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초 록 

현대에 이르러 구조물에 대한 동적 응답 해석은 대형화, 복잡한 구조 설계 및 시공 조건 

등으로 인해 어려움을 갖게 되었다. 유한요소 모델 구축 시 자유도가 매우 증가하기 때문에 

구조해석을 위해서는 상당한 전산 시간이 소요된다. 이러한 이유로 모델 축소기법(model reduction 

method)에 대한 연구 필요성이 증가하고 있다. 모델 축소기법은 1960년대에 연구가 시작된 이후로 

축소 절차의 전산 효율성, 축소모델의 정확도 개선, 주요 모드 또는 주 자유도의 선정, 부구조 간 

경계조건의 처리 등 다양한 문제에 대하여 연구가 활발히 진행되고 있다. 본 연구에서는 이와 

같은 주요 이슈를 해결하기 위하여 자유단 경계 기반의 부구조법을 적용한 새로운 축소기법을 

개발하였다. 먼저, dual Craig-Bampton (DCB) 기법의 정확도를 향상시킨 새로운 부분구조합성법을 

제안하였다. 또한 DCB 기법으로 얻은 축소 모델이 갖는 고유치의 신뢰도를 파악할 수 있는 

정확한 오차 추정 기법을 제안하였다. 마지막으로 부구조 독립성을 갖는 자유도 기반 축소 

기법을 개발하였다. 특히 개발된 기법은 실제의 설계 및 제작 절차에 맞게 조립을 통해 전체 

구조물의 유한요소 모델을 얻는 시스템에서 효과적으로 활용될 수 있을 것으로 기대한다. 다양한 

수치예제들을 통하여 개발된 기법의 성능을 검증하였다. 

 

Abstract 

In response to the large and complex finite element models in practical engineering, the needs for studies on 

model reduction methods have been highlighted. Since 1960s, the model reduction methods have been actively 

studied for various problems such as computational efficiency of the reduction process, improvement of the 

accuracy of the reduction model. In this dissertation, the effective model reduction methods are proposed. The 

developed methods divide the entire finite element model into several substructures and consider the free-

interface between neighboring substructures. In particular, the new component mode synthesis (CMS) method is 

provided by improving the accuracy of dual Craig-Bampton (DCB) method. The error estimation method for the 

DCB method is also proposed. For the degree of freedom based reduction method, the new dynamic 

condensation method with fully decoupled substructuring is proposed. Through the various numerical problems, 

the solution accuracy and computational efficiency of the present methods are demonstrated. 

 

Keywords Finite element method, structural dynamics, model reduction method, component mode synthesis 

(CMS), Craig-Bampton (CB) method, dual Craig-Bampton (DCB) method, Guyan method, improved reduced 

system (IRS) method, system equivalent reduction expansion process (SEREP) method, interface reduction, 

eigenvalue problem 
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Chapter 1.  Introduction 

 

1.1 Research Background 

 

Model reduction methods have been widely used to reduce the degrees of freedom (DOFs) of a large finite 

element (FE) model. For a long time, significant efforts have been made to develop more effective reduction 

method to obtain accurate reduced models with computational efficiency. When a complicated structure 

consisting with various substructures is designed through the cooperation of different engineers, it is very 

expensive to deal with its FE models. This is because the whole and substructural models require frequent 

design modifications and repeated analysis. In response to the large and complex structure, the model reduction 

methods are used for various research fields such as eigenvalue analysis, multi-body dynamics, multi-physics, 

structural health monitoring, experimental-FE model correlation, and FE model updating. 

 

Model reduction methods can be classified as the model based and DOF based reduction. The mode based 

reduction methods are called component mode syntheses (CMS) [1-11, 26-44, 61] in the field of structural 

dynamics. The substructuring algorithm is applied to construct a reduced model considering only the dominant 

modes for each substructure. As a representative method, the Craig-Bampton (CB) method [3] was developed in 

the 1960s, which used the fixed-interface condition between neighboring substructures. In the early 2000s, 

Rixen [9] and Park et al. [10] developed the free-interface based CMS method: the dual Craig-Bampton (DCB) 

method and flexibility-based CMS (FCMS), respectively. Through the free-interface based formulation, each 

substructure can be reduced independently before assemblage and has a better accuracy than the CB method.  

 

In the DOF based reduction methods [16-20, 42, 49-58], the global FE model is divided into master DOFs 

and slave DOFs, and then condense the stiffness and inertial effects of slave DOFs to the master DOFs. As a 

representative methods, the Guyan reduction method [16] using the static condensation and the improved 

reduced system (IRS) method [17] considering the inertial effects additionally. Unlike the CMS methods, the 

DOF based reduction methods have been developed without applying the substructuring algorithm. Recently, it 

has been attempted to improve the efficiency of the DOF based reduction methods [49-58]. 

 

Since the beginning of the studies in the 1960s, the model reduction methods have been studied for various 
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issues, such as the computation efficiency of reduction procedures, improvement of accuracy, selection of 

dominant modes or master DOFs, and treatment of interface between neighboring substructures [26-44, 49-58]. 

In this dissertation, there are focused on developing a new type of CMS method and a DOF based reduction 

method, both considering free-interface based substructuring algorithm. Especially, the effective model 

reduction methods are proposed which suitable for the structure obtained from the assemblage of independently 

constructed substructures. 

 

 

1.2 Research purpose 

 

The first objective of this dissertation is to improve the well-known dual Craig-Bampton (DCB) method [9]. 

The original transformation matrix of the DCB method is improved by considering the higher-order effect of 

residual substructural modes through residual flexibility. Using the new transformation matrix, original finite 

element models can be more accurately approximated in the reduced models. Herein, additional generalized 

coordinates are newly defined for considering the second order residual flexibility. Additional coordinates 

related to the interface boundary can be eliminated by applying the concept of SEREP (the system equivalent 

reduction expansion process) [18]. The formulation of the improved DCB method [44] is presented in detail, 

and its accuracy is investigated through numerical examples. 

 

The second objective of this dissertation is to provide an error estimation method to accurately estimate the 

relative eigenvalue errors of reduced model by the DCB method [9]. By using the improved transformation 

matrix in the improved DCB method [44], the accurate error estimator for the DCB method is successfully 

developed. In the formulation, the computation of error estimator is simplified by using the component matrices 

of each substructure, instead of using the transformation matrix. Accurate error estimation is expected to be able 

to satisfy the solution accuracy effectively in application studies using the reduced model with the DCB method. 

The detailed formulation of the present error estimation method is presented, and its performance is 

demonstrated through numerical examples. 

 

The third objective of this dissertation is to propose a novel DOFs based reduction method with fully 

decoupled substructures by employing the dual assembly technique. The IRS method [17] is adopted to reduce 
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substructures, which are independently defined. The reduced mass and stiffness matrices of substructures are 

assembled by using a Lagrange multiplier vector, leading to the final reduced system. Using the proposed 

method, each substructural finite element (FE) model can be efficiently reduced without coupling of 

neighboring substructures and thus the method can be simply applied to substructures connected through non-

matching meshes. The formulation of the proposed method is presented in detail, and its accuracy and 

computational efficiency are investigated through solving several practical engineering problems. 

 

Hence, the research for this dissertation has been divided into three major parts: 

I. Improving the accuracy of the dual Craig-Bampton method  

II. Error estimation for dual Craig-Bampton method 

III. A dynamic condensation method with free-interface based substructuring 

 

The present model reduction studies are applicable to develop an effective parallel computation algorithm 

to deal with FE models with a large number of DOFs. We expect that the new method is an attractive solution 

for constructing accurate reduced models for experimental-FE model correlation, FE model updating, and 

optimizations. 

 

 

1.3 Dissertation Organization 

 

This dissertation is organized as follows: 

 

In Chapter 2, the well-known model reduction methods discussed in this dissertation are introduced. In the 

following sections, the formulations of Craig-Bampton (CB), dual Craig-Bampton (DCB), and improved 

reduced system (IRS) methods are presented in detail [3, 9, 17]. 

 

In Chapter 3, the formulation of the improved DCB method [44] is presented. In the following sections, we 
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derive a new transformation matrix for the DCB method, improved by considering the second order effect of 

residual substructural modes. The issue of the interface reduction for additional coordinates is discussed. The 

performance of the improved DCB method is described through various numerical examples. We considered six 

structural problems: a rectangular plate with matching and non-matching meshes, a plate with a hole, a 

hyperboloid shell, a bended pipe, a NACA 2415 wing with ailerons, and a cable-stayed bridge. The negative 

eigenvalues in lower modes for the original and improved DCB methods are also investigated. 

 

In Chapter 4, the error estimation method of the DCB method is proposed. The formulation of improved 

transformation matrix is presented, and then error estimation method is derived by using new transformation 

matrix. The global matrix multiplications are simplified by the calculations in substructural component matrix 

level. The performance of the present error estimation method is investigated through numerical examples, and 

the correction of approximated eigenvalues are attempted. Here, four structural problems are considered: a 

rectangular plate with matching and non-matching meshes, a hyperboloid shell, a pipe intersection, and a cable-

stayed bridge. 

 

In Chapter 5, the new dynamic condensation method with free-interface based substructuring is proposed. 

The formulation of the free-interface based substructuring is presented, and then the new transformation matrix 

for the independently defined substructures is presented. The performance of the present method compared to 

the original IRS method is tested through the eigensolutions of various numerical examples: a rectangular plate 

with matching and non-matching meshes, a plate with a hole, a hyperboloid shell, a bended pipe with matching 

and non-matching meshes, a wind turbine rotor, a NACA 2415 wing with ailerons, and a cable-stayed bridge. 

 

In Chapter 6, the conclusions and discussions for future works are presented. 
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Chapter 2.  Model reduction methods 

 

In this chapter, the well-known model reduction methods discussed in this dissertation are briefly 

introduced. The formulations of Craig-Bampton (CB), dual Craig-Bampton (DCB), and improved reduced 

system (IRS) methods are presented below. See references [3, 9, 17] for detailed derivations. 

 

 

2.1 Craig-Bampton (CB) method 

 

In the CB method [3], a global structural FE model is partitioned into sN  substructures as in Fig. 2.1a. 

The substructures are connected through a fixed interface boundary   (Fig. 2.1b). 

 

 

Figure 2.1 Partitioning of global FE model and interface handling in the CB method ( 2sN ). 

 

The equations of motion can be expressed by 

(a) (b)

1

2

1

2

 Fixed-interface



6 

 

 

 

ggggg fuKuM                                  (2.1) 

with 









b
T
c

cs
g MM

MM
M , 










b
T
c

cs
g KK

KK
K , 










b

s
g u

u
u , 










b

s

f

f
f , 

where M  and K  are the mass and stiffness matrices, respectively, u  is the corresponding displacement 

vector, f  is the external load vector applied to the FE model. Note that 
22 /)  ()   ( dtd  with time variable 

t . The subscript g  indicates the global structural quantities, and s , c  and b  indicate the substructural, 

coupled and interface boundary quantities, respectively. Here, sM  and sK  are block-diagonal mass and 

stiffness matrices that consist of substructural mass and stiffness matrices ( )(iM  and )(iK ). 

 

The global eigenvalue problem is defined as  

iggigigg )()()( φMφK   for gNi ,,1 ,                   (2.2) 

in which ig )(  and ig )(φ  are the global eigenvalue and eigenvector corresponding to the thi  global mode, 

respectively, and gN  is the number of DOFs in the original FE model. This number consists of interface and 

substructural DOFs ( 



sN

k

k
ubg NNN

1

)(
, where bN  is the number of interface DOFs and )(k

uN  is the 

number of substructural DOFs of the thk  substructure). 

 

Because the interface DOFs of each substructure can be seen as totally constrained, the substructural 

displacement vector su  is assumed in the CB method, as 

bcsss uΦqΘu  , csc KKΦ 1 ,                       (2.3) 

in which sΘ  and sq  are the block-diagonal matrix that consists of substructural eigenvectors and the 

corresponding generalized coordinate vector, cΦ  is the constraint mode matrix. The constraint mode matrix is 

defined as the mode shapes of the substructure due to unit displacement of interface DOF, and all other interface 

DOFs are constrained. The constraint mode matrix cΦ  in Eq. (2.3) is calculated by 
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





















)(

)1(

)1(

sN
c

c

c

c

Φ

Φ

Φ

Φ


 with 
)(1)()( k

c
k

s
k

c KKΦ


  for sNk ,,2,1  .             (2.4) 

 

The substructural normal modes are calculated by solving the following eigenvalue problems 

)()()()()( kkkkk ΘMΛΘK  , sNk ,,1 ,                      (2.5) 

in which )(kΘ  and )(kΛ  are the substructural eigenvector and eigenvalue matrices of the thk  substructure, 

respectively. Note that the eigenvectors are scaled to satisfy the mass-orthonormality condition. 

 

The substructural eigenvector matrix )(kΘ  in Eq. (2.5) consists of dominant and residual term 

][ )()()( k
r

k
d

k ΘΘΘ  ,                               (2.6) 

where )(k
dΘ  and 

)(k
rΘ  includes )(k

dN  dominant substructural modes, and the remaining modes, respectively. 

 

The substructural displacement vector can be approximated using only the dominant modes 

bc
d
s

d
ss uΦqΘu  ,                                (2.7) 

in which d
sΘ  and d

sq  are the block-diagonal eigenvector matrix that consists of dominant substructural 

modes and corresponding generalized coordinate vector. 

 

Then, the global displacement vector gu  can be approximated using the transformation 











b

d
s

g
u

q
Tu 0  with 










b

c
d
s

I0

ΦΘ
T0 ,                       (2.8) 

where 0T  is the transformation matrix ( 0NN g  ) of the CB method [3]. Note that, in the substructural 
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eigenvalue problem, only the eigenpairs of the dominant modes are calculated, not for all eigenpairs. 

