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Abstract 

In this thesis, novel continuum mechanics based beam finite elements for the linear and nonlinear analyses 
of multi-layered composite beams and multi-layered helically stranded cable structures are introduced. The primary 
feature of the proposed beam finite element is an advanced modeling capability that originates from the general 
3D geometry and displacement interpolations of the continuum mechanics based beams. The continuum mechanics 
based beam formulation enables much simpler and more efficient modeling procedure using relatively small 
number of the degree of freedom (DOF), because the entire geometry of the layered beam is modeled as a single 
beam model instead of modeling the each individual sub-component of the beam. Thus, it is possible to deal with 
the behavior of the entire multi-layered beam and helically stranded cable structures regardless of the numbers of 
layers and sub-components. The modeling capability and the performance of the proposed beam element model 
were verified through several numerical examples. The proposed beam finite element exhibits excellent predictive 
and modeling capabilities to deal with complicated geometries including arbitrary numbers of layers and wires, 
composite cross-sections, eccentricities in addition to various loading conditions. Further, the proposed beam finite 
element is successfully applicable for predicting the nonlinear behaviors of the multi-layered beam and cable 
structures while considering the geometrical and material nonlinearities of the sub-components as well as the 
nonlinear load-slip relation. 
 

Keywords: layered beams; helically stranded cable; multi-layered; composite beams; interlayer slips; continuum 

mechanics; finite element analysis; nonlinear analysis 
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Chapter 1. Introduction 

 

Layered beam structures, which refers to beam structures composed of multiple layers and sub-components, 

are widely used in various engineering fields to obtain enhanced structural properties. The most important feature 

of these structures is the capability to combine various sub-components that may have different structural and 

material properties depending on various design requirements. This distinct feature enables to meet improved 

structural performances together with various practical conditions required in the field, such as high strength, 

durability, resistance, stiffness-to-weight ratios and flexibility. Laminated composites and sandwich beams, which 

have been widely used in mechanical and aerospace engineering, and reinforced concrete beams and bolted-beams, 

which have been primarily used in civil engineering, are representative layered beam structures. Unlike typical 

layered beam structures normally composed of the rectangular cross-sections and unidirectional layers, there are 

also layered beam structures with helically twisted geometries. These structures, which are generally referred to 

as helically stranded cable structures, have been commonly used in many engineering fields, for example, electric 

copper wires, optical fiber cables, high capacity aluminum conductors, submarine cables, cables for automobile 

and ships, and so on.  

 

Layered beam structures have much more complex geometries than simple beams that consist of a single 

material as they are composed of several independent layers and sub-components that may have different 

properties. They also exhibit more complex behaviors than conventional beam structures, because the incomplete 

connections between the sub-components induce the composite interactions and individual behaviors of the sub-

components. In particular, in the case of multi-layered beam structures, the combination of the composite 

interactions as well as the individual behaviors of the sub-components become more complex as the number of 

layers and sub-components increases, and this makes it difficult to predict their behaviors. Such complicated 

geometries of multi-layered beam structures often require complex numerical models and a massive amount of 

computation cost. Furthermore, for the analysis of the nonlinear behavior of multi-layered beam structures, it is 

necessary to perform an iterative solution process while considering the geometrical and material nonlinearities 

of the sub-components as well as the nonlinear load-slip relation between interlayers. This made accurate analysis 

more difficult and required much computational time due to a drastic increase in the complexity of the problem. 

The motivation of the works presented in this thesis comes from finding a way to overcome these difficulties and 

drawbacks. 
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The objective of this thesis is to propose new continuum mechanics based beam elements for linear and 

nonlinear analyses of multi-layered composite beam and helically stranded cable structures, and to demonstrate 

their performance. The main feature of the proposed beam finite element is an advanced modeling capability that 

originates from the general 3D geometry and displacement interpolations of the continuum mechanics based 

beams. The continuum mechanics based beam formulation enables much simpler and more efficient modeling 

procedure using relatively small number of the degree of freedom (DOF), because the entire geometry of the 

layered beam is modeled as a single beam model instead of modeling the individual components of the beam. 

Thus, it is possible to deal with the behavior of the entire layered beam structure regardless of the numbers of 

layers and sub-components that constitute the beam. Further, the proposed beam finite element is successfully 

applicable for predicting the nonlinear behaviors of the multi-layered beam and cables while considering the 

geometrical and material nonlinearities of the sub-components as well as the nonlinear load-slip relation. These 

benefits enable fast and efficient analysis of the nonlinear behavior of multi-layered beam and cable structures 

involving complicated geometry. The applicability and the predictive capability of the proposed beam finite 

element is examined through several numerical examples regarding the linear and nonlinear behaviors of various 

layered beam structures. 
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Chapter 2. Continuum mechanics based beam elements multi-layered 

composite beams with interlayer slips 

 

Layered composite beam structures have been broadly used in various engineering fields due to their many 

benefits. One distinct feature of such structures is the capability to combine several components depending on 

specific design requirements. Clearly, the combination of materials enables cost-effective manufacturing together 

with great functional and structural properties such as high strength, durability, resistance, and stiffness-to-weight 

ratios and so on [1-3]. 

 

Layered beams are composed of several layers that are mechanically or adhesively connected through 

interlayers to obtain composite interaction. Generally, it is challenging to attain completely rigid interlayer 

connections effectively. Therefore, deformable interlayer connections allow interlayer slips and ensure only 

partial composite interaction. Classical beam models assuming perfectly rigid interlayer connections have been 

widely used, and such models give acceptable results in many engineering problems. However, they are likely to 

cause significant underestimations, particularly when interlayer connections are relatively weak compared to 

primary structural components or when large deformation is allowed. 

 

Considerable efforts have been made to develop analytical and numerical models for the analysis of layered 

beams. After Newmark’s works [4], analytical studies on layered beams including partial composite interaction 

effects have been conducted a lot, see Refs. [4-12] and references therein. A large number of studies have also 

been carried out to develop numerical models for geometric and material nonlinear behavior of layered beams 

[13-22]. Most early studies were focused largely on simple two- and three-layer beam problems; however recent 

efforts have been undertaken for linear analysis of multi-layered beams [23-25]. Although the nonlinear behaviors 

of two-layered beams are extensively studied in many literatures, little attention has been paid to the general multi-

layered beam behaviors. Further developments on geometric and material nonlinear analyses of multi-layered 

beams encompassing complex beam geometries are still required for widening the applications of layered beams. 

 

Recently, continuum mechanics based beam elements were developed as a direct extension of well-known 

isoparametric beam elements [26-28]. Incorporating cross-sectional elements in the beam formulation, they 

provide notable accuracy and efficiency to consider complex 3D beam geometry in geometric and material 

nonlinear analyses. Fully coupled nonlinear beam behaviors including large displacements and large rotations 
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have been effectively analyzed. In particular, the continuum mechanics based beams are useful to deal with 

composite beam structures [29-31]. 

 

The main topic of Chapter 2 is to propose a new formulation of continuum mechanics based beam elements 

for linear and nonlinear analyses of multi-layered composite beams with interlayer slips and validate their 

performance. In order to comprise slip kinematics and the corresponding partial composite interaction effect, the 

continuum mechanics based beam formulation is enriched by introducing a layer degree of freedom (DOF) for 

each layer. The cross-sectional geometries of each layer is modeled individually by using cross-sectional elements 

embedded in the beam formulation, and discontinuous relative displacements between the layers are represented 

by independent DOFs given to layers.  

 

The significant feature of the present beam formulation is an advanced modeling capability that originates 

from the general 3D geometry and displacement interpolations of the continuum mechanics based beams. 

Complicated layered beam geometries including an arbitrary number of layers and interlayers, varying and 

composite cross-sections, different interlayer stiffnesses, and eccentricities can be easily modeled without using 

additional interface elements or constraints. Most notably, the proposed beam formulation is applicable to predict 

geometric and material nonlinear behaviors of multi-layered beams including nonlinear load-slip relations at 

interlayers. 

 

In the following sections, nonlinear kinematics of multi-layered beams allowing interlayer slips and the 

finite element formulation are presented. Geometry and displacement interpolations for layered beams are 

described in detail, and linearized incremental equilibrium equations involving partial composite interaction 

effects are derived based on the total Lagrangian formulation. Finally, the finite element discretization procedure 

is presented. The performance and predictive capability of the proposed beam finite elements are demonstrated 

through several illustrative numerical examples. 

 

2.1 Nonlinear kinematics of layered beam structures 

The geometry interpolation of the continuum mechanics based beam elements is directly degenerated from 

an assemblage of 3D solid finite elements; herein, the solid element fibers are aligned along the longitudinal axis 

of the beam. Each solid element fiber here is named as sub-beam (Fig. 1(a)).  
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Fig. 1. A continuum mechanics based beam element without slip kinematics allowing three translations and 
three rotations: (a) A q -node continuum mechanics beam element in the configuration at time t , where 

3q = , and (b)  Cross-section of beam modeled by p -node cross-sectional elements at beam node k , 
where 4p = . 
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For a q -node continuum mechanics based beam element, the material position in sub-beam m  in the 

configuration at time t  is given as  

( ) ( ) ( )

1 1 1
( ) ( ) ( )

q q q
t m t m t k m t k

k k k k y k k z
k k k

h r h r y h r z
= = =

= + +∑ ∑ ∑x x V V ,               (2.1) 

where ( )kh r  is the 1D shape function corresponding to beam node k  ( kC ), t
kx  is the position vector of 

beam node k , t k
yV  and t k

zV  are the orthonormal director vectors that define the cross-sectional Cartesian 

coordinate system at beam node k   together with ( )t k t k t k
x y z= ×V V V  , and ( )m

ky   and ( )m
kz   denote the 

material position in the cross-sectional area of sub-beam m  in the cross-sectional Cartesian coordinate system 

(Figs. 1(a) and (b)). Note that this geometry interpolation allows three translations and three rotations at each 

beam node. 
 

An important feature of the continuum mechanics based beam element is that the cross-sectional geometry 

is modeled using cross-sectional elements defined by cross-sectional nodes as shown in Fig. 1(b). For a p -node 

cross-sectional element m  corresponding to sub-beam m  (shaded in gray in Fig. 1(b)), the material position 

in the cross-sectional area ( ( )m
ky  and ( )m

kz ) is interpolated as 

( ) ( )

1
( , )

p
m j m

k j k
j

y h s t y
=

=∑ , ( ) ( )

1
( , )

p
m j m

k j k
j

z h s t z
=

=∑                     (2.2) 

where ( , )jh s t  is the 2D shape function corresponding to cross-sectional node j  and ( )j m
ky  and ( )j m

kz  are 

the coordinates of cross-sectional node j  in the cross-sectional Cartesian coordinate system at beam node k . 

 

In order to represent the geometry of layered beams involving slip kinematics, the discontinuous relative 

displacements between the layers due to the interlayer slips need to be included in Eq. (2.1). Let us consider a 

layered beam that consists of l -layers in the configuration at time t , as shown in Fig. 2(a). Each layer can be 

composed of several sub-beams, and the interlayer slips are allowed between the adjacent layers. For example, in 

Fig. 2(a), the layered beam consists of four layers (Layers 1–4) and allows slips at four interlayers; here, Layers 

1 and 4 are composed of three sub-beams, and Layers 2 and 3 are composed of a single sub-beam.  
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Fig. 2. Geometry of a layered beam: (a) A layered beam that consists of l -layers, (b) Side view of layer beam, 
and (c) Beam nodes and coordinate systems used in the beam element. 

 

For sub-beam m  belonging to layer n , the geometry interpolation of the layered beam including slip 

kinematics is obtained as 
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    ( )( ) ( )( ) ( )( ) ( )

1 1 1 1
( ) ( ) ( ) ( )

q q q q
t m n t m n t k m n t k t n t k

k k k k y k k z k k s
k k k k

h r h r y h r z h r ϕ
= = = =

= + + +∑ ∑ ∑ ∑x x V V V  (2.3) 

where ( )( )m n
ky  and ( )( )m n

kz  denote the material position in the cross-section of sub-beam m  of layer 

n , ( )t n
kϕ  is the layer DOF given to each layer n  at beam node k , and t k

sV  is the slip director vector that 

indicates the longitudinal direction of the beam in the configuration at time t .  

 

The slip director vector t k
sV  at beam node k  is defined as  

                    
t k

t k x
s t k

x

=
gV
g

 with 
1

( )q
t k t

x

kr r

h r
r

ξ
ξ

ξ = =

∂
=

∂∑g x  (2.4) 

where kr  is the coordinate of beam node k  in the 1D natural coordinate system. Note that the slip director 

vector t k
sV  is different from the director vector t k

xV , which is orthonormal to the t k
yV  and t k

zV  in the 

cross-sectional Cartesian coordinate system (Figs. 2(b) and (c)). 

 

In the geometry interpolation of the layered beam in Eq. (2.3), the layer DOF ( )t n
kϕ  denotes the relative 

displacement in the slip direction ( t k
sV ) at beam node k  between the layer n  and a reference layer as shown 

in Fig. 2(b). The reference layer can be arbitrarily selected and the layer DOFs ( )t n
kϕ  assigned to it should be 

fixed (set to be zero) because the displacements relative to itself is zero. Therefore, the cross-sectional plane of 

the reference layer at beam node k  (cross-sectional plane k ) becomes a basis plane to measure the relative 

displacements. In Fig. 2(b), Layer 2 is chosen as the reference layer, and the corresponding cross-sectional plane 

k  is defined. 

