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ABSTRACT 

Multi-layered composite beams, which consist of multiple layers with different material are commonly 

used in various engineering fields to obtain enhanced structural property. However, complete shear connec-

tion between the layers can hardly be achieved in practice and it gives rise to partial interaction between the 

layers. The partial interaction in the multi-layered composite beam induces interlayer slips between the layers 

and it results in a decrease in strength and an increase in deflection. Thus, the partial interaction effect be-

tween the layers and the resulting interlayer slips should be taken into account for optimal design and accurate 

analysis of the actual behavior of the multi-layered structures.  

In spite of many analysis of two-layer and three-layer composite beams with deformable shear connec-

tions, the researches about general multi-layered structures have been very rarely discussed and most of the 

researches are limited to only two-dimensional loading condition. In order to fulfill the needs for more accu-

rate evaluation of the actual structure behavior, the further study about the three-dimensional model for gen-

eral multi-layered beam structure is necessary. 

In the present research, the beam finite element which is applicable to the three-dimensional analysis of 

the multi-layered composite beam structures was introduced. Instead of modeling the each layer of the beam, 

the beam structure was regarded as an association of the sub-beams including slip modes. Consequently, the 

displacement field of the multi-layered composite beam was decomposed into the displacements of the associ-

ated sub-beams represented by a single beam element and the slip displacements modeled by slip modulus and 

slip modes that composed of the bending slip modes and axial slip modes. Load-slip relation is assumed to be 

linear elastic behavior with the constant slip modulus. Since the total slip displacements are represented by 

slip modes with the slip modulus, only two additional DOFs are required for the two-dimensional analysis and 

it can be easily extended to the three-dimensional problems by inserting another slip DOF corresponding to 

the extended dimension. 

The main advantage of the present beam model is that any multi-layered beam can be modeled by a sin-

gle beam and slip modes. Therefore, the present beam element enables straightforward modeling of the multi-

layered composite beam with relatively small number of DOFs. Also, three-dimensional analysis can be easily 

performed without complicated modeling procedure by applying additional slip mode with corresponding slip 

DOF.  



 

 ii 

In order to verify the present beam model, several numerical studies are performed. Firstly, the present 

beam model is compared to the conventional one to demonstrate the influence of the slip modulus on the par-

tial interaction effect. Secondly, the numerical examples discussed by other authors are examined. Lastly, ex-

tension to the three-dimensional problem is introduced 
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Chapter 1. Introduction 

1.1 Research Background and Motivation 

Multi-layered composite beams, which consist of multiple layers with different materials are common-

ly used in various engineering fields to obtain enhanced structural properties such as high strength, high per-

formance, light weight, low cost, etc. As typical examples, steel-concrete composite beam and layered tim-

ber beam have been widely used for buildings and bridges construction. Normally, each component of the 

multi-layered composite beam is connected by shear connections that transfer shear stress to each other. Rig-

id shear connection which performs full shear connection between the components enables desired behavior 

of multi-layered composite beam. However, because of the finite stiffness of the shear connection complete 

shear interaction can hardly be achieved in practice and it give rise to partial interaction between the layers. 

Therefore, partial interaction due to the incomplete shear connection exhibits in most of the composite 

beams. 

Partial interaction of the multi-layered composite beam induces interlayer slip between the layers and 

it results in a decrease in strength and an increase in deflection. Thus, the partial interaction effect between 

the layers and the interlayer slips should be taken into account for optimal design and accurate analysis of 

the actual behavior of the multi-layered structures. Consequently, many numerical and analytical researches 

have been proposed to investigate aforementioned phenomenon.  

Analytical formulation for two-layer partially connected composite beams with linear shear connec-

tion stiffness was originally developed based on the Euler-Bernoulli beam theory by Newmark et al. [6] in 

the early 50s. Afterward, Girhammar and Gopu [7] presented the differential equations of partially connected 

composite beam with their exact solutions and compared first and second order analyses and Goodman and 

Popov [8] extended Newmark model to analysis of a three-layered composite beam. Since then, many ana-

lytical researches have been presented. Later on, shear deformation effect was considered according to the 

Timoshenko beam theory for detailed analysis of the partially connected composite beams. Schnabl et al. [9] 

and Xu and Wu [10] presented analytical models for two-layer and three-layer composite beams with de-

formable shear connectors. However, the closed-form solutions for general problems can hardly be obtained.  

Alternatively, numerical methods have been developed for more complicated problems, mostly based 

on the finite element analysis. Ranzi et al. [11] proposed a direct stiffness FE formulation based on the exact 

expressions and Battini et al. [12] presented exact FE formulations for nonlinear behavior of partially con-
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nected composite beam according to Euler-Bernoulli beam theory. Also, Nguyen et al. [13] developed an 

exact finite element model for composite beams with partial interaction by employing the Timoshenko beam 

theory. In addition, strain-based, force-based and mixed FE model was developed. Schnabl et al. [14] pro-

posed two-layer planar composite beam element based on Timoshenko beam theory and Cˇas et al. [15] pre-

sented FE formulation for composite planar frame with nonlinear geometry. 

In spite of many analysis of two-layer and three-layer composite beam with shear connections, the re-

searches about general multi-layered structures have been very rarely discussed. To cite a few, Sousa Jr. and 

Silva [16] developed the analytical and numerical model for multi-layered composite beam employing zero-

thickness interface elements. Also, Davi et al. [17] presented analytical model for multi-layered beam sub-

jected to axial, bending and shear end load. However, most of the researches about multi-layered composite 

beam are limited to only two-dimensional loading conditions. In order to fulfill the needs for more accurate 

evaluation of the actual structure behavior of multi-layered composite beam with partial interaction effects, it 

is apparent that the further study about the three-dimensional model for general multi-layered beam structure 

is necessary. 

 

 

1.2 Research Purpose   

Generally, it is complicated to obtain the solution for the structural systems composed of multiple layers 

that connected by deformable shear connections. As the number of layers increases, the solution procedures 

become more complex due to the large number of unknowns which depend on the number of sub-elements 

used to discretize cross-section geometry. Thus, existing FE model can hardly be applied to multi-layered 

composite beam structures with a number of interlayers and also, analytical solution procedures are too 

complex to be employed. In three-dimensional problems, the behavior of the multi-layered composite beam 

structures become more complicated and it is hard to be analyzed by two-dimensional FE model. In addition, 

the FE models that enable three-dimensional analysis of the partial interactions and interlayer slips of the 

multi-layered composite beams have been rarely presented. 

