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ABSTRACT

Finite element model reduction methods have been widely used to reduce the computational costs of

structural analysis and design. Using model reduction methods, global (original) models can be approx-

imated by reduced models with much smaller matrix size. Although various model reduction methods

such as dynamic condensation and component mode synthesis (CMS) have been proposed over the last

several decades, many challenging issues still must still be addressed to improve the solution accuracy

and computational efficiency of reduced models. The work in this thesis focuses on the development of

enhanced model reduction, general mode selection, and accurate error estimation methods to overcome

the known disadvantages and limitations of existing model reduction methods.

In this work, we first develop a new component mode synthesis enhancing the Craig-Bampton (CB)

method, the most popular model reduction method. To develop the enhanced CB method, the original

transformation matrix in the CB method is enhanced considering the residual flexibility that contains

the residual substructural modal effect, and the unknown eigenvalue in the enhanced transformation

matrix is approximated by using O’callahan’s approach to Guyan reduction. Using the newly defined

transformation matrix, global FE models can be more accurately approximated. We demonstrate its

performance through numerical examples.

In model reduction methods, only a small proportion of the dominant degree of freedoms (DOFs) or

the substructural modes is retained in the reduced model. Therefore, the accuracy of the reduced model

highly depends on the choice of the retained dominant DOFs or substructural modes. In this work,

we develop a new mode selection method for CMS methods. In contrast to the frequency cut-off mode

selection method, in which substructural modes in sequence from the lowest substructural frequency

to a cut-off frequency are retained, the proposed method selects the dominant substructural modes in

accordance with the contribution of the substructural modes to the target global modes. Therefore, the

new mode selection method enables the analyst to select substructural modes that can better represent

the target global modes in the resulting reduced model. We then validate its performance and feasibility

for both stiffness- and flexibility-based CMS (F-CMS) methods using a variety of numerical examples.

We also provide a simple strategy to detect inaccurately approximated global modes in the reduced

model, the correction of which leads to improved reduced models.

A major obstacle of model reduction methods has been the absence of a good methodology for

estimating the reliability of reduced models. To resolve this issue, we develop a robust error estimator

to accurately predict the relative eigenvalue errors. Derivation procedures show that the proposed error

estimator is a direct approximation of the relative eigenvalue error. Therefore, using this new error

estimator, the reliability of reduced models can be efficiently and precisely evaluated. In this work, we

develop new error estimators for Guyan reduction, the CB method, and the F-CMS method.

Here, we also propose a high-fidelity formulation for interface reduction in the F-CMS method.

Using the new formulation, we can construct more compact reduced models without significant loss of

accuracy. Eigenvector relations between the global and reduced models are clearly defined in the interface

reduction level. The performance of the present formulation is validated using numerical examples.
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Chapter 1. Introduction

Along with enormous improvement of computer models and technologies, the size of finite element

models has also rapidly increased. For this reason, model reduction methods (sometimes also referred

to as reduced-order modeling techniques) remain important in computational mechanics. In structural

dynamics communities, model reduction methods are categorized in two groups, DOFs based and mode

based.

In DOFs based reduction methods, only a small proportion of the dominant DOFs, known as

“master”, is retained in the reduced model, and the remaining DOFs, known as “slave”, are eliminated.

Therefore, the size of the global (original) model can be significantly reduced.

In contrast, when using mode based reduction methods, a global structure is partitioned into mul-

tiple substructures according to the substructuring strategy. After obtaining a small proportion of

dominant substructural modes by solving individual substructural eigenvalue problems, a reduced model

is constructed by retaining only a select group of the dominant substructural modes.

Although the formulation details of model reduction methods are quite different, such methods all

aim to construct reduced models with better accuracy and smaller size. To satisfy these requirements,

various model reduction methods have been proposed over the last several decades. However, many

important issues remain to be resolved. In this thesis, we have focused on the following three issues:

• Model reduction methods should lead to precisely reduced modeling. At the same time, these

methods should allow computational efficiency and easy implementation. Indeed, there does not

yet exist an “optimal” model reduction method that satisfies both requirements at the same time.

• Since the reduced models that result from model reduction methods are constructed using only

master DOFs or dominant substructural modes, their accuracy highly depends on the choice of

DOFs or substructural modes retained. A key challenge is then to develop high-fidelity DOFs or

mode selection methods able to construct a reliable reduced model, in which the global model is

accurately reflected, and in which the size of the reduced model is as small as possible.

• The reliability of the reduced model can be assessed by errors in its approximated global eigenvalues.

For this reason, the relative eigenvalue error is generally used to evaluate the reliability of model

reduction methods. However, since the calculation of the relative eigenvalue error requires exact

eigenvalues that are obtained from global eigenvalue problems, this measurement technique is not

easy to use in real engineering applications.

In Chapter 2, we briefly review conventional DOFs based model reduction methods. After explaining

the general description of the DOFs based model reduction, we present formulations of Guyan reduction,

Kidder’s approach, Meirovitch’s approach and the improved reduced system (IRS) method.

In Chapter 3, we review component mode synthesis (CMS), a family of mode based reduction

methods popular in the structural dynamics community. We here introduce the Craig-Bampton (CB)

and the flexibility based CMS (F-CMS) methods.

In chapter 4, we propose a new CMS method by enhancing the CB method. Formulation details

and a newly defined transformation matrix are presented. Its excellent performance is validated through

various numerical examples.
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In Chapter 5, a high-fidelity formulation for interface reduction in the F-CMS method is presented.

The proposed formulation consists of three reduction levels for internal DOFs, localized Lagrange mul-

tipliers, and interface boundary DOFs. Using the present formulation, we can construct more compact

reduced models. The numerical results show the performance of the new formulation.

In Chapter 6, we propose a new mode selection method for CMS methods. The present mode

selection method can select the dominant substructural modes in accordance with the substructural

modal contributions to the target global modes. Therefore, the new mode selection method enables the

analyst to select substructural modes that can better represent the target global modes in the reduced

model. Its excellent performance is tested for both stiffness- and flexibility-based CMS methods using

various structural FE models. A simple accuracy control strategy for locally fluctuated errors is also

proposed and tested.

In Chapter 7, we introduce an excellent error estimation method for Guyan reduction, a represen-

tative DOFs based reduction method. The proposed error estimator can accurately predict the relative

eigenvalue errors without knowing the exact eigenvalues. To derive the present method, the exact eigen-

solutions are decomposed into approximated and error parts and Kidder’s transformation matrix is used

to approximate the exact eigenvector. Then, the error estimator can be derived from the global eigenvalue

problem. Its feasibility and performance are demonstrated by various numerical examples.

We also propose error estimation methods for the CB and F-CMS methods that are popular CMS

methods. Since CMS methods share the similar general description with DOFs based reduction methods,

the concept of the error estimation method used in Guyan reduction may also be employed for the CB

and F-CMS methods. However, since the formulation details differ for different model reduction methods,

the final form and specific derivation procedures of error estimators also differ. In Sections 7.2 and 7.3,

we present adequate error estimators for the CB and F-CMS methods, respectively.

Finally, the conclusions of the present study are given in Chapter 8.
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Chapter 2. Dynamic condensation

Reduced-order modeling of large finite element (FE) models is essential in many engineering fields

such as ocean, mechanical and aerospace engineering. Dynamic condensation is widely used a model

reduction technique. In dynamic condensation, a small proportion of the dominant DOFs, known as

“master”, is only retained for the reduced model, and the other DOFs, known as “slave”, are eliminated.

Therefore, the order of original model can be dramatically reduced. Since the slave DOFs are directly

eliminated, the dynamic condensation method can be categorized by the DOFs based model reduction

method.

In 1960s, Guyan [1] proposed the most widely used DOFs based reduction method, and then similar

approaches were introduced at the same time [2, 3]. These are generally referred as Guyan reduction

(sometimes also referred to as eigenvalue economizer, mass condensation). Since then, various extended

methods have been proposed [4, 5, 6, 7], and recent studies have focused on the developments of iterative

procedures [8, 9, 10, 11, 12] or substructuring approaches [13, 14, 15].

In this section, we introduce Guyan reduction which is a representative DOFs based reduction

method [1] and two different approaches of Guyan reduction by Kidder [4] and Meirovitch [16]. We

also explain the improved reduced system (IRS) method that is known as the most precise DOFs based

reduction technique [7].

2.1 General description

Neglecting the damping matrix, the linear dynamics equations can be expressed by

Mü + Ku = f , (2.1)

where M and K are the mass and stiffness matrices, respectively, and u and f are the displacement and

force vectors, respectively. Then, the generalized eigenvalue problem is

K(φ)i = λiM(φ)i, i = 1, 2, ..., N, with u = Φq, (2.2)

where λi and (φ)i are the eigenvalue and eigenvector, respectively, and N is the number of DOFs in the

original structure. Φ and q are the eigenvector matrix and generalized coordinate vector, respectively.

Here, λi and (φ)i satisfy the following relations

(φ)Ti M(φ)j = δij for i and j = 1, 2, ..., N, (2.3a)

(φ)Ti K(φ)j = λjδij for i and j = 1, 2, ..., N, (2.3b)

where δij is the Kronecker delta (δij = 1 if i = j, otherwise δij = 0). Equations 2.3(a) and 2.3(b) are

called as ’mass-orthonormality’ and ’stiffness-orthogonality’, respectively.

In the DOFs reduction method, we retain the dominant DOFs and others are eliminated. Irons

named these as “master” and “slave” DOFs [2, 3], and those are denoted as subscripts 1 and 2, respec-

tively. After eliminating the slave DOFs, the reduced eigenvalue problem with master DOFs (N1 � N)
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is obtained

K1(φ1)i = λ̄iM1(φ1)i, i = 1, 2, ..., N1, with u1 = Φ1q1, (2.4)

where M1 and K1 are the reduced mass and stiffness matrices, respectively, and λ̄i and (φ1)i are

the eigenvalue and eigenvector obtained from the reduced matrices, respectively. u1 is the reduced

displacement vector, and Φ1 and q1 are the reduced eigenvector matrix and the corresponding generalized

coordinate vector, respectively. Then, λ̄i and (φ1)i satisfy the following relations

(φ1)Ti M1(φ1)j = δij for i and j = 1, 2, ..., N1, (2.5a)

(φ1)Ti K1(φ1)j = λ̄jδij for i and j = 1, 2, ..., N1. (2.5b)

Here, using (φ1)i, we calculate the approximated eigenvector denoted by (φ̄)i, and an overbar (̄·)
denotes the approximated quantities. While the formulation details may differ considerably among var-

ious DOFs based reduction methods, the general descriptions are similar.

2.2 Guyan reduction

Guyan reduction was developed based on the reduction technique of the stiffness matrix in static

analysis [17]. The linear static equations of the original structural model are

Ku = f . (2.6)

and then, it can be partitioned

K =

[
K11 K12

K21 K22

]
, u =

[
u1

u2

]
, f =

[
f1

f2

]
, (2.7)

where Kij is submatrix of the stiffness matrix. When we assume that f2 is to be zero, u2 becomes

u2 = −K−1
22 K21u1. (2.8)

Using Equations 2.7 and 2.8, we obtain the reduced stiffness matrix

K1 = K11 −K12K
−1
22 K21, (2.9)

and then, the displacement vector u is approximated

u ≈ ū = TGu1, TG =

[
I

−K−1
22 K21

]
, (2.10)

where TG is original transformation matrix of Guyan reduction. Here, I is an identity matrix of the

same order as the dimension of u1.

This reduction technique can be applied to the mass matrix. Using Equation 2.10, the strain energy

V and kinetic energy T can be written

V =
1

2
uT1 TT

GKTGu1, T =
1

2
u̇T1 TT

GMTGu̇1, (2.11)

and then, the reduced matrices are defined

K1 = TT
GKTG, M1 = TT

GMTG. (2.12)
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Using Equation 2.7 in Equation 2.12, we can calculate the reduced stiffness matrix K1, and it is

same with Equation 2.9. Similarly, M is also partitioned

M =

[
M11 M12

M21 M22

]
, (2.13)

where Mij is submatrix of the mass matrix, and then the reduced mass matrix M1 is

M1 = M11 −K12K
−1
22 M21 −M12K

−1
22 K21 + K12K

−1
22 M22K

−1
22 K21. (2.14)

These reduced mass and stiffness matrices can be used for the reduced eigenvalue problem in Equa-

tion 2.4. Then, u is expressed by the eigenvector matrix Φ and the generalized coordinate vector q, see

Equation 2.2. Comparing this expression with ū in Equation 2.10, we find

Φ ≈ Φ̄ = TGΦ1. (2.15)

Note that the columns of Φ̄ are eigenvectors (φ̄)i, and these are approximated vectors of original eigen-

vector (φ)i.

2.3 Kidder’s approach

Since the same transformation matrix TG is used to reduce the mass matrix, Guyan reduction shares

the same assumption (f2 = 0) with the stiffness reduction method, and it may lead to inaccurate results

in approximation procedure to obtain the displacement vector u from the reduced displacement vector

u1.

To solve this problem, Kidder proposed the another derivation procedure for the reduced order

modeling from the structural eigenvalue problem [4]. Using the partitioned matrices in Equations 2.7

and 2.13, the structural eigenvalue problem can be written[
K11 K12

K21 K22

][
u1

u2

]
= λ

[
M11 M12

M21 M22

][
u1

u2

]
. (2.16)

Using the second row in Equation 2.16, we have

u2 = [K22 − λM22]
−1

[λM21 −K21] u1. (2.17)

It should be noted that Equation 2.17 is exact form of u2.

Using Equation 2.17 in the first row in Equation 2.16, we obtain[
K11 − λM11 − [K12 − λM12] [K22 − λM22]

−1
[K21 − λM21]

]
u1 = 0. (2.18)

Equation 2.18 is the exact reduced eigenvalue problem, and it can be solved using an iterative

solution technique. However, since λ is unknown, the inverse of [K22 − λM22] might be calculated in

each iteration step. To reduce the computational cost, the inverse term can be expanded

[K22 − λM22]
−1

= K−1
22 + λK−1

22 M22K
−1
22 +O(λ2) +O(λ3) + · · · . (2.19)

Neglecting higher order terms of λ in Equation 2.19 and using it in Equation 2.18, we have

[K1 − λM1] u1 = 0, (2.20)
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and also

u2 =
[
K−1

22 + λK−1
22 M22K

−1
22

]
[λM21 −K21] u1. (2.21)

Then, the reduced matrices, M1 and K1, are same as Guyan reduction, see Equations 2.14 and 2.9.

Therefore, the final reduced eigenvalue problem by Kidder’s approach is same with Guyan reduction.

However, since the slave DOFs u2 in Equation 2.21 is more general formulation than the one by Guyan

reduction, the displacement vector u is more accurate approximated

u ≈ ū = TKu1, TK =

[
I[

K−1
22 + λK−1

22 M22K
−1
22

]
[λM21 −K21]

]
, (2.22)

where TK is a transformation matrix of Kidder’s approach. When we use TK instead of TG in Equa-

tion 2.15, Φ̄ is differently defined

Φ ≈ Φ̄ = TGΦ1. (2.23)

Kidder’s approach is also referred to “mass condensation” [16], and mathematically, Guyan reduc-

tion belongs in this approach.

2.4 Meirovitch’s approach

We here introduce another approach to obtain the reduced matrices. As mentioned above, Equa-

tion 2.18 is obtained using the exact form of u2 in Equation 2.17, and then Equation 2.18 can be

expanded

[K11 −K12K
−1
22 K21]u1 = λ[M11 −K12K

−1
22 M21

−M12K
−1
22 K21 + K12K

−1
22 M22K

−1
22 K21]u1 +O(λ2) +O(λ3) + · · · . (2.24)

Ignoring second and higher order terms of λ in Equation 2.24, the terms of left- and right-hand side

in 2.24 are K1 and M1 defined in Equations 2.9 and 2.14, respectively, and then, using Equation 2.17,

the displacement vector u is redefined

u = TMu1, TM =

[
I

[K22 − λM22]
−1

[λM21 −K21]

]
, (2.25)

where TM is an exact transformation matrix. When we use TM instead of TG in Equation 2.15, Φ is

also redefined

Φ = T2Φ1. (2.26)

Here, Equation 2.26 is the exact form of Φ. However, since Φ1 is generally an approximated solution

obtained from the reduced eigenvalue problem, Equation 2.26 can be regarded as an approximated form

Φ̄.

Consequently, above three approaches lead to same eigensolutions (λ̄i, (φ1)i) from Equation 2.4.

However, using Equations 2.23 and 2.26, we can obtain the more appropriately approximated eigenvector

matrix Φ̄, and then eigenvectors (φ)i have also better solution accuracies. In particular, the approxi-

mated eigenvector (φ̄)i does not satisfy the mass-orthonormality property in Equation 2.3, and then it

can be used to develop the robust error estimation method. Its detail will be presented in Chapter 7.
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2.5 Improved reduced system (IRS)

To improve Guyan reduction, a new dynamic condensation method was proposed by O’callahan [7].

As we mentioned, since Kidder’s transformation matrix TK contains the unknown eigenvalue λ, it cannot

be directly used for model reduction without handling this unknown terms. Expanding Equation 2.22

and neglecting λ2 terms, we have

u ≈ ū = T3u1, T3 =

[
I

−K−1
22 K21 + λ

[
K−1

22 M21 −K−1
22 M22K

−1
22 K21

] ] . (2.27)

Using Equation 2.20, following relation is obtained

λu1 = M−1
1 K1u1. (2.28)

Substituting Equation 2.28 into Equation 2.29, T3 can be redefined without λ as

T3 =

[
I

−K−1
22 K21 +

[
K−1

22 M21 −K−1
22 M22K

−1
22 K21

]
M−1

1 K1

]
. (2.29)

The newly defined transformation matrix T3 can be directly employed for model reduction as

KIRS
1 = TT

3 KT3, MIRS
1 = TT

3 MT3. (2.30)

Since T3 is more accurate transformation matrix than the original transformation matrix in Guyan

reduction, it leads to more accurate reduced models than previous dynamic condensation techniques. It is

known as the improved reduced system (IRS) method, and it has been widely used in various engineering

fields such as FE model updating, optimal sensor positioning, experimental model verification, etc. Also,

extended researches of the IRS method have been performed [18, 19, 20].
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Chapter 3. Component mode synthesis

Component mode synthesis (CMS) methods have been widely used for FE model reduction in

structural dynamics. In the CMS methods, the original large structural FE model is partitioned into

smaller substructural FE models connected at interface boundary. A small proportion of substructural

modes (dominant substructural modes) and interface constraint conditions are used to reduce the origi-

nal structural model. Since, instead of the original large structural model, we handle the reduced model

constructed using the small substructural models, CMS methods can dramatically reduce the compu-

tational cost. The accurately approximated reduced models are valuable indeed in structural systems

design, system identification, and experimentally verified model development. Unlike the DOFs based

reduction method, CMS methods belong in the mode based reduction method because substructural

modes are truncated.

In the 1960s, based on Hurty and Guyan’s idea [21, 1], Craig and Bampton proposed a CMS method

referred to as the Craig-Bampton (CB) method [22]. Since then, various related studies have been done

to develop robust CMS methods [23, 24, 25, 26, 27, 28, 29, 30]. The CMS methods can be categorized

by their interface handling techniques such as fixed interface, free interface and hybrid type. Reviews of

the CMS methods can be founded in Refs. [31, 32, 33].

In this section, we introduce two CMS methods: the CB and flexibility based CMS (F-CMS) meth-

ods. The CB method is still the most popular and widely used CMS method because of its simplicity

and reliability. The CB method is based on the fixed interface condition. To more precise reduced-order

modeling, the F-CMS method has been recently developed by Park and Park [28]. In the F-CMS method,

substructures are connected by free interface and interface constraint conditions using localized Lagrange

multipliers. Previous researches show that the F-CMS method makes better solution accuracy than the

CB method [28, 30].

