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Abstract

A finite element analysis using a new layered shell element considering the partial interaction of the layers has
been proposed. The proposed layered shell element improves the efficiency of analysis by adding only the DOFs
in the slip direction without modeling the layers using additional shells. Existing elements that attempted interlayer
slip were limited to solid elements or beam elements, and there were disadvantages in that the DOFs required
when analyzing thin materials was increased or that two-dimensional partial interactions were not considered.
Unlike with previous element, the stacking can be expressed with two additional DOFs per node by defining the
direction in which the slip occurs in the two-dimensional slip plane. 2D interlayer slip between layers can also be
considered using the defined slip directions. As a result of comparing through several numerical examples it was
confirmed that accurate finite element analysis is possible with high computational efficiency compared to using
the solid element considering the adhesive layer. If this linear shell is extended to a nonlinear formulation, it is

expected that more accurate analysis will be possible even through the deformation increase.

Keywords finite element method, composite shell, multi-layered shell, interlayer slip, partial interaction
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Chapter 1. Introduction

As the machinery industry evolves, FEM analysis, which reduces design costs and increases
design accuracy, has also evolved. As a result, FEM analysis is widely used not only in the mechanical
field, but also in the aviation, construction and even the bio field such as bone tissue engineering.
However, with the form factor innovation that deviated from the existing rigid form factor, the new
FEM analysis element was needed. Foldable mobile phones and rollable TVs are examples of typical
form factor innovations. In the case of such an item, a thin composite was used and there is an adhesive

layer between the materials, so it is not easy to proceed with the analysis in the traditional way.

In the case of conventional composite research, Classical Lamination Theories CLT, a
laminated plate with completely bonded layers, was presented by Reissner and Stavwsky [1]. To
improve the problem caused by not considering the transverse shear strain, First order Shear
Deformation Theory FSDT was introduced by Yang, Norris and Stavsky [2]. Two-layer plate analysis
considering slip, which is discontinuity between layers, is proposed by Toledano and Murakami [3].
Trial displacement in which the zigzag term considering the shear strain and slip displacement term
were superposed to the existing plate theory was used for the two-layer plate analysis. Afterwards, a

theory that considered interlayer slip in multilayer plates was proposed by Marco Di Sciuva [4].

Composite materials were studied not only for the previously described plate but also for beam
and shell elements. Like the plate, it started with a two-layer and expanded into a multi-layer. Newmark
suggested a two-layer beam with interlayer slip added to Euler Bernoulli's beam theory [5]. After that,

Xu and Wu implemented interlayer slip using Timoshenko beam theory considering shear deformation

[6].



Furthermore, a finite element algorithm for a composite beam with interlayer slip was
implemented by Ranzi et al [7]. Most recently, a continuum-based nonlinear layered composite beam
element with interlayer slip was presented by Hyo-Jin Kim [8]. However, it is not suitable for analyzing
thin and wide structures with beam elements. Laminated composite shell elements using finite elements
suitable for thin structure analysis were proposed by Panda and Natarajan [9], but interlayer slip was
not considered. There is a need for research on laminated composite shell elements in which partial

interactions exist.

Compared to a beam with partial interaction in only one direction in an interlayer, the shell
slips in two directions, which requires more complex structural behavior. Because of such difficulties,
it is not easy to find a laminated composite shell FE model in which layer partial interaction occurs. In
the case of existing commercial analysis tools, solid elements are used to solve the problem. But in the

case of thin structures, the number of elements rapidly increases for accurate analysis.

The purpose of this study is to develop a layered composite shell element that considers slip
in the interlayer by using fewer elements even when analyzing thin structures. First, the layers are
divided from the basic shell elements, and then a degree of freedom is added for each layer to consider
the displacement discontinuity due to partial interaction. Analysis can be performed using fewer

elements than modeling all layers.

In Chapter 2, a brief review of finite element analysis of basic shell structures will be
conducted. And then, the continuum mechanism based layered composite shell element that the

interlayer slip did not consider [9] will be covered in more detail.

