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ABSTRACT

In this paper, we improve the Craig-Bampton (CB) method, one of most widely used component mode synthesis
(CMS) methods. Considering the higher-order effect of residual modes that are simply truncated in the CB
method, a new transformation matrix is developed. Using the transformation matrix in the CB method (higher-
order CB method: HCB), the original finite element model can be more accurately reduced. In the formulation,
unknown eigenvalues are considered as additional generalized coordinates, which can be eliminated using
SEREP (system equivalent reduction expansion process). We here present the formulation of the higher-order

CB method and demonstrate its excellent performance through various examples.

Keywords: Structural dynamics; Finite element method; Model reduction; Component mode synthesis; Craig-

Bampton method
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Chapter 1. Introduction

In structural dynamics, finite element (FE) method has been widely used to analysis dynamic response. Along
with enormous improvement of computer modeling technologies, the FE model has been rapidly larger and
complicated. For this reason, it is desirable to develop methods for analyzing and reducing substructures of a FE
model. Such methods have been known as dynamic condensation, which is based on DOFs selection, and com-

ponent mode synthesis (CMS), which is based on modes selection.

In dynamic condensation, the DOFs of global (original) FE model is divided into two parts, “master” DOFs to
be retained and “slave” DOFs to be eliminated. The fundamental assumption of dynamic condensa-tion is that
the master DOFs dominate the slave DOFs. In other words, it is possible that the global behavior can be approx-
imated by using master DOFs which is only small portion of total DOFs. In 1965, Guyan [1] and Iron [2] first
proposed the dynamic condensation method, which is generally called Guyan reduction. Since then, various
dynamic condensation methods have been developed such as improved reduced system (IRS) [3], system
equivalent reduction expansion process (SEREP) [4]. Recent studies have focused on development of iterative

procedure such as iterated-IRS (IIRS) [5].

In component mode synthesis (CMS), the global FE model is partitioned into several substructures by bounda-
ry-interface treatments. Using modal analysis, each substructure can be approximated by its dominant substruc-
tural modes which is small portion of total modes. By assembling dominant substructural modes and boundary
interface, we can obtain reduced FE model. After Hurty’s pioneering works in 1965 [8], a number of CMS
methods have been developed. An important milestone is the Craig and Bampton’s work [9], in which a simple
and effective CMS method, namely the CB method, was proposed. Then, a various of CMS methods were in-

troduced by Craig and Chang, Benfield, MacNeal, Rubin and Rixen [10-23].

Among various CMS and dynamic condensation methods and developed, the CB method has been widely

adopted in many engineering applications. This is because CB method has several advantages that it leads to



easier formulation, high accuracy, high reliability and computational efficiency [15]. In the CB method, each
substructure and its component modes are obtained by fixing all its boundary degrees of freedom (DOFs) and it
is assumed that each substructural displacement can be approximated by a significantly smaller set of compo-

nent modes, which is obtained by truncating high modes, or residual modes [6].

Recently, the CB method was significantly improved by Kim and Lee [20]. The new method is named the en-
hanced CB method (ECB). The key idea is to consider the first-order effect of residual flexibility, which is com-
plement set of residual modes [6,19,20], in the transformation matrix. In the ECB formulation, residual flexibil-
ity is represented by Taylor expansion which has unknown eigenvalues. Importantly, the unknown eigenvalues
are approximated by adopting O’Callahan’s idea [3]. Then, a question arises. What happens if the second-,

third-, or higher-order effect of residual modes are considered?

In this study, our focus is on the consideration of the higher-order effect of residual flexibility, leading to im-
prove the accuracy of the CB method. In the ECB method, unknown eigenvalues of first-order residual flexibil-
ity are approximated using O’Callahan’s idea; however, it is not easy to handle unknown eigenvalues of higher-
order residual flexibilities using O’Callahan’s idea. Thus, we propose a new method to handle with unknown
eigenvalues of higher-order terms. The new method is named the higher-order CB method (HCB). In the HCB
method, generalized coordinates are newly defined, which contains unknown eigenvalues, and the higher-order
effect of residual flexibility, of which variables are all known, is consider in the transformation matrix. The gen-

eralized coordinates which contains unknown eigenvalues are eliminated by SEREP.

In Chapter 2 and Chapter 3, we briefly review the dynamic condensation methods and CMS methods. In Chap-
ter 4, we proposed a new CMS method by improving the CB method (HCB). The performance of HCB method
is verified through various numerical examples: rectangular plate, cylindrical solid, cylindrical panel and hyper-

boloid shell problems.



Chapter 2. Dynamic condensation

2.1 General description

Dynamic equations of motion for free vibration analysis can be represented by
M i, +K,u, =0 (2.1)
where I\/Ig and Kg are mass and stiffness matrices, respectively, and u, is the displacement vector.

M, , K, and u, can be partitioned as

ME — MT y Kg - T U — ) 2.2
K ) g ( )

where subscript g, a, d and ¢ denote global (exact), activated, deleted and coupled quantities corresponding to
their DOFs. Then the generalized eigenvalue problem is

Kg{(pg}j :(;Lg)ng{(Pg}j’ i=1 21"'1Ngv (2.3)
where (4,); and {@,}; are the j™ global eigenvalue and eigenvector, respectively, and N, is the

number of DOFs in the global structure.

—>

_>X

Fig. 2.1. DOFs selection in a rectangular plate problem: red points are activated DOFs and the other points are

deleted DOFs



In structural dynamics, the eigenvalues and eigenvectors are interpreted as natural frequency and corresponding
mode shape. Note that each eigenvector has a unique mode shape but arbitrary amplitude. Thus, it is convenient
to normalize the eigenvectors with respect to mass as follows:

{0, M {o}, =6 for i and j=1,2,---,N (2.4a)

g L
{(pg}iT Ko}, =(4,);0; for i and j=1,2,---, N, (2.4b)
where &; is Kronecker delta (&; =1 if i = j, otherwise 0 = 0). Eq. (2.4a) and Eq. (2.4b) are also called

mass-orthonormality and stiffness-orthogonality, respectively.

Using the eigenvectors, the global displacement U g is represented by
u, =®.,q,, (2.5a)
(I)g z[{q)g}l {(Pg}z {(pg}Ng]’ (25b)

where d)g and q, are the global transformation matrix and its generalized coordinate vector, respectively.