The purpose of this research is to develop finite element formulation which is applicable to the multi-

layered composite beam structures with relatively small number of DOFs and is easily extended to the three-

dimensional model. To this end, the multi-layered composite beam structure was regarded as an association 

of the sub-beams rather than as respective components in the present model. The displacement fields of the 

multi-layered composite beam was decomposed into the displacements of the associated sub-beams which 

can be represented by nodal displacements of beam nodes in single beam element and the slip displacements 
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which can be modeled by slip modes and slip modulus. The slip modes indicate the whole slip displacements 

of the multi-layered structure including relative horizontal displacements of the each layer with no partial 

interactions and the slip modulus is employed for the partial interaction effects at the interlayers. The slip 

modes are composed of the bending slip modes and axial slip modes, and each slip modes can be modeled 

by slip function with 1 DOF at the beam nodes. The partial interaction effects at the interlayers are modeled 

by the slip stiffness matrix corresponding slip DOFs. Because the total slip displacements are represented by 

the slip modes, only two additional DOFs at each beam node are required for the two-dimensional analysis 

procedure of the present model. Also, it is straightforward to extend the present model to a more general 

three-dimensional problems by applying another additional slip mode corresponding to extended dimension. 

 

 

1.3 Organization of the Thesis 

•     In chapter 2, basic assumptions of the present slip model were introduced. Then, the concept 

of slip modes, which is a key idea of the present model is explained in detail. Also, load-slip rela-

tion and constant slip modulus for modeling partial interaction effect between the layers were ex-

plained. 

•     In chapter 3, formulation of continuum mechanics based beam element was briefly intro-

duced. Then, enriched beam formulation including slip modes with corresponding slip DOFs was 

derived. Also, calculation procedure of bending slip function and axial slip function is explained in 

detail.  

•     In chapter 4, principle of virtual work was briefly reviewed and variational formulation of the 

present beam element was derived. Then, finite element formulations obtained based on the weak 

form were explained. For finite element analysis, linearized covariant Green-Lagrange strain was 

employed and standard numerical integration procedure was adopted. 

•     In chapter 5, several numerical examples were presented for the verification of the proposed 

beam model. The present beam model was compared with conventional one to verify the partial in-

teraction effect. Also, numerical examples discussed in other literatures were examined. Lastly, ex-

tension to the three-dimensional problem was introduced. 

•     In chapter 6, conclusions of the present research and further studies were summarized briefly. 
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Chapter 2. Numerical Interlayer Slip Model 

2.1. Basic assumption 

Partial composite interaction due to the deformable shear connection induces interlayer slip, which is 

relative horizontal displacements between the adjacent layers. Normally, the vertical separations between the 

layers are often negligible and only relative displacements in horizontal directions are considered in multi -

layered structures as shown in Figure 2.1 

 
 

 

Figure 2.1 Relative horizontal displacements in n -layered multi-layered structure with no vertical sepa-

rations. 

 

In the present research, the behavior of the multi-layered composite beam structure is investigated and 

finite element formulation that can be easily applied to the three-dimensional problems with relatively small 

number of DOFs is presented. To this end, the multi-layered composite beam structure was regarded as an 

association of the sub-beams with no transvers separation. The basic assumptions for the presented slip mod-

el are explained as follows.  

 

(a) The analysis of each sub-beam of multi-layered composite beam is carried out based on Timoshenko 

beam theory, which considers shear deformation effects.  

(b) The relative horizontal displacements (interlayer slips) occur at the interface between the adjacent layers 
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and vertical separations are neglected. 

(c) The beams are subjected to transverse and axial loading. Applied axial loads are uniformly distributed at 

the cross-section. 

(d) Each layer of the multi-layered composite beam is assumed to have same curvature. 

(e) Linear elastic material behavior is assumed. 

(f) Shear connections that located discretely at interlayers are regarded as continuous.  

(g) The relation between slip load and slip displacement is linear elastic with a constant slip modulus K 

[N/m2]. 

 

 

2.2 Slip Modes 

When multi-layered composite beam with deformable shear connections is loaded, incomplete interac-

tions are caused according to the partial transfer of shear stresses at the interlayers and it leads to decrease in 

strength and an increase in deflection. As a consequence of the incomplete partial interactions due to the 

deformable shear connections, relative horizontal displacement, which is interlayer slip often develops as 

shown in Figure 2.2  

 

Figure 2.2 Deformed shape of the multi-layered composite beams with deformable shear connections with 

same rotation and curvature. 
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Based on the aforementioned assumptions, the curvature and axial strains at cross-section are expressed as 

follows. 

x

u
ε


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x
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                                                                     (2-1) 

where mε  is the axial strain at the cross-section centroid of sub-beam m , v  is the transverse displace-

ment, θ  is xv  and κ  is the curvature. 

In the present model, multi-layered composite beam structure was treated as an association of the sub-

beams with slip displacement fields of each layers rather than as respective components. For this purpose, 

the displacement fields of the multi-layered composite beam was decomposed into the displacements of the 

associated sub-beams and slip displacements. The displacement fields of an association of the sub-beams can 

be represented by nodal displacements at beam nodes in a single beam that contains classical deformation 

modes. Meanwhile, the slip displacements are modeled by the slip modes, which are the additional individu-

al modes at beam nodes and the slip modulus is employed for the partial interaction effect at the interlayer.  

 

 

 

 

 

Figure 2.3(a) Interlayer slips in 4-layered mul-

ti-layered beam structures 

 

Figure 2.3(b) Interlayer slips modeled by a single beam 

element with slip mode 
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The slip modes are individual modes that represent total interlayer slip displacements between the sub-

beams under no partial interaction effect. The concept of the slip mode is briefly described in Figure 2.3(a) 

and Figure 2.3(b). Figure 2.3(a) shows interlayer slips in 4 -layered beam structures. These interlayer slips 

can be modeled by the displacement fields of a single beam and slip mode at beam node as shown in Figure 

2.3(b) where k
z

t
V  and k

y
t
V  denote the director vectors in the cross-sectional plane k  at time t , which 

is normal to each other. The director vectors k
z

t
V  and k

y
t
V  and the origin kC  define the cross-sectional 

Cartesian coordinate system and k
x

t
V  denotes the interlayer slip direction calculated by k

z
tk

y
tk

x
t

VVV  . 

The slip modes are composed of the bending slip mode due to bending moments and axial slip mode due to 

axial loads. 

 

 

2.2.1 Bending slip mode 

The bending slip mode represents the slip displacement at the cross-section of the multi-layered compo-

site beam subjected to the bending moments with no partial interactions. Because there is no composite in-

teraction effect between the layers, each sub-beam has its own neutral axis and corresponding bending mo-

ments are produced as described in Figure 2.4. 

