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Abstract

In response to the large and complex finite element models in practical engineering, the needs for studies on
model reduction methods have been highlighted. Since 1960s, the model reduction methods have been actively
studied for various problems such as computational efficiency of the reduction process, improvement of the
accuracy of the reduction model. In this dissertation, the effective model reduction methods are proposed. The
developed methods divide the entire finite element model into several substructures and consider the free-
interface between neighboring substructures. In particular, the new component mode synthesis (CMS) method is
provided by improving the accuracy of dual Craig-Bampton (DCB) method. The error estimation method for the
DCB method is also proposed. For the degree of freedom based reduction method, the new dynamic
condensation method with fully decoupled substructuring is proposed. Through the various numerical problems,

the solution accuracy and computational efficiency of the present methods are demonstrated.

Keywords Finite element method, structural dynamics, model reduction method, component mode synthesis
(CMS), Craig-Bampton (CB) method, dual Craig-Bampton (DCB) method, Guyan method, improved reduced
system (IRS) method, system equivalent reduction expansion process (SEREP) method, interface reduction,

eigenvalue problem



(Table of) Contents

Chapter 1. INEEOAUCTION. ...ttt ettt et e et e e st e st eesseesseenseensesneesseenseanseenseensenseensenns 1
1.1 Research BaCKGIOUNA ..........ociiiiieiiieie ettt et st e st ettt e enbeenseesae s aenseensesnnesnnes 1

1.2 RESCAICH PUIPOSE ...ttt ettt ettt ettt et e et et e et e s et e sae e st e et eneeeneees e et e enseeneeeseeseenseenseenaesneas 2

1.3 Dissertation OTZANIZATION .....cc.eerueeriieriiiiiitterttett ettt ettt et st e sb e bt e bt stesatesbee bt eateeueeebeesbeenbeenseenaesaees 3
Chapter 2. Model reduction METOAS .........coiiriiiiiiiiieieeiee ettt sbe e e eseeesteesseessesssessaesseens 5
2.1 Craig-Bampton (CB) MEthOd.........ccvioiiiiiiiiiieiiee ettt s esraesseesne e 5

2.2 Dual Craig-Bampton (DCB) MeEthod ...........coouiiiiiieiieiee ettt 9

2.3 Improved reduced system (IRS) MEthod ...........ooiiiiiiieieee e 15
Chapter 3. Improved DCB mMEthod. ........coooviiiiiiieiecieeeee ettt ettt eeaeeenas 19
TR B Y03 4 0L o o USRS 21
3.1.1 Second order dynamic residual fleXiDility ........cccoeoieriiiiriiiiiieeee e 21

3.1.2 INterface TEAUCTION ..c..eoueiuiiiiiiiiiiericet ettt ettt be sttt a et b e 25

3.2 NUMETICAL €XAMPIES ...eeneieniieiiieiieeiieit ettt ettt et e te st e sae e et et e et e et e et e et e enaeesaesseesseenseeneesneesneeneeenes 28
3.2.1 Rectangular plate problem .........c.ccoouiiiiiiiiiiiiei e et 29

3.2.2 Plate structure With @ hole........cccooiiiiiiiiiie e 34

3.2.3 Hyperboloid Shell Problem .........c.eeciiiiiiieiiecieeet ettt sneens 38

3.2.4 Bended Pipe PrODICII......ccuviiiiieiieeiie ettt ettt et tae e e e teeesteessbaeenbeesnbaeenseeesaeennes 43

3.2.5 NACA 2415 wing with ailerons problem ...........cccccverieriieiiiriieiieneee et sre e ennees 50

3.2.6 Cable-stayed bridge Problemi...........ceeieriieriieiieieeiee ettt sttt eeaesse e sesnsenneens 54

3.3 Negative eigenvalues in IOWEr MOGES. ......c.eeiuiriiiieiieie ettt ettt s e e 59
Chapter 4. Error estimation method for DCB method..........cccooovieiiiiiiiiiiiiccccceeeeeee e 62
4.1 FOTMIUIATION ...ttt ettt ettt et e et e et e bt et e emteeseess e e aeenseenseemeesneesseenteanseeneeeneenneans 64
4.1.1 Improved transformation MALIIX ..........cveeevierierierieerteeieeeeseeseesteesteeseessesseesseesseessesssesssesssessessns 64

4.1.2 Error estimator for the DCB method ...........cccoiiiniiiiiniiiiiiececeeeeee e 66

4.2 NUMEILICAL EXAMPLES ..ottt ettt ettt ettt e te st e s st e s st e st eneeeneeeneenteeneeeneeeneenneens 70
4.2.1 Rectangular plate ProbIem ..........coiiriiiiiiiiiiiieieeee et 71

4.2.2 Hyperboloid Shell ProbIem ..........cvevvieiieiieiiciesieeieeie ettt e st aaebeesseereesseennas 77

4.2.3 Pipe Intersection PrODICII .........c.eviiriiiiieiieieeieiceie ettt ettt et esnaesseesseeseenneennas 81

4.2.4 Cable-stayed Dridge ProbIem ..........ccccuiiiiiiiiiiie ettt ettt s 85

Chapter 5. A dynamic condensation method with free-interface based substructuring...........cc.cceceeeeeveeeennee 90
5.1 FOIMIUIALION ..ottt sttt ettt a et e bt e et e e bt e e bt e s b e e bt et e smeesbeesaeeneeenes 92

5.2 NUMETICAL EXAMPIES ..veevvienvieeiiieieieietieteeteeteeteesteebeebeseaesseesseesseesseesseessesseesseessesssesssesseensesssesssessseseenns 99
5.2.1 Rectangular plate Problem.........cccevieiieiieieieiieieeie ettt et ae et esseenaesnnes 100

5.2.2 Plate structure With @ Hole...........oouiiiiiiiiie e 107

5.2.3 Hyperboloid Shell Problem ...........ccuvevieiieieiiiiieieeie ettt eeees 111

5.2.4 Bended pipe ProbIemi........cccueiuiirieiieie ettt ettt sttt et reeseeaeeneas 115

5.2.5 Wind turbine rotor ProDIEIM .........coouiiiiiiiiieiieie ettt 124

5.2.6 NACA 2415 wing with ailerons problem ............cccooiiiiiiiiieiinesesc e 129

5.2.7 Cable-stayed bridge Problem .........cceccueiiiiiieriiiieiieceesie ettt seesaesenenseeenes 133

Chapter 6. CONCIUSIONS. .....eeeetieeieiieiiete ettt et e st et et e st e st e et et e esseesaessae s eenseensesnsesseesseenseanseensennsenseanseans 138
L (0] HTeT A 21 o1 s | TSR PUUUS PRSI 140



Acknowledgments in Korean

Curriculum Vitae ...................



List of Tables

3.1 Number of dominant modes used and number of DOFs in original and reduced systems for the rectangular

plate problem (12X 6 MES)..........ovooeoeeeeeeeeee et 32
3.2. Number of dominant modes used and number of DOFs in original and reduced systems for the rectangular
plate problem with non-matching MESh. .........ccoiiiiiiii e 33
3.3. Number of dominant modes used and number of DOFs in original and reduced systems for the plate
SEIUCTUTE WIth @ NOLE. ..ottt sttt b et 35
3.4. Number of dominant modes used and number of DOFs in original and reduced systems for the hyperboloid
Y1 115 0) 0] o) 1<) o o TR 39
3.5. Computational costs for the hyperboloid shell problem. ............ccceeeiiiiiiiiinieiieeeee e 42
3.6. Number of dominant modes used and number of DOFs in the original and reduced systems for the bended
JOa 80Tl o) (0] o] 3 v o VUSSP 46
3.7. Computational costs for the bended pipe Problem............ccevieiiiiieriiiie e 49
3.8. Number of dominant modes used and number of DOFs in the original and reduced systems for the NACA
2415 wing with ailerons ProbIIM. ........cciiiiiiiiiiei ettt ettt ettt b e 52
3.9. Eigenvalues calculated for the plate with a hole. Negative eigenvalues are underlined. .............ccccceeeeeennee. 60
4.1 Number of dominant modes used and number of DOFs in original and reduced systems for the rectangular
PLAtE PIODICINL .. .oiuviiiiiiiieie ettt ettt ettt et e et e e st e e teesteesbeesbeesseessesseesbeebeesbeesseesaesreesaeenreenns 72
4.2. Number of dominant modes used and number of DOFs in original and reduced systems for the hyperboloid
SHEIL PIODLCINL ...ttt ettt ettt et e et e et e s ta e be e beesbeesbessaesseesseesseanseesseessesssensaessaensennsessnas 78
4.3. Number of dominant modes used and number of DOFs in original and reduced systems for the cable-stayed
bridge problem (N = 0). ..o 87
5.1. Number of master DOFs used and number of DOFs in original and reduced systems for the rectangular
plate problem (12X 60 MESh)..........cooivieeeceeeeeee e 102
5.2. Number of master DOFs used and number of DOFs in original and reduced systems for the plate structure
WIEH @ OLE. 1.ttt sttt et ettt st b e st b et et ettt 108
5.3. Number of master DOFs used and number of DOFs in original and reduced systems for the Hyperboloid
Y1105 0) (0] o) 1<) o o USRS 112
5.4. Eigenvalues calculated for the hyperboloid shell problem. ............coccoeiiiiiiiiiiii e 114
5.5. Number of master DOFs used and number of DOFs in original and reduced systems for the bended pipe
PIODICIIL. ettt ettt ettt et e et e e te e te et e eabeesbeetaessaesaeeaeesbeesseesseessaseesseesseeteesseenteenreerneareas 118
5.6. Computational costs for the bended pipe ProbIem............ccvevieiiiiiiieiiieieeee ettt 121
5.7. Number of master DOFs used and number of DOFs in original and reduced systems for the wind turbine
01101 01 £010] (<3 1 VUSSR URSP 126
5.8. Computational costs for the wind turbine rotor problem. ............ccceeevieiiiiiiriieriee et 128



5.9. Number of master DOFs used and number of DOFs in original and reduced systems for the NACA 2415

WINg With @ilerons PrODISII. .........oo.iiiiiii e ettt ettt ettt ee e e ee 131

5.10. Number of master DOFs used and number of DOFs in original and reduced systems for the cable-stayed

bridge Problem (N = 0). ... 135



List of Figures

2.1 Partitioning of global FE model and interface handling in the CB method (N = 2 )...coooviiiiiiiniiniinnne. 5

2.2 Assemblage of substructures and interface handling in the DCB method ( N s = 4. (a) Substructures, Q1 s

QZ, Q; and Q4, (b) Interconnecting forces and interfacial DOFs of the substructure Q4 , (©)

Assembled FE model Q with its interface boundary I . ......cccoooviiiiiiiiiiiie e 10
2.3 Reduction procedure of IRS method. (a) global structural FE model (b) selection of master nodes, (c)
reduced model in the IRS mMEthod. ........ccoouiriiiiiiiii e 18
3.1 Flow chart for the FE model reduction in the improved DCB method............cccoecvirienienieiieececeeeeee, 27

3.2 Rectangular plate problem: (a) Matching mesh on the interface (12x6 mesh), (b) Non-matching mesh

between neighboring substructures, (c) Interface boundary treatment. ...........ccoeeeveeiieienienieseeeeeee, 30
3.3 Relative eigenfrequency errors in the rectangular plate problem with matching mesh. ...........ccoccoeoeienene. 31
3.4. Relative eigenfrequency errors in the rectangular plate problem with non-matching mesh. ......................... 33
3.5. Plate structure With @ ROLE.........cc.oouiriiiiiiiiiiiiicce ettt e 34
3.6. Relative eigenfrequency errors in the plate structure with a hole. .........cooooviiiiiiiiieeee, 36

3.7. MAC for reduced system in the plate structure with a hole: (a) DCB method, (b) Improved DCB method.37

3.8. Hyperboloid Shell ProbBIEmML. ...........coiiiiiiiee ettt ettt ettt ene e e e s eae e e enees 38
3.9. Relative eigenfrequency errors in the hyperboloid shell problem. ...........ccoocvevieiiiiciinienieiee e, 40
3.10. MAC for reduced system in the hyperboloid shell problem: (a) DCB method, (b) Improved DCB method

................................................................................................................................................................... 41
3.11. Bended pipe PIrODICIIL ...c..ooiiiiiiieiieie ettt ettt st e e sa e et e st e et et e e st e ene e bt et e eneenaeeneas 45
3.12. Relative eigenfrequency errors in the bended pipe problem...........ccoociiiirieiiiiiiireeeee e 47

3.13. MAC for reduced system in the bended pipe problem ( Nd =15): (a) DCB method, (b) Improved DCB

TEENOM ...t h bbbt h e bt bbbt a et b e bt h e e bbbt bbb et et et e e nes 48
3.14. NACA 2415 wing with ailerons Problem. ...........cceecieevieeiiiiienieriieieeee ettt stee e ebeeesesssesseesseessesnnas 51
3.15. Relative eigenfrequency errors in the NACA 2415 wing with ailerons problem. ..........c.ccocevcenenenencennne. 52

3.16. MAC for reduced system by the improved DCB method in the NACA 2415 wing with ailerons problem.53

3.17. Cable-stayed bridge problem (1 SUDSIIUCTUIR). .......ccvieririeriieriieiieiestesteeste et eeeesteeseesseeeaesteesseeseessesnnas 55
3.18. Connection of cable-stayed bridge substructures ( N s T 2 ) 56
3.19. Relative eigenfrequency errors in the cable-stayed bridge problem (N =6). ....oocovveiiriiniinicnes 57

3.20. MAC for reduced system in the cable-stayed bridge problem ( NS =6): (a) DCB method, (b) Improved
DCB METNOM. ...ttt ettt ettt s 58



3.21. Relative eigenfrequency errors in the plate structure with a hole (N 4 =) e 61

4.1 Rectangular plate problem: (a) Matching mesh on the interface (12X 6 mesh), (b) Non-matching mesh

between neighboring substructures, (¢) Interface boundary treatment. ...........ccoevevvvecviecienienieneecieeienen, 72
4.2. Exact and estimated relative eigenvalue errors in the rectangular plate problem with matching mesh. ........ 73
4.3. Relative errors for the corrected eigenvalues in the rectangular plate problem with matching mesh............ 74