In dynamic condensation, global DOFs are divide into two parts, activated DOFs to be retained and deleted
DOFs to be eliminated. Thus, the generalized eigenvalue problem can be reduced as

K.A{@.}; = ()M {@.}; for j=12-N,, (2.6)
where (/Ta) ; and {@,}; are the j™ approximated eigenvalue and eigenvector, respectively, and N, is
the number of DOFs in the reduced structure. Here, m denotes master quantities corresponding to master DOFs

and an overbar ( ) denotes approximated quantities.

Finally, using the approximated eigenvectors, the global displacement U g is approximated by

u,~U, = .., (2.7a)
6al = [ﬁa}l ﬁa}z “' Wa}Na] ! (27b)

where Ea and (), are the reduced transformation matrix and its generalized coordinate vector, respectively.



2.2 Guyan reduction

In Guyan reduction, the transformation matrix for dynamic condensation was developed based on the static
analysis [1]. By neglecting the mass matrix in Eq. (2.1), the static equations of motion can be obtained by

Kyu, =0, (2.8)
K, = Ka K u, = Ha 2.8b
IIKD K| uy (280)

From the second row in Eq. (2.8), we can obtain following relation
T
K.u, +K,u, =0, (2.9a)

u, =-K;'Klu,. (2.9b)

By substituting Eq. (2.9b) into Eq. (2.8a) and neglecting the deleted DOFs,

u, =~ U =T.u,, (2.10a)

— I
Ts {—K;lKJ’ (2.10b)

where TG is the transformation matrix of Guyan reduction. Here, subscript G denotes the quantities corre-

sponding to Guyan transformation.

Using the transformation matrix TG , the reduced model obtained by

Mg =TgM,Tg. K, :TGTKQTG, (2.11)

where Mg and K are the reduced component mass and stiffness matrices, respectively.

Using the results of Eq. (2.11), the reduced eigenvalue problem can be obtained by
KG{6G}j :(;"G)jMG{$G}j for j=1,2,---,N,, (2.12)
where (/TG) ; and {@g}; arethe j™ approximated eigenvalue and eigenvector, respectively, and N, is

the number of activated DOFs, which is the size of the reduced system.



Finally, using the approximated eigenvectors, the global displacement U g is approximated by
U, = Ug =®.q, (2.13a)
6@ = [{6G}1 {66}2 e {ﬁG}Na ] ) (2.13h)

where 5@ and Qg are the reduced transformation matrix and its generalized coordinate vector in Guyan

reduction, respectively.



2.3 Improved reduced system (IRS)

In IRS reduction, the transformation matrix for dynamic condensation was developed based on the dynamic

analysis [3]. From Eq. (2.2) and Eq. (2.3), the partitioned eigenvalue problem of global structure can be written

Ka Kc ua =1 l\/Ia Mc ua 214
KT K, g =M ™y J|u, ) 219

From the second row in Eq. (2.14), the following relation can be obtained by

by

Kiu, +Kyuy =4, [M{u, + M,u,], (2.15a)

ug =[Ky = 4,M 1 [A,M{ -K[]u,. (2.15b)

By substituting Eq. (2.15b) into Eq. (2.14a) and neglecting the deleted DOFs,
[K,-A4,M, —[K, - A,M][K, - 4,M T [K] - 24,M1lu, =0. (2.16)
Note that Eq. (2.16) is the reduced eigenvalue problem which has exact solution. However, it is difficult to solve

the Eqg. (2.16) because of unknown eigenvalue ﬂg .

To handle /Ig easily, inverse term in Eq. (2.16) can be expanded as
Ky - /19Md]’l = K;l + /”th;lMngl + O(/lé) + O(/I‘;) +eee (2.17)

By substituting Eq. (2.17) into Eq. (2.15b) and neglecting higher order terms of /1g , U, can be approximated

by
u, ~ —K;'’K{u, + 4, [K'M{ - KM KK u,. (2.18)

O’callahan [3] proposed that /19 can be approximated by the component matrices of Guyan reduction.

AU, & AU, = MK U, . (2.19)



By substituting Eq. (2.19) into Eq. (2.18), the global displacement u, can be approximated by

U, = U, = TpgsU,, (2.20a)
= —— |- 2.20
IRS 1T IV -1 1T -1
-K, K, +[K; M, -K; M, KK, IM; K,
Using the transformation matrix Tle , the reduced model obtained by
— = - — = —
Kirs = TIRSKgTIRS s Migs = TrsM gTIRS' (2.21)

where M s and R,RS are the reduced component mass and stiffness matrices, respectively.

Reduced eigenvalue problem can be obtained by
R|Rs{6|Rs}j :(ZRs)jmle{6|Rs}j for j=1,2,--, N,, (2.22)
where (A;nq) ; and {@ps}; are the j™ approximated eigenvalue and eigenvector, respectively, and N

is the number of DOFs in the reduced structure.

Finally, using the approximated eigenvectors, the global displacement U g is approximated by

Ug ~ Upgs zamsﬁms' (2.23a)
ale ={orsh {Orsk - {alRS}Na]' (2.23b)

where E,RS and Qg5 are the reduced transformation matrix and its generalized coordinate vector in IRS

reduction, respectively.



2.4 System equivalent reduction expansion process (SEREP)

From the Eq. (2.5a) and Eq. (2.5b), the global displacement u, can be approximated by
u, =®,q,, (2.243)
(I)g :[{(pg}l {(pg}Nm]' (224b)
where 69 and ﬁg are the approximated transformation matrix and its generalized coordinate vector, re-

spectively, and N denote the number of modal vectors. Note that columns of 69 are linearly independent

and therefore, rank of 69 is N, .

In SEREP reduction [4], u, and 69 are partitioned into two parts, activated and deleted.

u,| —~ |®@,
u, :{Ud}, ) {@] (2.25)

where U, and Ea are the activated displacement and transformation matrix, respectively, and U, and

Ed are the deleted displacement and transformation matrix, respectively.