 

 

Figure 2.4 Bending moments and corresponding bending stresses in the cross-section of the multi-layered 

composite beam with no partial interaction. 
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If the positive bending moment is applied as shown in Figure 2.4, the lower part of the sub-beam 1  under 

the neutral axis 1  is subjected to the positive bending stresses where 1y  is negative. On the other hand, 

the upper part of the sub-beam 2  over the neutral axis 2  is subjected to the negative bending stresses 

where 2y  is positive. Therefore the relative horizontal displacement occurs at the interlayer between the 

sub-beam 1  and sub-beam 2  in k
x

t
V  direction.  

Based on the assumption of the small deformation, each sub-beam has same curvature and rotation. Ac-

cording to this, the interlayer slip displacements in bending slip mode can be derived as below, 

θd
x

v
duus iiii

b
i 




 1 , 1,,2,1  ni  ,                                           (2-2) 

where b
is  is interlayer slips between the sub-beam 1i  and sub-beam i  under pure bending condition, 

id  is length between the centroid of sub-beam 1i  and the centroid of sub-beam i , θ  is the rotation, 

and n  is the number of sub-beams. Note that 1iu  and iu  are same under the pure bending condition. 

(Figure 2.5)  

 

 

Figure 2.5 The displacements field of the multi-layered beam subjected to bending moments. 
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2.2.2 Axial slip mode 

Similarly, when axial load is applied to the multi-layered composite beam with no partial interaction ef-

fect, slip displacements can be represented by axial slip modes. The slip displacements caused by axial load-

ing are observed with the different material property of the each layers as shown in Figure 2.6 since the pre-

sent model assumed uniform distribution of the axial loading in the cross section of the multi-layered com-

posite beams. 

 

 

Figure 2.6 The displacements field of the multi-layered beam under uniformly distribution of axial load-

ing condition 

 

Consequently, the interlayer slips in axial slip mode, which is relative horizontal displacements between 

the layers under uniformly distributed axial loading condition is obtained by difference of the horizontal dis-

placement between adjacent layers as below.  



















iiii

i

ii

i

ii

a

i
EEA
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AE

LP

AE

LP
uus

11

10

0

11

1

1
, 1,,2,1  ni                       (2-3) 

 

where a
is  is interlayer slip displacements between the sub-beam 1i  and sub-beam i  under uniform 

axial loading distribution, iE  is Young’s modulus of the sub-beam i , iA  is cross-section area of the sub-
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beam i , iP  is resultant axial force of the sub-beam i , L  is the length of the beam and n  is the number 

of sub-beams. According to the assumption of uniform axial loading distribution, each sub-beam is subjected 

to uniform axial stress 00 AP . Note that the interlayer slip displacement between the sub-beam 1i  and 

sub-beam i  under uniform axial loading distribution is proportional to  ii EE 11 1  . 

 

 

2.3 Slip Function 

The slip modes composed of bending slip mode and axial slip mode are modeled by slip functions with 

slip degree of freedoms (DOFs) in beam formulation. Each slip mode can be represented by corresponding 

slip functions with slip DOF individually. The slip function is the step function defined over the cross-

section of the beam, in which the value of the slip functions indicates the extent of deformation in k
x

t
V  

direction. The concept of the slip function is described briefly in Figure 2.7.  

 

 

 

 

Figure 2.7 The concept of slip function on the cross-sectional plane k  in the two-layer beam with de-

formable shear connection 

 

Since the jumps at the discontinuity point of the slip function indicates the extent of the interlayer slip 

displacements at the sub-beams, the slip modes can be obtained by the multiplication of slip function and 

slip DOF. The calculation procedures for both bending slip function and axial slip function are introduced 
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specifically in section 3.2.2. 

 

 

2.4 Slip Modulus  

The function of shear connections is to transfer the shear force between the layers and to prevent the 

vertical separation of the components of the multi-layered structure. Rigid connectors provide full shear 

connection and enables perfect composite action between the components of the multi-layered composite 

structure. On the other hand, flexible connectors such as bolts, nails and rebar provide incomplete shear con-

nection and lead to partial composite interaction 

In the present slip model, slip modulus sK  is employed to model the partial interaction effects at the 

interlayers and only linear part of the load-slip curve is considered. Hence, the relation between the interlay-

er slip displacement and slip load is determined through the constitutive laws as below,   

sss
uKV                                                                        (2-4) 

in which sV  is slip load per unit length, sK  is the constant slip modulus and su  is corresponding inter-

layer slip displacement.  

In the case of infinite slip modulus ( sK ), shear connection exhibits perfect composite interactions 

and zero slip modulus ( 0sK ) indicates no composite interactions. Each case indicates upper and lower 

bounds for the composite action of the multi-layered structure. 
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Chapter 3. Beam Finite Element with Slip Mode 

3.1 Continuum Mechanics based Beam Formulation 

Continuum mechanics based beam formulations have been widely used for the analysis of general beam 

structures. Since the beam formulations are based on 3-D continuum mechanics, general 3-D curved and 

twisted geometries including fully coupled complete strains can be easily represented. In addition, the for-

mulation form is straightforward. In spite of these advantages, the original degenerated continuum beam 

elements can be applied to only rectangular cross-sections in general. Recently, Yoon et al. [4] developed the 

concept of continuum mechanics based beam elements degenerated from assemblages of 3-D solid elements, 

which can model the arbitrary beam cross-sections. The beam formulation proposed by Yoon et al. is intro-

duced briefly as follows. 

 

 

3.1.1 Interpolation of Geometry 

The geometry interpolation of the solid element m  represented by 3-D shape function ),,( tsrhi  is 

defined in the Cartesian coordinate system as below,  

)(

1

)( ),,(
m

i

t
n

i

i

mt tsrh xx 


                                                            (3-1) 

 

in which )(mt
x  is the material position vector of solid element m , 

)(m
i

t
x  are the position vector of node 

i ,  n  is the total number of nodes in the beam and t  is time parameter. If all the nodes of solid elements 

are located on the cross-sectional plane k  as depicted in Figure3.1, the geometry interpolation of the solid 

element m  can be expressed by 1-D shape function )(rhk  and 2-D shape function ),( tsh j  and the posi-

tion vector of cross-sectional node,  

)(

11

)( ),()(
mj

k
t

p

j

j

q

k

k
mt tshrh xx 



                                                      (3-2) 

 

where )(mj
k

t
x  is the position vector of the j th cross-sectional node in solid element m  positioned on the  

cross-sectional plane k , q  is the number of the cross-sectional planes k  and p  is the number of nodes 

in solid element m . 
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Figure3.1 An assemblage of 3D solid element that has arbitrary cross-section geometry  

 

 