 

From the layer DOFs at beam node k , the slip displacement ( )t i
su  on interlayer i  between the adjacent 

layers a  and b  is interpolated as 

 ( ) ( ) ( )

1
( )( )

q
t i t b t a

s k k k
k

u h r ϕ ϕ
=

= −∑ .      (2.5) 

 
 
2.2 Incremental displacement interpolation 

For sub-beam m  belonging to layer n , the incremental displacement interpolation is obtained from the 

configurations at times t t+ ∆  and t  



 
9 

( )( ) ( )( ) ( )( )
0

m n t t m n t m n+∆= −u x x  

( )( ) ( )( )
0

1 1 1
( ) ( ) ( ) ( ) ( )

q q q
m n t t k t k m n t t k t k

k k k k y y k k z z
k k k

h r h r y h r z+∆ +∆

= = =

= + − + −∑ ∑ ∑u V V V V  

( ) ( )

1
( )( )

q
t t n t t k t n t k

k k s k s
k

h r ϕ ϕ+∆ +∆

=

+ −∑ V V ,  (2.6) 

where 0 ku  is the incremental nodal displacement from time t  to t t+ ∆  at beam node k  

[ ]T0 0 0 0k k k ku v w=u                              (2.7) 

 

Using the well-known Rodrigues formula for parametrization of finite rotations, the director vectors 

t t k
x

+∆ V , t t k
y

+∆ V , and t t k
z

+∆ V  in the configuration at time t t+ ∆  are represented in terms of the director 

vectors at time t  

0( )t t k k t k
x x

+∆ =V R θ V , 0( )t t k k t k
y y

+∆ =V R θ V , and 0( )t t k k t k
z z

+∆ =V R θ V           (2.8) 

where 0( )kR θ   is the finite rotation tensor, which is  represented by the skew-symmetric matrix operator 

0
ˆ ( )kR θ  with the incremental Eulerian angle vector 0

kθ  that consists of incremental Eulerian angles 0
k
xθ , 

0
k
yθ , and 0

k
zθ  from time t  to t t+ ∆ as the following equations 

20 0
0 0 02

0 0

sin 1 cosˆ ˆ( ) ( ) ( )
( )

k k
k k k

k k

θ θ
θ θ

−
= + +R θ I R θ R θ ,                     (2.9) 

0 0 0 0

Tk k k k
x y zθ θ θ =  θ , 2 2 2

0 0 0 0( ) ( ) ( )k k k k
x y zθ θ θ θ= + +                 (2.10) 

0 0

0 0 0

0 0

0
ˆ ( ) 0

0

k k
z y

k k k
z x

k k
y x

θ θ
θ θ
θ θ

 −
 = − 
 − 

R θ .                              (2.11) 

 

The slip director vector t t k
s

+∆ V  in the configuration at time t t+ ∆  is approximated in terms of the slip 

director vector at time t  and the incremental nodal displacement  

 0
1

( )1t t k q
t t k t kx

s st t k t k
x x kr r

h r
r

ξ
ξ

ξ

+∆
+∆

+∆
= =

∂
= ≈ +

∂∑gV V u
g g

. (2.12) 

Substituting Eq. (2.8) and Eq. (2.12) into Eq. (2.6), the incremental displacement of sub-beam m  

belonging to layer n  becomes  
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( )( ) ( )( ) ( )( )
0 0 0 0

1 1 1
( ) ( ) ( ( ) ) ( ) ( ( ) )

q q q
m n m n k t k m n k t k

k k k k y k k z
k k k

h r h r y h r z
= = =

= + − + −∑ ∑ ∑u u R θ I V R θ I V  

( ) ( ) ( )
0 0 0

1 1

1( )( ( )( ( ) ))
q q

n t k t n n
k k s k k t k

k x

h r h rξ ξ
ξ

ϕ ϕ ϕ
= =

′+ + +∑ ∑V u
g

, (2.13) 

where ( )
0

n
kϕ  is the incremental layer DOF corresponding to the layer n  at beam node k . 

 

The finite rotation tensor 0( )kR θ  in Eq. (2.9) is linearized by the use of the first-order Taylor polynomial 

approximation 

 0 0 0
1

1 ˆ ˆ( ) ( ) ( )
!

k k n k

n n=

= + ≈ +∑R θ I R θ I R θ
∞

 (2.14) 

Substituting Eq. (2.14) into Eq. (2.13) and applying the first-order approximation, the linearized incremental 

displacement ( )( )
0

m nu  for sub-beam m  of layer n  is obtained 

( )( ) ( )( ) ( )( ) ( )( )
0 0 0 0 0

1 1 1

ˆ ˆ( ) ( ) ( ) ( ) ( )
q q q

m n m n m n k t k m n k t k
k k k k y k k z

k k k
h r h r y h r z

= = =

≈ = + +∑ ∑ ∑u u u R θ V R θ V  

( ) ( )
0 0

1 1

1( )( ( ) )
q q

n t k t n
k k s k t k

k x

h r h rξ ξ
ξ

ϕ ϕ
= =

′+ +∑ ∑V u
g

lk  (2.15) 

 
 

2.3 Incremental equilibrium equations 

For sub-beam m  belonging to layer n , the covariant component of the Green–Lagrange strain in the 

configuration at time t  referred to the configuration at time 0  is given by 

 ( )( ) ( )( ) ( )( ) 0 ( )( ) 0 ( )( )
0

1 ( )
2

t m n t m n t m n m n m n
ij i j i jε = ⋅ − ⋅g g g g  with 

( )( )
( )( )

t m n
t m n

i
ir

∂
=

∂
xg , (2.16) 

where ( )( )t m n
ig  is the covariant base vector and ir  indicates the natural coordinates ( , , )r s t : 1r r= , 2r s=  

and 3r t= . 

 

The covariant component of the incremental Green–Lagrange strain is obtained from the strains in the 

configurations at time t t+ ∆  and t  

 ( )( ) ( )( ) ( )( )
0 0 0

m n t t m n t m n
ij ij ijε ε ε+∆= −    (2.17) 

and it can be decomposed into linear and nonlinear parts, ( )
0

mn
ije  and ( )

0
mn

ijη , respectively  
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 ( )( ) ( )( ) ( )( )
0 0 0

m n m n m n
ij ij ijeε η= +   (2.18) 

with                    
( )( ) ( )( )

( )( ) ( )( ) ( )( )0 0
0

1 ( )
2

m n m n
m n t m n t m n

ij i j
j i

e
r r

∂ ∂
= ⋅ + ⋅

∂ ∂
u ug g  (2.19) 

and                            
( )( ) ( )( )

( )( ) 0 0
0

1
2

m n m n
m n

ij
i jr r

η ∂ ∂
= ⋅

∂ ∂
u u

 . (2.20) 

 

The incremental Green–Lagrange strain defined in the local Cartesian coordinate system is evaluated 

through the following transformation 

 ( )( ) 0 0 ( )( ) 0 0 ( )( ) ( )( )
0 0( )( )m n k m n l m n m n

ij i j kle e= ⋅ ⋅t g t g  , (2.21) 

 ( )( ) 0 0 ( )( ) 0 0 ( )( ) ( )( )
0 0( )( )m n k m n l m n m n

ij i j klη η= ⋅ ⋅t g t g  , (2.22) 

where 0 ( )( )k m ng   is the contravariant base vector calculated using 0 ( )( ) 0 ( )( )k m n m n k
l lδ⋅ =g g   and 0

it   is the 

base vector of the local Cartesian coordinate system given by  

 0 0
1 ( ) k

k xh r=t V , 0 0
2 ( ) k

k yh r=t V  and 0 0
3 ( ) k

k zh r=t V . (2.23) 

 

In the total Lagrangian formulation, the principle of virtual work for a layered beam is given in the 

configuration at time t t+ ∆  

 
0 0

0 ( ) ( ) 0
0 0

t t t t t t i t t i t t
ij ij s sV L

i
S d V F u d Lδ ε δ+∆ +∆ +∆ +∆ +∆+ = ℜ∑∫ ∫ , (2.24) 

in which 0V  and 0L  denote the volume and length of the beam, respectively, in the configuration at 

time 0  , 0
t t

ijS+∆   is the local second Piola–Kirchhoff stress, 0
t t

ijε
+∆   is the local Green–Lagrange strain, 

( )t t i
sF+∆  and ( )t t i

su+∆   are the slip force per unit length and the slip displacement at interlayer i , respectively, 

t t+∆ ℜ  is the external virtual work, and δ  denotes virtual quantities. 

 

After linearizing Eq. (2.24) with ( ) ( ) ( )
0

t t i t i i
s s sF F F+∆ = + , the following incremental equilibrium equation 

is obtained 

0 0 0

0 0 ( ) ( ) ( ) 0
0 0 0 0 0 0

t i i i
ijkl ij kl ij ij s s sV V L

i
C e e d V S d V K u u d Lδ δ η δ+ +∑∫ ∫ ∫  

 
0 0

0 ( ) ( ) 0
0 0 0

t t t t i i
ij ij s sV L

i
S e d V F u d Lδ δ+∆= ℜ− −∑∫ ∫ , (2.25) 
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where ijklC   is the material law tensor for beams, 0 ije   and 0 ijη   are the linear and nonlinear parts of the 

incremental local Green–Lagrange strain, and ( )
0

i
su  and ( )

0
i

sK  are the incremental interlayer slip displacement 

and the corresponding connection stiffness at interlayer i , respectively.  

The constitutive relations used in Eq. (2.25) are 

 0 0ij ijkl klS C e=  and ( ) ( ) ( )
0 0 0

i i i
s s sF K u= , (2.26) 

where 0 ijS  denotes the incremental second Piola–Kirchhoff stress and ( )
0

i
sF  is the incremental slip force per 

unit length at interlayer i .  

 

Expressing Eq. (2.25) as a sum of integrations over the volume of each sub-beam m  of layer n  in the 

configuration at time 0 ( 0 ( )( )m nV ), 

( )( ) ( )( )0 0

( )( ) ( )( ) ( )( ) 0 ( )( ) ( )( ) ( )( ) 0 ( )( )
0 0 0 0m n m n

m n m n m n m n t m n m n m n
ijkl ij kl ij ijV V

n m n m
C e e d V S d Vδ δ η+∑∑ ∑∑∫ ∫  

( )( )0 0 0

( ) ( ) ( ) 0 ( )( ) ( )( ) 0 ( )( ) ( ) ( ) 0
0 0 0 0 0 0m n

i i i t t t m n m n m n t i i
s s s ij ij s sL V L

i n m i
K u u d L S e d V F u d Lδ δ δ+∆+ = ℜ− −∑ ∑∑ ∑∫ ∫ ∫ .(2.27) 

In the beam formulation, only five covariant components of the Green–Lagrange strain are of interest, (i.e. 

( ) ( ) ( ) ( ) ( ) ( ){ },  1,  1 ,  1,  2 ,  2,  1 ,  1,  3 ,  3,  1i j ∈  ), and the material law tensor has only five non-zero 

components: 1111C E=   and 1212 2121 1313 3131C C C C G= = = =   with Young’s modulus E   and shear 

modulus G . 

 

 

2.4 Finite element formulations 

In a q  -node continuum mechanics based beam element, the nodal DOFs vector 0 U   consists of the 

DOFs vector 0 kU  at beam node k  

 
TT T T

0 0 1 0 2 0 q =  U U U U  (2.28) 

where         
T(1) ( )

0 0 0 0 0 0 0 0 0
k k k l

k k k k x y z k ku v w θ θ θ ϕ ϕ =  U   . (2.29) 

 

Employing Eq. (2.28), the incremental displacements ( )( )
0

m nu   for sub-beam m   of layer n   in Eq. 

(2.15) is represented in terms of the nodal DOFs vector 0 U : 
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 ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 1 2 0 0...m n m n m n m n m n

q = = u L L L U L U  (2.30) 

where ( ) ( )( )( ) ( ) ( )( ) ( )( )ˆ ˆ( ) ( ) ( ) ( ) ( )m n t n m n t k m n t k
k k k k k y k zh r r h r y zφ = + − + L I R V R V 0  

( )( ) t k n
k sh r+ V Q   (2.31) 

with 
( )

( )

1

( )( ) ( )
t nq

t n k
k t

xr r

h rr h r
r

ξ
ξ ξ

ξ ξ

ϕ
φ

= =

∂
=

∂∑ g
,  (2.32) 

and ( )nQ  is a Boolean matrix for the layer DOFs ( )
0

n
kϕ  such that  

 ( ) ( )
0 0

n n
k kϕ = Q U . (2.33) 

Similarly, the incremental slip displacement ( )
0

i
su  at interlayer i  is represented in terms of the nodal 

DOFs vector 0 U   

 ( ) ( ) ( ) ( )
0 0 0 0

1
( )( )

q
i b a i

s k k k s
k

u h r ϕ ϕ
=

= − =∑ H U , (2.34) 

where ( )i
sH   is the shape function matrix for the slip displacement at interlayer i  , which is  constructed 

according to the layer DOFs of the adjacent two layers a  and b  located on both sides of interlayer i .  

 

The linear and nonlinear parts of the covariant Green–Lagrange strain in Eq. (2.19) and Eq. (2.20) are also 

expressed in terms of 0 U : 

 
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
0 0 0

1
2

m n m n
m n t m n t m n m n

ij i j ij
j i

e
r r

 ∂ ∂
= ⋅ + ⋅ =  ∂ ∂ 

L Lg g U B U , (2.35) 

 
( )( ) ( )( )

( )( ) T T ( )( )
0 0 0 0 0

1 1
2 2

Tm n m n
m n m n

ij ij
i jr r

η
 ∂ ∂

= =  ∂ ∂ 

L LU U U N U . (2.36) 

The local Green–Lagrange strains are obtained using Eq. (2.21), Eq. (2.22), Eq. (2.35), and Eq. (2.36): 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 0 0 0 0 0 0( )( )m n k m n l m n m n m n

ij i j kl ije = ⋅ ⋅ =t g t g B U B U , (2.37) 

 ( )( ) T ( )( ) ( )( ) ( )( ) T ( )( )
0 0 0 0 0 0 0 0 0

1 1( )( )
2 2

m n k m n l m n m n m n
ij i j kl ijη = ⋅ ⋅ =U t g t g N U U N U . (2.38) 

The virtual local Green–Lagrange strains and the virtual interlayer slip displacement are  

( )( ) ( )( )
0 0

m n m n
ij ijeδ δ= B U , ( )( ) T ( )( )

0 0 0
m n m n

ij ijδ η δ= U N U  and ( ) ( )
0 0

i i
s suδ δ= H U . (2.39) 
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Substituting Eq. (2.34) and Eqs. (2.37)–(2.39) into Eq. (2.27), the following finite element formulation is 

obtained with the tangent stiffness matrix t K : 

 0 0
t t t t

i
+∆= −K U R F    with t t t t

L NL s= + +K K K K , (2.40) 

 where 
0 ( )( )

T( )( ) ( )( ) ( )( )
0m n

t m n m n m n
L ij ijkl klV

n m
C dV=∑∑∫K B B , (2.41) 

 
0 ( )( )

( )( ) ( )( )
0m n

t m n t m n
NL ij ijV

n m
S dV=∑∑∫K N , (2.42) 

 
0

T( ) ( ) ( ) 0
0

t i i i
s s s sL

i
K d L=∑∫K H H , (2.43) 

 
0 ( )( ) 0

T T( )( ) ( )( ) ( ) ( )
0 0m n

t m n t m n i t i
ij ij s sV L

n m i
S dV F dL= +∑∑ ∑∫ ∫F B H . (2.44) 

 

The complete tangent stiffness matrix for the layered beam analysis can be constructed by the assemblage 

of the elemental stiffness matrices using the direct stiffness procedure. Because the layer DOF ( )
0

n
kϕ  on the 

reference layer is fixed as mentioned before, the actual number of DOFs used for an l -layer beam is (6 1)l+ −  

(three translations, three rotations, and ( 1)l −  layer DOFs) at each beam node. In 2D analysis of layered beams, 

(3 1)l+ −  DOFs (two translations, one rotation, and ( 1)l −  layer DOFs) are required. 

 

The incremental displacement 0 U  is obtained in each incremental step by solving Eq. (2.40). Then, the 

position of each beam node k  and the layer DOFs at beam node k  are additively updated as 

 
0

0

0

k
t t t

k k k

k

u
v
w

+∆

 
 = +  
  

x x  and ( ) ( ) ( )
0

t t n t n n
k k kϕ ϕ ϕ+∆ = + .  (2.45) 
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2.5 Numerical examples 

In this section, we demonstrate the modeling capability and performance of the continuum mechanics based 

beam element in linear and nonlinear analyses of layered beams. To model the layered beams, 2-node continuum 

mechanics based beam elements are used, and the reduced integration scheme is adopted along the beam length 

direction to avoid shear locking [26]. For the cross-section modeling, 4-node or 16-node cross-sectional elements 

are used, and 2 2×  and 4 4×  Gauss integrations are performed on each cross-sectional element, respectively. 
 

