

## PU 기반 쉘 유한요소

## Partition of unity based shell finite elements



전 형 민 (全 鎣 民 Jun, Hyungmin) 기계항공시스템학부 해양시스템공학전공 School of Mechanical, Aerospace and Systems Engineering Division of Ocean Systems Engineering

### KAIST

2015

## PU 기반 쉘 유한요소

Partition of unity based shell finite elements



## Partition of unity based shell finite elements

Advisor : Professor Lee, Phill-Seung

by

Jun Hyungmin

Department of Mechanical, Aerospace and Systems Engineering Division of Ocean Systems Engineering

KAIST

A thesis submitted to the faculty of KAIST in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Mechanical, Aerospace and Systems Engineering, Division of Ocean Systems Engineering. The study was conducted in accordance with Code of Research Ethics<sup>1</sup>



2014. 11. 4 Approved by Professor Lee, Phill-Seung [Major Advisor]

<sup>&</sup>lt;sup>1</sup> Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that I have not committed any acts that may damage the credibility of my research. These include, but are not limited to: falsi-fication, thesis written by someone else, distortion of research findings or plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research under the guidance of my thesis advisor.

## PU 기반 쉘 유한요소

## 전 형 민

위 논문은 한국과학기술원 박사학위논문으로 학위논문심사위원회에서 심사 통과하였음.

UF

SI



DOSE 전 형 민. Jun, Hyungmin. Partition of unity based shell finite elements. PU 기반 쉘 20105398 유한요소. School of Mechanical Aerospace and Systems Engineering, Division of Ocean Systems Engineering. 2015. 198 p. Advisor Prof. Lee, Phill-Seung.

#### ABSTRACT

The partition of unity based shell finite elements are presented. To circumvent locking phenomena, the MITC method is used for the standard and high order displacement interpolations. The partition of unity based shell finite elements not only capture higher gradients but also decrease inter-elemental stress jumps. In particular, the enrichment scheme provided by the partition of unity approximation increases solution accuracy without any traditional local mesh refinement. A partition of unity based shell element with improved membrane behaviors is also proposed. The total Lagrangian formulation is employed allowing for large displacements and large rotations. Considering several benchmark problems, the solutions using the shell element with improved membrane behaviors are compared with those obtained using other shell elements. It is demonstrated that the partition of unity based shell finite elements are reliable and very effective in both linear and non-linear analysis.

Keywords: Partition of unity; Partition of unity based finite element method; Shell element; 3-node triangular element; 4-node quadrilateral element; MITC method; Geometric nonlinear analysis; Large displacements and rotations



### **Table of Contents**

| bstract ·····       | ·····i   |
|---------------------|----------|
| able of Contents    | ······ii |
| ist of Tables ····· | ····· vi |
| ist of Figures      | xii      |

#### **Chapter 1. Introduction**

| 1.1 Research Background                                                      | 1  |
|------------------------------------------------------------------------------|----|
| 1.2 Research Purpose ·····                                                   | 2  |
| 1.3 Dissertation Organization                                                | 4  |
| Chapter 2. Reviews of Related Literatures and Studies                        |    |
| 2.1 The Treatment of the Locking Phenomenon                                  | 6  |
| 2.1.1 Transverse Shear Locking                                               | 6  |
| 2.1.2 Membrane Locking                                                       |    |
| 2.1.3 In-Plane Shear / Trapezoidal / Volumetric Locking                      |    |
| 2.1.3.1 In-Plane Shear Locking ······                                        |    |
| 2.1.3.2 Trapezoidal Locking                                                  | 10 |
| 2.1.3.3 Volumetric Locking                                                   | 11 |
| 2.1.4 Various Methods of Improving Membrane Behaviors                        | 12 |
| 2.1.4.1 SRI (Selective Reduced Integration) Method                           | 12 |
| 2.1.4.2 Additional Bubble Node                                               | 13 |
| 2.1.4.3 Incompatible Modes ·····                                             | 14 |
| 2.1.4.4 Assumed Strain Fields                                                | 15 |
| 2.1.4.5 Drilling DOFs (Degrees Of Freedom)                                   | 16 |
| 2.2 The Continuum Mechanics Based Shell Finite Elements                      | 18 |
| 2.2.1 Displacement Interpolation                                             | 18 |
| 2.2.2 The MITC (Mixed Interpolation of Tensorial Components) Approaches ···· | 22 |
| 2.2.2.1 MITC4 Method for the 4-Node Quadrilateral Shell Element              | 23 |
| 2.2.2.2 MITC9 Method for the 9-Node Quadrilateral Shell Element              | 24 |
| 2.2.2.3 MITC3 Method for the 3-Node Triangular Shell Element                 | 25 |

| 2.2.2.4 MITC6 Method for the 6-Node Triangular Shell Element             | 26 |
|--------------------------------------------------------------------------|----|
| 2.3 PU (Partition of Unity) Approximation                                | 27 |
| 2.3.1 Mesh Free Methods                                                  |    |
| 2.3.2 Hybrid Methods                                                     |    |
| 2.3.2 Partition of Unity Based Finite Element Methods                    | 29 |
| Chapter 3. A Partition of Unity Based 3-Node Triangular Shell Element    |    |
| 3.1 The Finite Element Method Enriched by Interpolation Covers           | 31 |
| 3.2 The Enriched MITC3 Shell Finite Element                              |    |
| 3.2.1 Enriched Displacement Interpolation                                | 33 |
| 3.2.2 Assumed Covariant Transverse Shear Strain Fields                   | 34 |
| 3.2.3 Basic Tests                                                        |    |
| 3.2.3.1 Isotropic Element Test                                           |    |
| 3.2.3.2 Zero Energy Mode Test ·····                                      |    |
| 3.2.3.3 Patch Test                                                       |    |
| 3.3 Computational Efficiency                                             |    |
| 3.4 Convergence Studies                                                  | 42 |
| 3.4.1 Fully Clamped Square Plate Problem                                 | 43 |
| 3.4.2 Cylindrical Shell Problem ·····                                    | 47 |
| 3.4.3 Hyperboloid Shell Problem                                          | 51 |
| 3.5 Local Use of Cover Interpolations                                    | 54 |
| 3.5.1 Shaft-Shaft Interaction Problem                                    | 55 |
| 3.5.2 Highly-Sensitive Shell Problem                                     |    |
| Chapter 4. A Partition of Unity Based 4-Node Quadrilateral Shell Element |    |
| 4.1 A 4-Node Element Based on Partition of Unity                         | 60 |
| 4.1.1 Partition of Unity Approximation                                   | 61 |
| 4.1.2 Linear Dependence                                                  | 63 |
| 4.2 The Enriched MITC4 Shell Finite Element                              | 67 |
| 4.2.1 Enriched Displacement Interpolation                                | 67 |
| 4.2.2 Assumed Covariant Transverse Shear Strain Fields                   | 68 |
| 4.3 Benchmark Problems ·····                                             | 72 |
| 4.3.1 Morley's 30° Skew Plate Under Uniform Pressure                     | 73 |
| 4.3.2 Circular Plate Under Uniform Pressure                              | 76 |

| 4.3.3 Partly Clamped Hyperbolic Paraboloid Shell                          | 80   |
|---------------------------------------------------------------------------|------|
| 4.3.4 Twisted Beam Subjected to Vertical Tip Load                         |      |
| 4.3.5 Pinched Cylinder                                                    | 83   |
| 4.3.6 Semi-Cylindrical Shell Subjected to an End Pinching Force           |      |
| 4.3.7 Scordelis-Lo (Barrel Vault) Roof                                    | 90   |
| Chapter 5. MITC3+ Shell Element in Geometric Nonlinear Analysis           |      |
| 5.1 The MITC3+ Shell Finite Element for Linear Analysis                   | 94   |
| 5.1.1 Geometry and Displacement Interpolations                            | 94   |
| 5.1.2 Assumed Covariant Transverse Shear Strain Fields                    | 95   |
| 5.2 The MITC3+ Shell Element for Geometric Nonlinear Analysis             | 99   |
| 5.2.1 Large Displacement Kinematics                                       | 99   |
| 5.2.2 Green-Lagrange Strain and Its Interpolation                         | 101  |
| 5.3 Numerical Examples ·····                                              | 103  |
| 5.3.1 Cantilever Plate Subjected to End Shear Force                       | 104  |
| 5.3.2 Cantilever Plate Subjected to End Moment                            | 106  |
| 5.3.3 Slit Annular Plate under End Shear Force                            | 109  |
| 5.3.4 Hemisphere Shell Subjected to Alternating Radial Forces             | 112  |
| 5.3.5 Clamped Semi-Cylindrical Shell under Point Load                     | 115  |
| 5.3.6 Fully Clamped Plate under Uniform Pressure                          | 120  |
| Chapter 6. 3-Node Triangular Shell Element with Improved Membrane Behav   | iors |
| 6.1 The Enriched MITC3+ Shell Finite Element for Linear Analysis          | 126  |
| 6.1.1 Displacement Interpolation of the MITC3+ Shell Element              | 126  |
| 6.1.2 The Partition of Unity Approximation to Improve Membrane Behaviors… | 127  |
| 6.1.3 Assumed Covariant Transvers Shear Strain Fields                     | 129  |
| 6.2 The Enriched MITC3+ Shell Element for Geometric Nonlinear Analysis    | 131  |
| 6.2.1 Large Displacement Kinematics                                       | 131  |
| 6.2.2 Green-Lagrange Strain and Its Interpolation                         | 134  |
| 6.2.3 Total Lagrangian Formulation and Incremental Equilibrium Equation   | 135  |
| 6.2.4 Condensing Out in the Present Element                               | 136  |
| 6.3 Computational Efficiency                                              | 137  |
| 6.4 Numerical Examples ·····                                              | 139  |
| 6.4.1 Linear Benchmark Problems ·····                                     | 141  |

| 6.4.1.1 Cantilever Beam for Mesh Distortion Test   | · 141 |
|----------------------------------------------------|-------|
| 6.4.1.2 Cook's Skew Beam                           | · 142 |
| 6.4.1.3 MacNeal's Cantilever Beam ·····            | · 144 |
| 6.4.1.4 Curved Cantilever Beam ·····               | · 146 |
| 6.4.1.5 Hemispherical Shell                        | · 147 |
| 6.4.1.6 Scordelis-Lo (Barrel Vault) Roof ······    | · 151 |
| 6.4.1.7 Raasch's Hook Problem                      | · 154 |
| 6.4.2 Nonlinear Benchmark Problems                 | · 155 |
| 6.4.2.1 Cantilever Beam Subjected to a Tip Moment  | · 156 |
| 6.4.2.2 Column under an Eccentric Compressive Load | · 158 |
| 6.4.2.3 Curved Cantilever Beam ·····               | · 159 |
| 6.4.2.4 Hemispherical Shell ·····                  | · 162 |
| 6.4.2.5 Scordelis-Lo (Barrel Vault) Roof ······    | · 167 |
| 6.4.2.6 Slit Annular Plate ······                  | · 171 |
| Chapter 7. Conclusions and Future Works            |       |
| 7.1 Conclusions                                    | · 175 |
| 7.2 Future Works                                   | · 176 |
| Appendices 한국과학기술원 5                               |       |
| Appendix A The Finite Rotations                    | · 177 |
| Appendix B Path Following Techniques               | · 182 |
| References                                         | · 186 |
| Summary (in Korean)                                | · 198 |

#### List of Tables

Table 2.1. The popular solutions available for eliminating the locking phenomenon. ...... 12 Table 3.1. Basic test results of the MITC3, MITC6 and enriched MITC3 triangular shell Table 3.2. Detailed information on the stiffness matrices of the 3-, 6-, and enriched 3-node **Table 3.3.** Solution times (in second) for solving the linear equations. The element meshes are  $2N \times 2N$  and  $N \times N$  for linear and quadratic shell elements, respectively. (DOFs: Table 3.4. Relative errors in maximum effective stress in the shaft-shaft interaction problem for the five different shell models in Figure 3.24. Relative error (%) =  $(\sigma_{\max}^{ref} - \sigma_{\max}^{h}) / \sigma_{\max}^{ref} \times 100 \dots 57$ Table 3.5. Relative errors in strain energy in the monster shell problem for the five different Table 4.1. Results of eigenvalue analyses of the partition of unity based finite element 
 Table 4.3. List of shell finite element models for comparison.
 73
 **Table 4.4.** Relative errors in the vertical displacement at point A for the Morley's  $30^{\circ}$ skew plate under uniform pressure. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$ Table 4.5. Relative errors in the vertical displacement at point A for the simply supported circular plate under uniform pressure. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where Table 4.6. Relative errors in the vertical displacement at point A for the clamped circular plate under uniform pressure. Relative error (%) =  $\left| w_A^{ref} - w_A \right| / \left| w_A^{ref} \right| \times 100$  where  $w_A^{ref}$  and **Table 4.7.** Relative errors in the vertical displacement at point A for the partly clamped hyperbolic paraboloid shell. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$ Table 4.8. Relative errors in displacement at point A for the twisted beam subjected to

vertical tip load. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the Table 4.9. Relative errors in the radial displacement at point A for the pinched cylinder with the uniform meshes. Relative error  $\binom{0}{6} = \left| w_A^{ref} - w_A \right| / \left| w_A^{ref} \right| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote Table 4.10. Relative errors in the radial displacement at point A for the pinched cylinder with the distorted meshes. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$ **Table 4.11.** Relative errors in the vertical displacement at point A for the semi-cylindrical shell with the uniform meshes. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and Table 4.12. Relative errors in the vertical displacement at point A for the semi-cylindrical shell with the distorted meshes. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and Table 4.13. Relative errors in the vertical displacement at point A for the Scordelis-Lo roof with the uniform meshes. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$ **Table 4.14.** Relative errors in the displacement at the point A for the Scordelis-Lo roof with the distorted meshes. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$ Table 5.1. Tying positions for the assumed transverse shear strain for the MITC3+ shell elements. The distance d is defined in Figure 5.2(c), and d = 1/10,000 is used [29]...96 Table 5.2. Relative errors in the vertical and horizontal displacements at the free end for the cantilever plate subjected to end shear force. Relative error (%) =  $|w^{ref} - w^h| / |w^{ref}| \times 100$ or  $|v^{ref} - v^h| / |v^{ref}| \times 100$  where  $w^{ref}$  and  $v^{ref}$  denote the reference solution, and  $w^h$  and Table 5.3. Relative errors in the vertical and horizontal displacements at the free end for the cantilever plate subjected to end moment. Relative error (%) =  $|w^{ref} - w^h| / |w^{ref}| \times 100$  or  $|u^{ref} - u^h| / |u^{ref}| \times 100$  where  $w^{ref}$  and  $u^{ref}$  denote the reference solution, and  $w^h$  and Table 5.4. Relative errors in the vertical displacements at point A and B for slit annular plate under transverse end shear force. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  where

 $w^{ref}$  and  $w^h$  denote the reference and finite element solutions, respectively......111 Table 5.5. Relative errors in the radial displacements at point A and B for the hemisphere shell subjected to alternating radial forces. Relative error (%) =  $|u^{ref} - u^h| / |u^{ref}| \times 100$  or  $|v^{ref} - v^h| / |v^{ref}| \times 100$  where  $u^{ref}$  and  $v^{ref}$  denote the reference solution, and  $u^h$  and  $v^h$ Table 5.6. Relative errors in the vertical and horizontal displacements at point A for the clamped semi-cylindrical shell under а point load. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  or  $|v^{ref} - v^h| / |v^{ref}| \times 100$  where  $w^{ref}$  and  $v^{ref}$  denote the **Table 5.7.** Relative errors in the vertical displacement at point C for the fully clamped plate under uniform pressure (for the cases h/L = 1/10 and h/L = 1/100). Relative error (%) =  $|w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  is denote the reference and finite **Table 5.8.** Relative errors in the vertical displacement at point C for the fully clamped plate under uniform pressure (for the cases h/L = 1/1,000 and h/L = 1/10,000). Relative error (%) =  $|w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  denote the reference and finite Table 6.1. Tying positions for the assumed transverse shear strain of the enriched MITC3+ shell element. The distance d defined in Figure 6.3(b), and d = 1/10,000 is used [29, Table 6.2. Solution times (in second) for solving the linear problem shown in Figure 6.12. 

 Table 6.3. List of ten benchmark problems solved.
 139

 Table 6.4. Summary of element models for comparison.
 140
 **Table 6.5.** Vertical deflections and relative errors at point A for the cantilever beam for distortion test shown in Figure 6.5(a). Relative error  $(\%) = (v_A^{ref} - v_A) / v_A^{ref} \times 100$  where Table 6.6. Vertical displacements and relative errors at point A for the Cook's skew beam shown in Figure 6.6(a). Relative error  $(\%) = (v_A^{ref} - v_A) / v_A^{ref} \times 100$  where  $v_A^{ref}$  and  $v_A$ **Table 6.7.** Vertical displacements and relative errors at point A for the MacNeal's thin cantilever beam subjected to unit shear force shown in Figure 6.7(a). Relative error Table 6.11. Strain energy (SE) and relative errors in strain energy for the full hemispherical shell shown in Figure 6.9(b). Relative error (RE) (%) =  $(SE^{ref} - SE) / SE^{ref} \times 100$  where SE<sup>ref</sup> and SE denote the reference and finite element strain energy, respectively. ..... 150 **Table 6.12.** Displacements and normalized displacements at point A for the Scordelis-Lo roof using the uniform meshes. Normalized displacement (ND) =  $w_A / w_A^{ref}$  where  $w_A^{ref}$ Table 6.13. Displacements and normalized displacements at point A for the Scordelis-Lo roof using the distorted meshes. Normalized displacement (ND) =  $w_A / w_A^{ref}$  where  $w_A^{ref}$ **Table 6.14.** Displacements and normalized displacements at point A for the Raasch's Hook problem shown in Figure 6.14(a). Normalized displacement (ND) =  $w_A / w_A^{ref}$  where  $w_A^{ref}$ **Table 6.15.** Normalized load-vertical deflections at point A for the cantilever beam Table 6.16. Normalized load-horizontal deflections at point A for the column under an Table 6.17. Normalized load-vertical displacements at point A for the curved beam. ..... 160 Table 6.18. Normalized load-horizontal displacements at point A for the curved beam...161

| Table 6.19.         Normalized load-radial displacements at the point $B$ for the hemispherical shell |
|-------------------------------------------------------------------------------------------------------|
| with an 18° hole with the uniform meshes. The results are obtained using the $6 \times 6$             |
| element mesh of the shell elements                                                                    |
| Table 6.20. Normalized load-radial displacements at the point A for the hemispherical shell           |
| with an $18^\circ$ hole with the uniform meshes. The results are obtained using the $6{\times}6$      |
| element mesh of the shell elements                                                                    |
| Table 6.21. Normalized load-radial displacements at the point B for the hemispherical shell           |
| with an 18° hole with the distorted meshes shown in Figure 6.10. The results are obtained             |
| using the $6 \times 6$ element mesh of the shell elements                                             |
| Table 6.22. Normalized load-radial displacements at the point A for the hemispherical shell           |
| with an 18° hole with the distorted meshes shown in Figure 6.10. The results are obtained             |
| using the $6 \times 6$ element mesh of the shell elements                                             |
| Table 6.23. Normalized load-vertical displacements at the point $C$ for the full hemispherical        |
| shell with $3 \times 4 \times 4$ element meshes                                                       |
| Table 6.24. Normalized load-vertical displacements at the point C for the full hemispherical          |
| shell with $3 \times 6 \times 6$ element meshes                                                       |
| Table 6.25. Normalized load-horizontal displacements at the point A for the Scordelis-Lo              |
| roof with the uniform meshes. The results are obtained using the $14 \times 14$ element mesh of       |
| the shell elements                                                                                    |
| Table 6.26. Normalized load-vertical displacements at the point A for the Scordelis-Lo roof           |
| with the uniform meshes. The results are obtained using the $14 \times 14$ element mesh of the        |
| shell elements                                                                                        |
| Table 6.27. Normalized load-horizontal displacements at the point A for the Scordelis-Lo              |
| roof with the distorted meshes. The results are obtained using the 14×14 element mesh of              |
| the shell elements                                                                                    |
| Table 6.28. Normalized load-vertical displacements at the point A for the Scordelis-Lo roof           |
| with the distorted meshes. The results are obtained using the $14 \times 14$ element mesh of the      |
| shell elements                                                                                        |
| Table 6.29. Normalized load-vertical displacements at the point $A$ for the slit annular plate        |
| subjected to lift line force when the $6 \times 30$ element mesh is used                              |
|                                                                                                       |
| <b>Table 6.30.</b> Normalized load-vertical displacements at the point $C$ for the slit annular plate |



## **List of Figures**

| Figure 2.1. Beam deformation assumptions. (a) Beam deformation including transverse                    |
|--------------------------------------------------------------------------------------------------------|
| shear effect. (b) A two node isoparametric beam element modeling a cantilever beam                     |
| subjected to a tip moment                                                                              |
| Figure 2.2. A isolated 4-node element subjected to the pure bending moment: (a) Initial                |
| geometry, (b) Deformation of a single 4-node finite element, (c) Correct deformation of a              |
| beam segment in pure bending                                                                           |
| Figure 2.3. The graphical descriptions of the (a) trapezoidal and (b) volumetric locking               |
| phenomenon10                                                                                           |
| Figure 2.4. The quadrilateral finite elements with (a) the additional bubble node and (b)              |
| incompatible modes                                                                                     |
| Figure 2.5. Interpolation used. (a) Nodes used for displacements interpolation. (b)                    |
| Sampling points used for strain interpolation                                                          |
| Figure 2.6. (a) Side displacement associated with drilling degree of freedom $w_i$ and $w_j$ .         |
| (b) Nodal displacements of the 6-node triangular element. (c) 3-node triangular element                |
| with drilling degree of freedom                                                                        |
| Figure 2.7. Continuum mechanics based shell finite element. (a) Geometry of the 9-node                 |
| shell element. (b) Definition of rotational degrees of freedom $\alpha_k$ and $\beta_k$                |
| Figure 2.8. MITC4 shell finite element in natural coordinate system and its tying points 23            |
| Figure 2.9. Strain interpolations and its tying positions of the MITC9 shell element (the              |
| $e_{ss}^{AS}$ and $e_{st}^{AS}$ components are interpolated in a symmetric manner); $a = 1/\sqrt{3}$ , |
| $b = \sqrt{3/5},  c = 1$                                                                               |
| Figure 2.10. Transverse shear strain tying positions of the 3-node MITC triangular shell               |
| element with the constant transverse shear strain along its edges; $r_1 = s_1 = 1/2$                   |
| Figure 2.11. Strain tying positions of the 6-node MITC triangular shell element;                       |
| $r_1 = s_1 = 1/2 - 1/2\sqrt{3}$ , $r_2 = s_2 = 1/2 + 1/2\sqrt{3}$ and $r_3 = s_3 = 1/3$                |
| Figure 3.1. Description of sub-domain for enriched over interpolations; (a) usual                      |
| interpolation function, (b) cover region or elements affected by the interpolation cover, and          |
| (c) an element                                                                                         |
| Figure 3.2. A 3-node triangular continuum mechanics based shell finite element                         |
| Figure 3.3. Tying points for the covariant transverse shear strains of the enriched MITC3              |

| shell finite element: (a) for the standard linear displacement interpolation; $r_1 = s_1 = 1/2$ ,             |
|---------------------------------------------------------------------------------------------------------------|
| and (b) for the additional quadratic displacement interpolation; $r_1 = s_1 = 1/2 - 1/2\sqrt{3}$ and          |
| $r_2 = s_2 = 1/2 + 1/2\sqrt{3} \dots 35$                                                                      |
| Figure 3.4. Isotropic test of the present triangular shell element                                            |
| Figure 3.5. Mesh used for the membrane and bending patch tests                                                |
| Figure 3.6. Meshes used and stiffness matrix structures: (a) and (d) for the 3-node shell                     |
| element, (b) and (e) for the 6-node shell element, and (c) and (f) for the enriched 3-node                    |
| shell elements. Non-zero entries are colored in black                                                         |
| Figure 3.7. The total number of degrees of freedom (DOFs) when increasing the number of                       |
| element layers, $N$ , along an edge $p$ denotes the number of degrees of freedom per node,                    |
| hence $p = 3$ for the simply supported plate problem                                                          |
| <b>Figure 3.8.</b> Fully clamped square plate under uniform pressure ( $L = 1.0$ , $E = 1.7472 \times 10^7$ , |
| $q = 1.0$ and $v = 0.3$ ) with three different $4 \times 4$ mesh patterns: (a) and (b) triangular             |
| mesh for the MITC3, MITC6 and enriched MITC6 shell elements, and (c) quadrilateral                            |
| mesh for the MITC4 shell element                                                                              |
| Figure 3.9. Distorted meshes used for the fully clamped square plate problem, cylindrical                     |
| shell problems, and hyperboloid shell problems when (a) $N = 4$ and (b) $N = 8$ . The                         |
| number of triangular elements for an $N \times N$ mesh is $2N^2$                                              |
| Figure 3.10. Convergence curves for the fully clamped square plate problem with uniform                       |
| meshes. For triangular shell elements, the mesh pattern in Figure 3.8(a) is used. The bold                    |
| line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for                    |
| quadratic elements                                                                                            |
| Figure 3.11. Convergence curves for the fully clamped square plate problem with uniform                       |
| meshes. The solid and dotted lines correspond to the results obtained by the mesh patterns                    |
| in Figure 3.8(a) and (b), respectively. The bold line represents the optimal convergence                      |
| rate, which is 2.0 for linear elements and 4.0 for quadratic elements                                         |
| Figure 3.12. Convergence curves for the fully clamped square plate problem with the                           |
| distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence                        |
| rate, which is 2.0 for linear elements and 4.0 for quadratic elements                                         |
| Figure 3.13. Cylindrical shell problem $(4 \times 4 \text{ mesh}, L = R = 1.0, E = 2.0 \times 10^5, v = 1/3$  |
| and $p_0 = 1.0$ )                                                                                             |
|                                                                                                               |

