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ABSTRACT 

In this paper, we improve the Craig-Bampton (CB) method, one of most widely used component mode synthesis 

(CMS) methods. Considering the higher-order effect of residual modes that are simply truncated in the CB 

method, a new transformation matrix is developed. Using the transformation matrix in the CB method (higher-

order CB method: HCB), the original finite element model can be more accurately reduced. In the formulation, 

unknown eigenvalues are considered as additional generalized coordinates, which can be eliminated using 

SEREP (system equivalent reduction expansion process). We here present the formulation of the higher-order 

CB method and demonstrate its excellent performance through various examples. 

 

Keywords: Structural dynamics; Finite element method; Model reduction; Component mode synthesis; Craig-

Bampton method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i 



 

 

Contents 
Abstract  ····························································································  ⅰ 

Contents  ····························································································  ⅱ 

List of Tables ·······················································································  ⅲ 

List of Figures ······················································································  ⅳ 

 

Chapter 1. Introduction ············································································  1 

Chapter 2. Dynamic condensation ·······························································  3 

2.1 General description ···········································································  3 

2.2 Guyan reduction ···············································································  5 

2.3 Improved reduced system (IRS) ·····························································  7 

2.4 System Equivalent Reduction Expansion Process (SEREP) ·····························  9 

Chapter 3. Component mode synthesis ························································ 11 

3.1 General description ·········································································· 11 

3.2 Craig-Bampton (CB) method ······························································· 14 

3.3 Enhanced Craig-Bampton (ECB) method ················································· 17 

Chapter 4. Higher-order Craig-Bampton method 

4.1 Formulations ·················································································· 20 

4.2 Numerical examples ········································································· 24 

4.2.1 Rectangular plate problem ······························································ 24 

4.2.2 Cylindrical solid problem ································································ 30 

4.2.3 Cylindrical panel problem ································································ 33 

4.2.4 Hyperboloid problem ····································································· 36 

Chapter 5. Computational cost ·································································· 39 

Chapter 6. Conclusion ············································································· 42 

References ··························································································· 43 

Summary (in Korean) ············································································· 45 

ii 



 

List of Tables 
 

4.1 The number of dominant modes for the rectangular plate problem 1 ·················  25 

4.2 The relative eigenvalue errors for the rectangular plate problem 1 ···················  28 

4.3 The relative eigenvector errors for the rectangular plate problem 1 ··················  29 

4.4 The number of dominant modes for the cylindrical solid problem ····················  30 

4.5 The number of dominant modes for the cylindrical panel problem ···················  33 

4.6 The number of dominant modes for the hyperboloid shell problem ··················  36 

 

5.1 The number of dominant modes for the rectangular plate problem 2 ·················  39 

5.2 Computation cost for the rectangular plate problem 2 ··································  41 

 

iii 



 

List of Figures 
 

2.1 DOFs selection in a rectangular plate problem ············································  3 

 

3.1 Partitioning procedures in Craig-Bampton method ·····································  12 

 

4.1 Rectangular plate problem 1 ·······························································  26 

4.2 Numerical results for the rectangular plate problem 1 ··································  27 

4.3 Cylindrical solid problem ···································································  31 

4.4 Numerical results for the cylindrical solid problem ·····································  32 

4.5 Cylindrical panel problem with a distorted mesh ········································  34 

4.6 Numerical results for the cylindrical panel problem ····································  35 

4.7 Hyperboloid shell problem ·································································  37 

4.8 Numerical results for the hyperboloid shell problem ···································  38 

 

5.1 Rectangular plate problem 2 ·······························································  40 

5.2 Relative eigenvalue errors for the rectangular plate problem 2 ························  40 

 

 

 

iv 



 

Chapter 1. Introduction 
 

 

In structural dynamics, finite element (FE) method has been widely used to analysis dynamic response. Along 

with enormous improvement of computer modeling technologies, the FE model has been rapidly larger and 

complicated. For this reason, it is desirable to develop methods for analyzing and reducing substructures of a FE 

model. Such methods have been known as dynamic condensation, which is based on DOFs selection, and com-

ponent mode synthesis (CMS), which is based on modes selection. 

  

In dynamic condensation, the DOFs of global (original) FE model is divided into two parts, “master” DOFs to 

be retained and “slave” DOFs to be eliminated. The fundamental assumption of dynamic condensa-tion is that 

the master DOFs dominate the slave DOFs. In other words, it is possible that the global behavior can be approx-

imated by using master DOFs which is only small portion of total DOFs. In 1965, Guyan [1] and Iron [2] first 

proposed the dynamic condensation method, which is generally called Guyan reduction. Since then, various 

dynamic condensation methods have been developed such as improved reduced system (IRS) [3], system 

equivalent reduction expansion process (SEREP) [4]. Recent studies have focused on development of iterative 

procedure such as iterated-IRS (IIRS) [5]. 

 

In component mode synthesis (CMS), the global FE model is partitioned into several substructures by bounda-

ry-interface treatments. Using modal analysis, each substructure can be approximated by its dominant substruc-

tural modes which is small portion of total modes. By assembling dominant substructural modes and boundary 

interface, we can obtain reduced FE model. After Hurty’s pioneering works in 1965 [8], a number of CMS 

methods have been developed. An important milestone is the Craig and Bampton’s work [9], in which a simple 

and effective CMS method, namely the CB method, was proposed. Then, a various of CMS methods were in-

troduced by Craig and Chang, Benfield, MacNeal, Rubin and Rixen [10-23].  

 

Among various CMS and dynamic condensation methods and developed, the CB method has been widely 

adopted in many engineering applications. This is because CB method has several advantages that it leads to 
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easier formulation, high accuracy, high reliability and computational efficiency [15]. In the CB method, each 

substructure and its component modes are obtained by fixing all its boundary degrees of freedom (DOFs) and it 

is assumed that each substructural displacement can be approximated by a significantly smaller set of compo-

nent modes, which is obtained by truncating high modes, or residual modes [6]. 

 

Recently, the CB method was significantly improved by Kim and Lee [20]. The new method is named the en-

hanced CB method (ECB). The key idea is to consider the first-order effect of residual flexibility, which is com-

plement set of residual modes [6,19,20], in the transformation matrix. In the ECB formulation, residual flexibil-

ity is represented by Taylor expansion which has unknown eigenvalues. Importantly, the unknown eigenvalues 

are approximated by adopting O’Callahan’s idea [3]. Then, a question arises. What happens if the second-, 

third-, or higher-order effect of residual modes are considered? 

 

In this study, our focus is on the consideration of the higher-order effect of residual flexibility, leading to im-

prove the accuracy of the CB method. In the ECB method, unknown eigenvalues of first-order residual flexibil-

ity are approximated using O’Callahan’s idea; however, it is not easy to handle unknown eigenvalues of higher-

order residual flexibilities using O’Callahan’s idea. Thus, we propose a new method to handle with unknown 

eigenvalues of higher-order terms. The new method is named the higher-order CB method (HCB). In the HCB 

method, generalized coordinates are newly defined, which contains unknown eigenvalues, and the higher-order 

effect of residual flexibility, of which variables are all known, is consider in the transformation matrix. The gen-

eralized coordinates which contains unknown eigenvalues are eliminated by SEREP. 