 

The reduced mass and stiffness matrices ( 00 NN  ) and the force vector ( 10 N ) of the CB method can 

be obtained as 

000 TMTM g
T , 000 TKTK g

T , g
T fTf 00  .                  (2.9) 

 

Note that 0N  is the number of DOFs in the reduced FE model: 



sN

k

k
db NNN

1

)(
0

, in which )( i
dN  

is the number of dominant modes of the thk  substructure. 
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2.2 Dual Craig-Bampton (DCB) method 

 

In the DCB method [9], a structural FE model is assembled by sN  substructures as in Fig. 2.2a. The 

substructures are connected through a free-interface boundary   (Fig. 2.2b). The compatibility between 

substructures is explicitly enforced using the following constraint equation 

0ub 


s T
N

k

k
b

k

1

)()(
,                   (2.10) 

in which )(k
bu is the interface displacement vector of the thk  substructure, and )kb  is a signed Boolean 

matrix. 

 

The linear dynamic equations for each substructure k  can be individually expressed by 

)()()()()()( kkkkkk fμBuKuM  , sNk ,,1 ,                   (2.11) 

where )(kM  and )(kK  are the mass and stiffness matrices of the thk  substructure, )(ku  is the 

corresponding displacement vector, )(kf  is the external load vector applied to the substructure, and μB )(k
 is 

the interconnecting force between substructures with 







 )(

)(
k

k

b

0
B  and the Lagrange multiplier vector μ . 

Note that 
22 /)  ()   ( dtd  with time variable t . 

 

Assembling the linear dynamic equations for each substructure in Eq. (2.11) using the compatibility 

constraint equation in Eq. (2.10), the dynamic equilibrium equation of the original assembled FE model (see Fig. 

2.2c) is constructed as 










































0

f

μ

u

0B

BK

μ

u

00

0M
T


,                       (2.12) 
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with 


















)(

)1(

sNM0

0M

M  , 


















)(

)1(

sNK0

0K

K  , 


















)(

)1(

sNu

u

u  , 


















)(

)1(

sNf

f

f  , 


















)(

)1(

sNB

B

B  , 

where M  and K  are block-diagonal mass and stiffness matrices that consist of substructural mass and 

stiffness matrices ( )(kM  and )(kK ). 

 

 

Figure 2.2 Assemblage of substructures and interface handling in the DCB method ( 4sN ). (a) 

Substructures, 1 , 2 , 3  and 4 , (b) Interconnecting forces and interfacial DOFs of the substructure

4 , (c) Assembled FE model   with its interface boundary  . 
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The global eigenvalue problem is defined for the original assembled FE model 

iggigigg )()()( φMφK     for gNi ,,1 ,                 (2.13) 

with 









0B

BK
K Tg , 










00

0M
Mg , 

in which ig )(  and ig )(φ  are the global eigenvalue and eigenvector corresponding to the thi  global mode, 

respectively, and gN  is the number of DOFs in the original FE model. This number consists of interface and 

substructural DOFs ( 



sN

k

k
ug NNN

1

)(
 , where N  is the number of Lagrange multipliers and )(k

uN  is 

the number of DOFs of the thk  substructure). 

 

Because each substructure can be seen as being excited through interconnecting forces, the displacement of 

each substructure is assumed in the original DCB formulation, as 

)()()()()()()( kkkkkkk qΘαRμBKu 


, sNk ,,1 ,                (2.14) 

where 
)(kK  is the generalized inverse matrix of )(kK  (the flexibility matrix), )(kR  is the rigid body mode 

matrix, )( kΘ  is the matrix that consists of free-interface normal modes, and )( kα  and 
)(kq  are the 

corresponding generalized coordinate vectors. 

 

The rigid body and free-interface normal modes of the thk  substructure are calculated by solving the 

following eigenvalue problems 

j
kkk

jj
kk )()( )()()()()( φMφK  , )(,,1 k

uNj  ,                (2.15) 

in which )( k
j  and j

k )( )(φ  are the 
thj  eigenvalue and the corresponding mode, respectively. Note that the 

mode vectors are scaled to satisfy the mass-orthonormality condition. 

 

The free-interface normal mode matrix )( kΘ  in Eq. (2.14) consists of dominant and residual normal 
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modes 

 )()()( k
r

k
d

k ΘΘΘ  ,                              (2.16) 

in which )(k
dΘ  and 

)(k
rΘ includes )(k

dN  dominant free-interface normal modes, and the remaining modes, 

respectively. 

 

The displacement of the substructure can be approximated using only the dominant modes 

)()()()()()()( k
d

k
d

kkkkk qΘαRμBKu 


,                      (2.17) 

where the term μBK )()( kk 
  is the static displacement by interconnecting forces, and this term can be 

expressed using modal parameters 

μBΘΛΘμBK )()(1)()()()( kTkkkkk 
  with ),,(diag )()(

2
)(

1
)(

)(
k

N

kkk
k

u
 Λ ,       (2.18) 

where )(kΛ  is the substructural eigenvalue matrix. 

 

Substituting Eq. (2.16) into Eq. (2.18), the static displacement can be divided into dominant and residual 

parts 

μBΘΛΘμBΘΛΘμBK )()()()()()()()()()( 11 kk
r

k
r

k
r

kk
d

k
d

k
d

kk TT 

 ,             (2.19) 

with the corresponding substructural eigenvalue matrices )(k
dΛ  and 

)(k
rΛ  defined by 

)()()()( k
d

kk
d

k
d

T

ΘKΘΛ  , 
)()()()( k

r
kk

r
k

r

T

ΘKΘΛ  .                     (2.20) 

 

Using Eq. (2.19) in Eq. (2.17), the following equation is obtained: 

)()()()()()()()()()()()()( 11 k
d

k
d

kkkk
r

k
r

k
r

kk
d

k
d

k
d

k TT

qΘαRμBΘΛΘμBΘΛΘu 


.        (2.21) 
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It is easily observed that the first and last terms on the right side of Eq. (2.21) are identical and thus 

neglecting the first term, we obtain 

)()()()()()(
1

)( k
d

k
d

kkkkk qΘαRμBFu     with 
Tk

r
k

r
k

r
k )(1)()()(

1 ΘΛΘF


 .          (2.22) 

in which 
)(

1
kF  is called the residual flexibility matrix. The residual flexibility matrix can be calculated by 

subtracting the dominant flexibility matrix from the full flexibility matrix 
)(kK  

Tk
d

k
d

k
d

kk )()()()()(
1

1

ΘΛΘKF


 .                           (2.23) 

The displacement and the Lagrange multipliers of the thk  substructure can be approximated using the 

transformation 


























μ

q

α

T
μ

u )(

)(

)(
1

)(
k

d

k

k
k

  with 






 


I00

BFΘR
T

)()(
1

)()(
)(

1

kkk
d

k
k ,            (2.24) 

in which 
)(

1
kT  is the substructural transformation matrix of the original DCB method for the thk  substructure 

[9]. Note that, in the substructural eigenvalue problem, only the eigenpairs of the dominant and rigid body 

modes are calculated, not for all eigenpairs. 

 

The transformation matrix 1T  ( 1NN g  ) for the original assembled FE model is then given by 












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

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
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N





 with 



























I0000

BFΘ0R0

BF0Θ0R

T




)()(

1
)()(

)1()1(
1

)1()1(

1
ssss NNN

d
N

d

.   (2.25) 

 

and the reduced mass and stiffness matrices ( 11 NN  ) and the force vector ( 11N ) are obtained using the 
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transformation matrix 

111 T
00

0M
TM 








 T

, 111 T
0B

BK
TK 








 T

T
, 










0

f
Tf T

11                 (2.26) 

 

Note that 1N  is the number of DOFs in the reduced FE model: NNN  01  with 

 



sN

k

k
d

k
r NNN

1

)()(
0

, in which 
)(k

rN  and )(k
dN  are the numbers of rigid body modes and dominant 

modes of the thk  substructure, respectively. 

 

The eigenvalue problem with the reduced mass and stiffness matrices in the DCB method is defined as 

iii φMφK  , Ni ,,1 ,                           (2.27) 

where i  and iφ  are the approximated eigenvalues and the corresponding eigenvectors, respectively. N  is 

the number of DOFs in the reduced model : mNNN    with 



sN

k

k
d

k
rm NNN

1

)()( )( , where 
)(k

rN  

is the number of rigid body modes of the thk  substructure. 
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2.3 Improved reduced system (IRS) method 

 

In the IRS method [17], the equations of motion for undamped free vibration are given by 

0UKUM  gggg
 ,                             (2.28a) 

with 









mmms

smss
g MM

MM
M , 










mmms

smss
g KK

KK
K , 










m

s
g U

U
U ,          (2.28b) 

in which gM  and gK  are the mass and stiffness matrices of global structural FE model (see Fig. 2.3a), gU

is the corresponding displacement vector. The subscripts s  and m  denote the ‘slave’ and ‘master’ DOFs, 

respectively (see Fig. 2.3b). Note that 
22 /)(d) ( dt  with time variable t . 

 

The global eigenvalue problem can be written as 



































m

s

mmms

smss

m

s

mmms

smss

u

u

MM

MM

u

u

KK

KK
 , with 










m

s
g u

u
u ,             (2.29) 

where   and gu  are the eigenvalue and eigenvector of global FE model, su  and mu  are the eigenvectors 

corresponding to the slave and master DOFs, respectively. From the first row in Eq. (2.29), su  is represented 

by 

msmsmsssss uMKMKu )()( 1    .                       (2.30) 

 

Using the Neumann series expansion [40-48, 61-64], Eq. (2.30) can be expanded by 

msmsmsssssssss oo uMKKMKKu ))()()(( 32111     .          (2.31) 

and neglecting higher order terms of  , su  is approximated as follows 

msmsssssmsssmssss uKKMMKKKuu ))(( 111    .                (2.32) 
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Then, the approximated global eigenvector gu  is obtained by 

ma
m

s
gg uTT

u

u
uu )( 0 








 ,                       (2.33a) 

with 











m

smss

I

KK
T

1

0 , 






 




0

KKMMK
T

)( 11
smsssssmss

a ,             (2.33b) 

where 0T  is called the Guyan transformation matrix [16], aT  is the additional transformation matrix 

containing the inertial effects of the slave DOFs, and mI  is the identity matrix corresponding to the master 

DOFs. 

 

In the Guyan method [16], the approximated global eigenvector gu  is defined by 

mg uTu 0 ,                                  (2.34) 

and then, the reduced eigenvalue problem is obtained by 

mm uMuK 00   with 000 TMTM g
T , 000 TKTK g

T ,             (2.35) 

in which 0M  and 0K  are the reduced mass and stiffness matrices, and   is the approximated eigenvalue 

in the Guyan method [16]. 

 

Multiplying 1
0
M  on the both sides of Eq. (2.35), the following relation is obtained 

mm uHu 0  with 0
1

00 KMH  ,                       (2.36) 

note that, from this relation, the eigenvalue   can be replaced with the matrix 0H . 

 

In Eq. (2.33a), using   instead of  , and applying the relation mm uHu 0  in Eq. (2.36), the 

approximated global eigenvector gu  can be more accurately defined as follows 
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mg uTu 1  with 001 HTTT a ,                       (2.37) 

where 1T  is the transformation matrix of the IRS method [17]. 

 

Using Eq. (2.37), the reduced mass and stiffness matrices in the IRS method (see Fig. 2.3c) are calculated 

as 

0000000111 HTMTHTMTHHTMTMTMTM ag
T
a

T
g

T
a

T
ag

T
g

T  ,      (2.38a) 

0000000111 HTKTHTKTHHTKTKTKTK ag
T
a

T
g

T
a

T
ag

T
g

T  .       (2.38b) 

 

Finally, the reduced eigenvalue problem in the IRS method [17] is given by 

iii )()( 11 φMφK  , mNi ,,2,1  ,                      (2.39) 

where i)( 1  and i)( 1φ  are the approximated thi eigenvalues and corresponding eigenvectors in the IRS 

method, and mN  is the number of master DOFs, which is same with the size of the reduced model. 

 

The transformation procedure of the IRS method [17] described in Eq. (2.38) seems simple matrix 

multiplications. However, in the IRS method, the global structural FE model is considered without 

substructuring. For a large FE model, the construction of 1T  in Eq. (2.37) is very difficult or even impossible 

in a personal computer, because it contains computationally expensive procedures such as inversion of large 

submatrix, 1
ssK  in Eq. (2.33). 
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Figure 2.3 Reduction procedure of IRS method. (a) global structural FE model (b) selection of master nodes, (c) 

reduced model in the IRS method. 

 

 

  

Master node

(a) (b) (c)



19 

 

 

 

Chapter 3.  Improved DCB method 

 

In engineering practice, the degrees of freedom (DOFs) of numerical models have been continuously 

increased, along with the rapid increase in their complexity. When a complicated structure consisting with 

diverse components is designed through the cooperation of different engineers, it is very expensive to deal with 

its finite element models. This is because frequent design modifications affecting the whole and component 

models require repeated reanalysis. For these reasons, a number of model-reduction schemes have spotlighted 

its necessity, especially, in the structural dynamics community [1-11, 16-20, 26-58, 61-62]. Among the proposed 

solutions, component mode synthesis (CMS) methods are considered very powerful solutions. With CMS 

methods, the assemblage of small substructures represents a large structural model; then is approximated using a 

reduced model constructed using only the dominant substructural modes. In CMS methods, it is important to 

select the proper dominant modes [2, 21-23]. 