Figure 3.14. Convergence curves for the clamped cylindrical shell problem with uniform

meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear Figure 3.15. Convergence curves for the clamped cylindrical shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence Figure 3.16. Convergence curves for the free cylindrical shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear Figure 3.17. Convergence curves for the free cylindrical shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which **Figure 3.18.** Hyperboloid shell problem ( $E = 2.0 \times 10^{11}$ , v = 1/3 and  $p_0 = 1.0$ ). (a) Shell geometry and boundary conditions, (b) Graded mesh for the clamped case ( $8 \times 8$  mesh, t /Figure 3.19. Convergence curves for the clamped hyperboloid shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear Figure 3.20. Convergence curves for the clamped hyperboloid shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence Figure 3.21. Convergence curves for the free hyperboloid shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear Figure 3.22. Convergence curves for the free hyperboloid shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which **Figure 3.23.** Shaft-shaft interaction problem with fillets ( $E = 2.07 \times 10^{11}$ , v = 0.29). ...... 55 Figure 3.24. Distributions of effective stress for the shaft-shaft interaction problem: for (a) the 2,193 node model of the MITC4 shell elements, (b) the 2,582 node model of the MITC3 shell elements, (c) the 641 node model of the MITC3 shell elements, (d) the 641 node model fully enriched, and (e) the 641 node model locally enriched. The red dot represents enriched nodes (DOFs: total number of degrees of freedom used, Error =

| $\left(\sigma_{v}^{ref} - \sigma_{v}^{h}\right) / \sigma_{v}^{ref} \times 100 \ ). $                               |
|--------------------------------------------------------------------------------------------------------------------|
| <b>Figure 3.25.</b> A "highly-sensitive" shell problem. ( $L = R = 10$ , $E = 6.285 \times 10^7$ , $v = 0.3$ , and |
| $p(r) = e^{-4r^2}$ )                                                                                               |
| <b>Figure 3.26.</b> Deformed shapes for the monster shell problem ( $t/L = 1/10,000$ ): for (a) the                |
| $48(axial) \times 192(circumferential)$ mesh of the MITC4 shell elements, (b) the $48 \times 192$ mesh             |
| of the MITC3 shell elements, (c) the $16 \times 64$ mesh of the MITC3 shell elements, (d) the                      |
| $16 \times 64$ mesh model fully enriched, and (e) the $16 \times 64$ mesh model locally enriched. In the           |
| figure (e), the red dot represents enriched nodes. (DOFs: the total number of degrees of                           |
| freedom used, Error = $(E_{ref} - E_h) / E_{ref} \times 100$ )                                                     |
| Figure 4.1. Description of sub-domain; finite element shape function $h_i$ , an element $e$                        |
| and cover region $C_i$ and $C_j$ constructed by all the elements connected to node $i$ and $j$ ,                   |
| respectively                                                                                                       |
| Figure 4.2. Linear dependence and independence problem in the partition of unity based                             |
| finite element method: (a) one-dimensional element of unit length, (b) linearly independent                        |
| interpolations with prescribed boundary conditions for the 3-node triangular element and                           |
| (c) linearly dependent interpolations for the 4-node quadrilateral element even though                             |
| prescribed boundary conditions are applied                                                                         |
| Figure 4.3. Element meshes of the eigenvalue analysis for 4-node quadrilateral elements                            |
| and mixed meshes with the 3-node triangular and 4-node quadrilateral elements. This work                           |
| was done by Tian [93]                                                                                              |
| Figure 4.4. The MITC4 shell finite element: (a) Geometry of the MITC4 shell finite                                 |
| element. (b) Definition of rotational degrees of freedom $\alpha_k$ and $\beta_k$                                  |
| Figure 4.5. Polynomial terms in two-dimensional analysis: Pascal triangle for (a) the                              |
| standard 3-node triangular element, the partition of unity based 3-node triangular element,                        |
| the (b) standard 4-node quadrilateral element and the partition of unity based 4-node                              |
| quadrilateral element                                                                                              |
| Figure 4.6. Tying positions for the covariant transverse shear strains of the PU based 4-                          |
| node quadrilateral shell finite element: (a) for the standard bilinear displacement                                |
| interpolations and (b) for the additional high order displacement interpolations. Note that                        |
| the scheme referred to as MITC9 in Reference [26] is used71                                                        |
| <b>Figure 4.7.</b> Morley's 30° skew plate under uniform pressure. (a) Problem description and                     |
| mesh patterns ( $4 \times 4$ ) used for the MITC3 and enriched MITC3 shell elements. (b)                           |

| Normalized displacement at point <i>A</i> for the Morley's 30° skew plate                               |
|---------------------------------------------------------------------------------------------------------|
| <b>Figure 4.8.</b> Normalized displacement at point A for the Morley's $30^{\circ}$ skew plate when the |
| (a) triangular and (b) quadrilateral shell elements are used                                            |
| Figure 4.9. Circular plate under uniform pressure                                                       |
| Figure 4.10. Mesh used for the circulate plate under uniform pressure. Mesh pattern I and               |
| II are used for the MITC3 and enriched MITC3 shell elements                                             |
| Figure 4.11. Normalized displacement at the center for the circular plate with $h/r = 0.1$              |
| and $h/r = 0.01$ when the circulate plate is (a) simply supported and (b) clamped                       |
| Figure 4.12. Partly clamped hyperbolic paraboloid shell. (a) Problem description and mesh               |
| pattern ( $8 \times 4$ ) used for the MITC and enriched MITC3 shell elements. (b) Normalized            |
| displacement at point $A$ in the analysis of the partly clamped hyperbolic paraboloid shell. 80         |
| Figure 4.13. Normalized displacement at point $A$ for the partly clamped hyperbolic                     |
| paraboloid shell when the (a) triangular and (b) quadrilateral shell elements are used 81               |
| Figure 4.14. Twisted beam subjected to vertical tip load. (a) Problem description. (b) Mesh             |
| patterns used for the MITC3 and enriched MITC3 shell elements                                           |
| Figure 4.15. Normalized displacement of the twisted beam subjected to vertical tip load for             |
| different thickness cases (left) $h = 0.32$ and (right) $h = 0.0032$                                    |
| Figure 4.16. Pinched cylinder. (a) Problem description. (b) Mesh patterns $(4 \times 4)$ used for       |
| the MITC3 and enriched MITC3 shell elements and the distorted mesh                                      |
| Figure 4.17. Distorted meshes used for the pinched cylinder, semi-cylindrical shell                     |
| subjected to an end pinching force and Scordelis-Lo roof when $N = 4$ . Two mesh patterns               |
| for the MITC3 and enriched MITC3 shell elements                                                         |
| Figure 4.18. Normalized displacement of the pinched cylinder with (a) the uniform meshes                |
| (b) the distorted meshes shown in Figure 4.16(b) and <b>Figure 4.17</b>                                 |
| Figure 4.19. Semi-cylindrical shell subjected to an end pinching force. (a) Problem                     |
| description. (b) Meshes used ( $4 \times 4$ ) for the MITC3 and enriched MITC3 shell elements. 88       |
| Figure 4.20. Normalized displacement of the semi-cylindrical shell with (a) the uniform                 |
| meshes (b) the distorted meshes shown in Figure 4.19(b) and Figure 4.17                                 |
| Figure 4.21. Scordelis-Lo (Barrel Vault) roof. (a) Problem description. (b) Mesh patterns               |
| $(4 \times 4)$ used for the MITC3 and enriched MITC3 shell elements                                     |
| Figure 4.22. Normalized displacement of the Scordelis-Lo roof with (a) the uniform                      |
| meshes (b) the distorted meshes shown in Figure 4.21(b)                                                 |

| Figure 5.1. The MITC3+ shell finite element with the bubble node: (a) Get    | omet          | try of | the       |
|------------------------------------------------------------------------------|---------------|--------|-----------|
| MITC3+ shell finite element. (b) Definition of rotational degrees of freedom | $\alpha_{_k}$ | and    | $eta_k$ . |

| <b>Figure 5.2.</b> Transverse shear strains $e_{1\xi}$ , $e_{2\xi}$ and $e_{3\xi}$ , and the tying positions (A), (B), |
|------------------------------------------------------------------------------------------------------------------------|
| (C), $(D)$ , $(E)$ and $(F)$ for the assumed transverse shear strain filed                                             |
| Figure 5.3. Flow chart of the iterative procedures for solving the linearized equilibrium                              |
| equation in the total Lagrangian formulation                                                                           |
| Figure 5.4. Cantilever plate subjected to end shear force. (a) Problem description. (b)                                |
| Meshes used for the MITC4 (top), MITC3 and MITC3+ (bottom) shell elements 104                                          |
| Figure 5.5. Load-displacement curves for the cantilever plate subjected to end shear force.                            |
| For the triangular element meshes, essentially the same response is measured at the two                                |
| corners                                                                                                                |
| Figure 5.6. Deformed configurations of the cantilever plate under end shear force 106                                  |
| Figure 5.7. Cantilever plate subjected to end moment. (a) Problem description. (b) Meshes                              |
| used for the MITC4 (top), MITC3 and MITC3+ (bottom) shell elements 107                                                 |
| Figure 5.8. Load-displacement curves for the cantilever plate subjected to end moment. For                             |
| the triangular element meshes, essentially the same response is measured at the two corners.                           |
|                                                                                                                        |
| Figure 5.9. Deformed configurations of the cantilever plate under end moment                                           |
| Figure 5.10. Slit annular plate under end shear force. (a) Problem description. (b) Meshes                             |
| used                                                                                                                   |
| Figure 5.11. Load-displacement curves for the slit annular plate under end shear force111                              |
| Figure 5.12. Deformed configurations of the slit annular plate under end shear force 112                               |
| Figure 5.13. Hemisphere shell subjected to alternating radial forces. (a) Problem solved. (b)                          |
| Meshes used ( 8×32 )                                                                                                   |
| Figure 5.14. Load-displacement curves for the hemisphere shell subjected to alternating                                |
| radial forces when (a) $8 \times 32$ and (b) $12 \times 48$ element meshes are used                                    |
| Figure 5.15. Deformed configurations of the hemisphere shell subjected to alternating                                  |
| radial forces                                                                                                          |
| Figure 5.16. Clamped semi-cylindrical shell under point load. (a) Problem description (b)                              |
| Meshes used ( 20×20 )                                                                                                  |
| Figure 5.17. Load-displacement curves for the clamped semi-cylindrical shell under point                               |

| load when (a) $20 \times 20$ and (b) $32 \times 32$ element meshes are used                               |
|-----------------------------------------------------------------------------------------------------------|
| Figure 5.18. Deformed configurations of the clamped semi-cylindrical shell under point                    |
| load                                                                                                      |
| Figure 5.19. Distorted mesh patterns of the clamped semi-cylindrical shell ( $N = 4$ ) (a) for            |
| the MITC4 shell element and (b) for the MITC3 and MITC3+ shell elements 119                               |
| Figure 5.20. Load-displacement curves for the clamped semi-cylindrical shell with the                     |
| distorted mesh patterns shown in Figure 5.19                                                              |
| Figure 5.21. Fully clamped plate under uniform pressure and mesh used (4×4)                               |
| Figure 5.22. Load-displacement curves for the fully clamped plate under uniform pressure.                 |
|                                                                                                           |
| Figure 5.23. Distorted meshes of the fully clamped plate (a) for the MITC4 shell element                  |
| and (b) for the MITC3 and MITC3+ shell elements                                                           |
| Figure 5.24. Load-displacement curves for the fully clamped plate with the distorted                      |
| meshes shown in Figure 5.23                                                                               |
| Figure 6.1. The MITC3+ shell finite element with the bubble node: (a) Geometry of the                     |
| MITC3+ shell finite element. (b) Definition of rotational degrees of freedom $\alpha_k$ and $\beta_k$ .   |
|                                                                                                           |
| Figure 6.2. Description of sub-domain; (a) usual interpolation function, $h_i$ and an                     |
| element, $e_i$ (b) cover region, $C_i$ constructed by all the elements connected to node $i 128$          |
| Figure 6.3. Tying points $(A)$ , $(B)$ , $(C)$ , $(D)$ , $(E)$ and $(F)$ for the assumed transverse shear |
| strains of the MITC3+ shell finite element                                                                |
| Figure 6.4. (a) The total number of degrees of freedom (DOFs) and (b) solution times for                  |
| solving the linear equations when increasing the number of element layers, $N$ , along an                 |
| edge $p$ denotes the number of DOFs per node in the standard shell element, hence $p = 5$ for             |
| Scordelis-Lo roof shown in Figure 6.12                                                                    |
| Figure 6.5. Cantilever beam for distortion test. (a) Problem description and mesh pattern                 |
| used for the MITC3, MITC3+ and enriched MITC3+ shell elements. (b) Vertical deflection                    |
| versus distortion parameter <i>e</i>                                                                      |
| Figure 6.6. Cook's skew beam. (a) Problem description. (b) Mesh patterns $(2 \times 2)$ used for          |
| the MITC3, MITC3+ and enriched MITC3+ shell elements                                                      |
| Figure 6.7. MacNeal's cantilever beam subjected to two different loading: Unit tip shear                  |
| force, P and tip bending moment, M. (a) Problem description. (b) Mesh patterns $(1 \times 6)$             |

| used for the MITC3, MITC3+ and enriched MITC3+ shell elements 144                                        |
|----------------------------------------------------------------------------------------------------------|
| <b>Figure 6.8.</b> Curved cantilever beam. (a) Problem description and mesh patterns $(1 \times 6)$ used |
| for the MITC3, MITC3+ and enriched MITC3+ shell elements. (b) Normalized strain                          |
| energy in the linear analysis of the curved cantilever beam                                              |
| Figure 6.9. Descriptions of the hemispherical shell problems: (a) Hemispherical shell with               |
| $18^{\circ}$ hole and (b) full hemispherical shell. Mesh patterns used for the MITC3, MITC3+ and         |
| enriched MITC3+ shell elements. Distorted meshes shown in Figure 6.10 are used 148                       |
| Figure 6.10. Distorted meshes used for the numerical problems solved when $N = 4 \dots 149$              |
| Figure 6.11. Convergence curves for the hemispherical shell problems. (a) Normalized                     |
| displacement of the hemispherical shell with an $18^{\circ}$ hole using the uniform meshes (left)        |
| and the distorted meshes (right). (b) Normalized strain energy of the full hemispherical                 |
| shell with the uniform meshes (left) and the distorted meshes (right) 151                                |
| Figure 6.12. Scordelis-Lo roof. (a) Problem description. (b) Mesh patterns $(4 \times 4)$ used for       |
| the MITC3, MITC3+ and enriched MITC3+ shell elements                                                     |
| Figure 6.13. Normalized displacement of the Scordelis-Lo roof with (a) the uniform                       |
| meshes (b) the distorted meshes shown in Figure 6.10                                                     |
| Figure 6.14. Raasch's Hook. (a) Problem description. (b) Normalized displacement in the                  |
| linear analysis of the Raasch's Hook problem154                                                          |
| Figure 6.15. Cantilever beam subjected to a tip moment. (a) Problem description. (b) Load-               |
| displacement curve for the cantilever beam subjected to a tip moment                                     |
| Figure 6.16. Deformed configurations of the cantilever beam subjected a tip moment 157                   |
| Figure 6.17. Column under an eccentric compressive load. (a) Problem description. (b)                    |
| Load-displacement curves for the column                                                                  |
| Figure 6.18. Deformed configurations for the column under an eccentric compressive load.                 |
|                                                                                                          |
| Figure 6.19. Load-displacement curves for the curved cantilever beam                                     |
| Figure 6.20. Deformed configurations for the curved cantilever beam                                      |
| Figure 6.21. Load-displacement curves for the hemispherical shell with an 18° hole when                  |
| (a) the uniform meshes and (b) the distorted meshes are used                                             |
| Figure 6.22. Deformed configurations for the hemispherical shell with an 18° hole 165                    |
| Figure 6.23. Load-displacement curves for the full hemispherical shell with a $3 \times 4 \times 4$      |
| element mesh (left) and a 3×6×6 element mesh (right)                                                     |

| Figure 6.24. Load-displacement curves for the Scordelis-Lo roof with (a) the uniform            |
|-------------------------------------------------------------------------------------------------|
| meshes and (b) the distorted meshes                                                             |
| Figure 6.25. Deformed configurations for the Scordelis-Lo roof                                  |
| Figure 6.26. Slit annular plate subjected to lifting line force. (a) Problem description. (b)   |
| Mesh patterns used for the MITC3, MITC3+ and enriched MITC3+ shell elements 172                 |
| Figure 6.27. Load-displacement curves for the slit annular plate subjected to lifting line      |
| force                                                                                           |
| Figure 6.28. Deformed configuration for the slit annular plate subjected to lifting line force. |
|                                                                                                 |
| Figure A.1. (a) Representations of finite spatial rotations. (b) The rotation angle is positive |
| obeying the right-hand screw rule about the rotation axis                                       |
| Figure B.1. (a) The linearized arc-length method. (b) The spherical arc-length method. 184      |



#### Chapter 1. Introduction

#### 1.1 Research Background

The finite element method is a popular and effective procedure for the analysis of solid, fluid, and multi-physics problems. In particular, shell elements are probably the most widely used in finite element analysis, since there are a myriad of shell structures which are widely encountered in many engineering applications [1-4].

A promising approach in the development of general shell elements has been the use of the isoparametric continuum mechanics based shell element which is generally known as a displacement based Mindlin-Reissner shell element [5-7]. The continuum mechanics based shell element was very naturally developed from the three-dimensional continuum isoparametric element formulation by imposing kinematic constrains. In general, transverse shear is accounted for by making use of the Mindlin-Reissner plate/shell theory, denoted "first order theory", which involves a constant through-the-thickness transverse shear distribution.

Even though the introduction of shear deformations in the shell element seems to be desirable for the analysis of thick shells, these shear deformations cause the main difficulty called "locking", which must be alleviated for reliable shell finite element analysis. It is well known that displacement based Mindlin-Ressner plate/shell elements often exhibit transverse shear locking as the shell thickness decreases. For shell elements and curved geometries, membrane locking might also occur. Shear and membrane locking are particularly severe for low order shell elements.

To alleviate the transverse shear locking, many methods have been proposed. Commonly adopted remedies to circumvent transverse shear locking are the URI (Uniform Reduced Integration) and SRI (Selective Reduced Integration) first suggested by Zienkiewicz [8-13]. An alternative method for reducing the transverse shear locking is the hybrid and mixed formulation in which separate interpolations are used for the stresses and displacements [14, 15]. Another approach to alleviate locking phenomenon is the ANS (Assumed Natural Strain) method, suggested by MacNeal [16, 17], which is generally reported to be an efficient method using complete numerical integration rules. In this method, the transverse shear strains are interpolated from the displacement dependent strains defined at the mid-side of element edges to reduce locking phenomenon. Based on this concept, some efficient methods have been proposed, including the MITC (Mixed Interpolation of Tensorial Component) method developed by Bathe's group [18-29] and the DSG (Discrete Strain Gap) approach suggested by Bischoff's group [30, 31]. Another interesting approach arising from mixed variational formulations is the EAS (Enhanced Assumed Strain) method first presented by Simo and Rifai [32]. The key idea of this approach is based on the use of a strain field composed of a compatible strain field and an en-

hanced strain field based on the Hu-Washizu variational principle to reduce transverse shear locking. Some of these methods are also used to remedy membrane locking, especially the selective reduced integration and the mixed interpolation approach.

Furthermore, it is very difficult to develop effective shell finite elements that give reliable and robust solutions for general shell problems, when considering the various shell geometries, boundary and loading conditions, and mesh patterns used. Specifically, solution accuracy highly depends on how the geometries are meshed. To obtain reliable solutions with desired accuracy special mesh refinements are frequently required, in particular, in areas where non-smooth and near-singular solutions are sought [1-4].

To obtain more accurate solutions, a promising approach, which is referred to as the partition of unity based finite element method, is used to incorporate special enrichment functions within traditional finite element formulations. Within the framework of the partition of unity based finite element method, the partition of unity approximation can be easily achieved by directly adopting high order polynomial local approximations. The concept of the partition of unity approximation was established in the PUM (Partition of Unity Method) by Babuška and Melenk [33] and PUFEM (Partition of Unity Finite Element Method) by Melenk and Babuška [34]. An idea similar to the partition of unity approximation was also introduced and extensively investigated in the *hp* clouds method by Duarte and Oden [35, 36], the GFEM (Generalized Finite Element Method) by Strouboulis et al. [37, 38] and Duarte et al. [39, 40], and the partition of unity based hierarchical finite element method by Taylor et al. [41].

The scheme increases solution accuracy of the traditional low order finite element discretization of solids without any changes in the mesh. The major advantage of the method is that the higher order enrichment is available without introducing additional nodes. That is, traditional nodal point movements or mesh refinements are not used to improve solution accuracy. The partition of unity approximation not only captures higher gradients but also decreases inter-element stress jumps.

In this thesis, the MITC methods are adopted to reduce the transverse shear locking. There are two major reasons for choosing MITC methods in this work. The MITC methods are very attractive because its formulation is simple and general, and in particular, the behavior of the triangular element with the MITC method is isotropic, that is, the stiffness matrix of the element does not depend on the sequence of node numbering. Another important reason is that the MITC method can be directly integrated into the partition of unity approximation to improve performances of the shell finite element.

#### 1.2 Research Purpose

The first objective of this thesis is to present 3-node triangular and 4-node quadrilateral shell finite elements enriched by the high order local approximations within the MITC (Mixed Interpolation of Tensorial Component) framework, which are called the enriched MITC3 and enriched MITC4, respectively [28]. The key idea of enriched MITC shell elements is to use and treat the assumed covariant transverse shear strain fields separately for the standard linear and the additional high order displacement interpolations. The enriched MITC shell finite elements pass the patch tests and show good convergence behaviors considering a full clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems even when distorted meshes are used. Highly varying stresses in shells can be captured only by locally using high order local approximations.

The second objective in this thesis is to propose the formulation of the 3-node triangular element with enrichment by a cubic bubble function for the rotations in geometric nonlinear analysis [42]. This element is referred to as the MITC3+ shell element. The standard total Lagrangian formulation is employed allowing for large displacement and large rotations. Solving various shell problems, the performance of the MITC3+ shell element is evaluated by comparing the solution accuracies obtained with the other shell elements. The study reveals that the performance of the MITC3+ shell element in nonlinear analysis is as good as the performance of the MITC3+ shell element, which is the 4-node quadrilateral shell element, even when highly distorted meshes are used.

Finally, based on the MITC3+ shell element, a 3-node triangular shell element with improved membrane behaviors is presented in this thesis. The partition of unity approximation is only applied to the membrane strains in order to improve the membrane action of the MITC3+ shell element. This element is referred to as the enriched MITC3+ shell element. For geometric nonlinear analysis, the standard total Lagrangian formulation is adopted allowing for large displacement and large rotations. A number of benchmark problems were studied to evaluate its performances in linear and geometric nonlinear ranges. The results confirm that the present method can provide accurate solutions for the membrane dominant problems. It is concluded that the partition of unity approximation is an effective scheme for improving membrane behaviors in the triangular shell element.

### **SINCE 1971**

Hence the research for this thesis has been divided into three major parts:

- I. Development of the partition of unity based 3-node triangular and 4-node quadrilateral shell finite elements.
- II. Extension of formulation of the 3-node triangular shell element with an enrichment by a cubic bubble function for the rotations to geometric nonlinear analysis.
- III. Performance evaluation of the 3-node triangular shell finite element for improving membrane behaviors in linear and geometric nonlinear analysis.

The present shell finite elements are applicable to simple plate geometries as well as complex shell geometries for both thick and thin shell structures. They provide excellent solution accuracy in both displacement and stresses with relatively low computational cost. Also, the proposed shell elements are sufficiently robust, i.e., present low sensitivity to element distortion, and are generally applicable to both linear and geometric nonlinear shell analyses with high reliability.

#### 1.3 Dissertation Organization

This thesis is organized as follows:

In Chapter 2, the general description of the locking phenomenon in elastic shell theory and some methods to alleviate the locking phenomena are reviewed. In the following sections, the continuum mechanics based shell finite element and the key aspects of the MITC method are presented in detail. Also, various methods using concept of the partition of unity approximation are briefly reviewed in the last section.

In Chapter 3, the finite element procedure to enrich by local approximations is briefly reviewed and the formulation of the partition of unity based 3-node triangular shell element is presented. In the following sections, the key theoretical and numerical aspects of the scheme regarding the computational expense and the convergence of the method are discussed The results of convergence studies considering a fully clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems are given. Two illustrative example solutions, a shaft-shaft interaction problem and a 'highly-sensitive' shell problem, show the effectiveness of using the partition of unity based 3-node triangular shell finite element, also only locally, that is, only in areas of high stress gradients.

In Chapter 4, the formulation of the partition of unity based 4-node quadrilateral element is briefly reviewed. The issue of the so-called linear dependence problem for the element and a simple scheme to avoid the linear dependence are discussed. The partition of unity based 4-node quadrilateral shell element is proposed in the following section. The results of various benchmark problems including Morley's 30° skew plate, circular plate with uniform load, partly elamped hyperbolic parabolic shell, twisted beam subjected to vertical tip load, pinched cylinder, semi-cylindrical shell subjected to an end pinching force, and Scordelis-lo roof are given.

In Chapter 5, the linear formulation of the MITC3+ shell element is reviewed. In the following section, the geometric nonlinear formulation of the MITC3+ shell element is presented. Also, the performance of the MITC3+ shell element in geometric nonlinear analysis through the solutions of various shell problems including the cantilever plate subjected to end shear force, cantilever plate subjected to end moment, slit annular plate under end shear force, hemisphere shell subjected to alternating radial forces, clamped semi-cylindrical shell under point load, and fully clamped plate under uniform pressure is examined.

Chapter 6 presents the partition of unity based 3-node triangular shell element with improved membrane behaviors. The key theoretical and numerical aspects of this element are studied and the geometric nonlinear formulation of the shell element is also presented. The performance of the proposed shell element in linear and geometric nonlinear analysis is tested through the solution of various two-dimensional planestress and shell problems, the cantilever beam for mesh distortion test, Cook's skew beam, MacNeal's cantilever beam, curved cantilever beam, hemispherical shell, Scordelis-Lo roof, Raasch's hook problem, cantilever beam subjected to a tip moment, column under an eccentric compressive load, and slit annular plate.

Chapter 7 draws the conclusions and discusses further studies.



#### Chapter 2. Reviews of Related Literatures and Studies

#### 2.1 The Treatment of the Locking Phenomenon

In finite element analyses, solution accuracy and convergence rate to the analytical solution significantly decrease when non-physical stresses appear, that is the locking phenomenon. These may be transverse shear, membrane, in-plane shear, trapezoidal locking and Poisson locking phenomenon. The locking phenomenon results from numerical backgrounds which are usually related to the low order interpolation functions. This section is aimed to review the general descriptions of locking phenomenon and introduce some remedies to alleviate the locking in an analysis of the finite element method. The mathematical description of the locking phenomenon is beyond the scope of this thesis.



**Figure 2.1.** Beam deformation assumptions. (a) Beam deformation including transverse shear effect. (b) A two node isoparametric beam element modeling a cantilever beam subjected to a tip moment.

In the shear deformable shell based on the Mindlin-Reissner theory [6, 7], the shell element is subjected to transverse shear locking; that is, the shell finite element becomes too stiff as the shell thickness decreases in bending situations. This transverse shear locking phenomenon also occurs in three-dimensional solid elements and can be observed in the analysis of thin-walled structures. To explain the transverse shear locking phenomenon, a two-node Timoshenko beam element which includes shear deformations, see **Figure 2.1** is considered. The transverse displacement and in-plane rotation interpolations are represented by

$$w = h_1 w_1 + h_2 w_2$$
 and  $\beta = h_1 \theta_1 + h_2 \theta_2$  with  $h_1 = \frac{1-r}{2}$  and  $h_2 = \frac{1+r}{2}$  (2.1)

and

$$w = \frac{1+r}{2}w_2$$
 and  $\beta = \frac{1+r}{2}\theta_2$ , (2.2)

where  $h_i$  is the one-dimensional interpolation functions that satisfy the  $C^0$  continuity requirement,  $w_i$  and  $\theta_i$  are the nodal displacements and rotation variables, respectively. For a very thin shell subjected to moment only, the Bernoulli condition (the shear strain is to be zero) should be fulfilled by the displacements and rotations. Imposing this condition gives

$$\gamma = \frac{dw}{dx} - \beta = \frac{w_2}{l} - \frac{1+r}{2}\theta_2 \equiv 0.$$
 (2.3)

However, for Equation (2.3) to be zero all along the beam, we should have  $w_2 = \theta_2 = 0$ . Hence, a zero shear strain in the beam can be reached only when there are no deformations. The transverse shear locking occurs since the functions used to interpolate w and  $\beta$  cannot satisfy the condition of zero shear strain all over the element. It is noted that the source of the transverse shear locking is the fact that interpolation functions cannot properly represent the pure bending condition with zero shear stresses, regardless of the use of finite or exact algebra [1].