Under the assumption that plane cross-sections originally normal to the mid-line of the beam remain plane 

and undistorted during deformations but not necessarily normal to the mid-line of the deformed beam (Ti-

moshenko 1970), a solid element behaves as a beam and therefore, solid element m  can be substituted by 

sub-beam m . As a result, based on the assumption of Timoshenko beam theory, the position vector of j th 

cross-sectional node in sub-beam m  )(mj
k

t
x  can be represented by 

k
z

tmj
k

k
y

tmj
kk

tmj
k

t zy VVxx
)()()(

                                                   (3-3) 

where k
t
x  are the position vectors of beam node k  placed at the origin kC , 

)(mj
ky  and 

)(mj
kz  indicate 

the coordinate of the j th cross-sectional node in sub-beam m  defined in cross-sectional Cartesian coordi-

nate system. The cross-sectional Cartesian coordinate system is determined by 
k
y

t
V  and k

z
t
V  , which are  

the unit director vectors at cross-sectional plane k  and are normal to each other, see Figure 3.2. 
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Figure 3.2 A 3-node continuum mechanics based beam element that has arbitrary cross-section geometry 

in the configuration at time t  and at time 0  

 

 

 

Consequently, the material position vector of sub-beam m  at time t  )(mt
x  can be obtained as follows. 

k
z
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k

q

k

k
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y
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                                (3-4) 

with 
)(

1

)(
),(

mj
k

p

j

j
m

k ytshy 


 , )(

1

)(
),(

mj
k

p

j

j
m

k ztshz 


                                      (3-5) 

Eq. (3-5) describes the material position of sub-beam m  on the cross-sectional Cartesian coordinate system 

that interpolated by 2-D shape function and cross-sectional nodes of the sub-beam m . The material position 

vector of the beam is composed of the assemblage of the sub-beam m  aligned in the longitudinal direction 
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of the beam. The longitudinal reference line connecting the each beam node is used to define the geometry 

of the beam and the beam node at the origin kC  can be located on the cross-sectional plane k  Therefore, 

the continuum mechanics based beam finite element is obtained by the beam nodes on the cross-sectional 

plane k  and cross-sectional discretization at each beam node, see Figure 3.3. 

 

 

 

 

Figure 3.3 Cross-sectional discretization of continuum mechanics beam finite element. (a) 3-node beam 

finite element, (b) Cross-sectional discretization at beam node k  

 

 

 

3.1.2 Interpolation of Displacement 

The displacement interpolation of sub-beam m  is derived through the interpolation of geometry as be-

low (Bathe 1996), 





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)( )()()()()( VVVVuu                   (3-6) 

where  Tkkkk wvuu , k
y

t
V  and k

z
t
V  denote the director vectors of cross-sectional plane k  in 

the configuration at time t . The displacement vector of sub-beam m  is obtained by the nodal displace-
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ment vector at beam node, which is ku , and the material position of the sub-beam m  on the cross-

sectional plane k .  

For the parametrization of finite rotations, Rodrigues formula is employed, 

2

2
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with 
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where k
xθ , k

yθ  and k
zθ  are the incremental Eulerian angles from time 0  to t , and )(ˆ k

θR  is the skew-

symmetric matrix operator. The Rodrigues formula can be written as polynomial function in terms of the 

incremental Eulerian angle vector kθ  by applying Taylor expansion.  
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Then, the director vectors at time t  can be expressed as  

k
x
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y

t
VθRV

0)(  and k
z

kk
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VθRV

0)( .                              (3-10) 

Accordingly, the displacement interpolation of sub-beam m  is obtained as below. 
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As a consequence of the first order approximation of the Rodrigues formula, Eq.(3-10) becomes 
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 .                     (3-12)   

In Eq.(3-11), the displacement field of the whole beam composed of the sub-beam m  is determined 

by the nodal displacement vector at each beam node which has three translations and three rotations, see 

Eq.(3-12). 

 Tk
z

k
y

k
xkkkk θθθwvuU                                           (3-13) 

 

Therefore, the behavior of the beam can be modeled by a single beam element having cross-sectional dis-
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cretization at each cross-section k .  

The displacement field in Eq. (3-12) can be extended to generalized displacement field by adding other 

displacement modes as below, 

)()()( m
a

mm
g uuu                                                                  (3-14) 

in which )(m
gu  is the generalized displacement field and )(m

au  is the additional displacement mode such as 

warping displacements and displacements for cross-sectional distortions. In the present research, the slip 

modes is added to the basic displacement field, for the analysis of the multi-layered composite beam with 

interlayer slips. The beam formulation including additional slip modes is explained in next section.  

 

 

3.2 Enriched Beam Formulation with the Slip Mode 

In order to consider interlayer slips in the beam due to the partial interaction effect, enriched displace-

ment field with the additional displacement field, which is slip mode for slip displacements and correspond-

ing slip DOFs are employed, 

)()()( m
s

mm
g uuu                                                                  (3-15) 

where )(m
su  represents the slip modes. 

 

 

3.2.1 Interpolation of Displacement including Interlayer Slips 

The geometry interpolation of the beam including slip displacements that corresponds to sub-beam m  

at time t  is obtained as below, 
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in which 
k
x

t
V  is the director vector normal to cross-sectional plane k  defined by 

k
z

tk
y

tk
x

t
VVV  , 

),(
)(

tsf
mi

k  is the slip function at beam node k , 
i
kα  is the corresponding slip degree of freedom at beam 

node k  and l  denotes the number of slip degree of freedoms. Consequently, the displacement interpola-

tion of sub-beam m  including slip modes is derived from the interpolation of geometry. 
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In Eq. (3-17), the displacement field is represented by )6( l DOFs at each beam node k  that has (three 

translations, three rotations and slip DOFs  

 T
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z

k

y

k

xkkkk
θθθwvu T

αU  ,                                    (3-18) 

 

in which  Tn

kkkk
ααα 21α  and n  is the number of interlayers. Normally, two slip modes that 

are composed of bending slip mode and axial slip mode are required for two-dimensional analysis and it can 

be easily extended to three-dimensional analysis with another bending slip mode corresponding to the ex-

tended dimension. 

 

 

3.2.2 Calculation Procedure of Slip Function 

Slip modes are modeled by slip functions with slip DOFs in the beam formulation. The slip modes are 

composed of bending slip mode and axial slip mode and each slip mode can be represented by corresponding 

bending slip functions ),( tsf b
k  and axial slip function ),( tsf a

k  with bending slip DOF b
kα  and axial slip 

DOF a
kα  individually. The slip function is the step function defined over the cross-sectional plane k  of a 

beam in which the value of the slip functions indicates the extent of deformation in 
k
x

t
V  direction. 