 

In Chapter 2 and Chapter 3, we briefly review the dynamic condensation methods and CMS methods. In Chap-

ter 4, we proposed a new CMS method by improving the CB method (HCB). The performance of HCB method 

is verified through various numerical examples: rectangular plate, cylindrical solid, cylindrical panel and hyper-

boloid shell problems. 
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Chapter 2. Dynamic condensation 
 

 

2.1 General description 

 

Dynamic equations of motion for free vibration analysis can be represented by 

 0uKuM =+ gggg   (2.1) 

where gM  and gK  are mass and stiffness matrices, respectively, and gu  is the displacement vector. 

gM  , gK   and gu  can be partitioned as 
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ca
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ca
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=
d

a
g u

u
u , (2.2) 

where subscript g, a, d and c denote global (exact), activated, deleted and coupled quantities corresponding to 

their DOFs. Then the generalized eigenvalue problem is  

 jggjgjgg }{)(}{ φMφK λ= , gNj ,,2,1 = , (2.3) 

where jg )(λ  and jg}{φ  are the thj  global eigenvalue and eigenvector, respectively, and gN  is the 

number of DOFs in the global structure. 

 

 

 

Fig. 2.1. DOFs selection in a rectangular plate problem: red points are activated DOFs and the other points are 

deleted DOFs 
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In structural dynamics, the eigenvalues and eigenvectors are interpreted as natural frequency and corresponding 

mode shape. Note that each eigenvector has a unique mode shape but arbitrary amplitude. Thus, it is convenient 

to normalize the eigenvectors with respect to mass as follows: 

 ijjgg
T
ig δ=}{}{ φMφ  for i  and gNj ,,2,1 = , (2.4a) 

 ijjgjgg
T
ig δλ )(}{}{ =φKφ  for i  and gNj ,,2,1 = , (2.4b) 

where ijδ  is Kronecker delta ( 1=ijδ  if ji = , otherwise 0=ijδ ). Eq. (2.4a) and Eq. (2.4b) are also called 

mass-orthonormality and stiffness-orthogonality, respectively. 

 

Using the eigenvectors, the global displacement gu  is represented by 

 ggg qΦu = , (2.5a) 

 ]}{}{}{[ 21 gNgggg φφφΦ = , (2.5b) 

where gΦ  and gq  are the global transformation matrix and its generalized coordinate vector, respectively. 

 

In dynamic condensation, global DOFs are divide into two parts, activated DOFs to be retained and deleted 

DOFs to be eliminated. Thus, the generalized eigenvalue problem can be reduced as 

 jaajajaa }{)(}{ φMφK λ=  for aNj ,,2,1 = , (2.6) 

where ja )(λ  and ja}{φ  are the thj  approximated eigenvalue and eigenvector, respectively, and aN  is 

the number of DOFs in the reduced structure. Here, m denotes master quantities corresponding to master DOFs 

and an overbar )(  denotes approximated quantities. 

 

Finally, using the approximated eigenvectors, the global displacement gu  is approximated by 

 aaag qΦuu =≈ , (2.7a) 

 ]}{}{}{[ 21 aNaaaa φφφΦ = , (2.7b) 

where aΦ  and aq  are the reduced transformation matrix and its generalized coordinate vector, respectively. 
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2.2 Guyan reduction 

 

 

In Guyan reduction, the transformation matrix for dynamic condensation was developed based on the static 

analysis [1]. By neglecting the mass matrix in Eq. (2.1), the static equations of motion can be obtained by 

 0uK =gg , (2.8a) 

 








=

d
T
c

ca
g KK

KK
K , 









=
d

a
g u

u
u . (2.8b) 

 

From the second row in Eq. (2.8), we can obtain following relation 

 0uKuK =+ dda
T
c , (2.9a) 

 a
T
cda uKKu 1−−= . (2.9b) 

 

By substituting Eq. (2.9b) into Eq. (2.8a) and neglecting the deleted DOFs, 

 aGgg uTuu =≈ , (2.10a) 

 








−

= − T
cd

G KK
I

T 1 , (2.10b) 

where GT  is the transformation matrix of Guyan reduction. Here, subscript G denotes the quantities corre-

sponding to Guyan transformation. 

 

Using the transformation matrix GT , the reduced model obtained by 

 Gg
T

GG TMTM = , Gg
T

GG TKTK = , (2.11) 

where  GM  and GK  are the reduced component mass and stiffness matrices, respectively. 

 

Using the results of Eq. (2.11), the reduced eigenvalue problem can be obtained by 

 jGGjGjGG }{)(}{ φMφK λ=  for aNj ,,2,1 = , (2.12) 

where jG )(λ  and jG}{φ  are the thj  approximated eigenvalue and eigenvector, respectively, and aN  is 

the number of activated DOFs, which is the size of the reduced system. 
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Finally, using the approximated eigenvectors, the global displacement gu  is approximated by 

 GGGg qΦuu =≈ , (2.13a) 

 ]}{}{}{[ 21 aNGGGG φφφΦ = , (2.13b) 

where GΦ  and Gq  are the reduced transformation matrix and its generalized coordinate vector in Guyan 

reduction, respectively. 
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2.3 Improved reduced system (IRS) 

 

In IRS reduction, the transformation matrix for dynamic condensation was developed based on the dynamic 

analysis [3]. From Eq. (2.2) and Eq. (2.3), the partitioned eigenvalue problem of global structure can be written 

by 

 
















=

















d

a

d
T
c

ca
g

d

a

d
T
c

ca

u
u

MM
MM

u
u

KK
KK

λ . (2.14) 

 

From the second row in Eq. (2.14), the following relation can be obtained by 

 ][ dda
T
cgdda

T
c uMuMuKuK +=+ λ , (2.15a) 

 a
T
c

T
cgdgdd uKMMKu ][][ 1 −−= − λλ . (2.15b) 

 

By substituting Eq. (2.15b) into Eq. (2.14a) and neglecting the deleted DOFs, 

 0uMKMKMKMK =−−−−− −
a

T
cg

T
cdgdcgcaga ]][]][[[ 1 λλλλ . (2.16) 

Note that Eq. (2.16) is the reduced eigenvalue problem which has exact solution. However, it is difficult to solve 

the Eq. (2.16) because of unknown eigenvalue gλ .  