In order to solve nonlinear equilibrium equations, the standard full Newton–Raphson iterative scheme is 

used. Material nonlinearities in beam layers are implemented using the von Mises plasticity model with linear 

isotropic hardening law, and the nonlinear load-slip relationship at the interlayers is modeled using a 1D nonlinear 

constitutive model corresponding to the particular connection properties. At each integration point in the layered 

beam model, the constitutive equations are implicitly solved using the return mapping scheme [32].  
 

In order to assess the proposed beam finite element, the results obtained from the present beam model are 

compared with the reference solutions, which are obtained from previous analytical or experimental studies or 

from 3D solid element models in the commercial software ADINA [33]. In the 3D solid element models, the whole 

layered beam structures are modeled by using 27-node 3D solid elements where the interlayers are modeled as 

thin solid layers with thickness ( )i
st  , which is chosen to be th1/1000   of the beam height. The orthotropic 

material model is adopted to model the slip behaviors allowing only longitudinal slips in the interlayer zone, in 

which the shear modulus corresponding to the longitudinal slip at interlayer i  is given as ( ) ( ) ( ) ( )/i i i i
s s s sG K t b=  

wherein ( )i
sb  and ( )i

st  are the width and thickness, respectively, of interlayer i . The other material moduli are 

restrained by large values (ten thousand times the shear modulus) to prevent uplift and slip in other directions. 

Throughout the following numerical examples E  denotes Young’s modulus, and Poisson’s ratio is considered 

to be zero. Incremental nonlinear analysis is performed unless otherwise mentioned. 

 

2.5.1 Simply supported two-layer beam 

Consider a two-layer simply supported beam with a deformable interlayer as shown in Fig. 3(a). The beam 

is subjected to both uniformly distributed transverse and axial loads. The interlayer behavior is characterized by 

a linear load-slip relation with a constant connection stiffness, 250 MN/msK = . This problem was analyzed 

first by Girhammar and Gopu [7] with closed form solutions and has been studied in several other researches [14–

16].  
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Fig. 3. Simply supported two-layer beam problem: (a) Problem description ( E  denotes Young’s modulus) and 
(b) Solid element model used to obtain reference solutions. 

 

The beam is modeled using 20 continuum mechanics based beam elements ( 21 7 147× =  DOFs) and the 

cross-section is discretized with four 4-node cross-sectional elements (Fig. 3(a)). The load levels of both the 

transverse and axial loads increase equally by employing a magnification factor λ . For comparison, the beam 

with a rigid interlayer connection is also considered and this case is modeled as a single layer beam without 

interlayer. In order to obtain reference solutions, 27-node solid elements (6,080 elements and 187,725 DOFs) are 

used in the solid element model presented in Fig. 3(b). Both transverse and axial loads are applied to the solid 

element model by employing equivalent pressures.   
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Fig. 4 shows the load-displacement curves for the z -directional displacement w  at the midpoint of the 

beam in both the cases of rigid ( )sK = ∞  and deformable 2( 50 MN/m )sK =  interlayer connections. The 

present beam model well exhibits the nonlinear response due to the interaction between bending and compression. 

As expected, the presence of the deformable interlayer increases the deflections and nonlinearity. Table 1 presents 

the maximum z -directional displacements w  at the midpoint of the beam for four load levels ( 0.5λ = ,1, 

1.5 , and 2 ).  

 
 

 
 

Fig. 4. Load-displacement curves for the z -directional displacement w  at the midpoint of the beam 
obatained from the present beam and solid element model in the simply supported two-layer beam problem. 

 
 
Table 1. z -directional displacement w  at the midpoint of the beam for four load levels ( 0.5λ = ,1, 1.5 , and 
2 ) in the simply supported two-layer beam problem (unit: m ). 

 
w  at / 2x L=   

0.5λ =   1λ =  1.5λ =  2λ =  

Present beam -4.171E-03 -9.266E-03 -1.567E-02 -2.396E-02 

Solid element model -4.201E-03 -9.321E-03 -1.585E-02 -2.425E-02 

Girhammar and Gopu [7] (Analytical) - -9.276E-03 - - 

P. Krawczyk and B. Rebora [14]  - -9.276E-03 - - 

Saje et al [15] - -9.274E-03 - - 

Battini et al [16] - -9.249E-03 - - 
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2.5.2 Simply supported two-layer tapered beam 

A simply supported two-layer tapered beam, which has varying cross-sections along the beam length, is 

considered as shown in Fig. 5(a). The geometric and material properties of the beam are similar to those of the 

two-layer beam problem in Section 2.5.1; however, the cross-sectional dimensions linearly decrease from 0x =  

to x L= , except for the thicknesses of both the layers ( 1b  and 2h ). The cross-sectional dimension of the beam 

at a distance x  is defined by ( )xα , which is a linearly decreasing function from 0α  (at 0x = ) to Lα  (at 

x L= ). In this problem, ,several varying cross-sectional geometries of the beam are tested according to various 

Lα  values (from 0.3Lα =  to 0.9 ) with a constant 0 1α = . The beam is subjected to a uniformly distributed 

transverse load, 1 kN/mq =  . The constant connection stiffness for a deformable interlayer is 

250 MN/msK = . 

 

 
Fig. 5. Simply supported two-layer tapered beam: (a) Problem description where 1 0.05 mb = , 

2 0.3 mb = , 1 0.15 mh = , and 2 0.05 mh =  and (b) Solid element model used to obtain reference 
solutions. 



 
19 

The beam is modeled using 20 continuum mechanics based beam elements ( 21 7 147× =  DOFs) and the 

cross-section is discretized with four 4-node cross-sectional elements. The reference solutions are obtained using 

27-node solid elements (6,080 elements and 187,725 DOFs) as shown in Fig. 5(b). The linear analysis is performed. 

 

Fig. 6 shows the maximum deflections maxw  obtained for various Lα  values. The present beam model 

exhibits good agreement with the reference solutions, even when Lα  becomes small where the cross-sectional 

dimension changes sharply along the beam length. Table 2 presents the maximum deflections maxw  for the four 

values of Lα .  

 
 
 
Fig. 6. Maximum deflections of the beam according to Lα  in the simply supported two-layer tapered beam 

problem. 
 

Table 2. Maximum displacement maxw   calculated in four cases of varying cross-sectional geometries 

( 0.3Lα = , 0.5 , 0.7 , and 0.9 ) in the simply supported two-layer beam with varying cross-section problem 

(unit: m ). 

 Maximum displacement maxw  

 0.3Lα =  0.5Lα =  0.7Lα =  0.9Lα =  

Present beam -3.4884E-02 -1.9590E-02 -1.2545E-02 -8.8043E-03 

Solid element model -3.5305E-02 -1.9697E-02 -1.2635E-02 -8.8764E-03 
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2.5.3 Roll-up of a cantilever cross-shaped three-layer beam 

Consider a cantilever cross-shaped three-layer beam subjected to tip bending moment yM  as shown in 

Fig. 7. The beam is clamped at 0x = , and the interlayer connection stiffnesses are zero ( (1) (2) 0s sK K= = ). A 

similar problem of cantilever beam that has two layers was previously discussed in Refs. [14, 16]. The beam is 

modeled by 20 continuum mechanics based beam elements ( 21 7 147× =   DOFs), and the cross-section is 

discretized using five 4-node cross-sectional elements. 

 

The analytical relation between the tip bending moment yM  and roll-up angle θ  of Layer 3 is given by 

 1 2 3yM M M M= + + , i i
i

i

E IM
R

= , 
3

12
i i

i
b hI =  (2.46) 

 with 3
LR
θ

= , 2 3 2 3
1 ( )
2

R R h h= + + , 1 3 1 2 3
1 ( 2 )
2

R R h h h= + + + . (2.47) 

 

The corresponding interlayer slips, 1s  and 2s , are evaluated using the following equations 

 1 2 2
2 1

1 1 1( ) ( )( )
2

s x R h x
R R

= + − , 2 2 2
3 2

1 1 1( ) ( )( )
2

s x R h x
R R

= − − . (2.48) 

 

 
 

Fig. 7. Cantilever cross-shaped three-layer beam subjected to tip bending moment yM . 
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The results obtained from the present beam model are compared with the analytically calculated solutions. 

Fig. 8(a) shows the deformed shapes of the beam when the roll-up angle θ  becomes / 2θ π= , π , 3 / 2π , 

and 2π . Figs. 8(b) and (c) show the load-displacement curves for the x - and z -directional displacements 

( u   and w  ) at the free tip with respect to the tip bending moment yM  . Fig. 9 presents the load-slip 

displacement curves at the free tip. The results demonstrate that the present beam model shows good agreement 

with the analytical model, and well predicts a large rotation behavior of the layered beam such that the roll-up 

angle becomes 2θ π= . 

 

 
 
Fig. 8. Numerical results in the cantilever cross-shaped three-layer beam problem: (a) Deformed shapes of the 
beam at four load levels when / 2θ π= , π , 3 / 2π , and 2π , and (b) and (c) Load-displacement curves 
of x -and z -directional displacements ( u  and w ) at the free tip. 
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Fig. 9. Load-slip displacement curves at the free tip of the beam in the cantilever cross-shaped three-layer beam 

problem. 

 

2.5.4 Buckling of a simply supported two-layer beam 

Consider buckling of a simply supported two-layer beam with a deformable interlayer of constant 

connection stiffness 249 MN/msK =  as shown Fig. 10. At the end of the beam, an axial load P  is applied 

on the cross-section of Layer 1 with a z -directional eccentricity e , which is measured from the center line of 

Layer 1. Three eccentricities are considered: 0.015 m , 0.01325 m , and 0.0115 m . The beam is simply 

supported at the loading points. 

 

The beam is modeled using 30 continuum mechanics based beam elements ( 31 7 217× =  DOFs) and the 

cross-section is discretized using four 4-node cross-sectional elements. In order to calculate the load vector for 

the beam model, the eccentric axial load P  on Layer 1 is considered as a uniform axial pressure (1)(1)/P A , 

and a moment yM Pe= . The load vector for the beam element at x L=  is calculated using the following 

equation: 

 
(1)(1)

(1)(1) (1)(1) (1)(1) 0 0 0 0 0 0
Tt t T

e yr rA
dA M+∆

′=
 = +  ∫R L f , (2.49) 
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where superscript (1)(1)  indicates a cross-sectional element (1)  belonging to Layer 1 (see the cross-sectional 

modeling in Fig. 10), (1)(1)L  is the interpolation matrix in Eq. (2.30), 
T(1)(1) (1)(1)/ 0 0P A =  f  ( 2N/m ), 

and r′  is the natural coordinate at x L= . The load vector for the beam element at 0x =  is obtained similarly. 

 
 
 

 
 

 
Fig. 10. Buckling of simply supported two-layer beam subjected to axial load P  with a eccentricity e . 

 

 
 
Table 3. z -directional displacement w  at the midpoint of the beam in three cases of eccentricities e  in the 
buckling of the simply supported two-layer beam problem (unit: m ). 

  w  at / 2x L=  

  10 kNP =  20 kNP =  40 kNP =  

Kamiya [6] 
(Analytical) 

0.015 me =  -3.6039E-04 -9.5737E-04 -4.4805E-03 

0.01325 me =  8.5568E-05 1.7726E-04 3.8231E-04 

0.0115 me =  5.3153E-04 1.3119E-03 5.2451E-03 

Present beam 

0.015 me =  -3.6094E-04 -9.6009E-04 -4.5426E-03 

0.01325 me =  8.5709E-05 1.7879E-04 3.9762-04 

0.0115 me =  5.3239E-04 1.3180E-03 5.3430E-03 
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Fig. 11 compares the deflection curves along the beam length at three load levels ( 10 kNP = , 20 kN , 

and 40 kN ) in each case of eccentricity with the analytical solutions obtained from Ref. [6]. As shown in Fig. 

11, the buckling mode shapes change depending on the eccentricities. The present beam model exhibits good 

agreement with the analytical solutions. Table 3 shows the deflection at the midpoint of the beam for each case. 

 
 

 
 
 
Fig. 11. Deflection curves along the beam length according to three eccentricities e ( 0.015 m , 
0.01325 m , and 0.0115 m ) in the buckling of two-layer simply supported beam. 
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2.5.5 Cantilever four-layer sandwich beam 

A cantilever four-layer sandwich beam has three deformable interlayers as shown in Fig. 12(a). The beam 

is composed of two elasto-plastic materials: Material 1 for Layers 1 and 4 (colored gray) and Material 2 for Layers 

2 and 3 (colored yellow). As seen in Fig. 12(a): 

 Material cases 

- Material 1: Young’s modulus 1 200 GPaE =  , initial yield stress 1 100 MPaY =  , and linear 

hardening modulus 1 5 GPaH = .  

- Material 2:  Young’s modulus 2 50 GPaE =  , initial yield stress 2 80 MPaY =  , and linear 

hardening modulus 2 20 GPaH = . 

 

Two load cases and two interlayer cases are considered as follows: 

 Load cases  

– Load Case I: A shear force P  is applied at the free tip in the z -direction.  

– Load Case II: A shear force P  is applied at the free tip at an angle of / 6π  with respect to the z -

direction.  

 Interlayer cases 

– Interlayer Case I : (1) 2200 MN/msK = , (2) 2500 MN/msK = , (3) 2100 MN/msK =  

– Interlayer Case II : (1) 280 MN/msK = , (2) 2300 MN/msK = , (3) 240 MN/msK =  

The beam is modeled using 10 continuum mechanics based beam elements (11 9 99× =   DOFs). The 

cross-section of each layer is discretized by three 4-node cross-sectional elements; thus, twelve 4-node cross-

sectional elements are used in total. In order to capture the elasto-plastic behavior accurately, 4 4×   Gauss 

integration points are used in each cross-sectional element. For comparison, the beam with rigid interlayer 

connections is also considered, and this case is modeled as a single layer beam without interlayers.  

 

To obtain reference solutions, 27-node solid elements (6,500 elements and 178,200 DOFs) are used in the 

solid element model presented in Fig. 12(b). The shear forces in both Load Cases I and II are applied to the solid 

element model using equivalent pressures at the free tip ( x L= ). In the calculation of the reference solutions, 50 

load steps are used.  
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Fig. 13(a) shows the load-displacement curves for the z -directional displacement w  at the free tip when 

Load Case I is considered. Good agreements are observed with the reference solutions. Figs. 13(b) and (c) show 

the von Mises stress distributions on the cross-section at / 2x L=  obtained from the present beam and solid 

element models, respectively, when 15 kNP = . Table 4 presents the displacement w  at the free tip under 

15 kNP =  in Load Case I. 