 

After pioneering work by Hurty [1] in the 1960s, numerous CMS methods have been introduced for 

various applications [1-11, 26-44, 61]. The CMS methods can be classified as fixed, free, and mixed-interface 

based methods, depending on how the interface is handled. The most successful fixed-interface based method is 

the Craig-Bampton method (CB method) [3] due to its simplicity, robustness, and accuracy. In contrast, the free-

interface based methods [5-7, 9-10] proposed earlier were not successful because those methods were not 

adequate for either accuracy or efficiency in spite of their important advantages. These included such as 

substructural independence and easy treatment of various interface conditions [26-39]. 

 

In 2004, Rixen [9] introduced a new free-interface based method as a dual counterpart of the CB method, 

namely, the dual Craig-Bampton (DCB) method. In the DCB method, Lagrange multipliers are employed along 

the interface for assembling substructures and thus an original assembled finite element (FE) model can be 

effectively reduced as a form of quasi-diagonal matrices, leading to computational efficiency. The most 

advantageous feature of the DCB method is that, when a substructure is changed, entire reduced matrices do not 

need be updated again because in the formulation, substructures are handled independently. This feature also 

makes it possible to assemble substructures even if their FE meshes do not match along the interface [29]. For 

all these reasons, the DCB method is an attractive solution for experimental-FE model correlation [31-32, 36], 

as well as FE model updating and dynamic analysis considering various constraint conditions (contact, 

connection joint, damage, etc.) [37-39]. However, the DCB method still needs improvement in accuracy. In 

particular, the DCB method causes a weakening of the interface compatibility in reduced models, resulting in 
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spurious modes with negative eigenvalues [9, 26]. If the reduction basis chosen is not sufficient, such spurious 

modes may occur in lower modes, which is an obstacle to approximating the original FE model correctly. 

 

Recently, fixed-interface based CMS methods have been successfully improved considering the higher-

order effect of the residual modes [8, 40-41, 43-44]. The motivation of this study is that the same principle can 

be adopted for improving free-interface based methods. In this study, we focus on improving the accuracy of the 

DCB method. We derive a new transformation matrix for the DCB method, improved by considering the second 

order effect of residual substructural modes. One difficulty comes from the fact that the improved approximation 

of substructural dynamic behavior contains unknown eigenvalues. In the formulation, unknown eigenvalues are 

considered additional generalized coordinates. These are subsequently eliminated using the concept of the 

system equivalent reduction expansion process (SEREP) to reduce computational cost. Finally, improved 

solution-accuracy is obtained in the final reduced systems. Furthermore, the use of the present method avoids 

creation of spurious modes with negative eigenvalues in the lower modes. 

 

The formulation of the improved DCB method is presented in Section 3.1. Section 3.2 describes the 

performance of the improved DCB method through various numerical examples and in Section 3.3, we explore 

the negative eigenvalues in lower modes for the original and improved DCB methods. 
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3.1 Formulation 

 

In the original DCB method [9], to construct the transformation matrix 1T  in Eq. (2.25), the residual 

substructural modes are considered through the static flexibility matrix 
)(kK . However, in order to improve 

the DCB method, we here properly consider the effect of the residual substructural modes using dynamic 

flexibility, resulting in improved solution accuracy in the reduced models. 

 

 

3.1.1 Second order dynamic residual flexibility 

 

Let us consider Eq. (2.11) with 0f )(k , and invoking harmonic response ( 22 / dtd ). The 

displacement of the thk  substructure can be written as 

μBMKu )(1)()()( )( kkkk   , sNi ,,1 ,                     (3.1) 

in which 
1)()( )(  kk MK   is called the dynamic flexibility matrix. Using free-interface normal modes and 

rigid body modes obtained from Eq. (2.15), the dynamic flexibility matrix can be rewritten in terms of modal 

parameters 

Tkkkkkk )(1)()()(1)()( )()( ΦIΛΦMK     with ][ )()()( kkk RΘΦ  .         (3.2) 

 

Substituting Eq. (3.2) into Eq. (3.1), the substructural displacement is represented by 

)()()()(1)()()()( )( kkkkk
n

k
n

kk T

αRμBΘIΛΘu                      (3.3) 

with )()()()( kkkk
n

T

ΘKΘΛ  , )()()()( kkkk
n

T

ΘMΘI  , 

in which )(k
nΛ  and )( k

nI  are the eigenvalue and identity matrices corresponding to the free-interface normal 

modes, and   is the unknown eigenvalue. 
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We then substitute Eq. (2.16) into Eq. (3.3), to obtain 

)()()()(1)()()()()()( )( kkkk
r

k
r

k
r

k
r

k
d

k
d

k T

αRμBΘIΛΘqΘu                  (3.4) 

with μBΘIΛΘqΘ )()(1)()()()()( )( kk
d

k
d

k
d

k
d

k
d

k
d

T  . 

 

In Eq. (3.4), the residual part of the dynamic flexibility matrix 
Tk

r
k

r
k

r
k

r
)(1)()()( )( ΘIΛΘ    can be 

expanded using a Taylor series [8, 10, 27, 40-48] 

   )(1)(
2

)(
1

)(1)()()( )( k
j

kkkk
r

k
r

k
r

k
r

T

FFFΘIΛΘ                 (3.5) 

with 
Tj k

r
k

r
k

r
k

j
)()()()( ΘΛΘF



 , 

where )(k
jF  is the 

thj  order residual flexibility matrix of the thk  substructure. 

 

Considering the residual flexibility up to the second order, the residual part of the dynamic flexibility 

matrix is approximated by 

)(
2

)(
1

)(1)()()( )( kkk
r

k
r

k
r

k
r

T

FFΘIΛΘ    ,                       (3.6) 

and using Eq. (3.6) in Eq. (3.4), the substructural displacement is expressed as 

)()()()(
2

)()(
1

)()()( kkkkkkk
d

k
d

k αRμBFμBFqΘu   .                  (3.7) 

 

Note that the substructural displacement of the original DCB formulation is obtained when the second 

order residual flexibility in Eq. (3.7) is ignored. The added second order residual flexibility contributes to 

strengthening the interface compatibility by more precisely calculating the displacement due to the 

interconnecting forces. As a result, it is expected that the emergence of spurious modes can be avoided in the 

lower modes. This feature will be briefly demonstrated using a numerical example. The second order residual 

flexibility matrix can be easily calculated by reusing 
)(

1
kF  in Eq. (2.23) 

)(
1

)()(
1

)(
2

kkkk FMFF  .                                (3.8) 
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The substructural transformation matrix 
)(

2
kT  with the second order residual flexibility approximation is 

given by 

)(
2

)(
2

)(
kk

k

uT
μ

u









,                                 (3.9) 

with 






 


0I00

ΘBFΘR
T

)(
2

)()(
1

)()(
)(

2

kkkk
d

k
k , 























ψ

μ

q

α

u
)(

)(

)(
2

k
d

k

k , 
)()(

2
)(

2
kkk BFΘ  , μψ  , 

where 
)(

2
ku  denotes the generalized coordinate vector and ψ  is the additional coordinate vector containing 

the unknown eigenvalue  . 

 

It is important to note that the use of higher-order residual flexibility may produce badly scaled 

transformation matrices, resulting in ill-conditioned reduced system matrices. Thus, we normalize each column 

of 
)(

2
kΘ  using its L2-norm [63-64]. 

1)()(
2

)(
2



 kkk GΘΘ   with 























2

)(
2

22
)(

2

21
)(

2

)(

}{

}{

}{

bN
k

k

k

k

θ0

θ

0θ

G


,       (3.10) 

where 
)(

2
kΘ  is the normalized residual mode matrix containing the second order residual flexibility, and 

j
k }{ )(

2θ  is the 
thj  column vector of 

)(
2
iΘ . 

 

Substituting Eq. (3.10) into Eq. (3.9), the substructural transformation matrix of the improved DCB method 

for the thk  substructure is 
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)(
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kkkk
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k
k .           (3.11) 

 

Then, the displacement and Lagrange multipliers of the original assembled FE model with sN  

substructures are approximated as 









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

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                                 (3.12) 

with 










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




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0I0000

ΘBFΘ0R0
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sssss NNNN

d
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Using the transformation matrix 2T  ( 2NN g  ) in Eq. (3.12), the reduced system matrices ( 22 NN  ) 

and force vector ( 12 N ) are calculated 

222 T
00

0M
TM 








 T

, 222 T
0B

BK
TK 








 T

T
, 










0

f
Tf T

22 ,            (3.13) 

in which 2M , 2K , and 2f  are the reduced mass and stiffness matrices, and the reduced force vector, 

respectively. Note that 2N  is the number of DOFs in the reduced FE model, 

 



sN

k

k
d

k
r NNNN

1

)()(
2 2  . 
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3.1.2 Interface reduction 

 

When the second order residual flexibility is considered, the size of reduced system is increased due to the 

additional coordinates ψ  compared to the original DCB method [9]. The number of increased DOFs is equal 

to the number of Lagrange multipliers. 

 

To resolve this problem, we eliminate the additional coordinates by employing the concept of the system 

equivalent reduction expansion process (SEREP) [18]. In the global eigenvalue problem given in Eq. (2.13), the 

eigenvalues related to the Lagrange multipliers μ  are non-physically infinite. When original FE models are 

reduced using the original and improved DCB methods in Eq. (2.26) and (3.13), respectively, such non-physical 

eigenvalues related to μ  and ψ  ( μψ  ) become finite, but appear in higher modes. The modes related to 

the additional coordinates can be eliminated through a further reduction using SEREP. 

 

From the reduced system matrices in Eq. (3.13), the following eigenvalue problem is obtained: 

iii )()( 22 φMφK  , 2,,1 Ni  ,                        (3.14) 

where i  and i)(φ  are the thi  eigenvalue and the corresponding mode vector, respectively. We then 

calculate the eigenvectors up to the 1N -th mode and construct the following eigenvector matrix 

 
1

)()()( 21 NφφφΦ  .                         (3.15) 

 

The transformation matrix of the improved DCB method [44] is further reduced using the eigenvector 

matrix in Eq. (3.15) as follows. 

ΦTT 22
ˆ  ,                                   (3.16) 

and thus the new transformation matrix 2T̂  has the same size as 1T  in the original DCB method ( 1NN g  ). 

That is, the additional coordinate vector ψ  is eliminated. 
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Finally, the resulting reduced system matrices are calculated as follows: 

222
ˆˆˆ T

00

0M
TM 








 T

, 222
ˆˆˆ T

0B

BK
TK 








 T

T
, 










0

f
Tf T

22
ˆˆ ,           (3.17) 

in which 2M̂ , 2K̂ , and 2f̂  are the final reduced mass, stiffness matrices, and force vector, respectively. Then, 

the size of the reduced system matrices provided by the improved DCB method [44] becomes equal to that by 

the original DCB method [9]. 

 

The reduced eigenvalue problem of the present method is given by 

iii )ˆ(ˆˆ)ˆ(ˆ
22 φMφK  , 1,,2,1 Ni  ,                      (3.18) 

where i̂  and i)ˆ(φ  are the approximated 
thi  eigenvalues and corresponding eigenvectors in the present 

method. 

 

The approximated global eigenvector ig )(φ  can be calculated by 

iig )ˆ(ˆ)( 2 φTφ  .                                (3.19) 

 

The reduced system becomes more accurate by improving the DCB formulation. The increase of 

computational cost is inevitable, but the computation of the second order residual flexibility is effectively 

performed using Eq. (3.8). In the present method, it is possible to independently perform the process for each 

substructure from construction to reduction. Since we do not have to deal with the global FE model, we can 

efficiently reduce the large structural FE model. The flow chart of the present reduction method is shown in the 

Fig. 3.1. 

 

In the following sections, the accuracy and computational cost is investigated using various numerical 

examples. In the numerical examples, the computation cost for the interface reduction process also be examined. 
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Figure 3.1 Flow chart for the FE model reduction in the improved DCB method 
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3.2 Numerical examples 

 

In this section, we investigate the performance of the improved DCB method compared to the original 

DCB method. We considered six structural problems: a rectangular plate with matching and non-matching 

meshes, a plate with a hole, a hyperboloid shell, a bended pipe, a NACA 2415 wing with ailerons, and a cable-

stayed bridge. 

 

FE models are constructed using the 4-node MITC (Mixed Interpolation of Tensorial Components) shell 

elements [65-70], 3D solid elements and truss elements, and free or fixed boundary conditions are imposed 

differently according to the problem. The frequency cut-off method is employed to select dominant substructural 

modes [21-23]. All the computer codes are implemented in MATLAB and computation is performed in a 

personal computer (Inter core (TM) i7-4770, 3.40 GHz CPU, 32 GB RAM). 

 

The relative eigenfrequency error is adopted to measure the accuracy of the reduced models 

i

ii
i 




ˆ
  with ii   , ii  ˆˆ                       (3.20) 

in which i  is the thi  relative eigenfrequency error, i  is the thi  exact eigenfrequency calculated from 

the global eigenvalue problem in Eq. (2.13); and i̂  is the thi  approximated eigenfrequency from the 

reduced eigenvalue problem in Eq. (3.18). Note that the rigid body modes are not considered in measuring the 

accuracy. 

 

The accuracy of approximated eigenvectors of the original and improved DCB method are measured by the 

modal assurance criterion (MAC) [59-60] as 

))())(()()((

|)()(|
),(MAC

2

jg
T
jgig

T
ig

jg
T
igji

φφφφ

φφ
  for 1,,2,1, Nji  ,        (3.21) 

in which )( gφ  and )( gφ  are the global and approximated eigenvector, respectively. The resulting scalars 

are assembled into the MAC matrix. The MAC indicate the consistency between eigenvectors by its value from 
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zero to unity. If the MAC has a value near unity, the eigenvectors are considered consistent. Note that the rigid 

body modes are not considered in measuring the consistency of eigenvectors. 