From Eq. (2.24a) and Eq. (2.25), the activated displacement U, can be obtained by
u,=®,7,. (2.26)
Note that generally N, is not same with N and therefore Ea usually is not a square matrix. For this
reason, to solve Eq. (2.26), generalized inverse of Ea is required. There are two case of generalized inverse
corresponding to its size.
O =[®®,]"'®. if N,>N_, (2.27a)
O =@ [® D] if N,<N_. (2.27b)

In most practical application, N, is larger than N, and therefore, hereafter, we will only handle with the

a

case of Eq. (2.27a).

Using Eq. (2.27a) in Eq. (2.26), following relation is obtained

qg =@ ginvu

a a‘

(2.28)



By substituting Eq. (2.28) into Eq. (2.24a), following relation is obtained

Uy = TserepUs, (2.29)
. o ) aginv
Teerep = (_‘I)g (I)agan — |:6aaa;inv:| , (2.29b)
d*a

where TSEREP is the transformation matrix of SEREP.

Using the transformation matrix TSEREP , the reduced model obtained by

=7 — — =7 —
K SEREP — TSEREP K g TSEREP ! M SEREP — -I_SEREPI\/I g TSEREP ! (230)

where  Mgrep and Kpop are the reduced component mass and stiffness matrices, respectively.

Using the results in Eq. (2.30), reduced eigenvalue problem can be obtained by

KSEREP{ﬁsEREP}j = (X'SEREP)j MSEREP{ﬁsEREP}j for j=12,---,N,, (2.31)
where (/TSEREP)J- and WSEREP}J- are the jth approximated eigenvalue and eigenvector, respectively, and

N_ s the number of DOFs in the reduced structure.

a

Finally, using the approximated eigenvectors, the global displacement U g is approximated by

Uy = Usgpep = D rep Oserep s (2.32a)
Drep Z[WSEREP}l WSEREP}Z WSEREP}Na]’ (2.32b)
where ESEREP and Qgerep are the reduced transformation matrix and its generalized coordinate vector in

IRS reduction, respectively.

Note that unlike other reduction methods, transformation of SEREP has no accuracy loss. In other words, ei-
genvalues of N, system in Eq. (2.22a) are exactly same with eigenvalues, which are corresponding to activat-
ed DOFs, of N, system in Eq. (2.14a). Thus, following relation are obtained as

U, = Peepep0y . (2.33a)

D, =D, . (2.33b)

a

-10 -



Chapter 3. Component mode synthesis

3.1 General description

Dynamic equations of motion for free vibration analysis can be represented by
M, i, +K,u, =0, (3.1)

where l\/Ig and Kg are mass and stiffness matrices, respectively, U, is the displacement vector. Here,

9

subscript g denotes global (exact) quantities.

In CMS methods, global structure is partitioned into several substructures and the partitioned M g Kg and
u, can be represented as
M(l) 0 M(l)
M, M, S :
M,=| M, = " , M = |, (3.2a)
M: M, ) )
0 M, M,
1 1
K K K 0 K
S C . .
Kg :{KT K } K, = . Ko=) s ] (3.2b)
c b k k
0 K K
u ugl)
ug:{ 5}, u =< : ¢ for k=12,---, N, (3.2¢)
Uy (k)
uS

where Mgk) and ng) are mass and stiffness matrices of k" substructure, respectively, ugk) is the dis-
placement vector of k™ substructure, and N, is the number of substructures. Here, subscript s, b and ¢ de-

note structural, boundary and coupled quantities, respectively.

The generalized eigenvalue problems of each substructure are defined by
k K K) pp (K k - k
Ko} = (4)1MPLo 1 for j=12,- N and k=12,-N,,  (33)
(k) (k) it . . th .
where (4,)}” and {@.};” arethe | eigenvalue and eigenvector in k™ substructure, respectively, and

Nék) is the number of dominant eigenvalues in k" substructure.

-11 -
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Fig. 3.1. Partitioning procedures in Craig-Bampton method: (a) global FE model (b) partitioned FE models (c)

fixed-interface boundary treatment

In structural dynamics, the substructural eigenvalues and eigenvectors are interpreted as substructural natural
frequency and corresponding mode shape. Note that each eigenvector has a unique mode shape but arbitrary

amplitude. Thus, it is convenient to normalize the eigenvectors with respect to mass as follows:

{o'H M@}, =6, for i and j=1,2,---,N{, k=12 N, (3.4a)

-12 -



@Y KO, = (29),6, for 1 and =12 N®, k=12, N, @ab)

where & is Kronecker delta (J; =1 if I = ], otherwise 0; =0). Eq. (3.6a) and Eq. (3.6b) are also called

mass-orthonormality and stiffness-orthogonality, respectively.

In CMS methods, using the substructural eigenvalues and eigenvectors, global displacement vector u, can be

approximated by

u, ~u, =®,q, (3.5)

where (I)g and ﬁg are the reduced transformation matrix and its generalized coordinated vectors, respec-

tively.

Finally, using 69 , reduced equations of motion is obtained by
M,q, + K T, =0, (3.60)
— = — = =T, =
M,=®;M @ K =0 K @, (3.60)

where M 9 and Kg are the reduced mass and stiffness matrices, respectively.

-13 -



3.2 Craig-Bampton (CB) method

From Eqg. (3.1), the global eigenvalue problem is defined

Ko}, =4,M{o,}; forj=12-- N, (3.7)
where /lj and {(pg}j are the global eigenvalue and eigenvector, respectively, and Ng is the number of
DOFs in the global FE model. In structural dynamics, the eigenvalue and eigenvector can be interpreted as a

natural frequency and corresponding mode shape, respectively.

Using the eigenvectors in Eq. (3.8), the global displacement vector U, is represented as

U, =@yq, (3.8a)

®, =Ho,} {0}, - {oh ] (3.80)
q;
.

q,=1 - . (3.80)
Ay

g

In the CB method [9], the global displacement vector u, is represented as

Uy, =TegUcg., (3.92)
T q
Te=| ° | Ug=3 "t 3.9b
T as

where T and Ugg are the global transformation matrix and its generalized coordinate, ¢, and U, are
the structural generalized coordinate vector and the boundary displacement vector, respectively, and @ and

¥ _ are the structural eigenvector matrix and the constraint modes matrix, respectively. Here, the subscript

c

( )CB denotes the partitioned quantities corresponding to CB method.

