density. In
addition, when comparing the physical compliance and the compliance of the SIMP method, it can be
seen that the physical compliance has a smaller value. This means that the optimized design with

proposed method puts the material more optimally within the domain than the SIMP method.
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Fig. 4.6. 60x20 MBB beam problem Proposed method (top) and SIMP method (bottom)
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Fig. 4.9. 90x30 MBB beam problem Proposed method (top) and SIMP method (bottom)
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Fig. 4.11. Optimization results for 90x30 elements
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Fig. 4.12. 120x40 MBB beam problem proposed method (top) and SIMP method (bottom)
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Fig. 4.14. Optimization results for 120x40 elements
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Fig. 4.15. 18060 MBB beam problem proposed method (top) and SIMP method (bottom)
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Fig. 4.17. Optimization results for 180x60 elements
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Fig. 4.18. 60x30 Cantilever beam problem proposed method (top) and SIMP method (bottom)
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Fig. 4.20. Optimization results for 60x30 elements
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Fig. 4.21. 80x40 Cantilever beam problem proposed method (top) and SIMP method (bottom)
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Fig. 4.23. Optimization results for 80x40 elements
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Fig. 4.24. 100x50 Cantilever beam problem proposed method (top) and SIMP method (bottom)
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Fig. 4.26. Optimization results for 100Xx50 elements
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Fig. 4.27. 120x60 Cantilever beam problem proposed method (top) and SIMP method (bottom)
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Fig. 4.29. Optimization results for 120x60 elements
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Fig. 4.30. 60x30 Michell type structure problem proposed method (top) and SIMP method (bottom)
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Fig. 4.36. 100x50 Michell type structure problem proposed method (top) and SIMP method (bottom)
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Fig. 4.38. Optimization results for 100x50 elements
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Fig. 4.39. 120x60 Michell type structure problem proposed method (top) and SIMP method (bottom)
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Fig. 4.41. Optimization results for 120x60 elements

50



Chapter 5. Conclusions

The purpose of this paper is to obtain continuous boundary of topology optimization results. Element
based topology optimization has a limitation in that it has uniform density within an element. This

method has the disadvantage of having intermediate density or jagged boundary.

In this study, boundary of optimized design is expressed as iso-density line with nodal density. The
stiffness matrix of dividend element by iso-density line was obtained with numerical integration only
for solid domain. Main idea of this study is proposal of a new stiffness matrix to avoid numerical
instabilities. This makes objective function converge stably in the topology optimization process. The

proposed method can obtain clear boundary of optimized design with coarse mesh.

In addition, the proposed method has a more physical meaning than the element-based density method
with intermediate density because the proposed method hasa binary density 0-1 within elements. It was

verified through several numerical examples to get clear boundary.

In the future work, a new modified stiffness matrix equations can be investigate for better performance.
This matrix should be proposed to avoid numerical instabilities while minimizing the effect of
underestimation of the stiffness due to the penalty factor. Using such a stiffness matrix will have the

effect of reducing the gap between physical and nominal compliance.
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