With the development of shell, plate and beam elements, many methods have been proposed to circumvent the transverse shear locking phenomenon. Remedies to alleviate transverse shear locking commonly used are the RI (Reduced Integration) and SRI (Selective Reduced Integration) approach first suggested by Zienkiewicz [8-13]. However, the reduced integration technique requires the stabilization matrices to avoid spurious modes (hour glass modes). [43, 44]. An alternative method for reducing the transverse shear locking is the hybrid and mixed formulation in which separate interpolations are used for the stresses and displacements [14, 15]. Another approach to alleviate transverse shear locking is the ANS (Assumed Natural Strain) method, suggested by MacNeal [16, 17], which is generally reported to be an efficient method utilizing complete numerical integration rules. In this approach, the transverse shear strains are interpolated from the displacement dependent strains defined at the mid-side of element edges to reduce transverse shear locking. Based on this concept, some efficient methods were proposed, including the MITC (Mixed Interpolation of Tensorial Component) method proposed by Bathe's group [18-29] and the DSG (Discrete Strain Gap) approach suggested by Bischoff's group [30, 31]. To alleviate the transverse shear locking behavior, while preserving the properties of consistency and ellipticity, the MITC method has been successfully used to establish quadrilateral and triangular shell element. DSG method has some unique features. It is directly applicable to both 3-node triangular and 4-node quadrilateral element, without any considerations, like a particular choice of sampling points or the introduction of additional nodes or degrees of freedom and it applies directly to elements of arbitrary polynomial order. Another interesting approach arising from mixed variational formulations is the EAS (Enhanced Assumed Strain) method first presented by Simo and Rifai [32]. The key idea of this method is based on the use of a strain field composed of a compatible strain filed and an enhanced strain field based on the Hu-Washizu variational principle to reduce transverse shear locking.

#### 2.1.2 Membrane Locking

The membrane locking (also known as inextensional locking) addresses the inability of curved shell finite elements to exactly represent pure bending (inextensional bending) deformations, severely overestimating bending stiffness and exhibiting parasitic membrane stresses. Membrane locking phenomenon is different from locking problems within the membrane part of shell elements - namely in-plane shear locking, volumetric locking and trapezoidal locking, see Section 2.1.3. Membrane locking comes from the effect of coupling membrane and bending and becomes more pronounced as shell thickness becomes zero. A typical symptom of the membrane locking is parasitic membrane stresses in the pure bending situations. It is noted that the 3-node triangular shell elements are always flat and therefore free from membrane locking. Even though 4-node quadrilateral shell elements are flat in many situations, if the shell elements are warped, i.e., all four nodes are not in the same plane, the membrane locking occurs in some problems. The modifications of the membrane part of shell finite elements to alleviate membrane locking can automatically improve the in-plane behaviors of the elements. Also, methods for alleviating the in-plane shear locking, trapezoidal locking and volumetric locking influence the behavior with respect to membrane locking. However, this is not guaranteed and there seem to be some conflicts [31].

The ANS (Assumed Natural Strain) methods [17, 45, 46] to eliminate the membrane locking phenomenon have been successfully proposed, especially considering 9-node quadrilateral elements. For the 4-node quadrilateral element the EAS (Enhanced Assumed Strain) method is often adopted to improve the membrane part of shell finite elements [32, 47]. In commercial codes the method of incompatible modes still has some significance, although it is similar to the EAS approach from a theoretical point of view. Like in all locking problems RI (Reduced Integration) with hourglass control to avoid spurious modes also has a great significance especially in commercial codes. Koschnick [31] focused on the application of the DSG (Discrete Strain Gap) method to the problem of membrane locking of both beam elements and shell elements.

한국과학기술원

#### 2.1.3 In-Plane Shear / Trapezoidal / Volumetric Locking

#### 2.1.3.1 In-Plane Shear Locking

Both the 3-node triangular and the 4-node quadrilateral membrane elements show excellent perfor-

mances in the tractive or compressive dominant problems. However, in situations where bending effects are significant, the solution accuracy of both membrane elements dramatically deteriorates.

Conversely, the accuracy of both membrane elements deteriorates in situations where bending actions are dominantly involved, and very fine meshes or high order elements are needed to obtain accurate solutions in these cases. This is due to the fact that the both 3-node triangular element and 4-node quadrilateral element cannot be used to model bending dominated fields. **Figure 2.2** considers a single 4-node element subjected to the pure bending moment [4].



**Figure 2.2.** A isolated 4-node element subjected to the pure bending moment: (a) Initial geometry, (b) Deformation of a single 4-node finite element, (c) Correct deformation of a beam segment in pure bending.

국과와7

The analytic solution from beam theory is written as [48]

$$u(r,s) = \frac{M}{EI}rs \text{ and } v(r,s) = \frac{Ma^2}{2EI} \left(1 - \frac{r^2}{a^2}\right) + \frac{Mb^2}{2EI} \left(1 - \frac{s^2}{b^2}\right),$$
 (2.4)

where E is the elastic modulus, I is the second moment of area of the beam's cross-section. Since the 4node finite element sides are always straight as shown in **Figure 2.2**(b), the finite element cannot represent the proper bending mode. From **Figure 2.2**(b) the finite element solution becomes

$$u(r,s) = \Delta urs \text{ and } v = 0.$$
 (2.5)

It is obvious from the Equation (2.5) that the finite element cannot properly reproduce the quadratic distribution of vertical displacements for the pure bending case shown in **Figure 2.2**(c). This lead to excessive stiffness, which is a natural consequence of the inability of the element sides to be curved. In the pure bending analysis, the exact shear strain should be zero and only normal strains and stresses exist. The exact shear strain from Equation (2.4) is calculated by

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0.$$
(2.6)

Also, the shear strain of the 4-node finite element from Equation (2.5) is given by

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \Delta ur .$$
(2.7)

In the above equation, the 4-node element has an excess of shear strain which leads to an parasitic stiffness. This contributes to the poor ability of the element to reproduce the bending situation. Similar results are obtained for moments acting on the horizontal sides by changing the coordinate r for s in Equation (2.7). The deficiencies of the 4-node element also appear for severely distorted quadrilateral shapes. These disadvantages can be usually overcome in practice by using very fine meshes or high order interpolation functions. Other alternative methods to improve in-plane behaviors are presented in the Section 2.1.4.

#### 2.1.3.2 Trapezoidal Locking



Figure 2.3. The graphical descriptions of the (a) trapezoidal and (b) volumetric locking phenomenon.

When the finite elements are distorted, the phenomenon of the trapezoidal locking (also called curvature thickness locking) phenomenon appears. The trapezoidal locking occurs when the solid elements are used to model the curved structures, for example a curved beam subjected to bending. Due to the geometry of the model, the trapezoidal shaped elements appear for a regular mesh. **Figure 2.3**(a) illustrates the trapezoidal locking phenomenon in the curved cantilever beam subjected to the end shear force. Due to the curved geometry and the loading condition, the 4-node element shown in **Figure 2.3**(a) deforms in such a way that the element thickness should be decreased. The change of the element thickness causes the parasitic normal stresses along the thickness direction of the element. Physically, the thickness of the curved beam should not change. Hence this stresses are non-physical and cause the trapezoidal locking. The critical parameter for trapezoidal locking is the slenderness of the element.

#### 2.1.3.3 Volumetric Locking

Unlike other locking phenomenon, the volumetric locking (also called dilation or Poisson locking) is caused by neither kinematic nor geometric reasons. The critical parameter in volumetric locking is the Poisson's ratio v and ultimately the bulk modulus of elasticity  $\kappa$ . The bulk modulus of elasticity is defined as  $\kappa = E/(3-6v)$ . Thus, as the Poisson ratio v closes to 0.5, the bulk modulus of elasticity,  $\kappa$  becomes infinity which means the material behaves as if it is incompressible. Figure 2.3(b) demonstrates the volumetric locking phenomenon in a physical point of view. In the undeformed element, the upper portion of the element tries to expand and this demands the shift of the mid-plane of the element. However, the element mid-plane cannot move and force to be in the original position because all the points inside the element. The upper part of the element experiences tensile and the lower part of experiences compressive stress. This parasitic stress uses up a portion of strain energy that lead to volumetric locking.

To alleviate the volumetric locking phenomenon, Nagtegaal et al. [49] proposed special crossed patch arrangements of 3-node triangular elements. Hughes [50] used the B-bar approach for 4-node quadrilateral elements. Simo and Rifai [32] employed the EAS (Enhanced Assumed Strain) method to reduce the volumetric locking. Doll et al. [51] describe volumetric locking of low order solid and solid-shell elements. Wells et al. [52] developed a *p*-adaptive scheme to prevent volumetric locking in low order elements. In another approach to reduce the volumetric locking, the SRI (Selective Reduced Integration) technique [53, 54], the penalty function approach based on a reduced constraint concept [55, 56] and mixed formulation methods [57-60] are proposed. Schlebusch et al. [61] described the utilization of the EAS approach to prevent Poisson locking and demonstrated application in numerical examples.

To sum up, the popular solutions available for alleviating the various locking phenomenon, see **Table 2.1**, are as follows:

- ANS (Assumed Natural Strain) method
- MITC (Mixed Interpolation of Tensorial Components) method
- DSG (Discrete Strain Gap) method
- RI (Reduce Integration) method with stabilization

- SRI (Selective Reduced Integration) with stabilization
- Method of Incompatible modes
- EAS (Enhanced Assumed Strain) method
- Hybrid Stress method
- High order element (*p*-element)

| Table 2.1. The popular solutions available for | or eliminating the locking phenomenon |
|------------------------------------------------|---------------------------------------|
|------------------------------------------------|---------------------------------------|

| Type of the locking      | Methods to alleviating the locking phenomenon              |
|--------------------------|------------------------------------------------------------|
| Transverse shear locking | RI, SRI, ANS, MITC, DSG, EAS, p-element                    |
| Membrane locking         | ANS, EAS, RI, DSG                                          |
| In-plane shear locking   | EAS, RI, SRI, Hybrid stress, p-element, Incompatible modes |
| Trapezoidal locking      | DSG, RI, SRI, p-element                                    |
| Volumetric locking       | EAS, RI, SRI, Hybrid stress, p-element, B-bar method       |

#### 2.1.4 Various Methods of Improving Membrane Behaviors

In this section, various methods to improve the performance of the membrane elements are reviewed. Depending on element type, these some procedures reduce or even eliminate parasitic shear strain.

# 한국과학기술원

#### 2.1.4.1 SRI (Selective Reduced Integration) Method

Equation (2.6) obviously shows that the shear strain in pure bending case should be zero at the element center only. Therefore, the excess of shear strain can be eliminated by sampling the shear strain at the element center (r = s = 0). This is simply achieved by using a reduced one point Gauss quadrature for the shear terms in the stiffness matrix, that is SRI (Selective Reduced Integration) method. For this purpose the element stiffness matrix can be divided into two parts:

$$\mathbf{K}^{(e)} = \mathbf{K}_{a}^{(e)} + \mathbf{K}_{s}^{(e)}.$$
 (2.8)

In Equation (2.8)  $\mathbf{K}_{a}^{(e)}$  and  $\mathbf{K}_{s}^{(e)}$  are the element stiffness matrices including the axial and shear contributions, respectively. These stiffness matrices can be rewritten by

$$\mathbf{K}_{aij}^{(e)} = \iint_{A^{(e)}} \mathbf{B}_{ai}^{\mathrm{T}} \mathbf{C} \mathbf{B}_{aj} t dA \quad \text{and} \quad \mathbf{K}_{sij}^{(e)} = \iint_{A^{(e)}} \mathbf{B}_{si}^{\mathrm{T}} \mathbf{C} \mathbf{B}_{sj} t dA \tag{2.9}$$

with

$$\mathbf{B}_{ai} = \begin{bmatrix} \frac{\partial h_i}{\partial x} & 0\\ 0 & \frac{\partial h_i}{\partial y} \end{bmatrix}, \quad \mathbf{B}_{si} = \begin{bmatrix} \frac{\partial h_i}{\partial y} & 0\\ 0 & \frac{\partial h_i}{\partial x} \end{bmatrix}, \quad C_a = \begin{bmatrix} c_{11} & c_{12}\\ c_{12} & c_{22} \end{bmatrix} \text{ and } C_s = \begin{bmatrix} c_{33} \end{bmatrix}.$$
(2.10)
where  $\mathbf{K}_{a}^{(e)}$  is integrated exactly, either analytically or via a 2×2 Gauss quadrature, whereas a single integration point is used for  $\mathbf{K}_{s}^{(e)}$ . This SRI technique can also improve the behavior of 4-node quadrilateral element of arbitrary shapes. The reduced integration of  $\mathbf{K}_{s}^{(e)}$  can also be interpreted as a simple procedure to reduce the excessive influence of the shear terms in the element stiffness matrix. A disadvantage of reduced integration is that 4-node quadrilateral elements applied this technique are not geometric-invariant (also called frame-invariant, geometric or spatial isotropic), although it passes the patch test [62] and, therefore, it converges to the exact solution as the element mesh is refined [1, 4].

#### 2.1.4.2 Additional Bubble Node



Figure 2.4. The quadrilateral finite elements with (a) the additional bubble node and (b) incompatible modes.

The flexibility of the 4-node quadrilateral element can be improved by adding internal displacement modes to original two-dimensional interpolation function. One of the simplest mode is a bubble function associated with an additional central node, see **Figure 2.4**(a). The displacement interpolation with the additional bubble node can be expressed by

$$u = \sum_{i=1}^{5} h_{i}u_{i} \text{ and } v = \sum_{i=1}^{5} h_{i}v_{i} \text{ with } h_{5} = \left(1 - \frac{r^{2}}{a^{2}}\right)\left(1 - \frac{s^{2}}{b^{2}}\right), \quad (2.11)$$

where  $h_i$  (i = 1, 2, 3, 4) are the two-dimensional interpolation function corresponding to node i and the internal degrees of freedom  $u_5$  and  $v_5$  (also called hierarchical degrees of freedom) can be eliminated after the element stiffness matrix is constructed (also known as static condensation). It is noted that unknown variables,  $u_5$  and  $v_5$ , are non-physical displacements which represent the differences between the total displacements of the central node and the bilinear field defined by the four corner displacements. For example, the horizontal displacement of the central node is obtained as follows:

$$u(0,0) = \left(\sum_{i=1}^{4} h_i u_i\right) + u_5.$$
(2.12)

Also, the behavior of the 4-node quadrilateral element with the additional bubble node can be improved by using a reduced single Gauss quadrature for the shear terms as described in the previous section.

#### 2.1.4.3 Incompatible Modes

The 4-node quadrilateral element can be also enhanced by using incompatible modes,  $1-r^2/a^2$  and  $1-s^2/b^2$  shown in **Figure 2.4**(b). In 1971 Wilson [63] first suggested the incompatible modes for 4-node isoparametric finite elements. Taylor [64] presented a method to correct the incompatible mode using a constant Jocobian during the integration of the incompatible modes, which passed the patch test. In 1986 Simo and Rafai [32] introduced the B bar approach to correct the strains produced by incompatible displacements, achieving excellent results for non-rectangular elements. The new displacement interpolations with incompatible modes are written as

$$u = \sum_{i=1}^{4} h_i u_i + \left(1 - \frac{r^2}{a^2}\right) \alpha_1 + \left(1 - \frac{s^2}{b^2}\right) \alpha_2, \qquad (2.13)$$

$$v = \sum_{i=1}^{4} h_i v_i + \left(1 - \frac{r^2}{a^2}\right) \alpha_3 + \left(1 - \frac{s^2}{b^2}\right) \alpha_4, \qquad (2.14)$$

where  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  and  $\alpha_4$  are the additional degrees of freedom (also called nodeless degrees of freedom) which are internal to each element and can be eliminated by static condensation after the element stiffness matrix is obtained. However, the displacements along the interelemental boundaries are discontinuous and the element is incompatible.

The 4-node quadrilateral element with incompatible modes fails to pass the patch test under constant stress states unless the shape of the element is rectangular. Fortunately, the element satisfies the patch test for arbitrary quadrilateral shapes if the shear terms of the stiffness matrix are evaluated using a reduced point Gauss quadrature, whereas the rest terms of the stiffness matrix can be exactly integrated via a  $2 \times 2$  Gauss quadrature. The resulting element is geometric-invariant and does not have any spurious mechanisms [4, 64, 65].

The incompatible modes approach can also be successfully applied to 4-node quadrilateral element of arbitrary shape [4, 66]. The strain-displacement matrix with incompatible modes can be written as

$$\mathbf{d} = \begin{bmatrix} \mathbf{B}_C & \mathbf{B}_I \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\alpha} \end{bmatrix}, \qquad (2.15)$$

where  $\mathbf{u} = [u_1 \ u_2 \ u_3 \ \dots \ v_3 \ v_4]^T$  and  $\boldsymbol{\alpha} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]^T$  are the nodal displacement vector and additional degrees of freedom vector, respectively. Using the  $\mathbf{d} = [\varepsilon_{xx} \ \varepsilon_{yy} \ \gamma_{xy}]^T$  and  $\mathbf{f} = [\sigma_{xx} \ \sigma_{yy} \ \tau_{xy}]^T$ , the strain

energy with the incompatible modes is represented by

$$W = \frac{1}{2} \int \mathbf{f}^{\mathrm{T}} \mathbf{d} \, dV = \frac{1}{2} \int \mathbf{f}^{\mathrm{T}} \mathbf{B}_{C} \mathbf{u} \, dV + \frac{1}{2} \int \mathbf{f}^{\mathrm{T}} \mathbf{B}_{I} \boldsymbol{\alpha} \, dV , \qquad (2.16)$$

where V is the volume of the element. To pass the patch test, the strain energy term related to the incompatible modes should be zero for a state of constant element stress. Therefore, the following conditions should be satisfied:

$$\frac{1}{2}\mathbf{f}^{\mathrm{T}}\int \mathbf{B}_{I}\boldsymbol{\alpha}\,dV = 0 \quad \text{or} \quad \int \mathbf{B}_{I}\,dV = 0.$$
(2.17)

Equation (2.17) can be fulfilled by adding a constant correction matrix  $\mathbf{B}_{IC}$  to the matrix  $\mathbf{B}_{I}$ . To obtain a new strain-displacement,  $\mathbf{\overline{B}}_{I} = \mathbf{B}_{I} + \mathbf{B}_{IC}$ , so that the following equation is satisfied:

$$\int (\mathbf{B}_I + \mathbf{B}_{IC}) dV = 0 \quad \text{or} \quad \int \mathbf{B}_I dV + V \mathbf{B}_{IC} = 0.$$
(2.18)

Therefore, the correction matrix can be calculated from

$$\mathbf{B}_{IC} = -\frac{1}{V} \int \mathbf{B}_{I} \,. \tag{2.19}$$

This approach is general and can be used to add any number of incompatible displacement modes, or strain patterns, to all types of isoparametric elements. The same numerical integration rules are used to evaluate the element stiffness matrices.

Recently, Sussman and Bathe [67] reported that the element with incompatible modes can display nonphysical behavior in analyses modeling very large strain and meshes of incompatible modes elements can also contain spurious modes in rather simple nonlinear analyses. Nevertheless, The method of incompatible modes still has some significance in commercial codes.



2.1.4.4 Assumed Strain Fields



**Figure 2.5.** Interpolation used. (a) Nodes used for displacements interpolation. (b) Sampling points used for strain interpolation.

Another method to improve the performance of the 4-node quadrilateral element is to impose over the element the assumed strain fields compatible with the condition  $\gamma_{xy} = 0$  for the pure bending case. Dvorkin and Vassolo [20] proposed the assumed strain fields for improving the performance of the 4-node quadrilateral element. To interpolate the displacement field inside the element, the interpolation functions of a 5-node isoparametric element are used as shown in **Figure 2.5**(a). At the element level, the two displacements corresponding to node 5 are condensed resulting only eight degrees of freedom. The strain fields are interpolated by

$$\varepsilon_{xx} = \alpha_1 + \alpha_2 x + \alpha_3 y$$
,  $\varepsilon_{yy} = \alpha_4 + \alpha_5 x + \alpha_6 y$  and  $\gamma_{xy} = \alpha_7$ , (2.20)

where the  $\alpha_i$  (*i* = 1,2,...7) are expressed in terms of the nodal displacements by sampling the assumed strains at a number of element points and equaling their values to those given by the strains deduced from the original displacement filed. This leads to a substitute strain matrix from which the element stiffness matrix can be directly obtained on [20]. The proposed element with assumed strain fields does not contain spurious zero energy modes and the element passes the path test.

## 2.1.4.5 Drilling DOFs (Degrees of Freedom)

The drilling DOFs (degrees of freedom) are rotational degrees of freedom which lie at right angles to the plane. First striking feature of drilling degrees of freedom is that the shell elements can be directly formed as the combination of a plane element and a plate bending element [68]. The second advantage of drilling degrees of freedom is to improve better membrane performances with only corner nodes. For example, 3-node triangular element with drilling degrees of freedom performs much better than the original 3-node triangular

element, although not as well as the 6-node triangular element.



**Figure 2.6.** (a) Side displacement associated with drilling degree of freedom  $w_i$  and  $w_j$ . (b) Nodal displacements of the 6-node triangular element. (c) 3-node triangular element with drilling degree of freedom.

The drilling degrees of freedom are simply implemented by adding one rotational degrees of freedom at each corner while removing two degrees of freedom at the middle of each side, see **Figure 2.6**. Hence, the 6-node triangular element can be converted to elements that have corner nodes only with three degrees of freedom per node. In the large finite element mesh of 6-node triangular elements, the conversion reduces the total number of degrees of freedom by a factor of 5/8.

Figure 2.6(a) shows a typical side of a plane element. The  $\delta$  is the component of side-normal displacement due to drilling degrees of freedom  $w_i$  and  $w_j$  at node i and j. The  $\delta$  and its midside value  $\delta_m$  are represented by

$$\delta = \frac{s(l-s)}{2l}(w_j - w_i) \text{ and } \delta_m = \frac{l}{8}(w_j - w_i).$$
 (2.21)

When  $w_i$  is equal to  $w_j$ , the side becomes straight. When  $w_i = -w_j$ , the midside displacement  $\delta_m$  can be regarded as the mid-span deflection of a simply supported beam of length l, loaded by end moments such that end rotations are of equal magnitude but opposite sign. Equation (2.21) can be converted by substituting the x and y components of  $\delta_m$  and l, specifically  $\delta_m \cos \beta = u_m$ ,  $\delta_m \sin \beta = v_m$ ,  $l \cos \beta = y_j - y_i$ , and  $l \sin \beta = x_i - x_j$ . Side-tangent displacement at midside is taken as the average of side-tangent displacement from nodes *i* and *j*, the midside displacement components can be obtained by

$$\begin{bmatrix} u_m \\ v_m \end{bmatrix} = \frac{1}{2} \begin{bmatrix} u_i \\ v_j \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u_i \\ v_j \end{bmatrix} + \frac{w_j - w_i}{8} \begin{bmatrix} y_j - y_i \\ x_i - x_j \end{bmatrix}.$$
(2.22)

Using the transformation matrix, the complete relation between degree of freedom in 6-node triangular element and triangular element with drilling degrees of freedom, see **Figure 2.6**, can be represented by

$$\begin{bmatrix} u_1 & v_1 & u_2 & v_2 & \cdots & u_5 & v_6 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} u_1 & v_1 & w_1 & u_2 & v_2 & w_2 & u_3 & v_3 & w_3 \end{bmatrix}^{\mathrm{T}}, \quad (2.23)$$

in which [T] is the transformation matrix which contains information from Equation (2.22) to relate the six translational degrees of freedom at midside nodes to translational and drilling degrees of freedom at nodes.

In the development of drilling degree of freedom, A zero energy mode exists in elements with drilling degree of freedom. For example,  $u_m$  and  $v_m$  are zero when translational degree of freedom are zero at corner nodes and  $w_i = w_j$ . The results are that a mesh of elements formulated in this way displays no strain energy if all drilling degrees of freedom in mesh are equal. Therefore, the global stiffness matrix becomes singular. To eliminating the singularity in this formulation, one drilling degrees of freedom in the mesh should be zero. For 4-node elements, an alternative approach to avoid the singularity is to invoke a penalty constraint by associating strain energy with the function  $w_1 - w_2 + w_3 - w_4$ .

# 2.2 The Continuum Mechanics Based Shell Finite Elements

In 1970 Ahmad et al. [5] proposed the isoparametric continuum shell element with independent  $C^0$  interpolations for displacements and rotations. The most promising feature of this shell element is that the interpolation functions require only  $C^0$  continuity. However the price for this low order continuity requirement is the introduction of shear deformations in the formulation. Hence, this elements are generically known as Reissner / Mindlin shell elements [6, 7]. The continuum mechanics based shell element was very naturally developed from the three-dimensional continuum isoparametric element formulation by imposing kinematic constraints. Even though the introduction of shear deformations in the formulation from 3D to shell elements [1], these shear deformations cause the main numerical difficulty of the continuum mechanics based shell element: the transverse shear locking phenomenon [1-4]. The extension of the continuum mechanics based shell element the transverse shear locking phenomenon [1-4].

#### 2.2.1 Displacement Interpolation



**Figure 2.7.** Continuum mechanics based shell finite element. (a) Geometry of the 9-node shell element. (b) Definition of rotational degrees of freedom  $\alpha_k$  and  $\beta_k$ .

A continuum mechanics based shell element is shown in **Figure 2.7**. In order to define its configuration at a given time  $\tau$ , we use the coordinates of the mid-surface nodes referred to a global Cartesian system with base vector  $\mathbf{e}_i$  and director vectors defined at the mid-surface nodes. Theses nodal director vectors are defined so as to approximate as closely as possible the shell normal at those nodes. An arbitrary point inside the shell element is defined by its natural coordinates system (r, s, t) and the its geometry interpolation is obtained by

$${}^{\tau}\mathbf{x}(r,s,t) = \sum_{i=1}^{q} h_{i}(r,s){}^{\tau}\mathbf{x}_{i} + \frac{t}{2} \sum_{i=1}^{q} a_{i}h_{i}(r,s){}^{\tau}\mathbf{V}_{n}^{i} , \qquad (2.24)$$

where q is the number of nodes per element,  $h_i$  is the two-dimensional interpolation functions of the standard isoparametric procedure corresponding to node i,  ${}^{\tau}\mathbf{x}_i$  is the position vector of the node i at time  $\tau$ ,  $a_i$  is shell thickness at node i (assumed as invariant during the deformation), and  ${}^{\tau}\mathbf{V}_n^k$  is the director vector corresponding to the i-th mid-surface node at time  $\tau$ , which is defined taking into account that  $|{}^{\tau}\mathbf{V}_n^k| = 1$ . While the natural coordinates (r,s) are defined on the element mid-surface (t=0) the natural coordinate t is measured at any point along the corresponding director vector direction. The second term on the RHS in Equation (2.24) shows that at any point on the element mid-surface the unit director vector times the thickness is interpolated from the nodal values.