3.1 General description

Considering the global (non-partitioned) structure Ω modeled by finite element discretization in

Figure 3.1(a), the linear dynamics equations can be expressed by

Mgüg + Cgu̇g + Kgug = fg, (3.1)

where Mg and Kg are the global mass and stiffness matrices, respectively, and Cg is the global damping

matrix. ug is the global displacement vector, and fg is the global force vector. The subscript g denotes

the global structure.

Then, the generalized eigenvalue problem of the global structure is

Kg(φg)j = λjMg(φg)j , j = 1, 2, ..., Ng, with ug = Φgqg, (3.2)

where λj and (φg)j are the eigenvalue and eigenvector directly calculated in the global structure, re-

spectively, and Ng is the number of DOFs in the global structure. Φg and qg are the global eigenvector
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matrix and generalized coordinate vector, respectively.
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Figure 3.1: Interface boundary treatment in component mode synthesis: (a) The global (non-partitioned)

structure Ω, (b) The global structure Ω partitioned into two substructures, Ω = Ω1 ∪ Ω2, Γ = Ω1 ∩ Ω2,

(c) Interface boundary treatment in the CB method, (d) Interface boundary treatment in the F-CMS

method, ub: interface boundary DOFs, λ`: localized Lagrange multiplier vector.

Here, λj and (φg)j satisfy the following relations

(φg)
T
i Mg(φg)j = δij Mass-orthonormality, (3.3a)

(φg)
T
i Kg(φg)j = λjδij Stiffness-orthogonality, (3.3b)

where δij is the Kronecker delta (δij = 0 if i 6= j, δij = 1 if i = j).

In CMS methods, the global structure is partitioned into substructures as shown Figure 3.1(b),

eigenvalue analyses of individual substructures are carried out, and dominant substructural eigenvectors

(modes) and their eigenvalues are chosen. Then, the reduced eigenvalue problem with N̄p DOFs (N̄p �
Ng) is then obtained using the selected substructural modes

K̄p(φ̄p)j = λ̄jM̄p(φ̄p)j , j = 1, 2, ..., N̄p, with ūp = Φ̄pq̄p, (3.4)

where M̄p and K̄p are the reduced mass and stiffness matrices, respectively, and λ̄j and (φ̄p)j are the

approximated eigenvalue and eigenvector, respectively. ūp is the approximated displacement vector,

and Φ̄p and q̄p are the approximated eigenvector matrix and the corresponding generalized coordinate

vector, respectively. Note that the subscript p denotes the partitioned structure, and an overbar (̄·)
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denotes the approximated quantities. In the similar with Equation 3.3, λ̄j and (φ̄p)j also satisfy the

following relations

(φ̄p)
T
i M̄p(φ̄p)j = δij Mass-orthonormality, (3.5a)

(φ̄p)
T
i K̄p(φ̄p)j = λ̄jδij Stiffness-orthogonality. (3.5b)

Since ug ≈ ūg = Φ̄gq̄g and Φ̄g and q̄g can be obtained from Φ̄p and q̄p in Equation 3.4, we finally

obtain the reduced form of Equation 3.1 in the generalized coordinates

¨̄qg + C̄p ˙̄qg + Λ̄pq̄g ≈ f̄g,

Φ̄T
g MgΦ̄g ≈ Ip, Φ̄T

g CgΦ̄g = C̄p, Φ̄T
g KgΦ̄g ≈ Λ̄p,

Λ̄p = diag(ω̄2
1 , ω̄

2
2 , ...ω̄

2
i ..., ω̄

2
N̄p

), f̄g = Φ̄T
g fg, (3.6)

where Ip is the N̄p × N̄p identity matrix, and C̄p is a real symmetric matrix, generally non-diagonal. ω̄i

is the ith approximated natural frequency.

While the formulation and algorithmic details may differ considerably among various CMS methods,

the general descriptions are similar. It should be noted that, in CMS methods, the direct computations

of the eigensolutions by employing Equation 3.2 are avoided. Instead, we solve the reduced eigenvalue

problem in Equation 3.4 constructed by only retaining the dominant substructural modes. Therefore,

CMS methods can adopt a divide-and-conquer paradigm for tackling very large eigenvalue problems,

which can be carried out in parallel computations (see, e.g., [34]). In addition, it can accommodate

experimentally determined substructural modes and mode shapes in the synthesis of the global eigenvalue

problems.

In this section, we review the formulations of two well-known CMS methods: the Craig-Bampton

(CB) method (a stiffness-based CMS method)[22] and the flexibility-based CMS (F-CMS) method[28].

Figures 3.1(c) and 3.1(d) show the interface boundary treatments in the CB and F-CMS methods, re-

spectively. In the CB method, the two substructures are connected with a fixed interface at the interface

boundary Γ, see Figure 3.1(c). The F-CMS method, in contrast, uses the free interface boundary be-

tween substructures, and then the interface boundary is constructed by the interface DOFs ub and the

localized Lagrange multiplier vector λ` as shown in Figure 3.1(d). The subscript b denotes the interface

boundary. The CB and F-CMS methods are derived and explained in the following sections.

3.2 Craig-Bampton (CB) method

The CB method has been widely used because it is accurate and simple to implement [22, 32]. The

first step in the CB method is to separate the global equations of motion with substructural (or interior)

and interface boundary DOFs after partitioning the global structure into Ns substructures. Ns is the

number of substructures. Then, Equation 3.1 becomes[
Ms Mc

MT
c Mb

][
üs

üb

]
+

[
Ks Kc

KT
c Kb

][
us

ub

]
=

[
fs

fb

]
, (3.7)

where the subscript s denotes the substructural DOFs, and c denotes the coupling DOFs between sub-

structures and interface boundary. Hence, Ms and Ks are the partitioned block diagonal mass and
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stiffness matrices of the substructures that consist of mass and stiffness matrices (M
(k)
s and K

(k)
s ) of

each substructure. Mb and Kb are the mass and stiffness matrices corresponding to the interface bound-

ary DOFs. Mc and Kc are the coupling matrices between the substructural and interface boundary

DOFs.

From Equations 3.1 and C.2, the global displacement vector ug can be represented as

ug =

[
us

ub

]
= TCB

[
qs

ub

]
, TCB =

[
Φs −K−1

s Kc

0 Ib

]
, (3.8)

where qs is the generalized coordinate vector for the substructural modes, and TCB is the transforma-

tion matrix of the CB method. Φs is a block diagonal eigenvector matrix calculated by the following

substructural eigenvalue problems

[K(k)
s − λ

(k)
j M(k)

s ](φ(k))j = 0, j = 1, 2, ..., N (k)
q , for k = 1, 2, ..., Ns, (3.9)

where N
(k)
q is the number of deformable modes in the kth substructure. λ

(k)
j and (φ(k))j are the eigenvalue

and the corresponding eigenvector of the kth substructure, respectively. Φs is a Nq ×Nq matrix (Nq =

N
(1)
q +N

(2)
q + ...+N

(Ns)
q ).

Premultiplying TT
CB in Equation C.2, we can obtain the equations of motion for the partitioned

structure

Mpüp + Kpup = fp,

Mp =

[
Is M̂c

M̂T
c M̂b

]
, Kp =

[
Λs 0

0 K̂b

]
, up =

[
qs

ub

]
, fp = TT

CB

[
fs

fb

]
. (3.10)

The component matrices in Equation 3.10 are defined by

Is = ΦT
s MsΦs, (3.11a)

M̂c = ΦT
s [Mc −MsK

−1
s Kc], (3.11b)

M̂b = Mb + KT
c K−1

s MsK
−1
s Kc −MT

c K−1
s Kc −KT

c K−1
s Mc, (3.11c)

Λs = ΦT
s KsΦs, (3.11d)

K̂b = Kb −KT
c K−1

s Kc. (3.11e)

Note that Equation 3.10 retains all the substructural modes. Here, the substructural displacement

vector us can be decomposed as the dominant and residual modes

us = Φsqs −K−1
s Kcub =

[
Φd Φr

] [ qd

qr

]
−K−1

s Kcub, (3.12)

where subscripts d and r denote the dominant and residual terms, respectively. Φd and Φr are the dom-

inant and residual substructural eigenvector matrices with Nd and Nr substructural modes, respectively,

and qd and qr are the corresponding generalized coordinate vectors. Nd and Nr are the numbers of the

dominant and residual modes, respectively.

To construct the reduced model from Equation C.2, the residual modes are truncated and then TCB

and ug are approximated with only dominant substructural modes

ug =

[
us

ub

]
≈ ūg = T̄CB

[
qd

ub

]
, T̄CB =

[
Φd −K−1

s Kc

0 Ib

]
. (3.13)

– 11 –



Premultiplying T̄T
CB instead of TT

CB in Equation C.2, we can obtain the approximated equations of

motion for the partitioned structure

M̄p ¨̄up + K̄pūp = f̄p,

M̄p =

[
Id M̄c

M̄T
c M̂b

]
, K̄p =

[
Λd 0

0 K̂b

]
, ūp =

[
qd

ub

]
, f̄p = T̄T

CB

[
fs

fb

]
, (3.14)

in which the component matrices are defined by

Id = ΦT
d MsΦd, (3.15a)

M̄c = ΦT
d [Mc −MsK

−1
s Kc], (3.15b)

Λd = ΦT
d KsΦd. (3.15c)

Using Equation 3.14 with the free vibration condition (fs = fb = 0), the final reduced eigenvalue

problem by the CB method can be obtained

K̄pΦ̄p = λ̄M̄pΦ̄p with ūp = Φ̄pq̄p,

Φ̄p =
[

Φ̄T
qd

Φ̄T
ub

]T
, (3.16)

where Φ̄p can be separated into the substructural part Φ̄qd and the interface boundary part Φ̄ub . From

Equations 3.13 to C.4, the global displacement vector ug can be approximated as

ug ≈ ūg = Φ̄gq̄p = T̄CBūp = T̄CBΦ̄pq̄p, (3.17)

and then, the approximated global eigenvector matrix Φ̄g is rewritten as

Φg ≈ Φ̄g =

[
ΦdΦ̄qd −K−1

s KcΦ̄ub

Φ̄ub

]
. (3.18)

3.3 Flexibility-based component mode synthesis (F-CMS)

Recently, the F-CMS method has been developed using the localized Lagrange multipliers λ` [28, 35].

The derivation of the F-CMS method starts from the displacement-based discrete energy functional Π(ug)

Π(ug) = uTg

(
1

2
Kgug − fg + Mgüg

)
,

Mg = LTMsL,Kg = LTKsL, (3.19)

where the global (non-partitioned) structure and partitioned substructures are related by an assembly

Boolean matrix L. δΠ(ug) yields the linear dynamics equations of the global structure in Equation 3.1.

Here, Π(ug) can be redefined as the sum of substructural energy functionals and the constraint

energy functionals

Π(us,λ`,ub) = uTs

(
1

2
Ksus − fs + Msüs

)
+ λ`

T
(
BTus − Lbub

)
, (3.20)
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where B denotes the interface Boolean matrix and Lb is obtained by yanking out the rows with zero

entries of BTL (see, e.g., [35]).

Then, the partitioned displacement vector us is decomposed by deformable and rigid body modes

us =
[

Φs Rs

] [ qs

αs

]
, (3.21)

where Φs and Rs are the eigenvector matrices of the deformable and rigid body modes, respectively.

qs and αs are the corresponding generalized coordinate vectors. Note that, in the CB method, us has

only the deformable modes Φs because of the fixed interface boundary between substructures. However,

in the F-CMS method using the free interface boundary, us has not only the deformable modes Φs but

also rigid body modes Rs. In Equation 3.21, Φs and Rs are calculated by the following substructural

eigenvalue problems

[K(k)
s − λ

(k)
j M(k)

s ](φ(k))j = 0, j = 1, 2, ..., N (k)
q +N (k)

α , for k = 1, 2, ..., Ns, (3.22)

where N
(k)
α is the number of rigid body modes of the kth substructure.

Then, Π(us,λ`,ub) can be expressed as the energy functional of four variables Π(qs,αs,λ`,ub),

and δΠ(qs,αs,λ`,ub) yields the following equations as[
Mp

d2

dt2
+ Kp

]
up = fp,

Mp
d2

dt2
+ Kp =


Λs + Iq

d2

dt2 0 ΦT
s B 0

0 Iα
d2

dt2 RT
b 0

BTΦs Rb 0 −Lb

0 0 −LTb 0

 , up =


qs

αs

λ`

ub

 , fp =


ΦT
s fs

RT
s fs

0

0

 ,
Rb = BTRs, Iq = ΦT

s MsΦs, Iα = RT
s MsRs, (3.23)

where t denotes the time variable. Note that Equation 3.23 contains all the rigid body modes Rs and

deformable modes Φs as in Equation 3.10 in the CB method.

To construct an effective reduced model, only dominant substructural modes are retained from

Equation 3.23. We here truncate the residual deformable modes from qs only, and all the other modes

related with the rigid body motions αs, the localized Lagrange multiplier vector λ`, and the interface

DOFs ub are retained. Then, the eigenvector matrix Φs of the deformable substructural modes can be

divided into the dominant part Φd and the residual part Φr as in Equation 3.12 in the same way as the

CB method.

Substituting Equation 3.12 into Equation 3.23 and performing the Gauss elimination on qr, the

condensed equations are obtained
Λ̂d 0 ΦT

db 0

0 Iα
d2

dt2 RT
b 0

Φdb Rb −F̂rb −Lb

0 0 −LTb 0




qd

αs

λ`

ub

 =


ΦT
d fs

RT
s fs

−BT F̂rfs

0

 ,

Λ̂d = Λd +
d2

dt2
Id, F̂r = Φr

[
Λr +

d2

dt2
Ir

]−1

ΦT
r , F̂rb = BT F̂rB, Φdb = BTΦd, (3.24)

in which we note that F̂r and F̂rb are the dynamic residual flexibilities of the full model and the interface

boundary, respectively, and Φdb is the eigenvector matrix of the dominant deformable modes in the

interface boundary.
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We then invoke the harmonic response (d2/dt2 = −ω2 ) with the natural frequency ω. Then, F̂r

and F̂rb are expressed as functions of ω2, and these yield an intractable eigenvalue problem. To treat

the transcendental nature of F̂rb, we approximate F̂rb as

F̂rb = Φrb

[
Λr − ω2Ir

]−1
ΦT
rb

≈ ΦrbΛ
−1
r ΦT

rb + ω2ΦrbΛ
−2
r ΦT

rb = Frbs + ω2Frbm, (3.25)

where Φrb is defined as BTΦr. Note that Frbs and Frbm are the static and dynamic parts of the

interface residual flexibilities (see, e.g., [28]). Those residual terms are calculated using the dominant

substructural modes as

Frbs = BTM
−1/2
s

[
M
−1/2
s KsM

−1/2
s

]+
M
−1/2
s B−ΦdbΛ

−1
d ΦT

db, (3.26a)

Frbm = BTM
−1/2
s

[
M
−1/2
s KsM

−1/2
s

]+2

M
−1/2
s B−ΦdbΛ

−2
d ΦT

db, (3.26b)

where the stiffness matrix Ks is not invertible because of the substructural rigid body modes. Hence,

we can use the pseudo-inverse denoted by the superscript +.

Substituting Equations 6.6 and 6.8 in Equation 3.24, we obtain the approximated equations of

motion for the partitioned structure [
−M̄p ω

2 + K̄p

]
ūp = f̄p,

−M̄p ω
2 + K̄p =


Λd − ω2Id 0 ΦT

db 0

0 −ω2Iα RT
b 0

Φdb Rb −Frbs − ω2Frbm −Lb

0 0 −LTb 0

 ,
ūp =

[
qTd αTs λT` uTb

]T
, f̄p =

[
[ΦT

d fs]
T [RT

s fs]
T −[BT F̂rfs]

T 0T
]T
. (3.27)

To construct the reduced eigenvalue problem from Equation 3.27, we consider the free vibration

(f = 0) and rearrange the matrices. Then, the final reduced eigenvalue problem of the F-CMS method

becomes

K̄pΦ̄p = λ̄M̄pΦ̄p with ūp = Φ̄pq̄p,

K̄p =


Λd 0 ΦT

db 0

0 0 RT
b 0

Φdb Rb −Frbs −Lb

0 0 −LTb 0

 , M̄p =


Id 0 0 0

0 Iα 0 0

0 0 Frbm 0

0 0 0 0

 , Φ̄p =


Φ̄qd

Φ̄αs

Φ̄λ`

Φ̄ub

 . (3.28)

From the 3rd row in Equation 3.27, the global displacement vector ug can be approximated as

ug ≈ ūg = Lub = Φdqd + Rsαs − F̂rBλ`. (3.29)

Similarly, the global eigenvector matrix Φg can be also approximated by Φ̄g from the 3rd row in the

final reduced eigenvalue problem in Equation 3.28

Φg ≈ Φ̄g = LΦ̄ub = ΦdΦ̄qd + RsΦ̄αs − F̂rBΦ̄λ` . (3.30)

The F-CMS method is a flexibility-based method with residual flexibility compensation. The F-CMS

method employs the free substructural modes, and then the residual modes that are not retained on a
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substructural level are transformed into the dynamic residual flexibility F̂r. This feature can be seen

from the fact that F̂r in Equation 3.24 is not truncated but approximated as shown in Equation 6.6. In

contrast, in the CB method, the substructural residual modes are truncated without any compensation.

Therefore, the F-CMS method can give more accurate eigensolutions than the CB method in general.
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Chapter 4. Enhanced CB method

Recently, the concept of residual flexibility has been widely used in the partitioned method [34] with

free interface boundary condition, and then several CMS methods also developed in the 2000s [28, 29].

In our previous study [36], the conceptual idea to consider the effect of residual substructural modes was

also applied to construct the enhanced transformation matrix used for the error estimation of the CB

method.

At this point, it is natural to use the enhanced transformation matrix to improve the accuracy of

the original CB method. However, the enhanced transformation matrix contains an unknown eigenvalue

and thus it is not possible to use the transformation matrix in its present form for the improvement of

the original CB method.

In order to overcome this difficulty, we borrowed O’callahan’s idea, which was originally proposed

to improve Guyan reduction [7]. That is, the unknown eigenvalue is approximated using O’callahan’s

approach. As a result, a new enhanced transformation matrix is obtained and, using it, an enhanced

CB method are developed. Compared to the original CB method, the enhanced CB method can provide

significantly improved reduced-order models with a low additional computational cost.

4.1 Formulation details

In the original CB method, to construct the reduced transformation matrix T̄CB in Equation 3.13,

the residual substructural modes are simply truncated without any consideration. However, when the

residual substructural modes are properly considered, the transformation matrix can be constructed

more accurately.

Using Equation 3.12 in Equation C.3, ug can be rewritten

ug =

[
us

ub

]
= TCB


qd

qr

ub

 , TCB =

[
Φd Φr −K−1

s Kc

0 0 Ib

]
. (4.1)

Using Equation 4.1 in Equation C.2, we obtain the equations of motion for the partitioned structure

[
d2

dt2
Mp + Kp

]
up = fp, (4.2a)

Mp = TT
CBMgTCB , Kp = TT

CBKgTCB , (4.2b)

d2

dt2
Mp + Kp =


Λ̂d 0 d2

dt2 M̄c

0T Λ̂r
d2

dt2 D
d2

dt2 M̄T
c

d2

dt2 DT K̂b + d2

dt2 M̂b

 , (4.2c)

up =


qd

qr

ub

 , fp = TT
CB

[
fs

fb

]
, (4.2d)
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where the component matrices are defined by

Λ̂d = Λd + d2

dt2 Id, Λd = ΦT
d KsΦd, Id = ΦT

d MsΦd, (4.3a)

M̄c = ΦT
d [Mc −MsK

−1
s Kc], (4.3b)

Λ̂r = Λr + d2

dt2 Ir, Λr = ΦT
r KsΦr, Ir = ΦT

r MsΦr, (4.3c)

D = ΦT
r

[
−MsK

−1
s Kc + Mc

]
, (4.3d)

M̂b = Mb + KT
c K−1

s MsK
−1
s Kc −MT

c K−1
s Kc −KT

c K−1
s Mc, (4.3e)

K̂b = Kb −KT
c K−1

s Kc. (4.3f)

Note that Equation 4.2 is the original equations of motion that contain all the substructural modes.