 

To handle gλ  easily, inverse term in Eq. (2.16) can be expanded as 

 ++++=− −−−− )()(][ 321111
ggdddgddgd OO λλλλ KMKKMK . (2.17) 

 

By substituting Eq. (2.17) into Eq. (2.15b) and neglecting higher order terms of gλ , au  can be approximated 

by 

 a
T
caaa

T
caga

T
caa uKKMKMKuKKu ][ 1111 −−−− −+−≈ λ . (2.18) 

 

O’callahan [3] proposed that gλ  can be approximated by the component matrices of Guyan reduction. 

 aGGaGag uKMuu 1−=≈ λλ . (2.19) 
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By substituting Eq. (2.19) into Eq. (2.18), the global displacement gu  can be approximated by 

 aIRSgg uTuu =≈ , (2.20a) 

 








−+−

= −−−−−
GG

T
caaa

T
ca

T
ca

IRS KMKKMKMKKK
I

T 11111 ][
. (2.20b) 

 

Using the transformation matrix IRST , the reduced model obtained by 

 IRSg
T

IRSIRS TKTK = , IRSg
T

IRSIRS TMTM = , (2.21) 

where  IRSM  and IRSK  are the reduced component mass and stiffness matrices, respectively. 

 

Reduced eigenvalue problem can be obtained by 

 jIRSIRSjIRSjIRSIRS }{)(}{ φMφK λ=  for aNj ,,2,1 = , (2.22) 

where jIRS )(λ  and jIRS }{φ  are the thj  approximated eigenvalue and eigenvector, respectively, and aN  

is the number of DOFs in the reduced structure. 

 

Finally, using the approximated eigenvectors, the global displacement gu  is approximated by 

 IRSIRSIRSg qΦuu =≈ , (2.23a) 

 ]}{}{}{[ 21 aNIRSIRSIRSIRS φφφΦ = , (2.23b) 

where IRSΦ  and IRSq  are the reduced transformation matrix and its generalized coordinate vector in IRS 

reduction, respectively. 
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2.4 System equivalent reduction expansion process (SEREP) 

 

From the Eq. (2.5a) and Eq. (2.5b), the global displacement gu  can be approximated by 

 ggg qΦu = , (2.24a) 

 ]}{}{[ 1 mNggg φφΦ = , (2.24b) 

where gΦ  and gq  are the approximated transformation matrix and its generalized coordinate vector, re-

spectively, and mN  denote the number of modal vectors. Note that columns of gΦ  are linearly independent 

and therefore, rank of gΦ  is mN . 

 

In SEREP reduction [4], gu  and gΦ  are partitioned into two parts, activated and deleted. 

 









=
d

a
g u

u
u , 








=

d

a
g Φ

Φ
Φ , (2.25) 

where au  and aΦ  are the activated displacement and transformation matrix, respectively, and du  and 

dΦ  are the deleted displacement and transformation matrix, respectively. 

 

From Eq. (2.24a) and Eq. (2.25), the activated displacement au  can be obtained by 

 gaa qΦu = . (2.26) 

Note that generally aN  is not same with mN  and therefore aΦ  usually is not a square matrix. For this 

reason, to solve Eq. (2.26), generalized inverse of aΦ  is required.  There are two case of generalized inverse 

corresponding to its size. 

 T
aa

T
a

ginv
a ΦΦΦΦ 1][ −=  if ma NN ≥ , (2.27a) 

 1][ −= T
aa

T
a

ginv
a ΦΦΦΦ  if ma NN < . (2.27b) 

In most practical application, aN  is larger than mN  and therefore, hereafter, we will only handle with the 

case of Eq. (2.27a). 

 

Using Eq. (2.27a) in Eq. (2.26), following relation is obtained 

 a
ginv
ag uΦq = . (2.28) 

 

- 9 - 



 

By substituting Eq. (2.28) into Eq. (2.24a), following relation is obtained 

 aSEREPg uTu = , (2.29a) 

 








=≡ ginv

ad

ginv
aaginv

agSEREP ΦΦ
ΦΦ

ΦΦT , (2.29b) 

where SEREPT  is the transformation matrix of SEREP. 

 

Using the transformation matrix SEREPT , the reduced model obtained by 

 SEREPg
T

SEREPSEREP TKTK = , SEREPg
T

SEREPSEREP TMTM = , (2.30) 

where  SEREPM  and SEREPK  are the reduced component mass and stiffness matrices, respectively.  

 

Using the results in Eq. (2.30), reduced eigenvalue problem can be obtained by 

 jSEREPSEREPjSEREPjSEREPSEREP }{)(}{ φMφK λ=  for aNj ,,2,1 = , (2.31) 

where jSEREP )(λ  and jSEREP}{φ  are the thj  approximated eigenvalue and eigenvector, respectively, and 

aN  is the number of DOFs in the reduced structure. 

 

Finally, using the approximated eigenvectors, the global displacement gu  is approximated by 

 SEREPSEREPSEREPg qΦuu =≈ , (2.32a) 

 ]}{}{}{[ 21 aNSEREPSEREPSEREPSEREP φφφΦ = , (2.32b) 

where SEREPΦ  and SEREPq  are the reduced transformation matrix and its generalized coordinate vector in 

IRS reduction, respectively. 

 

Note that unlike other reduction methods, transformation of SEREP has no accuracy loss. In other words, ei-

genvalues of aN  system in Eq. (2.22a) are exactly same with eigenvalues, which are corresponding to activat-

ed DOFs, of mN  system in Eq. (2.14a). Thus, following relation are obtained as 

 gSEREPa qΦu = , (2.33a) 

 SEREPa ΦΦ = . (2.33b) 
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Chapter 3. Component mode synthesis 

 

 

3.1 General description 

 

Dynamic equations of motion for free vibration analysis can be represented by 

 0uKuM =+ gggg  , (3.1) 

where gM  and gK  are mass and stiffness matrices, respectively, gu  is the displacement vector. Here, 

subscript g denotes global (exact) quantities. 

 

In CMS methods, global structure is partitioned into several substructures and the partitioned gM , gK  and 

gu  can be represented as 
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where )(k
sM  and )(k

sK  are mass and stiffness matrices of thk  substructure, respectively, )(k
su  is the dis-

placement vector of thk  substructure, and sN  is the number of substructures. Here, subscript s, b and c de-

note structural, boundary and coupled quantities, respectively. 

 

The generalized eigenvalue problems of each substructure are defined by 

 )()()()()( }{)(}{ k
js

k
s

k
js

k
js

k
s φMφK λ=  for )(,,2,1 k

dNj =  and sNk ,,2,1 = , (3.3) 

where )()( k
jsλ  and )(}{ k

jsφ  are the thj  eigenvalue and eigenvector in thk  substructure, respectively, and 

)(k
dN  is the number of dominant eigenvalues in thk  substructure. 