 

 

3.2.1 Rectangular plate problem 

 

Let us consider a rectangular plate with free boundary, see Fig. 3.2. Length L  is 0.6096 m, width B  is 

0.3048 m, and thickness h  is 31018.3   m. Young’s modulus E  is 72 GPa, Poisson’s ratio   is 0.33, 

and density   is 2796 
3kg/m . The whole structure is an assemblage of two substructures ( 2sN ) 

modeled by 4-node MITC shell elements. We consider two numerical cases, with matching and non-matching 

meshes between neighboring substructures.  

 

For the matching mesh case, the first substructure is modeled using an 68  mesh and the second 

substructure is modeled using a 64  mesh, as shown in Fig. 3.2a. Fig. 3.3 presents the relative 

eigenfrequency errors obtained by the CB, the original and improved DCB methods. The numbers of dominant 

modes used and the numbers of DOFs in original and reduced systems are listed in Table 3.1. The improved 

DCB method shows significantly improved accuracy compared to the original CB method. 

 

Let us consider the non-matching mesh case, see Fig. 3.2b. The first substructure is modeled by an 68  

mesh and the second substructure is modeled by an 128  mesh. In this case, the interface compatibility is 

considered through nodal collocation and thus the matrices )(iB  are no longer Boolean, see Fig. 3.2c. Fig. 3.4 

presents the relative eigenfrequency errors obtained by the original and improved DCB methods. Table 3.2 

shows the numbers of dominant modes used and the numbers of DOFs in the original and reduced systems. The 

results also show that the improved method provides considerably more-accurate solutions for this non-

matching mesh case. 
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Figure 3.2 Rectangular plate problem: (a) Matching mesh on the interface ( 612  mesh), (b) Non-matching 

mesh between neighboring substructures, (c) Interface boundary treatment. 
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Figure 3.3 Relative eigenfrequency errors in the rectangular plate problem with matching mesh. 
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Table 3.1 Number of dominant modes used and number of DOFs in original and reduced systems for the 

rectangular plate problem ( 612  mesh). 

Methods )1(
dN  )2(

dN  dN  gN  
1N  

CB 13 7 20 455 55 

DCB 13 7 20 525 67 

Improved DCB 13 7 20 525 67 
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Figure 3.4. Relative eigenfrequency errors in the rectangular plate problem with non-matching mesh. 

 

Table 3.2. Number of dominant modes used and number of DOFs in original and reduced systems for the 

rectangular plate problem with non-matching mesh. 

Methods )1(
dN  )2(

dN  dN  gN  
1N  

DCB 5 3 8 965 85 

Improved DCB 5 3 8 965 85 
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3.2.2 Plate structure with a hole 

 

Let us consider a rectangular plate with a hole, see Fig. 3.5. No boundary condition is imposed. The length 

L  is 20 m, width B  is 10 m, and thickness h  is 0.25 m. Young’s modulus E  is 210 GPa, Poisson’s ratio 

  is 0.3, and density   is 7850 
3kg/m . The whole model is an assemblage of four substructural FE models 

( 4sN ). The whole model is discretized by 208 shell elements (1360 DOFs). The substructures are 

symmetrically positioned about the hole in center. 

 

 

 

Figure 3.5. Plate structure with a hole. 
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The numbers of dominant modes used and the numbers of DOFs in the original and reduced systems are 

presented in Table 3.3. Fig. 3.6 presents the relative eigenfrequency errors obtained using the original and 

improved DCB methods. The results show that the improved DCB method largely outperforms the original 

DCB method, especially, in lower modes. 

 

Fig. 3.7 presents the MAC for reduced system by the original and improved DCB method. The results from 

both methods show that the approximated eigenvectors in the improved DCB method have more accurate 

consistency than the original DCB method. 

 

 

Table 3.3. Number of dominant modes used and number of DOFs in original and reduced systems for the plate 

structure with a hole. 

Methods )1(
dN  )2(

dN  )3(
dN  )4(

dN  dN  gN  
1N  

DCB 5 5 5 5 20 1490 174 

Improved DCB 5 5 5 5 20 1490 174 

 
 

 



36 

 

 

 

 
Figure 3.6. Relative eigenfrequency errors in the plate structure with a hole. 
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Figure 3.7. MAC for reduced system in the plate structure with a hole: (a) DCB method, (b) Improved DCB 

method 

(a)

(b)
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3.2.3 Hyperboloid shell problem 

 

We here consider a hyperboloid shell structure with free boundary as shown in Fig. 3.8. Height H  is 4.0 

m and thickness h  is 0.05 m. Young’s modulus E  is 69 GPa, Poisson’s ratio   is 0.35, and density   is 

2700 
3kg/m . The mid-surface of this shell structure is described by 

]2,2[;2 222  zzyx .                          (3.22) 

 

 

Figure 3.8. Hyperboloid shell problem. 
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Three substructures ( 3sN ) are assembled to construct the original FE model of the shell structures, in 

which 800 shell elements and 903 nodes are used (4200 DOFs). Table 3.4 lists the numbers of dominant modes 

used and the numbers of DOFs in the original and reduced systems. Fig. 3.9 presents the relative eigenfrequency 

errors obtained using the original and improved DCB methods. The graphs in the figure consistently show the 

accuracy of the improved DCB method. 

 

Fig. 3.10 presents the MAC for reduced system by the original and improved DCB method. The results 

show that the approximated eigenvectors obtained with the improved DCB method give better consistency. 

 

For this problem, we also compare the computational costs of the original and improved DCB methods. 

Table 3.5 shows the detailed computational costs. Compared to the original DCB method, the additional 

computation time required by the improved DCB method is 3.69% for accuracy improvement, and 13.25% for 

interface reduction. 

 

 

Table 3.4. Number of dominant modes used and number of DOFs in original and reduced systems for the 

hyperboloid shell problem. 

Methods )1(
dN  )2(

dN  )3(
dN  dN  gN  

1N  

DCB 10 10 10 30 4830 363 

Improved DCB 10 10 10 30 4830 363 
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Figure 3.9. Relative eigenfrequency errors in the hyperboloid shell problem. 
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Figure 3.10. MAC for reduced system in the hyperboloid shell problem: (a) DCB method, (b) Improved DCB 

method  

(a)

(b)
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Table 3.5. Computational costs for the hyperboloid shell problem. 

Methods Items 
Computation times 

[sec] Ratio [%]

Original  

DCB method 
Substructural mode matrices ( )(iR , )(i

dΘ ) 0.28 1.77 

Substructural 1st order residual flexibility matrices 

(
)(

1
iF ) 

15.11 96.94 

Reduced system matrices ( 1M , 1K ) 0.20 1.29 

Total 15.59 100.00 

Improved DCB 

method 

  

Substructural mode matrices ( )(iR , )(i
dΘ ) 0.28 1.77 

Substructural 1st order residual flexibility matrices 

(
)(

1
iF ) 

15.11 96.94 

Substructural 2nd order residual flexibility matrices 

(
)(

2
iF ) 

0.36 2.31 

Reduced system matrices ( 2M , 2K ) 0.42 2.67 

Subtotal 16.17 103.69 

Interface reduction ( 2M̂ , 2K̂ ) 2.06 13.25 

Total 18.23 116.94 
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3.2.4 Bended pipe problem 

 

A bended pipe structure with clamped boundary at one end is considered as shown in Fig. 3.11, in which 

the structural configuration and specification are illustrated. Young’s modulus E  is 69 GPa, Poisson’s ratio   

is 0.35, and density   is 2700 
3kg/m . The FE model of the pipe structure is an assemblage of three 

substructural FE models ( 3sN ). The whole FE model has 2511 shell elements and 2592 nodes (12960 DOFs). 

 

The following numerical cases are considered: 

 The original DCB method is used with the reduced model size of 2971 N  ( 15dN ) and 

5671 N  ( 285dN ). 

 The improved DCB method is used with the reduced model size of 2971 N  ( 15dN ). 

The number of dominant modes used and the number of DOFs in the original and reduced systems are 

listed in Table 3.6. 

 

Fig. 3.12 presents the relative eigenfrequency errors obtained by the original and improved DCB methods. 

When reduced models of the same size ( 2971 N ; 15dN ) are considered, the improved DCB method 

provides a much more accurate reduced model. It is also observed that the original DCB method shows accuracy 

comparable to the improved DCB method when 285 modes are used for the original DCB. For similarly 

accurate reduced models, the model size obtained by the original DCB method ( 5671 N ) is almost twice that 

obtained by the improved DCB method ( 2971 N ). 

 

Fig. 3.13 presents the MAC for reduced system by the original and improved DCB method ( 15dN ). In 

this case, the approximated eigenvectors obtained by the original DCB method hardly show consistency with the 

correct eigenvectors. However, the improved DCB method provides consistently accurate results. 
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Next, the computational costs of the original and improved DCB methods are compared. Table 3.7 shows 

the detailed computational costs. For reduced models of the same size, additional computation time required for 

the improved DCB method is 2.05% for accuracy improvement and 0.5% for interface reduction, compared to 

the original DCB method. The table also presents the detailed computation time when 285 modes are used for 

the original DCB method. 

 

At this point, it is important to note that the improved DCB method is very useful for obtaining an accurate 

reduced model when only a limited number of dominant modes are available. Such cases happen when 

dominant modes are obtained experimentally. 
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Figure 3.11. Bended pipe problem. 
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Table 3.6. Number of dominant modes used and number of DOFs in the original and reduced systems for the 

bended pipe problem. 

Methods )1(
dN  

)2(
dN  

)3(
dN  dN  gN  

1N
 

DCB 5 5 5 15 13095 297 

DCB 95 95 95 285 13095 567 

Improved DCB 5 5 5 15 13095 297 
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Figure 3.12. Relative eigenfrequency errors in the bended pipe problem. 

 

  

Mode number

0 2 4 6 8 10 12 14 16 18

R
e
la

ti
v
e
 e

ig
e
n
fr

e
q
u
e
n
c
y
 e

rr
o
r

10-12

10-10

10-8

10-6

10-4

10-2

100

DCB(           )

DCB(             )

Improved DCB(           )

15�
d

N

285�
d

N

15�
d

N



48 

 

 

 

 

Figure 3.13. MAC for reduced system in the bended pipe problem ( 15dN ): (a) DCB method, (b) Improved 

DCB method 

(a)

(b)
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Table 3.7. Computational costs for the bended pipe problem. 

Methods Items 
Computation times 

[sec] Ratio [%]

Original  

DCB method 

( 15dN ) 

Substructural mode matrices ( )(iR , )(i
dΘ ) 0.67 0.26

Substructural 1st order residual flexibility 

matrices (
)(

1
iF ) 

256.40 99.44

Reduced system matrices ( 1M , 1K ) 0.77 0.30

Total 257.84 100.00

Original  

DCB method 

( 285dN ) 

Substructural mode matrices ( )(iR , )(i
dΘ ) 3.61 1.40 

Substructural 1st order residual flexibility 

matrices (
)(

1
iF ) 

272.71 105.77 

Reduced system matrices ( 1M , 1K ) 0.81 0.31 

Total 277.13 107.48 

Improved DCB method 

( 15dN ) 

Substructural mode matrices ( )(iR , )(i
dΘ ) 0.67 0.26

Substructural 1st order residual flexibility 

matrices (
)(

1
iF ) 

256.40 99.44

Substructural 2nd order residual flexibility 

matrices (
)(

2
iF ) 

4.58 1.78

Reduced system matrices ( 2M , 2K ) 1.46 0.57

Subtotal 263.11 102.05

Interface reduction ( 2M̂ , 2K̂ ) 1.29 0.50

Total 264.40 102.55
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3.2.5 NACA 2415 wing with ailerons problem 

 

A NACA 2415 wing structure with clamped boundary at one end is considered as shown in Fig. 3.14, in 

which the structural configuration and specification are illustrated. The two ailerons are connected by a 

frictionless hinges to the first substructure. Due to the ailerons, the two rigid body modes are calculated in the 

eigenvalue analysis of both global and reduced eigenvalue problems. The modeling of hinge is simply 

implemented by the Lagrange multipliers. 

 

The length L  is 0.9144 m, width W  is 0.2286 m, and thickness H  is 0.0345 m. Young’s modulus 

E  is 71 GPa, Poisson’s ratio   is 0.33, and density   is 3000 
3kg/m . The whole model is an assemblage 

of four substructural FE models ( 3sN ). The each substructure is discretized by 3873, 112 and 144 shell 

elements, respectively (19250, 725 and 925 DOFs). 

 

Table 3.8 lists the numbers of dominant modes used and the numbers of DOFs in the original and reduced 

systems. Fig. 3.15 presents the relative eigenfrequency errors obtained using the original and improved DCB 

methods. The improved DCB method shows considerably accurate results for low-order modes with only the 

size of the reduce model corresponding to 1.15% of the total DOFs of global FE model. 

 

Fig. 3.16 presents the MAC for reduced system by improved DCB method. The results show that the 

eigenvectors approximated by the improved DCB method maintain consistency with the global eigenvectors for 

each mode. The off-diagonal terms of the MAC occurring in the initial four normal modes are caused by the 

symmetry of the wing structure and the behavior close to the rigid body mode of the ailerons. 
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Figure 3.14. NACA 2415 wing with ailerons problem. 