In Chapter 3, the proposed shell element considering interlayer slip will be explained. First,
displacement interpolation is defined, and then the finite element discretization process will be

examined.



In Chapter 4, various numerical examples are presented to verify the proposed shell elements.

In Chapter 5, the conclusions of this study and future studies will be described.



Chapter 2. Review of 4-node continuum mechanics based shell finite

elements

In this chapter, the theory of three-dimensional continuum mechanics was examined. First, the
displacement interpolation of a general 4-node shell element was presented [10]. This displacement
interpolation poses a problem that causes transverse shear locking. Therefore, the MITC4 method was
reviewed to solve this problem [11]. Finally, the displacement interpolation extended to the laminated

shell element was presented [9].

2.1. Displacement Interpolation

Fig. 2.1. Geometry of 4-node shell elements
Consider the geometry of the 4-node shell elements in Fig. 2.1. Using the natural coordinate
systemr, s and t, the geometry interpolation for any point in the 4-node shell element at a given time t

is obtained by



4 4
‘x(r,s,t)= th(”as)txk +%Zakhk(r’s)tl/nk ) (2.1
k=1 k=1

where £, is the 2D interpolation function at node &, ‘x, is Cartesian coordinates of the node & at

time 7, a, is thickness of shell of node &, 7' denotes the direction vector defined of node & at

n

time ¢ and the left superscript ¢ is the configuration of the shell element at given time ¢. ¢=0
denotes the original configuration, so the displacement interpolation of the element for the configuration

at time ¢ is obtained as by using Egs. (2.1).

u="x-"x, 2.2)

t . t t . ty sk Oy 7k

u(r,s,0)= h(r.s)'n, +Ezakhk(r58)( V=), 2.3)
k=1 k=1

where ‘u, is the vector of nodal displacements in the Cartesian coordinate direction and °V* denotes
the direction vector defined of node k in the reference configuration. °* and V) are orthogonal to

v* in the configuration at time 0 are defined as (See Fig. 2.2.)

Oy k

e xV
W=t 24
e, <, (2.4)

Oy -k Oy -k Oy -k
Vy="V,xV, (2.5)

where e, isa unit vector in the y-axis direction.




Fig. 2.2. Rotational DOF «, and g, atnode &
Using the rotational DOF «, and B, of the vectors °/;* and V), the direction vector of node &

at time ¢ with infinitesimal rotations can be expressed as

, : -
u(r,s, )= h(r,s)'u, + EZ ah (r,8)(~a, VY + B, V) . (2.6)
k=1 k=1

Then the covariant Green-Lagrange strain tensor components are

t _lt t 0 _0 t _8’x
oegz—g(gig,»— 8 8) &=7"" (2.7)

i

where ‘g, is the covariant base vector with i =1, 2, 3 correspondingto 1, =r, 1,=5, 1, =t

2.2. Formulation of the MITC4 method

The above interpolation causes a locking phenomenon that reduces the convergence rate of
finite element analysis for thin elements. Many methods have been used to alleviate this transverse
shear locking phenomenon. Among them, MITC4, which is a method of introducing a separate

interpolation in the transverse shear strain, was described [10]

X : Tying point

()
rt

(4)
gl‘f



(a)

X : Tying point

(B) (D)

st st

(b)
Fig. 2.3. Tying points for the 4-node shell finite elements in MITC4 (a) assumed strain in »—¢ (b)

assumed strain in s —¢

It is assumed that the tying position given in Fig. 2.3 constructs a constant deformation along the upper
and lower edges of the element. Hence, the assumed transverse shear strain fields using the interpolation

and tying points of the MITC4 are written by:

AS
ey =a,+b,r+c,s+d,rs

(2.8)
and
e =a +br+c,s+d_rs .
st st st st st (2 . 9)
h _ 1 (4) (©) _ 1 ©) (4) b =d =0 _ 1 (B) (D)
where a,, = 5(81? + gl't ) H Cy _E(gl‘t - grt > rt Yt T > a, = E(gst + gst >

st > st st



2.3. Layered shell displacement interpolation

N
AN

[

Fig. 2.4. Geometry of layered shell elements

In the case of laminated materials, as shown in Fig. 2.4, different material properties of the
layer must be considered. Therefore, it is necessary to add by performing numerical integration of the
stiffness matrix for each layer. In order to perform numerical integration by dividing, a new natural

coordinate system according to the thickness of the element must be used. The new natural coordinate

of nth layer ¢" is derived as

:_1+_{ (Zl‘]—l"(l—z")} , (2.10)

where ¢ is original natural coordinate, @, is total thickness of shell at node k, / " is thickness of nth

layer.