 
 

 
 
 
Fig. 12. Cantilever four-layer sandwich beam problem: (a) Problem description and (b) Solid element model 

used to obtain reference solutions. 



 
27 

 

 

Fig. 13. Numerical results in Load Case I for the cantilever four-layer sandwich beam problem: (a) Load-

displacement curves for z-directional displacement w  at the free tip, and (b) and (c) Distributions of the von 

Mises stress obtained from the present beam and solid element models, respectively, when 15 kNP = . 
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Fig. 14. Numerical results in Load Case II for the cantilever four-layer sandwich beam problem: (a) and (b) Load-

displacement curves for z  - and y  -directional displacements ( w   and v  ) at the free tip, and (c) and (d) 

Distributions of the von Mises stress obtained from the present beam and solid element model, respectively, when 

9 kNP = , 12 kN , and 15 kN  in Interlayer Case II. 
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Figs. 14(a) and (b) show the load-displacement curves for the displacements w  and v  at the free tip in 

Load Case II. Whereas the interlayer connection stiffness considerably influences the z -directional displacement 

w , the effect is largely negligible in the y -directional displacement v . Figs. 14(c) and (d) show the von Mises 

stress distributions on the cross-section at / 2x L=  obtained from the present beam and solid element models, 

respectively, as P  increases ( 9 kNP = , 12 kN , and 15 kN ) in Interlayer Case II. Table 5 presents the 

displacements w  and v  at the free tip in Load Case II. 

 
 
Table 4. z -directional displacement w  at the free tip under 15 kNP =  in Load Case I of the cantilever 
four-layer sandwich beam problem (unit: m ). 

 Displacement w  at x L=  

 Rigid interlayers Interlayer Case I Interlayer Case II 

Elastic 7.1865E-03 3.0842E-02 4.9919E-02 

Present beam 3.3237E-02 5.1889E-02 7.2552E-02 

Solid element model 3.3449E-02 5.3144E-02 7.4146E-02 
 
 
 
Table 5. z - and y -directional displacements ( w  and v ) at the free tip under 15 kNP =  in Load Case II 
of the cantilever four-layer sandwich beam problem (unit: m ).  

  Displacement at x L=  
  

Rigid interlayers Interlayer Case I Interlayer Case II 

w  Present beam 4.2796E-02 5.8710E-02 7.4860E-02 

Solid element model 4.3466E-02 6.2934E-02 7.9601E-02 

v  Present beam 8.6832E-02 8.3405E-02 8.0849E-02 

Solid element model 9.0285E-02 8.9372E-02 8.7854E-02 
 

 

2.5.6 Seven-layer I-section beam 

Let us consider a seven-layer I-section beam subjected to both a uniformly distributed transverse load 

0 10 kN/mq =   and a tip axial load P   as shown in Fig. 15(a). The beam is fully clamped at 0x =   and 

hinged at Lx = . The beam is composed of four elastic materials (Materials 1, 2, 3, and 4), see Fig. 15(a). 
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Two interlayer cases are considered: 

 Interlayer cases 

- Interlayer Case I: (1) 2150 MN/msK = , (2) (5) 280 MN/ms sK K= = , 
(3) (4) 250 MN/ms sK K= = , (6) 2100 MN/msK =  

- Interlayer Case II: (1) (2) (3) (4) (5) (6) 0s s s s s sK K K K K K= = = = = =  

 
 

 
 
Fig. 15. Seven-layer I-section beam problem: (a) Problem description and (b) Solid element model used to 
obtain reference solutions. 
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The beam is modeled using 20 continuum mechanics based beam elements ( 21 12 252× =  DOFs), and 

the cross-section is discretized using fifteen 4-node cross-sectional elements. Reference solutions are obtained 

using 27-node solid elements (32,800 elements and 878,134 DOFs), as presented in Fig. 15(b). For comparison, 

a beam with rigid interlayer connections is considered, and this case is modeled as a single layer beam without 

interlayers. 
 
 
 

 
 

Fig. 16. Load-displacement curves for z-directional displacement w  at the beam center according to tip axial 
load P  varying from 100 kNP = −  to 300 kN  with a constant transverse load 0 10 kN/mq =  in the 
seven-layer I-section beam problem. 

 

 

Fig. 16 shows the load-displacement curves for the z -directional displacement w  at the midpoint of the 

beam as the tip axial load P  varies from compression ( 100 kNP = − ) to tension ( 300 kNP = ) with a 

constant uniformly distributed load 0 10 kN/mq = . The present beam model accurately predicts the nonlinear 

response due to the interaction between bending and compression. Because of the interaction between the 

transverse and axial loads, the deflection of the beam decreases when the tensile axial load P   increases. 

Meanwhile, the deflection increases when the magnitude of the compressive axial load P  increases. As expected, 

the presence of the deformable interlayers results in more flexible responses. The rigid interlayer case exhibits a 
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significantly stiffer behavior. The present beam model very well captures nonlinear responses of the multi-layered 

beam with deformable interlayers. Table 6 presents the displacement w   at the midpoint of the beam when 

300 kNP =  and 50 kNP = − .  

 
 
Table 6. z -directional displacement w  at the midspan of the beam under tensile axial load 300 kNP = and 
compressive axial load 50 kNP = −   with a uniformly distributed transverse load 0 10 kN/mq =   in the 
seven-layer I-section beam problem (unit: m ). 

  w  at / 2x L=  

  Interlayer Case I Interlayer Case II 

300 kNP =  
Present beam -2.0883E-03 -2.3913E-03 

Solid element model -2.0992E-03 -2.3933E-03 

50 kNP = −  
Present beam -5.9667E-03 -9.6398E-03 

Solid element model -5.9916E-03 -9.4123E-03 

 
 
2.5.7 Cantilever four-layer box beam 

A cantilever four-layer box beam is subjected to a tip shear load P  as shown in Fig. 17(a). Unlike typical 

layered beam geometries studied before, Layers 1 and 4 are connected with two other layers positioned in parallel 

simultaneously. The four interlayers are located through two columns in pairs. All the layers of the beam are 

composed of a linear elastic material with Young’s modulus 100 GPaE = . 

 

Two interlayer cases with constant connection stiffnesses are tested: 

 Interlayer cases 

- Interlayer Case I : (1) (4)
s sK K Kα= = , (2) (3)

s sK K K= =  

- Interlayer Case II : (2) (2) (3) (4)   (1 ) / 2s s s sK K K K Kα= = = = + , 

where 2200 MN/mK =  and α  is a ratio varying from 0.05  to 1. In Interlayer Case I, the connection 

stiffnesses of Interlayers (1) and (4) vary depending on α , and those for Interlayers (2) and (3) are constant. In 

Interlayer Case II, the connection stiffnesses of all the interlayers are identical; it is the average of those in 

Interlayer Case I.  
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Fig. 17. Cantilever four-layer box beam problem: (a) Problem description and (b) Solid element model used to 

obtain reference solutions. 

 

The beam is modeled using 10 continuum mechanics based beam elements (11 9 99× =  DOFs), and the 

cross-section is discretized by eight 4-node cross-sectional elements. The beam model has four layer DOFs 

corresponding to the four layers. The slip displacements at the four interlayers at beam node k  are evaluated as 

follows: 

 (2) (1)
1
k

k ks ϕ ϕ= − , (3) (1)
2
k

k ks ϕ ϕ= − , (4) (2)
3
k

k ks ϕ ϕ= −  and (4) (3)
4
k

k ks ϕ ϕ= − . (2.50) 

The reference solutions are obtained from the solid model using 27-node solid elements (14,400 elements and 

432,000 DOFs) as presented in Fig. 17(b). In this problem, linear behavior of the beam was considered. 
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Fig. 18. Numerical results and deformed shapes for the cantilever four-layer box beam problem: (a) and (b) z -

directional displacement w  and slip displacements 1s  and 2s  at the free tip according to the interlayer 

connection stiffness ratio α , and (c) and (d) Deformed shapes at the free tip in Interlayer Cases I and II, 
respectively.  

 

Figs. 18(a) and (b) show the z -directional displacement w  and interlayer slips ( 1s  and 2s ) at the free 

tip for various values of α . For the lower values of α , the effect of the connection stiffness difference between 

the interlayers positioned in parallel increases, thus the differences in the results between Interlayer Case I and II 

increase. The results obtained from the proposed beam model exhibit excellent agreements with the reference 
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solutions in both Interlayer Cases I and II. Figs. 18(c) and (d) compare the deformed configurations at the free tip 

of the beam in Interlayer Cases I and II, respectively. Table 7 presents the displacement w  and the interlayer 

slips ( 1s  and 2s ) at the free tip when 0.5α =  and 0.05  in Interlayer Case I and II, respectively.  

 
 
Table 7. z  -directional displacement w   and slip displacements 1s   and 2s   at the free tip in two interlayer 

cases ( 0.5α =  and 0.05 ) in the cantilever four-layer box beam problem (unit: m ).   

   Displacements at x L=  

   w  1s  2s  

Interlayer 
Case I 

0.5α =  
Solid element model -5.1965E-02 -5.3857E-04 -2.7535E-04 

Present beam -5.1994E-02 -5.4229E-04 -2.7825E-04 

0.05α =  
Solid element model -8.9762E-02 -3.0361E-03 -3.2189E-04 

Present beam -8.9869E-02 -3.0486E-03 -3.2805E-04 

Interlayer 
Case II 

0.5α =  
Solid element model -5.0597E-02 -3.6410E-04 -3.6410E-04 

Present beam -5.0636E-02 -3.6715E-04 -3.6715E-04 

0.05α =  
Solid element model -5.5935E-02 -5.1893E-04 -5.1893E-04 

Present beam -5.5971E-02 -5.2278E-04 -5.2278E-04 

 
 

2.5.8 Comparison with experimental test1: Nailed two-layer wood beam  

In order to validate the performance of the present beam finite element in practical problems, a comparison 

between the present beam model and the experimental results by Wheat and Calixto in [8] was made. In the 

experimental test in Ref [8], a two-layer beam composed of solid wood (Layer 1) nailed to plywood sheathing 

(Layer 2) is considered as shown in Fig. 19(a). An eccentric axial load P  is applied on the cross-section of the 

solid wood at the end of the beam ( x L= ) where the eccentricity e  is measured from the center line of the 

solid wood.  

 

In the experimental test in Ref [8], the material property of the beam and the load-slip relation at an 

interlayer were determined through a series of experimental test. The elastic modulus of the solid wood and 

plywood sheathing are calculated from simple span beam tests. The interlayer is connected with connectors (6d 
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common nails) in two rows, and the constitutive relationship between magnitude of shear force (N)sF  and 

magnitude of slip (m)δ  in the single connector is determined using empirically derived Foshi-Bonac equation 

[34] shown in Fig. 19(b). The slip force per unit length (N/m)sF  at the interlayer is calculated as: 

 s s
nF F
s

=  (2.51) 

where n   is the number of connectors per row and s   is the spacing between the rows ( 2n =   and 

0.178 ms = ). For a more detailed experimental procedure, see [8].  

 

 

         

Fig. 19. Nailed two-layer wood beam problem: (a) Problem description and (b) Foshi-Bonac load-slip curve and 
material parameters used. 
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In the present beam model, the beam is modeled using 20 continuum mechanics based beam elements 

( 21 7 147× = DOFs) and the cross-section is discretized using six 4-node cross-sectional elements. Load vector 

for the beam model is calculated as similar way in section 2.5.4. Note that the experimental specimen used in [8] 

was composed such that plywood sheathing is 25.4 mm shorter than the solid wood to ensure axial and rotational 

movement at the end of the beam, however, this slight length difference between the Layer 1 and 2 is neglected 

in the present beam model. 

 

Fig. 20 shows the load-displacement curves for the z -directional displacement w  at the midspan of the 

beam compared with the experimental results in [8]. Good agreement is obtained in an overall range even where 

the deflection increases rapidly according to the small increase in axial load P  . Table 8 presents the z  -

directional displacement w   at the midspan of the beam for three load levels ( 10 kNP =  , 20 kN  , and 

30 kN ).  
 
 

 

 

Fig. 20. Load-displacement curves for the deflection w  at the midspan of the beam according to the eccentric 
axial load P  in the nailed two-layer wood beam problem. 
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Table 8. z -directional displacement w  at the midpoint of the beam for three load levels ( 10 kNP = , 20 kN , 

and 30 kN ) in the nailed two-layer wood beam problem (unit: m ). 

 w  at / 2x L=  

 10 kNP =  20 kNP =  30 kNP =  

Present beam 2.5872E-03 7.0583E-03 4.7478E-02 
 
 

 
2.5.9 Comparison with experimental test2: Mode II delamination test of ENF 
specimen 

The present beam model is compared with the experimental data and the numerical simulation in pure Mode 

II delamination test of ENF specimen conducted by Camanho and Dávila [36] and Turon et al. [37]. In the 

experimental tests, end notched flexure (ENF) test was performed to investigate onset and propagation of 

delamination under pure Mode II loading condition. The ENF specimen is simply supported, and pure mode II 

loading condition is applied by concentrated load P  at the midspan of the specimen.  

 

In the experimental test, the ENF specimen is made of unidirectional AS4/PEEK carbon-fiber reinforced 

composite of 102-mm-long, 25.4 mm-wide, two 1.56-mm-thick arms with an initial delamination length 

0 39.3 mma = . For the numerical simulation, the arms of the specimen are modeled by solid elements, and the 

cohesive interface is modeled by 8-node decohesion elements. The initial delamination is modeled by open 

decohesion elements along the length. Under a single Mode II loading condition, the decohesion element uses a 

bi-linear constitutive relationship that relates tractions τ  to the relative displacements δ  as shown in Fig. 21(b) 

where K  is the penalty stiffness, 0τ  is the interlaminar shear strength for Mode II, IICG  is pure Mode II 

interlaminar fracture toughness which is the area under τ  - δ   curve, and d   is a scalar damage variable 

( 6 310  N/mmK = , 0 100 MPaτ = , and 21.719 kJ/mIICG = ).  

 

In the present beam model, the ENF specimen is modeled using 102 continuum mechanics based beam 

elements ( 102 7 7014× =   DOFs), and the cross-section is discretized using two 16-node cross-sectional 

elements as shown in Fig. 21(a). The penalty stiffness K  is used as the initial interlayer connection stiffness for 

the linear load-slip behavior at the cohesive interface range. After the shear traction τ  reaches 0τ , the interlayer 

stiffnesses are set to be gradually reduced to zero to represent the softening behavior. The initial delamination 
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range is modeled by zero interlayer connection stiffness. Since only pure Mode II delamination occurs in ENF 

test, the material property is modeled as isotropic elastic material with 11E E=  and 12 13G G G= = .  

 
 

 
 

Fig. 21. Mode II delamination test of ENF specimen: (a) Problem description and (b) Bi-linear constitutive 
relationship used in cohesive interface. 
 