 

3.2.2.1 Bending Slip Function 

In the case of bending slip mode, the interlayer slip displacements b
is  are derived as explained in sec-

tion 2.2.1, see Eq.(2-2). 

θd
x

v
duus iiii

b
i 




 1 , 1,,2,1  ni                                               

Since each sub-beam has the same rotation according to the aforementioned assumptions, the interlayer slip 

displacements in bending mode b
is  are proportional to id , which is the length between the centroid of 

sub-beam 1i  and the centroid of sub-beam i .  
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In the enriched beam formulation, the interlayer slips in the bending mode are modeled by the superpo-

sition of the behavior of a single beam and bending slip function ),( tsf b
k  with bending slip DOF b

kα . Be-

cause the single beam represents the average behavior of the association of the sub-beams, the cross-

sectional plane k  of the beam is located on the mean position between the interlayer slips. Consequently, 

the value of the bending slip function b
ix  indicates the extent of deformation in k

x
t
V  direction from the 

cross-sectional plane k  of a beam as shown in Figure 3.4. 

 

 

 

 

 

Figure 3.4 Bending slip function in three-layer beam model 

 

In the bending slip function, the jumps at the discontinuity point indicates the extent of the interlayer 

slip displacements in the bending mode, which is proportional to the interlayer slips. The sum of the slip 

function value should be zero, since the cross-sectional plane k  is located on the mean position between 

the interlayer slips. Therefore, the value of the bending slip function can be obtained through the equations 

as follows, 

θdcscxx ib
b
ib

b
i

b
i  1 , 1,,2,1  ni                                            (3-19) 
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where bc  denotes constant coefficient in bending slip function. 

Then, b
ix  is represented in terms of id   
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b

rΨx
1                                                                      (3-21) 

with  T21
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n

bbb xxx x ,  T121 0b
n

bb
b ddd  r , 










n
b

,1J

Q
Ψ   

and    nn I00IQ  , where nI  is nn  identity matrix and n,1J  is n1  matrix of ones. 

 

 

3.2.2.2 Axial Slip Function  

 In the case of axial slip mode, the interlayer slip displacements a
is  are derived as explained in section 

2.2.2, see Eq.(2-3). 
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Since each sub-beam is subjected to uniform axial stress 00 AP  due to the aforementioned assumptions, 

the interlayer slip displacements in axial mode a
is  are proportional to  ii EE 11 1  .  

Similar to the preceding section, the interlayer slips in the axial mode are modeled by the superposition 

of the behavior of a single beam and axial slip function ),( tsf
a

k  with axial slip DOF 
a

kα  and the cross-

sectional plane k  of the beam is located on the mean position between the interlayer slips. Therefore, the 

value of the axial slip function 
a

ix  indicates the extent of deformation in 
k

x

t
V  direction from the cross-

sectional plane k  of a beam as shown in Figure 3.5. 

The jumps at the discontinuity point of the axial slip function indicates the extent of the interlayer slip 

displacements in the axial mode, which is proportional to the interlayer slips and the sum of the axial slip 

function value should be zero, since the cross-sectional plane k  is located on the mean position between 

the interlayer slips . As a result, the value of the axial slip function can be obtained through the equations as 

follows, 
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where ac  denotes constant coefficient in axial slip function. 

 

 

 

 

Figure 3.5 Axial slip function in the three-layer beam model 

 

Then, a
ix  is represented in terms of iE  
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a
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with  T21
a
n

aaa xxx x ,  T13221 0111111 nnb EEEEEE  r , 
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and    nn I00IQ  , where nI  is nn  identity matrix and n,1J  is n1  matrix of ones. 

Note that both slip function is not unique, however their value should satisfies the specific ratio correspond-

ing to the slip mode. 
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Chapter 4. Finite Element Analysis Procedure 

4.1 The Variational Formulation of the Beam with Interlayer Slips 

    The solution of the displacement-based finite element analysis is based on the variational method. The 

governing equations of system can be constructed with relative ease by employing the variational method, 

since scalar quantities are considered rather than vector quantities in the variational formulation. In the pre-

sent research, the variational formulation of the beam model including the partial interaction effect with in-

terlayer slips was derived from the principle of virtual work for the finite element analysis. The concept of 

the general principle of virtual work is introduced briefly as follows. 

 

 

4.1.1 The Principle of Virtual Work 

The principle of virtual work states that the total external virtual work done by the external loads under 

the compatible displacements imposed on the body in its state of equilibrium is equal to the total internal 

virtual work done by internal force as described in Eq.(4-1). 
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                                               (4-1). 

in which Bf  are externally applied body forces in the volume (force per unit volume) and Sf  are surface 

tractions on the surface fS  (force per unit surface area), uδ  are the virtual displacements, εδ  are the 

corresponding virtual strains, τ  are stresses corresponding to ε , V0  and Vt  are volume in the initial 

configuration at time 0 , in the current configuration at time t  respectively, and initial stresses are as-

sumed to be zeros, see Figure 4.1. The body is subjected to surface tractions 
S

f  on the surface area fS  

and is supported on the area uS  with corresponding prescribed displacements uS
U . Assuming that all dis-

placements on uS  are prescribed, SSS fu   and 0fu SS  .  
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Figure 4.1 A body in its equilibrium state subjected to body force and surface tractions. 

 

The virtual displacements uδ  must be a continuous virtual displacement field and satisfies prescribed 

displacements on uS . The virtual strain εδ  are calculated by the differentiations from the assumed virtual 

displacements uδ . Note that all integrations are carried out over the initial configuration of the body that 

unaffected by the imposed virtual displacements. 

 

 

4.1.2 The Weak Form of the Beam Formulation  

Unlike conventional beam that has no flexible interlayers between the components, partial interactions 

are caused due to the partial transfer of shear stresses at the interlayers in the multi-layered composite beam 

with deformable shear connections. Consequently, the partial interaction effect and resulting interlayer slips 

should be considered in the governing equations. 

In the present beam model, the constant slip modulus sK  is employed to model the partial interaction 

effect between the layers and only linear part of the load-slip curve is considered. Therefore, The constitutive 

law that represents the relation between the interlayer slip displacement and slip load is used as below. 
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sss uKV   

Also, assuming zero initial stresses, the stresses τ  can be represented by 

Cετ  ,                                                                         (4-2) 

where C  is the stress-strain matrix of the material. Accordingly, the weak form of the present beam formu-

lation can be obtained by employing the Eq. (4-2) in the principle of virtual work as expressed in Eq. (4-2). 