The geometry interpolation in Equation (2.24) satisfies  $C^0$  continuity. For describing the kinematics of the continuum mechanics based shell element, the two main assumptions are following. The element thickness remains constant due to the assumed infinitesimal strains deformation and the director vectors remain straight during the deformation.

From Equation (2.24) the covariant base vectors of the natural coordinate system (r, s, t) are given by

$${}^{\tau}\mathbf{g}_{i} = \frac{\partial^{\tau}\mathbf{x}}{\partial r_{i}} \quad \text{with} \quad r_{1} = r \;, \; r_{2} = s \;, \; r_{3} = t \tag{2.25}$$

and the contravariant base vectors need to satisfy the following relation:

$${}^{\tau}\mathbf{g}^{i} \cdot {}^{\tau}\mathbf{g}_{j} = \delta^{i}_{j} \,. \tag{2.26}$$

The symbol  $\delta_i^i$  in the above equation denotes the Kronecker delta and is defined as follows:

$$\delta_j^i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$
(2.27)

For linear kinematics the  $\tau$ -configuration is considered to be coincident with the 0-configuration (reference configuration). The displacements for the configuration at time  $\tau$  can be expressed as

$${}^{\tau}\mathbf{u} = {}^{\tau}\mathbf{x} - {}^{0}\mathbf{x} \tag{2.28}$$

and hence

$${}^{\tau}\mathbf{u}(r,s,t) = \sum_{i=1}^{q} h_i(r,s) {}^{\tau}\mathbf{u}_i + \frac{t}{2} \sum_{i=1}^{q} a_i h_i(r,s) \left( {}^{\tau}\mathbf{V}_n^i - {}^{0}\mathbf{V}_n^i \right),$$
(2.29)

in which  ${}^{r}\mathbf{u}_{i}$  is the vector of incremental nodal displacements at node *i* and  ${}^{0}\mathbf{V}_{n}^{i}$  denotes the director vector at node *i* in the configuration at time 0. In the reference configuration, two vectors,  ${}^{0}\mathbf{V}_{1}$  and  ${}^{0}\mathbf{V}_{2}$ , are defined as shown **Figure 2.7**(b) and nodal director vector forms the orthonormal basis ( ${}^{0}\mathbf{V}_{1}$ ,  ${}^{0}\mathbf{V}_{2}$ ,  ${}^{0}\mathbf{V}_{n}$ ). For the infinitesimal rotations, director vector corresponding to node *i* at time  $\tau$  can be written by [42, 71, 72]

$${}^{\tau}\mathbf{V}_{n}^{k} = {}^{0}\mathbf{V}_{n}^{k} + {}^{\tau}\boldsymbol{\theta}_{i} \times {}^{0}\mathbf{V}_{n}^{k}, \qquad (2.30)$$

$${}^{r}\boldsymbol{\theta}_{i} = \alpha_{i} {}^{0}\mathbf{V}_{1}^{i} + \beta_{i} {}^{0}\mathbf{V}_{2}^{i}, \qquad (2.31)$$

$${}^{\tau}\mathbf{V}_{n}^{i} = {}^{0}\mathbf{V}_{n}^{i} + \boldsymbol{\beta}_{i} {}^{0}\mathbf{V}_{1}^{i} - \boldsymbol{\alpha}_{i} {}^{0}\mathbf{V}_{2}^{i}.$$
(2.32)

Therefore, substituting Equation (2.32) into Equation (2.29), displacement interpolation for the linear analysis is obtained by

$${}^{\mathsf{r}}\mathbf{u}(r,s,t) = \sum_{i=1}^{q} h_{i}(r,s) {}^{\mathsf{r}}\mathbf{u}_{i} + \frac{t}{2} \sum_{i=1}^{q} a_{i}h_{i}(r,s) \left(-\alpha_{i} {}^{0}\mathbf{V}_{2}^{i} + \beta_{i} {}^{0}\mathbf{V}_{1}^{i}\right).$$
(2.33)

Dropping the superscript  $\tau$  in Equation (2.33), the displacement interpolation is rewritten by

$$\mathbf{u}(r,s,t) = \sum_{i=1}^{q} h_i(r,s) \mathbf{u}_i + \frac{t}{2} \sum_{i=1}^{q} a_i h_i(r,s) \left( -\alpha_i \mathbf{V}_2^i + \beta_i \mathbf{V}_1^i \right),$$
(2.34)

where  $\mathbf{u}_i$  is the vector of nodal displacements at node i,  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$  are the unit vectors orthogonal to  $\mathbf{V}_n^i$  and to each other, and  $\alpha_i$  and  $\beta_i$  are the rotations of the director vector  $\mathbf{V}_n^i$  about  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$ , respectively, at node i. It is apparent from Equation (2.34) that this continuum mechanics based shell element has 5 degrees of freedom per node.

The infinitesimal strain tensor at any point inside the shell can be written by

$$\mathbf{e} = e_{ij}\mathbf{g}^i \otimes \mathbf{g}^j \,, \tag{2.35}$$

where  $e_{ij}$  is the covariant strain components,  $\mathbf{g}^i$  and  $\mathbf{g}^j$  are the contravariant base vectors. We use the notation  $\begin{pmatrix} {}^0\mathbf{g}^i \otimes {}^0\mathbf{g}^j \end{pmatrix}$ , to indicate the dyadic tensorial product between the two contravariant base vectors. In Equation (2.35),  $e_{ii} = 0$  because the shell thickness is constant. From the kinematic relations between strain components and displacements, the covariant strain components are

$$e_{ij} = \frac{1}{2} \left( \mathbf{g}_i \cdot \frac{\partial \mathbf{u}}{\partial r_j} + \mathbf{g}_j \cdot \frac{\partial \mathbf{u}}{\partial r_i} \right) = \mathbf{B}_{ij} \mathbf{U}$$
(2.36)

with

$$\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & v_1 & \cdots & w_n & \alpha_1 & \cdots & \alpha_n & \beta_1 & \cdots & \beta_n \end{bmatrix}_{5n\times 1}^{\mathrm{T}}.$$
 (2.37)

The complete strain tensor is then written as

$$\mathbf{e} = e_{ij}\mathbf{g}^i \otimes \mathbf{g}^j = \left(\mathbf{B}_{ij}\mathbf{g}^i \otimes \mathbf{g}^j\right)\mathbf{U}, \qquad (2.38)$$

where the strain matrix **e** contains all six strain components ( $\varepsilon_{xx}$ ,  $\varepsilon_{yy}$ ,  $\varepsilon_{zz}$ ,  $\varepsilon_{xy}$ ,  $\varepsilon_{yz}$ ,  $\varepsilon_{zx}$ ) in the global Cartesian coordinate system and the  $\mathbf{g}^{i}$  are already mentioned in Equation (2.26). The strain-displacement matrix  $\hat{\mathbf{B}}$  of the shell element is constructed as

$$\tilde{\mathbf{e}} = \hat{\mathbf{B}}\mathbf{U}, \qquad (2.39)$$
where  $\tilde{\mathbf{e}}$  is  $\begin{bmatrix} \varepsilon_{xx} & \varepsilon_{yy} & \varepsilon_{zz} & 2\varepsilon_{xy} & 2\varepsilon_{yz} & 2\varepsilon_{zx} \end{bmatrix}^{\mathrm{T}}$ .

In order to apply the plane stress assumption, that is, the stress normal to the surface should be zero, let us introduce the local Cartesian shell-aligned coordinate system,

$$\mathbf{e}_{\overline{r}} = \frac{\mathbf{g}^1 \times \mathbf{g}^3}{\|\mathbf{g}^1 \times \mathbf{g}^3\|}, \quad \mathbf{e}_{\overline{s}} = \frac{\mathbf{g}^3 \times \mathbf{e}_{\overline{r}}}{\|\mathbf{g}^3 \times \mathbf{e}_{\overline{r}}\|}, \quad \mathbf{e}_t = \frac{\mathbf{g}^3}{\|\mathbf{g}^3\|}.$$
(2.40)

The strain in the local coordinate system  $(\mathbf{e}_{\overline{r}}, \mathbf{e}_{\overline{s}}, \mathbf{e}_{t})$  is then given

$$\tilde{\mathbf{e}}^* = \mathbf{Q}\hat{\mathbf{B}}\mathbf{U} = \mathbf{B}^*\mathbf{U} \,, \tag{2.41}$$

in which **Q** represents a matrix that transforms the strain in the global Cartesian system to the local Cartesian system. The elements of the matrix **Q** are obtained from the direction cosines of the local base vectors  $(\mathbf{e}_{\overline{r}}, \mathbf{e}_{\overline{s}}, \mathbf{e}_{t})$ ,

$$\mathbf{Q} = \begin{bmatrix} l_1^2 & m_1^2 & n_1^2 & l_1m_1 & m_1n_1 & n_1l_1 \\ l_2^2 & m_2^2 & n_2^2 & l_2m_2 & m_2n_2 & n_2l_2 \\ l_3^2 & m_2^2 & n_3^2 & l_3m_3 & m_3n_3 & n_3l_3 \\ 2l_1l_2 & 2m_1m_2 & 2n_1n_2 & l_1m_2 + l_2m_1 & m_1n_2 + m_2n_1 & n_1l_2 + n_2l_1 \\ 2l_2l_3 & 2m_2m_3 & 2n_2n_3 & l_2m_3 + l_3m_2 & m_2n_3 + m_3n_2 & n_2l_3 + n_3l_2 \\ 2l_3l_1 & 2m_3m_1 & 2n_3n_1 & l_3m_1 + l_1m_3 & m_3n_1 + m_1n_3 & n_3l_1 + n_1l_3 \end{bmatrix}$$
(2.42)

with

$$l_1 = (\mathbf{e}_{\bar{r}})_1, \ m_1 = (\mathbf{e}_{\bar{r}})_2, \ n_1 = (\mathbf{e}_{\bar{r}})_3,$$
 (2.43)

$$l_2 = (\mathbf{e}_{\bar{s}})_1, \ m_2 = (\mathbf{e}_{\bar{s}})_2, \ n_2 = (\mathbf{e}_{\bar{s}})_3,$$
 (2.44)

$$l_3 = (\mathbf{e}_t)_1, \ m_3 = (\mathbf{e}_t)_2, \ n_3 = (\mathbf{e}_t)_3.$$
 (2.45)

The stress-strain law containing the plane-stress assumption, that is the stress normal to the shell surface is zero, is given by

where k is a shear correction factor which is to attain results consistent with classical bending theory. In Equation (2.46), this amounts to multiplying the transverse shearing moduli by k = 1.

# 2.2.2 The MITC (Mixed Interpolation of Tensorial Components) Approaches

The MITC (Mixed Interpolation of Tensorial Components) approach was originally proposed a 4-node shell element, MITC4, by Dvorkin and Bathe [18, 19] as a solution for the transverse shear locking problem that does not incorporate numerical drawbacks. Later, this method extended for the high order quadrilateral and the triangular shell elements such as MITC3, MITC6, MITC8, MITC9 and MITC16 [21, 23]. In this section, the MITC formulations of the continuum mechanics based shell finite elements are briefly reviewed. Again, the covariant strain component is as follows:

$$e_{ij} = \frac{1}{2} (\mathbf{g}_i \cdot \mathbf{u}_{,j} + \mathbf{g}_j \cdot \mathbf{u}_{,i}), \qquad (2.47)$$

where

$$\mathbf{g}_i = \frac{\partial \mathbf{x}}{\partial r_i}, \quad \mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_i} \quad \text{with} \quad r_1 = r, \quad r_2 = s, \quad r_3 = t.$$
 (2.48)

Now let us define a set of the co-called tying points  $k = 1, ..., n_{ij}$  on the shell midsurface with coordinate  $(r_k, s_k)$ , and define the assumed covariant strain components  $e_{ij}^{AS}$  as

$$e_{ij}^{AS}(r,s,t) = \sum_{k=1}^{n_{ij}} h_{ij}^{k}(r,s) e_{ij} \Big|_{(r_{ij}^{k}, s_{ij}^{k}, t)}, \qquad (2.49)$$

where  $n_{ij}$  is the number of tying points for the assumed covariant strain component  $e_{ij}^{AS}$ , and  $h_{ij}^{k}$  are the assumed interpolation functions satisfying

$$h_{ij}^{k}(r_{ij}^{l}, s_{ij}^{l}) = \delta_{kl}, \ l = 1, \dots, n_{ij}$$
 (2.50)

for the covariant strain component  $e_{ij}$ . It is noted that this tying procedure is carried out on the elemental level for each individual element. The covariant strain in terms of the nodal displacement is obtained by

$$\boldsymbol{e}_{ij} = \mathbf{B}_{ij} \mathbf{U} \,, \tag{2.51}$$

where  $\mathbf{B}$  is the strain-displacement matrix and  $\mathbf{U}$  is the nodal displacement vector. Hence the assumed covariant strain components are rewritten as

$$e_{ij}^{AS} = \left[\sum_{k=1}^{n_{ij}} h_{ij}^{k}(r,s) \mathbf{B}_{ij}\Big|_{(\mathbf{r}_{ij}^{k},\mathbf{s}_{ij}^{k},t)}\right] \mathbf{U} = \mathbf{B}_{ij}^{AS} \mathbf{U}.$$
(2.52)

After applying the proper stress-strain law including the shell assumption, the element stiffness matrix is constructed in the same manner as the displacement based shell element.



Figure 2.8. MITC4 shell finite element in natural coordinate system and its tying points.

Using the interpolation and tying position shown in Figure 2.8, the transverse shear components of the covariant strain are written by

$$e_{rt}^{AS} = \frac{1}{2}(1-s)e_{rt}^{(1)} + \frac{1}{2}(1+s)e_{rt}^{(2)}, \qquad (2.53)$$

$$e_{st}^{AS} = \frac{1}{2}(1-r)e_{st}^{(1)} + \frac{1}{2}(1+r)e_{st}^{(2)}.$$
(2.54)

This assumed transverse shear strain fields in Equation (2.53) are derived as follows:

$$e_{rt}^{AS} = a + br + cs + drs$$
 (2.55)

To construct constant strains along the bottom and top edges of the element by the given tying points, the following conditions should be satisfied, see **Figure 2.8**,

$$e_{rt}^{AS}(-1,-1) = e_{rt}^{(1)}, \quad e_{rt}^{AS}(1,-1) = e_{rt}^{(1)}, \quad (2.56)$$

$$e_{rt}^{AS}(-1,1) = e_{rt}^{(2)}, \quad e_{rt}^{AS}(1,1) = e_{rt}^{(2)}.$$
 (2.57)

From above conditions, the four linear equations are obtained by

$$a-b-c-d = e_{rt}^{(1)}, \ a+b-c-d = e_{rt}^{(1)},$$
 (2.58)

$$a-b+c-d=e_{rt}^{(2)}, \ a+b+c+d=e_{rt}^{(2)}.$$
 (2.59)

and the coefficients are

$$a = \frac{1}{2}(e_{rt}^{(1)} + e_{rt}^{(2)}), \quad c = \frac{1}{2}(e_{rt}^{(2)} - e_{rt}^{(1)}) \text{ and } c = d = 0.$$
 (2.60)

The coefficients for the r terms disappear since the transverse shear strain is constant for the r direction. Hence, substituting Equation (2.60) into Equation (2.55), the assumed transverse shear strain, that is the same to Equation (2.53), can be obtained.

# 2.2.2.2 MITC9 Method for the 9-Node Quadrilateral Shell Element



**Figure 2.9.** Strain interpolations and its tying positions of the MITC9 shell element (the  $e_{ss}^{AS}$  and  $e_{st}^{AS}$  components are interpolated in a symmetric manner);  $a = 1/\sqrt{3}$ ,  $b = \sqrt{3/5}$ , c = 1.

The MITC9 element has been studied in many publications [1, 21, 22, 26]. Figure 2.9 gives the strain interpolations and tying points used for the MITC9 method in which the covariant strain component fields for the inplane actions are interpolated and tied to the also interpolated displacement field. The assumed transverse shear strain fields for the MITC9 can be derived as the same procedures of the MITC4 method. For the MITC9, the strain components  $e_{rr}$ ,  $e_{ss}$ ,  $e_{rt}$  and  $e_{st}$  have six tying points and in-plane shear strain component  $e_{rs}$  is interpolated based on four tying points. This approach takes care of both membrane and transverse shearing locking problems. The stiffness matrix of the element is then formed based on these interpolated strain components and full integration is used. The element does not present any spurious energy modes. In view of the more complicated strain interpolation and full integration scheme, the MITC9 is a more computationally expensive element, but it is accurate and fairly insensitive to element deformations. The MITC9 shell element is known to satisfy the ellipticity and consistency conditions and to show good convergence behaviors [1, 21, 22, 26].

# $s_{1} \rightarrow c_{r} \rightarrow c_{r$

#### 2.2.2.3 MITC3 Method for the 3-Node Triangular Shell Element

Figure 2.10. Transverse shear strain tying positions of the 3-node MITC triangular shell element with the constant transverse shear strain along its edges;  $r_1 = s_1 = 1/2$ .

Lee and Bathe [23] proposed the MITC3 shell element which satisfies spatially isotropic condition. Since the geometry of the 3-node triangular shell element is always flat, only the mixed (assumed) interpolation for the transverse shear strains are used. The tying and interpolation schemes are shown in **Figure 2.10** and its assumed transverse shear components are obtained by

$$e_{rt}^{AS} = e_{rt}^{(1)} + cs , \qquad (2.61)$$

$$e_{st}^{AS} = e_{st}^{(2)} - cr , \qquad (2.62)$$

where  $c = e_{st}^{(2)} - e_{rt}^{(1)} - e_{st}^{(3)} + e_{rt}^{(3)}$  and, at tying points,  $e_{rt}^{(n)}$  and  $e_{st}^{(n)}$  are calculated from Equation (2.47), see **Figure 2.10**.

# 2.2.2.4 MITC6 Method for the 6-Node Triangular Shell Element



 $r_2 = s_2 = 1/2 + 1/2\sqrt{3}$  and  $r_3 = s_3 = 1/3$ .

For the 6-node shell element, in-plane strains are also assumed to avoid the membrane locking. The assumed in-plane shear strain component  $e_{rs}^{AS}$  is obtained as follows [23]:

$$e_{rs}^{AS} = \frac{1}{2} \left( e_{rr}^{AS} + e_{ss}^{AS} \right) - e_{qq}^{AS} .$$
(2.63)

Figure 2.11 shows the tying points corresponding to each normal strain. We assumed the starting polynomials

$$e_{rr}^{AS} = a_1 + b_1 r + c_1 s , \qquad (2.64)$$

$$e_{ss}^{AS} = a_2 + b_2 r + c_2 s , \qquad (2.65)$$

$$e_{qq}^{AS} = a_3 + b_3 r + c_3 (1 - r - s), \qquad (2.66)$$

and have

$$a_{1} = \tilde{m}_{rr}^{(1)} - \tilde{l}_{rr}^{(1)}, \quad b_{1} = 2\tilde{l}_{rr}^{(1)}, \quad c_{1} = \sqrt{3} \left( e_{crr}^{(1)} - a_{1} - b_{1}r_{1} \right), \tag{2.67}$$

$$a_{1} = \tilde{m}_{ss}^{(2)} - \tilde{l}_{ss}^{(2)}, \quad b_{2} = \sqrt{3} \left( e_{css}^{(2)} - a_{2} - c_{2}s_{1} \right), \quad c_{2} = 2\tilde{l}_{ss}^{(2)}, \quad (2.68)$$

$$a_{3} = \tilde{m}_{qq}^{(3)} - \tilde{l}_{qq}^{(3)}, \quad b_{3} = -2\tilde{l}_{qq}^{(3)}, \quad c_{3} = \sqrt{3} \left( e_{cqq}^{(3)} - a_{3} - b_{3}r_{1} \right), \quad (2.69)$$

where

$$\tilde{m}_{jj}^{(i)} = \frac{1}{2} \left( e_{1jj}^{(i)} + e_{2jj}^{(i)} \right), \quad \tilde{l}_{jj}^{(i)} = \frac{\sqrt{3}}{2} \left( e_{2jj}^{(i)} + e_{1jj}^{(i)} \right) \quad \text{with} \quad j = r, s, q \quad \text{for} \quad i = 1, 2, 3.$$
(2.70)

Consequently, the isotropic in-plane strain field is obtained and the interpolation function for the in-plane shear strain  $e_{rs}^{AS}$  is immediately given by Equation (2.63). For this MITC6 triangular shell element, linear transverse shear strains along edges are assumed as

$$e_{rt}^{AS} = a_1 + b_1 r + c_1 s + d_1 r s + e_1 r^2 + f_1 s^2, \qquad (2.71)$$

$$e_{st}^{AS} = a_2 + b_2 r + c_2 s + d_2 r s + e_2 r^2 + f_2 s^2$$
(2.72)

and have

$$a_1 = \tilde{m}_{rt}^{(1)} - \tilde{l}_{rt}^{(1)}, \quad b_1 = 2\tilde{l}_{rt}^{(1)}, \quad e_1 = 0,$$
 (2.73)

$$a_2 = \tilde{m}_{st}^{(2)} - \tilde{l}_{st}^{(2)}, \ c_2 = 2\tilde{l}_{st}^{(2)}, \ f_2 = 0,$$
 (2.74)

$$c_1 = 6e_{crt} - 3e_{cst} + 2\tilde{m}_{st}^{(3)} - 2\tilde{m}_{rt}^{(3)} - 4a_1 - b_1 + a_2, \qquad (2.75)$$

$$b_2 = -3e_{crt} + 6e_{cst} - 2\tilde{m}_{st}^{(3)} + 2\tilde{m}_{rt}^{(3)} + a_1 - 4a_2 - c_2, \qquad (2.76)$$

$$e_{2} = 3e_{crt} - 6e_{cst} + 3\tilde{m}_{st}^{(3)} - \tilde{l}_{st}^{(3)} - 3\tilde{m}_{rt}^{(3)} + \tilde{l}_{rt}^{(3)} + b_{1} + 3a_{2} + c_{2}, \qquad (2.77)$$

$$f_{1} = -6e_{crt} + 3e_{cst} - 3\tilde{m}_{st}^{(3)} - \tilde{l}_{st}^{(3)} + 3\tilde{m}_{rt}^{(3)} + \tilde{l}_{rt}^{(3)} + 3a_{1} + b_{1} + c_{2}, \qquad (2.78)$$

$$d_{1} = -e_{2}, \quad d_{2} = -f_{1}, \qquad (2.79)$$

$$f_1 = -6e_{crt} + 3e_{cst} - 3\tilde{m}_{st}^{(3)} - \tilde{l}_{st}^{(3)} + 3\tilde{m}_{rt}^{(3)} + \tilde{l}_{rt}^{(3)} + 3a_1 + b_1 + c_2, \qquad (2.78)$$

$$d_1 = -e_2, \quad d_2 = -f_1, \tag{2.79}$$

where

$$\tilde{m}_{ji}^{(i)} = \frac{1}{2} \left( e_{1jt}^{(i)} + e_{2jt}^{(i)} \right), \quad \tilde{l}_{ji}^{(i)} = \frac{\sqrt{3}}{2} \left( e_{2jt}^{(i)} + e_{1jt}^{(i)} \right) \quad \text{with} \quad j = r, s \quad \text{for} \quad i = 1, 2, 3 \tag{2.80}$$

The formulation of the MITC6 shell element given here represents the peculiar unstable behaviors reported in Reference [24]. Kim and Bathe [25] improved the MITC6 shell element which does not show the instable sometimes observed with the MITC6 shell element given here.

# 2.3 PU (Partition of Unity) Approximation

Partition of unity approximations have unique features for *p*-adaptivity and local refinement without any traditional local mesh refinement of the problem domain. Some of the recent developments of the methods associated with the partition of unity approximation are reviewed in this section.

#### 2.3.1 Mesh Free Methods

The key feature of the meshfree methods is that they do not need a mesh to discretize the domain considered. In simulations where the material can move around or where large deformations can occur, the connectivity of the mesh can be difficult to maintain without introducing error into the simulation. Meshfree methods are an excellent approach to solve these problems. Hence, there has been much interest in these methods in recent years. Furthermore, meshfree approximations are usually smoother than the finite element interpolations and the results from the meshfree approximations are more accurate. The origin of meshfree approach can be trace back to the SPH (Smooth Particle Hydrodynamics) proposed by Lucy [73]. Presently, a huge amount of literature on meshfree methods have been published. Some of the important works in the meshfree method include the DEM (Diffuse Element Method) by Nayroles and Touzot [74], EFG (Element Free Galerkin) method by Belytschko et al. [75], RKPM (Reproducing Kernel Particle Method) by Liu et al. [76], PIM (Point Interpolation Method) by Liu and Gu [77], MLPG (Meshless Local Petrov-Galerkin) method by Atluri and Zhu [78], LBIE (Local Boundary Integral Equation) method by Zhu et al. [79], and LPIM (Local Point Interpolation Method) by Liu and Gu [80], LoKrigin (Local Kriging) method by Lam and Wang [81], MLNNI (Meshfree Local Natural Neighbour Interpolation) method by Yongchang and Hehua [82] and NEM (Natural Element Method) by Braun and Sambridge [83], and so forth.

Although the meshfree methods are free from the drawbacks of finite element method, they have also fatal disadvantages. For instance, the meshfree method possess the lack of Kronecker-delta property of shape functions which make it rather cumbersome to implement the essential boundary conditions. Furthermore, the computational cost of the meshfree methods are in general more expensive than that of the finite element methods due to the use of MLS (Moving Least Square) approximation. Choice of an appropriate order of numerical integration influences the convergence of numerical solutions of meshfree methods. Unfortunately, the nodal shape functions of meshfree methods, such as MLS, are highly complex in nature and this leads to difficulty evaluating an accurate numerical integration [84].

# **SINCE 1971**

#### 2.3.2 Hybrid Methods

As a result, there have been tremendous efforts in recent years to develop hybrid methods combining the finite element methods with meshfree methods. The aim of these methods is to incorporating the strengths of both the finite element method and meshfree methods while avoiding their weaknesses. Examples of such efforts include combining the FEM (Finite Element Method) with EFG (Element Free Galerkin) [85, 86] and coupling the FEM and BEM (Boundary Element Method) with MLPG method [87]. In these methods, the domain of the problem is usually divided into two sub-domains which are modelled by the FEM/BEM and meshfree methods, respectively. Other approaches, such as hierarchical mixed approximation method proposed by Huerta and Fernandez [88] and coupling of FE (Finite Element) method and EFG method using collocation approach developed by Xiao and Dhanasekar [89] have also been presented. The coupled finite element method with meshfree method offers significant advantages in reducing the computational time of the

meshfree methods and imposing the essential boundary conditions easily. Hao et al. [90] presented a new method called the MPFEM (Moving Particle Finite Element Method) which provides continuity of both the approximated solution and its gradient. The MPFEM do not require any treatment for imposing essential boundary conditions. Based on the similar concept of the MPFEM, Liu et al. [91] developed the RKEM (Reproducing Kernel Element Method) by combining the virtues of finite element approximations and reproducing kernel particle approximations. Two distinguished features of RKEM are: the arbitrarily high order smoothness and the interpolation property of the shape functions. These properties are desirable especially in solving Galerkin weak forms of higher order partial differential equations and in treating Dirichlet boundary conditions.