The structural eigenvector matrix @ is composed of the substructural eigenvector matrices (I)gk) in block
diagonal matrix form. The substructural eigenvector matrices (I)gk) can be determined by substructural eigen-

value problems as follows:

-14 -



D, = for k=1,2,---,N_, (3.10a)
0 oY

KO~ () PMO e 3 =0 for j=12,-,NY, (3.10b)
where N, is the number of substructures and Ns(k) is the number of deformable modes in the k™ sub-
structure, and (ls)(jk) and {(ps}(jk) are the jth eigenvalue and eigenvector in k™ substructure, respec-
tively.

%" in block

The constraint mode matrix ¥ is composed of the substructural constraint mode matrices ¥
column matrix form. The substructural constraint mode matrices ‘I’gk) can be determined by substructural

inverse procedure,

\I;(l)

¥Y.=| : | for k=12,---, N, (3.11a)
\Il(k)
WO - (KWK, (3.11b)

where ng) is a stiffness matrix of k™ substructure and K. is a coupled stiffness matrix of global struc-

ture.

A fundamental assumption of the CB method is that the mode shape of the global FE model can be approximat-
ed by a significantly smaller set of mode shapes corresponding to low frequency. The structural eigenvector
matrix @, can be decomposed into the dominant eigenvector matrix @, to be retained and the residual ei-

genvector matrix @ to be neglected,

dq
q,

S

u, =®.q, +%¥.u, =, (I)r]JL }+‘I’Cub, (3.12)

where (4 and Q, are generalized coordinate vectors corresponding to @, and @, respectively. Here,

r!

the subscripts d and r denote the dominant and residual quantities.

As neglecting the residual eigenvector matrix @, in the Eq. (3.12), the global displacement vector u, can

be approximated by

-15 -



U, ~U, = TgUcg, (3.13a)

= [® Y] _  [a
TCB=[0d IJ, uCBz{u‘:}, (3.13b)

where TCB and Ugg are the reduced transformation matrix and the its generalized coordinate vector, respec-
tively, and Ug is the approximated global displacement. Here, overbar (_) denotes the approximated quanti-
ties. Note that the residual eigenvector matrix was simply truncated without any consideration in the Eq. (3.13a)

and Eq. (3.13b).

Using TCB in Eq. (3.13), we can obtain the reduced equations of motion for partitioned structure,

MUq + Kl =0, (3.14a)
MCB :TCTBMQTCB' KCB :T(;FBKQTCB’ (3.14b)

where MCB and KCB are the reduced mass and stiffness matrices, respectively, and U, is the reduced

displacement vector.

Using Mg and K g inEq. (3.14b), the reduced eigenvalue problem can be represented as

[KCB _(/TCB)J'MCB]{@CB}J‘ =0 for j=1,2,--, Ncgy (3.15)

where (/TCB)J- and{@CB}j is the jth approximated eigenvalue and eigenvector, respectively, and NCB is

the number of DOFs in the reduced model of CB method.
Using the eigenvectors in Eq. (3.15), the global displacement vector u, can be approximated by as

Uy = Ugg = Pcplcs (3.16)

where ECB and Qg are the reduced eigenvector matrix and its generalized coordinate vector, respectively.

-16 -



3.3 Enhanced Craig-Bampton (ECB) method

From Eg. (3.12), the global displacement U g can be exactly represented as

U, = TegUcs (3.17a)
o, O VY, A

Tes = 0 0 1, v Ueg =14, (3.17b)
ub

where T.; and Ugg are the global transformation matrix and its generalized coordinate vector.

Using T inEqg. (3.17), we can obtain the equations of motion for global structure

d2
|:W MCB + KCB :|UCB = 0 y (318&)
Me =TEM T, Ko = TeK Tes (3.18b)

where M, and K_; are global component mass and stiffness matrices, and the components of Eq.

(3.18b) and Eg. (3.18c) are defined by

For harmonic response (d ?( )/d'[2 =—1), Eq. (3.18a) can be rewritten as

Ay — Al 0 — @M. |(q,
0 A —Al, —A®@'M_ [{q, +=0 (3.19)
—IMI®, M@, K,-IM, ||u,

where the components of Eq. (3.19) are defined by

I, =M ®,, | =0 M P, (3.20a)

Ay =P KD, A, =PK D, (3.20b)
M, =[M,-MKK_], (3.200)

M, =M, +¥M_+MI¥_+¥ M V¥, (3.20d)
K, =K, -KIKK.. (3.20¢)

Note that Eq. (3.20a) and Eq. (3.20b) denote the mass-orthonormality and the stiffness-orthogonality of struc-

tural eigenvectors, respectively.
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From the second row in Eq. (3.19), we can obtain following relation as
[A, -A1,]q, -A® M u, =0, (3.21a)
q, =A[A, A1, '@ M u, . (3.21b)

By substituting Eq. (3.21b) into Eq. (3.17a), U, can be represented as
u, =®@,q, + YU, + A0 [A, - A, O M. u, . (3.22)

Note that it is difficult to solve Eq. (3.22) because of unknown eigenvalue A .

Using Taylor’s series, the inverse term of Eq. (3.22) can be expanded as
DA -U]'® =®A'D + 1O AD] +--, (3.23)
and then, by substituting the first term of Eq. (3.23) into Eq. (3.22), U, can be approximated by
u, ~®,q, +¥ U, + A0 A OTM U, . (3.24)
Note that the first and second terms of Eq. (3.24) is exactly same with those of Eq. (3.12) in CB method and the

third term of Eq. (3.24) has unknown eigenvalue A .

Kim and Lee [20] proposed that A can be approximated by O’callahan’s approach [3], which was used to

improve Guyan reduction. From Eq. (3.14a), following relation can be obtained by

<

AU, = MK, . (3.25)

By substituting Eq. (3.25) into Eq. (3.24), u, can be approximated by
Ug ~ Uy = TeeglUcs (3.263)
Tecg =T + T, (3.26b)

T _ 0 (I)rA;l(DI[_MsKglKC-FMC]

=10 0 MK, (3.26¢)

where TECB is the enhanced transformation matrix and Tr is the residual transformation matrix which was

proposed by Kim and Lee [20]. Note that the partitioned coordinate in ECB method is same with that of original

CB method.
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Using TECB in Eq. (3.26¢), we can obtain the reduced equations of motion for partitioned structure,
MECBU_.CB + KECBUCB =0, (3.27a)
— = — — = —
Meeg = TeesM g Tecsr Kees = TeesK g Tecs s (3.27b)

where MECB and KECB are the reduced mass and stiffness matrices, respectively, and U.g is the reduced

displacement vector.