  

X Y

Z

 Y

Z

X

Y

H

W

L

Clamped



52 

 

 

 

Table 3.8. Number of dominant modes used and number of DOFs in the original and reduced systems for the 

NACA 2415 wing with ailerons problem. 

Methods 
    

 

 

DCB 15 9 9 33 21098 243 

Improved DCB 15 9 9 33 21098 243 

 

 

Figure 3.15. Relative eigenfrequency errors in the NACA 2415 wing with ailerons problem. 
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3.2.6 Cable-stayed bridge problem 

 

We finally consider a cable-stayed bridge problem as shown in Fig. 3.17 and 3.18. The unit of length in this 

figure is feet (ft). The FE model and its mass and stiffness matrices are obtained by the well-known commercial 

FE analysis software, ADINA [70]. The structure is modeled using 504 shell elements for the girder, 50 3D solid 

elements for the tower, and 4 3D truss elements for the cable, respectively. The number of nodes is 1666, and 

total DOFs is 6878. 

 

Here, we considered the bridge structure in Fig. 3.17 as one sub-structure and connected multiple 

substructures to make the long-span bridge structure as in Fig. 3.18. In this problem, we assemble the six 

substructures ( 6sN ), the dominant substructural modes, 6)( i
dN  is considered for each substructure. 

Then, the number of DOFs in the original assembled FE model ( gN ) is 42293, and the number of DOFs in the 

reduced model ( 1N ) becomes 1061. 

 

Fig. 3.19 presents the relative eigenfrequency errors obtained using the original and improved DCB 

methods. It is observed that the performance of the improved DCB method is much more accurate than the 

original DCB method. Fig. 3.20 presents the MAC for reduced system by original and improved DCB method. 

As expected, the results show that the eigenvector consistency of the improved DCB method is better than the 

original DCB method. 
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Figure 3.17. Cable-stayed bridge problem (1 substructure). 
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Figure 3.18. Connection of cable-stayed bridge substructures ( 2sN ). 
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Figure 3.19. Relative eigenfrequency errors in the cable-stayed bridge problem ( 6sN ). 
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Figure 3.20. MAC for reduced system in the cable-stayed bridge problem ( 6sN ): (a) DCB method, (b) 

Improved DCB method. 

(a)

(b)
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3.3 Negative eigenvalues in lower modes 

 

In the previous section, we demonstrated that the accuracy of the DCB method was significantly improved. 

When the improved DCB method is used, it is expected that spurious modes will be avoided in lower modes, 

when the selected dominant modes in the substructure are insufficient. Spurious modes in the reduced model 

could cause instability in various dynamic analyses. There have been several attempts to prevent this [26-27]. 

 

In this section, we compare the improved DCB method with the original DCB method for the ability to 

avoid negative eigenvalues and the corresponding spurious modes in lower modes. The plate with a hole in Fig. 

3.5 is considered again. Only one vibration mode is selected in each substructure ( 4dN ); thus, the reduction 

basis is not well established. The number of DOFs in both reduced systems ( 1N ) is 158. Note that the rigid 

body modes are not considered for investigating spurious modes. 

 

The first 25 eigenvalues calculated are listed in Table 3.9, in which mode numbers are sorted by the 

magnitude of eigenvalues. Fig. 3.21 presents the relative eigenfrequency errors in the FE models reduced by the 

original and improved DCB methods, in which only eigenfrequencies corresponding to positive eigenvalues are 

plotted. The first negative eigenvalue obtained by the original DCB method is found at the 9th mode and, after 

that, 40 negative eigenvalues appear until the 57th mode. That is, many spurious modes are calculated in lower 

modes. Eigenvalues obtained are infinite from the 58th to 152th modes. However, when the improved DCB 

method is used, the first negative eigenvalue is found at the 51th modes and no infinite eigenvalue is calculated. 

That is, the appearance of negative eigenvalues is shifted to relatively higher frequency range. This is an 

advantageous feature of the improved DCB method. 
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Table 3.9. Eigenvalues calculated for the plate with a hole. Negative eigenvalues are underlined. 

No. Original DCB Improved DCB

1 3.7518E+02 3.7517E+02

2 5.9356E+02 5.9306E+02

3 3.3397E+03 3.2415E+03

4 3.3609E+03 3.3549E+03

5 6.7871E+03 6.7483E+03

6 1.0588E+04 9.5708E+03

7 1.0631E+04 1.0252E+04

8 1.3618E+04 1.3502E+04

9 -1.8564E+04 2.1398E+04

10 -2.0246E+04 2.4833E+04

11 -2.3018E+04 3.7087E+04

12 2.7750E+04 3.8271E+04

13 -4.0962E+04 5.5247E+04

14 5.0359E+04 5.5684E+04

15 6.8518E+04 7.0494E+04

16 7.1921E+04 7.9612E+04

17 -7.3877E+04 8.0927E+04

18 -7.8759E+04 1.0925E+05

19 9.2383E+04 1.2573E+05

20 -1.0689E+05 1.2642E+05

21 -1.1249E+05 1.3012E+05

22 -1.4226E+05 1.8680E+05

23 -1.4899E+05 2.1227E+05

24 -1.5146E+05 2.3759E+05

25 -2.2205E+05 2.4295E+05
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Figure 3.21. Relative eigenfrequency errors in the plate structure with a hole ( 4dN ). 
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Chapter 4. Error estimation method for DCB method 

 

In structural engineering, the analyses of large and complex finite element (FE) models require a lot of time 

and computation cost, despite the development of computational hardware. Instead of directly handling the 

entire FE model, various studies have carried out to construct a reduced model to efficiently conduct the 

structural analyses. Among them, the component mode synthesis (CMS) methods [1-11, 26-44, 61] are widely 

used; these methods calculate the reduced model by considering only the dominant modes from partitioned 

substructures. In 1960s, Craig and Bampton (CB) [3] established the basic principles of CMS method after the 

pioneer work by Hurty [1]. Since then, various CMS methods have been presented such as automated multi-

level substructuring (AMLS), dual CB (DCB), and F-CMS method [4-11]. 

 

The most important requirement of the reduced model is to have high reliability for the original FE model. 

However, since the eigenvalue analysis of the global FE model is not performed, it is difficult to measure the 

reliability of the reduced model. There have been attempts to solve this issue, but the previously proposed error 

estimation methods are only at the level of determining the tendency of relative eigenvalue error [12-15]. In this 

way, there is a difficulty in using the reduction method for practical use in engineering problems. 

 

Recently, the accurate error estimation methods have been proposed for the representative CMS methods. 

Kim et al. proposed a method for accurately estimating the relative eigenvalue error for the CB method by 

computing an enhanced transformation matrix [45]. Boo et al. developed a simplified version of CB error 

estimation method and applied the same principle of error estimator to the AMLS method [46-47]. Kim et al. 

also developed the error estimation method for F-CMS method by approximating the residual flexibility matrix 

more precisely [48]. However, it is impossible to estimate the reliability of the reduced model by the DCB 

method [9]. 

 

The DCB method proposed by Rixen [9] has the same accuracy as the F-CMS method. The difference is 

that DCB method uses a classical Lagrange multiplier for interconnecting the neighboring substructures, unlike 

the F-CMS method, which uses a localized Lagrange multiplier. We have already proposed an improved DCB 

method by effectively considering the second order residual flexibility matrix [44]. The objective of this study is 

to adopt the same principle for accurately estimating the relative eigenvalue errors for the DCB method.  
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In the derivation procedure, the additional terms necessary for the present error estimation method can be 

efficiently computed by reusing the residual flexibility matrices of the DCB method. We propose the simplified 

calculation with the component matrices of each substructure. The accurately estimated errors are simply 

obtained by summation of the eigenvalue errors calculated for each substructure. 

 

In the following sections, the detailed formulation of the error estimation method for DCB method is 

presented. Then, we investigate the performance of the error estimator using various numerical examples. 

 

 

 

 

 

  



64 

 

 

 

4.1 Formulation 

 
In this section, we introduce the formulation to constructing the improved transformation matrix, which 

consider the second order residual flexibility. After that, we derive an error estimator for the DCB method. 

 

4.1.1 Improved transformation matrix 

 

From the Improved DCB method [44] in section 3, the substructural displacement can be rewritten as 

)()()()(1)()()()()()( )( kkkk
r

k
r

k
r

k
r

k
d

k
d

k T

αRμBΘIΛΘqΘu                  (4.1) 

with μBΘIΛΘqΘ )()(1)()()()()( )( kk
d

k
d

k
d

k
d

k
d

k
d

T  . 

 

Recalling Eq. (4.5), to construct the improved transformation matrix, we here consider the residual 

flexibility up to the second order term as 

)(
2

)()(
1

)(1)()()()( )( kkkk
r

k
r

kk
r

k
r

T

FFΘIΛΘ    .                     (4.2) 

 

Substituting Eq. (4.2) into Eq. (4.1), the approximated displacement of 
thk  substructure is newly defined 

as 

)()()()(
2

)()()(
1

)()()( kkkkkkkk
d

k
d

k αRμBFμBFqΘu    with 
Tk

r
k

r
k

r
k )(2)()()(

2 ΘΛΘF


 ,    (4.3) 

in which 
)(

2
kF  is the second order residual flexibility matrix of the 

thk  substructure. Since 
)(k

rΘ  has 

orthogonality for the substructural mass and stiffness matrices ( )(kM  and )(kK ), 
)(

2
kF  can be easily 

calculated by reusing 
)(

1
kF  in Eq. (2.23) 

)(
1

)()(
1

)(
2

kkkk FMFF  .                               (4.4) 

 

The improved substructural transformation matrix 
)(~ kT  is obtained as  
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in which )(k
aT  is the additional substructural transformation matrix with the second order residual flexibility 

matrix 
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Using the substructural transformation matrices in Eq. (2.24) and Eq. (4.6), the global transformation 

matrix with improved approximation is given by 

aTTT ~
                                   (4.7) 
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where R  and dΘ  are the block-diagonal rigid body mode and dominant free interface mode matrices that 

consist of substructural quantities ( )(kR  and )( k
dΘ ), respectively. Note that the improved transformation 

matrix contains the transformation matrix of the original DCB method and the additional transformation matrix 

considering the second order residual flexibility.  
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4.1.2 Error estimator for the DCB method 

 

The following relative eigenvalue error is commonly used to measure the reliability of the reduced model 

1



i

i

i

ii
i 



 ,                               (4.8) 

where i  is the 
thi  relative eigenvalue error, i  and i  are the 

thi  exact and approximated eigenvalue 

calculated from the eigenvalue problems in Eq. (2.13) and (2.27), respectively. 

 

From Eq. (2.13), the global eigenvalue problem can be rewritten as 

igg
T
igigg

T
ig

i

)()()()(
1

φMφφKφ 


,                       (4.9) 

in which the global eigenvector ig )(φ  can be approximated by the improved transformation matrix T
~

 

iaiiig φTTφTφ )(
~

)(  .                          (4.10) 

 

Substituting Eq. (4.10) into (4.9), to obtain 

iaig
T

ai
T
iiaig

T
ai

T
i

i

φTTMTTφφTTKTTφ ][][][][
1 


         (4.11) 

 

From the transformation in the DCB method, i)(φ  has the orthogonality for the reduced mass and 

stiffness matrices 

ii
T
i φKφ , 1i

T
i φMφ ,                           (4.12) 

and then, derivation of Eq. (4.11) results the following equation 
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Since the symmetry of mass and stiffness matrices, the identical terms on the right side is expressed as 
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where the relative eigenvalue error on the left side is approximated by using i  instead of unknown i  on 

the right side 
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in which i  is the error estimator for the 
thi  approximated eigenvalue in the DCB method [9]. 

 

Using Eq. (4.7), each term to calculate the error estimator in Eq. (4.15) can be represented as 
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It is important to note that all terms in Eq. (4.16) have only diagonal component matrices corresponding to 

the Lagrange multipliers. 

 

The component matrices in Eq. (4.16) are obtained by the calculation of the substructural quantities as 
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Through the Eq. (4.17), the global matrix multiplications are efficiently replaced by reusing the 
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substructural matrices.  

 

Due to orthogonality, multiplications of residual flexibility matrices with )(kM  and )(kK  can be 

expressed by using the higher order residual flexibility matrices 





sN

k

kkTkTT

1

)()(
3

)(
2221 BFBKΨΨMΨΨ ,                    (4.18a) 
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sN

k
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1

)()(
4

)(
22 BFBMΨΨ .                          (4.18b) 

 

From the relation in Eq. (4.18a), the term ag
T TMT  is equal to ag

T
a TKT , then Eq. (4.15) becomes 

iag
T
aiag

T
i

T
ii φTMTTMTφ ][ 2  .                      (4.19) 

 

The approximated eigenvector iφ  in Eq. (4.19) can be decomposed by the substructural and the Lagrange 

multiplier parts 

i

s
i 








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φ

φ
φ ,                                   (4.20) 

 

Finally, substituting Eqs. (4.16), (4.18) and (4.20) into Eq. (4.19), the error estimator for the 
thi  

approximated eigenvalue is redefined by a summation of the independently estimated errors in each substructure 





sN

k

k
ii

1

)(  with                                (4.21) 
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  φBFBφφBFBφ  . 

 



69 

 

 

 

The type of Eq. (4.21) has been attempted to measure the contribution of each substructure to the accuracy 

of the model reduction methods and to control the eigenvalue error [45].  

 

In the following sections, the performance of the error estimator is investigated using various numerical 

examples. 
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4.2 Numerical examples 

 
In this section, we investigate the performance of the error estimator for the DCB method. We considered 

four structural problems: a rectangular plate with matching and non-matching meshes, a hyperboloid shell, a 

pipe intersection, and a cable-stayed bridge. 