#### 2.3.3 Partition of Unity Based Finite Element Methods

Another type of hybrid methods called PU (Partition of Unity) based finite element methods has been proposed in recent years. The partition of unity based finite elements have been attracted much interest from researchers in computational solid mechanics since they offer several advantages over the conventional finite element method. The feature of the partition of unity based finite element method is the use of the partition of unity approximation is constructed by the partition of unity function and local approximation function that can be defined by user. A free choice of local approximation function allows flexibility for modelling complicated problems and the construction of high order approximations without the addition of extra nodes. The displacement interpolation of the partition of unity based finite element is represented by

$$u_{h}(x) = \sum_{i \in I} h_{i}u_{i} + \sum_{i \in I} h_{i}\sum_{k} \varphi_{k}^{P_{i}}a_{i(k)} , \qquad (2.81)$$

in which  $\sum_{i=1}^{N} h_i(x) \equiv 1$  form the partition of unity,  $\varphi_k^{\mathbf{P}_i}$  is the user-defined local function on cover  $\mathbf{P}_i$  which is composed of elements surrounding node *i*, and  $a_{i(k)}$  are the additional degrees of freedom at node *i*. The concept of partition of unity approximation was established in the PUM (Partition of Unity Method) [33] and PUFEM (Partition of Unity Finite Element Method) [34] proposed by Babuška and Melenk. The similar idea to the partition of unity method was also introduced and extensively investigated in the *hp* clouds method by Duarte and Oden [35, 36], the GFEM (Generalized Finite Element Method) by Strouboulis et al. [37, 38] and Duarte et al. [39, 40], and the partition of unity-based hierarchical finite element method by Taylor et al. [41]. The similar partition of unity approximation can also be found, earlier, in the MM (Manifold Method) proposed by Shi [92]. In the MM, the partition of unity is the finite element shape function and the local function is called cover function. Recently, Jeon et al. [28] proposed a 3-node shell finite element enriched by interpolation covers based on the MITC method. The proposed shell element shows the good convergence behaviors in the analysis of various shell problems, even when distorted meshes are used.

The major disadvantage of the partition of unity based finite element methods is the linear dependence problem which occurs when both the partition of unity functions and the local functions are taken as explicit polynomials [33, 34, 93]. In order to avoid the linear dependence problem, Oden et al. [36] suggested excluding the space spanned by the terms of finite element shape functions from that of the local approximation functions. The mapped quadrilateral shape functions were used in the work of Strouboulis et al. [37, 38], but they could not eliminate the linear dependencies completely. Tian et al. [94] studied some effective approaches to eliminate the linear dependency problems. These approaches include suppressing the additional unknown degrees of freedom, using constant local functions at the boundary nodes, using triangular mesh around quadrilateral mesh, and deleting the polynomial terms included in the span of the partition of unity function, which was first suggested by Oden et al. [36]. A recent progress on this aspect is the SGFEM (Stable Generalized Finite Element Method) by Babuška and Banerjee [95], which is aiming to improve the conditioning property of the GFEM (Generalized Finite Element Method). The basic idea of the SGFEM is to use a modified local function. Rajendran et al. [84, 96] proposed PU-based FE-meshfree element wherein the FE shape functions are used for partition of unity, and the least-square PIM (Point Interpolation Method) shape function are used for local approximation. With this choice, the proposed PU-based FE-meshfree element is free of the linear dependence problem. Cai et al. [97] suggested that the local approximation at a boundary node is constructed by a modified least-squares approach and that at an inner node using a polynomial basis. These dually constructed local approximation avoid the linear dependency problems.



# Chapter 3. A Partition of Unity Based 3-Node Triangular Shell Element

In this chapter, A new scheme to the partition of unity based 3-node triangular shell finite element within the MITC method (also called hereafter enriched MITC3) is presented. The MITC method is used for the standard and enriched displacement interpolations. The partition of unity based 3-node shell finite element not only captures higher gradients but also decreases inter-elemental stress jumps. In particular, the partition of unity approach increases solution accuracy without any traditional local mesh refinement. Convergence studies considering a fully clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems demonstrate the good predictive capability of the enriched MITC3 shell finite element, even when distorted meshes are used. We evaluate the effectiveness of the method, and also illustrate the use of the enrichment scheme applied only locally through the solution of two additional shell problems: a shaft-shaft interaction problem and a monster shell problem.

# 3.1 The Finite Element Method Enriched by Interpolation Covers

Enriching the finite element procedure is in principle, and theoretically, straightforward but difficulties are encountered in obtaining effective schemes. To introduce the basic procedure for the enrichment scheme considered here, let us briefly consider in this section a two-dimensional analysis problem.



**Figure 3.1.** Description of sub-domain for enriched over interpolations; (a) usual interpolation function, (b) cover region or elements affected by the interpolation cover, and (c) an element.

Let  $\mathbf{Q}^n = {\mathbf{x}_i}_{i=1}^n$  be a set of *n* nodal point position vectors  $\mathbf{x}_i = [x_i \ y_i]^T \in \Omega$ , and let  ${\lambda_h} = {\psi^m}_{m=1}^q$  be a family of *q* triangles generated by  $\mathbf{Q}^n$ . The triangles correspond to the domain  $\Omega$  in

which we seek the solution variable u

$$\bigcup_{m=1}^{q} \psi^m = \Omega .$$
 (3.1)

The triangles do not overlap, that is,  $\psi^{j} \cap \psi^{k} = \emptyset$  for  $j \neq k$ . Figure 3.1 shows the piecewise interpolation function  $h_{i}(x, y)$  used in the solution. Let  $C_{i}$  be the support domain of  $h_{i}$ , i.e.  $C_{i} = \operatorname{supp}(h_{i})$ ,  $\forall i = 1, ..., N$ , which we call the cover region. Hence the cover region  $C_{i}$  corresponds to the union of elements attached to the node *i*, see Figure 3.1(b). For each  $\psi^{m}$ , let  $i_{c}(m)$  be the set of cover indices defined by

$$i_c(m) = \{i : C_i \cap \psi^m \neq \emptyset\}.$$
(3.2)

In **Figure 3.1**, the 3-node triangular element m coincides with the overlapped region of the three cover regions  $C_i$ ,  $C_j$  and  $C_k$  and hence  $i_c(m) = \{i, j, k\}$ . To enrich the standard finite element interpolation for the solution variable u, we use interpolation cover functions

$$\Phi_i^p[u] = \overline{u}_i + [\xi_i \ \eta_i \ \xi_i^2 \ \xi_i \eta_i \ \eta_i^2 \cdots \eta_i^p] \hat{\mathbf{u}}_i \quad \text{with} \ \xi_i = \frac{(x - x_i)}{\chi_i}, \ \eta_i = \frac{(y - y_i)}{\chi_i}, \tag{3.3}$$

0-

where  $\overline{u}_i$  is the standard nodal point variable,  $\hat{\mathbf{u}}_i = [\hat{u}_i^{\xi} \ \hat{u}_i^{\eta} \ \hat{u}_i^{\xi^2} \ \hat{u}_i^{\xi\eta} \ \hat{u}_i^{\eta^2} \dots \hat{u}_i^{\eta^p}]^{\mathrm{T}}$  lists the additional degrees of freedom for the cover region, p is the order of the complete polynomial used, and  $\chi_i$  is the diameter of the largest finite element sharing the node i. The use of  $\chi_i$  can improve the conditioning of the coefficient matrix.

 $u = \sum_{m=1}^{q} \sum_{i \in i_c(m)} h_i \Phi_i^p[u] = \sum_{m=1}^{q} \left( \sum_{i \in i_c(m)} h_i \overline{u}_i + \sum_{i \in i_c(m)} \mathbf{H}_i \hat{\mathbf{u}}_i \right)$ 

The enriched approximation for the solution variable is then given by

with

$$\mathbf{H}_{i} = \boldsymbol{h}_{i} \left[ \boldsymbol{\xi}_{i} \ \boldsymbol{\eta}_{i} \ \boldsymbol{\xi}_{i}^{2} \ \boldsymbol{\xi}_{i} \boldsymbol{\eta}_{i} \ \boldsymbol{\eta}_{i}^{2} \cdots \boldsymbol{\eta}_{i}^{p} \right].$$
(3.4)

Considering Equation (3.4), the enriched cover approximation consists of the standard finite element interpolation plus additional higher order terms. To obtain a well-conditioned stiffness matrix, the local coordinate systems  $(\xi_i, \eta_i)$  instead of the global coordinates (x, y) are used. Also, not only  $\overline{u}_i = 0$  but also  $\hat{u}_i = 0$  are always restricted (although not mentioned in the example solutions) when imposing the essential boundary conditions at the node i.

The basic properties of the finite element method enriched by interpolation covers were studied for general 2D and 3D finite element analyses in Reference. [98]. These basic properties pertain also to the finite element analysis of shells.

# 3.2 The Enriched MITC3 Shell Finite Element

In this section, the displacement interpolation of the MITC3 shell finite element enriched by the linear interpolation cover is presented. Therefore, the resulting enriched displacement interpolation can give quadratic convergence. Also, the assumed covariant strain fields used for the enriched MITC3 shell finite element are proposed in this section.

## 3.2.1 Enriched Displacement Interpolation

The geometry of the 3-node continuum mechanics based triangular shell finite element is interpolated using [23, 99]

$$\mathbf{x}(r,s,t) = \sum_{i=1}^{3} h_i(r,s) \mathbf{x}_i + \frac{t}{2} \sum_{i=1}^{3} a_i h_i(r,s) \mathbf{V}_n^i$$
  
with  $h_1 = r$ ,  $h_2 = s$ ,  $h_3 = 1 - r - s$ , (3.5)

where r, s, and t are natural coordinates,  $h_i$  is the two-dimensional interpolation function corresponding to node i,  $\mathbf{x}_i$  is the position vector of node i in the global Cartesian coordinate system, and  $a_i$ ,  $\mathbf{V}_n^i$ denote the shell thickness and the director vector at node i, respectively, see Figure 3.2.



Figure 3.2. A 3-node triangular continuum mechanics based shell finite element.

The standard displacement interpolation of the shell element is given by

$$\overline{\mathbf{u}} = \sum_{i=1}^{3} h_i \overline{\mathbf{u}}_i + \sum_{i=1}^{3} \frac{t}{2} a_i h_i \left( -\mathbf{V}_2^i \overline{\alpha}_i + \mathbf{V}_1^i \overline{\beta}_i \right),$$
(3.6)

in which  $\overline{\mathbf{u}}_i = [\overline{u}_i \ \overline{v}_i \ \overline{w}_i]^{\mathrm{T}}$  is the nodal displacement vector in the global Cartesian coordinate system,  $\mathbf{V}_1^i = [V_{1x}^i \ V_{1y}^i \ V_{1z}^i]^{\mathrm{T}}$  and  $\mathbf{V}_2^i = [V_{2x}^i \ V_{2y}^i \ V_{2z}^i]^{\mathrm{T}}$  are unit vectors orthogonal to  $\mathbf{V}_n^i$  and to each other, and  $\overline{\alpha}_i$ and  $\overline{\beta}_i$  are the rotations of the director vector  $\mathbf{V}_n^i$  about  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$  at node *i*.

The linear interpolation cover, that is, the first order degree of polynomial bases is used to enrich the displacement interpolation in Equation (3.6). The enriched displacement interpolation for the 3-node triangular shell finite element is given by

$$\mathbf{u} = \overline{\mathbf{u}} + \hat{\mathbf{u}} \tag{3.7}$$

with 
$$\hat{\mathbf{u}} = \sum_{i=1}^{3} \mathbf{H}_{i} \hat{\mathbf{u}}_{i} + \sum_{i=1}^{3} \frac{t}{2} a_{i} \mathbf{H}_{i} \left( -\mathbf{D}_{2}^{i} \hat{\boldsymbol{\alpha}}_{i} + \mathbf{D}_{1}^{i} \hat{\boldsymbol{\beta}}_{i} \right),$$
 (3.8)

in which  $\hat{\mathbf{u}}_i = [\hat{u}_i^{\xi} \ \hat{u}_i^{\eta} | \hat{v}_i^{\xi} \ \hat{v}_i^{\eta} | \hat{w}_i^{\xi} \ \hat{w}_i^{\eta}]^{\mathrm{T}}$ ,  $\hat{\mathbf{a}}_i = [\hat{\alpha}_i^{\xi} \ \hat{\alpha}_i^{\eta}]^{\mathrm{T}}$  and  $\hat{\mathbf{\beta}}_i = [\hat{\beta}_i^{\xi} \ \hat{\beta}_i^{\eta}]^{\mathrm{T}}$  are unknown coefficient vectors for the displacements and rotations, and the  $\mathbf{H}_i$  are the linear cover interpolation matrices for the displacements and rotations

$$\mathbf{H}_{i} = h_{i} \begin{bmatrix} \xi_{i} & \eta_{i} & 0 & 0 & 0 & 0 \\ 0 & 0 & \xi_{i} & \eta_{i} & 0 & 0 \\ 0 & 0 & 0 & 0 & \xi_{i} & \eta_{i} \end{bmatrix}, \quad \mathbf{D}_{1}^{i} = \begin{bmatrix} V_{1x}^{i} & 0 \\ 0 & V_{1x}^{i} \\ V_{1y}^{i} & 0 \\ 0 & V_{1y}^{i} \\ V_{1z}^{i} & 0 \\ 0 & V_{1z}^{i} \end{bmatrix}, \text{ and } \quad \mathbf{D}_{2}^{i} = \begin{bmatrix} V_{2x}^{i} & 0 \\ 0 & V_{2x}^{i} \\ V_{2y}^{i} & 0 \\ 0 & V_{2y}^{i} \\ V_{2z}^{i} & 0 \\ 0 & V_{2z}^{i} \end{bmatrix}.$$
(3.9)

Note that the enriched displacement interpolation for **u** in Equations (3.7) consists of two parts: the standard linear term  $\overline{\mathbf{u}}$  and the additional quadratic term  $\hat{\mathbf{u}}$ .

# 3.2.2 Assumed Covariant Transverse Shear Strain Fields

The covariant strain components are directly obtained by

$$e_{ij} = \frac{1}{2} \Big( \mathbf{g}_i \cdot \mathbf{u}_{,j} + \mathbf{g}_j \cdot \mathbf{u}_{,i} \Big), \qquad (3.10)$$

where 
$$\mathbf{g}_i = \frac{\partial \mathbf{x}}{\partial r_i}$$
,  $\mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_i} = \frac{\partial (\overline{\mathbf{u}} + \hat{\mathbf{u}})}{\partial r_i}$  with  $r_1 = r$ ,  $r_2 = s$ ,  $r_3 = t$ .

Therefore, the enriched covariant strain components are also divided into two parts

$$e_{ij} = \overline{e}_{ij} + \hat{e}_{ij}$$
  
with  $\overline{e}_{ij} = \frac{1}{2} \left( \mathbf{g}_i \cdot \overline{\mathbf{u}}_{,j} + \mathbf{g}_j \cdot \overline{\mathbf{u}}_{,i} \right)$  and  $\hat{e}_{ij} = \frac{1}{2} \left( \mathbf{g}_i \cdot \hat{\mathbf{u}}_{,j} + \mathbf{g}_j \cdot \hat{\mathbf{u}}_{,i} \right),$  (3.11)

in which  $\overline{e}_{ij}$  and  $\hat{e}_{ij}$  correspond to the standard linear and additional quadratic displacement interpolations, respectively.

To alleviate the locking phenomenon, the MITC method for the covariant transverse shear strains is adopted. However, different assumed covariant transverse shear strain fields are employed for the standard and additional quadratic displacement interpolations. The assumed covariant transverse shear strain fields of the MITC3 and MITC6 shell elements are used for the strains  $\overline{e}_{ij}$  and  $\hat{e}_{ij}$ , respectively [23]. Note that, in the MITC6 shell element, the covariant membrane strains are also assumed to reduce membrane locking, but this treatment is not necessary and not used for the enriched MITC3 shell element due to its flat geometry.



**Figure 3.3.** Tying points for the covariant transverse shear strains of the enriched MITC3 shell finite element: (a) for the standard linear displacement interpolation;  $r_1 = s_1 = 1/2$ , and (b) for the additional quadratic displacement interpolation;  $r_1 = s_1 = 1/2 - 1/2\sqrt{3}$  and  $r_2 = s_2 = 1/2 + 1/2\sqrt{3}$ .

The assumed covariant transverse shear strain field used for the standard displacement interpolation is [23]

$$\overline{e}_{rt}^{AS} = \overline{e}_{rt}^{(1)} + cs , \quad \overline{e}_{st}^{AS} = \overline{e}_{st}^{(2)} - cr , \qquad (3.12)$$

where  $c = \overline{e}_{st}^{(2)} - \overline{e}_{rt}^{(1)} - \overline{e}_{st}^{(3)} + \overline{e}_{rt}^{(3)}$  and, at the tying points,  $\overline{e}_{rt}^{(n)}$  and  $\overline{e}_{st}^{(n)}$  are calculated from Equation (3.11), see Figure 3.3(a).

For the additional quadratic displacement interpolation, the assumed covariant transverse shear strain field are used.

$$\hat{e}_{rt}^{AS} = a_1 + b_1 r + c_1 s ,$$

$$\hat{e}_{st}^{AS} = a_2 + b_2 r + c_2 s$$
(3.13)

and the coefficients are

$$a_{1} = m_{rt}^{(1)} - l_{rt}^{(1)}, \quad b_{1} = 2l_{rt}^{(1)}, \quad a_{2} = m_{st}^{(2)} - l_{st}^{(2)}, \quad c_{2} = 2l_{st}^{(2)},$$

$$c_{1} = (a_{2} + c_{2} - a_{1}) - (m_{st}^{(3)} + l_{st}^{(3)} - m_{rt}^{(3)} - l_{rt}^{(3)}),$$

$$b_{2} = (a_{1} + b_{1} - a_{2}) + (m_{st}^{(3)} - l_{st}^{(3)} - m_{rt}^{(3)} + l_{rt}^{(3)})$$
(3.14)

with 
$$m_{jt}^{(i)} = \frac{1}{2} \left( \hat{e}_{1jt}^{(i)} + \hat{e}_{2jt}^{(i)} \right), \quad l_{jt}^{(i)} = \frac{\sqrt{3}}{2} \left( \hat{e}_{2jt}^{(i)} - \hat{e}_{1jt}^{(i)} \right) \quad \text{with} \quad j = r, s \quad \text{for} \quad i = 1, 2, 3,$$
 (3.15)

where  $\hat{e}_{1jt}^{(i)}$  and  $\hat{e}_{2jt}^{(i)}$  are calculated at the tying points in Figure 3.3(b).

Finally, the assumed covariant transverse shear strain fields for the enriched MITC3 shell element are obtained as

$$e_{jt}^{AS} = \overline{e}_{jt}^{AS} + \hat{e}_{jt}^{AS} = \mathbf{B}_{jt}^{AS} \mathbf{U} \quad \text{with} \quad j = r, s , \qquad (3.16)$$

in which  $\mathbf{B}_{jt}^{AS}$  is the covariant transverse shear strain-displacement matrix and  $\mathbf{U}$  is the vector that contains the degrees of freedom  $\mathbf{\bar{u}}_i$ ,  $\overline{\alpha}_i$ ,  $\overline{\beta}_i$  and the additional degrees of freedom  $\hat{\mathbf{u}}_i$ ,  $\hat{\mathbf{\alpha}}_i$ ,  $\hat{\mathbf{\beta}}_i$ . Note that other covariant components use only displacement based formulations and hence the scheme will not give spurious modes in membrane strains [24, 25].

Then, using the appropriate stress-strain matrix for shells, the element stiffness is constructed in the same manner as for the displacement-based shell element [1]. The 7-point Gauss integration is adopted to evaluate the stiffness matrix because the order of the enriched displacement interpolation is quadratic.

Since the cover interpolation is based on the existing nodes, the enriched displacement interpolation can be locally used assigning or not assigning interpolation covers in different regions. Without enrichment, the element is identical to the original MITC3 shell element.

The enriched MITC3 shell element passes the membrane, bending, and transverse shearing patch tests for arbitrary local enrichments, see Refs. [1, 18, 23] for the patch tests performed. Of course, in the tests, the nodal forces corresponding to not only the standard degrees of freedom ( $\bar{\mathbf{u}}_i$ ,  $\bar{\alpha}_i$ , and  $\bar{\beta}_i$ ) but also the additional degrees of freedom ( $\hat{\mathbf{u}}_i$ ,  $\hat{\alpha}_i$ , and  $\hat{\beta}_i$ ) must be applied [98].

#### 3.2.3 Basic Tests

The following basic tests are performed as a basic requirement to be satisfied for the new triangular shell elements.

## 3.2.3.1 Isotropic Element Test



The isotropic element is to test whether the element considered is indeed isotropic. This test is performed by analyzing the three same equilateral triangular elements with different numbering sequences as shown in **Figure 3.4**. To pass this test, exactly the same tip displacement should be obtained by the models for all possible tip force P.

## 3.2.3.2 Zero Energy Mode Test

This test is performed by counting the number of zero eigenvalues of the stiffness matrix of one unsupported shell finite element, which should be exactly six. We recommend that, when doing this test, various possible geometries should be taken into account. The considered element passes this test for certain geometry but may not pass the test for other geometries.

#### 3.2.3.3 Patch Test



Figure 3.5. Mesh used for the membrane and bending patch tests

The patch test has been widely used as a test for element convergence, despite its limitations for mixed formulations. In this thesis, numerical form of the patch test is used to merely assess the sensitivity of our element to geometric distortions. The mesh used for the patch test is shown in **Figure 3.5**. The minimum number of degrees of freedom is fixed to prevent rigid body motion and the nodal point forces which result in constant stress condition is considered. The constant stress field should be given by the patch models subjected membrane forces and bending forces, respectively. It is noted that nodal forces should properly applied to not only standard degrees of freedom but also additional degrees of freedom to calculated the constant stresses, see following Equation.

$$\mathbf{R} = \mathbf{R}_B + \mathbf{R}_S \tag{3.17}$$

with

$$\mathbf{R}_{B} = \sum_{m=1}^{e} \mathbf{R}_{B}^{(m)} = \sum_{m=1}^{e} \int_{\Omega^{(m)}} [\overline{\mathbf{H}}^{(m)} \ \mathbf{H}^{(m)}]^{\mathrm{T}} \mathbf{f}^{B} d\Omega , \qquad (3.18)$$

$$\mathbf{R}_{s} = \sum_{m=1}^{e} \int_{S_{f}^{(m)}} \left[ \overline{\mathbf{H}}^{s_{f}^{(m)}} \quad \mathbf{H}^{s_{f}^{(m)}} \right]^{\mathrm{T}} \mathbf{f}^{S_{f}} dS , \qquad (3.19)$$

where **R** is the load vector,  $\mathbf{f}^{B}$  is the body force,  $\mathbf{f}^{S_{f}}$  is the surface traction applied on  $S_{f}$  and  $\overline{\mathbf{H}}^{(m)}$  is the classical finite element interpolation matrix.

The results of the basic test are reported in **Table 3.1**. The MITC3, MITC6 and enriched MITC3 shell element pass all the basic patch tests.

 Table 3.1. Basic test results of the MITC3, MITC6 and enriched MITC3 triangular shell finite elements.

|                | Channel and Channe |             |            |         |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------|--|
| Flamant        | Isotropic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zero energy | Patch test |         |  |
| Element        | element test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mode test   | Membrane   | Bending |  |
| MITC3          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass        | Pass       | Pass    |  |
| MITC6a         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass        | Pass       | Pass    |  |
| MITC6b         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass        | Pass       | Pass    |  |
| Enriched MITC3 | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pass        | Pass       | Pass    |  |

# 3.3 Computational Efficiency

In this section, some important aspects of the computational efficiency when using the enriched element are studied. The standard 3- and 6-node shell elements (the MITC3 and MITC6 shell elements) and the enriched 3-node shell element (the enriched MITC3 shell element) are considered.



Figure 3.6. Meshes used and stiffness matrix structures: (a) and (d) for the 3-node shell element, (b) and (e) for the 6-node shell element, and (c) and (f) for the enriched 3-node shell elements. Non-zero entries are colored in black.

| · 한국과학기숙원 ·                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|
| Figure 3.6 shows the size and sparseness of the stiffness matrices when using the enriched 3-node             |
| shell finite element and the standard 3- and 6-node shell elements for the meshes. A simply supported square  |
| plate problem is considered. The meshes used are given in Figure 3.6(a), (b) and (c) when $N = 8$ . Since the |
| standard 3-node shell element is based on the linear displacement interpolation, and the 6-node and enriched  |
| 3-node shell elements are based on quadratic displacement interpolations, we use a twice finer mesh for the   |
| standard 3-node shell element.                                                                                |

Table 3.2. Detailed information on the stiffness matrices of the 3-, 6-, and enriched 3-node shell finite elements for the meshes shown in Figure 3.6.

|                  | Linear shell element  | Quadratic shell elements |                     |  |
|------------------|-----------------------|--------------------------|---------------------|--|
|                  | Standard 3-node       | Standard 6-node          | Enriched 3-node     |  |
| Elements         | 512 (2 <i>N</i> = 16) | 128 ( <i>N</i> = 8)      | 128 ( <i>N</i> = 8) |  |
| Nodes            | 289                   | 289                      | 81                  |  |
| DOFs             | 803                   | 803                      | 633                 |  |
| Non-zero entries | 15,313                | 24,581                   | 32,797              |  |
| Half-bandwidth   | 51                    | 100                      | 83                  |  |

The stiffness matrix entries for the simply supported square plate problem with for some equivalent mesh patterns are plotted in **Figure 3.6**(d), (e)-(f), where the non-zero entries are colored in black. The size of the stiffness matrices for the meshes used is  $803 \times 803$  for the 3- and 6-node shell elements and  $633 \times 633$  for the enriched 3-node shell element. The standard 3- and 6-node shell elements and the enriched 3-node shell element give 15,313, 24,581 and 32,797 non-zero entries in the matrices, respectively. Also, the matrix half-bandwidths are 51, 100 and 83 for the 3- and 6-node shell elements and the enriched 3-node shell element, respectively. **Table 3.2** lists the information regarding these cases.



Figure 3.7. The total number of degrees of freedom (DOFs) when increasing the number of element layers, N, along an edge p denotes the number of degrees of freedom per node, hence p = 3 for the simply supported plate problem.