Using MECB and KECB in Eq. (3.27h), the reduced eigenvalue problem can be represented as

[KECB _(IECB)jMECB]{aECB}j =0 for j=12,--, NECB ' (3.28)

where (/TECB) i and{Qc} j isthe jth approximated eigenvalue and eigenvector, respectively, and N g

is the number of DOFs in the reduced model of ECB method.

Using the eigenvectors in Eq. (3.28), the global displacement vector u, can be approximated by
Uy = Ugcg = PecpUecs (3.29)
where EECB and Qg are the reduced eigenvector matrix and its generalized coordinate vector, respective-

ly.
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Chapter 4. Higher-order Craig-Bampton method

4.1 Formulation

From the Eq. (3.17a) and Eqg. (3.17b), the global displacement vector u, can be rewritten as

u, =Ty, (4.13)

T O A L B u—qd 4.1b

"o, [ [0 o 1, O_jr' (4.1b)
b

where T, is the global transformation matrix, which structural eigenvector matrix can be decomposed into

two parts, dominant and residual.

From the inverse term of Eq. (3.22), we can define the residual flexibility F as
F=®[A, -l ['"®] =F + AF, +---+ 1"'F, (4.2a)
N T
F =0 A0, (4.2b)

where Eq. (4.2a) is expanded by Taylor series and F_ is the n™ order residual flexibility.

n
By substituting Eq. (4.2a) into Eq. (3.22), U, can be represented as

u,=®,q,+¥.u, +0Omn, +---+0,n, for k=12,--, 00 (4.33)

0, =FM, ., 1 =AU, (4.3b)

where @, and m, arethe k™ order residual mode matrix and its generalized coordinate vector, respective-

ly. Note that m, is an additional coordinate vector containing the unknown eigenvalue (4).

As mentioned previously, ®, has been normalized with respect to M. On the other hands, ©, has arbi-
trary amplitude without normalization. Thus, ®, also need a normalization process, otherwise ©, may
cause the transformation matrix badly scaled (®,,¥ . >> ©,). It may be desirable to normalize each column

using its 2-norm [24,25].
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0, =0,G (4.43)

0.3, 0
o],

0 Ko,

where G, is a weighting matrix for @, and {0, }; isthe j™ columnof ©, .

G, = (4.4b)

2]

In Eq. (4.3a), considering to the n™ order residual flexibility matrix F,, substructural displacement vector

U, isapproximated as

u ~®.q,+¥.u, +(:)1n1 +---+(:)n1|n (4.5)

S

where Uy is approximated by the n™ order residual flexibility.

Using Eq. (4.5), reduced equations of motion with n™ order residual flexibility can be obtained by

u, =u, =Tu, (4.6a)
44
1A - Uy
T o| P Fe O O I (4.6b)
10 1,10 ol " | '
M,

where T, and U, are the reduced transformation matrix with n" order residual flexibility and its general-

ized coordinate, respectively. Here, subscript n denotes the n™ order. Note that Eq. (4.6b) without residual
flexibility is exactly same with Eq. (3.13b). In other words, HCB method with 0" order residual flexibility

(HCB-0) denotes the original CB method.

Using T, inEq. (21), we can obtain the reduced equation of motion as

MU +K T =0, (4.72)
M, =TIM, T, K, =T'K,T,, (4.7b)

where Mn and Kn are the reduced mass and stiffness matrices, respectively. Note that the reduced model

has the additional generalized coordinates m,,---,M,, -
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The additional coordinates can be eliminated by SEREP [4], which is a DOFs-based reduction method without
accuracy loss. Using SEREP, the reduced system in Eq. (4.7) can be reduced again, of which size is same with

that of reduced system in Eq. (3.14).

From Eqg. (4.7b), the following eigenvalue problem is obtained by

Rn{6n}j :(In)jmn{@n}j for J :11 2’“" Nn' (4-8)

Using the results in Eq. (4.8), eigenvector matrix is defined by

q)n = [{6n}1 {$n}2 U {¢n}ﬁo i {6n}ﬁo+1 T {6n}ﬁn] ) (4.9
where (4,) ; and {@,}; arethe eigenvalue and eigenvector, respectively.

Considering to the Noth modes in @, we can reduce the transformation matrix T with same matrix size
with T, (N, x N, matrix) as follows:

T,=T.®, (4.10)

where 'T'

o 18 the transformation matrix in the HCB method, and its matrix size is N x NO.

Using 'T'n in Eq. (4.10), the reduced matrices of the HCB method is obtained by
M,=T/M,T,, K,=T/K,T,, (4.11)

in which |\~/|n and Rn are Noxﬁo matrices.

Finally, the reduced eigenvalue problem in HCB method is given by
Ko (@) =AM, (@), for i=12-N, (4.12)

where /T. and (6)I are the approximated eigenvalue and eigenvectors, respectively.

A key idea of the present derivation is considering the residual flexibility to improve the accuracy, dealing with
unknown eigenvalue to make the components of transformation matrix identified and eliminating additional

coordinates to reduce the size of system. Finally, the reduced system is more accurate without increasing size.
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If increasing the order of residual flexibility, the reduced system is more accurate. However, it may take more
computational cost. In practical aspect, the first and second order of residual flexibility (HCB-1, HCB-2) are

enough to get an improved system. Because HCB-1 and HCB-2 have better accuracy than CB and ECB without

increasing computational cost. This issue will be discussed in next sections.
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4.2 Numerical Examples

In this section, we compare the performance of present method (HCB-1, HCB-2) with conventional method
(CB, ECB). Three structural problems are considered: rectangular plate, cylindrical solid, hyperboloid shell
problems. Each problem is implemented by four methods using MATLAB. The frequency cut-off mode selec-
tion method is used to select the dominant eigenvectors, and the following relative eigenvalue error is used to

measure the accuracy of four methods.