- 11 - 



 

 

 

Fig. 3.1. Partitioning procedures in Craig-Bampton method: (a) global FE model (b) partitioned FE models (c) 

fixed-interface boundary treatment 

 

In structural dynamics, the substructural eigenvalues and eigenvectors are interpreted as substructural natural 

frequency and corresponding mode shape. Note that each eigenvector has a unique mode shape but arbitrary 

amplitude. Thus, it is convenient to normalize the eigenvectors with respect to mass as follows: 

 ijj
k

s
k

s
T
i

k
s δ=}{}{ )()()( φMφ  for i  and )(,,2,1 k

dNj = , sNk ,,2,1 = , (3.4a) 
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 ijj
k

sj
k

s
k

s
T
i

k
s δλ )(}{}{ )()()()( =φKφ  for i  and )(,,2,1 k

dNj = , sNk ,,2,1 = , (3.4b) 

where ijδ  is Kronecker delta ( 1=ijδ  if ji = , otherwise 0=ijδ ). Eq. (3.6a) and Eq. (3.6b) are also called 

mass-orthonormality and stiffness-orthogonality, respectively. 

 

In CMS methods, using the substructural eigenvalues and eigenvectors, global displacement vector gu  can be 

approximated by 

 gggg qΦuu =≈  (3.5) 

where gΦ  and gq  are the reduced transformation matrix and its generalized coordinated vectors, respec-

tively. 

 

Finally, using gΦ , reduced equations of motion is obtained by 

 0qKqM =+ gggg
 , (3.6a) 

 gg
T
gg ΦMΦM = , gg

T
gg ΦKΦK = , (3.6b) 

where gM  and gK  are the reduced mass and stiffness matrices, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 13 - 



 

3.2 Craig-Bampton (CB) method 

 

From Eq. (3.1), the global eigenvalue problem is defined 

 jggjjgg }{}{ φMφK λ=  gNj ,,2,1for = , (3.7) 

where jλ  and jg }{φ  are the global eigenvalue and eigenvector, respectively, and gN  is the number of 

DOFs in the global FE model. In structural dynamics, the eigenvalue and eigenvector can be interpreted as a 

natural frequency and corresponding mode shape, respectively. 

 

Using the eigenvectors in Eq. (3.8), the global displacement vector gu  is represented as 

 ggg qΦu = , (3.8a) 

 ]}{}{}{[ 21 gNgggg φφφΦ = , (3.8b) 

 





















=

gN

g

q

q
q

q

2

1

. (3.8c) 

 

In the CB method [9], the global displacement vector gu  is represented as 

 CBCBg uTu = , (3.9a) 

 








=

b

cs
CB I0

ΨΦ
T , 









=
b

s
CB u

q
u , (3.9b) 

where CBT  and CBu  are the global transformation matrix and its generalized coordinate, sq  and bu  are 

the structural generalized coordinate vector and the boundary displacement vector, respectively, and sΦ  and 

cΨ  are the structural eigenvector matrix and the constraint modes matrix, respectively. Here, the subscript 

CB)(  denotes the partitioned quantities corresponding to CB method. 

 

The structural eigenvector matrix sΦ  is composed of the substructural eigenvector matrices )(k
sΦ  in block 

diagonal matrix form. The substructural eigenvector matrices )(k
sΦ  can be determined by substructural eigen-

value problems as follows: 
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=
)(

)1(

k
s

s

s

Φ0

0Φ
Φ   for sNk ,,2,1 = , (3.10a) 

 0φMK =− )()()()( }]{)([ k
js

k
s

k
js

k
s λ  for )(,,2,1 k

sNj = , (3.10b) 

where sN  is the number of substructures and )(k
sN  is the number of deformable modes in the thk  sub-

structure, and )()( k
jsλ  and )(}{ k

jsφ  are the thj  eigenvalue and eigenvector in thk  substructure, respec-

tively. 

 

The constraint mode matrix cΨ  is composed of the substructural constraint mode matrices )(k
cΨ  in block 

column matrix form. The substructural constraint mode matrices )(k
cΨ  can be determined by substructural 

inverse procedure, 

 

















=
)(

)1(

k
c

c

c

Ψ

Ψ
Ψ   for sNk ,,2,1 = , (3.11a) 

 c
k

s
k

c KKΨ 1)()( )( −−= , (3.11b) 

where )(k
sK  is a stiffness matrix of thk  substructure and cK  is a coupled stiffness matrix of global struc-

ture. 

 

A fundamental assumption of the CB method is that the mode shape of the global FE model can be approximat-

ed by a significantly smaller set of mode shapes corresponding to low frequency. The structural eigenvector 

matrix sΦ  can be decomposed into the dominant eigenvector matrix dΦ  to be retained and the residual ei-

genvector matrix rΦ  to be neglected,  

 [ ] bc
r

d
rdbcsss uΨ

q
q

ΦΦuΨqΦu +








=+= , (3.12) 

where dq  and rq  are generalized coordinate vectors corresponding to dΦ  and rΦ , respectively. Here, 

the subscripts d and r denote the dominant and residual quantities. 

 

As neglecting the residual eigenvector matrix rΦ  in the Eq. (3.12), the global displacement vector gu  can 

be approximated by 
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 CBCBgg uTuu =≈ , (3.13a) 

 








=

b

cd
CB I0

ΨΦ
T , 









=
b

d
CB u

q
u , (3.13b) 

where CBT  and CBu  are the reduced transformation matrix and the its generalized coordinate vector, respec-

tively, and gu  is the approximated global displacement. Here, overbar )(  denotes the approximated quanti-

ties. Note that the residual eigenvector matrix was simply truncated without any consideration in the Eq. (3.13a) 

and Eq. (3.13b).  

 

Using CBT  in Eq. (3.13), we can obtain the reduced equations of motion for partitioned structure, 

 0uKuM =+ CBCBCBCB
 , (3.14a) 

 CBg
T

CBCB TMTM = , CBg
T

CBCB TKTK = , (3.14b) 

where CBM  and CBK  are the reduced mass and stiffness matrices, respectively, and CBu  is the reduced 

displacement vector.  

 

Using CBM  and CBK  in Eq. (3.14b), the reduced eigenvalue problem can be represented as 

 0φMK =− jCBCBjCBCB }]{)([ λ  for CBNj ,,2,1 = , (3.15) 

where jCB )(λ  and jCB}{φ  is the thj  approximated eigenvalue and eigenvector, respectively, and CBN  is 

the number of DOFs in the reduced model of CB method.  

 

Using the eigenvectors in Eq. (3.15), the global displacement vector gu  can be approximated by as 

 CBCBCBg qΦuu =≈  (3.16) 

where CBΦ  and CBq  are the reduced eigenvector matrix and its generalized coordinate vector, respectively. 
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3.3 Enhanced Craig-Bampton (ECB) method 

 

From Eq. (3.12), the global displacement gu  can be exactly represented as 

 CBCBg uTu = , (3.17a) 

 









=

b

crd
CB I00

ΨΦΦ
T , 
















=

b

r

d

CB

u
q
q

u , (3.17b) 

where CBT  and CBu  are the global transformation matrix and its generalized coordinate vector. 

 

Using CBT  in Eq. (3.17), we can obtain the equations of motion for global structure 

 
0uKM =








+ CBCBCBdt

d
2

2

, (3.18a) 

 CBg
T
CBCB TMTM = , CBg

T
CBCB TKTK = , (3.18b) 

where  CBM  and CBK  are global component mass and stiffness matrices, and the components of Eq. 