Using the second row in Equation 4.2a with fp = 0, we obtain

qr = −Λ̂−1
r

[
d2

dt2
Dub

]
. (4.4)

Substituting Equation 4.4 into Equation 4.1, us can be represented by

us = Φdqd −K−1
s Kcub −

d2

dt2
F̂r
[
−MsK

−1
s Kc + Mc

]
ub, (4.5)

with

F̂r = ΦrΛ̂
−1
r ΦT

r = Φr

[
Λr +

d2

dt2
Ir

]−1

ΦT
r , (4.6)

where F̂r represents the residual flexibility of the substructures.

We here invoke harmonic response (d2/dt2 = −λ) and then F̂r can be approximated as

F̂r = Φr [Λr − λIr]
−1

ΦT
r

≈ ΦrΛ
−1
r ΦT

r + λΦrΛ
−2
r ΦT

r = Frs + λFrm, (4.7)

where Frs and Frm are the static and dynamic parts of the residual flexibility, respectively.

Using Equation 4.7 in Equation 4.5 and truncating terms higher than order of λ, us can be approx-

imated

us ≈ ūs = Φdqd −K−1
s Kcub + λFrs

[
−MsK

−1
s Kc + Mc

]
ub, (4.8)

in which Frs is indirectly calculated by subtracting the dominant flexibility matrix from the full flexibility

matrix as

Frs = K−1
s −ΦdΛ

−1
d ΦT

d . (4.9)

Using ūs defined in Equation 4.8 instead of us in Equation 3.13, we finally obtain

ug ≈ ūg = T̄ECBūp, T̄ECB = T̄CB + T̄r, (4.10)

with

T̄r =

[
0 λFrs

[
−MsK

−1
s Kc + Mc

]
0 0

]
, (4.11)

where T̄ECB is the transformation matrix enhanced by T̄r. Note that, since T̄r contains the eigenvalue

λ, it is regarded as a transformation matrix related with dynamic effect.
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Here, a difficulty arises. Since the eigenvalue λ in T̄r is unknown, the enhanced transformation

matrix T̄ECB cannot be used to improve the original CB method in its present form. To handle the

unknown eigenvalue λ in T̄r, we employ O’callahan’s approach, which was proposed to improve Guyan

reduction [7]. From Equation 3.14 with f̄p = 0, the following relation is obtained

λūp = M̄−1
p K̄pūp, (4.12)

and, using Equation 4.12 in Equation 4.10, T̄r is newly redefined by

T̄r =

[
0 Frs

[
−MsK

−1
s Kc + Mc

]
0 0

]
M̄−1

p K̄p. (4.13)

Using the redefined T̄r in Equation 4.10, T̄ECB can be expressed without the unknown eigenvalue

λ. Using the enhanced transformation matrix T̄ECB redefined by T̄r in Equation 4.10, the new reduced

mass and stiffness matrices denoted by tilde (˜) are defined

M̃p = T̄T
ECBMgT̄ECB = M̄p + T̄T

r MgT̄CB + T̄T
CBMgT̄r + T̄T

r MgT̄r, (4.14a)

K̃p = T̄T
ECBKgT̄ECB = K̄p + T̄T

r KgT̄CB + T̄T
CBKgT̄r + T̄T

r KgT̄r. (4.14b)

Due to the compensation of the residual substructural modes in T̄ECB , the reduced mass and

stiffness matrices in Equation 4.14 are more precisely constructed than the original reduced matrices in

Equation C.4. For this reason, using the newly defined M̃p and K̃p, the solution accuracy of the reduced

eigenvalue problem can be improved.

Table 4.1 shows the comparison of the original and enhanced CB methods. It is important to note

that the original and enhanced CB methods produces the same size of reduced models. Compared to

the original CB method, the residual flexibility Frs and the inverse of the reduced mass matrix M̄−1
p

are additionally computed to construct the enhanced transformation matrix T̄ECB in the enhanced CB

method.

However, Frs can simply calculated by reusing K−1
s and the dominant substructural eigensolutions,

see Equation 4.9. Also, the size of the reduced mass matrix M̄p is small because it consists of a small

number of dominant substructural modes and interface DOFs. For these reasons, we can easily identify

the fact that the additional computational cost of the enhanced CB method is not high.

Table 4.1: Comparison between the CB and enhanced CB methods.

CB Enhanced CB

Transformation matrix T̄CB T̄CB + T̄r

Reduced mass matrix M̄p

M̄p + T̄T
r MgT̄CB

+T̄T
CBMgT̄r + T̄T

r MgT̄r

Reduced stiffness matrix K̄p

K̄p + T̄T
r KgT̄CB

+T̄T
CBKgT̄r + T̄T

r KgT̄r

Size of the reduced matrices N̄p N̄p
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4.2 Numerical examples

In this section, we test the performance of the enhanced CB method compared to the original CB

and F-CMS methods. It should be noted that, due to the use of localized Lagrange multipliers [28, 35],

the F-CMS method requires more DOFs in reduced models (larger size of reduced matrices) than the

original and enhanced CB methods for the same number of retained dominant substructural modes in

general.

Four different structural problems are considered: simple plate, hyperboloid shell, stiffened plate

and ring solid problems. These are modeled by 4-node MITC shell (see, e.g., Refs. [37, 38, 39, 40])

and 8-node brick elements. We here use the frequency cut-off mode selection method [41] to select the

dominant substructural modes.

The following relative eigenvalue error is used to evaluate the performance of the enhanced CB

method

ξi =
λ̄i − λi
λi

, (4.15)

in which ξi denotes the relative eigenvalue error for the ith mode, and λi and λ̄i are the exact and

approximated eigenvalues, respectively. These eigenvalues are calculated from the global (original) and

reduced eigenvalue problems.

4.2.1 Simple plate problem

Let us consider a simple plate with free boundary as shown in Figure 4.1. Length L is 0.6096m,

width B is 0.3048m, and thickness h is 3.175× 10−3m. Young’s modulus E is 72GPa, Poisson’s ratio ν

is 0.33, and density ρs is 2796kg/m3. The plate is modeled by a 12× 6 mesh of the 4-node MITC shell

finite elements and the structural model is partitioned into two substructures (Ns = 2).

We consider two numerical cases with 10 and 20 dominant substructural modes selected (Nd = 10

and Nd = 20). The numbers of retained substructural modes N
(k)
d are listed in Table 4.2. Figure 4.2

presents the relative eigenvalue errors obtained by the original CB, F-CMS and enhanced CB methods.

The results show that the enhanced CB method outperforms other two methods.
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Figure 4.1: Simple plate problem.

Table 4.2: Retained substructural mode numbers N
(k)
d in the simple plate problem.

CMS Case N
(1)
d N

(2)
d Nd

CB and Enhanced CB
1 7 3 10

2 13 7 20

F-CMS
1 7 3 10

2 13 7 20
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(a)

(b)

Figure 4.2: Relative eigenvalue errors in the simple plate problem. (a) Nd = 10, (b) Nd = 20.
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4.2.2 Hyperboloid shell problem

We here consider a hyperboloid shell structure of height H = 4.0m and thickness h = 0.05m. Young’s

modulus E is 69GPa, Poisson’s ratio ν is 0.35, and density ρs is 2700kg/m3. The mid-surface of this

shell structure is described by

x2 + y2 = 2 + z2; z ∈ [−2, 2]. (4.16)

We use a mesh of 20 (axial) × 40 (circumferential) MITC4 shell elements, see Figure 4.3. The finite

element model of the hyperboloid shell is partitioned into four substructures (Ns = 4).

We use 40 and 80 dominant substructural modes selected for two numerical cases (Nd = 40 and

Nd = 80). The numbers of dominant substructural modes N
(k)
d are listed in Table 4.3. Figure 4.4 shows

that the enhanced CB method gives much better solution accuracy than other two methods.

Table 4.3: Retained substructural mode numbers N
(k)
d in the hyperboloid shell problem.

CMS Case N
(1)
d N

(2)
d N

(3)
d N

(4)
d Nd

CB and Enhanced CB
1 17 3 17 3 40

2 33 7 33 7 80

F-CMS
1 15 5 15 5 40

2 29 11 29 11 80
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Figure 4.3: Hyperboloid shell problem.
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(a)

(b)

Figure 4.4: Relative eigenvalue errors in the hyperboloid shell problem. (a) Nd = 40, (b) Nd = 80.
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4.2.3 Stiffened plate problem

We here consider a stiffened plate with free boundary, see Figure 4.5. Length L is 4.8m, width B is

3.2m, and thickness h is 0.03m. The flat plate has two longitudinal and four transverse stiffeners, and

height H is 0.5m. Young’s modulus E is 210GPa, Poisson’s ratio ν is 0.3, and density ρs is 7850kg/m3.

The bottom plate is modeled by a mesh of 24×16 shell finite elements, and the longitudinal and transverse

stiffeners are modeled by meshes of 24 × 2 and 16 × 2 shell finite elements, respectively. This stiffened

plate is partitioned into six substructures (Ns = 6).

We use 50 and 80 dominant substructural modes selected in two numerical cases (Nd = 50 and

Nd = 80), and the numbers of dominant substructural modes N
(k)
d are listed in Table 4.4. The relative

eigenvalue errors are plotted in Figure 4.6. The results show the robustness of the enhanced CB method.

Table 4.4: Retained substructural mode numbers N
(k)
d in the stiffened plate problem.

CMS Case N
(1)
d N

(2)
d N

(3)
d N

(4)
d N

(5)
d N

(6)
d Nd

CB and Enhanced CB
1 20 8 3 3 8 8 50

2 29 17 6 6 11 11 80

F-CMS
1 11 11 7 7 7 7 50

2 18 18 11 11 11 11 80
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Figure 4.5: Stiffened plate problem.
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(a)

(b)

Figure 4.6: Relative eigenvalue errors in the stiffened plate problem. (a) Nd = 50, (b) Nd = 80.
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4.2.4 Ring solid problem

Let us consider a ring solid problem, see Figure 4.7. Height H is 0.05m, and the radii R1 and R2

are 0.13m and 0.1m, respectively. Young’s modulus E is 72GPa, Poisson’s ratio ν is 0.33, and density

ρs is 2796kg/m3. The ring solid structure is modeled by a mesh of 40 (circumferential) × 3 (radial) × 5

(axial) brick elements and is partitioned into four identical substructures (Ns = 4).

From each substructure, 10 and 20 dominant substructural modes are retained for two numerical

cases (Nd = 10 and Nd = 20). Figure 4.8 consistently demonstrates the excellent performance of the

enhanced CB method.

We finally note that, when we obtain Equation 4.8, it is possible to contain terms higher than order

of λ and thus the enhanced transformation matrix can be more accurate. However, we could not get

meaningful improvement in the solution accuracy with the higher order enhanced transformation matrix.
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Figure 4.7: Solid ring problem.
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(a)

(b)

Figure 4.8: Relative eigenvalue errors in the solid ring problem. (a) Nd = 40, (b) Nd = 80.
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4.3 Closure

In this study, we developed a new component mode synthesis (CMS) method by improving the

well-known Craig-Bampton (CB) method. Unlike the original CB method, the residual substructural

modes are considered to construct the transformation matrix. As a result, the original CB transformation

matrix is enhanced by the additional dynamic term, in which the unknown eigenvalue is approximated

using O’callahan’s approach.

Using the enhanced transformation matrix, global (original) structural models can be more pre-

cisely reduced and then the accuracy of reduced models is dramatically improved with a low additional

computational cost. The excellent performance of the enhanced CB method was demonstrated through

various numerical examples.

This concept of the enhanced CB method also has been employed for enhancing the automated

multi-level substructuring (AMLS) method [42]. A challenge for future work is to develop an error

estimation method for the enhanced CB method for measuring the reliability of reduced models.
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Chapter 5. F-CMS method with interface reduction

In the original formulation of the F-CMS method, internal DOFs are only reduced by dominant

substructural modes, see Section 3.3. However, when the solid structure is used in the model reduction,

the size of interface DOFs are significant sometimes, and then the size of interface DOFs is a quite big

proportion of total size in the reduced models. To solve this problem, Markovic et al. [30] proposed an

interface reduction technique in the F-CMS method. In this approach, the interface boundary DOFs

can be represented by the dominant modes of adjacent field, and then the number of interface boundary

DOFs can be efficiently reduced without loss of precision. Although the proposed method shows good

performance, it could be more precisely formulated and has possibilities to improve the solution accuracy.

Especially, due to the complexity of the formulations, the approximated global eigenvectors were not

defined in the interface boundary reduction level. These are motivations of the present research.

Here, we propose a well formulated three level reduction technique in the F-CMS method (see

Figure 5.1). In this formulation, the reduction procedures are sequentially performed internal, localized

Lagrange multipliers (LLM), and interface DOFs. In particular, to improve the solution accuracy, we

use the static correction to construct the dominant filed of the interface boundary displacement vector,

and then the residual dynamic term is reactivated in the final formulation. Due to the modification of

the original formulation, the approximated global eigenvector can be defined in every reduction level.

Since reduction procedures of the internal DOFs (Reduction level 1) is already defined in Section

3.3, we here start from the reduction level 2 for the LLM.
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Figure 5.1: Reduction procedures. (a) Fully retained model. (b) Level 1: reduction of internal DOFs.

(c) Level 2: reduction of localized Lagrange multipliers. (d) Level 3: reduction of interface DOFs
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5.1 Reduction of localized Lagrange multiplier

In the reduction level 2, the LLM λ` is reduced. At first, λ` can be decomposed as the dominant

term λd and the residual term λr, and it can be represented as

λ` =
[

Ψd Ψr

] [ χd
χr

]
,

λd = Ψdχd, λr = Ψrχr, (5.1)

where Ψd and Ψr are the mode shapes, and χd and χr are the generalized coordinates of the dominant

and residual terms of the LLM, respectively.

The LLM field is directly coupled with the retained internal mode shapes which are Φd and R at the

boundary Γ, see Figure 5.1(d). Therefore, Ψd can be constructed as the spaces spanned by Φdb and Rb,

and Ψr also can be constructed as the corresponding null space of Ψd using the matrix orthogonality as

Ψd = Span(Φdb) ∪ Span(Rb), Ψr⊥Ψd

=⇒ ΦT
dbΨr = RT

b Ψr = 0. (5.2)

Note that Ψr is not the physical null space, therefore it should be carefully considered to the convergence

problems using F-CMS method with the boundary reduction.

Substituting Equations 5.1 and 5.2 in Equation 3.23, the following equation are obtained

Λd − ω2Id 0 ΦT
dbΨd 0 0

0 −ω2Iα RT
b Ψd 0 0

ΨT
d Φdb ΨT

d Rb −F̂dd −F̂dr −ΨT
d Lb

0 0 −F̂rd −F̂rr −ΨT
r Lb

0 0 −LTb Ψd −LTb Ψr 0





qd

α

χd

χr

ub


=



ΦT
d f

RT f

−ΨT
d BT F̂rf

−ΨT
r BT F̂rf

0


,

F̂ij = ΨT
i F̂rbΨj , i, j ∈ [d, r]. (5.3)

To construct the reduced structural system from Equation 5.3, the residual term χr might be

condensed out. From the 4th row in Equation 5.3, χr is represented as

χr = F̂−1
rr (−F̂rdχd −ΨT

r Lbub + ΨT
r BT F̂rf), (5.4)

where F̂−1
rr are not directly calculated. Therefore, using Woodbury matrix identity [43], the low order

approximation of F̂−1
rr can be performed as

F̂−1
rr = (ΨT

r F̂rbΨr)
−1 ≈ (ΨT

r F̂rbsΨr + ω2ΨT
r F̂rbmΨr)

−1 ≈ Frrs − ω2Frrm ,

Frrs = (ΨT
r F̂rbsΨr)

−1, Frrm = Frrs (ΨT
r F̂rbmΨr)F

rr
s . (5.5)

The details of Woodbury matrix identity are explained in Appendix.

Substituting Equations 5.4 and 5.5 in Equation 5.3, following approximated equation of motion in

reduction level 2 is obtained as
Λd − ω2Id 0 ΦT

dbΨd 0

0 −ω2Iα RT
b Ψd 0

ΨT
d Φdb ΨT

d Rb Ĝ −Ψ̂T
d Lb

0 0 −LTb Ψ̂d Ĥrb




qd

α

χd

ub

 =


ΦT
d f

RT f

−Ψ̂T
d BT F̂rf

LTb ĤrB
T F̂rf

 ,
Ĝ = −F̂dd + F̂drF̂

−1
rr F̂rd, Ψ̂d = Ψd −ΨrF̂

−1
rr F̂rd,

Ĥr = ΨrF̂
−1
rr ΨT

r , Ĥrb = LTb ĤrLb. (5.6)
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To obtain the reduced eigenvalue problem from Equation 5.6, all the transcendental quantities,

superposed by hat, are approximated as

Ĝ ≈ Gs + ω2Gm, Ĥrb ≈ Hrbs + ω2Hrbm, Ψ̂d ≈ Pds + ω2Pdm. (5.7)

Then, the reduced eigenvalue problem of the reduction level 2 can be obtained as

K̄lv2
p Φ̄lv2

p = λ̄M̄lv2
p Φ̄lv2

p with ūlv2
p = Φ̄lv2

p q̄lv2
p ,

K̄lv2
p =


Λd 0 ΦT

dbΨd 0

0 0 RT
b Ψd 0

ΨT
d Φdb ΨT

d Rb Gs −PT
dsLb

0 0 −LTb Pds Hrbs

 , M̄lv2
p =


Id 0 0 0

0 Iα 0 0

0 0 −Gm PT
dmLb

0 0 LTb Pdm −Hrbm

 ,
Φ̄lv2
p =

[
Φ̄T
qd

Φ̄T
α Φ̄T

χd
Φ̄T
ub

]T
. (5.8)

From the 3rd row in Equation 5.8, Φ̄g can be calculated

Φ̄g ≈ LΦ̄ub = ΦdΦ̄qd + RΦ̄α − F̂rBΨdΦ̄χd , if Ψ̂d ≈ Ψd, in Level 2. (5.9)

5.2 Reduction of interface DOFs

In the reduction level 3, the interface DOF ub is reduced. Here, ub can be decomposed as the

dominant term ud and the residual term ur, and it can be represented as

ub =
[

Ξd Ξr

] [ ϕd
ϕr

]
,

ud = Ξdϕd, ur = Ξrϕr, (5.10)

where Ξd and Ξr are the mode shapes, and ϕd and ϕr are the generalized coordinates of the dominant

and residual terms of the interface DOF, respectively.