4.4. Exact and estimated relative eigenvalue errors in the rectangular plate problem with non-matching mesh.. 75

4.5. Relative errors for the corrected eigenvalues in the rectangular plate problem with non-matching mesh. ... 76

4.6. Hyperboloid Shell ProDICIMNL. .........ccoecieiiieiieiicieciee ettt ettt te et e e e s e e taesbe e beeseessessnesseesseenseenns 78
4.7. Exact and estimated relative eigenvalue errors in the hyperboloid shell problem. .............ccccooeniiinincncne. 79
4.8. Relative errors for the corrected eigenvalues in the hyperboloid shell problem. ...........ccccoccevieiieiiiiinennnnne 80
4.9. Pipe INterSeCtiON PrODICINL ......eoviiiieiieitieiieteeteette sttt et et e et e steesteesseesseetsesteesbeesseessesssesseesseessessnesseesseenseanes 82
4.10. Exact and estimated relative eigenvalue errors in the Pipe intersection problem. ..........c.ccoceeeeerienienennnnne 83
4.11. Relative errors for the corrected eigenvalues in the Pipe intersection problem. ..........cccceceeeeeiierieiencnennnne 84
4.12. Cable-stayed bridge problem (1 SUDSLIUCTUIE). .......coueiueruireieieieieiee sttt st eee e e see e 86
4.13. Connection of cable-stayed bridge substructures ( N ¢ = 0 OO 87
4.14. Exact and estimated relative eigenvalue errors in the cable-stayed bridge problem ( N S (03 T 88
4.15. Relative errors for the corrected eigenvalues in the cable-stayed bridge problem (N =6)......ccccccoeec... 89
5.1. Flow chart for the FE model T@dUCHION........c..c.oiuiiiiiiiiiiiciiiececees e 98

5.2. Rectangular plate problem with matching mesh: (a) Selected nodes in the original IRS method, (b) Selected

nodes in the present MEthOd. ........c.ooiiiiiiii ettt e b e 101
5.3. Exact and approximated eigenvalues in the rectangular plate problem with matching mesh...................... 103
5.4. Relative eigenvalue errors in the rectangular plate problem with matching mesh.............cccccooceiiniinienn. 104

5.5. Rectangular plate problem with non-matching mesh: (a) Non-matching mesh between neighboring
substructures, (b) Selected nodes in the present Method. ...........cooeevviiiiiviieiiiicceeeeeee e, 105

5.6. Relative eigenvalue errors in the rectangular plate problem with non-matching mesh. ...........c.cccceeeene. 106

5.7. Selected nodes in the plate structure with a hole: (a) only interface nodes selected, (b) interface nodes and 8
interior nodes selected in €ach SUDSLIUCLUIE. .........covvieiiiiiiieiieieee et sae e 108

5.8. Relative eigenvalue errors in the plate structure with @ hole. ..........cccoeviiieiiiiiiiiiiiciceceee s 109
5.9. MAC for reduced system by the present method in the plate structure with a hole: (a) case 1, (b) case 2.. 110
5.10. Hyperboloid Shell PrOBISIM. ..........ooiiiiiiieieee ettt st ettt be et ese e ne e e e 112
5.11. Relative eigenvalue errors in the hyperboloid shell problem..............ccoooiiiiiiiiiiniii e 113

5.12. Bended pipe problem: (a) Global FE model without substructuring, (b) Matching mesh on the interface, (c)

Vi



5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.

5.24.

5.25.

5.26.

Non-matching mesh between neighboring SUDSIIUCLUIES. .......c.eevieieeierieiieie e 117

Relative eigenvalue errors in the bended pipe problem with matching mesh...........cccoccoveevieiiiciniennne, 119
MAC for reduced system by the present method in the bended pipe problem with matching mesh. ........ 120
Relative eigenvalue errors in the bended pipe problem with non-matching mesh............ccocceevvvrieneennnne. 122
MAC for reduced system by the present method in the bended pipe problem with non-matching mesh.. 123
Wind turbine rOtOr PrODICINL. .......eoiuiiiiiieeie ettt ettt esaeesre e st e aessaesseesseenseenseensenseenseans 125
Relative eigenvalue errors in the wind turbine rotor problem. ..........cccccoeverininienininieieiecencsesene 126
MAC for reduced system by the present method in the wind turbine rotor problem............c.cceccecceveneenee. 127
NACA 2415 wing with ailerons problem. ...........ccccverieriiiiiiiieniesieeie et seesreesaeeseseeesseeseens 130
Relative eigenvalue errors in the NACA 2415 wing with ailerons problem. ..........cccceeeveveverieneenieenieenenne 131
MAC for reduced system by the present method in the NACA 2415 wing with ailerons problem. .......... 132
Cable-stayed bridge problem (1 SUDSIIUCIUIE). ......ccuveviiiiiieiieii ettt ae s ens 134
Connection of cable-stayed bridge substructures (N =2 ..o, 135
Relative eigenvalue errors in the cable-stayed bridge problem ( N s =0 e 136
MAC for reduced system by the present method in the cable-stayed bridge problem ( N s = 6): (a) case 1,

(D) CASE 2. .ttt ettt ettt ettt et a e tb e tt e he e ae e be e bt arteaat e et e e teen b e esb e et b eetaenteenseentensaennes 137

Vii



Chapter 1. Introduction

1.1 Research Background

Model reduction methods have been widely used to reduce the degrees of freedom (DOFs) of a large finite
element (FE) model. For a long time, significant efforts have been made to develop more effective reduction
method to obtain accurate reduced models with computational efficiency. When a complicated structure
consisting with various substructures is designed through the cooperation of different engineers, it is very
expensive to deal with its FE models. This is because the whole and substructural models require frequent
design modifications and repeated analysis. In response to the large and complex structure, the model reduction
methods are used for various research fields such as eigenvalue analysis, multi-body dynamics, multi-physics,

structural health monitoring, experimental-FE model correlation, and FE model updating.

Model reduction methods can be classified as the model based and DOF based reduction. The mode based
reduction methods are called component mode syntheses (CMS) [1-11, 26-44, 61] in the field of structural
dynamics. The substructuring algorithm is applied to construct a reduced model considering only the dominant
modes for each substructure. As a representative method, the Craig-Bampton (CB) method [3] was developed in
the 1960s, which used the fixed-interface condition between neighboring substructures. In the early 2000s,
Rixen [9] and Park et al. [10] developed the free-interface based CMS method: the dual Craig-Bampton (DCB)
method and flexibility-based CMS (FCMS), respectively. Through the free-interface based formulation, each

substructure can be reduced independently before assemblage and has a better accuracy than the CB method.

In the DOF based reduction methods [16-20, 42, 49-58], the global FE model is divided into master DOFs
and slave DOFs, and then condense the stiffness and inertial effects of slave DOFs to the master DOFs. As a
representative methods, the Guyan reduction method [16] using the static condensation and the improved
reduced system (IRS) method [17] considering the inertial effects additionally. Unlike the CMS methods, the
DOF based reduction methods have been developed without applying the substructuring algorithm. Recently, it
has been attempted to improve the efficiency of the DOF based reduction methods [49-58].

Since the beginning of the studies in the 1960s, the model reduction methods have been studied for various

1



issues, such as the computation efficiency of reduction procedures, improvement of accuracy, selection of
dominant modes or master DOFs, and treatment of interface between neighboring substructures [26-44, 49-58].
In this dissertation, there are focused on developing a new type of CMS method and a DOF based reduction
method, both considering free-interface based substructuring algorithm. Especially, the effective model
reduction methods are proposed which suitable for the structure obtained from the assemblage of independently

constructed substructures.

1.2 Research purpose

The first objective of this dissertation is to improve the well-known dual Craig-Bampton (DCB) method [9].
The original transformation matrix of the DCB method is improved by considering the higher-order effect of
residual substructural modes through residual flexibility. Using the new transformation matrix, original finite
element models can be more accurately approximated in the reduced models. Herein, additional generalized
coordinates are newly defined for considering the second order residual flexibility. Additional coordinates
related to the interface boundary can be eliminated by applying the concept of SEREP (the system equivalent
reduction expansion process) [18]. The formulation of the improved DCB method [44] is presented in detail,

and its accuracy is investigated through numerical examples.

The second objective of this dissertation is to provide an error estimation method to accurately estimate the
relative eigenvalue errors of reduced model by the DCB method [9]. By using the improved transformation
matrix in the improved DCB method [44], the accurate error estimator for the DCB method is successfully
developed. In the formulation, the computation of error estimator is simplified by using the component matrices
of each substructure, instead of using the transformation matrix. Accurate error estimation is expected to be able
to satisfy the solution accuracy effectively in application studies using the reduced model with the DCB method.
The detailed formulation of the present error estimation method is presented, and its performance is

demonstrated through numerical examples.

The third objective of this dissertation is to propose a novel DOFs based reduction method with fully

decoupled substructures by employing the dual assembly technique. The IRS method [17] is adopted to reduce



substructures, which are independently defined. The reduced mass and stiffness matrices of substructures are
assembled by using a Lagrange multiplier vector, leading to the final reduced system. Using the proposed
method, each substructural finite element (FE) model can be efficiently reduced without coupling of
neighboring substructures and thus the method can be simply applied to substructures connected through non-
matching meshes. The formulation of the proposed method is presented in detail, and its accuracy and

computational efficiency are investigated through solving several practical engineering problems.

Hence, the research for this dissertation has been divided into three major parts:

L Improving the accuracy of the dual Craig-Bampton method
1L Error estimation for dual Craig-Bampton method
I11. A dynamic condensation method with free-interface based substructuring

The present model reduction studies are applicable to develop an effective parallel computation algorithm
to deal with FE models with a large number of DOFs. We expect that the new method is an attractive solution
for constructing accurate reduced models for experimental-FE model correlation, FE model updating, and

optimizations.

1.3 Dissertation Organization

This dissertation is organized as follows:

In Chapter 2, the well-known model reduction methods discussed in this dissertation are introduced. In the
following sections, the formulations of Craig-Bampton (CB), dual Craig-Bampton (DCB), and improved
reduced system (IRS) methods are presented in detail [3, 9, 17].

In Chapter 3, the formulation of the improved DCB method [44] is presented. In the following sections, we



derive a new transformation matrix for the DCB method, improved by considering the second order effect of
residual substructural modes. The issue of the interface reduction for additional coordinates is discussed. The
performance of the improved DCB method is described through various numerical examples. We considered six
structural problems: a rectangular plate with matching and non-matching meshes, a plate with a hole, a
hyperboloid shell, a bended pipe, a NACA 2415 wing with ailerons, and a cable-stayed bridge. The negative

eigenvalues in lower modes for the original and improved DCB methods are also investigated.

In Chapter 4, the error estimation method of the DCB method is proposed. The formulation of improved
transformation matrix is presented, and then error estimation method is derived by using new transformation
matrix. The global matrix multiplications are simplified by the calculations in substructural component matrix
level. The performance of the present error estimation method is investigated through numerical examples, and
the correction of approximated eigenvalues are attempted. Here, four structural problems are considered: a
rectangular plate with matching and non-matching meshes, a hyperboloid shell, a pipe intersection, and a cable-

stayed bridge.

In Chapter 5, the new dynamic condensation method with free-interface based substructuring is proposed.
The formulation of the free-interface based substructuring is presented, and then the new transformation matrix
for the independently defined substructures is presented. The performance of the present method compared to
the original IRS method is tested through the eigensolutions of various numerical examples: a rectangular plate
with matching and non-matching meshes, a plate with a hole, a hyperboloid shell, a bended pipe with matching

and non-matching meshes, a wind turbine rotor, a NACA 2415 wing with ailerons, and a cable-stayed bridge.

In Chapter 6, the conclusions and discussions for future works are presented.



Chapter 2. Model reduction methods

In this chapter, the well-known model reduction methods discussed in this dissertation are briefly

introduced. The formulations of Craig-Bampton (CB), dual Craig-Bampton (DCB), and improved reduced

system (IRS) methods are presented below. See references [3, 9, 17] for detailed derivations.

2.1 Craig-Bampton (CB) method

a global structural FE model is partitioned into Ns substructures as in Fig. 2.1a.

]’

3

[

The substructures are connected through a fixed interface boundary TI' (Fig. 2.1b).

In the CB method

(b)

(a)

Fixed-interface

s
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Figure 2.1 Partitioning of global FE model and interface handling in the CB method (N = 2).

The equations of motion can be expressed by



M, i, +Ku, =f, @.1)

MS MC KS KC uS fS
with Mg = T , Kg = T s ug = s f = s
M M, K, K, u, f,

where M and K are the mass and stiffness matrices, respectively, u is the corresponding displacement
vector, f is the external load vector applied to the FE model. Note that () =d*( )/dt® with time variable
t. The subscript g indicates the global structural quantities, and S, C and b indicate the substructural,

coupled and interface boundary quantities, respectively. Here, M, and K| are block-diagonal mass and

stiffness matrices that consist of substructural mass and stiffness matrices (M(i) and K% ).

The global eigenvalue problem is defined as

K, (0,) = (1M (9,), for i=1,--,N_, 2.2)

in which (4,); and (@,); are the global eigenvalue and eigenvector corresponding to the i™ global mode,

respectively, and N g is the number of DOFs in the original FE model. This number consists of interface and

NS
k
substructural DOFs (Ng = Nb + E NLE ), where Nb is the number of interface DOFs and Njk) is the
k=1

number of substructural DOFs of the k ™ substructure).

Because the interface DOFs of each substructure can be seen as totally constrained, the substructural

displacement vector U, is assumed in the CB method, as

u,~0,q,+®u, ® =-K,'K,, (2.3)

c

in which ®, and ( are the block-diagonal matrix that consists of substructural eigenvectors and the

corresponding generalized coordinate vector, (I)C is the constraint mode matrix. The constraint mode matrix is
defined as the mode shapes of the substructure due to unit displacement of interface DOF, and all other interface

DOFs are constrained. The constraint mode matrix @ in Eq. (2.3) is calculated by

6



® = ° | with ®=-K® 'K¥ for k=12,---,N.. 2.4)

The substructural normal modes are calculated by solving the following eigenvalue problems

K“0® =AYMY0", k=1,--,N,, (2.5)

in which @ and A" are the substructural eigenvector and eigenvalue matrices of the k " substructure,

respectively. Note that the eigenvectors are scaled to satisfy the mass-orthonormality condition.

The substructural eigenvector matrix 0% in Eq. (2.5) consists of dominant and residual term

oY :[ng) ®(rk)]’ (2.6)

K . . .. .
where G)gk) and (‘)(r) includes N ék) dominant substructural modes, and the remaining modes, respectively.

The substructural displacement vector can be approximated using only the dominant modes
u,~0.q; +®u,, @7

in which @)‘Sj and qg are the block-diagonal eigenvector matrix that consists of dominant substructural

modes and corresponding generalized coordinate vector.

Then, the global displacement vector u g can be approximated using the transformation

d d
0
u, =T, Ul i T,=| °

|
I C
It 28)

I,

where T0 is the transformation matrix (N g % N,) of the CB method [3]. Note that, in the substructural

7



eigenvalue problem, only the eigenpairs of the dominant modes are calculated, not for all eigenpairs.

The reduced mass and stiffness matrices ( N0 X N0 ) and the force vector ( No x1) of the CB method can

be obtained as

f =T f, . (2.9)

N '
Note that N, is the number of DOFs in the reduced FE model: N, = N, + » N§, in which N’
k1

is the number of dominant modes of the k™ substructure.



2.2 Dual Craig-Bampton (DCB) method

In the DCB method [9], a structural FE model is assembled by NS substructures as in Fig. 2.2a. The

substructures are connected through a free-interface boundary I" (Fig. 2.2b). The compatibility between

substructures is explicitly enforced using the following constraint equation

R K- (k
Zb()ué)=0, (2.10)

k=1

in which uf)k) is the interface displacement vector of the k™ substructure, and b™ s a signed Boolean

matrix.