& =11 (4.13)

where 4 and /TJ the j™ exact eigenvalue calculated from global eigenvalue problem and approximated

eigenvalue calculated from reduced eigenvalue problem, respectively, and ¢ is the relative eigenvalue error

calculated in Eq. (4.13).

4.2.1 Rectangular plate problem

We consider a rectangular plate with free boundary. Length L is 20.0 m, width B is 12.0 m, and thickness
h is 0.08 m. Young’s modulus E is 206 GPa, Poisson’s ratio v is 0.33, density o is 7850 kg/m®. The

Ng and N, are listed in Table 4.1.

In this example, we additionally test the accuracy using the relative eigenvector errors to compare the relative

eigenvalue and eigenvector errors.

o9

¢ =1
C el lel,

(4.14)

where £, is the j" relative eigenvector error.

Fig. 4.1 presents the rectangular plate problem 1 which is modeled by thin mesh pattern and partitioned into

three substructures (N, = 3). Fig. 4.2 presents the numerical results of rectangular plate problem 1: Fig. 4.2(a)
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presents the relative eigenvalue errors and Fig. 4.2(b) presents the relative eigenvector errors. Table 4.1 presents
the number of dominant modes of the rectangular plate problem 1. Table 4.2 and Table 4.3 show the detailed

relative eigenvalue and eigenvector errors.

From Fig. 4.2, we can figure out that error tendencies are similar in relative eigenvalue and eigenvector errors,
and it means that we have been obtained the reliable results. From Fig. 4.2, Table 4.2 and Table 4.3, we can fig-
ure out their accuracy such as follows: Firstly, ECB, HCB-1 and HCB-2 have definitely improved accuracy than
CB. Secondly, ECB and HCB-1 converge into a similar accuracy, and HCB-1 has slightly better accuracy than
ECB. Thirdly, HCB-2 has similar accuracy at lower mode numbers with ECB and HCB-1, and HCB-2 has sig-

nificantly improved accuracy at higher mode number than ECB and HCB-1.

Table 4.1. The number of dominant modes for the rectangular plate problem 1.

1 2 3
NGO NE N, N,
Case (a) 13 7 5 25 1,365
Case (b) 13 7 5 25 1,365
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Fig. 4.1. Rectangular plate problem 1
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Relative eigenvalue error

—&—CB —&— HCB-1
—+—ECB —*—HCB-2

10™°

0 5 10 15 20 25
Mode number

(b)

Relative eigenvector error

—=—CB —o— HCB-1
: —+—ECB —%— HCB-2

0 5 10 15 20 25
Mode number

10"

Fig. 4.2. Numerical results for the rectangular plate problem 1: (a) relative eigenvalue errors in N, =25 and

(b) relative eigenvector errorsin N, =25.
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Table 4.2. The relative eigenvalue errors for the rectangular plate problem 1.

Present
Mode number CcB ECB
HCB-1 HCB-2
1 9.415E-05 5.002E-07 5.005E-09 2.959E-10
2 2.728E-06 8.761E-09 1.427E-10 1.950E-11
3 4.116E-04 2.025E-07 4.866E-08 8.009E-11
4 2.340E-04 2.197E-08 1.457E-08 2.506E-11
5 5.675E-04 4.546E-08 4.259E-08 9.764E-11
6 5.586E-04 1.249E-08 4.047E-08 9.358E-11
7 1.717E-04 2.960E-09 5.021E-09 1.588E-12
8 2.912E-03 1.219E-08 2.600E-07 4.676E-10
9 4.129E-03 6.508E-08 2.054E-07 2.649E-09
10 4.914E-03 1.323E-07 4.067E-07 1.798E-09
11 2.972E-03 1.375E-07 1.792E-07 2.574E-10
12 4.866E-03 9.119E-07 7.829E-07 5.316E-10
13 9.609E-04 1.271E-07 1.477E-07 2.608E-10
14 6.775E-03 1.882E-06 6.818E-07 1.666E-10
15 1.662E-02 1.236E-05 7.281E-06 1.207E-09
16 1.306E-02 2.638E-06 1.051E-06 8.905E-10
17 5.277E-03 3.759E-06 1.610E-06 9.068E-11
18 4.522E-03 1.441E-05 8.445E-06 4.373E-10
19 1.627E-02 5.038E-05 2.083E-05 1.653E-08
20 4.090E-02 1.305E-05 6.466E-06 8.669E-10
21 6.032E-02 1.227E-04 1.002E-04 1.923E-08
22 3.275E-02 7.298E-04 4.724E-04 4.747E-08
23 7.284E-02 1.260E-04 4.135E-05 3.747E-09
24 7.013E-02 1.250E-04 3.734E-05 1.310E-09
25 6.422E-02 1.694E-04 1.021E-04 2.382E-08
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Table 4.3. The relative eigenvector errors for the rectangular plate problem 1.

Present
Mode number CB ECB
HCB-1 HCB-2
1 1.429E-07 7.997E-13 3.008E-12 3.009E-14
2 4.973E-09 4.745E-13 8.260E-14 1.332E-15
3 3.101E-06 8.525E-13 1.142E-10 3.552E-13
4 2.618E-06 1.336E-12 5.134E-11 1.079E-13
5 6.055E-06 3.559E-12 1.433E-10 2.471E-13
6 9.902E-06 1.332E-11 1.975E-10 4.349E-13
7 4.110E-06 3.384E-11 4.039E-11 3.109E-14
8 9.132E-05 5.692E-10 2.261E-09 4.186E-12
9 1.583E-04 1.463E-09 2.852E-09 2.894E-11
10 2.764E-04 6.757E-09 6.373E-09 2.366E-11
11 2.088E-04 4.480E-09 3.594E-09 5.769E-12
12 5.263E-04 5.381E-08 3.666E-08 9.788E-12
13 6.677E-05 7.018E-09 4.683E-09 4.722E-12
14 9.024E-04 1.080E-07 3.000E-08 4.493E-12
15 2.870E-03 1.152E-06 6.370E-07 3.000E-11
16 2.002E-03 1.928E-07 4.611E-08 2.592E-11
17 1.221E-03 2.601E-07 9.560E-08 3.215E-12
18 1.257E-03 2.198E-06 1.173E-06 2.265E-11
19 6.781E-02 8.807E-06 3.063E-06 7.315E-10
20 4.820E-02 3.663E-06 1.618E-06 4.363E-11
21 3.495E-02 2.291E-05 2.057E-05 1.476E-09
22 5.056E-02 2.379E-04 1.297E-04 4.059E-09
23 1.611E-01 4.190E-05 5.092E-06 2.720E-10
24 1.560E-01 1.580E-05 3.584E-06 7.889E-11
25 3.241E-02 2.952E-05 1.753E-05 2.383E-09
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4.2.2 Cylindrical solid problem