In the analogous way to calculate the dominant LLM field, Ξd can be constructed using the λ` field

which is the adjacent sub-domains, see Figure 5.1(d). Using the static terms of dominant mode shapes

Ψ̂d, Ξd can be constructed, and Ξr also can be constructed as the corresponding null space of Ξd as

Ξd = Span(LTb Pds), Ξr⊥Ξd

=⇒ PT
dsLbΞr = 0. (5.11)

In the previous research, Ξr is assumed as the null space of Ψ̂T
d Lb [30]. Then, the dynamic part Pdm

is also neglected with the static part Pds. In contrast, in the present formulation, Ξr is defined as the

null space of PT
dsLb, see Equation 5.11. Therefore, Pdm is retained in the reduction level 3, and it leads

to the improvement of the accuracy performance in the eigensolutions. This feature are demonstrated

in Section 5 with numerical examples. Note that Ξr is also arbitrary null space such as Ψr.
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Substituting Equations 5.10 and 5.11 in Equation 5.6, the following equation are obtained

Λd − ω2Id 0 ΦT
dbΨd 0 0

0 −ω2Iα RT
b Ψd 0 0

ΨT
d Φdb ΨT

d Rb Ĝ −Ψ̂T
d LbΞd −ω2PT

dmLbΞr

0 0 −ΞT
d LTb Ψ̂d Ĥdd Ĥdr

0 0 −ω2ΞT
r LTb Pdm Ĥrd Ĥrr





qd

α

χd

ϕd

ϕr



=



ΦT
d f

RT f

−Ψ̂T
d BT F̂rf

ΞT
d LTb ĤrB

T F̂rf

ΞT
r LTb ĤrB

T F̂rf


, Ĥij = ΞT

i ĤrbΞj , i, j ∈ [d, r]. (5.12)

From the 5th row in Equation 5.12, ϕr is represented as

ϕr = Ĥ−1
rr (ΞT

r LTb ĤrB
T F̂rf + ω2ΞT

r LTb Pdmχd − Ĥrdϕd). (5.13)

We here substitute Equation 5.13 in Equation 5.12, and condense out the terms of ϕr. The higher

order terms over ω2 are neglected. Then, following approximated equation of motion in reduction level

3 is obtained as
Λd − ω2Id 0 ΦT

dbΨd 0

0 −ω2Iα RT
b Ψd 0

ΨT
d Φdb ΨT

d Rb Ĝ Q̂d

0 0 Q̂T
d Ĵ




qd

α

χd

ϕd

 =


ΦT
d f

RT f

(−PT
ds − ω2P̂T

dm)BT F̂rf

Ξ̂T
d LTb ĤrB

T F̂rf

 ,
Q̂d = (−PT

ds − ω2P̂T
dm)LbΞd, P̂dm = Pdm − ĤrÊrbPdm,

Êrb = LbΞrĤ
−1
rr ΞT

r LTb , Ĵ = Ĥdd − ĤdrĤ
−1
rr Ĥrd, Ξ̂d = Ξd −ΞrĤ

−1
rr Ĥrd, (5.14)

To obtain the reduced eigenvalue problem from Equation 5.14, all the transcendental quantities,

superposed by hat, are approximated as

Q̂d ≈ Qds + ω2Qdm, Ĵ ≈ Js + ω2Jm. (5.15)

Then, the reduced eigenvalue problem of the reduction level 3 with free vibration (f = 0) can be

obtained as

K̄lv3
p Φ̄lv3

p = λ̄M̄lv3
p Φ̄lv3

p with ūlv3
p = Φ̄lv3

p q̄lv3
p ,

K̄lv3
p =


Λd 0 ΦT

dbΨd 0

0 0 RT
b Ψd 0

ΨT
d Φdb ΨT

d Rb Gs Qds

0 0 QT
ds Js

 , M̄lv3
p =


Id 0 0 0

0 Iα 0 0

0 0 −Gm −Qdm

0 0 −QT
dm −Jm

 ,
Φ̄lv3
p =

[
Φ̄T
qd

Φ̄T
α Φ̄T

χd
Φ̄T

ϕd

]T
. (5.16)

From the 3rd row in Equation 5.16, Φ̄g can be calculated

Φ̄g ≈ LΞdΦ̄ϕd = ΦdΦ̄qd + RΦ̄α − F̂rBΨdΦ̄χd , if Ψ̂d ≈ Ψd, in Level 3. (5.17)
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Note that the calculation procedures of Φ̄g in levels 2 and 3 are not performed unless an assumption

(Ψ̂d ≈ Ψd) satisfied, see Equations 5.9 and 5.17. Then, the solutions of the reduced model in the levels

2 and 3 have the convergence problems. Hence, this assumption might be carefully considered when the

present formulation is used for the boundary reduction.

5.3 Numerical example

We here consider a rectangular plate problem with free boundary condition, see Figure 5.2. Length

L and width B are 3m and 1.5m, respectively. Thickness h is 0.01m. Young’s modulus E is 69GPa,

Poisson’s ratio ν is 0.35, and density ρs is 2700kg/m3. The plate is modeled by a 30 × 15 mesh of the

four-node MITC shell finite elements, and the structural model is partitioned into two substructures

(Ns = 2).

We here consider two numerical cases which are differently selected numbers of the retained modes,

and these are listed in Table 5.1. The frequency cut-off mode selection method is used to select the

dominant substructural modes. Figure 5.3 shows the relative eigenvalue errors of the present method

and the previous methods. The present formulation shows similar or better solution accuracy compared

with the previous methods.

L
1

W

2
W

G

B

Figure 5.2: Rectangular plate problem.
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(a)

(b)

Figure 5.3: Relative eigenvalue error in the rectangular plate problem. (a) Case 1 and (b) Case 2.
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Table 5.1: Numbers of retained modes and DOFs in the rectangular plate problem.

qd α λ` ub Total

Global 1485 3 - - 1488

Case 1

CB 12 - - 123 135

Damijan et al. (2007) 12 6 18 36 72

Present (Level 1) 12 6 246 123 387

Present (Level 2) 12 6 18 123 159

Present (Level 3) 12 6 18 18 54

Case 2

CB 22 - - 123 145

Damijan et al. (2007) 22 6 28 56 112

Present (Level 1) 22 6 246 123 397

Present (Level 2) 22 6 28 123 179

Present (Level 3) 22 6 28 28 84

5.4 Closure

We extended the interface reduction technique of the F-CMS method performed by Markovic et

al. [30]. To obtain the precise formulation, we propose three-level reduction procedures for the inter-

nal, localized Lagrange multipliers and interface DOFs. Especially, the static correction is used in the

reduction level 3 for the interface DOFs unlike the previous research, and then the additional residual

dynamic terms are survived in the final eigenvalue problem. Consequently, the present research offers an

enhanced eigenvalue problem compared with the previous eigenvalue problem. Numerical results showed

the improvement of the solution accuracy with reducing the matrix size in the present formulation. In

addition, the eigenvector relations between the global and reduced models were completely defined in

the whole reduction levels.
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Chapter 6. Mode selection method for CMS

methods

In the CMS methods, a global structure is partitioned into multiple substructures, and substructural

modes are obtained by solving individual substructural eigenvalue problems. A reduced model is con-

structed by retaining only the dominant substructural modes that are selected. Therefore, the accuracy

of the reduced model strongly depends on the composition of the selected dominant substructural modes.

A key challenge is then to develop a high-fidelity mode selection method to construct a reliable reduced

model, in which the global model is accurately reflected and the size of the reduced model is as small as

possible.

To date, the frequency cut-off mode selection method has been widely used for the CMS methods,

which was initially proposed by Hurty [41, 44] and subsequently embellished by others [45, 46, 47]. The

frequency cut-off mode selection method uses the natural frequencies calculated from substructural eigen-

value problems. The basic idea relies on the assumption which states, in general, the lower substructural

modes contribute more substantially to the lower global modes than the higher substructural modes.

Therefore, the dominant substructural modes are sequentially selected from lowest natural frequencies.

While the rule is simple, the lower substructural modes do not necessarily contribute adequately to the

lower global modes while leaving out some critical higher substructural modes. This fact leads to the

limitation in the solution accuracy of the frequency cut-off mode selection method.

During the 1990s and 2000s, several mode selection methods[48, 49, 50, 51, 52, 53] were developed

for the stiffness-based CMS method, in particular, Craig-Bampton (CB) method. A key idea for their

mode selection methods is based on the observation that the components of a reduced interior mass

matrix that is constructed with the fixed interface modal participation factor is ranked, which is then

subsequently used for mode selection. There was also a different mode selection method for a flexibility-

based CMS (F-CMS) method[28]. The method relies on the observation that the relative contribution of

each substructural mode to the substructural interface flexibility can be used as a guide to select dominant

substructural modes in the F-CMS method. These mode selection methods may be collectively viewed

as a priori mode selection methods.

In practice, reduced-order structural models find their applications in the design of vibration and

noise reduction, alleviation of vibration-induced fatigue, active control synthesis, and sustained perfor-

mance evaluations of vibrating structures. In other words, reduced-order models are usually developed

after a series of model updating to arrive at tailored reduced-order models intended for specific appli-

cations. The task of model updating, thus, can be greatly facilitated if there are a posteriori mode

selection strategies. To this end, the objective of this study is to develop an a posteriori mode selection

method. That is, we carry out a preliminary CMS employing the frequency cutoff concept or an a priori

mode selection method (although we have not explored this option in the present study). Then, we

rank the contributions of substructural modes to target global modes that we want to approximate more

accurately. We repeat the procedure by injecting additional substructural modes if necessary until the

specified accuracy of the target global modes are realized, and ejecting the relative superfluous modes is

performed in the iteration procedure at once. The rest of this chapter is organized as follows.
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Section 6.1 presents a review of the three available mode selection methods for stiffness-based CMS

techniques, specialized to the CB method. In their 1996 paper, Kammer and Triller[50] applied a

balanced systems theory-based realization procedure[54] to derive three effective interface mass (EIM)

matrices, corresponding to three output measures, viz., the acceleration, the velocity and the displace-

ment output. It so turns out that the coupling matrices developed by Givoli et al.[52] employing the

Dirichlet-to-Neumann method, and the moment-matching principle adopted by Liao et al.[53] correspond

to the velocity-output EIM and the displacement EIM, respectively. The proposed a posteriori mode

selection method is presented in Section 6.2. An error estimation and an accuracy control strategy are

also presented in Section 6.3. As the proposed mode selection method is also applicable to a flexibility-

based CMS method[28], we summarize its formulation in Section 6.4. Numerical experiments with the

proposed mode selection method are offered as applied to a plate, cylindrical and hemispherical shells in

Section 6.5.

6.1 Review of Existing Mode Selection Methods

6.1.1 Kammer’s method

In 1996, Kammer and Triller[50] presented their mode select methods for three different MIMO

(multiple-input and multiple-output) scenarios for the CB method. Apparently, it appears that neither

Givoli et al.[52] nor Liao et al.[53] was aware of Kammer and Triller’s 1996 work as the work of Kammer

and Triller[50] was not referenced in their papers. It turns out that the methods proposed by Givoli et

al.[52] and Liao et al.[53] can be viewed as a special case of Kammer and Triller’s method by adopting

different weighting norms. Employing the systems theory-based input-output relations, Kammer and

Triller arrived at the following expression for the interface equation subject to modal acceleration output:

Miüi + Kiui = fi + faq ,

faq =

ns∑
j=1

ω−1
j Saj v̈j , Saj = M̂cΦdjΦd

T
j M̂T

c , v̈j(t) =

∫ t

0

üb sin[ωj(t− τ)] dτ, (6.1)

where Mi and Ki are the ith substructure mass and stiffness matrices statically reduced to the interface

degrees of freedom, respectively; and superscript a denotes acceleration input; and Sa is labeled as the

effective interface mass matrix (EIM) for acceleration output by Kammer and Triller[50] and the coupling

matrix by Givoli et al. and Liao et al.[52, 53].

When the modal velocity and modal displacement output are specified, Kammer and Triller resorted

to the so-called balanced realization procedure proposed by Moore[54] to obtain the following effective

interface mass matrix for Sv for the modal velocity output and that for the modal displacement output

Sd as:

Svj = M̂cΦdjω
−2
j Φd

T
j M̂T

c , (6.2)

Sdj = M̂cΦdjω
−4
j Φd

T
j M̂T

c . (6.3)
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6.1.2 The OMR method

While the derivational process for deriving the optimal modal reduction (OMR) method[52] is inde-

pendent of the procedure employed by Kammer and Triller, the effective interface mass matrix derived

by invoking an optimal modal reduction method by Givoli et al. turns out to be the same as the modal

acceleration EIM derived by Kammer and Triller:

SOMR
j︸ ︷︷ ︸

Givoli et al. [52]

= Saj .︸︷︷︸
Kammer and Triller [50]

(6.4)

6.1.3 The CMSPχ method

Similarly, the effective interface mass matrix derived by Liao et al [53]. by utilizing a moment-

matching principle is the same as the modal velocity EIM derived by Kammer and Triller:

S
CMSPχ
j︸ ︷︷ ︸

Liao et al. [53]

= Svj .︸︷︷︸
Kammer and Triller [50]

(6.5)

Remark 1: It should be noted that Kammer and Triller used trace of the effective interface mass

matrix in their applications whereas Givoli et al. and Liao et al. appear to have used L2-norm.

The three foregoing EIM matrices have been used to select the substructural modes a priori. While

they offer a ranking of substructural modes, which clearly constitutes an improvement over the standard

frequency cut-off method, it is not clear how one may utilize EIM matrices in improving adaptively

as well as interactively updating the reduced model further once a reduced-order model is constructed.

This is because in practice several iterative model improvements are often required for various intended

applications with the reduced-order models, such as control synthesis, design optimization, performance

evaluation, etc.

In the following we present a a posteriori mode selection method which can make use of intermedi-

ate reduced-order models, once a preliminary reduced-order model is at hand, thus allowing subsequent

model updating depending on specific applications.

6.2 Proposed Mode selection method

This section presents an a posteriori mode selection method that utilizes a quantitative measure

of how substructural interior modes contribute to the global modes. To this end, we begin with a

set of dominant substructural modes chosen by the frequency cut-off mode selection method (see, e.g.,

references [41, 44, 45, 46]). The basic assumption is that, in general, lower substructural modes con-

tribute more substantially to lower global modes than higher substructural modes. Therefore, dominant

substructural modes are sequentially selected from the lowest substructural frequency.

However, as described below, the reduced model rendered by the frequency cut-off approach may

result in inadequate models. We begin with a free-free cylindrical shell partitioned into two substructures

as shown in Figure 6.1, with relatively long (Ω1) and short (Ω2) cylinders. Figure 6.1 also shows the
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relation between the global and substructural mode shapes. It is observed that, for the relatively higher

global modes in Figure 6.1(b), the basic assumption of the frequency cut-off mode selection method does

not hold. For example, global mode 10 is more strongly related to mode 39 of the substructure Ω2 than

other lower substructural modes. This example demonstrates the inherent limitation of the frequency

cut-off mode selection method. We now present in a step-by-step manner the proposed mode selection

method.

2
W

G

(a)

1
W

Global mode 1 Global mode 2 Global mode 3

Sub 1-mode 1 Sub 1-mode 2 Sub 1-mode 3

2
W

G

(b)

1
W

· · · ·· ·

· · · · · ·· · · ·· ·

· ·· · · ·· ·

Global mode 10 Global mode 11 Global mode 15 Global mode 26

Sub 1-mode 10 Sub 1-mode 15 Sub 1-mode 28

Sub 2-mode 27 Sub 2-mode 35 Sub 2-mode 39

· ·

· ·· · · ·· · · ·· ·

· ·· · · ·· · · ·· · · · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· ·

· ·· ·

Global mode 39

· ·· · · ·· · · ·· · · ·· · · ·· · ·

· ·· ·

Sub 1-mode11 Sub 1-mode 39

· ·· ·

· ·· ·

· ·· ·

Sub 1-mode 6 Sub 1-mode 8 Sub 1-mode 9

Global mode 6 Global mode 8 Global mode 9

· ·· ·

· ·· ·

· ·· ·

· ·· ·

· ·· ·

Sub 2-mode 1 Sub 2-mode 2 Sub 2-mode 3 Sub 2-mode 6 Sub 2-mode 8 Sub 2-mode 9

Figure 6.1: Relation between global and substructural mode shapes in a cylindrical shell. (a) Global

modes 1 to 9, (b) Global modes 10 to 39.
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6.2.1 Modal relation from substructural to global eigenvector

In the original CB method, we compute the approximate global eigenvector matrices Φ̄g in terms

of the dominant substructural eigenvector matrix Φd and the eigenvector matrix Φ̄p obtained from the

reduced-order model as restated below:

Φ̄g =

[
ΦdΦ̄qd −K−1

s KcΦ̄ub

Φ̄ub

]
. (6.6)

The preceding equation reveals that the approximate global eigenvector matrix Φ̄g consists of several

components among which a direct link between the fixed interface substructural mode shapes in Φd and

the global mode shapes in Φ̄g is manifested in the term, ΦdΦ̄qd . Observe that Φd is obtained from the

individual substructural eigenvalue problems while the generalized coordinate eigenvector matrix Φ̄qd

corresponding to the generalized coordinates qd is calculated from the eigenvalue problem of the reduced

model. From a physical point of view, Φ̄qd acts as the post-multiplication weighting vector set for each

of the substructural mode shapes. For example, the jth global mode shape Φ̄g(1 : Ng, j) is obtained by

Φ̄g(1 : Nd, j) =

N̄p∑
i=1

Φd(1 : Nd, i) · Φ̄qd(i, j), (6.7)

where Ng, N̄p, and Nd denote the numbers of DOFs in the global and reduced models, and the number

of dominant substructural modes, respectively. Hence, the magnitude of |Φ̄qd(i, j)| can be used as

an indicative of the contribution of the ith substructural mode shape to the jth global mode shape.

Interpreted in terms of the substructural mode shapes, the magnitude of the ith row of |
∑N̄p
j=1 Φ̄qd(i, j)|

offers an indication of the contribution of the ith substructural mode shape to the overall global mode

shapes.

In other words, Φ̄qd in Equation 6.6 is simply a relation matrix between the approximate global

eigenvector matrix Φ̄g and the dominant substructural interior eigenvector matrix Φd, viz.,

Φ̄g
oo

Φ̄qd // Φd . (6.8)

Consequently, the generalized coordinate eigenvector matrix Φ̄qd can be utilized as an indicator of

the contributions of the dominant substructural modes to the global modes. To succinctly see how Φ̄qd

links the substructural mode shapes to the global mode shapes, we expand Φ̄qd to read:

Φ̄qd =



Φ̄
(1)
qd

Φ̄
(2)
qd

...

Φ̄
(k)
qd

...

Φ̄
(Ns)
qd


, Φ̄(k)

qd
=


(φ̄

(k)
qd )11 (φ̄

(k)
qd )12 · · · (φ̄

(k)
qd )1N̄p

(φ̄
(k)
qd )21 (φ̄

(k)
qd )22 · · · (φ̄

(k)
qd )2N̄p

...
... (φ̄

(k)
qd )ij

...

(φ̄
(k)
qd )

N
(k)
d 1

(φ̄
(k)
qd )

N
(k)
d 2

· · · (φ̄
(k)
qd )

N
(k)
d N̄p

 ,

(6.9)

where Φ̄qd is the Nd×N̄p matrix (Nd = N
(1)
d +N

(2)
d + ...+N

(k)
d ). The component matrix Φ̄

(k)
qd (N

(k)
d ×N̄p

matrix) gives the contribution of the substructural modes of the kth substructure to the entire global

modes. (φ̄
(k)
qd )ij is a component of Φ̄

(k)
qd corresponding to the contribution of the ith substructural mode

in the kth substructure to the jth global mode. Here, Ns denotes the number of substructures.
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We therefore propose that the magnitude of each row of Φ̄qd for a substructure be used as an

indicator of the contribution level of the corresponding substructural mode to the global modes in Φ̄g.

In so doing, of several possible measures of utilizing the row vectors of Φ̄qd , the following simple norm

is adopted

C
(k)
i =

√√√√√ N̄p∑
j=1

[
(φ̄

(k)
qd )ij

]2
,

i = 1, 2, ..., N
(k)
d , j = 1, 2, ..., N̄p and k = 1, 2, ..., Ns, (6.10)

where C
(k)
i is an indicator of the contribution of the ith substructural mode of the kth substructure to

the global modes.

It is noted that each substructural mode makes a different contribution to the global modes in Φ̄g.

That is, the magnitude C
(k)
i has a different scalar value for each substructural mode. This observation

enables us to rank the substructural modes based on their contributions to the global modes.

Remark 2: It is noted that the second term in the first row of Equation 6.6, viz., K−1
s KcΦ̄ub ,

represents the contribution of the interface mode shapes to the interior global mode shapes. This term

would play an important role when one carries out the reduction of the interface degrees of freedom. We

plan to report in a separate paper a strategy of reducing the interface DOFs.

6.2.2 Mode selection procedure

Suppose we have carried out a preliminary CMS synthesis employing the frequency cut-off procedure

(or alternatively some other a priori mode selection method) and obtained both the global mode shapes

and the interior substructural mode shapes. We label the preliminary reduced model (intermediate

reduced model) by tilde (̃·) and the final reduced model by an overbar (̄·).
The numbers of the selected substructural modes for the intermediate and final reduced models are

also defined by Ñd (Ñd = Ñ
(1)
d + Ñ

(2)
d + ...+ Ñ

(k)
d ) and N̄d (N̄d = N̄

(1)
d + N̄

(2)
d + ...+ N̄

(k)
d ), respectively.