(3.18b) and Eq. (3.18c) are defined by 

 

For harmonic response ( λ−=22 )( dtd ), Eq. (3.18a) can be rewritten as 

 

0
u
q
q

MKΦMΦM
MΦIΛ0
MΦ0IΛ

=
































−−
−−
−−

b

r

d

bbr
T
cd

T
c

c
T
rrr

c
T
ddd

ˆˆˆˆ
ˆ
ˆ

λλλ
λλ
λλ

, (3.19) 

where the components of Eq. (3.19) are defined by 

 ds
T
dd ΦMΦI = , rs

T
rr ΦMΦI = , (3.20a) 

 ds
T
dd ΦKΦΛ = , ds

T
dd ΦKΦΛ = , (3.20b) 

 ][ˆ 1
csscc KKMMM −−= , (3.20c) 

 cs
T
cc

T
cc

T
cbb ΨMΨΨMMΨMM +++=ˆ , (3.20d) 

 cs
T
cbb KKKKK 1ˆ −−= . (3.20e) 

Note that Eq. (3.20a) and Eq. (3.20b) denote the mass-orthonormality and the stiffness-orthogonality of struc-

tural eigenvectors, respectively. 
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From the second row in Eq. (3.19), we can obtain following relation as 

 0uMΦqIΛ =−− bc
T
rrrr

ˆ][ λλ , (3.21a) 

 bc
T
rrrr uMΦIΛq ˆ][ 1−−= λλ . (3.21b) 

 

By substituting Eq. (3.21b) into Eq. (3.17a), su  can be represented as 

 bc
T
rrrrbcdds uMΦIΛΦuΨqΦu ˆ][ 1−−++= λλ . (3.22) 

Note that it is difficult to solve Eq. (3.22) because of unknown eigenvalue λ .  

 

Using Taylor’s series, the inverse term of Eq. (3.22) can be expanded as 

 ++=− −−− T
rrr

T
rrr

T
rrrr ΦΛΦΦΛΦΦIΛΦ 211][ λλ , (3.23) 

and then, by substituting the first term of Eq. (3.23) into Eq. (3.22), su  can be approximated by 

 bc
T
rrrbcdds uMΦΛΦuΨqΦu ˆ1−++≈ λ . (3.24) 

Note that the first and second terms of Eq. (3.24) is exactly same with those of Eq. (3.12) in CB method and the 

third term of Eq. (3.24) has unknown eigenvalue λ . 

 

Kim and Lee [20] proposed that λ  can be approximated by O’callahan’s approach [3], which was used to 

improve Guyan reduction. From Eq. (3.14a), following relation can be obtained by 

 bCBCBb uKMu 1−=λ . (3.25) 

 

By substituting Eq. (3.25) into Eq. (3.24), gu  can be approximated by 

 CBECBgg uTuu =≈ , (3.26a) 

 rCBECB TTT += , (3.26b) 

 
CBCB

ccss
T
rrr

r KM
00

MKKMΦΛΦ0
T 1

11 ][ −
−−








 +−
= , (3.26c) 

where ECBT  is the enhanced transformation matrix and rT  is the residual transformation matrix which was 

proposed by Kim and Lee [20]. Note that the partitioned coordinate in ECB method is same with that of original 

CB method. 

- 18 - 



 

 

Using ECBT  in Eq. (3.26c), we can obtain the reduced equations of motion for partitioned structure, 

 0uKuM =+ CBECBCBECB
 , (3.27a) 

 
ECBg

T
ECBECB TMTM = , ECBg

T
ECBECB TKTK = , (3.27b) 

where ECBM  and ECBK  are the reduced mass and stiffness matrices, respectively, and CBu  is the reduced 

displacement vector. 

 

Using ECBM  and ECBK  in Eq. (3.27b), the reduced eigenvalue problem can be represented as 

 0φMK =− jECBECBjECBECB }]{)([ λ  for ECBNj ,,2,1 = , (3.28) 

where jECB )(λ  and jECB}{φ  is the thj  approximated eigenvalue and eigenvector, respectively, and ECBN  

is the number of DOFs in the reduced model of ECB method. 

 

Using the eigenvectors in Eq. (3.28), the global displacement vector gu  can be approximated by 

 ECBECBECBg qΦuu =≈  (3.29) 

where ECBΦ  and ECBq  are the reduced eigenvector matrix and its generalized coordinate vector, respective-

ly. 
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Chapter 4. Higher-order Craig-Bampton method 

 

 

4.1 Formulation 

  

From the Eq. (3.17a) and Eq. (3.17b), the global displacement vector gu  can be rewritten as 

 00uTu =g , (4.1a) 

 









=
b

s

u
u

u0 , 







=

b

crd

I00
ΨΦΦ

T0 , 















=

b

r

d

u
q
q

u0 , (4.1b) 

where 0T  is the global transformation matrix, which structural eigenvector matrix can be decomposed into 

two parts, dominant and residual.  

 

From the inverse term of Eq. (3.22), we can define the residual flexibility F  as 

 [ ] n
n

rrrr FFFΦIΛΦF 1
21

T1 −− +++=−= λλλ   (4.2a) 

 T
r

n
rrn ΦΛΦF −=  (4.2b) 

where Eq. (4.2a) is expanded by Taylor series and nF  is the thn  order residual flexibility. 

 

By substituting Eq. (4.2a) into Eq. (3.22), su  can be represented as 

 kkbcdds ηΘηΘuΨqΦu ++++= 11  for ∞= ,,2,1 k  (4.3a) 

 ckk MFΘ ˆ= , b
k

k uη λ=  (4.3b) 

where kΘ  and kη  are the thk  order residual mode matrix and its generalized coordinate vector, respective-

ly. Note that kη  is an additional coordinate vector containing the unknown eigenvalue (λ ). 

 

As mentioned previously, dΦ  has been normalized with respect to sM . On the other hands, kΘ  has arbi-

trary amplitude without normalization. Thus, kΘ  also need a normalization process, otherwise kΘ  may 

cause the transformation matrix badly scaled ( kcd ΘΨΦ >>, ). It may be desirable to normalize each column 

using its 2-norm [24,25].  
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 1ˆ −= kkk GΘΘ  (4.4a) 
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bNk
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θ0

θ
0θ

G


 (4.4b) 

where kG  is a weighting matrix for kΘ  and jk}{θ  is the thj  column of kΘ . 

 

In Eq. (4.3a), considering to the thn  order residual flexibility matrix nF , substructural displacement vector 

su  is approximated as 

 nnbcdss ηΘηΘuΨqΦu ˆˆ
11 ++++≈   (4.5) 

where su  is approximated by the thn  order residual flexibility.  