 
 

Fig. 22 shows the load-displacement curves for the z -directional displacement w  at the midspan of the 

ENF specimen model. The results obtained from the present beam model are compared with the ones obtained in 

experimental test and numerical simulation in [37]. Before the onset of damage initiation, the present beam model 

shows completely identical behavior with the numerical result in [37]. After the damage initiation, the response 

of present beam model is more similar to the experimental data than numerical simulation in [37]. Table 9 

compares the maximum loads maxP  obtained from the experimental test, numerical simulation in [37], and the 

present beam model.  
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Fig. 22. Load-displacement curves for the z -directional displacement w  at the midspan of the beam according 

to the concentrated load P  in the Mode II delamination test of ENF specimen problem. 

 

 

Table 9. Maximum loads maxP  in the Mode II delamination test of ENF specimen problem (unit: N ). 

 Experimental [37] Numerical [37] Present beam 

Maximum loads maxP  748.4 697.1 773.3 

 

 

  



 
41 

2.6 Concluding remarks 

3.6.1 Summary 

In Chapter 2, continuum mechanics based beam elements for linear and nonlinear analyses of multi-layered 

composite beams with interlayer slips were presented, and their performance was demonstrated through several 

representative numerical examples. The proposed beam finite element exhibits excellent predictive and modeling 

capabilities to deal with various complex multi-layered beam problems. Complicated layered beam geometries 

including arbitrary numbers of layers and interlayers, varying and composite cross-sections, and eccentricities can 

be easily modeled, and their geometric and material nonlinear behaviors as well as nonlinear load-slip relations at 

interlayers are accurately predicted.  

 

The main objective of the study presented Chapter 2 is aimed to develop new efficient and accurate beam 

finite element for linear and nonlinear analyses of multi-layered composite beams including interlayer slips. Most 

of the previous studies focused largely on simple two- and three-layer beams, and therefore nonlinear behaviors 

of general multi-layered beams are very rarely discussed. Most notably, the proposed new beam finite element 

can model the complicated layered beam geometries of arbitrarily positioned multi-layered beams as a single 

beam model without additional interface elements or constraints. As in most previous studies, interlayer slips only 

in the longitudinal direction of the beam was taken into account the slip kinematics. However, it is necessary to 

consider lateral slip and uplift behaviors at the interlayers for the complete 3D simulation of layered beams, 

especially when torsional loading is dominant or delamination occurs. To achieve this, much complicated 

kinematics including cross-sectional distortion, warping, and their interactions with bending, stretching, twisting, 

and shearing should be studied.  

 
 

3.6.2 Future works 

In general, the layered beam structures consist of multiple layers, and these layers are connected by 

interlayer connections, such as mechanical connectors or adhesive connection. As the interlayers of layered beam 

structures are incompletely connected, flexible behavior occurs in the interlayers and these interlayers are the most 

vulnerable in many cases. Therefore, the behavior of the layered beam structures is significantly affected by not 

only the characteristics of the layers that constitute the body of the beam but also by the characteristics of interlayer 
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connections and the behavior at interlayers. Thus, it is necessary to consider lateral slips uplift behaviors at the 

interlayers in addition to the interlayer slips in longitudinal direction of the beam for the complete 3D simulation 

of the layered beams, especially when torsional loading is dominant or delamination occurs.  

 

However, there were only few studies of lateral slip behaviors, which were focusing mainly on experimental 

tests of two-layer beams. It is known that there is no mixed-mode test method available incorporating Mode III 

loading until now, and even the interlayer behaviors under pure Mode III loading conditions are very rarely 

discussed so far. Incorporating lateral slips and uplifts behaviors in general 3D behaviors is not simple works 

within beam theories. Because, to do this, not only the interlayer behaviors themselves, but also relevant distorted 

mode on the cross-section of the layered beam should also be taken account into the kinematics. This distorted 

mode is closely coupled with the warped shape of individual layer and whole layered beam geometries as well as 

layer-wise bending, and significantly affected by the interlayer connection properties and loading conditions. 

Moreover, this distorted mode become even more complex as the number of layer increases. (for an example, 

there is only a single lateral mode in a two-layer beam, but there could be three different lateral modes in a three-

layer beam depending on the layer-wise loading conditions.) In fact, slips in longitudinal and lateral direction 

together with uplift at interlayers is a part of the more general damage mechanics theory, in which each of them 

belongs to Mode II, Mode III and Mode I failures, respectively. 

 

There are three failure modes that may occur in interlayers: Mode I referred to as the normal mode or 

opening mode; Mode II, which is the shear mode in the in-plane direction; and Mode III, which is the out-of-plane 

shear mode. For beam structures, Mode II occurs most frequently among the three failure modes. In a practical 

perspective, a beam is a structural member that primarily resists laterally applied loads, which are forces or 

moments applied perpendicular to the longitudinal axis of the beam. The case in which the axial load is 

additionally considered is often referred to as beam-columns separately, but beams and beam-columns are 

generally referred to as beams.  

 

Under the geometrical and load conditions of these general beam members, the interlayer behavior is mainly 

affected by interlayer slips in longitudinal direction (Mode II). For these reasons, most of previous researches 

regarding the behaviors of the layered beam have been focused on interlayer slips in longitudinal direction except 

some special cases. In cases where torsional behavior is dominant in layered beams or delamination occurs, 

however, the behavior of Modes I and II in interlayer regions becomes more important than that of in Mode II 
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direction. Therefore, to more accurately predict the 3D behavior of layered beams under more general conditions, 

additional follow-up research is required to expand the current model so that the interlayer behaviors in Mode I 

and II directions as well as the interlayer slips can be incorporated to the beam kinematics.  
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Chapter 3. Continuum mechanics based beam elements for multi-layered 

helically stranded cable structures 

 

Helically stranded cable structures, which are commonly known as wire ropes or cables, are defined as an 

assemblage of multiple wires twisted into a helix geometry. These cable structures generally have multiple layers 

that consists of helical wires or strands, and composed of various materials, such as metal, plastic, rubber, and 

composite materials depending on the application and design conditions. Cable structures have been used in 

various fields because they have flexible structural characteristics due to relatively low bending rigidity while 

withstanding large axial loads. For example, they have been used in various engineering fields, such as simple 

copper wires and power cables that are used in everyday life, cables for railways, ships, and automobiles, optical 

cables, submarine cables, and so on. 

 

In general, the cable structures consist of multiple layers of helical wires flexibly connected, there exist 

flexible behavior between the wires in addition to the global behaviors that occurs uniformly in the entire cable. 

The behavior of the cable structures is significantly affected by the connections between the wires in a cable 

because the degree of inter-wire connections determines the flexible characteristics of the cable, and has a major 

influence on the entire behavior of the cable. Therefore, in order to describe the kinematics cable structures 

appropriately, it is necessary to closely consider not only the global behavior of the entire cable structure but also 

the individual behaviors of the wires including inter-wire slip and wire local rotation. 

 

In the mechanical behaviors of the cables, the axial and torsional deformation modes rare closely coupled 

due to their structural characteristics. The appropriate torque balance condition is very important in the design of 

cables, because the cables are vulnerable to torsional loads that may loosen the helical structure. The design 

procedure to full the torque balanced cables generally requires many experiments and numerical verifications. 

Moreover, the cable structures are often subjected to large deformation and rotation under various loading 

conditions, such as tension, bending, and torsion, and failure or damage inside the cables may incur massive 

expenses in many cases. Therefore, accurate prediction of the mechanical behavior of the cables also considering 

the geometrical and material nonlinearities within a short period of time is a crucial issue for the precise design 

and accurate analysis of the cables. 
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Obviously, well-prepared experimental tests perform an important role in obtaining reliable results of the 

behaviors of the cables, but typically, the laboratory experiments are difficult to conduct, and take much time and 

expense in many cases. There have been very few experimental tests concerning the mechanical behavior of the 

cables reported in the literature [39-42], which considered simple straight strand cables under axial loading cases. 

According to the growing demand in predicting the cable behavior, many studies regarding analytical models [43–

59] have been carried out for widening the understanding of the cable behaviors. Although these analytical models 

give acceptable results, most of their validity are based on the linear elastic assumptions and are also limited to 

simple axial or bending load cases.  

 

With the advancement of the finite element (FE) method, many FE model has been developed and broadly 

used for design and analysis of cable structures. Numerous studies have been conducted for the numerical models 

to analyze the behavior of the cable structures [60–70]. The full solid FE model has been successfully used to 

predict complicated behaviors of the cable structures including the detailed contact deformation between the wires 

and various failures inside the cable. However, it generally requires complex modeling procedure and considerable 

computational cost even in simple analysis models. In the case of the simplified 2D cross-sectional axisymmetric 

solid model, there are limitations in considering deformations and loading conditions varying in the longitudinal 

direction of the cable. The approximated models using equivalent stiffness are also used for a simplicity, but it 

cannot properly deal with the complex cross-sectional geometries and individual behavior of the wires including 

inter-wire slip. Layer-wise beam models, which models the wires in a cable as individual beam models, give 

acceptable results in many cases; however, it is necessary to implement constraints for contact and penetration 

conditions between the wires and cores, and the number of constraints increases substantially as the numbers of 

layers and wires increase.  

 

The main objective the works presented in this chapter is to propose a new continuum mechanics based 

beam finite element for efficient analysis of multi-layered helically stranded cable structures. The main feature of 

the proposed beam finite element is an advanced modeling capability that originates from the general 3D geometry 

and displacement interpolations of the continuum mechanics based beams. The continuum mechanics based beam 

formulation enables much simpler and more efficient modeling procedure using relatively small number of the 

degree of freedom (DOF) because the entire geometry of the helically stranded cable is modeled as a single beam 

model instead of modeling the individual sub-components. Thus, it is possible to deal with the behavior of the 
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entire cable structure regardless of the numbers of layers and sub-components that constitute the cable 
 

In the following sections, nonlinear kinematics of multi-layered helically stranded cable structures allowing 

inter-wire slips together with individual wire rotations and finite element formulation are presented. Geometry 

and displacement interpolations for strand cables are described in detail, and linearized incremental equilibrium 

equations are derived based on the total Lagrangian formulation. Finally, the finite element discretization 

procedure is presented. The performance and predictive capability of the proposed beam finite elements are 

demonstrated through several representative numerical examples. 
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3.1 Basic assumptions and local coordinate systems of helically stranded cable 

structures 

Cable structures are used in various geometries depending on the practical situations and design conditions. 

As the most basic cable structure, a structure in which a single wire acting as core is surrounded by a layer of 

wires is referred to as a strand. This strand is used as the basic structure and expanded to various types of cable 

structures. Fig. 23 shows a strand cable structure composed of three-layer and 17-wire as an example. In this thesis, 

the proposed beam finite element deals with the behaviors of the multi-layered stranded cable structures focusing 

on the most common condition that the entire cable structure including each wire that constitutes the cable behaves 

maintaining their helical geometries. In other words, the kinematics of strand cable structures that behave 

integrally with the entire structure of the cable is considered without considering extreme failure modes, such as 

the separation of a particular wire and the failure of the helical structure of the entire cable. 

 

 

 

     
 
 

Fig. 23. Geometry of helically stranded cable: (a) A three-layer strand cable consists of and 17-wire where nα  
is lay angle of layer n , (b) cross-section of the three-layer strand cable where nr  and nR  are winding radius 
and radius of wires in layer n  respectively. 
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Expressing these basic conditions mathematically, the centers of each wire that constitutes a cable are 

located on the surface of the flexible cylinder that has the winding radius nr , which denotes the rotating radius 

of the wires in layer n , as a radius, and the helix line that represents the center line of these wires follows the 

behavior of the flexible cylinder, which can be said to represent the structure of the entire cable (Fig. 24). As the 

wires that constitute the cable are not connected through complete rigid connection, the individual local behavior 

of the wires occurs in addition to the global behavior of the entire cable structure. Therefore, inter-wire slips in 

the longitudinal direction of the cable and the individual wire local rotations occur due to the local behavior of the 

wires. In order to represent the kinematics of cable structures properly, it is necessary to consider the global 

behavior of the entire cable structure as well as the individual behavior of the wires including the inter-wire slips 

and wire local rotations altogether. 

 

 

 

 

 
 

Fig. 24. (a) A 7-wire helically stranded cable structure and (b) Flexible cylinder whose radius is nr , which is 
winding radius of the outer wire of the cable in (a). 

 

 

Helix line

Center of wire

𝑟𝑛

𝑟𝑛: winding radius

(a)

(b)
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The following three coordinate frames are used to represent the kinematics of the helically stranded cable 

structures based on continuum mechanics based formulation (Fig. 25): Coordinate frame {0}, which is the fixed 

coordinate system with the basis { } { }1 2 3=x e e e ; coordinate frame {1} (marked in blue) , which is the 

cable local coordinate system with the basis { } { }t k t k t k t k
x x y z=V V V V  whose origin is located on the 

center of cable at the beam node k  ; coordinate frame {0} (marked in red), which is the wire local coordinate 

system with the basis { } { }( )( ) ( )( ) ( )( ) ( )( )t k m n t k m n t k m n t k m n
x y z=n n n n  whose origin is located on the center 

of the wire m  at the beam node k . The transformation between the coordinate frame from{ }a  to { }b  is 

represented through the transformation operator a
b  T . 

 

 

 

 
 

 

Fig. 25. Concept of the multi-director continuum beam finite element for helically stranded cable structures where 
three coordinate system {0}, {1} and {2} are employed to represent the geometry of the strand cable.  
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3.2 Nonlinear kinematics of helically stranded cable structures 

In this section, the nonlinear kinematics of the continuum mechanics based beam that represents the 

helically stranded cable structures is presented. The geometry interpolation of the continuum mechanics based 

beam element is directly degenerated from an assemblage of 3D solid finite elements that models the wires in the 

cable structures. Each wire belonging to the layer in the cable structures here is named as a sub-wire (Fig. 25). In 

the following formulations, a superscript t  denotes the load levels and incremental variables in the static 

nonlinear analyses rather than the actual time as in dynamic analyses. 

 

The geometry interpolation of sub-wire m  belonging to layer n  of the cable is given by  

 ( )( ) ( )( )( , , )t m n t m n
i i

i
h r s t=∑x x  (3.1) 

in which ( , , )ih r s t   denotes the general 3-D interpolation function defined in natural coordinate system 

( , , )r s t   and ( )( )t m n
ix   is nodal position vector of node i   in the sub-wire m  . Assuming the cross-sections 

originally normal to the helix line of each wire remain plane and undistorted during deformations and the nodes 

are placed on the cross-sectional plane of the wire, the 3-D interpolation function in Eq. (3.1) can be replaced by 

the multiplication of 1-D and 2-D interpolation functions,  

 ( )( ) ( )( )

1 1
( ) ( , )

q p
t m n t j m n

k j k
k j

h r h s t
= =

=∑∑x x  (3.2) 

where ( )( )t j m n
kx  indicates the nodal position vector of the cross-sectional node j  on the cross-sectional plane 

k  of the sub-wire m  of the layer n , ( )kh r  and ( , )jh s t  are the 1-D and 2-D shape functions, and p  

and q  are determined depending on the number of cross-sectional nodes and cross-sectional plane used.   