Then, the total numbers of modes in the intermediate and final reduced models, Ñp and N̄p, are given

by

Ñp = Ñd +Nub , N̄p = N̄d +Nub . (6.11)

where Nub denotes the number of interface boundary DOFs.

Figure 6.2 shows the three eigenvalue problems considered in the global, intermediate reduced and

final reduced models. The computational cost of the present mode selection method depends on the size

of the intermediate reduced eigenvalue problems. The numbers of DOFs in the three eigenvalue problems

are

N̄p < Ñp � Ng. (6.12)

Since Ñp for the intermediate reduced model is much smaller than Ng for the global model, the

computational cost to solve the eigenvalue problem of the intermediate reduced model is not high. Note

that N̄d should be sufficiently smaller than Ñd. Determining the size of Ñp will be discussed in the

numerical experiments.
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Figure 6.2: Three eigenvalue problems for (a) the global eigenvalue problem, (b) the intermediate reduced

eigenvalue problem, and (c) the final reduced eigenvalue problem. Ñd and N̄d are the numbers of the

substructural modes retained in the intermediate and final reduced models, respectively.

Here, the substructural modal contribution C
(k)
i can be obtained from the intermediate reduced

model given by M̃p and K̃p. Therefore, Equation 6.10 becomes

C
(k)
i =

√√√√√ Ñp∑
j=1

[
(φ̃

(k)
qd )ij

]2
,

i = 1, 2, ..., Ñ
(k)
d , j = 1, 2, ..., Ñp and k = 1, 2, ..., Ns. (6.13)

Let us explain a very important point of the present mode selection method. In Equation 6.13,

the substructural contribution C
(k)
i is calculated for the entire global modes of the intermediate reduced

model. However, in engineering practice we are interested in only several lower global modes. Using

weighting factors κj , it is possible to differently weight each global mode. Lager weighting factors

should be used for more important global modes or global modes that we are more interested in. Then,

Equation 6.13 is redefined as

C
(k)
i =

√√√√√ Ñp∑
j=1

[
κj(φ̃

(k)
qd )ij

]2
,

i = 1, 2, ..., Ñ
(k)
d , j = 1, 2, ..., Ñp and k = 1, 2, ..., Ns. (6.14)

For simplicity, in this study we determine the weighting factors with the following rule

κj = 1 forNL
t ≤ j ≤ NU

t , otherwise κj = 0, (6.15)

in which NL
t and NU

t denote the lower and upper limits of the target global modes, respectively. Both

mode numbers are used to define the range of the target global modes. Nt is the target range size

(Nt = NU
t − NL

t ). Using the weighting factors κj in Equation 6.15, the substructural contributions to

the target global modes from NL
t to NU

t are calculated using Equation 6.14 and the contributions C
(k)
i

are ranked. Then, the substructural modes which contribute more to the target global modes are selected

in order of C
(k)
i .

As mentioned, there exist higher substructural modes that contribute more to the target global

modes than lower substructural modes as shown in Figure 6.1. The present mode selection method can

pick up the non-sequential modal relation in frequency. This feature enables the improved performance

of the present mode selection method in capturing the important modal characteristics of the global

models. Note that the present mode selection method is independent of frequency spectra of applied
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forces, and can be applied to various CMS methods if the relation between Φd and Φ̄g can be defined.

The present mode selection procedure is summarized in Table 6.1:

• (Step 1) Initial preparation. The global matrices Mg and Kg are given at first. The lower limit

NL
t and the upper limit NU

t are determined for the range of the target global modes considering

the interesting natural frequency range (ωL
t ∼ ωU

t ) of the global structure. We then determine the

numbers of the dominant substructural modes Ñd and N̄d retained in the intermediate and final

reduced model, respectively. Ñd and N̄d are defined by ω̃t and ω̄t considering the upper limit of

the interesting natural frequency ωU
t by

ω̃t = γβωU
t , ω̄t = βωU

t . (6.16)

In order to use the new mode selection method, we need to determine how much larger than N̄d

is Ñd by γ. We will study on the factor γ in Section 5.1. Another parameter β is recommended as

1.3 ∼ 5 in commercial FE software like ABAQUS [55].

• (Step 2) Construction of the intermediate reduced model. The frequency cut-off mode selection

method is applied to select the dominant substructural modes for the intermediate reduced model.

That is, using the substructural frequencies obtained by solving the substructural eigenvalue prob-

lems, the dominant substructural modes are selected in order from the lowest substructural fre-

quency regardless of substructures. The selected substructural mode numbers are arranged in a

vector Ñd as

Ñd =
[

(Ñ
(1)
d )T (Ñ

(2)
d )T · · · (Ñ

(k)
d )T · · · (Ñ

(Ns)
d )T

]T
, (6.17)

where Ñ
(k)
d is the vector which contains the selected mode numbers of the kth substructure in the

intermediate reduced model. The intermediate reduced matrices M̃p and K̃p are constructed by

retaining intermediately selected substructural modes.

• (Step 3) Construction of the final reduced model. The eigenvalue problem of the intermediate

reduced model is solved with M̃p and K̃p, and the generalized coordinate eigenvector matrix Φ̃qd is

obtained. The substructural contribution C
(k)
i is calculated using Equation 6.14 and the dominant

substructural modes are selected in order of the contribution from the substructural mode that

contributes most largely to the target global modes. The selected substructural mode numbers are

arranged in N̄d as

N̄d =
[

(N̄
(1)
d )T (N̄

(2)
d )T · · · (N̄

(k)
d )T · · · (N̄

(Ns)
d )T

]T
, (6.18)

where the vector N̄
(k)
d contains the selected substructural mode numbers of the kth substructure in

the final reduced model. Using the finally selected substructural modes, the final reduced matrices

M̄p and K̄p are constructed.
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Table 6.1: The present mode selection procedure.

Step 1. Initial preparation

(a) Mg and Kg are given.

(b) The range of the target global modes is determined by ωL
t ∼ ωU

t : NL
t ∼ NU

t .

(c) Ñd and N̄d are determined by ω̃d and ω̄d, respectively:

ω̃d = γβωU
t , ω̄d = βωU

t ,

Step 2. Construction of the intermediate reduced model

(a) The substructural eigenvalue problems are solved

[K
(k)
s − λ

(k)
j M

(k)
s ](φ(k))j = 0, for k = 1, 2, ..., Ns.

(b) The dominant substructural modes are selected by the frequency cut-off mode selection method.

(c) The intermediate reduced model is constructed with M̃p and K̃p.

Step 3. Construction of the final reduced model

(a) The intermediate eigenvalue problem is solved and Φ̃qd is found:

K̃p(φ̃)j = λ̃jM̃p(φ̃)j , j = 1, 2, ..., Ñp.

(b) The contributions of the substructural modes to the target global modes are calculated: C
(k)
j in

Equation 6.14.

(c) The dominant substructural modes are selected in order of C
(k)
j .

(d) The final reduced model is constructed with M̄p and K̄p.

6.3 Error estimation and accuracy control

The reduced-order model thus constructed employing the present mode selection method still is

wanting of one ultimate fidelity goal: the accuracy of the global modes and mode shapes computed from

the reduced-order model. We extend the present mode selection method to offer an error estimation

method and a strategy to assess the accuracy of the reduced model.

In the present mode selection method, the norms of the row vectors in the generalized coordinate

eigenvector matrix Φ̃qd are used to calculate the substructural contribution C
(k)
i to the target global

modes, see Equation 6.14. Φ̃qd can also be represented by the column vectors (φ̃qd)j

Φ̃qd =
[

(φ̃qd)1 (φ̃qd)2 · · · (φ̃qd)j · · · (φ̃qd)Ñp

]
. (6.19)

When we only retain the several rows corresponding to the selected dominant substructural modes

in N̄d from Φ̃qd , the components of Φ̃N̄d
qd

are defined by

(φ̃qd)ij for i ∈ N̄d, j = 1, 2, ..., Ñp. (6.20)

Whence, Φ̃N̄d
qd

can be represented by the reduced column vectors φ̃
N̄d

qd

Φ̃N̄d
qd

=
[

(φ̃
N̄d

qd
)1 (φ̃

N̄d

qd
)2 · · · (φ̃

N̄d

qd
)j · · · (φ̃

N̄d

qd
)Ñp

]
. (6.21)

From Equations 6.19 and 6.21, the difference between φ̃qd and φ̃
N̄d

qd
can be measured by

εj = 1−
||(φ̃

N̄d

qd
)j ||

||(φ̃qd)j ||
, NL

t ≤ j ≤ NU
t . (6.22)
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Using εj , it is possible to estimate the natural frequency error. Note that εj is the sum of the

contributions of the dominant substructural modes in N̄d. Since εj is based on the present mode

selection method, the performance of εj also depends on the solution accuracy of the intermediate

eigenvalue problem.

In Equation 6.15, we used weighting factors κj = 1 for the range of the target global modes defined

by NL
t and NU

t and weighting factors κj = 0 for other global modes. However, it is also possible to use

different κj for each global mode or for the other ranges of global modes.

To improve the accuracy of the reduced model that has relatively large error in several global modes,

first, the inaccurately approximated global modes are detected by using the proposed error estimation

method in Equation 6.22. We then redefine κj or the target range considering the detected global modes,

and additionally select substructural modes that largely contribute to only the inaccurately approximated

global modes by using Equation 6.14. Finally, the selected modes are added in the final reduced model.

The feasibility of the proposed strategy is demonstrated in Section 6.

6.4 Application in the F-CMS method

It so turns out that the mode selection method developed in the preceding sections is applicable

to flexibility-based CMS (F-CMS) method[28] as well. A major difference between the CB and the

F-CMS methods is that each of the partitioned substructures is completely free except inheriting the

global boundary conditions as shown in Figure 3.1(d). Hence, the substructures do not have common

interfaces. This means that substructural modes and mode shapes of a substructure get coupled only

through the common interface displacements and interface Lagrange multipliers. Formulation details of

the F-CMS method is presented in Section 3.3.

6.4.1 A priori mode selection method

It was proposed in [28, 35] that the frequency-independent residual flexibility (Frbs) can be used to

select the substructural modes by ranking the contributions of each substructural mode. For example, if

a substructural mode, say, the jth mode (Λd)j contributes significantly, then the following error norm

Cj
ind =

||Fbb − (ΦdbΛ
−1
d ΦT

db)j ||
||Fbb||

, j = 1, 2, ..., Nd (6.23)

would provide an indication of the ranking of each substructural mode. Using summation of contribution

of each substructural mode to the interface flexibility, the following cumulative error norm is also defined

Cj
cum =

||Fbb −
∑Nd
j=1 (ΦdbΛ

−1
d ΦT

db)j ||
||Fbb||

, (6.24)

where Ccumj denotes the cumulative error norm, and it can be used to a stop criterion of the mode

selection method.

While a direct comparison is not possible, the preceding a priori mode selection method for the

F-CMS method is qualitatively analogous to the effective interface mass matrix indicator (Sv in Equa-

tion (6.2) ) introduced by Kammer and Triller[50] and Liao et al.[53]. Although not explored in [28],
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if one were to employ Frbm in a similar manner as Frbs, a F-CMS mode selection method akin to the

displacement out case (see Equation (6.3)) result.

6.4.2 A posteriori mode selection method

In the F-CMS method, the reduced global eigenvector Φ̄g is defined by

Φ̄g = ΦdΦ̄qd + RsΦ̄αs − F̂rBΦ̄λ` , (6.25)

in which Φ̄g is also Ng×N̄p matrix. In the F-CMS method, N̄p is differently defined with the CB method

as

N̄p = N̄d +Nα +Nλ` +Nub , (6.26)

where Nα and Nλ` denote the numbers of rigid body mode and interface boundary DOFs, respectively.

Note that the first term in the above equation has the same form that is exploited in the devel-

opment of the mode selection method in the preceding section (see Equations 6.6 and 6.8). Therefore,

the present a posteriori mode selection method in the previous section developed for the stiffness-based

CMS method is equally applicable to the flexibility-based CMS method as well.

6.5 Numerical examples

The present mode selection method (see Equation 6.14) is evaluated by using the CB and F-CMS

methods in comparison with the frequency cut-off mode selection method and the flexibility-based mode

selection method in Equation 6.23. In so doing, the following relative global frequency error is used

ωj(relative error) = |ωj − ω̄j |/ωj , (6.27)

where the jth natural frequency ωj calculated from the global (original) eigenvalue problem is used as

the reference solution, and the corresponding approximate natural frequency ω̄j is calculated in the CB

and F-CMS methods, respectively. We also demonstrate the feasibility of the proposed error estimation

and accuracy control strategy. In this section, we use β = 3 and β = 2 (see Equation 6.16) in the CB

and F-CMS methods, respectively.

To evaluate the performance of the present mode selection method, we performed various numerical

tests considering structural shapes, partition types and retained mode numbers. In most cases, the

present mode selection method presents the best solution accuracy among the previous two mode selection

methods considered in this study. However, in this work, we present the results of three structural

problems: a square plate, a cylindrical shell and a hemisphere shell.

In all the numerical examples, the elastic modulus E is 69GPa, Poisson’s ratio ν is 0.35, and the

structural density ρs is 2700kg/m3.

6.5.1 Cylindrical shell problem

Let us consider a cylindrical shell with free boundary at both ends. Length L is 12m, radius R is

0.5m, and thickness h is 0.005m (h/R = 1/100 and L/R = 24). The cylindrical shell is modeled by a
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24 × 24 mesh of shell finite elements in the axial and circumferential directions, and is partitioned into

two same substructures as shown in Figure 6.3. Here, we use the interesting natural frequency range

from ωL
t = 0 to ωL

t = 59 rad/sec. Then, NL
t and NU

t are determined as 1 and 20, respectively.

To investigate the effect of γ on the performance of the present mode selection method, we calculate

the relative natural frequency errors for 3 different γ (1.5, 2.0 and 2.5) and the results are presented in

Figure 6.4. We observe that the same performance is obtained when γ is larger than 2.0, that is, there

is a performance saturation for γ. The fact implies that γ = 2.0 is a proper choice for the intermediate

reduced model considering both computational cost and accuracy. Although the performance of the

present mode selection method depends on the choice of γ, we will use γ = 2.0 in the following numerical

examples. The numbers of the selected substructural modes Ñd for the intermediate reduced model are

plotted in Figure 6.5. In the cylindrical shell problem, Ñd is about twice larger than N̄d when γ = 2.0.

The performance of the present mode selection method is compared with the previous mode selec-

tion methods. Figure 6.6 shows that the present mode selection method gives the best solution accuracy

among them. The numbers of the selected dominant substructural modes N̄
(k)
d are listed in Table 6.2.

It should be noted that Equation 6.23 of the flexibility-based mode selection method [28] is only used

for the numerical test. However, when the cumulative mode selection criterion defined in Equation 6.24

is used with Equation 6.23, the mode selection performance can be improved.

L

R2

1
W 2

W
G

Figure 6.3: Cylindrical shell problem 1.

Table 6.2: Retained substructural mode numbers N̄
(k)
d in the cylindrical shell problem 1.

CMS Mode selection method N̄
(1)
d N̄

(2)
d N̄d =

∑
N̄

(k)
d

CB
Freq.cut-off 23 23 46

Present 23 23 46

F-CMS

Freq.cut-off 19 19 38

Park and Park 19 19 38

Present 19 19 38
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Figure 6.4: Relative natural frequency error of the present mode selection method depending on γ in the

cylindrical shell problem 1. (a) CB method, (b) F-CMS method.
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Figure 6.5: Retained substructural mode numbers Ñd in the cylindrical shell problem 1. (a) CB method,

(b) F-CMS method.

The present mode selection method is also tested in different partition type of cylindrical shell

problem in Figure 6.7. Figure 6.8 shows that the present mode selection method also gives better solution

accuracy than the other mode selection methods. The numbers of the selected dominant substructural

modes N̄
(k)
d are listed in Table 6.3.

For the partition type in Figure 6.3, when the F-CMS method is used, it is observed that the

natural frequency error is relatively large in modes 5, 6, 15 and 16, see Figure 6.6(b). To handle the

inaccurately approximated modes, we use the error estimation and accuracy control strategy proposed

in Section 4. The key concept of the proposed accuracy control strategy is that the range of the target

global modes can be freely changed. We capture the inaccurately approximated modes and improve the

accuracy in the reduced model by additionally selecting several substructural modes using the present

mode selection method. Figure 6.9(a) shows εj in Equation 6.22 for the F-CMS method. Applying the

proposed error estimation method when N̄d = 38 that is initially selected, the inaccurately approximated

global modes are detected. Then, we increase the number of the selected dominant modes N̄d = 44 with

and without using the accuracy control strategy. The results are shown in Figure 6.9(b). When additional

6 substructural modes are selected using the redefined target range for global modes 5, 6, 15 and 16, the

accuracy of the those approximated modes are improved as shown in Figures 6.9(a) and (b). However,

the enough improvement is only achieved employing the proposed accuracy control strategy.
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Figure 6.6: Relative natural frequency error in the cylindrical shell problem 1. (a) CB method, (b)

F-CMS method.
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Figure 6.7: Cylindrical shell problem 2.

Table 6.3: Retained substructural mode numbers N̄
(k)
d in the cylindrical shell problem 2.

CMS Mode selection method N̄
(1)
d N̄

(2)
d N̄d =

∑
N̄

(k)
d

CB
Freq.cut-off 14 29 43

Present 14 29 43

F-CMS

Freq.cut-off 14 26 40

Park and Park 26 14 40

Present 16 24 40
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Figure 6.8: Relative natural frequency error in the cylindrical shell problem 2. (a) CB method, (b)

F-CMS method.
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(a)

(b)

Figure 6.9: Error estimation and accuracy control in the cylindrical shell problem 1 using the F-CMS

method. (a) Error estimation using Equation 6.22, (b) Accuracy control for the global modes 5, 6, 15

and 16.
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6.5.2 Square plate problem

Let us consider a square plate with free boundary. Length L is 1m and thickness h is 0.002m

(h/L = 1/500). The plate is modeled by a 10 × 10 mesh of shell finite elements and is partitioned into

two substructures Ω1 and Ω2, see Figure 6.10.

We here use ωL
t =0 and ωU

t = 54 rad/sec. Therefore, NL
t and NU

t are determined as 1 and 12,

respectively. Using the mode selection procedures, we can select the dominant substructural modes for

the square plate problem using the CB and F-CMS methods. The numbers of the selected dominant

substructural modes N̄
(k)
d are listed in Table 6.4 and the good performance of the present mode selection

method is demonstrated in Figure 6.11. The substructural mode numbers in the CB method are specifi-

cally listed in Table 6.5, which clearly shows differently selected substructural modes using the frequency

cut-off and present mode selection methods.

L

1
W

2
WG

Figure 6.10: Square plate problem.

Table 6.4: Retained substructural mode numbers N̄
(k)
d in the square plate problem.

CMS Mode selection method N̄
(1)
d N̄

(2)
d N̄d =

∑
N̄

(k)
d

CB
Freq.cut-off 25 2 27

Present 24 3 27

F-CMS

Freq.cut-off 19 1 20

Park and Park 11 9 20

Present 17 3 20
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Figure 6.11: Relative natural frequency error in the square plate problem. (a) CB method, (b) F-CMS

method.

– 58 –



Table 6.5: Selected substructural modes in the square plate problem using the CB method. Note that

C
(k)
j is the value of the substructural modal contribution in Equation 6.14.

Substructural Freq.cut-off (rad/sec) Present, C
(k)
j

mode number Ω1 Ω2 Ω1 Ω2

1 2.268E+00 (◦) 3.860E+01 (◦) 8.589E+00 (◦) 5.871E-01 (◦)

2 3.583E+00 (◦) 1.598E+02 (◦) 2.988E+00 (◦) 2.780E-02 (◦)

3 6.685E+00 (◦) 1.899E+02 (×) 1.746E+00 (◦) 1.189E-02 (◦)

4 1.358E+01 (◦) 3.386E+02 (×) 1.173E+00 (◦) 0.000E+00 (×)

5 1.570E+01 (◦) 8.477E+02 (×) 1.307E+00 (◦) 0.000E+00 (×)
...