 

fS

ST

V

BT

L

ss

T

s

V

T SδVδLδVδ dddd

00

fufuuKuCεε                               (4-3) 

where 
s

u  is interlayer slip displacement vector and 
s

K  is slip modulus matrix, 

 T)1(21  issss uuu u , ni 2,1                                            (4-4) 
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K ,  ni 2,1                                           (4-5) 

with the number of layers n . 

 

 

4.2 Finite Element Discretization  

For finite element analysis, finite element formulations are derived based on linearized covariant Green-

Lagrange strain. Then, the multi-layered composite beam is discretized by two-node beam element with slip 

modes and the standard numerical integration procedure is used. 

 

 

4.2.1 Green-Lagrange Strain 

The Green-Lagrange strain tensor for the sub-beam   defined with respect to the initial coordinates 

can be written in terms of the Cauchy-Green deformation tensor as below, 
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in which )(

0

mt
X  is deformation gradient for sub-beam m . 

In global Cartesian coordinate system, the components of the Green-Lagrange strain tensor )(

0

mt
ε  is repre-

sented by 
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Also, the Green-Lagrange strain tensor can be written in terms of the covariant components in general coor-

dinate as follows,  
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where )(m

i

t
g  is natural base vectors for sub-beam m . Note that in Eq. (4-7) and Eq. (4-8) the strain compo-

nents are considered up to quadratic order. In local Cartesian coordinate system, the local Green-Lagrange 

strain tensor )(

0

m

ij

t ε  is obtained through the transformation of the basis vectors, see Figure 4.2. 
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In Eq. (4-9), 
)(0 mi

g  denote the contravariant base vectors defined by 

i
j

m
j

mi δ )(0)(0
gg , 

in which 
i

j
δ  is the Kronecker delta. 

The covariant Green-Lagrange strain can be decomposed as follows, 
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Figure 4.2 Global Cartesian coordinate system, cross-sectional coordinate system and local coordinate 

system in 3-node beam element 

 

 

In the present research, finite element formulations is derived based on the linearized covariant Green-

Lagrange strain of the sub-beam m  
)(

0
~ m

ij

t e  with the assumption of small deformation theory and five strain 

components ( )(

110
~ mt e , )(

120
~ mt e , )(

210
~ mt e , )(

130
~ mt e , )(

310
~ mt e ) are considered. 

 

 

4.2.2 Finite Element Formulations 

The displacement field of sub-beam m  
)(m

u  was derived in the preceding chapter and the 
)(m

u  was 

represented by kU , which is composed of )6( l  number of global displacement components at all nodal 

points. Accordingly, the total nodal displacements vector is obtained as below in the q -node beam. 

 TT

q

TT
UUUU ......

21
                                                        (4-12) 
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Then, the )(m
u  can be represented in terms of U  through the )(m

H  matrix 

UHu
)()( mm  ,                                                                   (4-13) 

where )(m
H  is so-called displacement interpolation matrix in the sub-beam m . Similarly, variation of the 

)(m
u  is obtained as follows. 

UHu δδ mm )()(                                                         (4-14) 

Also, linearized covariant components of the Green-Lagrange strain in the sub-beam m  )(

0
~ m

ij

t e  and their 

variation can be written in terms of U  and Uδ  respectively as below,  

UBe
)()( mm                                                                      (4-15) 

UBe δδ mm )()(  ,                                                                  (4-16) 

in which )(m
B  is strain-displacement matrix. The rows of )(m

B  are obtained by differentiating and com-

bining rows of the matrix )(m
H . Lastly, slip displacement and virtual slip displacement can be also obtained 

with respect to U  and Uδ . 

UHu
)()( m

s

m

s
                                                                     (4-17) 

UHu δδ m

s

m

s

)()(                                                                    (4-18) 

Note that same interpolation is employed for real and virtual displacements. 

The weak form of the beam formulation (Eq. 4-3) can be rewritten as a sum of integrations over the 

sub-beam m . 
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m V
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)()()( dd fufu                                          (4-19) 

Substituting the Eq. (4-13), Eq. (4-14), Eq. (4-15), Eq. (4-16), Eq. (4-17) and Eq. (4-18), the weak form is 

expressed in terms of the nodal displacement vector U  and virtual nodal displacement vector Uδ . 
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As a result, linearized equilibrium equations is obtained as below 

RKU                                                                         (4-21) 
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4.2.3 Numerical Integration 

To obtain stiffness matrix and load vector of the system, 222   Gauss integration is employed for 

each sub-beam m . That is, there are two integration points in the longitudinal direction and 22  Gauss 

integration is carried out in the cross-sectional plane of sub-beam m  ( ts  plane) as shown in Figure 4.3. 

 

 

Figure 4.3 Gauss integration points in the sub-beam element m . 
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In the case of slender beam, the displacement-based isoparametric beam finite element becomes too 

stiff in bending, that is, the beam finite element locks. Therefore, MITC (Mixed Interpolation of Tensorial 

Components) scheme is used to remove shear lockings, Note that MITC scheme gives better performance 

compared to the reduced integration scheme especially for the complex beam geometry. 
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Chapter 5. Numerical Studies 

5.1 Verification of the Proposed Model 

The proposed beam finite element including interlayer slips is verified by comparing solutions with those 

found in literatures. In order to evaluate the partial interaction effects in the partially connected beam, the 

multi-layered composite beam with deformable connections is compared with the conventional beam that 

has perfect connections. Then, several numerical examples are presented to demonstrate accuracy and per-

formance of the present model. The significant numerical results such as tip-displacements and mid-point 

displacements are compared to those obtained by other author. 

 

 

5.1.1 Comparison with Conventional Beam  

Two-layer and three-layer composite beam with deformable connections are compared to the case of 

corresponding perfectly connected beam, for different slip modulus to briefly assess the influence of the slip 

modulus between the layers on the partial interaction effect. 

 

5.1.1.1 Two-layer Partially Connected Beam  

    Two-layer partially connected cantilever beam and perfectly connected cantilever beam, which is iden-

tical to the conventional beam with no interlayers are shown in Figure 5.1(a) and Figure 5.1(b). 

 

 

Figure 5.1(a) Two-layer partially connected beam subjected to tip vertical load zF  
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Figure 5.1(b) Two-layer perfectly connected beam subjected to tip vertical load zF  

 

Each layer of the beam has same Young’s modulus, Poisson’s ratio but different cross-section area. The 

beams are subjected to tip vertical load zF . Geometry, loading condition and material properties are de-

scribed in Table 5.1.  

 

 

Geometry and Loading condition Material property 

m100l  25
21 N/m10 EE  

m1b  5.021  υυ  

m21 h   

m12 h  

NFz 1  
 

           Table 5.1 Geometry, material property loading condition and slip modulus for two- 

layer partially connected beam. 