 

Considering the sub-wire m  belong to layer n , the cross-sectional position at the beam node k  in the 

configuration at time t  is represented by a sequence of multiplication of matrices, which consists of combined 

operations of rotation and translation with respect to the successive current coordinate frames, 

 [ ] [ ] [ ]( )( ) ( )( ) ( )( ) ( )( )0 1( )
1( ) 2( )( )

1 0 1 0 1 0 1 10 1 0 1

t tt m n t m n m n t m n t kk
k k k k k sk k m ϕ                     =         

               

x I x I x I x VT 0 T 0  (3.3) 
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with                              
T( )( )t m n t t t

k k k kx y z =  x , (3.4) 

 
T( )( ) ( )( ) ( )( ) ( )( )m n m n m n m n

k k k kx y z =  x    , (3.5) 

 
T( )( ) ( )( ) ( )( ) ( )( )m n m n m n m n

k k k kx y z =  x , (3.6) 

where 
t a

b  T  is the coordinate transform matrix from coordinates { }a  to { }b , ( )( )t m n
kϕ  is the wire DOF 

given to each sub-wire m   belong to layer n   at beam node k  , and t k
sV   is the slip director vector 

represented on the wire local coordinate system {2}, which indicates the longitudinal direction of the cable 

structure in the configuration at time t . Note that ( )( )m n
kx  and ( )( )m n

kx  in Eqs (3.5) and (3.6) are zero.  

In Eq. (3.3), each matrix form is the 4 4×  matrix operator called homogeneous transform, which denotes 

mapping from one frame to another. The matrix operator is constructed by 3 3×  rotation matrix and 3 1×  

position vector, and a row [0 0 0 1]  is added as the last row of the matrix operator. For more detailed 

descriptions, see Refs [72-74]. 

 

Substituting ( )( )t m n
kx  into Eq. (3.2), the geometry interpolation of the sub-wire m  belong to layer n  in 

the configuration at time t  is obtained as follows. 

( )( )( ) ( )( )

1
( )

q
t m n t m n

k k
k

h r
=

= ∑x x  

              ( )0 ( )( ) 0 1 ( )( ) ( )( )
1( ) 1( ) 2( )( )

1
( )

q t t tt m n m n t m n t k
k k k k k k m k k s

k
h r ϕ

=

     = + + +     ∑ x T x T T x V

 (3.7) 

 

An significant feature of the continuum mechanics based beam formulation for helically stranded cable 

structures is that the cross-sectional geometry of each wire is interpolated using cross-sectional nodes and 

elements defined on the wire local Cartesian coordinate system at beam node k  as shown in Fig. 26. For a p -

node cross-sectional element m  corresponding to sub-wire m  of layer n , the material position in the cross-

sectional area ( ( )( )m n
ky  and ( )( )m n

kz ) is interpolated as 

 

 ( )( ) ( )( )

1
( , )

p
m n j m n

k j k
j

y h s t y
=

=∑ , ( )( ) ( )( )

1
( , )

p
m n j m n

k j k
j

z h s t z
=

=∑  (3.8) 
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where ( , )jh s t   is the 2D shape function corresponding to cross-sectional node j   and ( )( )j m n
ky   and 

( )( )j m n
kz  are the coordinates of cross-sectional node j  in the wire local Cartesian coordinate system defined 

on the center of wire m  at the beam node k . 

 
 

 
 

Fig. 26. Cross-sectional modeling of helically stranded cable using cross-sectional nodes and elements: (a) Cross-
sectional geometry of a 7-wire strand cable, and (b) Cross-section of sub-wire m  at beam node k  modeled by 
p -node cross-sectional elements, where 16p = . 

 

 

In a similar manner, the cross-sectional position of sub-wire m  belong to layer n  at the beam node k  

in the deformed configuration at time t t+ ∆  is obtained, 

[ ] [ ]( )( ) ( )( )0 1( )
01( ) 2( )( )( )

1 1 111 1

t tt t m n t t m nk k
k k kck k m

+∆ +∆                    =                     

x I x I xR θ 0T 0 T 0
0 000 0



  

[ ]( ) ( )( ) ( )( )
0( )

 
1 1 1

k n m n t t m n t t k
w k k sϕ+∆ +∆      

⋅              

R θ 0 I x V
0 0

. (3.9) 

where 0( )kR θ   is the finite rotation tensor, which is represented by the skew-symmetric matrix operator 

0
ˆ ( )kR θ  with the incremental Eulerian angle vector 0

kθ  that consists of incremental Eulerian angles 0
k
xθ , 

0
k
yθ , and 0

k
zθ  from time t  to t t+ ∆ as the following equations 

20 0
0 0 02

0 0

sin 1 cosˆ ˆ( ) ( ) ( )
( )

k k
k k k

k k

θ θ
θ θ

−
= + +R θ I R θ R θ ,                     (3.10) 
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0 0 0 0

Tk k k k
x y zθ θ θ =  θ , 2 2 2

0 0 0 0( ) ( ) ( )k k k k
x y zθ θ θ θ= + +                 (3.11) 

 
0 0

0 0 0

0 0

0
ˆ ( ) 0

0

k k
z y

k k k
z x

k k
y x

θ θ
θ θ
θ θ

 −
 = − 
 − 

R θ  (3.12) 

 

In Eq. (3.9), two rotation variables were used. First, the cable rotation variable 0
k
cθ  for representing the 

rotation behavior that uniformly occurs in the entire cable structure, and wire rotation variable ( )
0

k n
wθ   for 

representing the rotation behavior that individually occurs in each wire. The cable local rotation 0
k
cθ  is defined 

based on the cable local coordinate system at beam node k  and rotates the coordinate frame { }1 . The wire 

local rotation ( )
0

k n
wθ  is defined based on the wire local coordinate system at beam node k  and rotates the 

coordinate frame { }2  in each wire. 

 

 

Substituting ( )( )t m n
kx  into Eq. (3.2), the geometry interpolation of the sub-wire m  belong to layer n  in 

the deformed configuration at time t t+ ∆  is obtained as follows. 

 

( )

(

( )( ) ( )( )

1

0 ( )( ) 0 1( ) ( ) ( )( )
1( ) 0 1( ) 0 2( )( ) 0

1

( )

( ) ( ) ( ) ( )

q
t t m n t t m n

k k
k
q t t tt t k m n k k k n m n

k k k c k k c k m w k
k

h r

h r

+∆ +∆

=

+∆

=

=

     = + +     

∑

∑

x x

x T R θ x T R θ T R θ x 



 

)( )( )t t m n t t k
k sϕ+∆ +∆+ V                                                  (3.13) 

 

3.3 Incremental displacement interpolation 

In Eq (3.13), all the rotation variables are described with respect to the current coordinate frames, which 

are cable local and wire local cross-sectional Cartesian coordinate system at the beam node k  . In order to 

calculate the linearized incremental displacement field, the rotation variables 0
k
cθ  and ( )

0
k n
wθ  are represented 

with respect to the fixed reference frame {0}, 
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( )

(

( )( ) ( )( )

1

0 ( )( ) ( )( ) 0 ( )( )
0 1( ) 0 0 2( )( )( )

1

( )

( ) ( ) ( ) ( )

q
t t m n t t m n

k k
k
q t tt t k m n k m n k m n

k k c k k w c k m n k
k

h r

h r

+∆ +∆

=

+∆

=

=

   = + +   

∑

∑

x x

x R θ T x R θ R θ T x

 

)( )( )t t m n t t k
k sϕ+∆ +∆+ V                                                 (3.14) 

where                        0 0
0 1( ) 1( ) 0( ) ( )

t tk k
c k k c   =   R θ T T R θ ,  (3.15) 

and 0 ( ) ( )( ) 0
0 2( )( ) 0 0 0 2( )( )( ) ( ) ( ) ( )

t tk k n k m n k
c k m w w c k m   =   R θ T R θ R θ R θ T . (3.16) 

 

Using Eq. (3.7) and Eq. (3.14), the incremental displacement interpolation for sub-wire m  belonging to 

layer n  of the cable is obtained from the configurations at times t t+ ∆  and t , 

( )( ) ( )( ) ( )( )
0

m n t t m n t m n+∆= −u x x  

( )( ( )0 ( )( ) ( )( ) 0
0 0 1( ) 0 0 2( )( )( )

1
( ) ( ) ( ) ( )

q t tk m n k m n k
k k c k k w c k m n

k
h r

=

   = + − + −   ∑ u R θ I T x R θ R θ I T  

( )( ) ( )( )

1
( )( )

q
t t m n t t k t m n t k

k k s k s
k

h r ϕ ϕ+∆ +∆

=

+ −∑ V V , (3.17) 

where 0 ku  is the incremental nodal displacement from time t  to t t+ ∆  at beam node k  

[ ]T0 0 0 0k k k ku v w=u                              (3.18) 

 

The finite rotation tensor 0( )k
cR θ  and ( )( )

0( )k m n
wR θ  are linearized by the use of the first-order Taylor 

polynomial approximation 

 0 0 0
1

1 ˆ ˆ( ) ( ) ( )
!

k k n k
c c c

n n=

= + ≈ +∑R θ I R θ I R θ
∞

, (3.19) 

and                ( )( ) ( )( ) ( )( )
0 0 0

1

1 ˆ ˆ( ) ( ) ( )
!

k m n k m n n k m n
w w w

n n=

= + ≈ +∑R θ I R θ I R θ
∞

. (3.20) 

 

The slip director vector t t k
s

+∆ V  in the configuration at time t t+ ∆  is approximated in terms of the slip 

director vector at time t  and the incremental nodal displacement  

 0
1

( )1t t k q
t t k t kx

s st t k t k
x x kr r

h r
r

ξ
ξ

ξ

+∆
+∆

+∆
= =

∂
= ≈ +

∂∑gV V u
g g

. (3.21) 
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Substituting Eqs. (3.19), (3.20) and (3.21) into Eq. (3.17), the incremental displacement of sub-wire m  

belonging to layer n  becomes  

( )( ( )( )( ) 0 ( )( ) ( )( ) 0 ( )( )
0 0 0 1( ) 0 0 2( )( )( )

1

ˆ ˆ ˆ( ) ( ) ( ) ( )
q t tm n k m n k k m n m n

k k c k k c w k m n k
k

h r
=

   ≈ + + +   ∑u u R θ T x R θ R θ T x  

( )( ) 0 ( )( )
0 0 2( )( )( )

ˆ ˆ( ) ( )
tk m n k m n

w c k m n k +  R θ R θ T x  

( )( ))( )( ) ( )( ) ( )( )
0 0 0

1

1 ( )
q

m n t k t m n m n
k s k k t k

x

h rξ ξ
ξ

ϕ ϕ ϕ
=

′+ + + ∑V u
g

, (3.22) 

where ( )( )
0

m n
kϕ  is the incremental layer DOF corresponding to the layer n  at beam node k . 

 

In Eq. (3.22), all the rotation variables are expressed with respect to the fixed coordinate frame { }0 .  As 

the cable local rotation at beam node k  uniformly occurs in the entire cable structure with respect to a single 

coordinate frame { }1 , it can be expressed based on the fixed coordinate frame { }0 . In the case of the wire local 

rotation, however, the rotation variables should be expressed based on the wire local coordinate system in order 

to represent all the wire local rotation in the same layer without using different DOFs for each wire. Because the 

wires in the same layer have the equivalent curvature and twist values, but each of them has different rotating 

axes. Therefore, expressing the wire local rotation with respect to the local axis of each wire, the wire local rotation 

of all the wires in the same layer can be defined using an angle vector. 

 

Using Eqs. (3.16) and (3.22) and applying the first-order approximation, the linearized incremental 

displacement ( )( )
0

m nu  for sub-beam m  of layer n  is obtained 

( )(( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 0 0 0 0

1

ˆ ˆ( ) ( ) ( )
q

m n m n k t k m n k t k m n m n
k k c k c k

k
h r

=

   ≈ = + +   ∑u u u R θ V x R θ n x  

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
0 0 0

ˆ ˆ ˆ( ) ( ) ( )t k m n k n m n k t k m n k n m n
w k c w k   + +   n R θ x R θ n R θ x  

( ))( )( ) ( )( )
0 0

1

1 ( )
q

m n t k t m n
k s k t k

x

h rξ ξ
ξ

ϕ ϕ
=

′+ + ∑V u
g

,               (3.23) 

where                           t k t k t k t k
x y z   =   V V V V , (3.24) 

 ( )( ) ( )( ) ( )( ) ( )( )t k m n t k m n t k m n t k m n
x y z   =   n n n n . (3.25) 
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3.4 Incremental equilibrium equations 

The covariant component of the Green–Lagrange strain for sub-wire m   belonging to layer n  , in the 

configuration at time t  referred to the configuration at time 0  is given by 

 ( )( ) ( )( ) ( )( ) 0 ( )( ) 0 ( )( )
0

1 ( )
2

t m n t m n t m n m n m n
ij i j i jε = ⋅ − ⋅g g g g  with 

( )( )
( )( )

t m n
t m n

i
ir

∂
=

∂
xg , (3.26) 

where ( )( )t m n
ig  is the covariant base vector and ir  indicates the natural coordinates ( , , )r s t : 1r r= , 2r s=  

and 3r t= . 

 

The covariant component of the incremental Green–Lagrange strain is obtained from the strains in the 

configurations at time t t+ ∆  and t  

 ( )( ) ( )( ) ( )( )
0 0 0

m n t t m n t m n
ij ij ijε ε ε+∆= −    (3.27) 

and it can be decomposed into linear and nonlinear parts, ( )( )
0

m n
ije  and ( )( )

0
m n

ijη , respectively,  

 ( )( ) ( )( ) ( )( )
0 0 0

m n m n m n
ij ij ijeε η= +  ,    (3.28) 

with                    
( )( ) ( )( )

( )( ) ( )( ) ( )( )0 0
0

1 ( )
2

m n m n
m n t m n t m n

ij i j
j i

e
r r

∂ ∂
= ⋅ + ⋅

∂ ∂
u ug g  (3.29) 

and                            
( )( ) ( )( )

( )( ) 0 0
0

1
2

m n m n
m n

ij
i jr r

η ∂ ∂
= ⋅

∂ ∂
u u

 . (3.30) 

 

The incremental Green–Lagrange strain components, which are described in the wire local Cartesian 

coordinate system defined on the center helix line of wire m , is evaluated through the following transformation  

 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) ( )( )
0 0( )( )m n m n k m n m n l m n m n

ij i j kle e= ⋅ ⋅t g t g  , (3.31) 

 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) ( )( )
0 0( )( )m n m n k m n m n l m n m n

ij i j klη η= ⋅ ⋅t g t g  , (3.32) 

where 0 ( )( )k m ng   is the contravariant base vector calculated using 0 ( )( ) 0 ( )( )k m n m n k
l lδ⋅ =g g   and 0 ( )( )m n

it   is 

the base vector of the wire local Cartesian coordinate system, which are determined by  

 0 ( )( ) 0 ( )( )
1 ( )m n k m n

k xh r=t n , 0 ( )( ) 0 ( )( )
2 ( )m n k m n

k yh r=t n  and 0 ( )( ) 0 ( )( )
3 ( )m n k m n

k zh r=t n . (3.33) 
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The linearized equilibrium equation in the total Lagrangian formulation is given by [26] 

 0 0 0

0 0 0
0 0 0 0 0 0

t t t t
ijkl ij kl ij ij ij ijV V V

C e e d V S d V S e d Vδ δ η δ+∆+ = ℜ−∫ ∫ ∫ , (3.34) 

in which 0V  and 0L  denote the volume and length of the beams, respectively, in the configuration at time 0 , 

ijklC  is the material law tensor for beams, 0 ije  and 0 ijη  are the linear and nonlinear parts of the incremental 

local Green–Lagrange strain, 0
t t

ijS+∆   is the local second Piola–Kirchhoff stress, 0
t t

ijε
+∆   is the local Green–

Lagrange strain, t t+∆ ℜ  is the external virtual work, and δ  denotes virtual quantities. 