...
...

...
...

... (◦) (×) (◦) (×)

...
...

...
...

...

18 9.199E+01 (◦) 7.347E+05 (×) 7.222E-02 (◦) 0.000E+00 (×)

19 1.060E+02 (◦) 7.348E+05 (×) 5.794E-02 (◦) 0.000E+00 (×)

20 1.190E+02 (◦) 7.348E+05 (×) 4.072E-03 (×) 0.000E+00 (×)

21 1.256E+02 (◦) 7.350E+05 (×) 6.004E-03 (×) 0.000E+00 (×)

22 1.261E+02 (◦) 8.382E+05 (×) 4.851E-03 (×) 0.000E+00 (×)

23 1.456E+02 (◦) 8.382E+05 (×) 4.487E-03 (×) 0.000E+00 (×)

24 1.475E+02 (◦) 8.382E+05 (×) 7.815E-03 (◦) 0.000E+00 (×)

25 1.531E+02 (◦) 8.382E+05 (×) 1.520E-02 (◦) 0.000E+00 (×)

26 1.657E+02 (×) 8.383E+05 (×) 1.363E-02 (◦) 0.000E+00 (×)

27 1.706E+02 (×) 8.384E+05 (×) 1.070E-02 (◦) 0.000E+00 (×)

28 1.708E+02 (×) 8.384E+05 (×) 1.130E-02 (◦) 0.000E+00 (×)

◦ : selected, × : unselected
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6.5.3 Hemisphere shell problem

Let us consider a hemisphere shell with free boundary at both ends. Height H is 3.084m and

thickness h is 0.05m. The radii R1 and R2 are 2m and 0.618m, respectively. For the hemisphere shell,

20 and 40 shell finite elements are used in the axial and circumferential directions, respectively. The

hemisphere shell is partitioned into four substructures, see Figure 6.12.

Considering the interesting natural frequency ranges (ωL
t = 0 rad/sec, ωU

t = 125 rad/sec), NL
t and

NU
t become 1 and 22, respectively. Using the mode selection procedures, the dominant substructural

modes are selected. The numbers of the selected substructural modes N̄
(k)
d are listed in Table 6.6. Fig-

ure 6.13 shows the excellent performance of the present mode selection method.
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Figure 6.12: Hemisphere shell problem.

Table 6.6: Retained substructural mode numbers N̄
(k)
d in the hemisphere shell problem.

CMS Mode selection method N̄
(1)
d N̄

(2)
d N̄

(3)
d N̄

(4)
d N̄d =

∑
N̄

(k)
d

CB
Freq.cut-off 38 10 60 16 124

Present 43 14 50 17 124

F-CMS

Freq.cut-off 38 13 52 18 121

Park and Park 33 14 52 22 121

Present 34 17 49 21 121
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(a)

(b)

Figure 6.13: Relative natural frequency error in the hemisphere shell problem. (a) CB method, (b)

F-CMS method.
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6.6 Closure

A mode selection method for structural component mode synthesis was presented, which aids the

structural analyst in selecting dominant substructural modes by ranking the contributions of substruc-

tural modes to target global modes. Since it is an a posteriori method, it can be iteratively used to

arrive at the desired target accuracy of the global modes. A key idea exploited in the development of

the present mode selection method is the fact that a leading term of the global mode shapes is expressed

in terms of two compounded mode shapes (ΦdΦ̄qd) for both the CB and F-CMS methods. Thus, the

magnitude of the jth row vector of Φ̄qd indicates a contribution level of the jth substructural mode to

the target global modes. It is this observation that has been exploited in the development of the present

mode selection method.

Numerical experiments indicate that the present mode selection method is consistently more robust

and accurate than the two a priori methods, viz., frequency cut-off method and flexibility-based mode

selection method in Equation 6.23, as evidenced by the results obtained from component mode syntheses

of a square plate, a cylindrical shell, and a hemisphere shell. An important by-product of the present

mode selection method was a strategy to handle inaccurately approximated global modes in reduced

models. Full potential of the present error control strategy for subsequent model updating remains to

be explored further.

An immediate further fine tuning of the present method will come from a rational way of determining

the weighting factor (κj) introduced in Equation 6.15. It should also be noted that the present mode

selection method assumes that the interface degrees of freedom are preserved. The interface degrees of

freedom constitute a considerable part of the reduced model for complex large structures, especially for

models involving three-dimensional interfaces. A companion technique for reducing the interface degrees

of freedom is under active development. These and other auxiliary issues such as more efficient solution

procedures are actively pursued and will be presented in the future.
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Chapter 7. Error estimation method for model

reduction methods

7.1 Error estimation method for Guyan reduction

In the DOFs based reduction method, a small proportion of the dominant DOFs, known as “master”,

is only retained for the reduced model, and the other DOFs, known as “slave”, are eliminated. Therefore,

the order of original model can be dramatically reduced. These procedures implies that the accuracy of

the reduced model strongly depends on the selection of the master DOFs, and then the key challenge

is to develop the robust node selection method to properly select the master DOFs. The most node

selection method is the sequential elimination method (SEM) which is based on the ratio of stiffness

to mass matrices in the diagonal terms [56, 57], and then the related researches have been performed

using analytical ways or energy estimation methods [58, 59, 60]. Using those methods, one can rationally

select the master DOFs, and reduce the computational time. A question, then, arises: How do we

evaluate the reliability of the reduced model? It means that the development of the error estimation

method is required in the DOFs based reduction methods. This requirement is well revealed by Hughes’s

statement [61]: “A disadvantage of reduction techniques such as the Irons-Guyan procedure is that there

is no guarantee that the eigenvalues and eigenvectors of the reduced problem will be good approximations

of those of the original problem.”

The objective of this study is to develop an error estimator that accurately predicts relative eigen-

value errors in finite element models reduced by Guyan reduction. It is not easy to estimate relative

eigenvalue errors because the exact eigenvalues of the original model are unknown. The proposed error

estimator makes it is possible to estimate the reliability of reduced models.

The proposed error estimator is derived from the original eigenvalue problem, in which the exact

eigenvalue and eigenvectors are divided into approximated and error parts and Kidder’s transformation

matrix for Guyan reduction is used to approximate the exact eigenvector [4]. Kidder’s transformation

matrix provides a more accurate approximation of the exact eigenvector than the original transformation

matrix of Guyan reduction. The derivation procedure is simple and straightforward.

In order to test the feasibility and performance of the proposed error estimator, we calculate both

the exact relative eigenvalue errors and the estimated errors using the proposed error estimator, after

which the error values are compared. Various numerical examples are considered for numerical tests.
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7.1.1 Derivation procedures

To evaluate the reliability of the approximated eigensolutions from Equation 2.4, the following

relative eigenvalue error is generally used

ξi =
λ̄i
λi
− 1, (7.1)

in which ξi denotes the relative eigenvalue error. Since the reference eigenvalue λi is obtained from the

original eigenvalue problem or experimentally measured, Equation 7.1 is quite expensive and impractical

in engineering practice.

In this section, we introduce a method to estimate the relative eigenvalue error in Equation 7.1

without knowing the exact eigenvalue λi.

Since λi and (φ)i is the solution of the eigenvalue problem in Equation 2.2, we have

1

λi
(φ)Ti K(φ)i = (φ)Ti M(φ)i, (7.2)

where λi and (φ)i also satisfy the mass-orthonormality and stiffness-orthogonality properties, and then

these can be expressed as the approximations and error terms as

λi = λ̄i + δλi, (7.3a)

(φ)i = (φ̄)i + (δφ)i, (7.3b)

in which δλi and (δφ)i are errors of the eigenvalue and eigenvector, respectively. Using Equation 7.3(b)

in Equation 7.2, we obtain (specific derivation is presented in Appendix)

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i −

1

λi
(δφ)Ti K(δφ)i + (δφ)Ti M(δφ)i = 0. (7.4)

Here, the approximated eigenvector (φ̄)i can be expressed by using Kidder’s transformation matrices

(φ̄)i = TK(φ1)i = [TG + Tr] (φ1)i, (7.5)

Tr =

[
0

λi
[
K−1

22 M21 −K−1
22 M22K

−1
22 K21

]
+ λ2

iK
−1
22 M22K

−1
22 M21

]
.

Using Equation 7.5 in Equation 7.4, we obtain

1

λi
(φ1)Ti

[
T̄G + T̄r

]T
K
[
T̄G + T̄r

]
(φ1)i (7.6)

−(φ1)Ti
[
T̄G + T̄r

]T
M
[
T̄G + T̄r

]
(φ1)i −

1

λi
(δφ)Ti [K− λiM] (δφ)i = 0.

After expanding Equation 7.6 and applying the mass-orthonormality and stiffness-orthogonality

conditions for the reduced eigenvalue problem, the following equation is obtained

λ̄i
λi
− 1 = 2(φ1)Ti T̄T

G

[
M− 1

λi
K

]
T̄r(φ1)i (7.7)

+(φ1)Ti T̄T
r

[
M− 1

λi
K

]
T̄r(φ1)i +

1

λi
(δφ)Ti [K− λiM] (δφ)i,

in which the left-hand side is the relative eigenvalue error in Equation 7.1.

When the approximated original eigenvector (φ̄)i are close enough to the exact original eigenvectors

(φ)i, it is possible to assume that

1

λi
(φ̄)Ti K(φ̄)i ≈ 1 and

1

λi
(φ̄)Ti K(φ̄)i �

1

λi
(δφ)Ti K(δφ)i, (7.8a)

(φ̄)Ti M(φ̄)i ≈ 1 and (φ̄)Ti M(φ̄)i � (δφ)Ti M(δφ)i. (7.8b)
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Under the assumption in Equation 7.8, we neglect the last term on the right-hand side of Equation 7.7

λ̄i
λi
− 1 ≈ 2(φ1)Ti T̄T

G

[
M− 1

λi
K

]
T̄r(φ1)i + (φ1)Ti T̄T

r

[
M− 1

λi
K

]
T̄r(φ1)i. (7.9)

Finally, we propose an error estimator ηi for the relative eigenvalue error

ηi = 2(φ1)Ti T̄T
G

[
M− 1

λ̄i
K

]
T̄r(φ1)i + (φ1)Ti T̄T

r

[
M− 1

λ̄i
K

]
T̄r(φ1)i, (7.10)

with

Tr =

[
0

λ̄i
[
K−1

22 M21 −K−1
22 M22K

−1
22 K21

]
+ λ̄2

iK
−1
22 M22K

−1
22 M21

]
, (7.11)

in which, to approximate λi contained in Equation 7.10, we use the ith approximated eigenvalue λ̄i

instead of λi.

In general, reduced models more accurately approximate lower modes than higher modes. Therefore,

the assumption in Equation 7.8 would not be well applied to the estimation of relative eigenvalue errors

corresponding to higher modes. For this reason, the proposed error estimator ηi will give a more accurate

estimation for relative eigenvalue errors corresponding to lower modes.

In Equations 7.10 and 7.11, we can easily identify the fact that the computational cost of the error

estimator ηi is low. In those equations, we reuse the matrix K−1
22 previously calculated, and the required

matrix operations are merely simple additions and multiplications.

7.1.2 Numerical examples

In this section, we test the performance of the proposed error estimation method. Three different

structural problems are considered: cylindrical panel, Square plate with circular holes, and shaft-shaft

interaction problems.

Cylindrical panel problem

We here apply the present error estimator to a cylindrical panel with free boundary condition, see

Figure 7.1. Length L is 0.8m, radius R is 0.5m, and thickness h is 0.005m. Young’s modulus E is 69GPa,

Poisson’s ratio ν is 0.35, and the structural density ρs is 2700kg/m3. The cylindrical panel is modeled

by a 24× 16 mesh of shell finite elements (1275 DOFs).

In two numerical cases, we differently select the nodes as shown in Figure 7.2, and then every DOFs

in the selected nodes are defined as the master DOFs. Figure 7.3 shows that the excellent performances

of the present error estimation method.
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L

R

o
60

Figure 7.1: Cylindrical panel.

(a)

Selected node

(b)

Figure 7.2: Selected nodes of the cylindrical panel. (a) 35 nodes, (b) 59 nodes.
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(a)

(b)

Figure 7.3: Exact and estimated relative errors in eigenvalues in the cylindrical panel. (a) 35 nodes, (b)

59 nodes.
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Hyperboloid panel problem

We here consider a hyperboloid panel of height H = 4.0m and thickness h = 0.05m. Young’s

modulus E is 69GPa, Poisson’s ratio ν is 0.35, and density ρs is 2700kg/m3. The mid-surface of this

shell structure is described by

x2 + y2 = 2 + z2; z ∈ [−2, 2]. (7.12)

We use a mesh of 24 × 16 MITC4 shell elements, see Figure 7.4. Two numerical cases with dif-

ferently selected master DOFs are considered as shown in Figure 7.5. The excellent performance of the

proposed error estimator is observed in Figure 7.6.

o
60

H

2/H

Figure 7.4: Hyperboloid panel.

– 68 –



(a) (b)

Selected node

Figure 7.5: Selected nodes of the hyperboloid panel. (a) 35 nodes, (b) 59 nodes.
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(a)

(b)

Figure 7.6: Exact and estimated relative errors in eigenvalues in the hyperboloid panel. (a) 35 nodes,

(b) 59 nodes.
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Shaft-shaft interaction problem

We here consider two cylindrical shafts connected with fillets of radius 0.002m and, in this example,

the free boundary condition is imposed, see Figure 7.7. Height H is 0.08m and thickness h is 0.0005m.

The radii R1 and R2 are 0.01m and 0.0075m, respectively. Young’s modulus E is 207GPa, Poisson’s

ratio ν is 0.29, and the structural density ρs is 2700kg/m3. For this example, 534 elements and 555

nodes are used.

We here consider two different numbers of arbitrary selected nodes, and these are presented in Fig-

ure 7.8. The exact and estimated eigenvalue errors are presented in Figure 7.9, and this result clearly

show the robustness of the proposed error estimation method.

H

1
2R

2
2R

H

Figure 7.7: Shaft-shaft interaction problem.
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Selected node

(a) (b)

Figure 7.8: Selected nodes of the shaft-shaft interaction problem. (a) 39 nodes, (b) 70 nodes.

– 72 –



(a)

(b)

Figure 7.9: Exact and estimated relative errors in eigenvalues in the shaft-shaft interaction problem. (a)

39 nodes, (b) 70 nodes.
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7.2 Error estimation method for CB method

An important issue in CMS methods is how to evaluate the reliability of the reduced model compared

to the global (original) model. Although the reliability of the reduced model can be directly assessed by

errors in its approximated global eigenvalues, it is basically difficult to calculate the errors because the

exact global eigenvalues are unknown. To handle this issue, various error estimation methods have been

developed (see, e.g., Bourquin [62], Yang et al. [46], Elssel and Voss [47], Jakobsson and Larson [63]).

However, those error estimation methods show qualitative tendencies rather than meaningful quantities

in eigenvalue errors.

In order to accurately estimate individual eigenvalue errors in reduced models, we here propose an

error estimator. The error estimator is derived from the global (original) eigenvalue problem, in which

the global eigenvalue and eigenvector are divided into approximated and error parts and a newly defined

transformation matrix T̄ECB is used to approximate the global eigenvector in the CB method.

In the original CB formulation, the transformation matrix T̄CB is constructed by using only domi-

nant substructural modes, and the residual substructural modes are truncated without any consideration.

However, considering the residual substructural modes, the transformation matrix T̄CB can be enhanced.

Therefore, when the enhanced transformation matrix T̄ECB is used instead of the original one, the global

eigenvectors can be approximated more accurately.

The derivation procedure shows that the relative eigenvalue error can be approximated by the pro-

posed error estimator. To evaluate the error estimator proposed, no heavy computation is required.

That is, only simple additions and multiplications of known matrices are necessary.

7.2.1 Derivation procedures

The exact global eigensolutions are expressed by the approximated global eigensolutions and their

error terms as

λi = λ̄i + δλi, (7.13a)

(φg)i = (φ̄g)i + (δφg)i, (7.13b)

where δλi and (δφg)i are errors in the ith eigenvalue and eigenvector, respectively.

Due to the linear independency of the exact global eigenvectors, the approximated global eigenvector

(φ̄g)i can be represented by a linear combination of the exact global eigenvectors

(φ̄g)i =

Ng∑
k=1

αk(φg)k, (7.14)

where αk are coefficients for the linear combination.

As more substructural modes are contained in the reduced model, the approximated global eigenvec-

tor (φ̄g)i calculated from the reduced eigenvalue problem becomes closer to the exact global eigenvector

(φg)i. When the approximated global eigenvectors are close enough to the exact global eigenvector, we

can assume

αi ≈ 1, (7.15a)

|αi| � |αi − 1|, |α1|, |α2|, · · · |αi−1|, |αi+1|, · · · , |αNg |. (7.15b)
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Since the exact eigensolutions (λi, (φg)i) are obtained from the global eigenvalue problem in Equa-

tion 3.2, the following equation is given

1

λi
(φg)

T
i Kg(φg)i = (φg)

T
i Mg(φg)i. (7.16)

The global eigensolutions λi and (φg)i satisfy the mass-orthonormality and stiffness-orthogonality con-

ditions in Equation 3.3(a) and (b), respectively. Using Equation 7.13(b) in Equation 7.16, we obtain

1

λi

[
(φ̄g)i + (δφg)i

]T
Kg

[
(φ̄g)i + (δφg)i

]
=
[
(φ̄g)i + (δφg)i

]T
Mg

[
(φ̄g)i + (δφg)i

]
. (7.17)

Using Equation 7.14 in Equation 7.17, the left-hand side of Equation 7.17 can be rewritten as follows:

1

λi

[
(φ̄g)i + (δφg)i

]T
Kg

[
(φ̄g)i + (δφg)i

]
=

1

λi
(φ̄g)

T
i Kg(φ̄g)i − 2(αi − 1)−

(αi − 1)2 +

Ng∑
k=1
k 6=i

α2
k

λk
λi

 . (7.18)

Similarly, the right-hand side of Equation 7.17 also becomes[
(φ̄g)i + (δφg)i

]T
Mg

[
(φ̄g)i + (δφg)i

]
= (φ̄g)

T
i Mg(φ̄g)i − 2(αi − 1)−

(αi − 1)2 +

Ng∑
k=1
k 6=i

α2
k

 . (7.19)

Using Equations 7.18 and 7.19 in Equation 7.17, the leading order terms 2(αi−1) are canceled, and

the following equation is obtained

1

λi
(φ̄g)

T
i Kg(φ̄g)i − (φ̄g)

T
i Mg(φ̄g)i −

Ng∑
k=1
k 6=i

α2
k

(
λk
λi
− 1

)
= 0. (7.20)

In the CB method, using the enhanced transformation matrix T̄ECB in Equation 4.10, the approx-

imated global eigenvector (φ̄g)i can be defined

(φ̄g)i = T̄ECB(φ̄p)i with T̄ECB = T̄CB + T̄r. (7.21)

Using Equation 7.21, Equation 7.20 is rewritten by

1

λi
(φ̄p)

T
i

[
T̄CB + T̄r

]T
Kg

[
T̄CB + T̄r

]
(φ̄p)i

−(φ̄p)
T
i

[
T̄CB + T̄r

]T
Mg

[
T̄CB + T̄r

]
(φ̄p)i −

Ng∑
k=1
k 6=i

α2
k

(
λk
λi
− 1

)
= 0. (7.22)

After expanding Equation 7.22 and using the mass-orthonormality and stiffness-orthogonality in

Equation 3.5, we obtain

λ̄i
λi
− 1 = 2(φ̄p)

T
i T̄T

CB

[
Mg −

1

λi
Kg

]
T̄r(φ̄p)i

+(φ̄p)
T
i T̄T

r

[
Mg −

1

λi
Kg

]
T̄r(φ̄p)i +

Ng∑
k=1
k 6=i

α2
k

(
λk
λi
− 1

)
, (7.23)
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where the left-hand side is the relative eigenvalue error. Therefore, Equation 7.23 shows that the relative

eigenvalue error can be expressed by three scalar terms.