The linear dynamic equations for each substructure Qk can be individually expressed by
M®i" + K™ +BYp=f®, k=1,---,N,, 2.11)

where M(k) and K(k) are the mass and stiffness matrices of the kM substructure, u® s the

corresponding displacement vector, £ is the external load vector applied to the substructure, and B(k)p is

0

k
the interconnecting force between substructures with BY = and the Lagrange multiplier vector p .
b(k)

Note that () =0d*( )/dt* with time variable t.

Assembling the linear dynamic equations for each substructure in Eq. (2.11) using the compatibility
constraint equation in Eq. (2.10), the dynamic equilibrium equation of the original assembled FE model (see Fig.

2.2¢) is constructed as

M oTi] [K BJu] [f
+ =
0 olul |B" olpl |0 @12)



M(l) 0 K(l) 0 u(1) f(l) B(l)
with M = , K= ,u= : |, f=| |, B=| : |,
0 M(Ns) 0 K(Ns) u(Ns) f(Ns) B(Ns)

where M and K are block-diagonal mass and stiffness matrices that consist of substructural mass and

stiffness matrices (M and K®).

(@ (b
Q, Q, Q, Q,
o
\\ e \S . 1" \Ti-. — lT .-‘So\r o
| \\ Q, ?
I p
Q, I 1
Q,
‘\I Q, u? \l
! Ny

\ (4)

©

Figure 2.2 Assemblage of substructures and interface handling in the DCB method ( N s = 4). (a)
Substructures, Q R Qz s Q3 and €2 4 » (b) Interconnecting forces and interfacial DOFs of the substructure

Q 4> (c) Assembled FE model Q with its interface boundary I".
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The global eigenvalue problem is defined for the original assembled FE model

K,(@,) = (A )M, (@,);, for i=l- N, 2.13)
K B M 0

in which (/Ig ); and (@ o ), are the global eigenvalue and eigenvector corresponding to the i™ global mode,

respectively, and N g is the number of DOFs in the original FE model. This number consists of interface and

NS
substructural DOFs (N, =N, + Z N&', where N y is the number of Lagrange multipliers and N& s
k=1

the number of DOFs of the k™ substructure).

Because each substructure can be seen as being excited through interconnecting forces, the displacement of

each substructure is assumed in the original DCB formulation, as

u(k) z—K(kyB(k)p-i-R(k)u(k) +®(k)q(k)’ k:L...,NS’ (2.14)

+
where K% is the generalized inverse matrix of K® (the flexibility matrix), R is the rigid body mode
matrix, O® ) is the matrix that consists of free-interface normal modes, and o and q(k) are the

corresponding generalized coordinate vectors.

The rigid body and free-interface normal modes of the k™ substructure are calculated by solving the

following eigenvalue problems

KO ("), = A"M ("), j=1-- N[, 2.15)

in which ﬂ(jk) and ((p(k)) ; are the jth eigenvalue and the corresponding mode, respectively. Note that the

mode vectors are scaled to satisfy the mass-orthonormality condition.

The free-interface normal mode matrix @) in Eq. (2.14) consists of dominant and residual normal

11



modes
ok = [G)f,") G)ﬁ'”] : (2.16)

in which ('Df,k) and ®(r )mcludes Nék) dominant free-interface normal modes, and the remaining modes,

respectively.

The displacement of the substructure can be approximated using only the dominant modes
u® = —K® B(k)u +R®a® + @gk)qgk) , (2.17)

where the term — K‘k)+B(k)u is the static displacement by interconnecting forces, and this term can be

expressed using modal parameters

_KOBMp = —@ WA '@ B®y with A® zdiag(ﬂfk),ﬂgk),.../iﬁgk)), (2.18)

where A is the substructural eigenvalue matrix.

Substituting Eq. (2.16) into Eq. (2.18), the static displacement can be divided into dominant and residual
parts

+ -1 T -1 T
—K® B(k)ll — —Gék)Agk) @ék) B(k)ll_@(rk)A(rk) @Ek) B(k)ll, (2.19)
with the corresponding substructural eigenvalue matrices Afjk) and A(rk) defined by

T T
AP =0l KV, AY =0 KYe® (2.20)

Using Eq. (2.19) in Eq. (2.17), the following equation is obtained:

© @k A" @@ k) () A O 0" k) (k) oy (K) (K) o (K)
u’ ~-0,'Ay O B'n-0,"A" 0, B'p+RVa" +0,'q," . (2.21)

12



It is easily observed that the first and last terms on the right side of Eq. (2.21) are identical and thus

neglecting the first term, we obtain
. - T
u® ~ —FOB®p + ROg®™ + @Fq®  with F = @AW '@l (2.22)

in which F](k) is called the residual flexibility matrix. The residual flexibility matrix can be calculated by

subtracting the dominant flexibility matrix from the full flexibility matrix K®"
+ -1 T
FY =K% -0PAY 0} (2.23)

The displacement and the Lagrange multipliers of the k™ substructure can be approximated using the

transformation

a
(k) k k) | Ky (k
u ) R() @()I_F()B()
~ T oK)
Ll } ~T qq | with T = { o (; i ! | , (2.24)
n

in which Tl(k) is the substructural transformation matrix of the original DCB method for the k " substructure

[9]. Note that, in the substructural eigenvalue problem, only the eigenpairs of the dominant and rigid body

modes are calculated, not for all eigenpairs.

The transformation matrix ']; (N g X N, ) for the original assembled FE model is then given by

o
: RO 0 o 0 | —F"B" ]|
(Ns) I
u a . . : :
~T!| q® ith T, = ! 2.25
LJ i q? with T =1 R™ o o E_FI(N5>B(NS> (225)
\ 0 0 0 0o | I
(N,) L . i
qq
1)

and the reduced mass and stiffness matrices ( Nl X Nl) and the force vector ( N1 x1) are obtained using the

13



transformation matrix

— M0 - K B - 1 f
M, =T 0 OTI’ K =T . OTI’ f, =T, (2.26)

Note that N, is the number of DOFs in the reduced FE model: N, =N;+N, with

N

s

N, = Z(N:k) + Nék)), in which Nﬁk) and Nék) are the numbers of rigid body modes and dominant
k=1

modes of the k™ substructure, respectively.

The eigenvalue problem with the reduced mass and stiffness matrices in the DCB method is defined as
K¢ =AMg,, i=1--+N (2.27)

where /T. and @; are the approximated eigenvalues and the corresponding eigenvectors, respectively. N is
— NS
the number of DOFs in the reduced model : N =N, + N, with N, = Z(ka) +N{), where N®

k=1

is the number of rigid body modes of the k™ substructure.
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2.3 Improved reduced system (IRS) method

In the IRS method [17], the equations of motion for undamped free vibration are given by

M, U, +K U, =0, (2.28a)
MSS Msm KSS Ksm US

with M, = , K, = , Uy = : (2.28b)
Mms Mmm Kms Kmm Um

in which Mg and K g are the mass and stiffness matrices of global structural FE model (see Fig. 2.3a), U g

is the corresponding displacement vector. The subscripts S and M denote the ‘slave’ and ‘master’ DOFs,

respectively (see Fig. 2.3b). Note that (") =d*( )/ dt*> with time variable t .

The global eigenvalue problem can be written as

KSS Ksm uS :/1 MSS Msm uS Wlth u. = uS (2 29)
Kms Kmm um Mms Mmm um ’ ’ um , .

where A and u, are the eigenvalue and eigenvector of global FE model, U and W, are the eigenvectors

corresponding to the slave and master DOFs, respectively. From the first row in Eq. (2.29), W, is represented
by

u, =—(K,-AIM ) (K, - AM )u,, . (2.30)

Using the Neumann series expansion [40-48, 61-64], Eq. (2.30) can be expanded by

u,=—(K, + 2K /M _K +0(2)+0()+NK, —AM )u,, . (2.31)
and neglecting higher order terms of A, U, is approximated as follows

u, ~u, =(-KJK,, +1K/ M, -M_ KK )u,. (2.32)

15



Then, the approximated global eigenvector w, is obtained by

g

o
u, 2, :{ C|=(T, + AT )u,, (2.33a)
llm_
KK KM, —-M_K.K
Wlth TO — ]S:S sm , Ta — SS( sm 0 SS SS sm) , (233b)
m L

where TO is called the Guyan transformation matrix [16], Ta is the additional transformation matrix

containing the inertial effects of the slave DOFs, and I is the identity matrix corresponding to the master

DOFs.

In the Guyan method [16], the approximated global eigenvector ﬁg is defined by

T, =T,u (2.34)

m?>

and then, the reduced eigenvalue problem is obtained by

K, =AMy, with M;=T/M_T,, K,=TK_T,, (2.35)

m

g 9

in which MO and EO are the reduced mass and stiffness matrices, and A is the approximated eigenvalue

in the Guyan method [16].

Multiplying M& ' on the both sides of Eq. (2.35), the following relation is obtained

Au, =H,u, with H = M,'K,, (2.36)

note that, from this relation, the eigenvalue A can be replaced with the matrix H,.

In Eq. (2.33a), using A instead of A, and applying the relation A u, =Hyu_, in Eq. (2.36), the

approximated global eigenvector ﬁg can be more accurately defined as follows

16



W, =Tu, wih T, =T, +T,H,, (2.37)

where 'I; is the transformation matrix of the IRS method [17].

Using Eq. (2.37), the reduced mass and stiffness matrices in the IRS method (see Fig. 2.3¢c) are calculated

as

M, =T/M T, =M, +T/M T,H,+H;T;M T, + H;T,M T,H, (2.38a)

K, =T'K,T =K, +T;K,TH, +H{T,K T,+H{T,K T,H,. (2.38b)

Finally, the reduced eigenvalue problem in the IRS method [17] is given by
K, (9), =AM, (9),, i=12,---,N_, (2.39)

where (2_,1)I and (@,); are the approximated i eigenvalues and corresponding eigenvectors in the IRS

method, and Nm is the number of master DOFs, which is same with the size of the reduced model.

The transformation procedure of the IRS method [17] described in Eq. (2.38) seems simple matrix

multiplications. However, in the IRS method, the global structural FE model is considered without
substructuring. For a large FE model, the construction of 'I; in Eq. (2.37) is very difficult or even impossible

in a personal computer, because it contains computationally expensive procedures such as inversion of large

submatrix, K_ inEq.(2.33).
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reduced model in the IRS method.
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Chapter 3. Improved DCB method

In engineering practice, the degrees of freedom (DOFs) of numerical models have been continuously
increased, along with the rapid increase in their complexity. When a complicated structure consisting with
diverse components is designed through the cooperation of different engineers, it is very expensive to deal with
its finite element models. This is because frequent design modifications affecting the whole and component
models require repeated reanalysis. For these reasons, a number of model-reduction schemes have spotlighted
its necessity, especially, in the structural dynamics community [1-11, 16-20, 26-58, 61-62]. Among the proposed
solutions, component mode synthesis (CMS) methods are considered very powerful solutions. With CMS
methods, the assemblage of small substructures represents a large structural model; then is approximated using a
reduced model constructed using only the dominant substructural modes. In CMS methods, it is important to

select the proper dominant modes [2, 21-23].

After pioneering work by Hurty [1] in the 1960s, numerous CMS methods have been introduced for
various applications [1-11, 26-44, 61]. The CMS methods can be classified as fixed, free, and mixed-interface
based methods, depending on how the interface is handled. The most successful fixed-interface based method is
the Craig-Bampton method (CB method) [3] due to its simplicity, robustness, and accuracy. In contrast, the free-
interface based methods [5-7, 9-10] proposed earlier were not successful because those methods were not
adequate for either accuracy or efficiency in spite of their important advantages. These included such as

substructural independence and easy treatment of various interface conditions [26-39].

In 2004, Rixen [9] introduced a new free-interface based method as a dual counterpart of the CB method,
namely, the dual Craig-Bampton (DCB) method. In the DCB method, Lagrange multipliers are employed along
the interface for assembling substructures and thus an original assembled finite element (FE) model can be
effectively reduced as a form of quasi-diagonal matrices, leading to computational efficiency. The most
advantageous feature of the DCB method is that, when a substructure is changed, entire reduced matrices do not
need be updated again because in the formulation, substructures are handled independently. This feature also
makes it possible to assemble substructures even if their FE meshes do not match along the interface [29]. For
all these reasons, the DCB method is an attractive solution for experimental-FE model correlation [31-32, 36],
as well as FE model updating and dynamic analysis considering various constraint conditions (contact,
connection joint, damage, etc.) [37-39]. However, the DCB method still needs improvement in accuracy. In

particular, the DCB method causes a weakening of the interface compatibility in reduced models, resulting in
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spurious modes with negative eigenvalues [9, 26]. If the reduction basis chosen is not sufficient, such spurious

modes may occur in lower modes, which is an obstacle to approximating the original FE model correctly.

Recently, fixed-interface based CMS methods have been successfully improved considering the higher-
order effect of the residual modes [8, 40-41, 43-44]. The motivation of this study is that the same principle can
be adopted for improving free-interface based methods. In this study, we focus on improving the accuracy of the
DCB method. We derive a new transformation matrix for the DCB method, improved by considering the second
order effect of residual substructural modes. One difficulty comes from the fact that the improved approximation
of substructural dynamic behavior contains unknown eigenvalues. In the formulation, unknown eigenvalues are
considered additional generalized coordinates. These are subsequently eliminated using the concept of the
system equivalent reduction expansion process (SEREP) to reduce computational cost. Finally, improved
solution-accuracy is obtained in the final reduced systems. Furthermore, the use of the present method avoids

creation of spurious modes with negative eigenvalues in the lower modes.

The formulation of the improved DCB method is presented in Section 3.1. Section 3.2 describes the
performance of the improved DCB method through various numerical examples and in Section 3.3, we explore

the negative eigenvalues in lower modes for the original and improved DCB methods.
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3.1 Formulation

In the original DCB method [9], to construct the transformation matrix 'I; in Eq. (2.25), the residual

+
substructural modes are considered through the static flexibility matrix K®". However, in order to improve
the DCB method, we here properly consider the effect of the residual substructural modes using dynamic

flexibility, resulting in improved solution accuracy in the reduced models.

3.1.1 Second order dynamic residual flexibility

Let us consider Eq. (2.11) with f*) =0, and invoking harmonic response (d*/dt*> =—A1). The

displacement of the k™ substructure can be written as

u(k) _ _(K(k) —ﬁM(k))_lB(k)u, i :1’..., Ns’ (3.1

in which (K(k) — M%) )71 is called the dynamic flexibility matrix. Using free-interface normal modes and

rigid body modes obtained from Eq. (2.15), the dynamic flexibility matrix can be rewritten in terms of modal

parameters

(K® - M ®) " = @O (AW - ﬁl(k))—lq)(k)-r with ®@® :[G(k) R(k)]. (3.2)

Substituting Eq. (3.2) into Eq. (3.1), the substructural displacement is represented by

=@ A® - /11;“)*‘@““13“),1 + R®g (33)
with A© = @MW KW@® 1k — @ M ke,

in which Af]k) and If]k) are the eigenvalue and identity matrices corresponding to the free-interface normal

modes, and A is the unknown eigenvalue.
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We then substitute Eq. (2.16) into Eq. (3.3), to obtain
_ T
u® =Ygl — O (AY — %) O BYp+ RV G.4)

_ T
with OPgY =—OL(AY — A) @1 BY.