 

Expressing Eq. (3.34) as a sum of integrations over the volume of each sub-wire m  of layer n  in the 

configuration at time 0 ( 0 ( )( )m nV ), 

( )( ) ( )( )0 0

( )( ) ( )( ) ( )( ) 0 ( )( ) ( )( ) ( )( ) 0 ( )( )
0 0 0 0m n m n

m n m n m n m n t m n m n m n
ijkl ij kl ij ijV V

n m n m
C e e d V S d Vδ δ η+∑∑ ∑∑∫ ∫  

 
( )( )0

( )( ) ( )( ) 0 ( )( )
0 0m n

t t t m n m n m n
ij ijV

n m
S e d Vδ+∆= ℜ−∑∑∫  (3.35) 

In the beam formulation, only five covariant components of the Green–Lagrange strain are of interest, (i.e. 

( ) ( ) ( ) ( ) ( ) ( ){ },  1,  1 ,  1,  2 ,  2,  1 ,  1,  3 ,  3,  1i j ∈  ), and the material law tensor has only five non-zero 

components: 1111C E=   and 1212 2121 1313 3131C C C C G= = = =   with Young’s modulus E   and shear 

modulus G . 

 
 
3.5 Finite element formulations 

In a q -node continuum mechanics based beam element, the nodal DOFs vector 0 U  consists of the DOFs 

vector 0 kU  at beam node k  

 
TT T T

0 0 1 0 2 0 q =  U U U U  (3.36) 

where                  
T( )(1)

0 0 0 0 0 0
Lk nk k

k k c w w k =  U u θ θ θ φ   (3.37) 

with                              [ ]T0 0 0 0k k k ku v w=u , (3.38) 

 
T

0 0 0 0
k k k k
c cx cy czθ θ θ =  θ , (3.39) 

 
T( ) ( ) ( ) ( )

0 0 0 0
k n k n k n k n
w wx wy wzθ θ θ =  θ , (3.40) 
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T( )(1)

0 0 0
Wn

k k kϕ ϕ =  φ  , (3.41) 

and Ln  and Wn  denote the total number of layers and wires of the cable, respectively.  

 

Employing Eq. (3.36), the incremental displacements ( )( )
0

m nu  for sub-wire m  of layer n  in Eq. (3.23) 

is represented in terms of the nodal DOFs vector 0 U : 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 1 2 0 0...m n m n m n m n m n

q = = u L L L U L U  (3.42) 

where ( ) ( ) ( )( )( ) ( )( ) ( )( ) ( )( )
1 2( ) ( ) ( ) ( )m n t m n t k m n t k m n

k k k k kh r r h r h rφ = + − − L I Ψ Ψ 0  

( )( )( ) t k m n
k sh r+ V Q   (3.43) 

with                     
( )( )

( )( )

1

( )( ) ( )
t m nq

t m n k
k t

xr r

h rr h r
r

ξ
ξ ξ

ξ ξ

ϕ
φ

= =

∂
=

∂∑ g
, (3.44) 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )t k m n m n t k m n t k m n t k m n m n t k m n
k y k z k y k zy z y z= + + +Ψ R V R V R n R n  , (3.45) 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
2 2 3

ˆ ˆ( ) ( )t k m n m n t k m n m n t k m n
k ky z   = +   Ψ n R e n R e , (3.46) 

and ( )( )m nQ  is a Boolean matrix for the wire DOFs ( )( )
0

m n
kϕ  such that  

 ( )( ) ( )( )
0 0

m n m n
k kϕ = Q U . (3.47) 

 

The linear and nonlinear parts of the covariant Green–Lagrange strain in Eq. (3.29) and Eq. (3.30) are also 

expressed in terms of 0 U : 

 
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
0 0 0

1
2

m n m n
m n t m n t m n m n

ij i j ij
j i

e
r r

 ∂ ∂
= ⋅ + ⋅ =  ∂ ∂ 

L Lg g U B U , (3.48) 

 
( )( ) ( )( )

( )( ) T T ( )( )
0 0 0 0 0

1 1
2 2

Tm n m n
m n m n

ij ij
i jr r

η
 ∂ ∂

= =  ∂ ∂ 

L LU U U N U . (3.49) 

The local Green–Lagrange strains are obtained using Eq. (3.29), Eq. (3.30), Eq. (3.48), and Eq. (3.49): 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 0 0 0 0 0 0( )( )m n m n k m n m n l m n m n m n

ij i j kl ije = ⋅ ⋅ =t g t g B U B U , (3.50) 

 ( )( ) T ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) T ( )( )
0 0 0 0 0 0 0 0 0

1 1( )( )
2 2

m n m n k m n m n l m n m n m n
ij i j kl ijη = ⋅ ⋅ =U t g t g N U U N U . (3.51) 
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The virtual local Green–Lagrange strains are obtained 

 ( )( ) ( )( )
0 0

m n m n
ij ijeδ δ= B U  and ( )( ) T ( )( )

0 0 0
m n m n

ij ijδ η δ= U N U . (3.52) 

 

Substituting Eqs. (3.50)–(3.52) into Eq. (3.35), the following finite element formulation is constructed with 

the tangent stiffness matrix t K : 

 0 0
t t t t

i
+∆= −K U R F    with t t t

L NL= +K K K , (3.53) 

where                    
0 ( )( )

T( )( ) ( )( ) ( )( )
0m n

t m n m n m n
L ij ijkl klV

n m
C dV=∑∑∫K B B , (3.54) 

 
0 ( )( )

( )( ) ( )( )
0m n

t m n t m n
NL ij ijV

n m
S dV=∑∑∫K N , (3.55) 

 0 ( )( )

T( )( ) ( )( )
0 0m n

t m n t m n
ij ijV

n m
S dV=∑∑∫F B . (3.56) 

 

The complete tangent stiffness matrix for the analysis of helically stranded cable structure can be 

constructed by the assemblage of the elemental stiffness matrices using the direct stiffness procedure. For the 

analysis of cable structure that consists of Ln -layer and wn -wire, the proposed beam finite element model uses 

( )6 3 L wn n+ +  DOFs at each beam node (three translation and three rotation variables for cable structure, three 

wire rotation variables per each layer, and wire DOFs required per each wire to represent the relative slip 

displacement). 

 

The incremental displacement 0 U  is obtained in each incremental step by solving Eq. (3.53). Then, the 

position vector of each beam node k  and the wire DOFs at beam node k  are additively updated as 

 
0

0

0

k
t t t

k k k

k

u
v
w

+∆

 
 = +  
  

x x  and ( )( ) ( )( ) ( )( )
0

t t m n t m n m n
k k kϕ ϕ ϕ+∆ = + .  (3.57) 

The basis vectors of cable local and wire local coordinate frames are updated as follows: 

 0( )t t k k t k
c

+∆   =   V R θ V , (3.58) 

 ( )( ) ( )( ) ( )
0 0( ) ( )t t k m n k t k m n k n

c w
+∆   =   n R θ n R θ . (3.59) 
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3.6 Numerical examples 

In this section, we demonstrate the modeling capability and performance of the continuum mechanics based 

beam elements for the helically stranded cable structures. To model the helically stranded cable structures, 2-node 

continuum mechanics based beam elements are used, and the reduced integration scheme is adopted along the 

longitudinal direction to avoid shear locking [24]. For the cross-section modeling, 9-, 16- and 25-node cross-

sectional elements are used, and 3 3×  , 4 4×   and 5 5×   Gauss integration is performed in each cross-

sectional element respectively. 

 

In order to solve nonlinear equilibrium equations, solutions are obtained using the standard full Newton–

Raphson iterative scheme. For material nonlinear problems, the von Mises plasticity model with linear isotropic 

hardening law is implemented. At each integration point in the beam model, the constitutive equations are 

implicitly solved using the return mapping scheme [30]. In order to assess the proposed beam finite element, the 

results obtained from the present beam model are compared with the reference solutions, which are obtained from 

analytical theory in [55] or experimental results from previous research. 

 

 

3.6.1 Convergence study of 7-wire strand cable under tension  

First, the modeling capability of the proposed beam element model according to the degree of the helical 

geometry of the strand cable are examined. As shown in Fig. 26, for a 7-wire cantilever cable of length 10L =  

subjected to tip axial loading 1000xF = , various helical geometry is tested while the lay angle α , which is 

the rotating angle of the wires with respect to longitudinal axis of the cable, increases from 0 °  to 30 ° . The 

radii of the core and outer wires are 0 0.125R =  and 1 0.1R = , respectively, and materials of the core and the 

wires are linear elastic with Young’s modulus 628.5 10E = ×  and Poisson’s ratio 0ν = . 

 

When constructing numerical model for the finite element analysis of a cable, the minimum number of 

finite elements required for appropriate results is generally dependent on the helical geometry of the wires that 

constitute the cable, not on the length of the entire cable. This is because the length of the wound wires changes 

depending on the lay angle, even if the length of the entire cable is the same. Therefore, the required number of 
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elements are determined based on the pitch length (or lay length), which is the length of the cable while the wires 

rotates 360 °   with respect to the longitudinal axis of the cable. In the present beam model, the various 

geometries of the strand cables are modeled using continuum mechanics based beam elements in which the total 

number of elements used are determined based on the number of elements per pitch length pN , and the cross-

section of the core and wires are discretized using 16-node cross-sectional elements. 
 

 

 

 
 

 

Fig. 27. Cantilever 7-wire strand cable subjected to tip tensile loading 1000xF = : (a) Problem description, (b) 

Cross-sectional geometry of the strand cable, and (c) Various helical geometries of the strand cable when lay 

angle 0 α = ° , 10 ° , 20 °  and 30 ° . 
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Fig. 28 compares the axial displacements and torsional angles at the tip of the strand cables obtained from 

the present beam model with the analytical references as the number of elements per pitch length increase from 

4pN =  to 20 . When insufficient number of elements per pitch length is used such as 4pN = , considerable 

differences from the analytical references are observed as the precision of the numerical model is low. In order to 

obtain the numerical results consistent with the analytical references for all lay angles, at least 20 elements per 

pitch length is required. The use of 20 elements per pitch length ( 20pN = ) means that one element is used 

whenever the wires rotate 18 ° . When 20 elements per pitch were used, the differences between the results 

obtained from the present beam model and the analytical reference are less than 2%.    
 

 

 

Fig. 28. (a) and (b) Tip displacement and torsional angle under tensile loading xF  obtained from the various 

geometries of strand cables (from 0 α = °  to 30 ° ) when number of element per pitch length 4pN = , 8 , 

12  and 20 . 

 

3.6.2 Convergence study of 7-wire strand cable under bending 

In the second example (Fig. 29), the modeling performance and the required number of elements per pitch 

length are examined when a 7-wire strand cable is subjected to tip bending moment 100yM = . The geometric 

and material properties of the cable are same to those of the two-layer beam problem in section 3.5.1 except for 
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the loading condition. As in the section 3.5.1, the geometries of the strand cables according to the lay angles from 

0 α = °  to 30 °   are modeled using continuum mechanics based beam elements. The total number of 

elements used are determined based on the number of elements per pitch length pN , and the cross-section of the 

core and wires are discretized using 16-node cross-sectional elements.  

 
 

 

 

 
 

 

Fig. 29. Cantilever 7-wire strand cable subjected to tip bending moment 100yM = : (a) Problem description, (b) 

Cross-sectional geometry of the strand cable, and (c) Various helical geometries of the strand cable when lay 

angle 0 α = ° , 10 ° , 20 °  and 30 ° . 
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Fig. 30 compares the deflections and bending angles at the tip of the strand cable obtained from the present 

beam model with the analytical references as the number of elements per pitch length increase from 4pN =  to 

20 . In the case of strand cable subjected to bending moment required more elements per pitch than those (20 

elements per pitch) required in the case subjected to tensile loading. As shown in Fig. 30, approximately 30 

elements per pitch length is required to obtain the same degree of accuracy as in tension problem of section 3.5.1 

for all the lay angle ranging from 0° to 30°. The use of 30 elements per pitch means that one element is used 

whenever the wires rotate 12 ° . 

 
It is observed that the behaviors of the cable subjected to bending moment required more detailed numerical 

modeling rather than those under uniform tension. This is mainly because the effect of inter-wire slip behavior 

increases in the bending dominated loading conditions, thus the cable subjected to the bending moment exhibits 

more complex behaviors than the one under the uniform tensile loading. 

 
 

 

 
 

Fig. 30. (a) and (b) Tip displacement and torsional angle under bending moment yM  obtained from the various 

geometries of strand cables (from 0 α = °  to 30 ° ) when number of element per pitch length 12pN = , 

16 , 20  and 30 . 
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3.6.3 Cross-sectional interpolation test  

For the strand cable that has the same geometric and material properties as those in section 3.5.1 and 3.5.2, 

the influence of the cross-sectional interpolation is tested considering both uniform tension 1000xF =   and 

bending moment 100yM =  (Load Case I and Load Case II in Fig. 31(a)). For both load cases, the cross section 

of the core and wire are interpolated using 9-, 16-, and 25-node cross-sectional elements as shown in Fig. 31(b), 

and 3 3× , 4 4×  and 5 5×  Gauss integration is performed in each cross-sectional element respectively. The 

geometries of the strand cables due to the lay angles from 0 α = °  to 30 °  are modeled using continuum 

mechanics based beam elements where the number of element per pitch length is 30pN = . 

  

 

 
 

Fig. 31. (a) Cantilever 7-wire strand cable under Load Case I and Load Case II and (b) Cross-sectional modeling 

for the core and wires using 9-, 16-, and 25-node cross-sectional elements, respectively. 

 

 

Fig. 32(a) shows the axial displacements and torsional angles at the tip of the cable when three cross-

sectional discretization cases are considered under Load Case I. It is observed that there are no significant 

differences between three cross-sectional discretization cases under tensile loading, and all the results are in good 
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agreement with the analytical reference as the differences are less than 5%. Fig. 32(b) shows the deflections and 

bending angles at the tip of the cable when three cross-sectional discretization cases are considered under Load 

Case II. Unlike Load Case I, considerable differences from the analytical references are observed der when 9-

node cross-sectional interpolation is used in Load Case II. In order to obtain results that are consistent with the 

analytical reference with differences less than 5% in Load case II, at least 16-node cross-sectional interpolation is 

required.  