The last term on the right-hand side of Equation 7.23 is much smaller than the other terms due to

α2
k under the assumption in Equation 7.15. Neglecting the last term, we obtain

λ̄i
λi
− 1 ≈ 2(φ̄p)

T
i T̄T

CB

[
Mg −

1

λi
Kg

]
T̄r(φ̄p)i

+(φ̄p)
T
i T̄T

r

[
Mg −

1

λi
Kg

]
T̄r(φ̄p)i, (7.24)

which can be used to estimate the relative eigenvalue error.

Finally, let us define the error estimator ηi as

ηi = 2(φ̄p)
T
i T̄T

CB

[
Mg −

1

λ̄i
Kg

]
T̄r(φ̄p)i

+(φ̄p)
T
i T̄T

r

[
Mg −

1

λ̄i
Kg

]
T̄r(φ̄p)i, (7.25)

with

T̄r = λ̄i

[
0 Frs

[
−MsK

−1
s Kc + Mc

]
0 0

]
. (7.26)

It is very important that, for λi in Equation 7.33 and ω2 contained in T̄r in Equation 4.11, the ith approx-

imated eigenvalue λ̄i calculated from the reduced eigenvalue problem is used to calculate ηi. However,

the enhanced transformation matrix T̄ECB cannot be used to improve the CB method in its present form

because ω2 in the transformation matrix is unknown. Therefore, the enhanced transformation matrix

T̄ECB is only used for error estimation.

We note that, for higher modes, the assumption in Equation 7.15 could not be well satisfied and

λk/λi− 1 could increase, in particular, when selected dominant modes are not many enough. Therefore,

the proposed error estimator will give better accuracy for lower modes in general. It is also valuable to

note that the computational cost of the error estimator proposed is not heavy because simple matrix

additions and multiplications are required in Equations 7.34 and 7.26. The concept of the error estimator

have been also employed for Guyan reduction, AMLS and F-CMS methods [64, 65, 66].
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7.2.2 Numerical examples

In this section, we test the performance of the proposed error estimator. Four different structural

problems are considered: rectangular plate, shaft-shaft interaction, hemisphere shell, and stiffened plate

problems.

The conventional frequency cut-off mode selection method and recently developed mode selection

method [67] (see Section 6) are employed to select the dominant substructural modes.

When the frequency cut-off mode selection method is used, the performance of the present error

estimator is compared with the previous one developed by Elssel and Voss [47]

η′i =
λ̄i

|λr − λ̄i|
, (7.27)

where λr is the smallest residual eigenvalue of substructures. The error estimator η′i was proposed as an

upper bound of the relative eigenvalue error

0 ≤ ξi ≤ η′i. (7.28)

Note that almost no computational cost is required for evaluating this error estimator.

The mode selection method developed by Kim et al [67] uses the eigenvector relation between sub-

structures and global structure. Since this mode selection method can rank the substructural modal

contributions to the global modes, it can improve the solution accuracy compared to the frequency cut-

off mode selection method. The proposed error estimator is also tested using this new mode selection

method.

Simple plate problem

Let us consider a simple plate with free boundary, see Figure 4.1. Here, 15 and 30 substructural

modes are retained for two numerical cases (Nd = 15, Nd = 30), and the numbers of retained sub-

structural modes are listed in Table 7.1. Figures 7.10 and 7.11 present the exact and estimated relative

eigenvalue errors, respectively. Figure 7.10 shows that the present error estimator outperforms the error

estimator by Elssel and Voss [47] when the frequency cut-off mode selection method is used. Figure 7.11

also shows the excellent performance of the present error estimator when the mode selection method by

Kim et al. [67] is used. In Table 7.2, we list the exact and estimated relative eigenvalue errors corre-

sponding to Figure 7.10(a).

Table 7.1: Retained substructural mode numbers N
(k)
d in the simple plate problem.

Mode selection method Case N
(1)
d N

(2)
d Nd

Freq. cut-off
1 10 5 15

2 21 9 30

Kim et al. [67]
1 10 5 15

2 21 9 30
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(a)

(b)

Figure 7.10: Exact and estimated relative eigenvalue errors in the simple plate problem. The frequency

cut-off mode selection method is used. (a) Nd = 15, (b) Nd = 30.
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(a)

(b)

Figure 7.11: Exact and estimated relative eigenvalue errors in the simple plate problem. The mode

selection method proposed by Kim et al. [67] is used. (a) Nd = 15, Ñd = 30, (b) Nd = 30, Ñd = 60.
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Table 7.2: Exact and estimated eigenvalue errors in the rectangular plate problem (The frequency cut-off

mode selection method is used and Nd = 15).

Mode number Exact
Estimated Estimated

(Elssel and Voss) (Present)

1 1.29749E-04 5.40922E-03 1.39749E-04

2 7.11199E-05 8.03123E-03 7.31199E-05

3 7.87912E-04 4.13343E-02 7.87912E-04

4 1.55629E-03 4.60452E-02 1.65629E-03

5 2.78188E-03 1.07879E-01 2.78188E-03

6 5.38288E-03 1.43772E-01 5.58288E-03

7 2.75964E-03 1.55603E-01 2.76964E-03

8 2.46485E-03 2.36205E-01 2.46485E-03

9 3.35683E-03 3.53565E-01 3.45683E-03

10 5.82414E-03 5.09857E-01 6.74143E-03

11 4.48544E-02 1.04450E+00 5.48544E-02

12 1.36776E-01 2.40284E+00 1.36776E-01

13 9.63322E-02 7.17569E+00 9.63322E-02
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Shaft-shaft interaction problem

We here consider two cylindrical shafts connected with fillets of radius 0.002m and no boundary

condition is imposed, see Figure 7.12. Height H is 0.08m, and thickness h is 0.5× 10−3m. The radii R1

and R2 are 0.01m and 0.0075m, respectively. Young’s modulus E is 207GPa, Poisson’s ratio ν is 0.29,

and density ρs is 2700kg/m3. For this example, 534 elements and 555 nodes are used, and the finite

element model is partitioned into two substructures (Ns = 2).

Two different numbers of retained substructural modes (Nd = 20, Nd = 40) are considered as listed

in Table 7.3. Figures 7.13 and 7.14 show the excellent performance of the present error estimator, which

also shows much better accuracy than the previous error estimator by Elssel and Voss [47].
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Figure 7.12: Shaft-shaft interaction problem.

Table 7.3: Retained substructural mode numbers N
(k)
d in the shaft-shaft interaction problem.

Mode selection method Case N
(1)
d N

(2)
d Nd

Freq. cut-off
1 13 7 20

2 24 16 40

Kim et al. [67]
1 13 7 20

2 26 14 40
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(a)

(b)

Figure 7.13: Exact and estimated relative eigenvalue errors in the shaft-shaft interaction problem. The

frequency cut-off mode selection method is used. (a) Nd = 20, (b) Nd = 40.
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(a)

(b)

Figure 7.14: Exact and estimated relative eigenvalue errors in the shaft-shaft interaction problem. The

mode selection method proposed by Kim et al. [67] is used. (a) Nd = 20, Ñd = 40, (b) Nd = 40, Ñd = 80.
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Hemisphere shell problem

Let us consider a hemisphere shell structure with free boundary at both ends, see Figure 7.15. Height

H is 3.084m, and thickness h is 0.05m. The radii R1 and R2 are 2m and 0.618m, respectively. Young’s

modulus E is 69GPa, Poisson’s ratio ν is 0.35, and density ρs is 2700kg/m3. In this problem, 20 and 40

shell finite elements are used in the axial and circumferential directions, respectively. The hemisphere

shell is partitioned into four substructures (Ns = 4).

We consider 25 and 80 substructural modes (Nd = 25, Nd = 80), see Table 7.4. As shown in Fig-

ures 7.16 and 7.17, the present error estimator very accurately estimates the relative eigenvalue errors

in the two numerical cases.
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Figure 7.15: Hemisphere shell problem.

Table 7.4: Retained substructural mode numbers N
(k)
d in the hemisphere shell problem.

Mode selection method Case N
(1)
d N

(2)
d N

(3)
d N

(4)
d Nd

Freq. cut-off
1 3 2 12 8 25

2 17 10 32 21 80

Kim et al. [67]
1 2 2 13 8 25

2 16 10 33 21 80
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(a)

(b)

Figure 7.16: Exact and estimated relative eigenvalue errors in the hemisphere shell problem. The

frequency cut-off mode selection method is used. (a) Nd = 25, (b) Nd = 80.
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(a)

(b)

Figure 7.17: Exact and estimated relative eigenvalue errors in the hemisphere shell problem. The mode

selection method proposed by Kim et al. [67] is used. (a) Nd = 25, Ñd = 50, (b) Nd = 80, Ñd = 160.
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Stiffened plate problem

We here apply the present error estimator to a stiffened plate with free boundary, see Figure 4.5.

We use 25 and 75 substructural modes (Nd = 25, Nd = 75) in two numerical cases, and the numbers of

dominant substructural modes N
(k)
d are listed in Table 7.5. The exact and estimated eigenvalue errors

are plotted in Figures 7.18 and 7.19, and the graphs clearly show the robustness of the present error

estimator.

Table 7.5: Retained substructural mode numbers N
(k)
d in the stiffened plate problem.

Mode selection method Case N
(1)
d N

(2)
d N

(3)
d N

(4)
d N

(5)
d N

(6)
d Nd

Freq. cut-off
1 11 4 1 1 4 4 25

2 27 16 6 6 10 10 75

Kim et al. [67]
1 9 3 2 1 5 5 25

2 22 15 8 8 11 11 75
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(a)

(b)

Figure 7.18: Exact and estimated relative eigenvalue errors in the stiffened plate problem. The frequency

cut-off mode selection method is used. (a) Nd = 25, (b) Nd = 75.
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(a)

(b)

Figure 7.19: Exact and estimated relative eigenvalue errors in the stiffened plate problem. The mode

selection method proposed by Kim et al. [67] is used. (a) Nd = 25, Ñd = 50, (b) Nd = 75, Ñd = 150.
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Computational cost

In order to investigate the computational cost required for the error estimator proposed, computation

times are measured for the exact and estimated relative eigenvalue errors. MATLAB is used for the

computation with a personal computer (Intel duo-core E6750, 2.66GHz CPU, 8.0GB RAM).

Table 7.6 presents the computation times for the relative eigenvalue errors in the four numerical

examples, in which the computations are performed only for the lowest eigenvalues (mode number =

1). Note that, for the exact relative eigenvalue error, we consider the solution time of the exact lowest

eigenvalue and the calculation time of the exact relative eigenvalue error. The results show that the

proposed error estimator is computationally efficient.

Table 7.6: Computation times for the exact and estimated relative eigenvalue errors.

DOFs Computation time (sec)

Ng N̄p Exact
Estimated Estimated

(Elssel and Voss) (Present)

Rectangular plate
273 36 2.160E-01 1.548E-05 1.936E-03

(Freq. cut-off, Nd = 15)

Shaft-shaft interaction
2,775 90 3.735E+00 1.897E-05 2.186E-02

(Freq. cut-off, Nd = 20)

Hemisphere shell
4,200 425 1.722E+01 3.597E-05 4.722E-02

(Freq. cut-off, Nd = 25)

Stiffened plate
3,351 423 5.141E+00 9.131E-06 2.413E-02

(Freq. cut-off, Nd = 25)
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7.3 Error estimation method for the F-CMS method

Recently, to construct more reliable and accurate reduced models, Park and Park has proposed the

flexibility based component mode synthesis (F-CMS) method [28]. However, it is not possible to esti-

mate the reliability of models reduced by the F-CMS method. The objective of this study is to develop

a method that can accurately estimate individual eigenvalue errors for the F-CMS method. The error

estimation method is derived from the global eigenvalue problem, in which the global eigenvalue and

eigenvector are decomposed into approximated and error parts. The derivation procedure shows that

the proposed error estimator can approximate the relative eigenvalue errors. Of course, the exact global

eigenvalues are unknown in this error estimation method.

7.3.1 Derivation procedures

Since the F-CMS method shares the general description with the CB method, derivation procedures

of the error estimation method in the F-CMS method is also similar with the one in the CB method.

Especially, the fore procedures are totally same with the CB method until Equation 7.20 as

1

λi
(φ̄g)

T
i Kg(φ̄g)i − (φ̄g)

T
i Mg(φ̄g)i −

Ng∑
k=1
k 6=i

α2
k

(
λk
λi
− 1

)
= 0. (7.29)

Here, we assume that the global stiffness matrix Kg can be divided into the approximated global

stiffness matrix and its error

Kg = K̄g + δKg, (7.30)

in which δKg is error in the global stiffness matrix, and K̄g is the approximated global stiffness matrix

which satisfies

(φ̄g)
T
i K̄g(φ̄g)i = λ̄i. (7.31)

Using Equations 7.30 and 7.31, Equation 7.29 can be rewritten

λ̄i
λi
− (φ̄g)

T
i Mg(φ̄g)i =

 Ng∑
k=1
k 6=i

α2
k

(
λk
λi
− 1

)− 1

λi
(φ̄g)

T
i δKg(φ̄g)i. (7.32)

It is not easy to identify the magnitude and sign of the terms in the right-hand side of Equation 7.32.

However, the terms are obviously much smaller than the terms of left-hand side under the assumption

in Equations 7.15 and 7.30. Neglecting the right-hand side in Equation 7.32, we obtain

λ̄i
λi
− 1 ≈ (φ̄g)

T
i Mg(φ̄g)i − 1, (7.33)

where the left-hand side is the relative eigenvalue error and the right-hand side is the mass-orthonormality

error of the approximated global eigenvector (φ̄g)i. Consequently, the preceding derivation procedure

shows that the mass-orthonormality error is an approximation of the relative eigenvalue error ξi. There-

fore, using the relation, we can estimate the relative eigenvalue error ξi without knowing the exact global

eigenvalue λi. Now, let us define the error estimation parameter ηi as

ηi = (φ̄g)
T
i Mg(φ̄g)i − 1. (7.34)
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7.3.2 Numerical examples

In this section, we test the performance of the proposed error estimation method in the F-CMS

method. Three different structural problems are considered: rectangular plate, hemisphere shell, and

stiffened plate problems. The present error estimation method is tested for the F-CMS method in

comparison with previous two error estimation methods proposed by Elssel and Voss [47] and Kim et

al. [67].

The error estimation method proposed by Elssel and Voss [47] was developed as an upper bound of

the relative eigenvalue error τj .

0 ≤ ξj ≤ τj =
λ̄j

λr − λ̄j
, (7.35)

where λr is the smallest residual eigenvalue of substructures. This method was originally developed for

the CB and AMLS methods based on the frequency cut-off mode selection method. However, since this

method can evaluate the individual eigenvalue error, we here apply it to the F-CMS method.

The error estimation method by Kim et al. [67] is defined in Equation 6.22. This error estimation

method and its performance are presented in detail in Section 6.3.

Simple plate problem

Let us consider a simple plate with free boundary, see Figure 4.1. Since the error estimation method

by Elssel and Voss in Equation 7.35 originally developed for the CB and AMLS methods, we first test

its performance in the CB method. Using the frequency cut-off rule, 10 and 20 substructural modes are

retained for two numerical cases (Nd = 10, Nd = 20), and retained substructural mode numbers are listed

in Table 7.7. Figure 7.20 shows the relative eigenvalue error ξj and the error estimation parameter τj in

the CB method. The numerical results show that τj provide the upper bound for the relative eigenvalue

error ξj and the difference between τj and ξj is about one or two digits in log scale as presented in

reference [47].

Figures 7.21 and 7.22 present the exact and estimated relative errors in eigenvalues when the F-CMS

method is employed. To select the dominant substructural modes, we adopt the frequency cut-off mode

selection method and the mode selection method proposed by Kim et al. [67]. The numbers of retained

substructural modes are listed in Table 7.7.

The performance of the error estimation by Elssel and Voss is similar in the both CB and F-CMS

methods. The numerical results show the excellent performance of the present error estimation method

for both numerical cases compared with the previous error estimation methods. It is interesting to note

that the proposed error estimation provides an upper bound of the relative eigenvalue error in the prob-

lem considered here.
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Table 7.7: Retained substructural mode numbers N
(k)
d in the simple plate problem.

Mode selection method Numerical case
CB F-CMS

N
(1)
d N

(2)
d Nd N

(1)
d N

(2)
d Nd

Freq.cut-off
Case 1 7 3 10 7 3 10

Case 2 13 7 20 13 7 20

Kim et al. [67]

Case 1 - - - 8 2 10

Case 2 - - - 13 7 20

Hemisphere shell problem

Let us consider a hemisphere shell with free boundary condition at both ends, see Figure 7.15. Using

the F-CMS method, we consider two numerical cases for the numbers of retained substructural modes,

54 and 76 substructural modes (Nd = 54, Nd = 76) as listed in Table 7.8. Figures 7.23 and 7.24 show

that the excellent performances of the proposed error estimation method compared with the previous

error estimation methods. As in the previous numerical example, the proposed error estimation acts as

an upper bound for the exact relative eigenvalue error in general.

Table 7.8: Retained substructural mode numbers N
(k)
d in the hemisphere shell problem.

Mode selection method Numerical case N
(1)
d N

(2)
d N

(3)
d N

(4)
d Nd

Freq.cut-off
Case 1 12 8 20 14 54

Case 2 18 13 27 18 76

Kim et al. [67]

Case 1 12 8 21 13 54

Case 2 15 11 29 21 76

Stiffened plate problem

Here, the proposed error estimation method is used for a stiffened plate with free boundary condition,

see Figure 4.5.

In this problem, we consider two cases for the numbers of retained substructural modes: 32 and 52

substructural modes (Nd = 32, Nd = 52 ), see Table 7.9. As shown in Figures 7.25 and 7.26, the proposed

error estimation method can very accurately estimate the relative eigenvalue error in the reduced model

constructed by the F-CMS method. Also, the method provides a tight upper bound rather than lower

bound in this problem.
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Table 7.9: Retained substructural mode numbers N
(k)
d in the stiffened plate problem.

Mode selection method Numerical case N
(1)
d N

(2)
d N

(3)
d N

(4)
d N

(5)
d N

(6)
d Nd

Freq.cut-off
Case 1 8 8 4 4 4 4 32

Case 2 12 12 7 7 7 7 52

Kim et al. [67]

Case 1 9 7 4 4 4 4 32

Case 2 12 14 7 7 6 6 52

7.4 Closure

In this thesis, we have proposed an error estimator to accurately estimate the relative eigenvalue

errors in the model reduction methods. To derive the error estimator, enhanced transformation matrix

might be defined first, and then, using the enhanced transformation matrix, we can derive an error

estimator for model reduction methods from the global eigenvalue problem. The performance of the

proposed error estimator was tested in the CB and F-CMS methods, and Guyan reduction. Although

the present error estimator requires an enhanced transformation matrix, the required matrix operations

are simply additions and multiplications of known matrices. For this reason, the present error estimator

possesses not only improved accuracy but also computational efficiency.

The error estimator proposed in this study would be used to develop the mode selection algorithms

for the reduced-order modeling and the solution techniques for eigenvalue problems in structural dynam-

ics. It should be also noted that the proposed enhanced transformation matrices also can be used to

develop the enhanced formulations of the original model reduction methods [42, 68].
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(a)

(b)

Figure 7.20: Exact and estimated relative errors in eigenvalues in the simple plate problem using the CB

method. The frequency cut-off mode selection method is used. (a) Nd = 10, (b) Nd = 20.