 

For the finite element modeling, the 4-node MITC shell [65-70], 3D solid, and truss elements are used and 

free or fixed boundary conditions are imposed differently according to the problem. The frequency cut-off 

method is employed to select dominant substructural modes [21-23]. All the computer codes are implemented in 

MATLAB and computation is performed in a personal computer (Inter core (TM) i7-4770, 3.40 GHz CPU, 32 

GB RAM).  

 

We compare the present error estimator with a previous error estimator proposed by Elssel and Voss [13]. 

ir

i
i 




ˆ ,                                  (4.22) 

in which r  is the smallest substructural eigenvalue in the residual parts. This error estimator was 

proposed for the CB [3] and Automated multi-level substructuring (AMLS) method [11] as an upper bound of 

the relative eigenvalue error, it also could evaluate the eigenvalue errors in the DCB method 

ii  ˆ0  .                                   (4.23) 

 

Through numerical examples, we attempted to correct the eigenvalues approximated by the DCB method 

[9] using the estimated error 

1


i

i
i 

 ,                                   (4.24) 

where i  is the corrected eigenvalue of the present method. 
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4.2.1 Rectangular plate problem 

 

Let us consider a rectangular plate with free boundary, see Fig. 4.1. Length L  is 0.6096 m, width B  is 

0.3048 m, and thickness h  is 31018.3   m. Young’s modulus E  is 72 GPa, Poisson’s ratio   is 0.33, 

and density   is 2796 
3kg/m . The whole structure is an assemblage of two substructures ( 2sN ) 

modeled by 4-node MITC shell elements. We consider two numerical cases, with matching and non-matching 

meshes between neighboring substructures. For the both cases, the numbers of dominant modes used and the 

numbers of DOFs in original and reduced systems are listed in Table 4.1. 

 

We firstly consider the matching mesh case as shown in Fig. 4.1a. Fig. 4.2 presents the exact and estimated 

relative eigenvalue errors, respectively. The results show that the present error estimator can estimate the 

relative eigenvalue errors very accurately. Using the estimated errors, the corrected eigenvalues are obtained by 

Eq. (4.24), Fig. 4.3 presents the more accurately approximated eigenvalues. 

 

For the non-matching mesh case as shown in Fig. 4.1b, the second substructure is modeled by an 128  

mesh. In this case, the interface compatibility is considered through nodal collocation and thus the matrices 

)(iB  are no longer Boolean, see Fig. 4.1c. Fig. 4.4 presents the exact and estimated relative eigenvalue errors, 

and Fig. 4.5 presents the improved accuracy of the corrected eigenvalues by using the present error estimator. 

The results also show that the excellent performance of the present method. 
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Figure 4.1 Rectangular plate problem: (a) Matching mesh on the interface ( 612  mesh), (b) Non-matching 

mesh between neighboring substructures, (c) Interface boundary treatment. 

 

 

Table 4.1 Number of dominant modes used and number of DOFs in original and reduced systems for the 

rectangular plate problem. 

Cases      

Matching mesh 20 11 31 455 78 

Non-matching mesh 14 8 22 965 99 
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Figure 4.2. Exact and estimated relative eigenvalue errors in the rectangular plate problem with matching mesh. 
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Figure 4.3. Relative errors for the corrected eigenvalues in the rectangular plate problem with matching mesh. 
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Figure 4.4. Exact and estimated relative eigenvalue errors in the rectangular plate problem with non-matching 

mesh. 
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Figure 4.5. Relative errors for the corrected eigenvalues in the rectangular plate problem with non-matching 

mesh. 
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4.2.2 Hyperboloid shell problem 

 

We here consider a hyperboloid shell structure with free boundary as shown in Fig. 4.6. Height H  is 4.0 

m and thickness h  is 0.05 m. Young’s modulus E  is 69 GPa, Poisson’s ratio   is 0.35, and density   is 

2700 
3kg/m . The mid-surface of this shell structure is described by 

]2,2[;2 222  zzyx .                          (4.25) 

 

Three substructures ( 3sN ) are assembled to construct the original FE model of the shell structures, in 

which 800 shell elements and 903 nodes are used (4200 DOFs). Table 4.2 lists the numbers of dominant modes 

used and the numbers of DOFs in the original and reduced systems. 

 

Fig. 4.7 presents the exact and estimated relative eigenvalue errors, respectively. Compare to the previously 

proposed method [], the results demonstrate the solution accuracy of the present error estimation method. 

Through the Fig. 4.8, the corrected eigenvalues show the effect of further improving the reliability of the 

solutions by simple calculation. 
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Figure 4.6. Hyperboloid shell problem. 

 

Table 4.2. Number of dominant modes used and number of DOFs in original and reduced systems for the 

hyperboloid shell problem. 

Methods       

Present 26 14 14 54 4830 387 
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Figure 4.7. Exact and estimated relative eigenvalue errors in the hyperboloid shell problem. 
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Figure 4.8. Relative errors for the corrected eigenvalues in the hyperboloid shell problem. 
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4.2.3 Pipe intersection problem 

 

A pipe intersection structure with clamped boundary at one end is considered as shown in Fig. 4.9, in which 

the structural configuration and specification are illustrated. Young’s modulus E  is 69 GPa, Poisson’s ratio   

is 0.35, and density   is 2700 
3kg/m . The whole structure is an assemblage of two substructures ( 2sN ) 

modeled by 4-node MITC shell elements. The whole FE model has 948 shell elements and 976 nodes (5736 

DOFs).  

 

The number of DOFs in the non-reduced system ( gN ) is 5952, the number of dominant modes retained in 

each substructure ( )(k
dN ) are 51 and 38, respectively. Then, the reduced model by the DCB method has 203 

DOFs. 

 

Fig. 4.10 presents the exact and estimated relative eigenvalue errors, respectively. Although slightly over-

estimations are made in some low-order modes, the corrected eigenvalues can solve these cases because it has 

an accuracy higher than the approximated eigenvalues by the DCB method. The accuracy of the corrected 

eigenvalues can be checked by Fig. 4.11. 
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Figure 4.9. Pipe intersection problem. 
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Figure 4.10. Exact and estimated relative eigenvalue errors in the Pipe intersection problem. 
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Figure 4.11. Relative errors for the corrected eigenvalues in the Pipe intersection problem. 
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4.2.4 Cable-stayed bridge problem 

 

We finally consider a cable-stayed bridge problem as shown in Fig. 4.12 and 4.13. The unit of length in this 

figure is feet (ft). The FE model and its mass and stiffness matrices are obtained by the well-known commercial 

FE analysis software, ADINA [70]. The structure is modeled using 504 shell elements for the girder, 50 3D solid 

elements for the tower, and 4 3D truss elements for the cable, respectively. The number of nodes is 1666, and 

total DOFs is 6878. 

 

Here, we considered the bridge structure in Fig. 4.12 as one sub-structure and connected multiple 

substructures to make the long-span bridge structure as in Fig. 4.13. In this problem, we assemble the six 

substructures ( 6sN ), Table 4.3 lists the numbers of dominant modes used and the numbers of DOFs in the 

original and reduced systems. 

 

Fig. 4.14 presents the exact and estimated relative eigenvalue errors, respectively. The proposed error 

estimation method provides consistently accurate results. Fig. 4.15 present the relative errors for the corrected 

eigenvalues with improving the solution accuracy. 
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Figure 4.12. Cable-stayed bridge problem (1 substructure). 
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Figure 4.13. Connection of cable-stayed bridge substructures ( 2sN ). 

 

Table 4.3. Number of dominant modes used and number of DOFs in original and reduced systems for the cable-

stayed bridge problem ( 6sN ). 

Method )1(
dN  )2(

dN )3(
dN )4(

dN )5(
dN )6(

dN gN  
1N  

Present 8 8 8 8 8 8 42293 1073 
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Figure 4.14. Exact and estimated relative eigenvalue errors in the cable-stayed bridge problem ( 6sN ). 
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Figure 4.15. Relative errors for the corrected eigenvalues in the cable-stayed bridge problem ( 6sN ). 
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Chapter 5.  A dynamic condensation method with free-interface based 

substructuring 

 

With the development of design and manufacturing in engineering practice, structures have become huge 

and complex in shape. The large structures are partitioned with various substructures and individually 

constructed. It means that repeated design modifications including re-analyses and experiments are required in 

both local and global configurations. By these reasons, constructing FE model of the entire structure is very 

difficult because the time required to the design and analyses of the substructures are different. A number of 

model reduction methods have spotlighted its necessity to solve these difficulties, especially, in the structural 

dynamics community [1-11, 16-20, 26-58, 61-62]. 

 

The model reduction methods [1-37] can be classified into DOF based and mode based methods. In the 1960s, 

the pioneering works for both methods were proposed by Guyan [16] and Hurty [1], respectively. The mode 

based reduction methods (also called component mode synthesis, CMS) have been studied extensively for 

practical application [1-11, 26-39] because of the reduction procedure fundamentally including the 

substructuring. In contrast, the DOF based reduction methods have a lack of research in spite of their necessities. 

These included such as structural health monitoring, FE model updating, experimental modal analysis and 

experimental-FE model correlation [49-58]. 

 

In the DOF based reduction methods, a reduced model is calculated by classifying the master and slave DOFs in 

the FE model, then properly condensing the slave DOFs into the master DOFs. Since the Guyan reduction [16] 

uses only static condensation, it is difficult to obtain the required accuracy for dynamic analysis. O’Callahan [17] 

developed an IRS method considering inertial effects, and iterative IRS (IIRS) method was developed by Blair 

and Friswell et al [19-20]. Through the introduced methods, they focused on improving the accuracy, but it is 

difficult to obtain the reduced model within a reasonable computation time for the large-scale FE model. 

 

Since the 1990s, several substructuring algorithms have been applied to the DOF based reduction method. 

Bouhaddi and Fillod applied substructuring to the Guyan reduction [49-50]. Cho et al. applied physical domain 

based substructuring to the IRS and IIRS methods and employed the penalty frame method for considering non-

matched subdomains [51-54]. The applied substructuring algorithms were based on the primal assembly 
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technique, which considers the interface between neighboring substructures as fixed. For primal assembly, the 

substructures are coupled through a unique set of physical interface DOFs. There have the simplicity and 

robustness, but it requires a fully assembled FE model in advance to obtain a reduced model. 

 

In the dual assembly technique [9-10, 26-27, 44], the all substructures are defined as a free boundary when there 

are no physical constraint conditions. The most important feature of the dual assembly technique can ensure the 

substructural independence and easily treat the complicated physical boundary conditions and the non-matching 

mesh problems of assembling the numerical model [9-10, 44, 52-53]. This is also suitable to use the 

experimentally obtained substructural model. Because of these advantages, it is necessary to apply the 

substructuring with dual assembly technique to the model reduction methods. Recently, it has been successfully 

applied to the CMS methods [9-10, 26-27], and improved by our research group [44]. 

 

The motivation of this study is that the free-interface based substructuring can be adapted to the DOF based 

reduction. In this study, we focus on improving the efficiency of the IRS method. We introduce the algorithm for 

reducing each substructure independently by defining equations of motion and compatibility conditions in dual 

assembly form. Finally, the reduced mass and stiffness matrices are obtained by the simple assemblage of 

reduced substructural matrices. By using the present method, the local changes of substructure do not cause the 

entire update of reduced model. The present method is expected to be a powerful tool for experiments and 

structural health monitoring in local scale instead of global scale analyses. 

 

The formulation of the present method is described in Section 5.1. The performance of the present method 

through various numerical examples in Section 5.2. 
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5.1 Formulation  

 

In this section, we derive the formulation of the proposed method. The dual assembly technique is applied 

for substructuring, and each substructure is reduced independently by using its transformation matrix 

constructing with the IRS method [17]. Then, the reduced model is simply obtained by an assemblage of 

substructural matrices calculated. 

 

The dynamic equilibrium equation of the assembled global FE model [9, 26, 44] in Eq. (2.12) is rewritten 

as 
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where M  and K  are block-diagonal mass and stiffness matrices that consist of substructural mass and 

stiffness matrices ( )(kM  and )(kK ), )(kU  is the corresponding displacement vector, and )(kf  is the 

external load vector applied to the substructure. To satisfy the force equilibrium in the assembly, γB )k
 is 

applied as the interconnecting force between substructures with Boolean matrix 







 )(

)(
k

k

b

0
B  and the 

Lagrange multiplier vector γ . 

 

Then, the global eigenpairs are obtained from the following eigenvalue problem 
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in which ig )(  and ig )(φ  are the global eigenvalue and corresponding eigenvector of the thi  global mode, 

respectively, and gN  is the number of DOFs in the assembled global FE model. This number consists of 

interface and substructural DOFs ( 



sN

k

k
g NNN

1

)(
 , where N  is the number of Lagrange multipliers 

and )(kN  is the number of DOFs of the thk  substructure). 

 

In Eq. (5.1), the dynamic equilibrium equation corresponding to the 
thk  substructure can be extracted as  
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The eigenvalue problem of thk  substructure is given by 
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in which )(ku  and μ  are the eigenvectors corresponding to the substructural displacement vector )(kU  and 

the Lagrange multiplier vector γ , respectively. )(k  is the eigenvalue of the thk  substructure.  