 

Using Eq. (4.5), reduced equations of motion with thn  order residual flexibility can be obtained by 

 nngg uTuu =≈ , (4.6a) 

 









=

00I0
ΘΘΨΦT





b

ncd
n

ˆˆ
1 , 



























=

n

b

d

n

η

η
u
q

u

1 , (4.6b) 

where nT  and nu  are the reduced transformation matrix with thn order residual flexibility and its general-

ized coordinate, respectively. Here, subscript n denotes the thn  order. Note that Eq. (4.6b) without residual 

flexibility is exactly same with Eq. (3.13b). In other words, HCB method with 0th order residual flexibility 

(HCB-0) denotes the original CB method. 

 

Using nT  in Eq. (21), we can obtain the reduced equation of motion as 

 0uKuM =+ nnnn
 , (4.7a) 

 ng
T

nn TMTM = , ng
T

nn TKTK = , (4.7b) 

where nM  and nK  are the reduced mass and stiffness matrices, respectively. Note that the reduced model 

has the additional generalized coordinates nηη ,,1  .  
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The additional coordinates can be eliminated by SEREP [4], which is a DOFs-based reduction method without 

accuracy loss. Using SEREP, the reduced system in Eq. (4.7) can be reduced again, of which size is same with 

that of reduced system in Eq. (3.14). 

 

From Eq. (4.7b), the following eigenvalue problem is obtained by 

 jnnjnjnn }{)(}{ φMφK λ=  for nNj ,,2,1 = . (4.8) 

 

Using the results in Eq. (4.8), eigenvector matrix is defined by 

 ]}{}{}{}{}{[ 121 00 nNnNnNnnnn φφφφφΦ  += , (4.9) 

where jn )(λ  and jp}{φ  are the eigenvalue and eigenvector, respectively. 

 

Considering to the th
0N  modes in nΦ , we can reduce the transformation matrix nT  with same matrix size 

with 0T  ( 0NN g ×  matrix) as follows:  

 nnn ΦTT =~
, (4.10) 

where nT~  is the transformation matrix in the HCB method, and its matrix size is 0NN g × . 

 

Using nT~  in Eq. (4.10), the reduced matrices of the HCB method is obtained by 

 ng
T
nn TMTM ~~~ = , ng

T
nn TKTK ~~~ = , (4.11) 

in which nM~  and nK~  are 00 NN ×  matrices. 

 

Finally, the reduced eigenvalue problem in HCB method is given by 

 iniin )(~)(~ φMφK λ=  for 0Ni ,,2,1 =  (4.12) 

where iλ  and i)(φ  are the approximated eigenvalue and eigenvectors, respectively. 

 

A key idea of the present derivation is considering the residual flexibility to improve the accuracy, dealing with 

unknown eigenvalue to make the components of transformation matrix identified and eliminating additional 

coordinates to reduce the size of system. Finally, the reduced system is more accurate without increasing size. 
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If increasing the order of residual flexibility, the reduced system is more accurate. However, it may take more 

computational cost. In practical aspect, the first and second order of residual flexibility (HCB-1, HCB-2) are 

enough to get an improved system. Because HCB-1 and HCB-2 have better accuracy than CB and ECB without 

increasing computational cost. This issue will be discussed in next sections. 
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4.2 Numerical Examples 

 

In this section, we compare the performance of present method (HCB-1, HCB-2) with conventional method 

(CB, ECB). Three structural problems are considered: rectangular plate, cylindrical solid, hyperboloid shell 

problems. Each problem is implemented by four methods using MATLAB. The frequency cut-off mode selec-

tion method is used to select the dominant eigenvectors, and the following relative eigenvalue error is used to 

measure the accuracy of four methods. 

 

j

jj
j λ

λλ
ξ

−
= , (4.13) 

where jλ  and jλ  the thj  exact eigenvalue calculated from global eigenvalue problem and approximated 

eigenvalue calculated from reduced eigenvalue problem, respectively, and jξ  is the relative eigenvalue error 

calculated in Eq. (4.13). 

 

 

4.2.1 Rectangular plate problem 

 

We consider a rectangular plate with free boundary. Length L  is 20.0 m, width B  is 12.0 m, and thickness 

h  is 0.08 m. Young’s modulus E  is 206 GPa, Poisson’s ratio ν  is 0.33, density ρ  is 7850 kg/m3. The 

gN  and dN  are listed in Table 4.1. 

 

In this example, we additionally test the accuracy using the relative eigenvector errors to compare the relative 

eigenvalue and eigenvector errors.  

 

22

1
jj

jj
j φφ

φφ ⋅
−=ζ , (4.14) 

where jζ  is the thj  relative eigenvector error. 

 

Fig. 4.1 presents the rectangular plate problem 1 which is modeled by thin mesh pattern and partitioned into 

three substructures ( 3=sN ). Fig. 4.2 presents the numerical results of rectangular plate problem 1: Fig. 4.2(a) 
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presents the relative eigenvalue errors and Fig. 4.2(b) presents the relative eigenvector errors. Table 4.1 presents 

the number of dominant modes of the rectangular plate problem 1. Table 4.2 and Table 4.3 show the detailed 

relative eigenvalue and eigenvector errors. 

  

From Fig. 4.2, we can figure out that error tendencies are similar in relative eigenvalue and eigenvector errors, 

and it means that we have been obtained the reliable results. From Fig. 4.2, Table 4.2 and Table 4.3, we can fig-

ure out their accuracy such as follows: Firstly, ECB, HCB-1 and HCB-2 have definitely improved accuracy than 

CB. Secondly, ECB and HCB-1 converge into a similar accuracy, and HCB-1 has slightly better accuracy than 

ECB. Thirdly, HCB-2 has similar accuracy at lower mode numbers with ECB and HCB-1, and HCB-2 has sig-

nificantly improved accuracy at higher mode number than ECB and HCB-1. 

 

Table 4.1. The number of dominant modes for the rectangular plate problem 1. 

 

 )1(
dN  )2(

dN  )3(
dN  dN  gN  

Case (a) 13 7 5 25 1,365 

Case (b) 13 7 5 25 1,365 
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Fig. 4.1. Rectangular plate problem 1 
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Fig. 4.2. Numerical results for the rectangular plate problem 1: (a) relative eigenvalue errors in 25=dN  and 

(b) relative eigenvector errors in 25=dN . 
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Table 4.2. The relative eigenvalue errors for the rectangular plate problem 1. 