– 95 –



(a)

(b)

Figure 7.21: Exact and estimated relative errors in eigenvalues in the simple plate problem. The frequency

cut-off mode selection method is used. (a) Nd = 10, (b) Nd = 20.
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(a)

(b)

Figure 7.22: Exact and estimated relative errors in eigenvalues in the simple plate problem. The mode

selection method proposed by Kim et al. [67] is used. (a) Nd = 10, Ñd = 20, (b) Nd = 20, Ñd = 40.
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(a)

(b)

Figure 7.23: Exact and estimated relative errors in eigenvalues in the hemisphere shell problem. The

frequency cut-off mode selection method is used. (a) Nd = 54, (b) Nd = 76.
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(a)

(b)

Figure 7.24: Exact and estimated relative errors in eigenvalues in the hemisphere shell problem. The

mode selection method proposed by Kim et al. [67] is used. (a) Nd = 54, Ñd = 108, (b) Nd = 76,Ñd =

152.
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(a)

(b)

Figure 7.25: Exact and estimated relative errors in eigenvalues in the stiffened plate problem. The

frequency cut-off mode selection method is used. (a) Nd = 32, (b) Nd = 52.
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(a)

(b)

Figure 7.26: Exact and estimated relative errors in eigenvalues in the stiffened plate problem. The mode

selection method proposed by Kim et al. [67] is used. (a) Nd = 32, Ñd = 128, (b) Nd = 52, Ñd = 208.
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Chapter 8. Conclusions

The objectives in this work were to develop enhanced methodologies, general mode selection crite-

rion, and error estimators for model reduction methods.

In Chapters 2 and 3, we focused on reviewing the DOFs and mode based model reduction meth-

ods before we explained the newly developed methodologies in following chapters. After explaining the

general description of each model reduction method, formulations of the classical methods were pre-

sented. For DOFs based reduction methods, we presented Guyan reduction, Kidder’s and Meirovitch’s

approaches, and the improved reduced system (IRS) method. For mode based reduction methods, we

focused on component mode synthesis (CMS), in particular, the Craig-Bampton (CB) and flexibility

based CMS methods.

In Chapter 4, we presented a new component mode synthesis (CMS) method by improving the well-

known CB method. Unlike in the original CB method, residual substructural modes were considered in

constructing the transformation matrix. As a result, the original CB transformation matrix was enhanced

by an additional dynamic term, in which the unknown eigenvalue was approximated using O’Callanhan’s

approach. Using the enhanced transformation matrix, global (original) structural models can be more

precisely reduced and the accuracy of the reduced models dramatically improved with little additional

computational cost. The excellent performance of the enhanced CB method was demonstrated using

numerical examples.

In Chapter 5, an extended interface reduction technique for the F-CMS method was presented. To

obtain the precise formulation, we proposed three-level reduction procedures for the internal, localized

Lagrange multipliers and interface DOFs. Unlike in previous research, static correction was used in

reduction level 3 for the interface DOFs, which allowed additional residual dynamic terms survived in

the final eigenvalue problem. Consequently, one result of the present research is an enhanced eigen-

value problem compared with the previous eigenvalue problem. Numerical examples demonstrated the

improvement of the solution accuracy with reducing the matrix size in the present formulation. In ad-

dition, the eigenvector relationships between the global and reduced models were completely defined in

the whole reduction levels.

In Chapter 6, a mode selection method for structural component mode synthesis was presented,

which aids the structural analyst in selecting dominant substructural modes by ranking the contributions

of substructural modes to target global modes. Since it is an a posteriori method, it can be iteratively

used to arrive at the desired target accuracy of the global modes. A key idea exploited in the development

of the present mode selection method is the fact that a leading term of the global mode shapes is expressed

in terms of two compounded mode shapes for both the CB and F-CMS methods. Numerical experiments

indicate that the present mode selection method is consistently more robust and accurate than the two a

priori methods, viz., frequency cut-off method and flexibility based mode selection method. An important

by product of the present mode selection method is a strategy to handle inaccurately approximated global

modes in reduced models.

In Chapter 7, we developed an accurate error estimator for Guyan reduction which can estimate

relative eigenvalue errors in reduced models. The proposed error estimator is derived from the original

eigenvalue problem using Kidder’s transformation matrix. The resulting error estimator is simple and
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computationally inexpensive. The excellent performance of the proposed error estimator was demon-

strated through various numerical examples.

Also, we presented error estimators for the CB and F-CMS methods, respectively. Since CMS

methods have similar general descriptions with DOFs based reduction methods, we were able to employ

the derivation procedures for the error estimator used in Guyan reduction for the CB and F-CMS methods

as well. Sections 7.2 and 7.3 include specific derivation procedures and adequate error estimators for the

CB and F-CMS methods, respectively. Those feasibilities and performances were validated using various

numerical examples.

As an extension of this work, we recommend the following future works:

• In Chapter 4, we presented a fundamental idea to enhance conventional CMS methods, and em-

ployed it for the CB method. This idea could also be employed for other CMS methods such as

the automated multi-level substructuring (AMLS) and the F-CMS methods.

• In Chapter 6, we presented a new mode selection method and simple strategy to handle inaccu-

rately approximated global modes. This mode selection method could be used to develop optimal

iterative mode selection algorithms for the reduced-order modeling and for the solution techniques

for eigenvalue problems in structural dynamics. In addition, full potential of the present error

control strategy for subsequent model updating remains to be explored further.

• In Chapter 7, we developed an error estimator for Guyan reduction. It is important to note that,

using a similar derivation procedure, error estimators for other DOFs based reduction methods

such as the IRS method could be developed. In addition, when the proposed error estimator

is utilized together with DOFs selection methods, efficient iterative algorithms to obtain more

accurate reduced models could be developed. Also, error estimators for the CB and F-CMS method

were presented. Using the same conceptual idea, error estimators for other CMS methods such as

the dual CB and the proposed enhanced CMS methods could be developed. Furthermore, with

the proposed mode selection method in Chapter 6, iterative mode selection algorithms could be

optimized.
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Chapter A. Derivation of Frs and Frm

In the CB method, The mass, stiffness matrices and the eigensolutions of the structural system

satisfy the following conditions:

ΦT
s MsΦs = Is, ΦT

s KsΦs = Λs,

Λs = diag [Λd, Λr] , Φs = [Φd Φr] . (A.1)

Let Φ̂s be the transformed eigenvectors

Φ̂s = M1/2
s Φs. (A.2)

Using Equation A.2, Equation A.1 can be rewritten as

Φ̂T
s Φ̂s = Is, (A.3)

Φ̂T
s Ms

−1/2KsMs
−1/2Φ̂s = Λs. (A.4)

Note that Φ̂s is a unitary matrix for the orthogonality in Equation A.3. Thus, we can get the

following relation from Equation A.4:

Ms
−1/2KsMs

−1/2 = Φ̂sΛsΦ̂
T
s . (A.5)

The inverse of Equation A.5 results in[
M−1/2

s KsM
−1/2
s

]−1

=
[
Φ̂d Φ̂r

] [ Λ−1
d 0

0 Λ−1
r

] [
Φ̂T
d

Φ̂T
r

]
= Φ̂dΛ

−1
d Φ̂T

d + Φ̂rΛ
−1
r Φ̂T

r . (A.6)

From Equations A.2 and A.6, we can get Frs as

Frs = Φ̂rΛ
−1
r Φ̂T

r = M−1/2
s

[
M−1/2

s KsM
−1/2
s

]−1

M−1/2
s −ΦdΛ

−1
d ΦT

d . (A.7)

Then, the square of Equation A.6 provided with Equation A.3 yields The inverse of Equation A.5

results in [
M−1/2

s KsM
−1/2
s

]−2

=
[
Φ̂d Φ̂r

] [ Λ−2
d 0

0 Λ−2
r

] [
Φ̂T
d

Φ̂T
r

]
= Φ̂dΛ

−2
d Φ̂T

d + Φ̂rΛ
−2
r Φ̂T

r . (A.8)

Similarly, From Equations A.2 and A.8, we can get Frm as

Frm = Φ̂rΛ
−2
r Φ̂T

r = M−1/2
s

[
M−1/2

s KsM
−1/2
s

]−2

M−1/2
s −ΦdΛ

−2
d ΦT

d . (A.9)

In the F-CMS method, above procedures are almost same to calculate Frs and Frm. However,

since the F-CMS method use the free interface handling technique, it possesses the rigid body motion.

Therefore, Equation A.1 is changed as

Λs = diag [0, Λd, Λr] , Φs = [R Φd Φr] , (A.10)

and then, to obtain the inverse stiffness matrix, we use the generalized inverse which is the pseudo-inverse

technique denoted by the superscript +. Also, the interface residual flexibilities, Frbs and Frbm, can be

also calculated form the above procedures with the interface Boolean matrix B.
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Chapter B. Woodbury matrix identity

In linear algebra, the inverse of a rank-k correction of some matrix can be computed by doing a rank-

k correction to the inverse of the original matrix. It was named as the Woodbury matrix identity [43].

The Woodbury matrix identity is

[A + UCV]
−1

= A−1 −A−1U
[
C−1 + VA−1U

]−1
VA−1, (B.1)

where A, U, C and V denote matrices of the correct size. Specifically, A is n×n, U is n× k, C is k× k
and V is k × n.

Deriving the Woodbury matrix identity is easily done by solving the following block-wise matrix

inversion problem. [
A U

V −C−1

] [
X

Y

]
=

[
I

0

]
. (B.2)

Then, Equation B.2 can be expressed

AX + UY = I, (B.3)

VX−C−1Y = 0, (B.4)

which is equivalent to

[A + UCV] X = I. (B.5)

Using Equation B.3, we find

X = A−1 [I−UY] , (B.6)

and then,substituting Equation B.6 into Equation B.4, the following equation is obtained

VA−1 [I−UY] = C−1Y. (B.7)

Expanding and rearranging Equation B.7, we have

VA−1 =
[
C−1 + VA−1U

]
Y. (B.8)

Finally, we substitute Equation B.8 into Equation B.3, and we have

AX + U
[
C−1 + VA−1U

]−1
VA−1 = I, (B.9)

and then, Equation B.9 can be rewritten as

X = A−1 −A−1U
[
C−1 + VA−1U

]−1
VA−1. (B.10)

Note that X is the inverse matrix of [A + UCV] defined in Equation B.5. Therefore, the Woodbury

matrix identity can be derived

[A + UCV]
−1

= X = A−1 −A−1U
[
C−1 + VA−1U

]−1
VA−1. (B.11)
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Chapter C. Specific derivation of Equation 7.4

The original eigenvalue problem can be represented

(K− λiM)(φ)i = 0. (C.1)

Here, (φ)i can be decomposed by the approximated and error terms as

(φ)i = (φ̄)i + (δφ)i, (C.2)

and then using Equation C.2, Equation C.1 is expressed

(K− λiM)((φ̄)i + (δφ)i) = 0. (C.3)

Premultiplying 1
λi

(φ)Ti in Equation C.3, we can obtain the following equation

1

λi
((φ̄)Ti + (δφ)Ti )(K− λiM)((φ̄)i + (δφ)i) =

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i

+
1

λi
(φ̄)Ti (K− λiM)(δφ)i +

1

λi
(δφ)Ti (K− λiM)((φ̄)i + (δφ)i) = 0. (C.4)

Using Equation C.3, the fifth term in Equation C.4 is zero, and we have

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i +

1

λi
(φ̄)Ti (K− λiM)(δφ)i = 0. (C.5)

Since the every term in Equation C.5 is scalar, it can be represented as

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i +

1

λi
(δφ)Ti (K− λiM)(φ̄)i = 0, (C.6)

and then, using Equation C.2, we obtain

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i +

1

λi
(δφ)Ti (K− λiM)((φ)i − (δφ)i) = 0. (C.7)

After expanding Equation C.7, the following equation is obtained

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i −

1

λi
(δφ)Ti K(δφ)i +

(δφ)Ti M(δφ)i +
1

λi
(δφ)Ti (K− λiM)(φ)i = 0. (C.8)

Using Equation C.1, the last term in Equation C.8 is zero, and we finally have

1

λi
(φ̄)Ti K(φ̄)i − (φ̄)Ti M(φ̄)i −

1

λi
(δφ)Ti K(δφ)i + (δφ)Ti M(δφ)i = 0. (C.9)
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Summary

On the finite element model reduction methods in structural
dynamics

축소기법(model reduction method)은 원래의 유한요소모델(global finite element model)이 갖는

자유도(DOFs)를 효과적으로 감소시켜 구조해석 및 설계에 소요되는 시간을 줄이고자 개발되었다. 축

소기법은 방법론에 따라 크게 자유도 기반 (DOFs based)과 모드 기반(mode based) 감소법으로 구분할

수 있다.

자유도 기반 축소기법은 원래 유한요소모델의 강성행렬과 질량행렬로 부터 주요한 자유도(master

DOFs)를 제외한 나머지 자유도(slave DOFs)를 응축(condensation)하여 원래 유한요소모델에 근사한

축소모델(reduced model)을 구성하는 방법을 말한다. 1960년대에 Guyan 기법이 제시된 이후 최근에는

IRS(improved reduced system, IRS) 방법과 이에 반복적 알고리즘을 더한 I-IRS (iterative IRS) 기법이

가장 널리 쓰이고 있다. 자유도 기반 축소기법은 최적의 축소모델 구성에 적용될 뿐만 아니라, 동적거

동실험의 수치모델 구축, 센서의 최적 계측 위치, 구조물의 결함 측정 등에 다양하게 이용되고 있다.

모드 기반 축소기법은 개발 초기에 자유도 기반 축소기법에서 아이디어를 얻었으나, 부구조법

(substructuring)의 적용으로 자유도 기반 축소기법에 비해 향상된 성능을 보여주었다. 모드 기반 축소

기법은응용수학및모달해석분야등에서다양한명칭으로정의되지만,본연구에서는전산구조동역학

분야에서 사용하는 부분구조합성법(component mode synthesis, CMS)을 사용하였다. 부분구조합성법

은먼저하나의거대유한요소모델을여러개의다루기쉬운부구조(substructure)로분할하여이에대한

고유치 해석을 수행한다. 이후 얻어진 주요 부구조 고유모드 만을 이용해 원래의 유한요소모델에 근사

한 축소모델을 구성하게 된다. 지난 50년간 다양한 형태의 부분구조합성법 관련 연구가 진행되었으며,

이중 Craig-Bampton (CB)기법,유연도기반부분구조합성법(flexibility based CMS, F-CMS)등은여러

연구를 통해 그 우수성이 입증되었다. 부분구조합성법을 이용하면 수치해석에 소요되는 시간을 줄일

수 있을 뿐만 아니라, 다양한 부구조물의 결합을 통해 제작되는 자동차, 비행기, 선박 등의 구조해석에

적합하기 때문에 연구 및 산업 현장에서 널리 사용되고 있다. 또한 최근에는 란초스(Lanczos) 및 부공

간 축차(subspace iteration) 알고리즘과 더불어 거대 고유치 문제를 효과적으로 풀 수 있는 방법론의

하나로 각광을 받고 있다.

유한요소모델 축소기법의 주요한 연구이슈는 다음과 같다.

• 최적의축소기법은축소모델을구축함에있어서우수한정확성(accuracy)과계산효율성(compu-

tational efficiency)을 동시에 담보할 수 있어야 한다.

• 축소기법을 이용해 최적의 축소모델을 구축하기 위해서는 적절한 주요 자유도 혹은 주요 부구조
모드를 선택할 수 있는 명확한 판단기준이 필요하다.

• 축소기법을 이용해 얻어진 축소모델의 신뢰성을 확보하기 위해서는 축소모델이 원래의 유한요소
모델에 얼마나 근사한지를 판단할 수 있는 명확한 오차추정기법이 요구된다.

본 연구에서는 이와 같은 주요 이슈들을 해결하기 위해 새로운 형태의 부분구조합성법, 모드선택

및 오차추정기법 등을 개발하였다.

먼저최적의축소기법을개발하기위해 CB기법을향상시킨새로운부분구조합성법을제안하였다.

원래의 CB기법은주요부구조모드만을사용한변환행렬(transformation matrix)을이용해축소모델을
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구성한다. 하지만 이때 고려되지 않은 여분의 부구조 모드(residual mode)를 고려하면 원래의 변환행

렬의 보정이 가능하다. 여분의 부구조 모드에 의한 영향은 잔류 유연도(residual flexibility)로 표현이

되며, 잔류 유연도는 전체 유연도에서 주요 부구조 모드에 의해 계산되는 주요 유연도의 차로 손쉽게

계산이 가능하다. 따라서 새롭게 개발된 변환행렬을 이용하면 적은 추가 계산량 만으로도 축소모델의

정확성을획기적으로향상시킬수있다. 개발된기법은다양한수치예를통해그성능을검토하였으며,

기존의 CB 기법 및 F-CMS 기법과 비교해 우수성을 입증하였다.

두번째로 F-CMS 기법의 경계 자유도(interface boundary DOFs) 감소를 위한 정식을 개발하였

다. F-CMS 기법은 부구조간의 경계조건을 자유단(free interface boundary condition)으로 정의하기

때문에 완벽하게 독립된 병렬처리(parallel computing)가 가능하며, 모달해석의 실험 연동 등에 장점이

있다. 하지만 라그랑지승수(localized Lagrange multiplier)를 사용하여 구속조건(constraint condition)

을 정의하기 때문에 고정 경계조건(fixed interface boundary condition)을 사용하는 CB 기법 등에 비해

축소모델의크기가크게증가하는단점이있다. 이를해결하기위해본연구에서는 F-CMS기법의경계

자유도를 효율적으로 감소시킬 수 있는 정식을 제시하였다. 제시된 방법론을 사용하면 기존의 F-CMS

기법에 의해 정확성을 유지하면서, 모델의 크기는 크게 감소된 축소모델의 구축이 가능하다.

세번째로본연구에서부분구조합성법을위한모드선택기법을개발하였다. 전통적인모드선택기법

인 주파수 cut-off 방식은 부구조의 고유주파수(natural frequency) 크기를 이용해 주요 모드를 선택하게

된다. 하지만 이러한 방식의 모드선택기법은 부구조의 기하학적/물적 특성 및 부구조간의 연결방식

등을 적절하게 반영하지 못해 축소모델의 신뢰성을 떨어뜨리는 요인이 된다. 이를 해결하기 위해 본

연구에서는 원래의 유한요소모델과 부구조가 갖는 고유벡터의 관계성을 이용해 부구조 모드를 선택할

수 있는 기법을 제안하였다. 이를 이용하면 원래의 고유벡터에 크게 영향을 미치는 부구조 모드를 판

별할 수 있기 때문에 기존의 모드선택기법에 비해 원 고유벡터를 더 정확하게 근사할 수 있다. 개발된

모드선택기법은 다양한 수치 예를 통해 그 성능을 검토하였으며, 이전의 연구와 비교해 우수성을 입증

하였다. 이에 더해 개발된 모드선택기법을 이용하면 부분적으로 수치오차가 큰 모드를 예측할 수 있을

뿐만 아니라, 해당 부분의 고유치 해석 결과를 선별적으로 향상 시킬 수 있다. 본 연구에서는 이에 대한

방법론과 해석절차를 추가적으로 제시하였으며, 수치 예를 통해 적용 가능성과 성능을 검토하였다.

마지막으로 본 연구에서는 축소모델의 신뢰성을 명확하게 판단할 수 있는 오차추정기법을 개발

하였다. 원래 유한요소모델의 고유값과 고유벡터는 축소모델에서 얻어진 근사값과 오차로 표현할 수

있다. 이를 원래 유한요소모델의 고유치 문제에 대입하여 정리하면, 근사 고유값의 상대오차에 대한

근사식을 얻을 수 있다. 제시된 오차추정기법은 기존의 기법과 달리 직접적으로 각 모드 별 고유치

상대오차를판별할수있을뿐만아니라,별도의계산없이효율적으로오차를추정할수있다는장점이

있다. 개발된 오차추정기법을 실제 축소기법에 적용하기 위해서는, 원래의 것보다 더 정밀하게 근사된

변환행렬이 요구되기 때문에 축소기법의 방법론에 따라 각각 다른 형태의 오차추정식이 유도된다. 본

연구에서는 축소기법 중 Guyan 기법, CB 기법, 그리고 F-CMS 기법의 오차추정기법을 각각 개발하여,

그 성능을 검증하였다.
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