Substituting Eqgs. (2.10) into Egs. (2.1), the geometry interpolation of nth layer is given as

4 (")
x(n) _ Zh (n) Z( (") t(")}'kVnk , (211)
k=1

(n)

where m," 1is distance between the midsurface of layer n and the total element midsurface at node k.



The formulation of m,f") obtained using Fig. 2.5

n l(")

n a i
m? ==k ) L0 - 2.12)
2 ST

Fig. 2.5. Thickness and midsurface position of layer n

Using geometry interpolation, the displacement interpolation of layer n is obtained as
l(n)

4 4
n n n (n Op -k 0y k
u'” :thu,(( )+Z(m,(c )+k71 )}'k(—ak Vy+B V). (2.13)
k=1 k=1

The linear component in Green-Lagrange strain of Equation 2.8 in layer n is given by

(n) (n) ty.(n)
t ~(n) (n) 60u " t (n) aou " ) t (n) — a X
. — ), . _—

1,
0€ii _E( 8 6—7"].+ 8 or 8 61; 5 (2.14)

i
where 7, is natural coordinate correspondingto =7, r=s, r,=t".

Using coordinate transformation, the Green-Lagrange strain in the local Cartesian coordinate system is

obtained as

—(n) ) k(n) ~ 0 1(n) ~(n)
oei =(ei’ g e g )en (2.15)

where e; is local Cartesian coordinate, °g*" is covariant base vector in layer n.

The local Cartesian coordinate system is defined as:



(n)
~ 8

e; = B 5
2] (2.16)
_g"xe;
_ 8 X
g" xes‘ (2.17)
e, =e3xe; . (2.18)

For finite element discretization, the strain-displacement matrix B is obtained as

ey =ByU | (2.19)
U=[u, u, ... u, v, ... w, ... o, ... B ... 1.

Fromthe U of Egs. (2.19), it can be seen that the slip of each layer cannot be expressed in the degree

of freedom of the layered shell element.
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Chapter 3. Continuum mechanics based shell element with interlayer slip

In this chapter, three-dimensional continuum mechanics based shell element formulation
considering slip is derived. was examined. In the case of the shell, since two-dimensional partial
interaction occurs in the interlayer, the slip is defined using two direction vectors. Thereafter the degree
of freedom of each layer added for geometry interpolate was described. The finite element analysis of
this shell element is explained by applying the principle of virtual work, and the discretization process

1s summarized.

3.1. Displacement Interpolation

interlayer

\
“ reference layer

Fig. 3.1. Geometry of 4-node shell element with interlayer slip

11



Egs. (2.13) in Chapter 2, a shell element based on continuum mechanics without slip
consideration was introduced. In order to account for slip in the laminated shell element, the
displacement discontinuity of each layer must be considered. In Fig. 3.1, a single shell element consists
of several layers. Slip occurs in the interlayer between each later, and this was added to Egs. (2.13) for
consideration.

The geometry interpolation considering the slip kinematics of n layer is obtained as

k=1

(")
Zh n)+z( B <">},k V,,"+ihk( PV (P(")th) J (3.1)

with

l(ﬂ)

m® = Zl(z) k_

where 74, isthe 2D shape function at node &, ‘x{” is Cartesian coordinates of the node & in layer
n, a,is total thickness, /" is thickness of layer n of node k, 'V/is the direction vector at node &

attime ¢, 'V* and 'V are slip direction vector at node k defined in the interlayer, ‘¢;"” is DOF

of the layer n to slip in the tV,,k direction, (0,5") is DOF of the layer n to slip in the tl/;k direction.