The number of non-zero entries in the stiffness matrix for the enriched 3-node shell element is substantially larger than in the corresponding matrix for the 6-node shell element. This is due to the fact that the support of the higher order interpolation functions in the enriched 3-node shell element is larger than for the 3and 6-node shell elements. However, using the enriched 3-node shell element, all degrees of freedom are associated with vertex nodes which are shared by several elements and the assembled system of equations is in general smaller than when using the 6-node shell element where edge nodes are only shared by 2 elements. Therefore, the enriched 3-node shell element gives less equations and here also a smaller bandwidth than the 6-node shell element. This fact shows the effectiveness of the enriched 3-node shell element from a computational point of view. **Figure 3.7** shows how the number of nodal degrees of freedom increases as a function of the number of elements used in the meshing of **Figure 3.6**.

|    | Linear sh | Linear shell element |       | Quadratic shell elements |                 |       |                 |     |       |
|----|-----------|----------------------|-------|--------------------------|-----------------|-------|-----------------|-----|-------|
|    | Standard  | Standard 3-node      |       |                          | Standard 6-node |       | Enriched 3-node |     |       |
| Ν  | DOFs      | HB                   | Time  | DOFs                     | HB              | Time  | DOFs            | HB  | Time  |
| 4  | 211       | 27                   | 0.001 | 211                      | 52              | 0.001 | 177             | 47  | 0.001 |
| 8  | 803       | 51                   | 0.016 | 803                      | 100             | 0.016 | 633             | 83  | 0.016 |
| 16 | 3,139     | 99                   | 0.062 | 3,139                    | 196             | 0.125 | 2,409           | 155 | 0.062 |
| 32 | 12,419    | 195                  | 0.733 | 12,419                   | 388             | 1.591 | 9,417           | 199 | 1.045 |
| 64 | 49,411    | 387                  | 10.70 | 49,411                   | 772             | 23.88 | 37,257          | 587 | 15.49 |

**Table 3.3.** Solution times (in second) for solving the linear equations. The element meshes are  $2N \times 2N$  and  $N \times N$  for linear and quadratic shell elements, respectively. (DOFs: degrees of freedom, HB: half-bandwidth)

It is valuable to compare solution times required for the three shell finite elements considered. In all the cases, of course, symmetric stiffness matrices are generated. To obtain more insight into the computational efforts needed in the respective solutions, results are focused on the solution of the linear equations using direct Gauss elimination, in which the factorization of the stiffness matrices represents the major expense. To check computational times, a quad-core machine (Intel(R) Core i7-3770 CPU @ 3.40 GHz, 8 GB RAM, Windows 7 64bit) for all solution cases is used. **Table 3.3** shows the solution times for the simply supported square plate problem. As expected, the factorization time for the enriched 3-node shell element is much smaller than for the standard 6-node shell element.

국과학기술원

# 3.4 Convergence Studies

This section presents convergence studies on well-established problems for the enriched MITC3 shell element. The solutions can show at most quadratic convergence in the s-norm and the results are compared with those of the MITC3, MITC4, and MITC6 shell elements. Various problems are considered: a fully clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems using uniform and distorted meshes [23, 26, 99, 100].

The s-norm proposed by Hiller and Bathe [101] is used to measure the convergence of the finite element solutions. The s-norm is suitable to check whether the finite element solutions satisfy consistency and the inf-sup condition [27, 101-104], and is defined as follows

$$\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{s}^{2}=\int_{\Omega}\Delta\boldsymbol{\varepsilon}^{T}\Delta\boldsymbol{\tau}d\Omega,$$
(3.20)

where **u** is the exact solution,  $\mathbf{u}_h$  is the solution obtained using the finite element discretization,  $\boldsymbol{\epsilon}$  and  $\boldsymbol{\tau}$  are the strain and stress vectors, and

$$\Delta \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_h , \quad \Delta \boldsymbol{\tau} = \boldsymbol{\tau} - \boldsymbol{\tau}_h . \tag{3.21}$$

The theoretical convergence behavior can be estimated to be

$$\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{s}^{2}\cong ch^{k},\qquad(3.22)$$

in which *c* is a constant and *h* denotes the element size. If a shell element is uniformly optimal, the constant is independent of the shell thickness and *k* represents the optimal order of convergence, with k = 2 for the 3-node shell finite element, and k = 4 for the 6-node and the enriched 3-node shell elements.

Instead of the unknown exact solution, a reference finite element solution  $\mathbf{u}_{ref}$  calculated using a very fine mesh and a known reliable element can be used, hence Equation (3.20) becomes

$$\left\|\mathbf{u}_{ref} - \mathbf{u}_{h}\right\|_{s}^{2} = \int_{\Omega_{ref}} \Delta \boldsymbol{\varepsilon}^{T} \Delta \boldsymbol{\tau} d\Omega_{ref} \quad \text{with} \quad \Delta \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{ref} - \boldsymbol{\varepsilon}_{h} , \quad \Delta \boldsymbol{\tau} = \boldsymbol{\tau}_{ref} - \boldsymbol{\tau}_{h} .$$
(3.23)

To measure the convergence of the finite elements in the shell problems, the relative error  $E_h$  are used and expressed as

$$E_{h} = \frac{\left\| \mathbf{u}_{ref} - \mathbf{u}_{h} \right\|_{s}^{2}}{\left\| \mathbf{u}_{ref} \right\|_{s}^{2}}.$$
 (3.24)

The numerical procedure to calculate the s-norm for shell finite element solutions with general types of elements and general meshes is explained in detail in Reference [23]. In the use of Equation (3.24), it is very important to use accurate reference solutions calculated by a reliable shell finite element. In this study, we use well-converged reference solutions calculated using fine meshes of the MITC9 shell finite element. Of course, the MITC9 shell finite element is known to satisfy the ellipticity and consistency conditions and to show adequate convergence behavior, see Refs. [22, 26, 101].

The following sections presents the convergence curves of the MITC3, MITC4, MITC6 shell elements and the fully enriched MITC3 shell element to identify the performance of the enriched MITC3 shell element compared to other shell elements. Note that some convergence curves of the MITC3, MITC4, and MITC6 shell elements have been published before in Refs. [23, 99, 100].

3.4.1 Fully Clamped Square Plate Problem



**Figure 3.8.** Fully clamped square plate under uniform pressure (L = 1.0,  $E = 1.7472 \times 10^7$ , q = 1.0 and v = 0.3) with three different  $4 \times 4$  mesh patterns: (a) and (b) triangular mesh for the MITC3, MITC6 and enriched MITC6 shell elements, and (c) quadrilateral mesh for the MITC4 shell element.

<u> 가국과학기술원</u>

The plate problem shown in **Figure 3.8** is solved. A square plate of size  $2L \times 2L$  and constant thickness *t* is subjected to a uniform pressure load. Due to symmetry, only one quarter of the plate is modeled, with  $u_x = \theta_y = 0$  along BC,  $u_y = \theta_x = 0$  along DC, and  $u_x = u_y = u_z = \theta_x = \theta_y = 0$  along AB and AD [23, 99].



Figure 3.9. Distorted meshes used for the fully clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems when (a) N = 4 and (b) N = 8. The number of triangular elements for an  $N \times N$  mesh is  $2N^2$ .

The convergence behavior is studied not only using uniform meshes but also distorted meshes, as shown in **Figure 3.9**. When the  $N \times N$  distorted mesh is used, each edge is divided by the ratio  $L_1 : L_2 : L_3 : \dots L_N = 1 : 2 : 3 : \dots N$ , leading to quite distorted meshes. The reference solution is obtained with a uniform mesh of 96×96 MITC9 shell finite elements. For the MITC3 and MITC4 shell elements, N = 8, 16, 32 and 64 are used and for MITC6 shell element and the enriched MITC3 shell element, N = 4, 8, 16 and 32 are adopted. Note that in these  $N \times N$  meshes  $N^2$  MITC4 elements and  $2N^2$  triangular elements are used throughout the dissertation. Also, in the figures of results we consider the cases t/L = 1/100, 1/1,000 and 1/10,000 and use as the "element size" h = L/N. To fairly compare convergence behaviors among different shell elements, the equivalent element sizes 2h, h and 1.2h are used for the MITC3 and MITC4 shell elements, the MITC6 shell element and the enriched MITC3 shell element. When using these equivalent element sizes, the numbers of degrees of freedom are similar.



**Figure 3.10.** Convergence curves for the fully clamped square plate problem with uniform meshes. For triangular shell elements, the mesh pattern in Figure 3.8(a) is used. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

To identify the dependency of the convergence behavior on the MITC scheme chosen for the enriched

MITC3 shell element, the following three schemes are considered for the covariant transverse shear strain field of the additional quadratic displacement interpolation:

- No MITC scheme is used (denoted by DISP in **Figure 3.10**).
- The MITC6a scheme is used, for this scheme see Ref. [23].
- The MITC6 scheme in Equation (3.13) is used (referred to as MITC6b in Figure 3.10)

In all these cases, of course, the MITC3 scheme in Equation (3.12) is used for the assumed covariant transverse shear strain field of the standard linear displacement interpolation.

**Figure 3.10** shows the convergence curves of the original MITC3 shell element and the enriched MITC3 shell elements based on the different assumptions for the transverse shear strain fields. The enriched MITC3 shell element shows different solution accuracy highly depending on the assumed covariant transverse shear strain field used. When the assumed covariant transverse shear strain field of the MITC6 shell element is employed, an almost ideal convergence behavior is observed in this fully clamped square plate problem. Note that the other enriched MITC3 shell elements show an even worse convergence behavior than the original MITC3 shell element. Therefore, in the following sections, we only use the enriched MITC3 shell element based on the MITC6 scheme in Equation (3.13).



**Figure 3.11.** Convergence curves for the fully clamped square plate problem with uniform meshes. The solid and dotted lines correspond to the results obtained by the mesh patterns in Figure 3.8(a) and (b), respectively. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.



**Figure 3.12.** Convergence curves for the fully clamped square plate problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

Figure 3.11 and Figure 3.12 present the convergence curves for the fully clamped square plate problems using uniform and distorted meshes, respectively. The performance of the enriched MITC3 shell element is much better than the performance of the MITC3 and MITC6 shell elements. One reason is probably that the enrichments span over the cover regions and distortions within the regions are not as severe (are smoothed out) in comparison to not using covers. The MITC4 and enriched MITC3 shell finite elements show almost optimal convergence behaviors, even though the distorted meshes are used.



3.4.2 Cylindrical Shell Problem



Figure 3.13. Cylindrical shell problem ( $4 \times 4$  mesh, L = R = 1.0,  $E = 2.0 \times 10^5$ , v = 1/3 and  $p_0 = 1.0$ ).



A cylindrical shell with uniform thickness t, length 2L, and radius R is considered, as shown in **Figure 3.13**. The loading is a smoothly varying periodic pressure  $p(\theta)$  normal to the shell surface

$$p(\theta) = p_0 \cos(2\theta) . \tag{3.25}$$

The shell problem gives two different asymptotic behaviors depending on the boundary conditions at both ends: the bending-dominated behavior under free boundary conditions and the membrane-dominated behavior under clamped boundary conditions.

Using the symmetry of the problem, the region ABCD in Figure 3.13 is modeled. In the membranedominated case, the clamped boundary condition is imposed:  $u_x = \beta = 0$  along BC,  $u_y = \alpha = 0$  along DC  $u_z = \alpha = 0$  along AB, and  $u_x = u_y = u_z = \alpha = \beta = 0$  along AD. In the bending-dominated case, the free boundary condition is imposed:  $u_x = \beta = 0$  along BC,  $u_y = \alpha = 0$  along DC, and  $u_z = \alpha = 0$  along AB [23].

The reference solution is calculated using a mesh of  $96 \times 96$  MITC9 shell finite elements for both cases. The solutions using the MITC3, MITC4, MITC6 and enriched MITC3 shell elements are obtained with  $N \times N$  meshes (N = 8, 16, 32 and 64 for the MITC3 and MITC4 shell elements and N = 4, 8, 16, and 32 for the MITC6 and enriched MITC3 shell elements). The element size used in the figures is h = L/N. The distorted meshes used are generated as shown in **Figure 3.9**.


**Figure 3.14.** Convergence curves for the clamped cylindrical shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.



**Figure 3.15.** Convergence curves for the clamped cylindrical shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

Figure 3.14 and Figure 3.15 present the convergence behaviors for the clamped cylindrical shell problems with uniform and distorted meshes, respectively. All the shell finite elements considered show excellent convergence behavior with uniform and distorted meshes.



**Figure 3.16.** Convergence curves for the free cylindrical shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.



**Figure 3.17.** Convergence curves for the free cylindrical shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

**Figure 3.16** and **Figure 3.17** present the convergence curves for the free cylindrical shell problems obtained with uniform and distorted meshes, respectively. When distorted meshes are used, the solutions of the MITC3, MITC4, and MITC6 shell elements deteriorate as the shell thickness decreases, due to some locking. However, the enriched MITC3 shell element presents good convergence behavior even when using the distorted meshes.

## 3.4.3 Hyperboloid Shell Problem



**Figure 3.18.** Hyperboloid shell problem ( $E = 2.0 \times 10^{11}$ , v = 1/3 and  $p_0 = 1.0$ ). (a) Shell geometry and boundary conditions, (b) Graded mesh for the clamped case ( $8 \times 8$  mesh, t / L = 1/1,000), (c) Mesh for the free case ( $8 \times 8$  mesh).

The hyperboloid shell shown in **Figure 3.18** is considered, where the mid-surface of the shell structure is given by

$$x^{2} + y^{2} = 1 + y^{2}, \quad y \in [-1, 1].$$
 (3.26)

A smoothly varying periodic pressure is applied normal to the surface, as in Figure 3.13,

$$p(\theta) = p_0 \cos(2\theta), \qquad (3.27)$$

When both ends are clamped, a membrane-dominated problem is obtained, and when the ends are free, a bending-dominated problem is obtained. The bending-dominated hyperboloid shell problem is known to be difficult to solve [23, 99, 105].

Due to symmetry, the analyses are carried out using one-eighth of the structure, corresponding to the shaded region ABCD in **Figure 3.18**(a). For the membrane-dominated case, the clamped boundary condition is imposed using:  $u_z = \beta = 0$  along BC,  $u_x = \beta = 0$  along AD, and  $u_y = \alpha = 0$  along DC, and  $u_x = u_y = u_z = \alpha = \beta = 0$  along AB. For the bending- dominated case, the free boundary condition is imposed using:  $u_z = \beta = 0$ , u-z.= $\beta = 0$  along BC,  $u_x = \beta = 0$  along AD, and  $u_y = \alpha = 0$  along DC [23, 99].

In common with previous problems, the reference solutions calculated with a mesh of 96×96 MITC9 shell elements are used. The solutions using the MITC3, MITC4, MITC6 and enriched MITC3 shell elements are obtained with  $N \times N$  meshes (N = 8, 16, 32 and 64 for the MITC3 and MITC4 shell elements and N = 4, 8, 16, and 32 for the MITC6 and enriched MITC3 shell elements). The element size used in the convergence curves is h = L/N. In the clamped hyperboloid shell problem, a boundary layer of width  $6\sqrt{t}$  is used for half of the mesh, see Figure 3.18(b). In the free hyperboloid shell problem, the thin boundary layer is not specially meshed.



**Figure 3.19.** Convergence curves for the clamped hyperboloid shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.



**Figure 3.20.** Convergence curves for the clamped hyperboloid shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

Figure 3.19 and Figure 3.20 show the convergence curves for both uniform and distorted meshes in the membrane dominated case (that is, the clamped hyperboloid shell problem). The performance of all shell elements is good.



Figure 3.21. Convergence curves for the free hyperboloid shell problem with uniform meshes. The bold line

represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.



**Figure 3.22.** Convergence curves for the free hyperboloid shell problem with the distorted meshes shown in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

For the bending-dominated case (that is, the free hyperboloid shell problem), the convergence curves are shown in **Figure 3.21** and **Figure 3.22**. The enriched MITC3 shell element shows the best convergence behavior among the shell elements considered. Even in the use of distorted meshes, the performance of the enriched MITC3 shell element is excellent while the other shell elements show some degree of locking.

### 3.5 Local Use of Cover Interpolations

In the convergence studies given in Section 3.4, the enriched MITC3 shell finite element showed a good performance when the its element is used throughout the mesh. In this section, the local use of cover interpolation functions over the solution domains is illustrated. This scheme of increasing solution accuracy is quite different from using conventional standard shell finite elements with mesh refinements. Two numerical examples are considered: a shaft-shaft interaction problem and a 'monster' shell problem. The maximum effective stress, the strain energy and the deformed shape will be evaluated with and without using local enrichments.

# 3.5.1 Shaft-Shaft Interaction Problem





(DOFs = 3,125, Error = 27.54%) (DOFs = 9,375, Error = 5.28%) (DOFs = 3,845, Error = 6.75%) **Figure 3.24.** Distributions of effective stress for the shaft-shaft interaction problem: for (a) the 2,193 node model of the MITC4 shell elements, (b) the 2,582 node model of the MITC3 shell elements, (c) the 641 node model of the MITC3 shell elements, (d) the 641 node model fully enriched, and (e) the 641 node model locally enriched. The red dot represents enriched nodes (DOFs: total number of degrees of freedom used, Error =  $(\sigma_v^{ref} - \sigma_v^h) / \sigma_v^{ref} \times 100$ ).

Consider the two cylindrical shafts connected with fillets of radius 0.002m, in which the horizontal shaft is subjected to a line load of 1000 N/m, as shown in Figure 3.23, and the vertical shaft is fully clamped at its lower end. Figure 3.24 presents the distribution of the effective stress (von Mises stress) obtained using the MITC4 and MITC3 shell elements, and using the enriched MITC3 shell element throughout the mesh or only locally. The reference solution is given by a fine mesh of the MITC4 shell element, in which 2,150 elements and 10,805 DOFs are used, see Figure 3.24(a). Figure 3.24(b) presents a finer mesh of the MITC3 shell element and the fully and locally enriched shell models. The red dots in Figure 3.24(e) represent the selected nodes carrying

interpolation covers around the fillet area where stress concentration is expected.

|                                           | Fine mesh            |          | Coarse mesh |                         |                           |  |  |
|-------------------------------------------|----------------------|----------|-------------|-------------------------|---------------------------|--|--|
|                                           | MITC4<br>(reference) | MITC3    | MITC3       | Fully<br>enriched MITC3 | Locally<br>enriched MITC3 |  |  |
| Elements                                  | 2,150                | 5,078    | 1,240       | 1,240                   | 1,240                     |  |  |
| Nodes                                     | 2,193                | 2,582    | 641         | 641                     | 641                       |  |  |
| Enriched nodes                            | -                    | -        | -           | 641                     | 72                        |  |  |
| Free DOFs                                 | 10,805               | 12,750   | 3,125       | 9,375                   | 3,845                     |  |  |
| Max. effective stress ( $\sigma_{\max}$ ) | 1.78E+09             | 1.68E+09 | 1.29E+09    | 1.69E+09                | 1.66E+09                  |  |  |
| Relative error (%)                        |                      | 5.68     | 27.54       | 5.28                    | 6.75                      |  |  |

**Table 3.4.** Relative errors in maximum effective stress in the shaft-shaft interaction problem for the five different shell models in Figure 3.24. Relative error (%) =  $(\sigma_{\max}^{ref} - \sigma_{\max}^{h}) / \sigma_{\max}^{ref} \times 100$ .

**Table 3.4** gives the numbers of elements, nodes, degrees of freedom used, and the relative errors in the maximum effective stress obtained when using the shell models in **Figure 3.24**. In the shaft-shaft interaction problem, the maximum effective stress is obtained around the fillet area. Using the local enrichments, the maximum effective stress is well predicted with a much smaller number of degrees of freedom.



Figure 3.25. A "highly-sensitive" shell problem.  $(L = R = 10, E = 6.285 \times 10^7, v = 0.3, and p(r) = e^{-4r^2})$ .



**Figure 3.25** shows the problem considered (referred to also as "the monster shell problem") [106]. The shell geometry corresponds to a half-sphere with the top sliced off. The shell is clamped around its entire lower boundary. A smoothly distributed pressure is applied over a small part of the interior of the shell. Since there is no exact solution to the problem, the reference solution is calculated by a fine mesh of 48 (axial) × 192 (circumferential) MITC4 shell elements; see **Figure 3.26**(a). This is a sufficiently fine mesh to identify and reasonably resolve the boundary layer on the free top. **Figure 3.26**(b) presents a finer mesh of MITC3 shell elements, and **Figure 3.26**(c)-(e) show a coarser mesh for the MITC3 shell element and the fully and locally enriched cases.

|                    | Fine mesh       |                   | Coarse mesh |                                        |                |  |  |  |
|--------------------|-----------------|-------------------|-------------|----------------------------------------|----------------|--|--|--|
|                    | 48(axial) × 192 | (circumferential) | 16(axial)×  | $16(axial) \times 64(circumferential)$ |                |  |  |  |
|                    | MITC4           |                   | MITCO       | Fully                                  | Locally        |  |  |  |
|                    | (reference)     | MITC3             | MITC3       | enriched MITC3                         | enriched MITC3 |  |  |  |
| Elements           | 9,216           | 18,432            | 2,048       | 2,048                                  | 2,048          |  |  |  |
| Nodes              | 9,408           | 9408              | 1,088       | 1,088                                  | 1,088          |  |  |  |
| Enriched nodes     | -               | -                 | -           | 1,088                                  | 409            |  |  |  |
| Free DOFs          | 46,080          | 46,080            | 5,120       | 15,360                                 | 9,120          |  |  |  |
| Oscillations       | 4               | 3                 | 2           | 4                                      | 4              |  |  |  |
| Strain energy (E)  | 5.21E-04        | 2.83E-04          | 1.26E-04    | 5.37E-04                               | 4.87E-04       |  |  |  |
| Relative error (%) | -               | 45.66             | 75.81       | 3.11                                   | 6.49           |  |  |  |

**Table 3.5.** Relative errors in strain energy in the monster shell problem for the five different shell models in Figure 3.26. Relative error (%) =  $(E_{ref} - E_h) / E_{ref} \times 100$ .

**Figure 3.26** shows the deformed shapes of the shell problem when the shell thickness is 0.001 (t / L = 1/10,000). For visualization, the displacements are normalized so that the maximum outward total displacement value is equal to 2.0. Note that the displacements are dominant in the immediate vicinity of the free boundary, namely within the boundary layer. Figure 3.26(b) and (c) show that the MITC3 shell element meshes are not effective in predicting the displacement oscillations<sup>2</sup> in the circumferential direction within the boundary layer. However, when the coarse MITC3 shell element mesh is fully enriched, the displacements in the boundary layer are calculated accurately as shown in Figure 3.26(d). Also, the local use of the cover interpolations within the boundary layer results in excellent overall accuracy with a significantly reduced number of degrees of freedom, see Figure 3.26(e). Table 3.5 shows the number of elements, nodes and degrees of freedom used, the number of displacement oscillations, and the relative errors in the strain energies.

**SINCE 1971** 

OF So

# <sup>2</sup> In the monster shell problem, the number of displacement oscillations in the boundary layer increases as the shell thickness decreases. The number is given by $\log(L/t)$ .

# Chapter 4. A Partition of Unity Based 4-Node Quadrilateral Shell Element

#### 4.1 A 4-Node Element Based on Partition of Unity

The partition of unity (PU) approximation offers enormous advantages over the standard finite element approximation by its local enrichments and excellent solution accuracy. This feature is particularly advantageous for modeling crack propagation and areas where non-smooth and near singular solution are sought. This is due to the fact that solution accuracy can effectively increase without any local mesh refinements. However, the partition of unity approximation faces some difficulties such as the linear dependence problem. When both the partition of unity function and the local approximation function are taken as polynomials, the global stiffness matrix becomes singular, that is rank deficient [33, 34, 93].

Many researchers have studied the elimination of the singularity of the stiffness matrix in the methods using the partition of unity approximation concept. Oden et al. [36] proposed excluding the space spanned by the terms of finite element shape functions from that of the local approximation functions in order to avoid the linear dependence. Strouboulis et al. [37, 38] suggested the mapped quadrilateral shape functions, but the linear dependencies are not completely eliminated in their method. Tian et al. [94] studied some effective approaches to avoid the linear dependency problems. These approaches include suppressing the additional unknown degrees of freedom, using constant local functions at the boundary nodes, using the triangular mesh around quadrilateral mesh, and deleting the polynomial terms included in the span of the partition of unity function, which was first suggested by Oden et al. [36]. Babuška and Banerjee [95] developed the SGFEM (Stable Generalized Finite Element Method) which is aim to improve the conditioning property of the GFEM (Generalized Finite Element Method). The basic idea of the SGFEM is to use a modified local function. Rajendran et al. [84, 96] suggested the partition of unity based FE-meshfree element. They adopted the finite element shape functions as the partition of unity and the least-square PIM (Point Interpolation Method) shape function as the local approximation. With this choice, the proposed scheme eliminates the linear dependence problem. Cai et al. [97] suggested that the local approximation at a boundary node is constructed by a modified least-squares approach and that at an inner node using a polynomial basis. These dually constructed local approximation avoid the linear dependence problem. Schweitzer used the flat hat functions as a partition of unity to construct a parallel multilevel partition of unity method [107]. The linear dependence issue is also discussed in the context of XFEM (eXtended Finite Element Method) [108, 109].

In this chapter, a partition of unity based 4-node quadrilateral shell finite element (also herein called enriched MITC4) is presented. The MITC (Mixed Interpolation of Tensorial Components) method is applied to avoid the transverse shear locking phenomenon. To eliminate the linear dependence problem, the additional unknown coefficients around the domain boundary are constrained and the standard MITC4 shell elements are only used in that region.

#### 4.1.1 Partition of Unity Approximation



Figure 4.1. Description of sub-domain; finite element shape function  $h_i$ , an element e and cover region  $C_i$  and  $C_j$  constructed by all the elements connected to node i and j, respectively.

A partition of unity is a set of functions that sum to unity at an arbitrary point in the domain considered. In order to construct the partition of unity, the domain  $\Omega$  under consideration is discretized by a set of covers  $C_i$  and  $C_j$  which satisfy a certain overlap condition, see Figure 4.1. The functions  $\varphi_i$  which satisfy the partition of unity are defined by

$$\sum_{i} \varphi_i = 1, \qquad (4.1)$$

where the functions  $\varphi_i$  form a partition of unity subordinate to the cover  $C_i$ . Let a set of functions  $V_i = \{v^i \mid v^i \subset H^1(C_i \cap \Omega) \text{ associated with each cover } C_i \text{ be given. Then, a partition of unity approximation is represented by}$ 

$$u_{PUM} = \sum_{i} \varphi_{i} V_{i} = \sum_{i} \varphi_{i} \left( \sum_{j} v_{j}^{i} d_{j}^{i} \right), \quad v_{j}^{i} \in V_{i}.$$

$$(4.2)$$

Equation (4.2) is the basic definition of the PUM (partition of unity method) and a more detailed description of the partition of unity method can be found in References [33, 34, 93]. The key feature of the partition of unity method is that any functions that reflect the local characteristics of the solution can be adopted in the partition of unity functions to construct the high order approximation. However, when both the partition of unity functions  $\{\varphi_i\}$  and the local functions  $\{v_j^i\}$  in Equation (4.2) are polynomials, the partition of unity approximation is linearly dependent. With this concept of the partition of unity method, the partition of unity based finite element method based on the concept of the PU approximation has been developed. The finite element shape functions naturally satisfy a partition of unity. Then, the partition of unity based finite element method is constructed by replacing the partition of unity functions  $\varphi_i$  with the finite element shape function  $h_i$ . The displacement interpolation for the partition of unity based 4-node quadrilateral element is given by

$$\overline{u}(\mathbf{x}) = \sum_{i=1}^{4} h_i u_i^l(\mathbf{x}) = \mathbf{h} \mathbf{u}^e , \qquad (4.3)$$

in which **x** is the position vector collecting nodal coordinates at a point and  $\mathbf{h} = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 \end{bmatrix}$  is a matrix of shape functions as for a convectional 4-node (i = 1, 2, 3, 4) quadrilateral finite element. In Equation (4.3), the vector  $\mathbf{u}^e$  is not a nodal displacement vector as in the standard finite element method but a vector of nodal displacement functions (also called local approximation) and is defined by

$$\mathbf{u}^{e} = \begin{bmatrix} u_{1}^{l}(\mathbf{x}) & u_{2}^{l}(\mathbf{x}) & u_{3}^{l}(\mathbf{x}) & u_{4}^{l}(\mathbf{x}) \end{bmatrix}^{\mathrm{T}}, \qquad (4.4)$$

where the superscript l indicates the local nature of the functions. The local approximation over the cover  $C_i$  is constructed by [28, 36-39, 84, 93, 96-98, 110-112]

$$u_i^{\prime}(\mathbf{x}) = \mathbf{p}^{\mathrm{T}}(\mathbf{x})\mathbf{a}(\mathbf{x}) = \sum_{k=0}^{m-1} p_{k+1}(\mathbf{x})a_{ki} , \qquad (4.5)$$

where  $\mathbf{p}^{\mathrm{T}}(\mathbf{x}) = \begin{bmatrix} 1 & x & y & xy & \cdots \end{bmatrix}$  is a polynomial basis vector, *m* is the number of monomials in the basis, and  $a_{ki}$  are the corresponding unknown coefficients to each monomial in the basis. Using only bilinear polynomial in Equation (4.5), the local approximation can be rewritten as

$$u_i^l(\mathbf{x}) = a_{0i} + a_{1i}x + a_{2i}y + a_{3i}xy, \qquad (4.6)$$

where *i* is the node index and  $a_{0i}$  to  $a_{3i}$  are the corresponding unknown coefficients to be determined. By enforcing  $u_i^l(\mathbf{x})$  to be equal to the nodal value at node *i*, Equation (4.6) can be rewritten as

$$u_i^l(x_i, y_i) = a_{0i} + a_{1i}x + a_{2i}y + a_{3i}xy = \overline{u}_i$$
(4.7)

and

$$a_{0i} = \overline{u_i} - a_{1i}x_i - a_2y_i - a_{3i}x_iy_i, \qquad (4.8)$$

where  $\overline{u}_i$  is the unknown nodal displacement at the node *i* in the *x* direction. Substituting Equation (4.8) into Equation (4.6), the local approximation is obtained by

$$u_i^l(\mathbf{x}) = \overline{u}_i + \xi_i \hat{u}_i^{\xi} + \eta_i \hat{u}_i^{\eta} + \xi \eta_i \hat{u}_i^{\xi\eta}$$
(4.9)

with

$$x - x_i = \xi_i , \quad y - y_i = \eta_i , \quad xy - x_i y_i = \xi \eta_i , \quad \hat{u}_i^{\xi} = a_{1i} , \quad \hat{u}_i^{\eta} = a_{2i} , \quad \hat{u}_i^{\xi\eta} = a_{3i} , \quad (4.10)$$

where the  $\hat{u}_i^{\xi}$ ,  $\hat{u}_i^{\eta}$  and  $\hat{u}_i^{\xi\eta}$  are the additional unknown coefficients over the cover  $C_i$ .