In Eq. (3.4), the residual part of the dynamic flexibility matrix @ (A" — /?Ll(rk))”@)(rk)T can be

expanded using a Taylor series [8, 10, 27, 40-48]

.
O (AN — M) 'OV =F + AR+ A7F 4. (3.5)
—j T
with F¥ =@ A @""

where F{¥) is the j™ order residual flexibility matrix of the k ™ substructure.

Considering the residual flexibility up to the second order, the residual part of the dynamic flexibility

matrix is approximated by
O (AN — )N =~ FY + AR, (3.6)
and using Eq. (3.6) in Eq. (3.4), the substructural displacement is expressed as

u® ~ @Ek)qgk) _ Fl(k)B(k)ll _ ﬂF;k)B(k)p + R®g® 3.7

Note that the substructural displacement of the original DCB formulation is obtained when the second
order residual flexibility in Eq. (3.7) is ignored. The added second order residual flexibility contributes to
strengthening the interface compatibility by more precisely calculating the displacement due to the
interconnecting forces. As a result, it is expected that the emergence of spurious modes can be avoided in the

lower modes. This feature will be briefly demonstrated using a numerical example. The second order residual

flexibility matrix can be easily calculated by reusing Fl(k) in Eq. (2.23)

Fz(k) _ Fl(k)M(k)E(k)- (3.8)
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The substructural transformation matrix Tz<k> with the second order residual flexibility approximation is

given by

u

| Lm0
~ T, " u,

n

R© @V
0 0

_ Fl(k)B(k)

I

(k

>

u(k)

3.9)

(k) (k) _

1)
v

where U, ) denotes the generalized coordinate vector and Y/ is the additional coordinate vector containing

the unknown eigenvalue A

It is important to note that the use of higher-order residual flexibility may produce badly scaled

transformation matrices, resulting in ill-conditioned reduced system matrices. Thus, we normalize each column

of 6;'0 using its L2-norm [63-64].

k k k)™
0y =0'G" wih G =

)

o],

09,

2

(3.10)

where @gk) is the normalized residual mode matrix containing the second order residual flexibility, and

n(k . — .
{95 )}j isthe j" column vector of @)

Substituting Eq. (3.10) into Eq. (3.9), the substructural transformation matrix of the improved DCB method

for the k™ substructure is
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(k) (k) (k) ! K k) (k)

{“ }Tmu(k) with T<k>{R 0, ' -F'B" 0, } . (3.11)
2 2 2 |

!,1 0 0 |

Then, the displacement and Lagrange multipliers of the original assembled FE model with N

substructures are approximated as

_(l(l)
a(Ns)
€Y}
u q
szTz d (3.12)
Lt
1)
LV
RO 0 @51) 0 i —E(”B“) 9(21) ]
| . .
| . .
with L, = (N,) N | _p(NopN) (N
0 R 0 0, :_Fl B 0,
0 0 0 0 | I 0 |

Using the transformation matrix T, (N o X N,) in Eq. (3.12), the reduced system matrices ( N2 X Nz)

and force vector ( N2 x1) are calculated

_ M 0 — |/ K B - o f
M, =T, 0 0T2, K, =T, B' 0 T, f,=T, ol (3.13)

in which 1\_/[2, Kz, and fz are the reduced mass and stiffness matrices, and the reduced force vector,
respectively.  Note  that N2 is the number of DOFs in the reduced FE model,
NS
— (k) (k)
N, =2N, +3 (N® +N§¥).
k=1
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3.1.2 Interface reduction

When the second order residual flexibility is considered, the size of reduced system is increased due to the

additional coordinates /' compared to the original DCB method [9]. The number of increased DOFs is equal

to the number of Lagrange multipliers.

To resolve this problem, we eliminate the additional coordinates by employing the concept of the system
equivalent reduction expansion process (SEREP) [18]. In the global eigenvalue problem given in Eq. (2.13), the

eigenvalues related to the Lagrange multipliers p are non-physically infinite. When original FE models are

reduced using the original and improved DCB methods in Eq. (2.26) and (3.13), respectively, such non-physical

eigenvalues related to p and y (y = Ap ) become finite, but appear in higher modes. The modes related to

the additional coordinates can be eliminated through a further reduction using SEREP.

From the reduced system matrices in Eq. (3.13), the following eigenvalue problem is obtained:
K2(6)i :ZM2($)“ IZI,---, N29 (3.14)

where ): and ($)| are the i™ eigenvalue and the corresponding mode vector, respectively. We then

calculate the eigenvectors up to the N1 -th mode and construct the following eigenvector matrix

o=[®, @. ~— @] (3.15)

The transformation matrix of the improved DCB method [44] is further reduced using the eigenvector

matrix in Eq. (3.15) as follows.

A

T,=T,®, (3.16)

and thus the new transformation matrix 'i‘z has the same size as ’11 in the original DCB method ( N g X N,

That is, the additional coordinate vector v is eliminated.
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Finally, the resulting reduced system matrices are calculated as follows:

n ATM 0. -~ ~7 K Bi|. . 7
M2:T2 0 0T2, K2:T2 B’ OTz,fzsz

f
3.17
ol (3.17)

in which Mz R K ,»and f'z are the final reduced mass, stiffness matrices, and force vector, respectively. Then,

the size of the reduced system matrices provided by the improved DCB method [44] becomes equal to that by
the original DCB method [9].

The reduced eigenvalue problem of the present method is given by

IA(z((f))i = jfumz((ﬁ). ) [ =12,--, N1> (3.18)

3 ~ . th . . . .
where i, and (([))i are the approximated | eigenvalues and corresponding eigenvectors in the present

method.

The approximated global eigenvector (69 ); can be calculated by

@, =T,(9),. (3.19)

The reduced system becomes more accurate by improving the DCB formulation. The increase of
computational cost is inevitable, but the computation of the second order residual flexibility is effectively
performed using Eq. (3.8). In the present method, it is possible to independently perform the process for each
substructure from construction to reduction. Since we do not have to deal with the global FE model, we can
efficiently reduce the large structural FE model. The flow chart of the present reduction method is shown in the

Fig. 3.1.

In the following sections, the accuracy and computational cost is investigated using various numerical

examples. In the numerical examples, the computation cost for the interface reduction process also be examined.
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Figure 3.1 Flow chart for the FE model reduction in the improved DCB method
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3.2 Numerical examples

In this section, we investigate the performance of the improved DCB method compared to the original
DCB method. We considered six structural problems: a rectangular plate with matching and non-matching
meshes, a plate with a hole, a hyperboloid shell, a bended pipe, a NACA 2415 wing with ailerons, and a cable-
stayed bridge.

FE models are constructed using the 4-node MITC (Mixed Interpolation of Tensorial Components) shell
elements [65-70], 3D solid elements and truss elements, and free or fixed boundary conditions are imposed
differently according to the problem. The frequency cut-off method is employed to select dominant substructural
modes [21-23]. All the computer codes are implemented in MATLAB and computation is performed in a

personal computer (Inter core (TM) 17-4770, 3.40 GHz CPU, 32 GB RAM).

The relative eigenfrequency error is adopted to measure the accuracy of the reduced models

G="——" with o, =.[4 . & :\//17, (3.20)

in which &, is the i" relative eigenfrequency error, @; is the i" exact eigenfrequency calculated from

the global eigenvalue problem in Eq. (2.13); and (?)i is the i™ approximated eigenfrequency from the

reduced eigenvalue problem in Eq. (3.18). Note that the rigid body modes are not considered in measuring the

accuracy.

The accuracy of approximated eigenvectors of the original and improved DCB method are measured by the

modal assurance criterion (MAC) [59-60] as

| ((pg)-lr ($g)] |2

MACG, j) = T — T —
= o T @) (@) @)

for 1,j=12,---,N,, (3.21)

in which (¢,) and (@) are the global and approximated eigenvector, respectively. The resulting scalars
are assembled into the MAC matrix. The MAC indicate the consistency between eigenvectors by its value from
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zero to unity. If the MAC has a value near unity, the eigenvectors are considered consistent. Note that the rigid

body modes are not considered in measuring the consistency of eigenvectors.

3.2.1 Rectangular plate problem

Let us consider a rectangular plate with free boundary, see Fig. 3.2. Length L is 0.6096 m, width B is
0.3048 m, and thickness N is 3.18x107° m. Young’s modulus E is 72 GPa, Poisson’s ratio v is 0.33,
and density p is 2796 kg/mr. The whole structure is an assemblage of two substructures (N, = 2)

modeled by 4-node MITC shell elements. We consider two numerical cases, with matching and non-matching

meshes between neighboring substructures.

For the matching mesh case, the first substructure is modeled using an 8X 6 mesh and the second

substructure is modeled using a 4X6 mesh, as shown in Fig. 3.2a. Fig. 3.3 presents the relative
eigenfrequency errors obtained by the CB, the original and improved DCB methods. The numbers of dominant
modes used and the numbers of DOFs in original and reduced systems are listed in Table 3.1. The improved

DCB method shows significantly improved accuracy compared to the original CB method.

Let us consider the non-matching mesh case, see Fig. 3.2b. The first substructure is modeled by an 8% 6
mesh and the second substructure is modeled by an 812 mesh. In this case, the interface compatibility is

considered through nodal collocation and thus the matrices B are no longer Boolean, see Fig. 3.2¢c. Fig. 3.4
presents the relative eigenfrequency errors obtained by the original and improved DCB methods. Table 3.2
shows the numbers of dominant modes used and the numbers of DOFs in the original and reduced systems. The
results also show that the improved method provides considerably more-accurate solutions for this non-

matching mesh case.
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Figure 3.2 Rectangular plate problem: (a) Matching mesh on the interface (12X 6 mesh), (b) Non-matching

mesh between neighboring substructures, (c) Interface boundary treatment.
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Table 3.1 Number of dominant modes used and number of DOFs in original and reduced systems for the

rectangular plate problem (12X 6 mesh).

Methods N N N, N, N,
CB 13 7 20 455 55

DCB 13 7 20 525 67
Improved DCB 13 7 20 525 67
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Figure 3.4. Relative eigenfrequency errors in the rectangular plate problem with non-matching mesh.

Table 3.2. Number of dominant modes used and number of DOFs in original and reduced systems for the

rectangular plate problem with non-matching mesh.

Methods N N N, N, N,
DCB 5 3 8 965 85
Improved DCB 5 3 8 965 85
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3.2.2 Plate structure with a hole

Let us consider a rectangular plate with a hole, see Fig. 3.5. No boundary condition is imposed. The length

L is 20 m, width B is 10 m, and thickness h is 025 m. Young’s modulus E is 210 GPa, Poisson’s ratio
Vv is 0.3, and density p is 7850 kg/rrf . The whole model is an assemblage of four substructural FE models

(NS =4). The whole model is discretized by 208 shell elements (1360 DOFs). The substructures are

symmetrically positioned about the hole in center.

Figure 3.5. Plate structure with a hole.
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The numbers of dominant modes used and the numbers of DOFs in the original and reduced systems are
presented in Table 3.3. Fig. 3.6 presents the relative eigenfrequency errors obtained using the original and
improved DCB methods. The results show that the improved DCB method largely outperforms the original

DCB method, especially, in lower modes.

Fig. 3.7 presents the MAC for reduced system by the original and improved DCB method. The results from
both methods show that the approximated eigenvectors in the improved DCB method have more accurate

consistency than the original DCB method.

Table 3.3. Number of dominant modes used and number of DOFs in original and reduced systems for the plate

structure with a hole.

Methods NO NG N® N N, N, N,
DCB 5 5 5 5 20 1490 174
Improved DCB 5 5 5 5 20 1490 174
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3.2.3 Hyperboloid shell problem

We here consider a hyperboloid shell structure with free boundary as shown in Fig. 3.8. Height H is 4.0

m and thickness N is 0.05 m. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density p is

2700 kg/m’. The mid-surface of this shell structure is described by

X*+y>=2+17" ze€[-22]. (3.22)
Ql
QZ
H
Q3
H/2
Z
X Y

Figure 3.8. Hyperboloid shell problem.
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Three substructures ( NS =3) are assembled to construct the original FE model of the shell structures, in

which 800 shell elements and 903 nodes are used (4200 DOFs). Table 3.4 lists the numbers of dominant modes
used and the numbers of DOFs in the original and reduced systems. Fig. 3.9 presents the relative eigenfrequency
errors obtained using the original and improved DCB methods. The graphs in the figure consistently show the

accuracy of the improved DCB method.

Fig. 3.10 presents the MAC for reduced system by the original and improved DCB method. The results

show that the approximated eigenvectors obtained with the improved DCB method give better consistency.

For this problem, we also compare the computational costs of the original and improved DCB methods.
Table 3.5 shows the detailed computational costs. Compared to the original DCB method, the additional
computation time required by the improved DCB method is 3.69% for accuracy improvement, and 13.25% for

interface reduction.

Table 3.4. Number of dominant modes used and number of DOFs in original and reduced systems for the

hyperboloid shell problem.

Methods N N N N, N, N,
DCB 10 10 10 30 4830 363
Improved DCB 10 10 10 30 4830 363
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Table 3.5. Computational costs for the hyperboloid shell problem.

Computation times

Methods Items
[sec] Ratio [%]
Original Substructural mode matrices (R?, o) 0.28 1.77
DCB method . o .
Substructural 1st order residual flexibility matrices 15.11 96.94
(F")
Reduced system matrices (Ml ,Kl ) 0.20 1.29
Total 15.59 100.00
Improved DCB  qypstructural mode matrices (RY, o) 0.28 1.77
method . o .
Substructural 1st order residual flexibility matrices 15.11 96.94
(F")
Substructural 2nd order residual flexibility matrices 0.36 2.31
(B
Reduced system matrices (1\_/[ ,Kz ) 0.42 2.67
Subtotal 16.17 103.69
Interface reduction (M2 , K 5) 2.06 1325
Total 18.23 116.94
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3.2.4 Bended pipe problem

A bended pipe structure with clamped boundary at one end is considered as shown in Fig. 3.11, in which

the structural configuration and specification are illustrated. Young’s modulus E is 69 GPa, Poisson’s ratio vV
is 0.35, and density p is 2700 kg/m3. The FE model of the pipe structure is an assemblage of three

substructural FE models ( NS =3). The whole FE model has 2511 shell elements and 2592 nodes (12960 DOFs).

The following numerical cases are considered:

® The original DCB method is used with the reduced model size of N, =297 (N, =15) and

N, =567 (N, = 285).

®  The improved DCB method is used with the reduced model size of N, =297 (N, =15).