We consider a cylindrical solid with free boundary. Lengths L, and L, are 0.16 m and 0.24 m, respectively,
and the radii R, R, and R, are 0.08 m, 0.12 and 0.16 m, respectively. Young’s modulus E is 76 GPa,
Poisson’s ratio v is 0.33 and density p is 2,796 kg/m®. The cylindrical solid problem is modeled using 8-
node brick elements and partitioned into four substructures (N, =4). N, and N, are listed in Table 4.4.
Fig. 4.3 presents the cylindrical problem and Fig. 4.4 presents its relative eigenvalue errors in two different cas-

€s.

Table 4.4 The number of dominant modes for the cylindrical solid problem.

@ (2) ©)] (4)
N N Ng Ny Ny N g
Case (a) 3 3 3 3 12 1,740
Case (b) 5 5 5 5 20 1,740
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Fig. 4.3. Cylindrical solid problem




Relative eigenvalue error

—=—CB —&— HCB-1
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Relative eigenvalue error
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Fig. 4.4. Numerical results for the cylindrical solid problem: (a) relative eigenvalue errors in N, =12 (b)

relative eigenvalue errorsin N, =20.

-32-



4.2.3 Cylindrical panel problem

We consider a cylindrical panel with free boundary. Length L is 0.8 m, radius R is 0.5 m, and thickness h

is 0.005 m. Young’s modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density o is 2,700 kg/m®. Each

edge is discretized in the following ratio:

L:L, Ly =16:15:15:---:1, (4.15)
The cylindrical panel is modeled by a 16x16 distorted mesh of finite shell elements and partitioned into four
substructures(N, =7). N, and N, are listed in Table 4.5. Fig. 4.5 presents the cylindrical panel problem

and Fig. 4.6 presents its the relative eigenvalue errors in two different cases.

Table 4.5. The number of dominant modes for the cylindrical panel problem.

@ @ @ 0 ) ®) ™
N d N d N d N d N d N d N d N d N 9

Case (a) 2 2 2 2 4 4 4 20 1,445

Case (b) 4 4 4 4 8 8 8 40 1,445
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Fig. 4.5. Cylindrical panel problem with a distorted mesh
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Fig. 4.6. Numerical results for the cylindrical panel problem: (a) relative eigenvalue errors in N, =20 (b)

relative eigenvalue errors in N, =40.
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4.2.4 Hyperboloid shell problem

We consider a hyperboloid shell with free boundary. Height H is 4.0 m and thickness h is 0.05 m. Young’s

modulus E is 69 GPa, Poisson’s ratio v is 0.35, and density p is 2,700 kg/m®. The mid-surface of this
shell structure is described by

X*+y*=2+12% z€[-22], (4.16)
The hyperboloid shell problem is modeled using 4-node MITC shell elements and partitioned into four sub-
structures (N, =8). N, and N, are listed in Table 4.6. Fig. 4.7 presents the cylindrical problem and Fig.

4.8 presents its relative eigenvalue errors in two different cases.

Table 4.6. The number of dominant modes for the hyperboloid shell problem.

@ (2) (3) (4) (5) (6) (7) (8)
N®  N@ NP ON® ON® NP N O N® N, N

Case (a) 3 3 3 3 3 3 3 3 24 4,200

Case (b) 4 4 4 4 4 4 4 4 32 4,200
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Fig. 4.7. Hyperboloid shell problem
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Relative eigenvalue error
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Fig. 9. Numerical results for the hyperboloid shell problems: (a) relative eigenvalue errors in N, =24 (b)

relative eigenvalue errors in N, = 32.
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5. Computational cost

In this section, we test the computational cost of present methods (HCB-1, HCB-2) with conventional methods
(CB, ECB). Here, the rectangular plate problem 2 is considered, which has the same material properties with

rectangular plate problem 1. Fig. 5.1 presents the rectangular plate problem 2 which is modeled by dense mesh

pattern and partitioned into four substructures (N, =4). N, and N, are listed in Table 5.1. Fig. 5.2 pre-

sents the relative errors of rectangular plate problem 2.

To test the computational cost, we established a criterion that the relative eigenvalue errors in lower than mode

number 200 have less than 107°. Fig 5.2 shows that all methods satisfy the criterion. Note that present methods

have better accuracy in lower modes and it means that the test has been performed conservatively.
All the code implementations are done using MATLAB in a personal computer (Inter core (TM) i7-3770, 3.40
GHz CPU, 32 GB RAM). Table 5.2 present the detailed computational times and their ratio. Even though an

unfavorable condition, the present methods have a better accuracy and take a less computational time.

Table 5.1. The number of dominant modes for the rectangular plate problem 2.

N NG N NG N, N,
CB 400 400 400 400 1,200 11,285
ECB 75 75 75 75 300 11,285
HCB-1 75 75 75 75 300 11,285
HCB-2 50 50 50 50 200 11,285
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Fig. 5.1. Rectangular plate problem 2
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Fig. 5.2. Relative eigenvalue errors for the rectangular plate problem 2.
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Table 5.2. Computation cost for the rectangular plate problem 2.

Computation times

CPU time [sec] Ratio [%]
CB 242.95 100
ECB 65.06 26.77
HCB-1 78.38 32.26
HCB-2 113.92 46.89
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6. Conclusion

In this study, we developed a new component mode synthesis method by improving CB method. In HCB meth-
od, the unknown coefficients of residual flexibility were considered in generalized coordinates to make the
components of transformation matrix known. And then, undesirable coordinates which has unknown variables
were eliminated by additional transformation matrix. As a result, we obtained the new component matrices of

which accuracy is significantly improved.

If we consider the more orders of residual flexibility, then we would obtain the reduced model more precisely.
However, in practical aspects, we considered the first- and second-order residual flexibility. The improved per-

formance of HCB-1 and HCB-2 was verified through various numerical examples.