 

The substructural quantities (
)(kM , 

)(kK , 
)(kB , and 

)(ku ) are decomposed into master and slave parts 

as follows 
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where the master DOFs are selected by using the ratio of the diagonal terms of mass and stiffness matrices [24-

25]. 
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Substituting Eq. (5.5) into Eq. (5.4), the eigenvalue problem of thk  substructure can be rewritten as  
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From the first row equation in Eq. (5.6), )(k
su  is represented by 
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Eq. (5.7) can be expanded by Neumann series [8, 10, 27, 40-48] and neglecting higher order terms of )(k , 

)(k
su  is approximated as 
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Then, using )(k
su  instead of )(k

su , the eigenvector of thk  substructure in Eq. (5.6) is approximated as 
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where )(
0

kT  is the Guyan transformation matrix reflecting the dual substructuring, )(k
aT  is the additional 

transformation matrix containing the inertial effects of the slave DOFs of the thk  substructure. )(k
mI  and I  

are the identity matrices corresponding to the master DOFs of the thk  substructure and Lagrange multiplier, 

respectively. 

 

By considering only the transformation matrix )(
0

kT  in Eq. (5.10b), the eigenvalue problem corresponding 

to the thk  substructure in Eq. (5.6) is reduced as follows 
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in which )(k  is the approximated eigenvalue of the thk  substructure. 

 

Multiplying 1)(
0 )( kM  on the both sides of Eq. (5.11a), the following relation is obtained 
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Substituting Eq. (5.12) into Eq. (5.10a), the approximated eigenvector of thk  substructure is newly 

defined as 
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where 
)(

1
kT  is the transformation matrix of the proposed method. Here, )(kH  is decomposed into the master 

and Lagrange multiplier parts as follows 
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From Eq. (5.10b), (5.13) and (5.14), 
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kT  can be expressed as 
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in which the component matrices )(ˆ k
st  and )(ˆ k

t  are calculated as 
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The reduced substructural system matrices are calculated as 
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and considering the master DOFs and Lagrange multipliers, 
)(

1
kM  and 
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kK  are decomposed as 
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Then, after obtaining Eq. (5.18) for all substructures, the reduced mass and stiffness matrices for the global 

FE model considered is simply assembled as follows 
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note that 1N  is the number of DOFs in the reduced FE model: 



sN

k

k
mNNN

1

)(
1  , where )(k

mN  is the 

number of master DOFs of the thk  substructure. 

 

The reduced eigenvalue problem of the present method is given by 

iii )()( φMφK  , 1,,2,1 Ni  ,                          (5.20) 

where i  and i)(φ  are the approximated 
thi  eigenvalues and corresponding eigenvectors in the present 

method. 

 

The approximated global eigenvector ig )(φ  can be calculated by 

iig )()( φTφ   with 
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in which T  is assembled by using the already calculated transformation matrices 
)(

1
kT  in Eq. (5.15). 

 

In the present method, it is possible to independently perform the process for each substructure from 

construction to reduction. Since we do not have to deal with the global FE model, we can efficiently reduce the 

large structural FE model that cannot be handled by the original IRS method [17]. The flow chart of the present 



98 

 

 

 

reduction method is shown in the Fig. 5.1. In the following sections, the accuracy and computational cost is 

investigated using various examples. 

 

 
Figure 5.1. Flow chart for the FE model reduction 
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5.2 Numerical examples  

 

In this section, we investigate the performance of the present method compared to the original IRS method 

[17]. We considered seven structural problems: a rectangular plate with matching and non-matching meshes, a 

plate with a hole, a hyperboloid shell, a bended pipe with matching and non-matching meshes, a wind turbine 

rotor, a NACA 2415 wing with ailerons, and a cable-stayed bridge. 

 

For the finite element modeling, the 4-node MITC shell [65-70], 3D solid, and truss elements are used and 

free or fixed boundary conditions are imposed differently according to the problem. All the computer codes are 

implemented in MATLAB and computation is performed in a personal computer (Inter core (TM) i7-4770, 3.40 

GHz CPU, 32 GB RAM). 

 

The relative eigenvalue error is adopted to measure the accuracy of the reduced models 

i

ii

i 





                                    (5.22) 

in which i  is the 
thi  relative eigenvalue error, i  is the 

thi  exact eigenvalue calculated from the global 

eigenvalue problem in Eq. (5.2); and i  is the 
thi  approximated eigenvalue calculated from the reduced 

eigenvalue problem. Note that the rigid body modes are not considered in measuring the accuracy. 

 

The accuracy of approximated eigenvector of the present method is measured by the modal assurance 

criterion (MAC) [59-60] as 
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  for gNji ,,2,1,  ,                     (5.23) 

in which )( gφ  and )( gφ  are the global and approximated eigenvector calculated by Eq. (5.2) and 

(5.21), respectively. The resulting scalars are assembled into the MAC matrix. The MAC indicate the 

consistency between eigenvectors by its value from zero to unity. If the MAC has a value near unity, the 

eigenvectors are considered consistent. Note that the rigid body modes are not considered in measuring the 
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consistency of eigenvectors. 

5.2.1 Rectangular plate problem 

 

Let us consider a rectangular plate with free boundary. Length L  is 0.6096 m, width B  is 0.3048 m, 

and thickness h  is 31018.3   m. Young’s modulus E  is 72 GPa, Poisson’s ratio   is 0.33, and density 

  is 2796 
3kg/m . The whole structure is an assemblage of two substructures ( 2sN ) modeled by 4-node 

MITC shell elements [65-70]. We consider two numerical cases, with matching and non-matching meshes 

between neighboring substructures. 

 

For the matching mesh case, the first substructure is modeled using an 68  mesh and the second 

substructure is modeled using a 64  mesh, as shown in Fig. 5.2. Here, we consider original IRS method and 

the present method with same master DOFs selected. The selected nodes are illustrated as in Fig. 5.2a and b. At 

each selected nodes, all DOFs are considered as master DOFs. The number of master DOFs used and the 

number of DOFs in original and reduced are listed in Table 5.1. 

 

Fig. 5.3 presents the eigenvalues obtained by the non-reduced exact FE model, the original Guyan and IRS 

methods and the present method. Fig. 5.4 presents the relative eigenvalue errors obtained by the original Guyan, 

IRS and present methods. The present method has similar accuracy to the original IRS. The original IRS method 

can reduce the structural FE model more stably because it does not require the assumption of substructuring and 

interface boundary. However, it is difficult to utilize the original IRS method when the structural FE model has 

large DOFs or non-matching mesh. In the following numerical examples will show that the present method can 

solve these drawbacks. 

 

For the non-matching mesh case, see Fig. 5.5a, the first substructure is modeled by an 68  mesh and 

the second substructure is modeled by an 128  mesh. The interface compatibility is considered through nodal 

collocation and thus the matrices )(iB  are no longer Boolean. The selected nodes are illustrated as in Fig. 5.5b. 

At each selected nodes, all DOFs are considered as master DOFs. 
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Fig. 5.6 the relative eigenvalue errors obtained by the present methods. The original IRS method cannot be 

directly applied to these non-matching mesh problems. Compared to the accuracy of the matching mesh case, 

the results also show that the present method provides accurate solutions for this non-matching mesh case. 

 

 

Figure 5.2. Rectangular plate problem with matching mesh: (a) Selected nodes in the original IRS method, (b) 

Selected nodes in the present method. 
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Table 5.1. Number of master DOFs used and number of DOFs in original and reduced systems for the 

rectangular plate problem ( 612  mesh). 

Methods )1(
mN  

)2(
mN  mN

 bN
 gN

 1N  

Original Guyan - - 90 - 455 90 

Original IRS - - 90 - 455 90 

Present 60 30 90 35 525 125 
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Figure 5.3. Exact and approximated eigenvalues in the rectangular plate problem with matching mesh. 
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Figure 5.4. Relative eigenvalue errors in the rectangular plate problem with matching mesh. 
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Figure 5.5. Rectangular plate problem with non-matching mesh: (a) Non-matching mesh between neighboring 

substructures, (b) Selected nodes in the present method. 
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Figure 5.6. Relative eigenvalue errors in the rectangular plate problem with non-matching mesh. 
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5.2.2 Plate structure with a hole 

 

Let us consider a rectangular plate with a hole, see Fig. 5.7. No boundary condition is imposed. The length 

L  is 20 m, width B  is 10 m, and thickness h  is 0.25 m. Young’s modulus E  is 210 GPa, Poisson’s ratio 

  is 0.3, and density   is 7850 
3kg/m . The whole model is an assemblage of four substructural FE models 

( 4sN ). The whole model is discretized by 208 shell elements (1360 DOFs). The substructures are 

symmetrically positioned about the hole in center. 

 

We consider two numerical cases with different master DOFs selected. The master DOFs are selected as 

shown in Fig. 5.7a and b. The numbers of master DOFs used and the numbers of DOFs in the original and 

reduced systems are presented in Table 5.2. Fig. 5.8 presents the relative eigenvalue errors obtained using the 

present methods. The results show that it is possible to accurately predict the low-order mode even if only the 

interface DOFs of each sub-structure are selected and it is obvious that the accuracy to the higher modes can be 

improved when the internal DOFS are further selected. 

 

Fig. 5.9 presents the MAC for reduced system by the present method. In both cases, the diagonal 

component of the MAC in low frequency range has a value close to unity. Therefore, it is observed that 

consistency is satisfied corresponding to the eigenvectors of the non-reduced global FE model. 
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Figure 5.7. Selected nodes in the plate structure with a hole: (a) only interface nodes selected, (b) interface 

nodes and 8 interior nodes selected in each substructure. 
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Figure 5.8. Relative eigenvalue errors in the plate structure with a hole. 
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Figure 5.9. MAC for reduced system by the present method in the plate structure with a hole: (a) case 1, (b) case 
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5.2.3 Hyperboloid shell problem 

 

We here consider a hyperboloid shell structure with free boundary as shown in Fig. 5.9. Height H  is 4.0 

m and thickness h  is 0.05 m. Young’s modulus E  is 69 GPa, Poisson’s ratio   is 0.35, and density   is 

2700 
3kg/m . The mid-surface of this shell structure is described by 

]2,2[;2 222  zzyx .                          (5.18) 

 

Three substructures ( 3sN ) are assembled to construct the original FE model of the shell structures, in 

which 800 shell elements and 903 nodes are used (4200 DOFs). The selected master DOFs contain all interface 

DOFs and 2% of interior DOFs for each sub-structure. The master DOFs are selected by using the ratio of the 

diagonal terms of mass and stiffness matrices [24-25]. The numbers of master DOFs used and the numbers of 

DOFs in the original and reduced systems are presented in Table 5.3.  

 

 Fig. 5.11 presents the relative eigenvalue errors obtained using the present methods. The first 25 

eigenvalues calculated by the non-reduced exact FE model and present method are listed in Table 5.4, in which 

mode numbers are sorted by the magnitude of eigenvalues. The results consistently show the accuracy of the 

present method. 
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Figure 5.10. Hyperboloid shell problem. 
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Figure 5.11. Relative eigenvalue errors in the hyperboloid shell problem. 
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Table 5.4. Eigenvalues calculated for the hyperboloid shell problem. 

No. Exact Present method 

1 5.3715E+03 5.3715E+03 

2 5.3715E+03 5.3715E+03 

3 1.8569E+04 1.8569E+04 

4 1.8569E+04 1.8569E+04 

5 4.7642E+04 4.7643E+04 

6 4.7642E+04 4.7643E+04 

7 7.1066E+04 7.1064E+04 

8 7.1066E+04 7.1072E+04 

9 1.3395E+05 1.3394E+05 

10 1.3395E+05 1.3394E+05 

11 2.2742E+05 2.2710E+05 

12 2.2742E+05 2.2744E+05 

13 2.9949E+05 2.9944E+05 

14 2.9949E+05 2.9970E+05 

15 3.1100E+05 3.1083E+05 

16 3.1100E+05 3.1094E+05 

17 4.4692E+05 4.4608E+05 

18 4.4692E+05 4.4699E+05 

19 4.7120E+05 4.7122E+05 

20 4.7120E+05 4.7122E+05 

21 4.9582E+05 4.9521E+05 

22 4.9582E+05 4.9616E+05 

23 5.2752E+05 5.2739E+05 

24 5.2752E+05 5.2759E+05 

25 5.3151E+05 5.3120E+05 
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5.2.4 Bended pipe problem 

 

A bended pipe structure with clamped boundary at one end is considered as shown in Fig. 5.12, in which 

the structural configuration and specification are illustrated. Young’s modulus E  is 69 GPa, Poisson’s ratio 

  is 0.35, and density   is 2700 
3kg/m . The FE model of the pipe structure is an assemblage of three 

substructural FE models ( 3sN ). We consider the structural FE model with matching and non-matching 

meshes between neighboring substructures. In the IRS and present method, the master DOFs are selected by 

using the ratio of the diagonal terms of mass and stiffness matrices [24-25]. The detailed numbers of DOFs in 

original and reduced are listed in Table 5.5. 

 

For the matching mesh, the whole FE model has 5640 shell elements. To investigate the accuracy and 

computational efficiency of the present method compared to the original IRS method, the following numerical 

cases are considered: 

 The original Guyan and IRS method are used with the reduced model size of 23401 N  

( 2340mN ), see Fig. 5.12a. 

 The present method is used with the reduced model size of 23401 N  ( 1940mN ), see Fig. 

5.12b. 

 

Fig. 5.13 presents the relative eigenvalue errors obtained by the original Guyan, IRS and present methods. 

When reduced models of the same size ( 23401 N ) are considered, the present method has similar accuracy 

to the original IRS method and has significantly improved accuracy compared to the original Guyan method. 

 

Fig. 5.14 presents the MAC for reduced system by the present method. In this case, the approximated 

eigenvectors have accurate consistency when compared to the eigenvectors of the non-reduced FE model. 