The slip direction vector ‘V* is defined in the reference layer at node & .

th — tgf
’ (3.2)

with

tVi

Z ah(r s)

i=1

19\ oh(r,s)
+ (()) 4 t(()) s
Z[ ] or;

where 7, is natural coordinate corresponding to 7, =7, the right superscript o denotes the reference

r=n r=n

layer.

12



The rest of the slip direction vector 'Vsk is defined in the same way as above.

Te k| 2 (3.3)

. 2 Oh(r,s
I

; tVl R
i=1 (9}’1

n

©) oh(r,s)
X+ ©) + t(”)
Z[ ] on,

where 7, is natural coordinate corresponding to 7, =5 . A two-dimensional slip occurs in the shell

r=rn r=ne

element, and the slip plane is defined using two slip direction vectors.

As can be seen in Fig. 3.1, two DOF are added to each layer. First, a reference layer is randomly selected.
For example, in Figure 3.1, layer 1 is the reference layer. First, the degree of freedom t(pr(:“k) at node k
is the discontinuity of displacement between the reference layer and the layer n in the slip direction

vector tVrk . Similarly, the displacement discontinuity of the reference layer and layer n in the 'V*

N

direction becomes the (ps(”k) (See Fig. 3.2).

\ 0
____________________________ L
Q ----------------------------------------- —
I/,.K
(@)
\ w (3)
(X
Q ——————————————————————————————————————— —0——?
I,:K
(b)

Fig. 3.2. Definition of slip direction vector and layer DOF

13



From the added degree of freedom, the slip displacement interpolations in interlayer i are obtained as:

4
i) _ (ny) (n)
tur(') _th( ¢k1 t¢k1 ) 9 (34)
k=1
i 2 (n)
zus(t) :th( ¢/§HSZ) ’¢ks ) , (3.5)
k=1

where i is interlayer between layers n, and n,.

The displacement interpolation of 4-node shell element in layer n from the configuration at a given time

¢t and original configuration. is obtained by

l(ﬂ)
Zh‘ + Z( !+ t“”jhk(—ak“V;wﬂM)
4
+th(t¢/£?th ¢(,1)0Vk+ (p(n)sz qa(n)OVk) (3-6)

»
k=1

(n)

where u," is incremental node displacement from original configuration to current configuration at

given time .
Using the slip direction vector in the original configuration, the final slip direction vector is

approximated as:

t k gr
V.=t
g,
=SV XS w2 ) a B
’ g/’ i=l al r=n, i=1 I’i r=r 2
and
t
t k gs
Vo=t s
&s
1 2. Oh. 2 0oh. 1 . ,
SV ST Y T 4 )+ B Co
’ gs’ i=1 6r2 r=n i=l 81’2 r=n 2

14



0 _k

where "~ g,

coordinate correspondingto 7 =7, 7, =S.

and " g. are covariant base vector in the original configuration, # and 7, are natural

Substituting Egs. (3.7) and (3.8) into Egs. (3.6), the displacement interpolation is derived as

(")
n (n n Oy k Oy k
=Sl 3 B v v

. (n)0g -k (n) (n) 1 5 ah,
+th N A o(Pk,) Sy
k=1 gr i=l arl
i n n n 1 i ahz
+zhk (0( )OVk +(O¢l§ s) 0 ¢1£ s)) 0 _k A
k=1 g, |3 on,

where O¢l§ilr) and O(p,g’s)

(u, +(m(”)+120 tN=a,V, + B°V)))

r=r

(0)

[; : :
(u, +(m + ’Tt("))(—aiol/z’ +BV)

r=r

(3.9)

are the incremental DOF to the layer n. After linearization, equation 3.9

applying first-order approximation, incremental displacement of layer n is obtained as

(")
th (n) Z( (n) t(n)}‘ ( ak +ﬁk0Vk)

4 (n)

(u, + () +

(u, +(m® +

4

mopk | 0 (Dk - Oh,

+th 0Per Vot P P :
k=1 g,. =1 O,

: " & oh

(n)0 k 0 gpk s i

+ Z hk 0 ¢k,s VY 0 _k a :
k=1 8| = T,

15

1(2 N =a'V) + BV))

(2 N=a V) + BV |.