Using HCB method, global (original) structural models can be more precisely reduced, and the accuracy of re-

duced models is significantly improved. The accuracy improvement of HCB method was demonstrated through

numerical examples, and its computational cost was also investigated.

- 42 -



References

[1] Craig RR, Kurdila AJ. Fundamentals of structural dynamics. John Wiley & Sons, 2006.

[2] Bathe KJ. Finite element procedure, 2006

[2] Hurty, W. C. Dynamic analysis of structural systems using component modes. AIAA J 1965;3(4):678-685.
[3] Craig RR, Bampton MCC. Coupling of substructures for dynamic analysis. AIAA J 1968;6(7):1313-9.

[4] Benfield WA, Hruda RF. Vibration analysis of structures by component mode substitution. AIAA J
1971;9:1255-61.

[5] Rubin S. Improved component-mode representation for structural dynamic analysis. AIAA ]
1975;13(8):995-1006.

[6] Hintz RM. Analytical Methods in Component Modal Synthesis, AIAA J 1975;13(8):1007-1016.

[7] Craig RR, Hale AL. Block-Krylov component mode synthesis method for structural model reduction. AIAA
J 1988;11(6):562-70

[8] Craig RR, Substructure method in vibration. J Vib Acoust 1995;117(B):207-13.

[9] MacNeal RH, Hybrid method of component mode synthesis. Comput Struct 1971;1(4):581-601

[10] Bourquin F. Component mode synthesis and eigenvalues of second order operators: discretization and al-
gorithm. Math Model Numer Anal 1992;26(3):385-423

[11] Rixen DJ. Adual Craig-Bampton method for dynamic substructuring. J Comput Appl Math 2004;168(1-
2):383-91.

[12] Bennighof JK. Lehoucq RB. An automated multi-level substructuring method for eigenspace computation
in linear elastodynamics. SIAM J Sci Comput 2004;25(6):2084-106.

[13] Park KC, Park YH. Partitioned component mode synthesis via a flexibility approach. AIAA J
2004,;42(6):1236-45.

[14] Kim JG, Lee PS. An enhanced Craig-Bampton method. Intl J Numer Methods Eng 2015; 103:79-93.

[15] Kim JG, Boo SH, Lee PS. An enhance AMLS method and its performance. Comput Methods Appl Mech
Eng 2015;287:90-111.

[16] Baek SM. Study on the multi-level substructuring scheme and system condensation for the large-scaled

-43 -



structural dynamic analysis [Ph.D. thesis]. Department of Mechanical and Aerospace Engineering, Seoul Na-
tional University, 2012,

[17] Boo SH, Kim JG, Lee PS. A simplified error estimator for the CB method and its application to error con-
trol. Compt Struct 2016;164:53-62

[18] Lee PS, Bathe KJ. Development of MITC isotropic triangular shell finite elements. Comput Struct
2004;82(11-12):945-62.

[19] Lee PS, Bathe KJ. Development of MITC isotropic triangular shell finite elements. Comput Struct
2004;82(11-12):945-62.

[20] O’Callahan J. A procedure for an improved reduced system (IRS) model. Proceedings of the 7th Interna-
tional Modal Analysis Conference, Las Vegas, 1989:17-21.

[21] O’Callahan J, Avitabile P, Riemer R. System equivalent reduction expansion process (SEREP). Proceed-

ings of the 7th International Modal Analysis Conference, Las Vegas, 1989:29-37.

-44 -



O
12
i

FH AFE ] 7leo] vekHor e mel FrEeety o] Aad FIFas

melo]  Hap St thEstEa vk old o= el Had WA &

o
[
(i
bo
i3
ftlo
ne
rlr
S
oX,
ftlo
N
oMt
rot
Y
o
2
bo
e,
_l
EE
<
o
o
@
2
5
o
=
2
~
>
oo
i
rlr
(o,
ik
2
k)
£

S 7IHEe] HAME A A ARE FelA g4 A (Actived DOFs)$F A

A+ 5% (Deleted DOFs)Z  itstth. o] $ 2AkA| A EE &5 (Condensation)dto], &4 AH+E7F

AA Fx2E9 AsS a84°

u
rl
>
e
>
;9
J}m

sttt 1965 ol Guyan ©] 7 -3 (Static
condensation)= AIQFeE o] T = A &HZ QL S whop gfom thekst AdgtFofelA A §-H Gl

0]% 1989 Woll&= O’callahan ©] =&

vy
olo
Hy
rE
g
<
>
QD
3
o
O
o
>
o
@D
=2
(%]
=
o
=
it
2
o
C,
O
o
2
nj
o
et
Hy
B
ot
o

W= SIth 1995 W Friswell ©] WHEZ HA4AHS ARbsigla, FHTLole olo 7|wkst A7}
FgutstA AgEn Qo oAy Rdl FA4AwW #E dAdE ¢ A FArdS s

dlel 4ol st A Sl

-45 -



af

3

a=

o
pa

e, 5 9l =(Residual flexi-
i}%il

PR

o)o

=)

314

H (Component mode synthesis, CMS)2}k
[e)

3

SFA
B

A A= 0™, 1968 W Craig 2} Bampton ] 9]

=

o

=]

F20g PR T

el o
o REFZHYHIA 2

F= @
=
T

4 71Nl A

i T AN /ide 1965 1 Hurty o 2
:lL
B Ao 7

o o o
~o ﬂ T
n =
c T o.
o o E o
W = < 5
wm = 0
~ =)
o o 2
w Bog X
T ~
T W %
- Mﬂ ol
¥R oM A
H_.t ﬂ = ,_ﬂo_ﬁv
. mR
_HA_M_ ol - = MQM
I NG S
T 5 15 o o
- N
N2 o g
= —
~ = T
< o o ME %
~ o X
Lox oW T
g oo o
ol 3 ~
P oE 0N E
w0 X '
Bl s oa &
o b o W)
w 70 B =
70 M- o E | oy
ﬂu :i ~ _zrv :L
Nd ol o R ol
_,__l = wx_ z:n T
o/ SR : - No
- 5 BB w
B ™~
oS % < o
e o K op
N~ W N =

- 46 -