The number of dominant modes used and the number of DOFs in the original and reduced systems are

listed in Table 3.6.

Fig. 3.12 presents the relative eigenfrequency errors obtained by the original and improved DCB methods.
When reduced models of the same size ( N1 =297, Nd =15) are considered, the improved DCB method

provides a much more accurate reduced model. It is also observed that the original DCB method shows accuracy

comparable to the improved DCB method when 285 modes are used for the original DCB. For similarly

accurate reduced models, the model size obtained by the original DCB method ( N1 =567) is almost twice that

obtained by the improved DCB method ( N1 =297).

Fig. 3.13 presents the MAC for reduced system by the original and improved DCB method ( Nd =15).1In

this case, the approximated eigenvectors obtained by the original DCB method hardly show consistency with the

correct eigenvectors. However, the improved DCB method provides consistently accurate results.
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Next, the computational costs of the original and improved DCB methods are compared. Table 3.7 shows
the detailed computational costs. For reduced models of the same size, additional computation time required for
the improved DCB method is 2.05% for accuracy improvement and 0.5% for interface reduction, compared to
the original DCB method. The table also presents the detailed computation time when 285 modes are used for

the original DCB method.

At this point, it is important to note that the improved DCB method is very useful for obtaining an accurate
reduced model when only a limited number of dominant modes are available. Such cases happen when

dominant modes are obtained experimentally.
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Table 3.6. Number of dominant modes used and number of DOFs in the original and reduced systems for the

bended pipe problem.

Methods Nél) N éz) N 53) N, N g N 1
DCB 5 5 5 15 13095 297
DCB 95 95 95 285 13095 567

Improved DCB 5 5 5 15 13095 297
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Table 3.7. Computational costs for the bended pipe problem.

Computation times

Methods Items
[sec] Ratio [%]
Original Substructural mode matrices (R” ,0)) 0.67 0.26
DCB method . o
Substructural 1st order residual flexibility
(Ng =15) . 256.40 99.44
matrices (F})
Reduced system matrices (Ml , Kl ) 0.77 0.30
Total 257.84 100.00
Original Substructural mode matrices (R” ,00) 3.61 1.40
DCB method . o
Substructural Ist order residual flexibility 272.71 105.77
(N, =285) -
‘ matrices (Fl('))
Reduced system matrices (Ml ,Kl ) 0.81 0.31
Total 277.13 107.48
Improved DCB method  gypstryctural mode matrices (R® ,00) 0.67 0.26
( Nd =15) Substructural 1st order residual flexibility
) 256.40 99.44
matrices (F;)
Substructural 2nd order residual flexibility
' ) 4.58 1.78
matrices (F,)
Reduced system matrices (I\_/I ,Kz ) 1.46 0.57
Subtotal 263.11 102.05
Interface reduction ( M2 , K 5) 1.29 0.50
Total 264.40 102.55
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3.2.5 NACA 2415 wing with ailerons problem

A NACA 2415 wing structure with clamped boundary at one end is considered as shown in Fig. 3.14, in
which the structural configuration and specification are illustrated. The two ailerons are connected by a
frictionless hinges to the first substructure. Due to the ailerons, the two rigid body modes are calculated in the
eigenvalue analysis of both global and reduced eigenvalue problems. The modeling of hinge is simply

implemented by the Lagrange multipliers.

The length L is 0.9144 m, width W is 0.2286 m, and thickness H s 0.0345 m. Young’s modulus
E is 71 GPa, Poisson’s ratio Vv is 0.33, and density p is 3000 kg/m3. The whole model is an assemblage

of four substructural FE models ( NS =3). The each substructure is discretized by 3873, 112 and 144 shell

elements, respectively (19250, 725 and 925 DOFs).

Table 3.8 lists the numbers of dominant modes used and the numbers of DOFs in the original and reduced
systems. Fig. 3.15 presents the relative eigenfrequency errors obtained using the original and improved DCB
methods. The improved DCB method shows considerably accurate results for low-order modes with only the

size of the reduce model corresponding to 1.15% of the total DOFs of global FE model.

Fig. 3.16 presents the MAC for reduced system by improved DCB method. The results show that the
eigenvectors approximated by the improved DCB method maintain consistency with the global eigenvectors for
each mode. The off-diagonal terms of the MAC occurring in the initial four normal modes are caused by the

symmetry of the wing structure and the behavior close to the rigid body mode of the ailerons.
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Table 3.8. Number of dominant modes used and number of DOFs in the original and reduced systems for the

NACA 2415 wing with ailerons problem.

) 2) 3)
Methods N, N N N, N o N .
DCB 15 9 9 33 21098 243
Improved DCB 15 9 9 33 21098 243
102 T T T T T

Relative eigenfrequency error

10710 1
—-DCB

—— Improved DCB

5 10 15 20 25
Mode number

10-12

Figure 3.15. Relative eigenfrequency errors in the NACA 2415 wing with ailerons problem.
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3.2.6 Cable-stayed bridge problem

We finally consider a cable-stayed bridge problem as shown in Fig. 3.17 and 3.18. The unit of length in this
figure is feet (ft). The FE model and its mass and stiffness matrices are obtained by the well-known commercial
FE analysis software, ADINA [70]. The structure is modeled using 504 shell elements for the girder, 50 3D solid
elements for the tower, and 4 3D truss elements for the cable, respectively. The number of nodes is 1666, and

total DOFs is 6878.

Here, we considered the bridge structure in Fig. 3.17 as one sub-structure and connected multiple

substructures to make the long-span bridge structure as in Fig. 3.18. In this problem, we assemble the six

substructures (Ns =6), the dominant substructural modes, N éi) = 6 is considered for each substructure.

Then, the number of DOFs in the original assembled FE model (N o ) is 42293, and the number of DOFs in the

reduced model ( Nl ) becomes 1061.

Fig. 3.19 presents the relative eigenfrequency errors obtained using the original and improved DCB
methods. It is observed that the performance of the improved DCB method is much more accurate than the
original DCB method. Fig. 3.20 presents the MAC for reduced system by original and improved DCB method.
As expected, the results show that the eigenvector consistency of the improved DCB method is better than the

original DCB method.
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Figure 3.18. Connection of cable-stayed bridge substructures ( N,S =2).
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Figure 3.19. Relative eigenfrequency errors in the cable-stayed bridge problem (N = 6).
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3.3 Negative eigenvalues in lower modes

In the previous section, we demonstrated that the accuracy of the DCB method was significantly improved.
When the improved DCB method is used, it is expected that spurious modes will be avoided in lower modes,
when the selected dominant modes in the substructure are insufficient. Spurious modes in the reduced model

could cause instability in various dynamic analyses. There have been several attempts to prevent this [26-27].

In this section, we compare the improved DCB method with the original DCB method for the ability to

avoid negative eigenvalues and the corresponding spurious modes in lower modes. The plate with a hole in Fig.

3.5 is considered again. Only one vibration mode is selected in each substructure ( Nd = 4); thus, the reduction

basis is not well established. The number of DOFs in both reduced systems ( Nl) is 158. Note that the rigid

body modes are not considered for investigating spurious modes.

The first 25 eigenvalues calculated are listed in Table 3.9, in which mode numbers are sorted by the
magnitude of eigenvalues. Fig. 3.21 presents the relative eigenfrequency errors in the FE models reduced by the
original and improved DCB methods, in which only eigenfrequencies corresponding to positive eigenvalues are
plotted. The first negative eigenvalue obtained by the original DCB method is found at the 9th mode and, after
that, 40 negative eigenvalues appear until the 57th mode. That is, many spurious modes are calculated in lower
modes. Eigenvalues obtained are infinite from the 58th to 152th modes. However, when the improved DCB
method is used, the first negative eigenvalue is found at the 51th modes and no infinite eigenvalue is calculated.
That is, the appearance of negative eigenvalues is shifted to relatively higher frequency range. This is an

advantageous feature of the improved DCB method.

59



Table 3.9. Eigenvalues calculated for the plate with a hole. Negative eigenvalues are underlined.

No. Original DCB Improved DCB
1 3.7518E+02 3.7517E+02
2 5.9356E+02 5.9306E+02
3 3.3397E+03 3.2415E+03
4 3.3609E+03 3.3549E+03
5 6.7871E+03 6.7483E+03
6 1.0588E+04 9.5708E+03
7 1.0631E+04 1.0252E+04
8 1.3618E+04 1.3502E+04
9 -1.8564E+04 2.1398E+04
10 -2.0246E+04 2.4833E+04
11 -2.3018E+04 3.7087E+04
12 2.7750E+04 3.8271E+04
13 -4.0962E+04 5.5247E+04
14 5.0359E+04 5.5684E+04
15 6.8518E+04 7.0494E+04
16 7.1921E+04 7.9612E+04
17 -7.3877E+04 8.0927E+04
18 -7.8759E+04 1.0925E+05
19 9.2383E+04 1.2573E+05
20 -1.0689E+05 1.2642E+05
21 -1.1249E+05 1.3012E+05
22 -1.4226E+05 1.8680E+05
23 -1.4899E+05 2.1227E+05
24 -1.5146E+05 2.3759E+05
25 -2.2205E+05 2.4295E+05
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Relative eigenfrequency error
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Figure 3.21. Relative eigenfrequency errors in the plate structure with a hole ( N 4= 4).
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Chapter 4. Error estimation method for DCB method

In structural engineering, the analyses of large and complex finite element (FE) models require a lot of time
and computation cost, despite the development of computational hardware. Instead of directly handling the
entire FE model, various studies have carried out to construct a reduced model to efficiently conduct the
structural analyses. Among them, the component mode synthesis (CMS) methods [1-11, 26-44, 61] are widely
used; these methods calculate the reduced model by considering only the dominant modes from partitioned
substructures. In 1960s, Craig and Bampton (CB) [3] established the basic principles of CMS method after the
pioneer work by Hurty [1]. Since then, various CMS methods have been presented such as automated multi-

level substructuring (AMLS), dual CB (DCB), and F-CMS method [4-11].

The most important requirement of the reduced model is to have high reliability for the original FE model.
However, since the eigenvalue analysis of the global FE model is not performed, it is difficult to measure the
reliability of the reduced model. There have been attempts to solve this issue, but the previously proposed error
estimation methods are only at the level of determining the tendency of relative eigenvalue error [12-15]. In this

way, there is a difficulty in using the reduction method for practical use in engineering problems.

Recently, the accurate error estimation methods have been proposed for the representative CMS methods.
Kim et al. proposed a method for accurately estimating the relative eigenvalue error for the CB method by
computing an enhanced transformation matrix [45]. Boo et al. developed a simplified version of CB error
estimation method and applied the same principle of error estimator to the AMLS method [46-47]. Kim et al.
also developed the error estimation method for F-CMS method by approximating the residual flexibility matrix
more precisely [48]. However, it is impossible to estimate the reliability of the reduced model by the DCB
method [9].

The DCB method proposed by Rixen [9] has the same accuracy as the F-CMS method. The difference is
that DCB method uses a classical Lagrange multiplier for interconnecting the neighboring substructures, unlike
the F-CMS method, which uses a localized Lagrange multiplier. We have already proposed an improved DCB
method by effectively considering the second order residual flexibility matrix [44]. The objective of this study is

to adopt the same principle for accurately estimating the relative eigenvalue errors for the DCB method.
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In the derivation procedure, the additional terms necessary for the present error estimation method can be
efficiently computed by reusing the residual flexibility matrices of the DCB method. We propose the simplified
calculation with the component matrices of each substructure. The accurately estimated errors are simply

obtained by summation of the eigenvalue errors calculated for each substructure.

In the following sections, the detailed formulation of the error estimation method for DCB method is

presented. Then, we investigate the performance of the error estimator using various numerical examples.
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4.1 Formulation

In this section, we introduce the formulation to constructing the improved transformation matrix, which

consider the second order residual flexibility. After that, we derive an error estimator for the DCB method.

4.1.1 Improved transformation matrix

From the Improved DCB method [44] in section 3, the substructural displacement can be rewritten as
_ T
u® =0 ¢l -01 (AP - 1) 0% B¥p+ R¥a® @1

_ T
with ©Pg =L (AY — V) 'O B ).

Recalling Eq. (4.5), to construct the improved transformation matrix, we here consider the residual

flexibility up to the second order term as

O (AN - 210 OX ~ FM + AVFM. (42)

o . . . h .
Substituting Eq. (4.2) into Eq. (4.1), the approximated displacement of k™ substructure is newly defined

as
-2 T
u(k) z@ék)qék) —Fl(k)B(k)ll—ﬂ,(k)Fz(k)B(k)}l-i‘R(k)(l(k) with F2(k) — @E’k)Al(’k) @E’k) , 4.3)
in which Fz(k) is the second order residual flexibility matrix of the K™ substructure. Since G)(rk) has

orthogonality for the substructural mass and stiffness matrices (M(k) and K® ), Fz(k) can be easily

calculated by reusing Fl(k) in Eq. (2.23)

F¥ =F“MY“F". 4.4)

. . .ok . .
The improved substructural transformation matrix T® s obtained as
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a

(k)

u ~ ~
{ }Tm g | with T® =T® + 2901, 4.5)
1)

n

in which T;k) is the additional substructural transformation matrix with the second order residual flexibility

matrix

I pGpk)
oo OTERBT 4.6)
0 0/ O

Using the substructural transformation matrices in Eq. (2.24) and Eq. (4.6), the global transformation

matrix with improved approximation is given by

T=T+IT, (4.7)

_ Fl(l)B(l) _ FZ(I)B(I)
: 2 ‘Ilz = s s
_ FZ(NS)B(NS)

! 0 0%
Wlth T: R Gd :Tl , Ta: : 2 s le
0 0 |1 0 0! 0

where R and @, are the block-diagonal rigid body mode and dominant free interface mode matrices that

(N (Ns)
~-F"B

(k)

consist of substructural quantities (R and G)gk) ), respectively. Note that the improved transformation

matrix contains the transformation matrix of the original DCB method and the additional transformation matrix

considering the second order residual flexibility.
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4.1.2 Error estimator for the DCB method

The following relative eigenvalue error is commonly used to measure the reliability of the reduced model
A
& =4 L= 1, 4.8)
A

. ith . . - ith . .
where & is the | relative eigenvalue error, /1, and A, are the I exact and approximated eigenvalue

calculated from the eigenvalue problems in Eq. (2.13) and (2.27), respectively.

From Eq. (2.13), the global eigenvalue problem can be rewritten as

%I(tpg,)?Kg((Pg)i =(9y) M (9,);. (4.9)

~

in which the global eigenvector (@ o ); can be approximated by the improved transformation matrix T

@) =T, = (T+AT,)9,. (4.10)

Substituting Eq. (4.10) into (4.9), to obtain

1 _ o _
;qﬂ [T+ AT,I'K [T+ AT, 19, = ¢/ [T+ AT,]"M [T+ AT, (4.11)

From the transformation in the DCB method, (@), has the orthogonality for the reduced mass and

stiffness matrices

9/ Ko, =1, 9/ Mg, =1, (4.12)

and then, derivation of Eq. (4.11) results the following equation

o]

Since the symmetry of mass and stiffness matrices, the identical terms on the right side is expressed as
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129/ [2AT'M,T, -2T'K T, + yT,M T, - AT, K T,]o,, (4.14)

RN

where the relative eigenvalue error on the left side is approximated by using /TI instead of unknown /11 on

the right side

%—lzm with 7, =@ AT M, T, -2T'K T, + Y T,M_ T, - AT, K T,]¢,, (4.15

in which 77; is the error estimator for the ith approximated eigenvalue in the DCB method [9].