(3.10)



3.2. The principle of virtual work

For finite element analysis, the principle of virtual work is introduced briefly. The concept of
virtual work is that external virtual work done by surface traction and body force is equal to internal

virtual work done by the internal force as shown by

t.0¢,dV = | fPoudV + | £’ Su.dS
J; it l ! ’ (3.11)

where Su denotes virtual displacement, & is virtual strains, f” and f° are the body force and

surface traction, respectively

\\\/v/v )
—

|
|
|
|

l}

e

e
e; 2

Fig. 3.3. Geometry of 4-node shell element with interlayer slip

In the interlayer, the partial interaction is modeled with a constant slip modulus K, and considering

only the linear component in the Green Lagrange strain, it is as follows:

16



Ev = Kslipuslip >

(3.12)

and

t=C¢ (3.13)

where F, is slip force defined in the interlayer, u,, is slip displacement, C is the stress-strain

matrix of material property. Substituting the Egs. (3.11) into Egs. (3.10), the week form of the principle

of virtual work is expressed as

T
slip Kslip uslip

[o&" Caav + [ 5u dA=[ou" fPav +[su’ fods
4 A V S

(3.14)

with

u,, e
B =\ 0oy )
e K 0
slip — 0 KS ®

where u, is slip displacement in the V. direction, u, is slip displacement in the V, direction,

K is slip modulus.

N

The final formulation by implementing the layered model is as follows

slip ™" slip slip

> I E;’Z;E;")éaf)dVJrZIK(” u") su") dA
i 4

n oy

= Zjé‘u(")rf(")BdV+ZJ.5M(")Tf(")SdS. (3.15)
s

n y n
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3.3. Finite element analysis of layered shell formulation

In Chapter 2.2, the linear parts of the Green-Lagrange strain in the configuration from original

time 0 to given time ¢ is given by

(n) b (n)

¢ ~(m) 1 t (n) aou t (n) o

ei =— w0 4 w_J

0€if Z(g' or, 8 or ) (3.16)
TN o kNS 0 i)y (D

oei =(ei- g )e; g " )en (3.17)

with

t .(n)
g _ o'x
i 51’1

where 7, is natural coordinate correspondingto 1 =r, r,=s, r,=t".
The strain-displacement matrix B in the local Cartesian coordinate system is obtained as

(=) =)

0€ii =B(/ U s (318)
with

— (1) (1) (n) (n) (n) ()T
U—[M] V] 1,‘;1 al ﬂl (Dr,l (Ds,l (Dr,nl (Dr’"4 , q)?”; gps’né‘]

Unlike Egs. (2.17), it can be seen that the degree of freedom of each layer has been added. Here, the

degree of freedom of the randomly selected reference layer is 0.

Likewise, the slip displacement defined in the interlayer is interpolated

4
t () _ t o (m) _t () _ gy
ur _;hk(rﬂs)( k,r ¢k,1‘ ) HS,IU ’ (319)
0 _N m) _t 0D\ i
t. (i) _ t (my) _t n _ i
us _kzz;hk(ras)( Prs = Pus )_Hs,zU ’ (3.20)
. HY
(i) _ sl
H, {H“’J ) (3.21)
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where Hi") is the slip displacement matrix at interlayer i, 7, and n, denote adjacent layer that

make up the interlayer i.