 

Next, the computational costs of the original IRS and present methods are compared. Table 5.6 shows the 

detailed computational costs. For reduced models of the same size, the computation time required for the present 
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method is only 37.15%, compared to the original IRS method. The computational cost is reduced a lot using the 

present method. The numerical results demonstrate the solution accuracy and computational efficiency of the 

present method. 

 

Let us consider the non-matching mesh case, see Fig. 5.12c. The substructural FE models have 1800, 460, 

500 shell elements, respectively. Non-matching mesh is located at the interface between neighboring 

substructures, 1  and 2 . The present method is used with the reduced model size of 12151 N  

( 915mN ). 

 

Fig. 5.15 presents the relative eigenvalue errors obtained by the present methods. The graph in the figure 

consistently shows the accuracy of the present method for this non-matching mesh case. Fig. 5.16 presents the 

MAC for reduced system by the present method. In this non-matching mesh case, the approximated 

eigenvectors also maintain the excellent consistency when compared to the eigenvectors of the non-reduced FE 

model. 

 

  



117 

 

 

 

 
Figure 5.12. Bended pipe problem: (a) Global FE model without substructuring, (b) Matching mesh on the 

interface, (c) Non-matching mesh between neighboring substructures. 
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Table 5.5. Number of master DOFs used and number of DOFs in original and reduced systems for the bended 

pipe problem. 

Cases Methods 
       

Matching mesh Guyan - - - 2340 - 28200 2340 

 IRS - - - 2340 - 28200 2340 

 Present 560 775 605 1940 400 29000 2340 

Non-matching mesh Present 470 270 175 915 300 14300 1215 

 

 

)1(
mN )2(

mN )3(
mN mN bN gN

1N
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Figure 5.13. Relative eigenvalue errors in the bended pipe problem with matching mesh. 
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Table 5.6. Computational costs for the bended pipe problem. 

Methods Items 
Computation times 

[sec] Ratio [%]

Original IRS 

( 23401 N ) 

Load system matrices ( gM , gK ) 0.09 0.01 

Matrix permutation (master & slave DOFs) 0.12 0.02 

Guyan reduction ( 0T , 0M , 0K ) 576.98 80.69 

IRS reduction ( 0H , 1T , 1M , 1K ) 137.90 19.28 

Total 715.09 100.00 

Present 

( 23401 N ) 

Load substructural system matrices ( )(iM , )(iK , )(iB ) 0.22 0.03 

Substructural Matrix permutation (master & slave DOFs) 0.07 0.01 

Substructural Guyan reduction ( )(
0

iT , )(
0
iM , )(

0
iK ) 105.48 14.75 

Substructural IRS reduction ( )(
0
iH , 

)(
1

iT , 
)(

1
iM , 

)(
1
iK ) 159.76 22.34 

Assemble substructural IRS reduced matrices 0.12 0.02 

Total 265.65 37.15 
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Figure 5.15. Relative eigenvalue errors in the bended pipe problem with non-matching mesh. 
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5.2.5 Wind turbine rotor problem 

 

We consider a 600 kW wind turbine rotor structure as shown in Fig. 5.17. The rotor diameter is 39.76m, 

Young’s modulus E  is 58 GPa, Poisson’s ratio   is 0.43, and density   is 1700 
3kg/m . The all 

substructures are modeled by the well-known commercial FE analysis software, ADINA [70].  

 

The FE model of the structure is an assemblage of four substructural FE models ( 4sN ): three turbine 

blades and a rotor hub. The turbine blade FE model has 5082 shell elements and 5101 nodes. Due to its shell-

shell intersection on the blade edge, all the nodes were modeled by 6 DOFs. The FE model of rotor hub has 508 

shell elements and 560 nodes, all the nodes were modeled by 5 DOFs. The master DOFs are selected by using 

the ratio of the diagonal terms of mass and stiffness matrices [24-25]. Table 5.7 lists the numbers of master 

DOFs used and the numbers of DOFs in the original and reduced systems. In order to link the finite element 

model of the rotor hub and turbine blades, the Lagrange multiplier is considered for translational DOFs. For 

structures with repetitive patterns as in this numerical example, the present method is more efficient because it 

does not need to build a complete finite element model. 

 

Fig. 5.18 presents the relative eigenvalue errors obtained by the present methods, and Table 5.8 shows the 

detailed computational costs. Fig. 5.19 presents the MAC for reduced system by the present method. The pairs 

of eigenvectors from the reduced model and non-reduced model in each mode are showed the acceptable 

consistency. Because the structure with repetitive patterns by the same turbine blade FE model, it has pair 

vibration modes with the similar eigenvalue. These results can be investigated by off-diagonal MAC values and 

the corresponding approximated eigenvalues. 

 

Here, implementing a global FE model with many DOFs to perform the analysis requires immeasurable 

computational costs and time. The original IRS method is hardly acceptable to reduce this FE model because it 

needs to construct global transformation matrix and perform computation with fully-populated matrices. As 

mentioned previously, the present method can reduce the structure of each substructure independently and then 

obtain a reduced model by simply assembling the substructural matrices.  
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Figure 5.17. Wind turbine rotor problem. 
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Table 5.7. Number of master DOFs used and number of DOFs in original and reduced systems for the wind 

turbine rotor problem. 

Method )1(
mN  )2(

mN  )3(
mN  )4(

mN  mN  bN  gN  
1N  

Present 505 498 498 498 1999 288 94906 2287 

 

 

Figure 5.18. Relative eigenvalue errors in the wind turbine rotor problem. 
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Table 5.8. Computational costs for the wind turbine rotor problem. 

Method Items 

Computation times 

[sec] Ratio [%] 

Present Load system matrices ( )(iM , )(iK , )(iB ) 0.55 0.06 

 Matrix permutation (master & slave DOFs) 0.13 0.02 

 Substructural Guyan reduction 282.94 33.58 

 Substructural IRS reduction 558.85 66.33 

 Assemble substructural IRS reduced matrices 0.10 0.01 

 Total 842.57 100.00 
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5.2.6 NACA 2415 wing with ailerons problem 

 

A NACA 2415 wing structure with clamped boundary at one end is considered again for the present 

method. The structural configuration and specification are illustrated in Fig. 5.20. The two ailerons are 

connected by a frictionless hinge to the first substructure. Due to the ailerons, the two rigid body modes are 

calculated in the eigenvalue analysis of both global and reduced eigenvalue problems. The modeling of hinge is 

simply implemented by the Lagrange multipliers. 

 

The length L  is 0.9144 m, width W  is 0.2286 m, and thickness H  is 0.0345 m. Young’s modulus 

E  is 71 GPa, Poisson’s ratio   is 0.33, and density   is 3000 
3kg/m . The whole model is an assemblage 

of four substructural FE models ( 3sN ). The each substructure is discretized by 3873, 112 and 144 shell 

elements, respectively (19250, 725 and 925 DOFs). 

 

Table 5.9 lists the numbers of dominant modes used and the numbers of DOFs in the original and reduced 

systems. Fig. 5.21 presents the relative eigenvalue errors obtained using the present method. Fig. 5.22 presents 

the MAC for reduced system by the present method. The results show that the robustness of eigenpairs 

approximated by the present method. 
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Figure 5.20. NACA 2415 wing with ailerons problem. 
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Table 5.9. Number of master DOFs used and number of DOFs in original and reduced systems for the NACA 

2415 wing with ailerons problem. 

Method )1(
mN  )2(

mN  )3(
mN  mN  bN  gN  

1N  

Present 1675 195 245 2115 198 21098 2313 

 

 

Figure 5.21. Relative eigenvalue errors in the NACA 2415 wing with ailerons problem. 

 

0 5 10 15 20 25

Mode number

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
ei

ge
nv

al
ue

 e
rr

or

Present method



 

 

 

Figure 

 

 

5.22. MAC foor reduced sysstem by the pr

 

132 

resent methodd in the NACAA 2415 wing wwith ailerons p

 

problem. 



133 

 

 

 

5.2.7 Cable-stayed bridge problem 

 

We finally consider a cable-stayed bridge problem as shown in Fig. 5.23 and 5.24. The unit of length in this 

figure is feet (ft). The FE model and its mass and stiffness matrices are obtained by the well-known commercial 

FE analysis software, ADINA [70]. The structure is modeled using 504 shell elements for the girder, 50 3D solid 

elements for the tower, and 4 3D truss elements for the cable, respectively. The number of nodes is 1666, and 

total DOFs is 6878. 

 

Here, we considered the bridge structure in Fig. 5.23 as one sub-structure and connected multiple 

substructures to make the long-span bridge structure as in Fig. 5.24. In this problem, we assemble the six 

substructures ( 6sN ), and the number of DOFs in the original assembled FE model ( gN ) is 42293. 

 

In this problem, we consider the two numerical cases of master DOFs selection: 

 The only interface DOFs are selected as the master DOFs ( 30751 N ). 

 The selected master DOFs contain all interface DOFs and 1% of interior DOFs for each sub-structure 

( 35551 N ). The interior DOFs are selected by using the ratio of the diagonal terms of 

substructural mass and stiffness matrices [24-25]. 

 

Table 5.10 lists the numbers of dominant modes used and the numbers of DOFs in the original and reduced 

systems. Fig. 5.25 presents the relative eigenvalue errors obtained using the present method. Fig. 5.26 presents 

the MAC for reduced system compared to the non-reduced global FE model. Through the numerical results, 

both the eigenvalues and the corresponding eigenvectors are shown to be precisely approximated using the 

present method. 
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Figure 5.23. Cable-stayed bridge problem (1 substructure). 
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Figure 5.24. Connection of cable-stayed bridge substructures ( 2sN ). 

 

Table 5.10. Number of master DOFs used and number of DOFs in original and reduced systems for the cable-

stayed bridge problem ( 6sN ). 

Method )1(
mN )2(

mN  )3(
mN )4(

mN )5(
mN )6(

mN mN  bN  gN  
1N  

Present (case 1) 205 410 410 410 410 205 2050 1025 42293 3075 

Present (case 2) 285 490 490 490 490 285 2530 1025 42293 3555 
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Figure 5.25. Relative eigenvalue errors in the cable-stayed bridge problem ( 6sN ). 
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Figure 5.26. MAC for reduced system by the present method in the cable-stayed bridge problem ( 6sN ): (a) 

case 1, (b) case 2. 

(a)

(b)
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Chapter 6. Conclusions 

 

This dissertation focused on developing the new model reduction methods with free-interface 

substructuring. The developed model reduction methods have the following advantages: (1) Ensure the 

substructural independence. (2) We do not need to repeat the reduction procedure for each assembly stage. (4) 

The free-interface condition can easily consider the experimentally measured dynamic behavior of the 

substructure. (5) It can be easily applied to the non-matching mesh condition or various interface boundary 

conditions. In this dissertation, the new CMS method by improving the accuracy of dual Craig-Bampton (DCB) 

method, the error estimation method for the DCB method, and the dynamic condensation method with fully 

decoupled substructuring were proposed. 

 

First, we proposed a new CMS method by improving the DCB method. The formulation was derived by 

considering the second order effect of residual substructural modes. The transformation matrix of the original 

DCB method was enhanced by using the additional dynamic terms, and the resulting additional interface 

coordinates in the reduced system was eliminated by applying the concept of SEREP. An important feature of 

the improved DCB method lies in the fact that the accuracy of reduced models is remarkably improved and 

negative eigenvalues are avoided in lower modes. Through various numerical examples, we demonstrated 

accuracy and computational efficiency of the improved DCB method compared to the original DCB method. 

 

Second, we proposed an error estimation method to accurately estimate the relative eigenvalue errors of 

reduced model by the DCB method. To develop the accurate error estimator for the DCB method, the second 

order effect of residual substructural modes was considered as the second order term of residual flexibility 

matrix for each substructure. Through various numerical examples, we demonstrated the performance of the 

proposed error estimation method. By using accurately estimated error, we showed that the approximated 

eigenvalues by the DCB method could be corrected with lower bound of errors. 

 

Finally, we proposed a dynamic condensation method by using the free-interface substructuring algorithm. 

We implement the formulation of the IRS method to the FE model of substructure. In the present method, it is 

possible to independently perform the procedure from construction to reduction of each substructure. Since we 

considered the substructuring, we could efficiently reduce the large structural FE model that cannot be handled 

by the original IRS method. An important feature of the present method is that it can construct a reduced model 
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with considerable efficiency with maintaining the similar accuracy of original IRS method, and can be applied 

to non-matching mesh conditions and complex substructure boundary conditions. Through various numerical 

examples, we demonstrated accuracy and computational efficiency of the present method compared to the 

original IRS method. 

 

In future work, for the proposed model reduction methods in Chapter 3 and 5, it would be valuable to 

develop an optimized parallel computation algorithm using multi-processes for the present method to deal with 

FE models with a large number of substructures and DOFs. Using the substructural independence, a hybrid 

model reduction method can be developed that uses both proposed methods (CMS and DOF based reduction) 

selectively for each substructure, and it is expected that the drawbacks of the two methods can be complemented. 

We expect that the new method is an attractive solution for constructing accurate reduced models for 

experimental-FE model correlation, FE model updating, and optimizations. Especially, the Lagrange multiplier 

based finite element modeling is applied for the analyses of multi-physics and multi-material structures. 

Therefore, the developed method is expected to be a breakthrough not only for conventional model reduction 

but also for the efficient analysis of complex physical phenomena. 

 

For the error estimation method in Chapter 4, accurate error estimation is expected to be able to satisfy the 

solution accuracy effectively in application studies using the reduced model with the DCB method. In future 

work, it would be also valuable to develop an error estimator for the eigenvectors. If eigenvalues and 

eigenvectors can be estimated and further corrected, it is expected to be applied to the development of novel 

mode selection method for various CMS methods. 
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