 

 

Both beams are modeled by five 2-node beam elements and the rectangular cross-section is discretized 

by 4-node cubic cross-sectional element. Deflections, deflection angles and interlayer slips at the tip of the 

partially connected beam are compared to those of the perfectly connected beam for increasing slip modulus 

value. It can be observed that the results of the two-layer partially connected beam converge to the solution 

of the conventional beam as slip modulus increases. It can be concluded that the present beam element   

gives reasonable solutions for modeling partial interaction effect. The results are depicted in Figure 5.2(a), 

Figure 5.2(b) and Figure 5.2(c). 
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Figure 5-2(a) Deflections at the tip of the partially 

and perfectly connected beams 

 

Figure 5-2(b) Deflection angles at the tip of the par-

tially and perfectly connected beams 

 

 

 

Figure 5-2(c) Interlayer slips at the tip of the partial-

ly and perfectly connected beams 
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5.1.1.2 Three-layer Composite Beam 

Three-layer partially connected beam and perfectly connected beam identical to the conventional beam 

with no interlayers are shown in Figure 5.3(a) and Figure 5.3(b). Material properties, loading condition and 

geometry data are described in Table 5.2. Each beam is modeled by five 2-node beam elements and the rec-

tangular cross-section is discretized by 4-node cubic cross-sectional element. Deflections, deflection angles 

and interlayer slips at the tip of the three-layer partially connected beam are compared to those of the con-

ventional beam with no partial interaction effect, for increasing slip modulus value. Similar to preceding 

section, the results of the three-layer partially connected beam converge to the solution of the perfectly con-

nected beam as slip modulus increases. The results are shown in Figure 5.4(a), Figure 5.4(b) and Figure 

5.4(c). 

 

 

Figure 5.3(a) Three-layer partially connected beam subjected to tip vertical load zF  

 

 

Figure 5.3(b) Three-layer perfectly connected beam subjected to tip vertical load zF  
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Geometry and Loading condition Material property 

m100l  25
1 N/m10E  

m1b  25
2 N/m103.0 E  

m31 h  25
3 N/m107.0 E  

m12 h  5.0321  υυυ  

m23 h   

           Table 5.2 Geometry, material property loading condition and slip modulus for three- 

layer partially connected beam. 

  

Figure 5.4(a) Deflections at the tip Figure 5.4(b) Deflection angles at the tip 

  

Figure 5.4(c) Interlayer slips 1s  at the tip Figure 5.4(d) Interlayer slips 2s  at the tip 
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5.1.2 Numerical Examples 

The following numerical examples demonstrate accuracy and performance of the proposed model. In or-

der to validate and confirm the accuracy and the performance of the present beam model, the significant nu-

merical results such as mid-point displacements and mid-point interlayer slips are compared to the reference 

solution found in literatures. 

 

5.1.2.1 Two-layer Composite Beam 

The first numerical example is a simply supported two-layer composite beam subjected to uniformly dis-

tributed load. The beam that considered previously by Schnabl [14], is composed of a two layers with differ-

ent material property and no partial interactions ( 0sK ). A shear-correction factor is taken to be 5/6  in 

[14]. Geometry, material properties and loading condition are shown in Figures. 5.5 and Table 5.3. 

 

 

 

Figure 5.5 Two-layer simply supported composite beam subjected to the uniformly distributed loading  

with no partial interactions 

 

Geometry and Loading condition Material property Slip modulus 

cm250l  2
21 kN/cm1200 EE  MPa01 K  

cm30b  2
1 kN/cm120G   

cm201 h  2
2 kN/cm80G   

cm302 h  

kN/cm5.0zq  
 

 

     Table 5.3 Geometry, material property loading condition and slip modulus for two-layer composite 

     beam with no partial interaction 
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The rectangular cross-section of the beam is discretized by 4-node cubic cross-sectional element and    

222   Gauss integration is used for each cross-sectional element. The results obtained with different 

number of element discretization are presented in Figure 5.6(a) and Figure 5.6(b). The deflections and the 

interlayer slips at the mid-point of the beam are depicted along with the reference solutions obtained by [0], 

which is calculated by 1000 finite elements with interpolation polynomials. The numerical results of the pre-

sent beam model exhibit a good agreement with the reference solutions 

 

  

 

Figure 5.6(a) Deflection at the mid-point with the 

reference solutions 

 

Figure 5.6(b) Interlayer slips at the mid-point with 

the reference solutions 

 

 

5.1.2.2 Three-Layer T-Section Composite Beam 

In second example, a three-layer T-section simply supported composite beam is considered as shown in 

Figure 5.7. The beam, referred previously by Chui and Barclay [19], is composed of three layers with differ-

ent cross-section area and material properties, which is concrete topping (layer 1 ), a wood-based floor 

sheathing (layer 2 ) and a floor joist for (layer 3 ). Also, the two interlayers have different slip modulus. 

The z -directional concentrated load zF  is applied at the mid-span of the beam. Geometry, material prop-
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erty, loading condition and interface properties are summarized in Table 5.4.  

 

 

 

Figure 5.7 Three-layer T-section simply supported composite beam subjected to the concentrated load at 

mid-span 

 

 

 

Geometry and material properties Interface stiffness 

mm600,5l  MPa111 K  

mm150b  MPa62 K   

mm191 h   

mm92 h   

mm1783 h   

mm40b   

MPa000,181 E   

MPa000,62 E   

MPa000,103 E   
 

          Table 5.4 Geometry, material property loading condition and slip modulus for  

three-layer T-section composite beam. 

 

 

Each rectangular cross-section layer of the beam is discretized by 4-node cubic cross-sectional element 

and 222   Gauss integration is adopted for each cross-sectional element. The results obtained with dif-

ferent number of element discretization are shown in Figure 5.8. Only the deflections of the beam are dis-

cussed since there is no interlayer slip data in [2]. The deflections at the mid-point of the beam is depicted 

along with the reference solutions. The reference solutions in [2] are obtained by 8-node plane stress ele-

ments in ANSYS (Swanson Analysis Systems Inc. 1994) with evenly spaced 36 pairs of vertical and hori-
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zontal springs for modeling interlayer properties. As shown in Figure 5.8 the numerical results of the present 

beam model are in a good agreement with the reference solutions. 