The virtual Green-Lagrange strains and interlayer slip displacement are summarized

—(n)  —(n)
Stey =By 6U, (3.22)

i) _ ()
sul = HsU. (3.23)

By substituting the Egs. (3.18)~(3.23) into Egs. (3.15), The formulation of finite element is obtained as

KU=R, K=K, +K_ (3.24)
where

_ S =)
K, —ZL(”)B,‘,- Ciu B dV'" | (3.25)

_ )" g () g ()
K _IZ.[A“) H,” K,"H/d4 , (3.26)

R= Z [ 7O dv +; [H" " ds. S
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Chapter 4. Numerical Example

In this chapter, various numerical examples are examined to confirm the performance of the
proposed shell element considering interlayer slip. For accurate verification the most important
numerical results of the presented model, such as displacement at the end of the model, are compared
with a reference. As a reference, a solid element of ADINA, a commercial tool considering the physical

properties of the adhesive interlayer such as connection stiffness, is used.

4.1. Two-layers cantilever

Tip displacement according to the partial interaction between layers in a two-layer composite
cantilever are compared. First the connection stiffness was set to 0, the numerical example, which is a
complete slip condition, are confirmed. Next, when the connection stiffness is very large, the behavior
is compared under rigid interlayer conditions. Finally, when the connection stiffness has an arbitrary
value, the behavior under axial load and vertical load are compared respectively with the reference

model.

4.1.1. Perfectly slip with no connection stiffness

In Fig. 4.1 and Fig. 4.2, it can be seen that the y-axis load was applied to layer 2 in a two-layer composite

shell without connection stiffness.
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(a)
a
3 b,
S 3 \{ “
4
y 4 b
1
Section ¢ —c¢
(b)

Fig. 4.1. Geometry of two-layer cantilever: (a) Problem description (b) Cross section c-c

AZ

By

Fig. 4.2. Loading condition with perfectly slip

Each shell has the same material properties and geometry values. Table 4.1 shows geometry, loading

condition and material properties.
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Table 4.1. Material property, geometry condition, loading condition of Fig. 4.1 and Fig. 4.2

Material property

E; = 200 GPa, E, = 200 GPa, v; = v, = 0.3, K, = 0 N/m?

Geometry condition

L=2m,a=1m, by =b, =0.02m

Loading condition

P, = 500N

Since there is no connection stiffness, the two-layer behaviors are different when y-axis load is applied.
Fig. 4.3 shows the result of comparing the behavior of the shell element corresponding to one layer as

a reference. Layer 1 do not behave at all, and layer 2 shows the same result as the reference.

T T T T T T T T T

reference(layer2)

08 L ® present(layer2)

06 | -

04

0.2

-0.2

-0.4

-06 L -

-08 L -

y(m)
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T T T

10~
1.5 T T T
reference(layer2)

O present(layer2)

E 135 |
>
=]
13 L 4
125 L i
1.2 I 1 1 I I 1 | 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y(m)
(b)

Fig. 4.3. Displacement at the tip: (a) Displacement of x (b) Displacement of y

4.1.2. No interlayers with perfect connection

The two layers are completely combined, so the shell model without interlayer is shown in Fig. 4.4

(2)
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(b)
Fig. 4.4. Problem description: (a) Geometry condition (b) Loading condition

Unlike the example in 4.1.1, a vertical load is applied to a composite model with different properties of
each layer. Table 4.2 summarizes the material property, geometry and loading condition. It can be seen

that the connection stiffness is very large to express that the layers are completely combined.

Table 4.2. Material property, geometry condition, loading condition of Fig. 4.4

Material property

E, = 200 GPa, E, = 50 GPa, v; = v, = 0.3, K, = 5 X 102° N/m?

Geometry condition

L=2m,a=1m, by =b, =0.02m

Loading condition

P, = 500N
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The deflection at the tip of the cantilever at this loading condition is shown in Fig. 4.5. As a reference,
a composite shell element in ADINA that don’t implement slip was used. When comparing the

deflection according to y at the end, the proposed element agrees well with the reference result.