 

 

 

Fig. 32. (a) Tip axial displacements and torsional angles under Load Case I, (b) Tip deflections and bending angle 

under Load Case II. 
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As mentioned in section in 3.5.2, this is because the behaviors of the cable subjected to bending moment 

required more detailed numerical modeling rather than those under uniform tension. If the behavior of the entire 

structure of the cable is approximated to be a single beam, it can be said that the behavioral characteristics of the 

cable are governed by the axial rigidity of the beam under the tension dominated loading conditions and by the 

bending rigidity of the beam under the bending dominated loading conditions. The axial and bending rigidities 

are determined by area characteristics of the beam cross section and the moment of inertia for the beam cross 

section, respectively, in addition to Young’s modulus. Therefore, the errors in cross-sectional area of the core and 

wires according to the degree of interpolation more influence on the second moment of inertia of the bending 

rigidity ( 4m unit) than on the area for the axial rigidity ( 2m  unit), and because of this, more higher order cross-

sectional element is required for the analysis of the bending dominated behavior of the cable. 

 

 

3.6.4 Comparison with experimental test: Cantilever 7-wire helically-stranded 
cable 

Here, the present beam model is compared with the experimental results obtained from the uniaxial tensile 

tests of a 7-wire cantilever strand cable conducted by Utting and Jones [39-42]. In the experimental test, tensile 

loading is applied to the tip of the cantilever cable while the torsional angle of the entire cable was restrained to 

prevent twisting in the cable structure, and the axial strain and reaction torque were measured. The lay angle of 

the helical wires is 17.03 ° , the pitch length of the cable is 78.66 mm , and the radii of the core and helical 

wires are 0 3.94 mmR =   and 1 0.1R =  , respectively. The cable is composed of elasto-plastic material in 

which Young’s modulus 188 GPaE = , Poisson’s ratio 0.3ν = , the initial yield stress 0 1.540 GPaY =

and the linear hardening modulus 24.6 GPaH = . 

 

In the present beam model, the strand cable of 157.3 mmL = , which is twice the pitch length of the 

cable, is modeled using 40 continuum mechanics based beam elements where 15 DOFs are used per each beam 

node as shown in Fig. 33(b). The cross-section of the core and wires are discretized using 16-node cross-sectional 

elements. In order to capture the plastic responses of the cable, iterative nonlinear analysis was performed. 
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Fig. 33. Cantilever 7-wire strand cable subjected to tip axial loading xF  (a) Problem description, (b) Layer-wise 

and cross-sectional geometries of the cable, and (c) the present beam model using 40 continuum mechanics based 

beam elements. 

 

Fig. 34(a) and (b) shows the comparison of the axial loading-axial strain and axial loading-reaction torque 

curves, as obtained from the present beam model, experimental data, and linear elastic analytical reference 

solutions. As shown in Fig. 34, both the axial strain and reaction torque obtained from the present beam model 

exhibit very good agreement with the experimental results in overall ranges. Also, the present beam model well 

predicts the initiation of yielding.  
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Fig. 34. (a) Axial load-axial stain curves for the axial strain of the cable and (b) Axial load-reaction torque 

curves for the reaction torque at the tip of the cable. 

 

 
3.6.5 Two-layer, 19-wire helically stranded cable 

A two-layer strand cable of length L  that consists of 19 wires is considered as shown in Fig. 35. The cable 

is clamped at 0x = , and is subjected to uniform tensile loading xF  at the tip. The first layer (Layer 1) consist 

of 6 wires that rotate in a counterclockwise with a lay angle 1 7.4894α = ° , and the second layer consists of 12 

wires that rotate in a clockwise with lay angles 2α  varying from 2 0 α = °  to 30 − ° . According to the lay 

angles of the Layer 2 2α  the various geometries of the two-layer strand cables was tested. The radii of the core 

and outer wires in Layer 1 and Layer 2 are 0 0.103R = , 1 0.101R = , and 2 0.096R =  respectively, and 

material properties of the core and the wires are linear elastic with Young’s modulus 30 MPaE =   and 

Poisson’s ratio 0ν = . 

 

In the present beam model, the two-layer strand is modeled using continuum mechanics based beam 

elements using 20pN =  where 30 DOFs are used per each beam node. The cross-section of the core and wires 

are discretized using 16-node cross-sectional elements 
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Fig. 35. Two-layer strand cable subjected to tip tensile loading xF : (a) Problem description, (b) Layer-wise and 

cross-sectional geometry of the cable, and (c) Various helical geometries of the strand cable when lay angle 

0 α = ° , 10 − ° , 20 − °  and 30 − ° . 

 

Fig. 36 compares the axial displacements and torsional angles at the tip of the two-layer strand cables 

obtained from the present beam model with the analytical references. As shown in Fig. 36, both the axial 

displacements and torsional angle obtained from the present beam model exhibit very good agreement with the 

analytical references in overall lay angle ranges.  
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Fig. 36. (a) and (b) Tip displacement and torsional angle under tensile loading xF  obtained from the various 

geometries of two-layer strand cables (from 2 0 α = °  to 40 − ° ). 

 

3.6.6 Cantilever six-layer, 120-wire helically stranded cable 

The six-layer strand cable of length L  that consists of 120 wires is considered as shown in Fig. 37. The 

cable is clamped at 0x = , and is subjected to uniform tensile loading xF  at the tip. The core and wires of the 

cable has the following material properties: Young’s modulus 188 GPaE = , Poisson’s ratio 0.3ν = , the 

initial yield stress 0 1.540 GPaY =  and the linear hardening modulus 24.6 GPaH =  . The specific 

geometric information for the wires in the six-layer strand cable are listed in Table 10.   

 

In the present beam model, the cable is modeled using 20 continuum mechanics based beam elements and 

each cross-section of the core and wires is discretized with 16-node cross-sectional elements. Assuming no inter-

wire slip occurs under uniform tensile loading conditions, 23 DOFs are used per each beam node without wire 

DOFs for representing the inter-wire slip displacement at each wire, and thus 483 DOFs are used in total. The 

result obtained from the present beam model are compared with the reference solutions obtained from the full 3D 

solid element models using the commercial software LS-DYNA in [65]. In the LS-DYNA full solid model, 

2,520,000 8-node solid elements and 8,393,760 DOFs were used.  
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Fig. 37. Six-layer cantilever strand cable composed of 120 wires: (a) Problem description, (b) Layer-wise and 

cross-sectional geometries of the strand cable (b) Present beam model using 20 continuum mechanics based beam 

elements. 

 

Fig. 38 compares the axial loading- axial strain curves at the tip of the strand cable obtained from the present 

beam model with the those of obtained from the LS-DYNA full-solid model. In the linear region before yielding 

occurred inside the cable, the numerical results of present beam model exhibit good agreement with the those of 
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the LS-DYNA solid model, even though much fewer number of DOFs were used. As the load level increases, 

however, considerable difference is observed after the initiation of the yielding between two models. These 

difference is possibly due to a major influence of the wire-to-wire contact deformation and friction conditions in 

the strand cable.  

 

Table 10. Geometric parameters of cantilever 6-layer, 120-wire helically stranded cable. 

Layer Number of wires Diameter of wire (mm) Lay length (mm) Lay angle (° ) 

Core 1 5.8 - 0 

Layer 1 7 4.3 150 -11.94 

Layer 2 17 3.2 210 14.75 

Layer 3 14 5.3 320 -14.37 

Layer 4 21 5.0 420 15.23 

Layer 5 27 5.0 520 -15.66 

Layer 6 33 5.0 620 15.95 

 

 

 

 
 

Fig. 38. Axial load-axial stain curves in the cantilever six-layer strand cable that consists of 120 wires subjected 

to uniform tensile loading xF  at the tip. 
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3.7. Concluding remarks 

3.7.1 Summary 

In Chapter 3, a new continuum mechanics based beam element for linear and nonlinear analyses of multi-

layered helically stranded cable were presented, and their performance was demonstrated through several 

representative numerical examples. The novel feature of the proposed beam finite element is an advanced 

modeling capability that originates from the general 3D geometry and displacement interpolations of the 

continuum mechanics based beams. Most notably, the proposed beam finite element model enables much simpler 

and more efficient modeling procedure using relatively small number of the degree of freedom (DOF) because 

the entire geometry of the helically stranded cable is modeled as a single beam model instead of modeling the 

individual sub-components. Thus, it is possible to deal with the behavior of the entire layered beam structure 

regardless of the numbers of layers and sub-components that constitute the cable. It was verified that the proposed 

beam element model can be utilized very effectively for behavior that does not involve local fracture of some 

wires that constitute a cable or the failure of cross-sectional geometry, i.e. for cable kinematics that behave while 

the entire cable structure maintains a helical structure. The following follow-up research, however, is required for 

the proposed model to be used more comprehensively for more accurate analysis and precise design of cables that 

exhibit more complex behavior. 

 

 
3.7.2 Future works 

1) Consideration of contact and friction conditions 

In general, the degree of connection between wires in a cable has a major influence on the bending rigidity 

and flexible behavior of the cable structure. As the degree of connection between wires increases, the entire cross 

section of the cable is more integrated and the flexural rigidity of the cable increases. On the contrary, as the 

degree of connection between wires decreases, the degree of the individual behavior of the wires increases and 

the flexural rigidity of the cable decreases, thus the cable exhibits more flexible behavioral characteristics. As a 

matter of facts, the minimum bending radius (MBR) that represents the degree of flexibility of the cable is one of 

the most important cable design requirements. This is because most cables are very long, and thus cables without 

sufficient flexibility are difficult to ensure the ease of construction and storage, and are also more vulnerable to 

failure. Therefore, in the design of common cables, the degree of the inter-wire connection inside the cable is 
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designed to minimize the MBR value and to reduce the initial contact and touching between the wires. In 

accordance with the most general cable design conditions, the proposed beam element model was derived by 

assuming frictionless and no touching conditions between wires. 

 

It is known, however, that touching exists in the initial design of some cables and that the influence of 

contact and friction inside a cable increases when the cable exhibits extremely large deformation and rotation. In 

such cases, core-to-wire and wire-to-wire contact and friction conditions have a major influence on the behavior 

of the entire cable. Therefore, for the accurate analysis of the behavior of more general cables exhibiting large 

deformation and rotation, further research is required to expand the current model so that the friction and contact 

conditions inside the cable can be more precisely considered.  
 

 

2) Expansion to more general cable geometry 

The proposed beam finite element deals with only the behavior of cables with strand cable structures. For 

actual cable structures, however, various geometry is being used in addition to the basic strand cable structures 

depending on the application and design conditions. Therefore, in order to strengthen the performance and the 

modeling capability of the present beam model for more comprehensive cable analysis, further research is required 

to expand the kinematics of the present beam model so that more general types of cable cross-sectional geometry 

can be dealt with. 
 

 

3) Consideration of changes in cable cross section 

The proposed beam finite element was derived by assuming that the changes in the cross-section of the 

wires did not occur, thus the cross-sectional area of wires and core are constantly maintained in the entire cable 

structure. In the behavior of actual cables, however, contraction and expansion in the cross-section of the cables 

occur depending mainly on the material properties that constitute cables, except some cases in which Poisson’s 

ratio is zero. In particular, for the cables that exhibit large deformation and rotation, the changes in the cross-

sectional area has a major influence on the behavior of the cable. In the proposed beam finite element model, the 

kinematics of the beam allows the specific varying cross-sectional geometry for each beam node. Therefore, it is 

expected that an improved follow-up model that can closely consider the effect of the cross-sectional contraction 

and expansion inside the cable can be developed by expanding the kinematics of the current beam model.  
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Chapter 4. Closing remarks 

 

This thesis introduces new continuum mechanics based beam finite elements for the linear and nonlinear 

analyses of multi-layered composite beams and helically stranded cable structures. The proposed beam finite 

elements have many advantages that come from the capability to represent entire 3D geometry and displacement 

field employing the continuum mechanics based formulations. The largest benefit of the proposed beam finite 

elements is that it can deal with the multi-layered beam and helically stranded cable structures, which generally 

have more complex geometries than simple beam structures, as a single beam model regardless of the numbers of 

layers and sub-components. This enables much simpler and more efficient modeling procedure using relatively 

small number of the degree of freedom (DOF). Further, the proposed beam finite element is successfully 

applicable for predicting geometric and material nonlinear behaviors of multi-layered composite beams and 

helically stranded cable structures. The modeling capability and the performance of the proposed beam element 

model were verified in several numerical examples. It was confirmed that the proposed beam finite element model 

can be very efficiently used in the analysis of macroscopic behavior of layered beam and helically stranded cable 

structures where no extreme failure in the overall structural geometry occurs. 

 

Unlike the conventional beam model, the continuum beam model represents the cross-sectional geometry 

at each node using the interpolations of cross-sectional nodal positions, which are irrelevant to the degree of 

freedom (DOF) of the beam, rather than inputting cross-sectional constants at the nodes of one-dimensional 

elements. Interpolating the cross-sectional geometry at each beam node in the longitudinal direction of the beam, 

the three-dimensional (3D) position and displacement field of the entire beam is represented. This approach makes 

it possible to model the specific 3D displacement field of the entire beam without having DOFs at each specific 

nodal position as in solid element models while the DOFs are defined at the beam nodes of one-dimensional 

elements as in the conventional beam model. 

 

The great advantages of the continuum mechanics based beam formulation enable more simple modeling 

procedure and accurate analysis of the complex multi-layered beam and helically stranded cable structures because 

it specifically models the overall positions of the beam instead of calculating cross-sectional constants that 

approximate the cross-sectional characteristics of the beam as in the traditional beam model. Further, the 

kinematics of the continuum beam model can be expanded straightforwardly to cover the more complex behavior 
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of the beam structures. For example, it is possible to expand the displacement field of the beam by simply adding 

the warping mode, inter-layer slip, or other distorted modes. In addition to displacements, the cross-sectional tilt 

direction at a specific position inside the beam can also be defined in detail. Therefore, helical geometries of the 

cable in which each cross-section of the wire is inclined at different angles and directions can be specifically 

modeled.  

 

The kinematics of the continuum mechanics based beam model can be expanded in various ways. As a 

representative case, the continuum beam model expanded with the additional warping mode has been widely used 

as it is possible to consider the torsional behavior of the beam, which could not be properly described in the 

conventional 6-DOF beam. In this thesis, the continuum mechanics based beam formulation is expanded to deal 

with the behaviors of multi- layered beams considering the composite interaction between the layers with 

corresponding interlayer slips and the helically stranded cables including inter-wire slips and individual wire 

rotations. If the concept of this continuum mechanics based beam model is further widened, it will be possible to 

develop more advanced beam finite element models that can be effectively used for the macroscopic structural 

analysis of various beam shaped structures with more complex geometry, such as multi-layered pipe structures 

composed of multiple concentric layers, double-helix structures, and umbilical cables. 
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