Using Eq. (4.7), each term to calculate the error estimator in Eq. (4.15) can be represented as

00 0
T'™M,T, = (_)__QTE___Q___ . T'K,T, =0, (4.162)
0 0¥ MY,
00 0 0 0/ 0
T,M,T, = (—)——QTE———?——— , T,K,T, = 9__(375___(_)___ : (4.16b)
0 0! YMY, 0 0! YKV,

It is important to note that all terms in Eq. (4.16) have only diagonal component matrices corresponding to

the Lagrange multipliers.

The component matrices in Eq. (4.16) are obtained by the calculation of the substructural quantities as

N

¥'MY, = > BY FYMYFYBY (4.172)
k=1
Ng T

MY, => BY FYMYFYBY (4.17b)
k=1
N, T

Y KY, => BY F“K“F"B". (4.17¢)

k=1

Through the Eq. (4.17), the global matrix multiplications are efficiently replaced by reusing the
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substructural matrices.

Due to orthogonality, multiplications of residual flexibility matrices with M® and K® can be

expressed by using the higher order residual flexibility matrices

NS
¥IMY, = YIKY, = > B FYBY (4.18a)
k=1
N T
YMY¥Y, => BY F“BY. (4.18b)
k=1

o T . T
From the relation in Eq. (4.18a), the term T" M T, isequalto T, K T,, then Eq. (4.15) becomes

g-a’

1 :¢iT[ﬂ_“iTTMgTa +I12T;M9Ta]6i' (4'19)

The approximated eigenvector @ in Eq. (4.19) can be decomposed by the substructural and the Lagrange

multiplier parts

_ Ps}
o =|_ |, (4.20)

Finally, substituting Eqgs. (4.16), (4.18) and (4.20) into Eq. (4.19), the error estimator for the ith

approximated eigenvalue is redefined by a summation of the independently estimated errors in each substructure
NS

m=>.m" with 4.21)
k=1

7 = 7,(9,) B FYBY(g,), + 22(9,) B FYBY(g,), .
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The type of Eq. (4.21) has been attempted to measure the contribution of each substructure to the accuracy

of the model reduction methods and to control the eigenvalue error [45].

In the following sections, the performance of the error estimator is investigated using various numerical

examples.
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4.2 Numerical examples

In this section, we investigate the performance of the error estimator for the DCB method. We considered
four structural problems: a rectangular plate with matching and non-matching meshes, a hyperboloid shell, a

pipe intersection, and a cable-stayed bridge.

For the finite element modeling, the 4-node MITC shell [65-70], 3D solid, and truss elements are used and
free or fixed boundary conditions are imposed differently according to the problem. The frequency cut-off
method is employed to select dominant substructural modes [21-23]. All the computer codes are implemented in
MATLAB and computation is performed in a personal computer (Inter core (TM) 17-4770, 3.40 GHz CPU, 32
GB RAM).

We compare the present error estimator with a previous error estimator proposed by Elssel and Voss [13].

7 = A (4.22)

ﬂ’r_ﬂ_'i

in which /1r is the smallest substructural eigenvalue in the residual parts. This error estimator was

proposed for the CB [3] and Automated multi-level substructuring (AMLS) method [11] as an upper bound of

the relative eigenvalue error, it also could evaluate the eigenvalue errors in the DCB method

0<& <n,. (4.23)

Through numerical examples, we attempted to correct the eigenvalues approximated by the DCB method

[9] using the estimated error

A=

S (4.24)
n;+1

where ﬂi' is the corrected eigenvalue of the present method.



4.2.1 Rectangular plate problem

Let us consider a rectangular plate with free boundary, see Fig. 4.1. Length L is 0.6096 m, width B is
0.3048 m, and thickness N is 3.18x107° m. Young’s modulus E is 72 GPa, Poisson’s ratio v is 0.33,

and density p is 2796 kg/m3 . The whole structure is an assemblage of two substructures (N, =2)

modeled by 4-node MITC shell elements. We consider two numerical cases, with matching and non-matching
meshes between neighboring substructures. For the both cases, the numbers of dominant modes used and the

numbers of DOFs in original and reduced systems are listed in Table 4.1.

We firstly consider the matching mesh case as shown in Fig. 4.1a. Fig. 4.2 presents the exact and estimated
relative eigenvalue errors, respectively. The results show that the present error estimator can estimate the
relative eigenvalue errors very accurately. Using the estimated errors, the corrected eigenvalues are obtained by

Eq. (4.24), Fig. 4.3 presents the more accurately approximated eigenvalues.

For the non-matching mesh case as shown in Fig. 4.1b, the second substructure is modeled by an 8x12

mesh. In this case, the interface compatibility is considered through nodal collocation and thus the matrices

B are no longer Boolean, see Fig. 4.1c. Fig. 4.4 presents the exact and estimated relative eigenvalue errors,
and Fig. 4.5 presents the improved accuracy of the corrected eigenvalues by using the present error estimator.

The results also show that the excellent performance of the present method.
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Figure 4.1 Rectangular plate problem: (a) Matching mesh on the interface (12X 6 mesh), (b) Non-matching

mesh between neighboring substructures, (c) Interface boundary treatment.

Table 4.1 Number of dominant modes used and number of DOFs in original and reduced systems for the

rectangular plate problem.

Cases N N N, N, N,
Matching mesh 20 11 31 455 78
Non-matching mesh 14 8 22 965 99
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Relative eigenvalue error
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Figure 4.2. Exact and estimated relative eigenvalue errors in the rectangular plate problem with matching mesh.
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Figure 4.3. Relative errors for the corrected eigenvalues in the rectangular plate problem with matching mesh.
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Relative eigenvalue error
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Figure 4.4. Exact and estimated relative eigenvalue errors in the rectangular plate problem with non-matching

mesh.
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Figure 4.5. Relative errors for the corrected eigenvalues in the rectangular plate problem with non-matching

mesh.
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4.2.2 Hyperboloid shell problem

We here consider a hyperboloid shell structure with free boundary as shown in Fig. 4.6. Height H is 4.0

m and thickness N is 0.05 m. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density p is

2700 kg/m’. The mid-surface of this shell structure is described by

X*+y>=2+17% ze€[-22]. (4.25)

Three substructures ( NS =3) are assembled to construct the original FE model of the shell structures, in

which 800 shell elements and 903 nodes are used (4200 DOFs). Table 4.2 lists the numbers of dominant modes

used and the numbers of DOFs in the original and reduced systems.

Fig. 4.7 presents the exact and estimated relative eigenvalue errors, respectively. Compare to the previously
proposed method [], the results demonstrate the solution accuracy of the present error estimation method.
Through the Fig. 4.8, the corrected eigenvalues show the effect of further improving the reliability of the

solutions by simple calculation.
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Figure 4.6. Hyperboloid shell problem.

Table 4.2. Number of dominant modes used and number of DOFs in original and reduced systems for the

hyperboloid shell problem.

Methods N N NG N, N, N,

Present 26 14 14 54 4830 387
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Relative eigenvalue error
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Figure 4.7. Exact and estimated relative eigenvalue errors in the hyperboloid shell problem.
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Figure 4.8. Relative errors for the corrected eigenvalues in the hyperboloid shell problem.
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4.2.3 Pipe intersection problem

A pipe intersection structure with clamped boundary at one end is considered as shown in Fig. 4.9, in which

the structural configuration and specification are illustrated. Young’s modulus E is 69 GPa, Poisson’s ratio vV
is 0.35, and density p is 2700 kg/m’. The whole structure is an assemblage of two substructures (N = 2)

modeled by 4-node MITC shell elements. The whole FE model has 948 shell elements and 976 nodes (5736
DOFs).

The number of DOFs in the non-reduced system ( N o ) is 5952, the number of dominant modes retained in

each substructure ( N ék)) are 51 and 38, respectively. Then, the reduced model by the DCB method has 203

DOFs.

Fig. 4.10 presents the exact and estimated relative eigenvalue errors, respectively. Although slightly over-
estimations are made in some low-order modes, the corrected eigenvalues can solve these cases because it has
an accuracy higher than the approximated eigenvalues by the DCB method. The accuracy of the corrected

eigenvalues can be checked by Fig. 4.11.
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Figure 4.9. Pipe intersection problem.
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Figure 4.10. Exact and estimated relative eigenvalue errors in the Pipe intersection problem.
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Figure 4.11. Relative errors for the corrected eigenvalues in the Pipe intersection problem.
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4.2.4 Cable-stayed bridge problem

We finally consider a cable-stayed bridge problem as shown in Fig. 4.12 and 4.13. The unit of length in this
figure is feet (ft). The FE model and its mass and stiffness matrices are obtained by the well-known commercial
FE analysis software, ADINA [70]. The structure is modeled using 504 shell elements for the girder, 50 3D solid
elements for the tower, and 4 3D truss elements for the cable, respectively. The number of nodes is 1666, and
total DOFs is 6878.

Here, we considered the bridge structure in Fig. 4.12 as one sub-structure and connected multiple

substructures to make the long-span bridge structure as in Fig. 4.13. In this problem, we assemble the six
substructures ( N s = 6), Table 4.3 lists the numbers of dominant modes used and the numbers of DOFs in the

original and reduced systems.

Fig. 4.14 presents the exact and estimated relative eigenvalue errors, respectively. The proposed error
estimation method provides consistently accurate results. Fig. 4.15 present the relative errors for the corrected

eigenvalues with improving the solution accuracy.
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Figure 4.12. Cable-stayed bridge problem (1 substructure).
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Figure 4.13. Connection of cable-stayed bridge substructures ( N s = 2).

Table 4.3. Number of dominant modes used and number of DOFs in original and reduced systems for the cable-

stayed bridge problem (N =6).

Ng

(6)
Nd

(5)
Nd

(3) (4)
Nd Nd

(2)
Nd

(1)
Nd

Method

42293 1073

8

Present
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Relative eigenvalue error
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Figure 4.14. Exact and estimated relative eigenvalue errors in the cable-stayed bridge problem ( N s = 6).
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Figure 4.15. Relative errors for the corrected eigenvalues in the cable-stayed bridge problem ( N s = 6).
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Chapter 5. A dynamic condensation method with free-interface based

substructuring

With the development of design and manufacturing in engineering practice, structures have become huge
and complex in shape. The large structures are partitioned with various substructures and individually
constructed. It means that repeated design modifications including re-analyses and experiments are required in
both local and global configurations. By these reasons, constructing FE model of the entire structure is very
difficult because the time required to the design and analyses of the substructures are different. A number of
model reduction methods have spotlighted its necessity to solve these difficulties, especially, in the structural

dynamics community [1-11, 16-20, 26-58, 61-62].

The model reduction methods [1-37] can be classified into DOF based and mode based methods. In the 1960s,
the pioneering works for both methods were proposed by Guyan [16] and Hurty [1], respectively. The mode
based reduction methods (also called component mode synthesis, CMS) have been studied extensively for
practical application [1-11, 26-39] because of the reduction procedure fundamentally including the
substructuring. In contrast, the DOF based reduction methods have a lack of research in spite of their necessities.
These included such as structural health monitoring, FE model updating, experimental modal analysis and

experimental-FE model correlation [49-58].

In the DOF based reduction methods, a reduced model is calculated by classifying the master and slave DOFs in
the FE model, then properly condensing the slave DOFs into the master DOFs. Since the Guyan reduction [16]
uses only static condensation, it is difficult to obtain the required accuracy for dynamic analysis. O’Callahan [17]
developed an IRS method considering inertial effects, and iterative IRS (IIRS) method was developed by Blair
and Friswell et al [19-20]. Through the introduced methods, they focused on improving the accuracy, but it is

difficult to obtain the reduced model within a reasonable computation time for the large-scale FE model.

Since the 1990s, several substructuring algorithms have been applied to the DOF based reduction method.
Bouhaddi and Fillod applied substructuring to the Guyan reduction [49-50]. Cho et al. applied physical domain
based substructuring to the IRS and IIRS methods and employed the penalty frame method for considering non-

matched subdomains [51-54]. The applied substructuring algorithms were based on the primal assembly
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technique, which considers the interface between neighboring substructures as fixed. For primal assembly, the
substructures are coupled through a unique set of physical interface DOFs. There have the simplicity and

robustness, but it requires a fully assembled FE model in advance to obtain a reduced model.

In the dual assembly technique [9-10, 26-27, 44], the all substructures are defined as a free boundary when there
are no physical constraint conditions. The most important feature of the dual assembly technique can ensure the
substructural independence and easily treat the complicated physical boundary conditions and the non-matching
mesh problems of assembling the numerical model [9-10, 44, 52-53]. This is also suitable to use the
experimentally obtained substructural model. Because of these advantages, it is necessary to apply the
substructuring with dual assembly technique to the model reduction methods. Recently, it has been successfully

applied to the CMS methods [9-10, 26-27], and improved by our research group [44].

The motivation of this study is that the free-interface based substructuring can be adapted to the DOF based
reduction. In this study, we focus on improving the efficiency of the IRS method. We introduce the algorithm for
reducing each substructure independently by defining equations of motion and compatibility conditions in dual
assembly form. Finally, the reduced mass and stiffness matrices are obtained by the simple assemblage of
reduced substructural matrices. By using the present method, the local changes of substructure do not cause the
entire update of reduced model. The present method is expected to be a powerful tool for experiments and

structural health monitoring in local scale instead of global scale analyses.

The formulation of the present method is described in Section 5.1. The performance of the present method

through various numerical examples in Section 5.2.
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5.1 Formulation

In this section, we derive the formulation of the proposed method. The dual assembly technique is applied
for substructuring, and each substructure is reduced independently by using its transformation matrix
constructing with the IRS method [17]. Then, the reduced model is simply obtained by an assemblage of

substructural matrices calculated.

The dynamic equilibrium equation of the assembled global FE model [9, 26, 44] in Eq. (2.12) is rewritten

as
M 0|U| [K BJU]| [f
T = ) (5.1
0 O v B 0y 0
M(l) 0 K(l) 0 U(l) f(l) B(l)
with M = , K= , U= : |, f=| ¢ |, B=| : |,
0 M(Ns) 0 K(Ns) U(Ns) f(Ns) B(Ns)

where M and K are block-diagonal mass and stiffness matrices that consist of substructural mass and
stiffness matrices (M(k) and K® ), U s the corresponding displacement vector, and £ is the

external load vector applied to the substructure. To satisfy the force equilibrium in the assembly, B(k)’y is
applied as the interconnecting force between substructures with Boolean matrix B® :{b(k)} and the

Lagrange multiplier vector 7.