7 X
T T T T T T T T T
reference(rigid)
(@) present(rigid)
72 L 4
-74 L 4
E -76 L 4
N
>
-7.8 L 4
—Co— 0o o o o o o o —o—7F
-8 L 4
-8.2 I 1 L 1 1 I I 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y(m)

Fig. 4.5. deflection at the tip of cantilever

4.1.3. Two-layer cantilever behavior with constant connection stiffness.

The last thing to be seen in the two-layer cantilever example is its behavior when axial and vertical

loads are applied. In Fig. 4.6.(a), the axial load is applied, and in Fig. 4.6.(b), the vertical load is applied.
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(b)

Fig. 4.6. Loading condition with constant connection stiffness: (a) Axial loading condition (b) Vertical

loading condition

In both loading conditions, the geometry conditions are the same. The geometry, loading conditions and
material properties are identified in Table 4.3. The connection stiffness was set to a random value other

than 0.
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Table 4.3. Material property, geometry condition, loading condition of Fig. 4.6

Material property

E; = 200 GPa, E, = 50 GPa, v; = v, = 0.3, K, = 10 MN/m?

Geometry condition

L=2m,a=1m, by =b, =0.02m

Loading condition

P, =500N P, = 500N

A two-layer cantilever is modeled using 200 shell elements. For the reference, ADINA solid elements
with cohesive material are used. In Fig. 4.6.(a), modeling is performed using 20,000 elements. The
reference in Fig. 4.6.(b) uses 1,500,000 elements. Figure 4.7 (a) and (b) show the result of comparing
the x and y displacements at the ends under axial load. Figure 4.8 shows the result of comparing the
deflection of the reference and the proposed element under vertical load. All three results show good

agreement between proposed element and the reference model.

X
4 T T T T T T T T T
refrence(layer1)
35 O present(layer1)
T refrence(layer2) 7
(@) present(layer2)
3 By o) o) o) o) A
(/ A A\ A4 A A\ A4 A A\ A4 \)
25 L i
E
S 2L 4
15 | 7
1L 4
G—6—6—o6—o6—o6—o6—o6—06—6—=9
05 L =]
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y(m)
(a)
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refrence(layer2)

O present(layer2)

(b)

T T T T T T T T

reference(solid)

O present(shell)
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Fig. 4.8. Deflection at the tip with vertical load
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4.2. Three-layers cantilever

VA P VA
c
Layer 3
', —
x Layer 2
Layer 1
Ll C |-
L
(a)
dl a -
< $ b,
A
y A4 b,
A -
vh

[

Section ¢ —c¢

(b)

Fig. 4.9. Geometry condition of three layers cantilever: (a) Problem description (b) Cross section c-c

Fig. 4.10. Vertical loading condition of Fig. 4.9.
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A three-layers cantilever example is reviewed to see if the proposed element can be used for
multiple-layers as well. In this example, three shell elements are stacked and different connection
stiffnesses are considered for each interlayer. Fig. 4.9 shows the geometry of the three-layer cantilever,
and Fig. 4.10 shows detailed loading conditions. The numerical values for material properties, geometry

and loading conditions are shown in Table 4.4.

Table 4.4. Material property, geometry condition, loading condition of Fig. 4.9 and Fig. 4.10.

Material property

El =10 GPa, Ez =50 GPa, E3 = 200 GPa, V1 =V =V3 = 03,

K!=1x108 N/m2, K2 =2 x 108 N/m?

Geometry condition

L=2m,a=1m, by =by; =b3=0.02m

Loading condition

P, = 1500 N

To model the three-layer laminated shell, 200 proposed elements are used. Each additional layer adds 8
DOF per element. As a reference, it was modeled using ADINA solid elements that considered cohesive
properties. In order to model a thin cantilever as a solid, accurate results could be achieved only when
many elements are used in the thickness direction. Thus about 2,000,000 solid elements are used to
construct this example. Figure 4.11 compares the deflection of the reference and the proposed element
at the end of the cantilever. Comparing the deflection along the y-axis at the ends, the new layered shell

element exhibited good agreement with the reference.
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Fig. 4.11. deflection at the tip in three-layered composite shell

4.3. Quarter cylinder

Departing from the simple cantilever, a vertical load is applied to the quarter cylinder to check
the curvature example. Fig 4.12. shows the z-direction load applied to the end of the quarter cylinder
with radius R. In addition, detailed numerical values for material properties, geometry and loading

condition are displayed in Table 4.5.
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Section ¢ —c

(b)
Fig. 4.12. Geometry and loading condition of quarter cylinder: (a) Problem description (b) Cross section

Cc-C
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Table 4.5. Material property, geometry condition, loading condition of Fig. 4.12.