 

Mode number CB ECB 
Present 

HCB-1 HCB-2 

1 9.415E-05 5.002E-07 5.005E-09 2.959E-10 

2 2.728E-06 8.761E-09 1.427E-10 1.950E-11 

3 4.116E-04 2.025E-07 4.866E-08 8.009E-11 

4 2.340E-04 2.197E-08 1.457E-08 2.506E-11 

5 5.675E-04 4.546E-08 4.259E-08 9.764E-11 

6 5.586E-04 1.249E-08 4.047E-08 9.358E-11 

7 1.717E-04 2.960E-09 5.021E-09 1.588E-12 

8 2.912E-03 1.219E-08 2.600E-07 4.676E-10 

9 4.129E-03 6.508E-08 2.054E-07 2.649E-09 

10 4.914E-03 1.323E-07 4.067E-07 1.798E-09 

11 2.972E-03 1.375E-07 1.792E-07 2.574E-10 

12 4.866E-03 9.119E-07 7.829E-07 5.316E-10 

13 9.609E-04 1.271E-07 1.477E-07 2.608E-10 

14 6.775E-03 1.882E-06 6.818E-07 1.666E-10 

15 1.662E-02 1.236E-05 7.281E-06 1.207E-09 

16 1.306E-02 2.638E-06 1.051E-06 8.905E-10 

17 5.277E-03 3.759E-06 1.610E-06 9.068E-11 

18 4.522E-03 1.441E-05 8.445E-06 4.373E-10 

19 1.627E-02 5.038E-05 2.083E-05 1.653E-08 

20 4.090E-02 1.305E-05 6.466E-06 8.669E-10 

21 6.032E-02 1.227E-04 1.002E-04 1.923E-08 

22 3.275E-02 7.298E-04 4.724E-04 4.747E-08 

23 7.284E-02 1.260E-04 4.135E-05 3.747E-09 

24 7.013E-02 1.250E-04 3.734E-05 1.310E-09 

25 6.422E-02 1.694E-04 1.021E-04 2.382E-08 
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Table 4.3. The relative eigenvector errors for the rectangular plate problem 1. 

 

Mode number CB ECB 
Present 

HCB-1 HCB-2 

1 1.429E-07 7.997E-13 3.008E-12 3.009E-14 

2 4.973E-09 4.745E-13 8.260E-14 1.332E-15 

3 3.101E-06 8.525E-13 1.142E-10 3.552E-13 

4 2.618E-06 1.336E-12 5.134E-11 1.079E-13 

5 6.055E-06 3.559E-12 1.433E-10 2.471E-13 

6 9.902E-06 1.332E-11 1.975E-10 4.349E-13 

7 4.110E-06 3.384E-11 4.039E-11 3.109E-14 

8 9.132E-05 5.692E-10 2.261E-09 4.186E-12 

9 1.583E-04 1.463E-09 2.852E-09 2.894E-11 

10 2.764E-04 6.757E-09 6.373E-09 2.366E-11 

11 2.088E-04 4.480E-09 3.594E-09 5.769E-12 

12 5.263E-04 5.381E-08 3.666E-08 9.788E-12 

13 6.677E-05 7.018E-09 4.683E-09 4.722E-12 

14 9.024E-04 1.080E-07 3.000E-08 4.493E-12 

15 2.870E-03 1.152E-06 6.370E-07 3.000E-11 

16 2.002E-03 1.928E-07 4.611E-08 2.592E-11 

17 1.221E-03 2.601E-07 9.560E-08 3.215E-12 

18 1.257E-03 2.198E-06 1.173E-06 2.265E-11 

19 6.781E-02 8.807E-06 3.063E-06 7.315E-10 

20 4.820E-02 3.663E-06 1.618E-06 4.363E-11 

21 3.495E-02 2.291E-05 2.057E-05 1.476E-09 

22 5.056E-02 2.379E-04 1.297E-04 4.059E-09 

23 1.611E-01 4.190E-05 5.092E-06 2.720E-10 

24 1.560E-01 1.580E-05 3.584E-06 7.889E-11 

25 3.241E-02 2.952E-05 1.753E-05 2.383E-09 
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4.2.2 Cylindrical solid problem 

 

We consider a cylindrical solid with free boundary. Lengths 1L  and 2L  are 0.16 m and 0.24 m, respectively, 

and the radii 1R , 2R  and 3R  are 0.08 m, 0.12 and 0.16 m, respectively. Young’s modulus E  is 76 GPa, 

Poisson’s ratio ν  is 0.33 and density ρ  is 2,796 kg/m3. The cylindrical solid problem is modeled using 8-

node brick elements and partitioned into four substructures ( 4=sN ). gN  and dN  are listed in Table 4.4. 

Fig. 4.3 presents the cylindrical problem and Fig. 4.4 presents its relative eigenvalue errors in two different cas-

es. 

 

Table 4.4 The number of dominant modes for the cylindrical solid problem. 

 

 )1(
dN  )2(

dN  )3(
dN  )4(

dN  dN  gN  

Case (a) 3 3 3 3 12 1,740 

Case (b) 5 5 5 5 20 1,740 
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Fig. 4.3. Cylindrical solid problem 
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Fig. 4.4. Numerical results for the cylindrical solid problem: (a) relative eigenvalue errors in 12=dN  (b) 

relative eigenvalue errors in 20=dN . 
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4.2.3 Cylindrical panel problem 

 

We consider a cylindrical panel with free boundary. Length L  is 0.8 m, radius R  is 0.5 m, and thickness h  

is 0.005 m. Young’s modulus E  is 69 GPa, Poisson’s ratio ν  is 0.35, and density ρ  is 2,700 kg/m3. Each 

edge is discretized in the following ratio: 

 1::15:15:16:::: 16321  =LLLL , (4.15) 

 

The cylindrical panel is modeled by a 1616×  distorted mesh of finite shell elements and partitioned into four 

substructures( 7=sN ). gN  and dN  are listed in Table 4.5. Fig. 4.5 presents the cylindrical panel problem 

and Fig. 4.6 presents its the relative eigenvalue errors in two different cases. 

 

Table 4.5. The number of dominant modes for the cylindrical panel problem. 

 

 )1(
dN  )2(

dN  )3(
dN  )4(

dN  )5(
dN  )6(

dN  )7(
dN  dN  gN  

Case (a) 2 2 2 2 4 4 4 20 1,445 

Case (b) 4 4 4 4 8 8 8 40 1,445 
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Fig. 4.5. Cylindrical panel problem with a distorted mesh 

 

 

 

 

 

 

 

- 34 - 



 

 
Fig. 4.6. Numerical results for the cylindrical panel problem: (a) relative eigenvalue errors in 20=dN  (b) 

relative eigenvalue errors in 40=dN . 
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4.2.4 Hyperboloid shell problem 

 

We consider a hyperboloid shell with free boundary. Height H  is 4.0 m and thickness h  is 0.05 m. Young’s 

modulus E  is 69 GPa, Poisson’s ratio ν  is 0.35, and density ρ  is 2,700 kg/m3. The mid-surface of this 

shell structure is described by 

 ]2,2[;2 222 −∈+=+ zzyx , (4.16) 

 

The hyperboloid shell problem is modeled using 4-node MITC shell elements and partitioned into four sub-

structures ( 8=sN ). gN  and dN  are listed in Table 4.6. Fig. 4.7 presents the cylindrical problem and Fig. 

4.8 presents its relative eigenvalue errors in two different cases. 

 

Table 4.6. The number of dominant modes for the hyperboloid shell problem. 