Then, the global eigenpairs are obtained from the following eigenvalue problem

K (9, =AM (¢ );, fori=1-- N
K B M 0
with Kg: B o ’Mg: o ol
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in which (4,); and (¢,); are the global eigenvalue and corresponding eigenvector of the i™ global mode,

respectively, and N o is the number of DOFs in the assembled global FE model. This number consists of

NS
interface and substructural DOFs (N = Ny + z N®  where N . is the number of Lagrange multipliers
k=1

and N is the number of DOFs of the k" substructure).

th
In Eq. (5.1), the dynamic equilibrium equation corresponding to the k substructure can be extracted as

M(k) 0 U(k) K(k) B(k) U(k) ~ f(k)

+ , k=1,---,N;. 53
0o o ¥ | [BY o]y G

The eigenvalue problem of k™ substructure is given by

K(k) B(k) u(k) A M(k) 0 u(k)

s 54
BY 0 | p 0 0| p G

)

in which u® and p are the eigenvectors corresponding to the substructural displacement vector U™ and

the Lagrange multiplier vector 7y , respectively. A% s the eigenvalue of the k™ substructure.

.. k .
The substructural quantities (M® , K®| B%  and ul )) are decomposed into master and slave parts

as follows
(k) (k) (k) (k) (k) (k)
(k) _ Mss Msm k) _ Kss I(sm (k) _ Bs (k) _ us
M = (3] w0 |’ K" = () K |’ B = oW (-3)
Mms Mmm Kms Kmm Bm um

where the master DOFs are selected by using the ratio of the diagonal terms of mass and stiffness matrices [24-

25].
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Substituting Eq. (5.5) into Eq. (5.4), the eigenvalue problem of k™ substructure can be rewritten as

(k) (k) (k) (k) (k) (k) (k)

KSS Ksm BS uS MSS Msm 0 l'lS
k k k k k k k k

K KO BYa® |[=2ME MY 0ful|. (5.6)
T T

BY BY 0 | p 0 0 0| p

From the first row equation in Eq. (5.6), uik) is represented by

ug? = (K = 2OME) K - Mg + B ], 61

Eq. (5.7) can be expanded by Neumann series [8, 10, 27, 40-48] and neglecting higher order terms of /1('(),

uik) is approximated as
ul 2l =[t + 290 Tl + (tY + 2190 ), (5.8)
with
£ =—(KS)'KG. 00 = (K&)' (M) + M), (592)
' =—(K)'BY, 0 =(K{) "Mt} (5.9b)

Then, using ﬁgk) instead of u(sk) , the eigenvector of k™ substructure in Eq. (5.6) is approximated as

] e k
u® | 0

ul |2 ul =T " [+ AT ™ | with (5.10a)
n n

B 1
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0t 0Y o
TO=[1% o |.T= 0 0 |, (5.10D)
0 I 0 0

)
where Ték) is the Guyan transformation matrix reflecting the dual substructuring, T;k) is the additional
transformation matrix containing the inertial effects of the slave DOFs of the k™ substructure. Iﬁrf) and 1 u

are the identity matrices corresponding to the master DOFs of the k™ substructure and Lagrange multiplier,

respectively.

By considering only the transformation matrix Ték) in Eq. (5.10b), the eigenvalue problem corresponding

tothe k™ substructure in Eq. (5.6) is reduced as follows

() ()

K U = 2MF tm (5.11a)
n n
- M® 0 o K% B®
WithMék)zTo(k)T{ N AR s Sl O L (5.11b)

inwhich A% is the approximated eigenvalue of the k™ substructure.

Multiplying (Mék) )™' on the both sides of Eq. (5.11a), the following relation is obtained

— u u — —
i(k) mo|_ H(k) m with H® = (M(()k))’lK(()k) . (5.12)

Substituting Eq. (5.12) into Eq. (5.10a), the approximated eigenvector of k™ substructure is newly

defined as
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0 o
ul® :Tl‘k)[ m } with T® =T + TOH®

n
1)

(5.13)

where Tl(k) is the transformation matrix of the proposed method. Here, HY is decomposed into the master

and Lagrange multiplier parts as follows

H(k) Hg\% H%
- H(k) H(k)
mu up

From Eq. (5.10b), (5.13) and (5.14), Tl(k) can be expressed as

(k) (k) 2(k) 2(k)
1 I 1% ’ 0

m

B

in which the component matrices t(sk) and fﬁlk) are calculated as

LK) _ (k) (33 () Oy F0 _ k) gy k) 05" (W)
t, =t +0, Hmm+®ﬂ H tﬂ _t# +0O, Hmy+®# HW.

Hm 2

The reduced substructural system matrices are calculated as

M© 0

(k) (k)
— 1| K B
0 Tl(k) , Kik) — Tl(k) T(k)

MK _ o’

and considering the master DOFs and Lagrange multipliers, Ml(k) and Kik) are decomposed as

VIOV (9] K&  Fek

M(k) _ Mmm Mmy K(k) _ I<mm Km,u
[ M(k) M(k) > o K(k) K(k)
Hm Hp Hm My

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

Then, after obtaining Eq. (5.18) for all substructures, the reduced mass and stiffness matrices for the global

FE model considered is simply assembled as follows
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(5.19a)

(5.19b)

NS
note that N, is the number of DOFs in the reduced FE model: N, =N P Z ank) , where Nr(nk) is the

number of master DOFs of the k" substructure.

The reduced eigenvalue problem of the present method is given by

E(ﬁ). = Zﬁ($)| s i :1’2’..., N]n

(5.20)

T — . ith . . .
where A, and ((|))i are the approximated | eigenvalues and corresponding eigenvectors in the present

method.

The approximated global eigenvector (@ ); can be calculated by

inwhich T isassembled by using the already calculated transformation matrices Tl(k) in Eq. (5.15).

($g)i = T($)I with T =

(5.21)

In the present method, it is possible to independently perform the process for each substructure from

construction to reduction. Since we do not have to deal with the global FE model, we can efficiently reduce the

large structural FE model that cannot be handled by the original IRS method [17]. The flow chart of the present



reduction method is shown in the Fig. 5.1. In the following sections, the accuracy and computational cost is

investigated using various examples.
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Figure 5.1. Flow chart for the FE model reduction




5.2 Numerical examples

In this section, we investigate the performance of the present method compared to the original IRS method
[17]. We considered seven structural problems: a rectangular plate with matching and non-matching meshes, a
plate with a hole, a hyperboloid shell, a bended pipe with matching and non-matching meshes, a wind turbine

rotor, a NACA 2415 wing with ailerons, and a cable-stayed bridge.

For the finite element modeling, the 4-node MITC shell [65-70], 3D solid, and truss elements are used and
free or fixed boundary conditions are imposed differently according to the problem. All the computer codes are
implemented in MATLAB and computation is performed in a personal computer (Inter core (TM) 17-4770, 3.40
GHz CPU, 32 GB RAM).

The relative eigenvalue error is adopted to measure the accuracy of the reduced models
Gi=—— (5:22)

. . . +th . . . +th .
in which f, is the I relative eigenvalue error, /11 is the I exact eigenvalue calculated from the global

eigenvalue problem in Eq. (5.2); and ﬂ_,l is the ith approximated eigenvalue calculated from the reduced

eigenvalue problem. Note that the rigid body modes are not considered in measuring the accuracy.

The accuracy of approximated eigenvector of the present method is measured by the modal assurance

criterion (MAC) [59-60] as

[(0g)i (@y); I
(@) (@)@} (®,);)

MACG, j) = for i,j=1,2,---,N (5.23)

g’

in which ((pg) and (69) are the global and approximated eigenvector calculated by Eq. (5.2) and

(5.21), respectively. The resulting scalars are assembled into the MAC matrix. The MAC indicate the
consistency between eigenvectors by its value from zero to unity. If the MAC has a value near unity, the
eigenvectors are considered consistent. Note that the rigid body modes are not considered in measuring the
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consistency of eigenvectors.

5.2.1 Rectangular plate problem

Let us consider a rectangular plate with free boundary. Length L is 0.6096 m, width B is 0.3048 m,

and thickness N is 3.18x10™ m. Young’s modulus E is 72 GPa, Poisson’s ratio V is 0.33, and density

p 152796 kg/m3 . The whole structure is an assemblage of two substructures ( N s = 2 ) modeled by 4-node

MITC shell elements [65-70]. We consider two numerical cases, with matching and non-matching meshes

between neighboring substructures.

For the matching mesh case, the first substructure is modeled using an 8 X 6 mesh and the second

substructure is modeled using a 4X6 mesh, as shown in Fig. 5.2. Here, we consider original IRS method and
the present method with same master DOFs selected. The selected nodes are illustrated as in Fig. 5.2a and b. At
each selected nodes, all DOFs are considered as master DOFs. The number of master DOFs used and the

number of DOFs in original and reduced are listed in Table 5.1.

Fig. 5.3 presents the eigenvalues obtained by the non-reduced exact FE model, the original Guyan and IRS
methods and the present method. Fig. 5.4 presents the relative eigenvalue errors obtained by the original Guyan,
IRS and present methods. The present method has similar accuracy to the original IRS. The original IRS method
can reduce the structural FE model more stably because it does not require the assumption of substructuring and
interface boundary. However, it is difficult to utilize the original IRS method when the structural FE model has
large DOFs or non-matching mesh. In the following numerical examples will show that the present method can

solve these drawbacks.

For the non-matching mesh case, see Fig. 5.5a, the first substructure is modeled by an 8 X 6 mesh and
the second substructure is modeled by an 812 mesh. The interface compatibility is considered through nodal

collocation and thus the matrices B") are no longer Boolean. The selected nodes are illustrated as in Fig. 5.5b.

At each selected nodes, all DOFs are considered as master DOFs.
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Fig. 5.6 the relative eigenvalue errors obtained by the present methods. The original IRS method cannot be
directly applied to these non-matching mesh problems. Compared to the accuracy of the matching mesh case,

the results also show that the present method provides accurate solutions for this non-matching mesh case.

(a) /— Masternode

¢ » » » » ]
Y

Y | »|

< >

VITTTT |
Q, /xx\Qz

) )
n

Figure 5.2. Rectangular plate problem with matching mesh: (2) Selected nodes in the original IRS method, (b)

Selected nodes in the present method.
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Table 5.1. Number of master DOFs used and number of DOFs in original and reduced systems for the

rectangular plate problem (12X 6 mesh).

Methods N N N, N, N, N,
Original Guyan - - 90 - 455 90
Original IRS - - 90 - 455 90
Present 60 30 90 35 525 125
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Figure 5.3. Exact and approximated eigenvalues in the rectangular plate problem with matching mesh.

103



Relative eigenvalue error
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Figure 5.4. Relative eigenvalue errors in the rectangular plate problem with matching mesh.
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Figure 5.5. Rectangular plate problem with non-matching mesh: (a) Non-matching mesh between neighboring

substructures, (b) Selected nodes in the present method.
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Figure 5.6. Relative eigenvalue errors in the rectangular plate problem with non-matching mesh.
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5.2.2 Plate structure with a hole

Let us consider a rectangular plate with a hole, see Fig. 5.7. No boundary condition is imposed. The length

L is 20 m, width B is 10 m, and thickness h is 025 m. Young’s modulus E is 210 GPa, Poisson’s ratio
v is 0.3, and density p is 7850 kg/m3 . The whole model is an assemblage of four substructural FE models

(NS =4). The whole model is discretized by 208 shell elements (1360 DOFs). The substructures are

symmetrically positioned about the hole in center.

We consider two numerical cases with different master DOFs selected. The master DOFs are selected as
shown in Fig. 5.7a and b. The numbers of master DOFs used and the numbers of DOFs in the original and
reduced systems are presented in Table 5.2. Fig. 5.8 presents the relative eigenvalue errors obtained using the
present methods. The results show that it is possible to accurately predict the low-order mode even if only the
interface DOF's of each sub-structure are selected and it is obvious that the accuracy to the higher modes can be

improved when the internal DOFS are further selected.

Fig. 5.9 presents the MAC for reduced system by the present method. In both cases, the diagonal
component of the MAC in low frequency range has a value close to unity. Therefore, it is observed that

consistency is satisfied corresponding to the eigenvectors of the non-reduced global FE model.
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Figure 5.7. Selected nodes in the plate structure with a hole: (a) only interface nodes selected, (b) interface

nodes and 8 interior nodes selected in each substructure.

Table 5.2. Number of master DOFs used and number of DOFs in original and reduced systems for the plate

structure with a hole.

Methods NOON®  ON®  N® N, N, N, N,
Present

65 65 65 65 260 130 1490 390
(Case 1)
Present

105 105 105 105 420 130 1490 550
(Case 2)
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Figure 5.8. Relative eigenvalue errors in the plate structure with a hole.
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5.2.3 Hyperboloid shell problem

We here consider a hyperboloid shell structure with free boundary as shown in Fig. 5.9. Height H is 4.0

m and thickness N is 0.05 m. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density p is

2700 kg/m’. The mid-surface of this shell structure is described by

X*+y>=2+17% ze€[-22]. (5.18)

Three substructures ( NS =3) are assembled to construct the original FE model of the shell structures, in

which 800 shell elements and 903 nodes are used (4200 DOFs). The selected master DOFs contain all interface
DOFs and 2% of interior DOFs for each sub-structure. The master DOFs are selected by using the ratio of the
diagonal terms of mass and stiffness matrices [24-25]. The numbers of master DOFs used and the numbers of

DOFs in the original and reduced systems are presented in Table 5.3.

Fig. 5.11 presents the relative eigenvalue errors obtained using the present methods. The first 25
eigenvalues calculated by the non-reduced exact FE model and present method are listed in Table 5.4, in which
mode numbers are sorted by the magnitude of eigenvalues. The results consistently show the accuracy of the

present method.
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H/2

Figure 5.10. Hyperboloid shell problem.

Table 5.3. Number of master DOFs used and number of DOFs in original and reduced systems for the

Hyperboloid shell problem.

Methods NO ON® NS N, N, NN,
Present 250 225 225 700 315 4830 1015
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Figure 5.11. Relative eigenvalue errors in the hyperboloid shell problem.
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Table 5.4. Eigenvalues calculated for the hyperboloid shell problem.