Finally, substituting Equation (4.9) and Equation (4.10) into Equation (4.3), displacement approximation for the partition of unity based 4-node element is represented by

$$u = \overline{u} + \hat{u} \tag{4.11}$$

with

$$\overline{u} = \sum_{i=1}^{4} h_i \overline{u}_i , \quad \hat{u} = \sum_{i=1}^{4} h_i \left( \xi_i \hat{u}_i^{\xi} + \eta_i \hat{u}_i^{\eta} + \xi \eta_i \hat{u}_i^{\xi\eta} \right).$$
(4.12)

The partition of unity based displacement approximation in (4.11) consists of two parts: the standard displacement interpolation of the 4-node element,  $\bar{u}$  and the additional high order term,  $\hat{u}$ .

### 4.1.2 Linear Dependence

The linear dependence problem occurs when the partition of unity function and the local approximation are polynomials in the partition of unity method. Tian et al. [93] introduced the linear dependence problem of the partition of unity method when solving the Hemholz problem. One dimensional Hemholz equation is given by

$$-u'' + k^2 u = f \in C^2 \quad [0,1] \quad \text{on} \quad (0,1],$$
(4.13)

$$u(0) = 0, \ u'(1) = g \in R.$$
 (4.14)

The PUM approximation of the above equation is constructed by

$$u_{PUM} = \varphi_0 v_0 + \sum_{i=1}^n \varphi_i v_i , \qquad (4.15)$$

in which the total n+1 nodes are arranged at  $x_i = ih$ , i = 0, 1, ..., n evenly in the domain [0,1], h = 1/n. The partition of unity functions  $\varphi_i$  (i = 0, 1, ..., n) are the usual piecewise linear hat functions defined at the nodes. These functions form the partition of unity. Using the polynomial, the local approximations are represented by

$$v_0 = xa_0^1 + \dots + x^p a_p^0, \qquad (4.16)$$

$$v_i = a_0^i + (x - x_i)a_1^i + \dots + (x - x_i)^p a_p^i, \qquad p \ge 0,$$
(4.17)

at the Dirichlet boundary x = 0 and inside the domain (0,1], respectively. The local approximation  $v_0$  at the Dirichlet boundary is defined such that the Equation (4.14) is satisfied naturally. The approximation  $\{\sum_i \varphi_i v_i\}$  for the partition of unity method has a total of n(p+1)+p unknowns, i.e., a total of n(p+1)+p shape functions  $\varphi_i v_i$ , but the partition of unity method basis has a width of only n(p+1). Therefore, for  $p \ge 1$ , n(p+1)+p > n(p+1), the approximation for the partition of unity method is linearly dependent and the resulting stiffness matrix of the method becomes singular.



**Figure 4.2.** Linear dependence and independence problem in the partition of unity based finite element method: (a) one-dimensional element of unit length, (b) linearly independent interpolations with prescribed boundary conditions for the 3-node triangular element and (c) linearly dependent interpolations for the 4-node quadrilateral element even though prescribed boundary conditions are applied.

To verify the linear dependence in the partition of unity based finite element method, one-dimensional single element shown in Figure 4.2(a) is considered. The displacement approximation for a one-dimensional element with the partition of unity approximation ( $p^{T}(\mathbf{x}) = \begin{bmatrix} 1 & x \end{bmatrix}$ ) is expressed as follows:

$$u = h_1 \overline{u}_1 + h_2 \overline{u}_2 + h_1 (x - x_1) \hat{u}_1^{\xi} + h_2 (x - x_2) \hat{u}_2^{\xi}$$
(4.18)

with

$$h_1 = 1 - x$$
,  $h_2 = x$ ,  $x_1 = 0$  and  $x_2 = 1$ . (4.19)

Hence Equation (4.18) becomes

$$u = (1-x)\overline{u_1} + x\overline{u_2} + (1-x)x\,\hat{u}_1^{\xi} + x(x-1)\,\hat{u}_2^{\xi} \,. \tag{4.20}$$

Using quadratic polynomials into the local approximation  $(p^{T}(\mathbf{x}) = \begin{bmatrix} 1 & x & x^{2} \end{bmatrix})$ , displacement approximation is obtained by

$$u = h_1 \overline{u}_1 + h_2 \overline{u}_2 + h_1 (x - x_1) \hat{u}_{11}^{\xi} + h_1 (x^2 - x_1^2) \hat{u}_{12}^{\xi} + h_2 (x - x_2) \hat{u}_{21}^{\xi} + h_2 (x^2 - x_2^2) \hat{u}_{22}^{\xi}$$
(4.21)

and using the Equation (4.19), the displacement approximation is rewritten as

$$u = (1-x)\overline{u}_1 + x\overline{u}_2 + (1-x)x\hat{u}_{11}^{\xi} + (1-x)x^2\hat{u}_{12}^{\xi} + \underline{x(x-1)}\hat{u}_{21}^{\xi} + x(x^2-1)\hat{u}_{22}^{\xi}.$$
(4.22)

In the above Equations (4.20) and (4.22), the displacement approximations are linearly dependent due to the unknown degrees of freedom  $\hat{u}_1^{\xi}$ ,  $\hat{u}_2^{\xi}$ ,  $\hat{u}_{11}^{\xi}$  and  $\hat{u}_{21}^{\xi}$ . The linearly dependent terms in the displacement approximations are underlined.

However, assume that we impose at node 1 the displacement  $\overline{u}_1$  (as usual, to take out the rigid body mode) and also eliminate the additional unknown degrees of freedom  $\hat{u}_1^{\xi}$  at that node. Then the remaining interpolation functions are linearly independent, for the local approximation using linear polynomials

$$u = (1 - x)\overline{u_1} + x\overline{u_2} + x(x - 1)\hat{u}_2^{\xi}$$
(4.23)

where  $\bar{u}_1$  would now be prescribed, and for the local approximation using quadratic polynomials

$$u = (1 - x)\overline{u_1} + x\overline{u_2} + x(x - 1)\hat{u}_{21}^{\xi} + x(x^2 - 1)\hat{u}_{22}^{\xi}$$
(4.24)

where  $\overline{u}_1$  would be also prescribed.

The partition of unity approximation of a 3-node triangular element is obtained by

$$u = \overline{u} + \hat{u} , \qquad (4.25)$$

where

$$\overline{u} = h_1 \overline{u}_1 + h_2 \overline{u}_2 + h_3 \overline{u}_3 , \qquad (4.26)$$

$$\hat{u} = h_1(x - x_1)\hat{u}_1^{\xi} + h_2(x - x_2)\hat{u}_2^{\xi} + h_3(x - x_3)\hat{u}_3^{\xi} + h_1(y - y_1)\hat{u}_1^{\eta} + h_2(y - y_2)\hat{u}_2^{\eta} + h_3(y - y_3)\hat{u}_3^{\eta}$$
(4.27)

with

$$h_1 = 1 - x - y$$
,  $h_2 = x$ ,  $h_3 = y$ ,  $x_1 = 0$ ,  $x_2 = 1$ ,  $x_3 = 0$ ,  $y_1 = 0$ ,  $y_2 = 0$  and  $y_3 = 1$ . (4.28)

Therefore,

$$\hat{u} = \underline{(1-x-y)x}\,\hat{u}_1^{\xi} + \underline{x(x-1)}\,\hat{u}_2^{\xi} + yx\hat{u}_3^{\xi} + (1-x-y)y\hat{u}_1^{\eta} + \underline{xy}\,\hat{u}_2^{\eta} + y(y-1)\hat{u}_3^{\eta}.$$
(4.29)

The displacement interpolation v is obtained in the same way. The displacement approximation in Equation (4.29) is linearly independent. If the displacements are prescribed at nodes 1 and 3, as in Figure 4.2(b), the additional unknown degrees of freedom  $\hat{u}_1^{\xi}$  and  $\hat{u}_3^{\xi}$  are all fixed, and the linearly independent interpolations are obtained as follows:

OINOF 1071

$$u = (1 - x - y)\overline{u_1} + x\overline{u_2} + y\overline{u_3} + x(x - 1)\hat{u}_2^{\xi} + xy\hat{u}_2^{\eta}, \qquad (4.30)$$

$$v = (1 - x - y)\overline{v_1} + x\overline{v_2} + y\overline{v_3} + x(x - 1)\hat{v}_2^{\xi} + xy\hat{v}_2^{\eta}.$$
(4.31)

This implies that the stiffness matrix is positive definite for the single elements considered provided the rigid body modes have been removed, as usual by constraining appropriate degrees of freedom, with all  $\hat{u}_i^{\xi}$  and  $\hat{u}_i^{\eta}$  degrees of freedom also removed at the nodes with any prescribed displacements. Consider now that additional elements are attached to these single elements, with no further  $\bar{u}_i$  degrees of freedom prescribed and all  $\hat{u}_i^{\xi}$  and  $\hat{u}_i^{\eta}$  degrees of freedom free at the additional nodes used in the mesh. Then, by the above argument, for any nonzero values of the  $\overline{u}_i$ ,  $\hat{u}_i^{\xi}$  and  $\hat{u}_i^{\eta}$  degrees of freedom in the mesh, positive strain energy is stored in the mesh. Therefore, all eigenvalues of the stiffness matrix are positive, which means that the matrix is positive definite.



**Figure 4.3.** Element meshes of the eigenvalue analysis for 4-node quadrilateral elements and mixed meshes with the 3-node triangular and 4-node quadrilateral elements. This work was done by Tian [93].

However, for a 4-node quadrilateral element shown in Figure 4.2(c), displacement interpolation is linearly dependent even though the additional unknown degrees of freedom are constrained in the same manner as the partition of unity based 3-node triangular element. For the partition of unity based 4-node quadrilateral element, Tian et al. [93] conducted the eigenvalue analyses as shown in Figure 4.3. The mesh (a) consists of only 4-node quadrilateral elements. It is well known that the partition of unity based 4-node quadrilateral element definitely suffers from the linearly dependence. Meshes (b), (c) and (d) are generated by mixing 3-node triangular elements and the problematic squares in specified manners. Table 4.1 shows the number of spurious zero eigenvalues after the support treatments. Using the 3-node triangular elements around mesh boundaries as in meshes (c) and (d), the spurious zero eigenvalues can be completely removed. In this thesis, to apply the partition of unity approximation into the 4-node quadrilateral shell element, the additional unknown degrees of freedom around mesh boundaries are constrained instead of using the 3-node triangular elements.

**Table 4.1.** Results of eigenvalue analyses of the partition of unity based finite element method, see Figure 4.3 for the meshes. This work was conducted by Tian [93].

| Mixed me | eshes | Number of zero eigenvalue (zero-order local functions are specified at the two |                                                                           |             |             |             |             |            |  |  |
|----------|-------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|-------------|-------------|-------------|------------|--|--|
|          |       | of the node                                                                    | of the nodes; essential boundary conditions are applied to the two nodes) |             |             |             |             |            |  |  |
| Method   | Mesh  | <i>p</i> =0/FEM                                                                | <i>p</i> =1                                                               | <i>p</i> =2 | <i>p</i> =3 | <i>p</i> =4 | <i>p</i> =5 | dependent? |  |  |
| Quad     | (a)   | 0                                                                              | 14                                                                        | 28          | 28          | 28          | 28          | Yes        |  |  |
| Mixed    | (b)   | 0                                                                              | 2                                                                         | 4           | 4           | 4           | 4           | Yes        |  |  |
| Mixed    | (c)   | 0                                                                              | 0                                                                         | 0           | 0           | 0           | 0           | No         |  |  |
| Mixed    | (d)   | 0                                                                              | 0                                                                         | 0           | 0           | 0           | 0           | No         |  |  |

# 4.2 The Enriched MITC4 Shell Finite Element

In this section, the formulation of the partition of unity based 4-node quadrilateral shell finite element (also called enriched MITC4) is presented.

## 4.2.1 Enriched Displacement Interpolation



**Figure 4.4.** The MITC4 shell finite element: (a) Geometry of the MITC4 shell finite element. (b) Definition of rotational degrees of freedom  $\alpha_k$  and  $\beta_k$ .

# SINCE 1971

The geometry of the continuum mechanics based 4-node quadrilateral shell element is interpolated by

$$\mathbf{x}(r,s,t) = \sum_{i=1}^{4} h_i(r,s) \mathbf{x}_i + \frac{t}{2} \sum_{i=1}^{4} a_i h_i(r,s) \mathbf{V}_n^i , \qquad (4.32)$$

with

$$h_1 = \frac{1}{4}(1-r)(1-s), \quad h_2 = \frac{1}{4}(1+r)(1-s), \quad (4.33)$$

$$h_3 = \frac{1}{4}(1+r)(1+s), \quad h_4 = \frac{1}{4}(1-r)(1+s),$$
 (4.34)

where r, s and t are natural coordinates,  $h_i$  is the two-dimensional interpolation function corresponding to node i,  $\mathbf{x}_i$  is the position vector of node i in the global Cartesian coordinate system, and  $a_i$ ,  $\mathbf{V}_n^i$ denote the shell thickness and the director vector at node i, respectively, see **Figure 4.4**. The standard displacement interpolation of the 4-node quadrilateral shell finite element is represented by

$$\overline{\mathbf{u}} = \sum_{i=1}^{4} h_i \overline{\mathbf{u}}_i + \sum_{i=1}^{4} \frac{t}{2} a_i h_i \left( -\mathbf{V}_2^i \overline{\alpha}_i + \mathbf{V}_1^i \overline{\beta}_i \right), \qquad (4.35)$$

in which  $\overline{\mathbf{u}}_{i} = \begin{bmatrix} \overline{u}_{i} & \overline{v}_{i} & \overline{w}_{i} \end{bmatrix}^{\mathrm{T}}$  is the nodal displacement vector in the global Cartesian coordinate system,  $\mathbf{V}_{1}^{i} = \begin{bmatrix} V_{1x}^{i} & V_{1y}^{i} & V_{1z}^{i} \end{bmatrix}^{\mathrm{T}}$  and  $\mathbf{V}_{2}^{i} = \begin{bmatrix} V_{2x}^{i} & V_{2y}^{i} & V_{2z}^{i} \end{bmatrix}^{\mathrm{T}}$  are unit vectors orthogonal to  $\mathbf{V}_{n}^{i}$  and to each other, and  $\overline{\alpha}_{i}$  and  $\overline{\beta}_{i}$  are the rotations of the director vector  $\mathbf{V}_{n}^{i}$  about  $\mathbf{V}_{1}^{i}$  and  $\mathbf{V}_{2}^{i}$  at node i.

To apply the partition of unity approximation into the 4-node shell finite element, the only bilinear polynomials are adopted in the local approximation. The partition of unity approximation of the 4-node quad-rilateral shell finite element is given by

$$\mathbf{u} = \overline{\mathbf{u}} + \hat{\mathbf{u}} , \qquad (4.36)$$

where

$$\hat{\mathbf{u}} = \sum_{i=1}^{4} \mathbf{H}_{i} \hat{\mathbf{u}}_{i} + \sum_{i=1}^{4} \frac{t}{2} a_{i} \mathbf{H}_{i} \left( -\mathbf{D}_{2}^{i} \hat{\mathbf{u}}_{i} + \mathbf{D}_{1}^{i} \hat{\boldsymbol{\beta}}_{i} \right)$$
(4.37)

with

$$\hat{\mathbf{u}}_{i} = \begin{bmatrix} \hat{u}_{i}^{\xi} & \hat{u}_{i}^{\eta} & \hat{u}_{i}^{\xi\eta} & | & \hat{v}_{i}^{\xi} & \hat{v}_{i}^{\eta} & \hat{v}_{i}^{\xi\eta} & | & \hat{w}_{i}^{\xi} & \hat{w}_{i}^{\eta} & \hat{v}_{i}^{\xi\eta} \end{bmatrix}^{\mathrm{T}},$$
(4.38)

$$\hat{\boldsymbol{\alpha}}_{i} = \begin{bmatrix} \hat{\alpha}_{i}^{\xi} & \hat{\alpha}_{i}^{\eta} & \hat{\alpha}_{i}^{\xi\eta} \end{bmatrix}^{\mathrm{T}}, \quad \hat{\boldsymbol{\beta}}_{i} = \begin{bmatrix} \hat{\beta}_{i}^{\xi} & \hat{\beta}_{i}^{\eta} & \hat{\beta}_{i}^{\xi\eta} \end{bmatrix}^{\mathrm{T}}, \quad (4.39)$$

in which  $\hat{\mathbf{u}}_i$ ,  $\hat{\mathbf{\alpha}}_i$  and  $\hat{\mathbf{\beta}}_i$  are unknown coefficient vectors for the displacements and rotations, and the  $\mathbf{H}_i$  are the interpolation matrices associated with the high order displacements and rotations

$$\mathbf{H}_{i} = h_{i} \begin{bmatrix} \xi_{i} & \eta_{i} & \xi\eta_{i} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi_{i} & \eta_{i} & \xi\eta_{i} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \xi_{i} & \eta_{i} & \xi\eta_{i} \end{bmatrix},$$
(4.40)

$$\mathbf{D}_{1}^{i} = \begin{bmatrix} V_{1x}^{i} & 0 & 0 & V_{1y}^{i} & 0 & 0 & V_{1z}^{i} & 0 & 0 \\ 0 & V_{1x}^{i} & 0 & 0 & V_{1y}^{i} & 0 & 0 & V_{1z}^{i} & 0 \\ 0 & 0 & V_{1x}^{i} & 0 & 0 & V_{1y}^{i} & 0 & 0 & V_{1z}^{i} \end{bmatrix}^{\mathrm{T}},$$
(4.41)

$$\mathbf{D}_{2}^{i} = \begin{bmatrix} V_{2x}^{i} & 0 & 0 & V_{2y}^{i} & 0 & 0 & V_{2z}^{i} & 0 & 0 \\ 0 & V_{2x}^{i} & 0 & 0 & V_{2y}^{i} & 0 & 0 & V_{2z}^{i} & 0 \\ 0 & 0 & V_{2x}^{i} & 0 & 0 & V_{2y}^{i} & 0 & 0 & V_{2z}^{i} \end{bmatrix}^{\mathrm{T}}.$$
(4.42)

Note that the partition of unity displacement approximation for  $\mathbf{u}$  in Equation (4.36) consists of two parts: the standard bilinear term  $\mathbf{\bar{u}}$  and the additional high order term  $\hat{\mathbf{u}}$ .

### 4.2.2 Assumed Covariant Transverse Shear Strain Fields





[Partition of unity based triangular element]









**Figure 4.5.** Polynomial terms in two-dimensional analysis: Pascal triangle for (a) the standard 3-node triangular element, the partition of unity based 3-node triangular element, the (b) standard 4-node quadrilateral element and the partition of unity based 4-node quadrilateral element.

Figure 4.5 shows the polynomial terms in standard elements and partition of unity based elements and they include complete polynomials in x and y for two-dimensional analysis. Figure 4.5(a) also shows important notation for polynomial spaces. The spaces  $P_k$  correspond to the complete polynomials up to degree k. They can also be thought of as the basis functions of standard and partition of unity based triangular element. The function in  $P_2$  corresponds to the functions of the parabolic displacement (standard 6-node element) and the partition of unity based displacement with the local approximation  $\mathbf{p}^T(\mathbf{x}) = \begin{bmatrix} 1 & x & y \end{bmatrix}$ . In addition, Figure 4.5(b) shows the polynomial spaces  $Q_k$ , k = 1,2,3, which correspond to the 4-node, 9-node, and 16-node elements. The polynomial spaces of the standard 9-node element are exactly the same to that of the partition of unity based quadrilateral element with the local approximation  $\mathbf{p}^T(\mathbf{x}) = \begin{bmatrix} 1 & x & y & xy \end{bmatrix}$ . From the results, the methods for the assumed strain field of the 9-node shell element can be used in construction of assumed strain fields for unknown high order strain components of the PU based 4-node shell element

The covariant strain components of the PU based 4-node shell element are directly obtained by

$$e_{ij} = \frac{1}{2} \left( \mathbf{g}_i \cdot \mathbf{u}_{,j} + \mathbf{g}_j \cdot \mathbf{u}_{,i} \right)$$
(4.43)

where

$$\mathbf{g}_{i} = \frac{\partial \mathbf{x}}{\partial r_{i}}, \quad \mathbf{u}_{j} = \frac{\partial \mathbf{u}}{\partial r_{i}} = \frac{\partial (\overline{\mathbf{u}} + \hat{\mathbf{u}})}{\partial r_{i}} \quad \text{with} \quad r_{1} = r, \quad r_{2} = s, \quad r_{3} = t.$$
(4.44)

Therefore, the covariant strain components of the PU based 4-node shell element are also splitted into two parts

$$e_{ij} = \overline{e}_{ij} + \hat{e}_{ij} \tag{4.45}$$

with

$$\overline{e}_{ij} = \frac{1}{2} \Big( \mathbf{g}_i \cdot \overline{\mathbf{u}}_{,j} + \mathbf{g}_j \cdot \overline{\mathbf{u}}_{,i} \Big) \quad \text{and} \quad \hat{e}_{ij} = \frac{1}{2} \Big( \mathbf{g}_i \cdot \hat{\mathbf{u}}_{,j} + \mathbf{g}_j \cdot \hat{\mathbf{u}}_{,i} \Big), \tag{4.46}$$

in which  $\overline{e}_{ij}$  and  $\hat{e}_{ij}$  correspond to the standard bilinear and additional high order displacement interpolations, respectively.

To alleviate the transverse shear locking, the MITC (Mixed Interpolation of Tensorial Components) method for the covariant transverse shear strains is adopted. However, different assumed covariant transverse shear strain fields are employed for the standard and additional high order displacement interpolations. The assumed covariant transverse shear strain fields of the MITC4 and MITC9 shell elements are used for the strains  $\bar{e}_{ij}$  and  $\hat{e}_{ij}$ , respectively [18, 19, 21, 26]. Note that, in the MITC9 shell element, the covariant membrane strains are also assumed to reduce membrane locking, but this treatment is not necessary and not used for the PU based 4-node quadrilateral shell element.





**Figure 4.6.** Tying positions for the covariant transverse shear strains of the PU based 4-node quadrilateral shell finite element: (a) for the standard bilinear displacement interpolations and (b) for the additional high order displacement interpolations. Note that the scheme referred to as MITC9 in Reference [26] is used.

**SINCE 1971** 

The assumed covariant transverse shear strain field used for the standard bilinear displacement inter-

polation is

$$\overline{e}_{rt}^{AS} = \frac{1}{2}(1-s)\overline{e}_{rt}^{(1)} + \frac{1}{2}(1+s)\overline{e}_{rt}^{(2)}, \qquad (4.47)$$

$$\overline{e}_{st}^{AS} = \frac{1}{2}(1-r)\overline{e}_{st}^{(1)} + \frac{1}{2}(1+r)\overline{e}_{st}^{(2)}$$
(4.48)

where the tying points  $\overline{e}_{rt}^{(n)}$  and  $\overline{e}_{st}^{(n)}$  are calculated from Equation (4.46), see **Figure 4.6**(a). For the additional high order displacement interpolation, the assumed strain fields shown in **Figure 4.6**(b) are used. Finally, the assumed covariant transverse shear strain fields for the PU based 4-node shell element are obtained as

$$e_{jt}^{AS} = \overline{e}_{jt}^{AS} + \hat{e}_{jt}^{AS} = \mathbf{B}_{jt}^{AS} \mathbf{U} \quad \text{with} \quad j = r, s , \qquad (4.49)$$

in which  $\mathbf{B}_{jt}^{AS}$  is the covariant transverse shear strain-displacement matrix and U is the vector that contains

the degrees of freedom  $\mathbf{\overline{u}}_i$ ,  $\overline{\alpha}_i$ ,  $\overline{\beta}_i$  and the additional degrees of freedom  $\hat{\mathbf{u}}_i$ ,  $\hat{\mathbf{a}}_i$ ,  $\hat{\mathbf{\beta}}_i$ . Note that the assumed covariant strain fields are only used for transverse shear strain components. This shell element is hereafter referred to as the enriched MITC4.

Then, using the appropriate stress-strain matrix for shells, the element stiffness is constructed in the same manner as for the displacement-based shell element [1]. The  $3 \times 3$  Gauss integration is adopted to evaluate the stiffness matrix because the order of the additional high order displacements are quadratic. Since the partition of unity approximation is based on the existing nodes, the displacement interpolation of the enriched MITC4 shell element can be locally used assigning or not assigning polynomial expansions in different regions. With the only  $\mathbf{p}^{T}(\mathbf{x}) = 1$ , the element is identical to the original MITC4 shell element.

# 4.3 Benchmark Problems

In order to assess the performance of the proposed enriched MITC4 shell element, several problems selected from the literature are solved. The obtained results are compared to those previously published using well-known shell element formulations. Table 4.2 presents a list of several benchmark problems solved in the section. Also, a list of the analyzed shell elements and the abbreviations used to identify them henceforth are contained in Table 4.3.