 

 

 

Figure 5.8 Deflections of the three-layer T-section composite 

beam at the mid-point along with the reference solutions 

 

 

 

5.2 Extension to the 3D Problems 

The present beam element including interlayer slips is easily extended to the three-dimensional prob-

lems with relatively small number of DOFs by applying another additional bending slip mode with bending 

slip DOF corresponding to extended dimension. In the present research, the three-dimensional behavior of 

the multi-layered composite beam is investigated  

 

 

5.2.1 Six layer Three-Dimensional Composite Beam 

A six-layer straight cantilever beam with rectangular cross-section shown in Figure 5.9 is considered in 

this example. Axial load xF  and transverse load yF  and zF  are applied to the tip of the beam. The 

beam is composed of three different materials and contains two interlayers in z  direction and one interlay-
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ers in y direction. Therefore, three-dimensional interlayer slip displacements is observed. Geometry, mate-

rial properties, loading conditions and interlayer properties are listed in Table 5.5.  

 

 

 

 

Figure 5.9 A six-layer rectangular straight cantilever beam subjected to axial load xF  and transverse 

load yF  and zF . 

 

 

 

Geometry and Loading condition Material property Loading condition 

mm100l  MPa000,3001 E  N12000xF  

mm2b  MPa000,202 E  N15yF  

mm11 h  MPa000,103 E  N10zF  

mm22 h  5.0υ   

mm32 h    

   
 

Table 5.5 Geometry, material properties , loading condition and interlayer properties of the six-layer 

three-dimensional beam 

 

 

For the analysis of the three-dimensional six-layered beam, three slip modes that are composed of one 

axial slip mode and two bending slip modes are employed. As a result, the displacement field of the beam is 

represented by 9 DOFs at each beam node k  that has three translations, three rotations and three slip 

DOFs. The rectangular cross-section layers of the beam are discretized by 4-node cubic cross-sectional ele-

ment and  222   Gauss integration is adopted for each cross-sectional element.  

The resulting deformed shape of the beam is depicted in Figure 5.10. As shown in Figure 5.10, interlay-

er slips are induced in x , y  and z  directions.  
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Figure 5.10 Deformed shape of the six-layer rectangular straight beam. 

 

Also, it can be observed that the value of the interlayer slips are equivalent to the linear superposition of the 

two-dimensional cases in which each load is applied to the beam respectively as shown in Figure 5.11(a), 

Figure 5.11(b) and Figure 5.11(c). Figure 5.11(a) indicates three-layer two-dimensional beam subjected to 

transverse loading zF , Figure 5.11(b) indicates two-layer two-dimensional beam subjected to transverse 

loading yF  and three-layer two-dimensional beam under axial loading xF  is shown in Figure 5.11(c).  

 

 

 

Figure 5.11(a) Three-layer two-dimensional beam subjected to transverse loading zF  
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Figure 5.11(b) Two-layer two-dimensional beam subjected to transverse loading yF  

 

 

 

Figure 5.11(c) Three-layer two-dimensional beam under axial loading xF  

 

Namely, the solution of the example and deformed shape in Figure 5.10 are obtained by linear superposition of the dis-

placements described in Figure 5.11(a), Figure 5.11(b) and Figure 5.11(c). Since the analysis is performed based on the 

small displacement theory, it can be concluded that the solutions are reasonable. If the beam structure undergoes large 

displacement exceeding their elastic limits, proper consideration of nonlinearity is required.  
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Chapter 6. Conclusions 

6.1 Concluding Remarks 

In the present research, the beam finite element which is applicable to the three-dimensional analysis of 

the multi-layered composite beam structures with relatively small number of DOFs was introduced. Since 

the total slip displacements are represented by the slip modes with the slip modulus, only two additional 

DOFs at each beam node are required for the two-dimensional analysis procedure and it can be easily ex-

tended to the three-dimensional problems by inserting another slip DOF corresponding to the extended di-

mension. 

In order to verify the present beam model, several numerical studies are performed. Firstly, the present 

beam model is compared to the conventional one to demonstrate the influence of the slip modulus on the 

partial interaction effect. The results show that the solution of the partially connected beam converge to the 

solution of the conventional beam as slip modulus increases. Secondly, the numerical examples discussed by 

many other authors are examined. The two cases of two-layer rectangular composite beam with no partial 

interaction and three-layer T-section composite beam with deformable connections are evaluated by the 

comparison of the significant numerical results such as mid-point displacements and interlayer slips. The 

numerical results of the present beam model exhibit a good agreement with the reference solutions. Lastly, 

extension to three-dimensional problem is introduced. 

    The main advantage of the present beam model is that any multi-layered beam can be modeled by a 

single beam with slip modes. It means that additional procedures or interface elements for the interlayer 

properties are not required since slip function is calculated automatically based on the geometry and material 

properties of the beam. Therefore, the present beam element enables straightforward modeling of the multi-

layered composite beam with relatively small number of DOFs. Also, three-dimensional analysis can be 

easily performed without complicated modeling, but by applying additional slip mode with corresponding 

slip DOF.  
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6.2 Further study 

As an extension of the present research, the following future works need to be discussed. 

• The present beam finite element including slip modes is developed based on the linear elastic be-

havior of the beam and load-slip relations. For more accurate analysis of the actual structure be-

havior, nonlinear load-slip relation and frictional effect need to be considered. Also, extension to 

the nonlinear formulation is worthy for future works.   

 

• In spite of many analyses of the rectangular cross-section beam, researches about multi-layered 

beam with arbitrary geometry have been rarely discussed. It is expected that the concept of slip 

mode can be extended to the more general method applicable to the arbitrary geometry such as in-

clined interlayers and circular cross-section as multi-layered pipes. 

 

• In the present model, only transverse loading and uniformly distributed axial loading are consid-

ered. For more general analysis, more general slip functions for arbitrary loading conditions need 

to be implemented. 
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요 약 문 

3 차원 빔 해석에서의 내부 슬립 모델링 

 

본 논문에서는 적층빔에서의 불완전한 전단 연결로 인한 휨강성의 저하와 경계면에서의 

슬립을 모델링할 수 있는 빔 유한요소를 제시한다. 적층빔의 각 구성요소를 개별적으로 

해석하는 방법이 아닌, 하나의 빔과 빔 절점에서의 슬립모드를 통해서 전체 적층빔을 

모델링한다. 슬립모드는 빔의 단면에서 정의되는 슬립함수와 빔 절점에서의 슬립 자유도를 

통해서 모델링되며, 슬립 모듈러스와 함께 경계면에서의 불완전한 전단 연결을 나타낸다. 이를 

통해서 적층빔에서의 경계면의 수와 관계없이 상대적으로 적은 자유도만으로도 전체 적층빔의  

모델링이 가능하다. 또한 슬립 자유도를 추가함으로써 간단히 3D 모델로의 확장이 가능하다.  

  

 

 

핵심어: 적층빔, 슬립, 슬립 모드  
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