No. Exact Present method
1 5.3715E+03 5.3715E+03
2 5.3715E+03 5.3715E+03
3 1.8569E+04 1.8569E+04
4 1.8569E+04 1.8569E+04
5 4.7642E+04 4.7643E+04
6 4.7642E+04 4.7643E+04
7 7.1066E+04 7.1064E+04
8 7.1066E+04 7.1072E+04
9 1.3395E+05 1.3394E+05
10 1.3395E+05 1.3394E+05
11 2.2742E+05 2.2710E+05
12 2.2742E+05 2.2744E+05
13 2.9949E+05 2.9944E+05
14 2.9949E+05 2.9970E+05
15 3.1100E+05 3.1083E+05
16 3.1100E+05 3.1094E+05
17 4.4692E+05 4.4608E+05
18 4.4692E+05 4.4699E+05
19 4.7120E+05 4.7122E+05
20 4.7120E+05 4.7122E+05
21 4.9582E+05 4.9521E+05
27 4.9582E+05 4.9616E+05
23 5.2752E+05 5.2739E+05
24 5.2752E+05 5.2759E+05
25 5.3151E+05 5.3120E+05
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5.2.4 Bended pipe problem

A bended pipe structure with clamped boundary at one end is considered as shown in Fig. 5.12, in which
the structural configuration and specification are illustrated. Young’s modulus E is 69 GPa, Poisson’s ratio

v is 0.35, and density p is 2700 kg/m3 . The FE model of the pipe structure is an assemblage of three

substructural FE models (NS =3). We consider the structural FE model with matching and non-matching

meshes between neighboring substructures. In the IRS and present method, the master DOFs are selected by
using the ratio of the diagonal terms of mass and stiffness matrices [24-25]. The detailed numbers of DOFs in

original and reduced are listed in Table 5.5.

For the matching mesh, the whole FE model has 5640 shell elements. To investigate the accuracy and
computational efficiency of the present method compared to the original IRS method, the following numerical

cases are considered:

® The original Guyan and IRS method are used with the reduced model size of Nl =2340

( Nm =2340), see Fig. 5.12a.

® The present method is used with the reduced model size of N, =2340 (N  =1940), sce Fig.

5.12b.

Fig. 5.13 presents the relative eigenvalue errors obtained by the original Guyan, IRS and present methods.

When reduced models of the same size ( Nl = 2340) are considered, the present method has similar accuracy

to the original IRS method and has significantly improved accuracy compared to the original Guyan method.

Fig. 5.14 presents the MAC for reduced system by the present method. In this case, the approximated

eigenvectors have accurate consistency when compared to the eigenvectors of the non-reduced FE model.

Next, the computational costs of the original IRS and present methods are compared. Table 5.6 shows the

detailed computational costs. For reduced models of the same size, the computation time required for the present
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method is only 37.15%, compared to the original IRS method. The computational cost is reduced a lot using the
present method. The numerical results demonstrate the solution accuracy and computational efficiency of the

present method.

Let us consider the non-matching mesh case, see Fig. 5.12c. The substructural FE models have 1800, 460,

500 shell elements, respectively. Non-matching mesh is located at the interface between neighboring
substructures, €, and €2,. The present method is used with the reduced model size of N, =1215

(N_ =915).

Fig. 5.15 presents the relative eigenvalue errors obtained by the present methods. The graph in the figure
consistently shows the accuracy of the present method for this non-matching mesh case. Fig. 5.16 presents the
MAC for reduced system by the present method. In this non-matching mesh case, the approximated
eigenvectors also maintain the excellent consistency when compared to the eigenvectors of the non-reduced FE

model.
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Figure 5.12. Bended pipe problem: (a) Global FE model without substructuring, (b) Matching mesh on the

interface, (c) Non-matching mesh between neighboring substructures.

117



Table 5.5. Number of master DOFs used and number of DOFs in original and reduced systems for the bended

pipe problem.
Cases Methods N N&  NO N, N, N, N,
Matching mesh Guyan - - - 2340 - 28200 2340
IRS - - - 2340 - 28200 2340
Present 560 775 605 1940 400 29000 2340
Non-matching mesh Present 470 270 175 915 300 14300 1215
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Figure 5.13. Relative eigenvalue errors in the bended pipe problem with matching mesh.
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Figure 5.14. MAC for reduced system by the present method in the bended pipe problem with matching mesh.
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Table 5.6. Computational costs for the bended pipe problem.

Computation times

Methods Items
[sec] Ratio [%]
Original IRS Load system matrices (M, K ) 0.09 0.01
( Nl =2340) Matrix permutation (master & slave DOFs) 0.12 0.02
Guyan reduction (T, M,, K,) 576.98 80.69
IRS reduction (H,, T, M,, K)) 137.90 19.28
Total 715.09 100.00
Present Load substructural system matrices (M, K", B") 0.22 0.03
(N, =2340, . .
Substructural Matrix permutation (master & slave DOFs) 0.07 0.01
Substructural Guyan reduction (To(i) s Méi) s Ef)i) ) 105.48 14.75
Substructural IRS reduction ( H(()i) R 'Iim R 1\_/[1<i>, K%i) ) 159.76 22.34
Assemble substructural IRS reduced matrices 0.12 0.02
Total 265.65 37.15
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Figure 5.15. Relative eigenvalue errors in the bended pipe problem with non-matching mesh.
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Figure 5.16. MAC for reduced system by the present method in the bended pipe problem with non-matching

mesh.
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5.2.5 Wind turbine rotor problem

We consider a 600 kW wind turbine rotor structure as shown in Fig. 5.17. The rotor diameter is 39.76m,
Young’s modulus E is 58 GPa, Poisson’s ratio V is 0.43, and density p is 1700 kg/m3. The all

substructures are modeled by the well-known commercial FE analysis software, ADINA [70].

The FE model of the structure is an assemblage of four substructural FE models ( NS =4): three turbine

blades and a rotor hub. The turbine blade FE model has 5082 shell elements and 5101 nodes. Due to its shell-
shell intersection on the blade edge, all the nodes were modeled by 6 DOFs. The FE model of rotor hub has 508
shell elements and 560 nodes, all the nodes were modeled by 5 DOFs. The master DOFs are selected by using
the ratio of the diagonal terms of mass and stiffness matrices [24-25]. Table 5.7 lists the numbers of master
DOFs used and the numbers of DOFs in the original and reduced systems. In order to link the finite element
model of the rotor hub and turbine blades, the Lagrange multiplier is considered for translational DOFs. For
structures with repetitive patterns as in this numerical example, the present method is more efficient because it

does not need to build a complete finite element model.

Fig. 5.18 presents the relative eigenvalue errors obtained by the present methods, and Table 5.8 shows the
detailed computational costs. Fig. 5.19 presents the MAC for reduced system by the present method. The pairs
of eigenvectors from the reduced model and non-reduced model in each mode are showed the acceptable
consistency. Because the structure with repetitive patterns by the same turbine blade FE model, it has pair
vibration modes with the similar eigenvalue. These results can be investigated by off-diagonal MAC values and

the corresponding approximated eigenvalues.

Here, implementing a global FE model with many DOFs to perform the analysis requires immeasurable
computational costs and time. The original IRS method is hardly acceptable to reduce this FE model because it
needs to construct global transformation matrix and perform computation with fully-populated matrices. As
mentioned previously, the present method can reduce the structure of each substructure independently and then

obtain a reduced model by simply assembling the substructural matrices.
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Figure 5.17. Wind turbine rotor problem.
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Table 5.7. Number of master DOFs used and number of DOFs in original and reduced systems for the wind

turbine rotor problem.

Method N r(nl) Nrf) NS) Nr(n4) N, N, N . N1
Present 505 498 498 498 1999 288 94906 2287
100 T T T T T
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Figure 5.18. Relative eigenvalue errors in the wind turbine rotor problem.
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Figure 5.19. MAC for reduced system by the present method in the wind turbine rotor problem.
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Table 5.8. Computational costs for the wind turbine rotor problem.

Computation times
Method Items

[sec] Ratio [%]
Present Load system matrices (M(i) , KV, BY) 0.55 0.06
Matrix permutation (master & slave DOFs) 0.13 0.02
Substructural Guyan reduction 282.94 33.58
Substructural IRS reduction 558.85 66.33
Assemble substructural IRS reduced matrices 0.10 0.01
Total 842.57 100.00
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5.2.6 NACA 2415 wing with ailerons problem

A NACA 2415 wing structure with clamped boundary at one end is considered again for the present
method. The structural configuration and specification are illustrated in Fig. 5.20. The two ailerons are
connected by a frictionless hinge to the first substructure. Due to the ailerons, the two rigid body modes are
calculated in the eigenvalue analysis of both global and reduced eigenvalue problems. The modeling of hinge is

simply implemented by the Lagrange multipliers.

The length L is 0.9144 m, width W is 0.2286 m, and thickness H s 0.0345 m. Young’s modulus
E is 71 GPa, Poisson’s ratio Vv is 0.33, and density p is 3000 kg/m3. The whole model is an assemblage

of four substructural FE models ( NS =3). The each substructure is discretized by 3873, 112 and 144 shell

elements, respectively (19250, 725 and 925 DOFs).

Table 5.9 lists the numbers of dominant modes used and the numbers of DOFs in the original and reduced
systems. Fig. 5.21 presents the relative eigenvalue errors obtained using the present method. Fig. 5.22 presents
the MAC for reduced system by the present method. The results show that the robustness of eigenpairs
approximated by the present method.
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Figure 5.20. NACA 2415 wing with ailerons problem.
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Table 5.9. Number of master DOFs used and number of DOFs in original and reduced systems for the NACA

2415 wing with ailerons problem.

Method N r(nl) Nr(nz) N[f) \ N, N . N1
Present 1675 195 245 2115 198 21098 2313
100 T T T T
1071 7
107 | 7

[N
e
w
T

Relative eigenvalue error
(=Y
(@]
A
T

| —— Present method

5 10 15 20 25
Mode number

Figure 5.21. Relative eigenvalue errors in the NACA 2415 wing with ailerons problem.
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Figure 5.22. MAC for reduced system by the present method in the NACA 2415 wing with ailerons problem.
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5.2.7 Cable-stayed bridge problem

We finally consider a cable-stayed bridge problem as shown in Fig. 5.23 and 5.24. The unit of length in this
figure is feet (ft). The FE model and its mass and stiffness matrices are obtained by the well-known commercial
FE analysis software, ADINA [70]. The structure is modeled using 504 shell elements for the girder, 50 3D solid
elements for the tower, and 4 3D truss elements for the cable, respectively. The number of nodes is 1666, and

total DOFs is 6878.

Here, we considered the bridge structure in Fig. 5.23 as one sub-structure and connected multiple

substructures to make the long-span bridge structure as in Fig. 5.24. In this problem, we assemble the six

substructures ( N s = 6), and the number of DOFs in the original assembled FE model ( N o ) is 42293.

In this problem, we consider the two numerical cases of master DOFs selection:

®  The only interface DOFs are selected as the master DOFs (N, =3075).

® The selected master DOFs contain all interface DOFs and 1% of interior DOFs for each sub-structure

(N1 =3555). The interior DOFs are selected by using the ratio of the diagonal terms of

substructural mass and stiffness matrices [24-25].

Table 5.10 lists the numbers of dominant modes used and the numbers of DOFs in the original and reduced
systems. Fig. 5.25 presents the relative eigenvalue errors obtained using the present method. Fig. 5.26 presents
the MAC for reduced system compared to the non-reduced global FE model. Through the numerical results,
both the eigenvalues and the corresponding eigenvectors are shown to be precisely approximated using the

present method.

133



10

10

N 7 N

10

10

96

.

4

177.5

177.5

177.5

177.5

Figure 5.23. Cable-stayed bridge problem (1 substructure).
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Figure 5.24. Connection of cable-stayed bridge substructures ( N s = 2).

Table 5.10. Number of master DOFs used and number of DOFs in original and reduced systems for the cable-

stayed bridge problem (N =6).

Nm

(6)

Nm

(5)

Nm

(4)

Nm

(3)

Nm

(2)

Nm

O

Nm

Method

410 410 410 410 205 2050 1025 42293 3075

205

Present (case 1)

490 490 490 490 285 2530 1025 42293 3555

285

Present (case 2)
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Figure 5.25. Relative eigenvalue errors in the cable-stayed bridge problem (N, =6).
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Figure 5.26. MAC for reduced system by the present method in the cable-stayed bridge problem ( N s = 6): (a)

case 1, (b) case 2.
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Chapter 6. Conclusions

This dissertation focused on developing the new model reduction methods with free-interface
substructuring. The developed model reduction methods have the following advantages: (1) Ensure the
substructural independence. (2) We do not need to repeat the reduction procedure for each assembly stage. (4)
The free-interface condition can easily consider the experimentally measured dynamic behavior of the
substructure. (5) It can be easily applied to the non-matching mesh condition or various interface boundary
conditions. In this dissertation, the new CMS method by improving the accuracy of dual Craig-Bampton (DCB)
method, the error estimation method for the DCB method, and the dynamic condensation method with fully

decoupled substructuring were proposed.

First, we proposed a new CMS method by improving the DCB method. The formulation was derived by
considering the second order effect of residual substructural modes. The transformation matrix of the original
DCB method was enhanced by using the additional dynamic terms, and the resulting additional interface
coordinates in the reduced system was eliminated by applying the concept of SEREP. An important feature of
the improved DCB method lies in the fact that the accuracy of reduced models is remarkably improved and
negative eigenvalues are avoided in lower modes. Through various numerical examples, we demonstrated

accuracy and computational efficiency of the improved DCB method compared to the original DCB method.

Second, we proposed an error estimation method to accurately estimate the relative eigenvalue errors of
reduced model by the DCB method. To develop the accurate error estimator for the DCB method, the second
order effect of residual substructural modes was considered as the second order term of residual flexibility
matrix for each substructure. Through various numerical examples, we demonstrated the performance of the
proposed error estimation method. By using accurately estimated error, we showed that the approximated

eigenvalues by the DCB method could be corrected with lower bound of errors.

Finally, we proposed a dynamic condensation method by using the free-interface substructuring algorithm.
We implement the formulation of the IRS method to the FE model of substructure. In the present method, it is
possible to independently perform the procedure from construction to reduction of each substructure. Since we
considered the substructuring, we could efficiently reduce the large structural FE model that cannot be handled

by the original IRS method. An important feature of the present method is that it can construct a reduced model
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with considerable efficiency with maintaining the similar accuracy of original IRS method, and can be applied
to non-matching mesh conditions and complex substructure boundary conditions. Through various numerical
examples, we demonstrated accuracy and computational efficiency of the present method compared to the

original IRS method.

In future work, for the proposed model reduction methods in Chapter 3 and 5, it would be valuable to
develop an optimized parallel computation algorithm using multi-processes for the present method to deal with
FE models with a large number of substructures and DOFs. Using the substructural independence, a hybrid
model reduction method can be developed that uses both proposed methods (CMS and DOF based reduction)
selectively for each substructure, and it is expected that the drawbacks of the two methods can be complemented.
We expect that the new method is an attractive solution for constructing accurate reduced models for
experimental-FE model correlation, FE model updating, and optimizations. Especially, the Lagrange multiplier
based finite element modeling is applied for the analyses of multi-physics and multi-material structures.
Therefore, the developed method is expected to be a breakthrough not only for conventional model reduction

but also for the efficient analysis of complex physical phenomena.

For the error estimation method in Chapter 4, accurate error estimation is expected to be able to satisfy the
solution accuracy effectively in application studies using the reduced model with the DCB method. In future
work, it would be also valuable to develop an error estimator for the eigenvectors. If eigenvalues and
eigenvectors can be estimated and further corrected, it is expected to be applied to the development of novel

mode selection method for various CMS methods.
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