 

 )1(
dN  )2(

dN  )3(
dN  )4(

dN  )5(
dN  )6(

dN  )7(
dN  )8(

dN  dN  gN  

Case (a) 3 3 3 3 3 3 3 3 24 4,200 

Case (b) 4 4 4 4 4 4 4 4 32 4,200 
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Fig. 4.7. Hyperboloid shell problem 
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Fig. 9. Numerical results for the hyperboloid shell problems: (a) relative eigenvalue errors in 24=dN  (b) 

relative eigenvalue errors in 32=dN . 
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5. Computational cost 

 

In this section, we test the computational cost of present methods (HCB-1, HCB-2) with conventional methods 

(CB, ECB). Here, the rectangular plate problem 2 is considered, which has the same material properties with 

rectangular plate problem 1. Fig. 5.1 presents the rectangular plate problem 2 which is modeled by dense mesh 

pattern and partitioned into four substructures ( 4=sN ). gN  and dN  are listed in Table 5.1. Fig. 5.2 pre-

sents the relative errors of rectangular plate problem 2. 

 

To test the computational cost, we established a criterion that the relative eigenvalue errors in lower than mode 

number 200 have less than 310− . Fig 5.2 shows that all methods satisfy the criterion. Note that present methods 

have better accuracy in lower modes and it means that the test has been performed conservatively. 

 

All the code implementations are done using MATLAB in a personal computer (Inter core (TM) i7-3770, 3.40 

GHz CPU, 32 GB RAM). Table 5.2 present the detailed computational times and their ratio. Even though an 

unfavorable condition, the present methods have a better accuracy and take a less computational time. 

 

Table 5.1. The number of dominant modes for the rectangular plate problem 2. 

 

 )1(
dN  )2(

dN  )3(
dN  )4(

dN  dN  gN  

CB 400 400 400 400 1,200 11,285 

ECB 75 75 75 75 300 11,285 

HCB-1 75 75 75 75 300 11,285 

HCB-2 50 50 50 50 200 11,285 
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Fig. 5.1. Rectangular plate problem 2 

 

 

Fig. 5.2. Relative eigenvalue errors for the rectangular plate problem 2. 
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Table 5.2. Computation cost for the rectangular plate problem 2. 

 

 
Computation times 

CPU time [sec] Ratio [%] 

CB 242.95 100 

ECB 65.06 26.77 

HCB-1 78.38 32.26 

HCB-2 113.92 46.89 
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6. Conclusion 

 

In this study, we developed a new component mode synthesis method by improving CB method. In HCB meth-

od, the unknown coefficients of residual flexibility were considered in generalized coordinates to make the 

components of transformation matrix known. And then, undesirable coordinates which has unknown variables 

were eliminated by additional transformation matrix. As a result, we obtained the new component matrices of 

which accuracy is significantly improved. 

 

If we consider the more orders of residual flexibility, then we would obtain the reduced model more precisely. 

However, in practical aspects, we considered the first- and second-order residual flexibility. The improved per-

formance of HCB-1 and HCB-2 was verified through various numerical examples. 

 

Using HCB method, global (original) structural models can be more precisely reduced, and the accuracy of re-

duced models is significantly improved. The accuracy improvement of HCB method was demonstrated through 

numerical examples, and its computational cost was also investigated. 
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요 약 문 

 

 

 

고차 잔류 유연도를 활용한 부분 구조 합성법 개발 
 

 

 최근 컴퓨터의 기능이 비약적으로 발달함에 따라 구조동역학적 해석이 필요한 유한요소 

모델이 점차 복잡해지고 대형화되고 있다. 이러한 이유로 해석에 필요한 전산 소요 

비용(computational cost)이 급증하고 있다. 이러한 공학적 문제를 효율적으로 해결하기 위하여, 

부분 구조 합성법이 주목받고 있다. 부분 구조 합성법은 원래의 유한요소 모델을 다루기 쉬운 

여러 부분 구조로 분할한 뒤, 각 부분 구조의 자유도(DOFs)를 축소하여, 다시 합성함으로써 

축소된 모델을 얻는 과정을 지칭한다. 이때 모델 축소법(Model reduction)에 사용되는 원리에 따라, 

자유도 기반의 축소법(DOFs based)과 모드 기반의 축소법(Mode based)으로 구분된다. 

  

 자유도 기반의 축소법은 우선 전체 자유도 중에서 활성 자유도(Actived DOFs)와 삭제 

자유도(Deleted DOFs)로 구분한다. 이후 삭제 자유도를 응축(Condensation)하여, 활성 자유도가 

전체 구조물의 거동을 효율적으로 근사할 수 있도록 한다. 1965 년에 Guyan 이  정적 응축법(Static 

condensation)을 제안한 이후로 지속적인 관심을 받아 왔으며, 다양한 연구분야에서 적용되었다. 

이후 1989 년에는 O’callahan 이 동적 응축법(Dynamic condensation)을 제안하여 더 정확한 축소법이 

개발되었다. 1995 년 Friswell 이 반복적 축소법을 제안하였고, 최근에는 이에 기반한 연구가 

활발하게 진행되고 있다. 이처럼 모델 축소법에 관한 연구는 더 정확한 축소모델을 개발하는 

데에 초점이 맞춰져 있다. 

 

 모드 기반 축소법은 우선 고유치해석(eigenvalue analysis)을 실시하여 구조물의 모드를 

분석한다. 이때 저차모드가 주요하다는 사실에 기인하여, 고차모드를 응축함으로써 저차모드가 

전체 구조물의 거동을 효율적으로 근사할 수 있도록 한다. 모드 기반 축소법은 

부구조법(Substructuring)의 적용으로 자유도 기반 축소법에 비해 향상된 성능을 보여주었다. 
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부구조법이 적용된 모드 기반 축소법을 부분 구조 합성법(Component mode synthesis, CMS)라 한다. 

부분 구조 합성법의 개념은 1965 년 Hurty 에 의해 제시되었으며, 1968 년 Craig 와 Bampton 에 의해 

최초의 부분 구조 합성 기법이 개발되었다.  이후 50 년간, 더 정확한 축소 모델을 개발하기 위해 

다양한 형태의 부분 구조 합성법에 대한 연구가 진행되었으며, 본 연구도 동일한 연구 목적을 

갖고 있다. 

 

 본 연구에서는 기존의 부분구조합성법에서 고려하지 않았던, 잔류 유연도(Residual flexi-

bility)를 효율적으로 고려하는 방법을 제시하였다. 즉, 잔류 유연도를 적적하게 고려함으로써, 

기존의 부분구조합성법의 정확성을 향상시킨 것이다. 또한, 본 연구에서는 잔류 유연도를 n 차의 

항(n-th order)으로 구성하였으며, 고차 항(higher-order)을 고려할수록 정확도가 개선되는 것을 

확인하였다. 또한, 본 연구에서 제안한 방법은 기존의 부분구조합성법과 동일한 크기로 모델을 

축소시킨다. 즉, 축소 모델의 크기는 동일하면서 동시에 정확도를 대폭 개선한 것이다. 이러한 

내용은 최종적으로 다양한 수치해석 예제를 통해 검증되었다. 
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