Material property

E; = 200 GPa, E, = 50 GPa, v; = v, = 0.3, K, = 10 MN/m?

Geometry condition

R=1m,a=1m, by =b, =0.03m

Loading condition

P, = 500 N

Like the previous example, a cylinder is constructed using 200 proposed shell elements. For the
reference, 800,000 ADINA solid element are used that were considered cohesive. Figure 4.13 shows
the result of comparing the z-direction displacement at the end of the cylinder. When compared with

the reference solution, good agreement with the proposed element was observed.

2 X
T T T T T T T T T
reference

-3 L O  present i
-4 L _
-5 L .
E 6| i
3"‘ (¢ Q Q (0) (0} Q (0} Q Q Q D
-7 L i
-8 L ,
9 L _

-10 | | 1 | | 1 | | 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(m)

Fig. 4.13. Displacement of z-direction at the end line
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4.4. Shallow composite panel

The examples so far show that the displacement is almost unchanged along the y-axis. In order
to confirm the two-Dimensional slip, the thin composite panel analysis is performed. Figure 4.14 shows
a concentrated load applied in the middle of a shallow composite panel. Further details such as material

properties, geometry and loading conditions can be found in Table 4.6.

(a)
\
I
Layer 1 TT—2r -
— ]
(b)

Fig. 4.14. Geometry and loading condition of shallow panel: (a) Problem description (b) thickness of

composite model
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Table 4.6. Material property, geometry condition, loading condition of Fig. 4.14.

Material property

E; = 0.5GPa, E, = 1GPa, v; = v, = 0.3, K, = 1 MN/m?

Geometry condition

L=05m, R=25m, a =0.02rad, by = b, =0.04m

Loading condition

P, = 500 N

Structure analysis of two-layer shallow composite panel was conducted using 100 proposed shell
elements. Using 70000 solid elements in ADINA, the amount of deflection at the center line when
applied to a load in the middle of a thin panel was checked and used as a reference. Fig. 4.15 shows the
comparison of the deflection curve of the line AB of the reference and the proposed element. The red
circle is the suggested element, and the black straight line is the reference using the solid element. It is

confirmed that it agrees well with the parabolic result of the reference.

T T T T T T T T T
8 L reference 1
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6 L -
4 | i
2 L _
— 0L i

E

N q g
-2 L o
-4 | B
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-8 L 4

-10 I 1 I I 1 I I I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(m)

Fig. 4.15. Deflection in straight AB of shallow composite panel
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Chapter 5. Conclusion

The purpose of this topic is to develop an element suitable for analyzing thin layered models
in which partial interactions exist. Solid elements are currently used to analyze the slip, but there is a
disadvantage that an extremely large number of elements must be used for accuracy when analyzing a

very thin model.

In this study, a multi-layer composite shell element based on a continuum mechanics with
interlayer slip was proposed. By defining two slip direction vectors per node, two degrees of freedom
per node are added each time a layer is increased. Various numerical examples were presented to
confirm the performance of the proposed element. First, a two-layer cantilever was compared with a
reference model under various load conditions, and this was extended to a three-layer cantilever. In
addition, an example of a cylinder with curvature and an example of a thin composite panel subjected
to a centralized load were examined. All of the above example showed good accuracy when compared

to reference model in ADINA.

When analyzing the proposed shell element thin composite structure, there is an advantage
that the analysis can be performed using fewer degrees of freedom than using a shell element for each
layer or using a solid element. It is also significant that the shell finite element analysis considering slip

was performed using three-dimensional interpolation.
The current model only considers constant slip stiffness. For a mode II and III delamination

analysis, a cohesive model in which the stiffness modulus changes with displacement is required. If

expansion into nonlinear formulation is also considered, a more accurate analysis will be possible.
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