TUTE OF SI

| Benchmark problems                                        | Descriptions | Results                              |
|-----------------------------------------------------------|--------------|--------------------------------------|
| Morley's 30° skew plate under uniform pressure            | Figure 4.7   | Figure 4.7-Figure 4.8, Table 4.4     |
| Circular plate under uniform pressure                     | Figure 4.9   | Figure 4.11, Table 4.5-Table 4.6     |
| Partly clamped hyperbolic paraboloid shell                | Figure 4.12  | Figure 4.12, Table 4.7               |
| Twisted beam subjected to vertical tip load               | Figure 4.14  | Figure 4.15, Table 4.8               |
| Pinched cylinder                                          | Figure 4.16  | Figure 4.18, Table 4.9-Table         |
|                                                           |              | 4.10<br>Eigure 4.20 Table 4.11 Table |
| Semi-cylindrical shell subjected to an end pinching force | Figure 4.19  | A 12                                 |
| Scordelis-Lo (Barrel Vault) roof                          | Figure 4.21  | Figure 4.22, Table 4.13-Table 4.14   |

 Table 4.2. List of seven benchmark problems considered in this chapter.

| Symbols               | Brief description                                                                                                                       | Ref.       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|
| MITC3                 | 3-node triangular shell element with the MITC method                                                                                    | [23]       |
| MITC4                 | 4-node quadrilateral shell element with the MITC method                                                                                 | [19]       |
| MITC4*                | MITC4 shell element with incompatible modes                                                                                             | [63, 64].  |
| Enriched MITC3        | MITC3 shell element with the partition of unity approximation                                                                           | [28]       |
| Enriched MITC4        | Present shell element with the local approximation $\mathbf{p}^{\mathrm{T}}(\mathbf{x}) = \begin{bmatrix} 1 & x & y \end{bmatrix}$      |            |
| Enriched MITC4*       | Present shell element with the local approximation $\mathbf{p}^{\mathrm{T}}(\mathbf{x}) = \begin{bmatrix} 1 & x & y & xy \end{bmatrix}$ |            |
| MITC9                 | 9-node quadrilateral shell element with the MITC method                                                                                 | [21, 22]   |
| EAS7_ANS              | In-plane bilinear enhanced shell element                                                                                                | [113]      |
| SIMO_1990             | Enhanced shear formulation                                                                                                              | [32]       |
| AHMA4                 | Bilinear degenerated shell element                                                                                                      | [5]        |
| Macro-ANS             | 3-node macro ANS triangular shell element                                                                                               | [114, 115] |
| ANS                   | 3-node triangular shell element based on the ANS formulation                                                                            | [114]      |
| S3R                   | General purpose 3-node shell element in ABAQUS                                                                                          | [116]      |
| T3DISP                | Displacement based 3-node shell element with reduced integration.                                                                       |            |
| Allman                | Discrete Kirchhoff-Mindlin triangle with Allman's rotational DOFs                                                                       | [117, 118] |
| Cook, Flat-stiffened  | Stabilized 18 DOFs triangular flat shell element proposed by Cook                                                                       | [119]      |
| Cook, Curved-softened | Stabilized 18 DOFs triangular curved shell proposed by Cook                                                                             | [119]      |
| Providas and Kattis   | Triangular shell element with an arbitrary small true drilling stiffness                                                                | [120]      |
| ANDES (OPT)           | Triangular element with the optimal assumed natural deviatoric strain                                                                   | [121]      |
| MISQ24                | Mixed interpolation smoothing quadrilateral element with 24 DOFs                                                                        | [122]      |
| MIN4T                 | 4-node flat shell with drilling DOFs via explicit Kirchhoff constrains                                                                  | [123]      |
| XSHELL41/42           | 4-node quasi-conforming flat shell element with drilling DOFs                                                                           | [124]      |
| SRI-4                 | Bilinear degenerated shell element with selective reduced integration                                                                   | [12]       |
| RSDS-4                | Bilinear resultant-stress degenerated shell element with reduced integration                                                            | [125]      |
| SHELL63 (ANSYS)       | 4-node thin shell element with drilling DOFs in ANSYS                                                                                   | [126]      |
| QC5D-SA               | 4-node flat shell with drilling DOFs and 5-point quadrature                                                                             | [127]      |
| QPH                   | 4-node quadrilateral shell element with physical hourglass control                                                                      | [128]      |
| IBRA-4                | 4-node shell element with drilling DOFs                                                                                                 | [129]      |
| DKQ-4                 | 4-node discrete Kirchhoff quadrilateral element                                                                                         | [130]      |
| QUAD4                 | 4-node shell element with modifications which relax excessive constraints                                                               | [16]       |
| URI-4                 | 9-node uniformly reduced integrated element                                                                                             | [131]      |
| T029 (SAMCEF)         | 4-node Mindlin shell element in Samtech                                                                                                 | [132]      |
| NMS-4F                | Defect-free 4-node flat shell element with drilling DOFs                                                                                | [133]      |

 Table 4.3. List of shell finite element models for comparison.

4.3.1 Morley's 30° Skew Plate Under Uniform Pressure



**Figure 4.7.** Morley's  $30^{\circ}$  skew plate under uniform pressure. (a) Problem description and mesh patterns (4×4) used for the MITC3 and enriched MITC3 shell elements. (b) Normalized displacement at point *A* for the Morley's  $30^{\circ}$  skew plate.

**Figure 4.7**(a) shows the skew plate under uniform pressure. Morley [134] originally proposed the skew plate to test the sensitivity of the proposed shell elements to mesh distortions. A plate of dimensions  $l \times l$  and uniform thickness h are considered and all edges are simply supported. The material properties and length of the skew plate are  $E = 10^5$ , v = 0.3 and l = 100 which are based on the work of Andelfinger and Ramm [113]. Still following this work, the Kirchhoff reference solution of 4.455 suggested by Morley is replaced by the value 4.640, as even for the length to thickness ratio of 100 shear deformation effects cannot be neglected.

# **SINCE 1971**

The present results are compared with the ones obtained by MITC3, MITC4, enriched MITC3 and MITC9 shell elements. The values for the central point deflection of the plate are listed in **Table 4.4** and graphically in **Figure 4.7**(b) and **Figure 4.8**. The enriched MITC4 shell element shows remarkably good results even for coarse meshes, leading to the same numerical values.



**Figure 4.8.** Normalized displacement at point *A* for the Morley's  $30^{\circ}$  skew plate when the (a) triangular and (b) quadrilateral shell elements are used.

**Table 4.4.** Relative errors in the vertical displacement at point *A* for the Morley's 30° skew plate under uniform pressure. Relative error  $(\%) = |w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                              |                     |                                                                        | sector and a |       |       |                                                        |       |       |  |  |  |
|------------------------------|---------------------|------------------------------------------------------------------------|--------------|-------|-------|--------------------------------------------------------|-------|-------|--|--|--|
| Element type                 | Relative er<br>Mesh | Relative errors in the vertical displacement at point <i>A</i><br>Mesh |              |       |       |                                                        |       |       |  |  |  |
|                              | $4 \times 4$        | 6×6                                                                    | 8×8          | 10×10 | 12×12 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 32×32 |       |  |  |  |
| MITC3 <sup>I</sup>           | 0.151               | 0.159                                                                  | 0.140        | 0.113 | 0.091 | 0.074                                                  | 0.062 | 0.024 |  |  |  |
| MITC3 <sup>II</sup>          | 0.858               | 0.730                                                                  | 0.624        | 0.535 | 0.460 | 0.397                                                  | 0.347 | 0.158 |  |  |  |
| MITC4                        | 0.156               | 0.164                                                                  | 0.164        | 0.150 | 0.132 | 0.116                                                  | 0.104 | 0.054 |  |  |  |
| Enriched MITC3 <sup>I</sup>  | 0.034               | 0.109                                                                  | 0.098        | 0.077 | 0.061 | 0.050                                                  | 0.041 | 0.017 |  |  |  |
| Enriched MITC3 <sup>II</sup> | 0.375               | 0.299                                                                  | 0.260        | 0.227 | 0.200 | 0.179                                                  | 0.161 | 0.087 |  |  |  |
| Enriched MITC4               | 0.100               | 0.134                                                                  | 0.129        | 0.111 | 0.094 | 0.081                                                  | 0.070 | 0.032 |  |  |  |
| Enriched MITC4*              | 0.099               | 0.116                                                                  | 0.098        | 0.078 | 0.063 | 0.052                                                  | 0.045 | 0.019 |  |  |  |
| MITC9                        | 0.176               | 0.129                                                                  | 0.100        | 0.082 | 0.069 | 0.059                                                  | 0.052 | 0.023 |  |  |  |
| EAS7_ANS [113]               | 0.092               | -                                                                      | 0.090        | -     | -     | -                                                      | 0.057 | 0.034 |  |  |  |
| Simo_1990 [32]               | 0.153               | -                                                                      | 0.141        | -     | -     | -                                                      | 0.079 | 0.037 |  |  |  |
| AHMA4 [5]                    | 0.975               | -                                                                      | 0.917        | -     | -     | -                                                      | 0.787 | 0.588 |  |  |  |

Reference solution  $w_A^{ref} = -4.640$  [134]

I and II : mesh patterns shown in Figure 4.7(a)

### 4.3.2 Circular Plate Under Uniform Pressure



Figure 4.9. Circular plate under uniform pressure.

**Figure 4.9** presents a circular plate of thickness h and radius r, loaded with a uniform downward pressure. A simply supported and clamped circular plate subjected to uniform loading are analyzed to demonstrate more features of the present element. The plate used in this test has a radius r of 1 and two kinds of thickness h (0.1 and 0.01). The material has a Young's modulus of  $E = 1.7472 \times 10^7$  and Poisson's ratio of v = 0.3. The pressure load has a magnitude of q = 1. The classical mesh patterns are shown in **Figure 4.10** and only a quarter of the plate is modeled due to symmetry.





Figure 4.10. Mesh used for the circulate plate under uniform pressure. Mesh pattern I and II are used for the MITC3 and enriched MITC3 shell elements.

This problem is often used to verify results of new elements since analytical solutions are readily available in this case. Using small displacements assumption, an analytic solution for displacements can be found following the procedures in [135]. Using Resissner-Mindlin shell theory, vertical displacements at the center of the circular plate can be calculated by

Simply supported circular plate : 
$$w = \frac{q_o r^4}{64D} (1 - \rho^2) \left[ \frac{5 + v}{1 + v} - \rho^2 + 16 \frac{\lambda^2}{\beta} \right],$$
 (4.50)

Clamped circular plate : 
$$w = \frac{q_o r^4}{64D} (1 - \rho^2) \left[ 1 - \rho^2 + 16 \frac{\lambda^2}{\beta} \right],$$
 (4.51)

where D represents its flexural rigidity. The flexural rigidity is obtained by

$$D = \frac{Eh^3}{12(1-v^2)},$$
(4.52)

where h is the thickness, E is the Young's modulus, v is the Poisson's ratio,  $\rho = R/r$  is an adimen-

sional radial coordinate,  $\lambda = h/r$  is an index of how the plate is thin with respect to its radius and  $\beta$  is a characteristic parameter, which is, as far as homogeneous plates are concerned, equal to 5(1-v). Hence, the reference solution of the circular plate from Equations (4.50) and (4.51) are used.



Figure 4.11. Normalized displacement at the center for the circular plate with h/r = 0.1 and h/r = 0.01 when the circulate plate is (a) simply supported and (b) clamped.

Figure 4.11(a) and Figure 4.11(b) present the normalized displacements for the simply supported and clamped circular plate, respectively. Additionally, the relative errors for the central point deflection of the plate are listed in **Table 4.5** and **Table 4.6**. The enriched MITC3 shell finite element reveals some sensitivity to coarse meshes, converging to the performance of the elements as the mesh is refined. The present enriched MITC4 element produces much better solution results than other shell elements.

**Table 4.5.** Relative errors in the vertical displacement at point *A* for the simply supported circular plate under uniform pressure. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                              | Relative  | errors in tl | ne vertical | displacement | at point A | at point A for the simply supported plate |        |              |  |
|------------------------------|-----------|--------------|-------------|--------------|------------|-------------------------------------------|--------|--------------|--|
| Element type                 | h / r = 0 | .1           |             |              | h/r=0      | h / r = 0.01                              |        |              |  |
|                              | 1×1       | 2×2          | 3×3         | $4 \times 4$ | 1×1        | $2 \times 2$                              | 3×3    | $4 \times 4$ |  |
| MITC3 <sup>I</sup>           | 21.655    | 5.8477       | 2.5715      | 1.4896       | 31.370     | 12.984                                    | 8.0714 | 4.8375       |  |
| MITC3 <sup>II</sup>          | 18.133    | 4.9722       | 2.2392      | 1.3105       | 30.003     | 11.126                                    | 6.0761 | 3.6132       |  |
| MITC4                        | 8.9344    | 2.1880       | 1.0725      | 0.6828       | 8.9120     | 2.0046                                    | 0.8953 | 0.5018       |  |
| Enriched MITC3 <sup>I</sup>  | 0.2576    | 1.0378       | 0.5007      | 0.2355       | 0.2850     | 1.1864                                    | 0.6628 | 0.4058       |  |
| Enriched MITC3 <sup>II</sup> | 6.9076    | 1.9940       | 0.8492      | 0.4103       | 7.0804     | 2.0948                                    | 0.9945 | 0.5754       |  |
| Enriched MITC4               | 6.2292    | 1.3753       | 0.6716      | 0.4478       | 7.4785     | 1.5154                                    | 0.5588 | 0.2933       |  |
| Enriched MITC4*              | 8.2046    | 2.0646       | 0.9637      | 0.5939       | 8.8357     | 2.0209                                    | 0.8413 | 0.4289       |  |
| MITC9                        | 0.1525    | 0.1813       | 0.1841      | 0.1845       | 0.0452     | 0.0023                                    | 0.0015 | 0.0018       |  |

Reference solution  $w_A^{ref} = -4.026\text{E-05}$  for h/r = 0.1 and  $w_A^{ref} = -3.982\text{E-02}$  for h/r = 0.01I and II : mesh patterns shown in Figure 4.10

**Table 4.6.** Relative errors in the vertical displacement at point *A* for the clamped circular plate under uniform pressure. Relative error  $(\%) = |w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                              | Relative errors in the vertical displacement at point A for the clamped circular plat |        |        |              |              |              |        |              |
|------------------------------|---------------------------------------------------------------------------------------|--------|--------|--------------|--------------|--------------|--------|--------------|
| Element type                 | h / r = 0                                                                             | .1 S   | INCI   | E 1971       | h / r = 0.01 |              |        |              |
|                              | 1×1                                                                                   | 2×2    | 3×3    | $4 \times 4$ | 1×1          | $2 \times 2$ | 3×3    | $4 \times 4$ |
| MITC3 <sup>I</sup>           | 64.785                                                                                | 16.887 | 6.9421 | 4.0065       | 99.097       | 87.844       | 55.804 | 27.994       |
| MITC3 <sup>II</sup>          | 59.005                                                                                | 14.239 | 6.0037 | 3.5079       | 98.944       | 78.667       | 43.502 | 21.287       |
| MITC4                        | 8.2247                                                                                | 1.4532 | 1.0086 | 0.8754       | 7.8238       | 0.6659       | 0.2831 | 0.1450       |
| Enriched MITC3 <sup>I</sup>  | 21.430                                                                                | 4.2715 | 1.9614 | 1.2955       | 22.135       | 3.9415       | 1.4733 | 0.7313       |
| Enriched MITC3 <sup>II</sup> | 58.002                                                                                | 9.5016 | 3.0473 | 1.5981       | 71.050       | 14.737       | 5.1137 | 2.4941       |
| Enriched MITC4               | 3.3057                                                                                | 0.0333 | 0.2096 | 0.3809       | 7.5536       | 0.8979       | 0.0341 | 0.1252       |
| Enriched MITC4*              | 4.7700                                                                                | 0.9587 | 0.5797 | 0.5249       | 7.4946       | 0.7353       | 0.0616 | 0.1508       |
| MITC9                        | 0.4769                                                                                | 0.7090 | 0.7246 | 0.7276       | 0.2951       | 0.0155       | 0.0028 | 0.0060       |

Reference solution  $w_A^{ref} = -1.021\text{E-05}$  for h/r = 0.1 and  $w_A^{ref} = -9.770\text{E-03}$  for h/r = 0.01I and II : mesh patterns shown in Figure 4.10

#### 4.3.3 Partly Clamped Hyperbolic Paraboloid Shell



**Figure 4.12.** Partly clamped hyperbolic paraboloid shell. (a) Problem description and mesh pattern  $(8 \times 4)$  used for the MITC and enriched MITC3 shell elements. (b) Normalized displacement at point *A* in the analysis of the partly clamped hyperbolic paraboloid shell.

| 🚡 한국과학기술원 支                                                                                               |
|-----------------------------------------------------------------------------------------------------------|
| The partly clamped hyperbolic paraboloid shell problem shown in Figure 4.12(a) is classified as a         |
| bending dominated problem. This problem was suggested as a suitable test for locking behavior [136, 137]. |
| The surface is defined as                                                                                 |

$$Z = X^{2} - Y^{2}; \quad (X, Y) \in \left[ \left( -l/2; l/2 \right) \right]^{2}, \tag{4.53}$$

clamped along the side X = -l/2.

The shell is clamped at one end and subjected to self-weight which is 8 per unit area. The problem geometry and material properties are l=1,  $E=2\times10^{11}$ , v=0.3 and the thickness of the shell is h=0.001. As a result of symmetry, only one half of the surface is considered in this problem. For the finite element analysis, sequences of  $N \times N/2$  meshes, where N is the number of subdivisions along the x-direction.

Currently, an analytic solution is not available for this shell problem; instead, a  $32 \times 16$  element mesh of the MITC9 shell element is used to obtain the reference solution. The reference solution of the vertical displacement at point *A* is -0.0064. Figure 4.12(b) and Figure 4.13 report the normalized displacement at point *A* for this shell problem and Table 4.7 presents the relative errors in vertical deflection compared with other shell elements. The results of the enriched MITC3 shell element are sensitive to mesh patterns shown in Fig-

ure 4.12(a). The enriched MITC4 shell element exhibits better results even for the coarse meshes.



Figure 4.13. Normalized displacement at point *A* for the partly clamped hyperbolic paraboloid shell when the (a) triangular and (b) quadrilateral shell elements are used.

**Table 4.7.** Relative errors in the vertical displacement at point *A* for the partly clamped hyperbolic paraboloid shell. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                              | Mesh  |              | -     |       |       | 1     |       |       |  |
|------------------------------|-------|--------------|-------|-------|-------|-------|-------|-------|--|
| Element type                 | 4×2   | $8 \times 4$ | 12×6  | 16×8  | 20×10 | 24×12 | 28×14 | 32×16 |  |
| MITC3 <sup>I</sup>           | 99.59 | 96.23        | 88.39 | 77.03 | 64.63 | 53.25 | 43.60 | 35.65 |  |
| MITC3 <sup>II</sup>          | 99.86 | 98.83        | 95.68 | 89.85 | 82.12 | 73.45 | 64.59 | 56.12 |  |
| MITC4                        | 2.373 | 4.887        | 5.367 | 4.850 | 4.194 | 3.590 | 3.072 | 2.638 |  |
| Enriched MITC3 <sup>I</sup>  | 6.532 | 1.613        | 2.880 | 2.943 | 2.677 | 2.323 | 1.972 | 1.657 |  |
| Enriched MITC3 <sup>II</sup> | 1.485 | 5.712        | 5.800 | 4.936 | 3.992 | 3.167 | 2.493 | 1.953 |  |
| Enriched MITC4               | 0.036 | 2.757        | 2.788 | 2.450 | 2.061 | 1.690 | 1.368 | 1.100 |  |
| Enriched MITC4*              | 1.802 | 0.190        | 1.551 | 1.667 | 1.431 | 1.156 | 0.912 | 0.710 |  |
| MITC9                        | 15.92 | 0.185        | 1.208 | 0.917 | 0.557 | 0.296 | 0.120 | 0.000 |  |

Reference solution  $w_A^{ref} = -0.00637115$ 

I and II : mesh patterns shown in Figure 4.12(a)

#### 4.3.4 Twisted Beam Subjected to Vertical Tip Load



**Figure 4.14.** Twisted beam subjected to vertical tip load. (a) Problem description. (b) Mesh patterns used for the MITC3 and enriched MITC3 shell elements.

Figure 4.14(a) shows the twisted beam proposed by Belytschko et al. [131]. This benchmark problem is to test the effect of element warping. The performance of elements of two kind of thickness (0.32 and 0.0032) was studied under out-of-plane shear force. The geometrical property and load are l = 12, w = 1.1 and F = 1, respectively. The Young's modulus is  $E = 29 \times 10^6$ , while the Poisson's ration is v = 0.22.



Figure 4.15. Normalized displacement of the twisted beam subjected to vertical tip load for different thickness cases (left) h = 0.32 and (right) h = 0.0032.

Figure 4.15 represents the normalized displacement at point A for the twisted beam and Table 4.8

shows the relative errors in vertical deflection at point *A* comparing with the results from other shell elements in some literatures. The solutions using the MITC3 shell element deteriorate as the shell thickness decreases. However, all enriched shell elements show excellent results when compared with the reference solutions.

**Table 4.8.** Relative errors in displacement at point *A* for the twisted beam subjected to vertical tip load. Relative error  $\binom{9}{6} = |w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                                    | h = 0.32  | 2            |          |                  | h = 0.00     | <i>h</i> = 0.0032 |          |       |  |  |
|------------------------------------|-----------|--------------|----------|------------------|--------------|-------------------|----------|-------|--|--|
| Element type                       | 4×2       | $8 \times 4$ | 12×6     | 16×8             | $4 \times 2$ | 8×4               | 12×6     | 16×8  |  |  |
| MITC3 <sup>I</sup>                 | 4.029     | 2.717        | 2.075    | 1.722            | 3.867        | 3.748             | 3.672    | 3.617 |  |  |
| MITC3 <sup>II</sup>                | 4.156     | 2.790        | 2.097    | 1.719            | 3.890        | 3.769             | 3.694    | 3.639 |  |  |
| MITC4                              | 3.015     | 1.563        | 0.983    | 0.707            | 3.774        | 2.967             | 2.169    | 1.621 |  |  |
| Enriched MITC3 <sup>1</sup>        | 1.169     | 0.078        | 0.050    | 0.074            | 1.797        | 0.639             | 0.493    | 0.479 |  |  |
| Enriched MITC3 <sup>II</sup>       | 1.294     | 0.152        | 0.001    | 0.039            | 1.787        | 0.639             | 0.493    | 0.470 |  |  |
| Enriched MITC4                     | 2.750     | 1.409        | 0.862    | 0.609            | 3.374        | 2.455             | 1.789    | 1.361 |  |  |
| MITC9                              | 1.657     | 0.527        | 0.362    | 0.308            | 2.250        | 0.338             | 0.114    | 0.294 |  |  |
| Macro-ANS <sup>II</sup>            | 3.500     | 2.000        | 1.400    | 1.000            | 2.800        | 0.000             | 0.300    | 0.500 |  |  |
| ANS <sup>II</sup>                  | 3.500     | 2.100        | 1.500    | 1.100            | 3.100        | 2.700             | 2.100    | 1.600 |  |  |
| S3R <sup>II</sup>                  | 18.70     | 3.500        | 1.900    | 1.400            | 64.60        | 6.000             | 2.700    | 1.600 |  |  |
| T3DISP <sup>II</sup>               | 94.60     | 80.30        | 63.10    | 47.40            | 99.99        | 99.99             | 99.88    | 99.76 |  |  |
| Allman <sup>I</sup>                | -         | -            | -        |                  | 97.40        | 98.45             | <u> </u> | 92.59 |  |  |
| Cook, flat-stiffened <sup>I</sup>  | -21:      | 국괴           | '와7      | ''술'             | 97.69        | 93.71             | -        | 55.47 |  |  |
| Cook, curved-softened <sup>I</sup> | -         | -            | -        | -                | 3.800        | 0.800             | 5-       | 0.100 |  |  |
| Providas and Kattis <sup>I</sup>   | -         | - 1          |          | -                | 99.54        | 0.020             | -        | 0.340 |  |  |
| ANDES (OPT) <sup>I</sup>           | -         | -            | -        | -                | 99.54        | 98.04             | -        | 91.43 |  |  |
| 4                                  |           |              |          |                  |              | K                 |          |       |  |  |
| Reference solution $w_A^{ref} = 5$ | .424E-03  | for $h =$    | 0.32 and | $w_A^{ref} = 5.$ | .256E+03     | for $h =$         | 0.0032   |       |  |  |
| I and II : mesh patterns show      | n in Figu | re 4.14(b)   | )        |                  |              |                   |          |       |  |  |

# 4.3.5 Pinched Cylinder



Figure 4.16. Pinched cylinder. (a) Problem description. (b) Mesh patterns  $(4 \times 4)$  used for the MITC3 and enriched MITC3 shell elements and the distorted mesh.

# SINCE 1971

**Figure 4.16**(a) illustrates a short cylinder subjected to two pinching forces. The shell is bounded by rigid diaphragms at each end. This pinched cylinder is one of the most sever benchmark problem which is to test an element's ability to model both inextensional bending and complex membrane states. Belytschko et al. [138] pointed out the difficulty in passing this test. Due to symmetry, only one octant of the cylinder is analyzed.

The length and radius of the full cylinder are l = 600 and r = 300, respectively. The thickness of the cylinder is h = 3 and the material constants are  $E = 3 \times 10^7$  and v = 0.3. The load applied to the cylinder is P = 1. The vertical displacement at the location of the point load is 1.8248e-05 which is given in Belytschko et al. [138].


Figure 4.17. Distorted meshes used for the pinched cylinder, semi-cylindrical shell subjected to an end pinching force and Scordelis-Lo roof when N = 4. Two mesh patterns for the MITC3 and enriched MITC3 shell elements.

The convergence behavior not only using uniform meshes but also distorted meshes is studied in the pinched cylinder, semi-cylindrical shell subjected to an end pinching force, and Scordelis-Lo roof, see **Figure 4.17**. When the  $N \times N$  distorted mesh is used, each edge is discretized by the ratio  $L_1 : L_2 : L_3 : ..., L_N = 1 : 2 : 3 : ..., N$ , leading to quite distorted meshes.

For the pinched cylinder problem, the best performance is obtained with the MITC9 shell element, and next with the enriched MITC4 shell element, as illustrated in **Figure 4.18**. **Table 4.9** and **Table 4.10** tabulate the results of MITC shell elements and other shell elements published using the uniform and distorted meshes. The enriched MITC3 shell element performs well when the uniform meshes are used. However, for the distorted meshes, the enriched MITC3 shell element shows slightly poor results when the mesh pattern II is used. When the uniform meshes are used, the enriched scheme for the 4-node shell element increases solution accuracy even though the performance of the MITC4 and enriched MITC4 are similar for this problem with the distorted meshes.



**Figure 4.18.** Normalized displacement of the pinched cylinder with (a) the uniform meshes (b) the distorted meshes shown in Figure 4.16(b) and **Figure 4.17**.

**Table 4.9.** Relative errors in the radial displacement at point *A* for the pinched cylinder with the uniform meshes. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                              |        |        |        | and the second se |                |  |  |
|------------------------------|--------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| q                            | Mesh   |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |
| Element type                 | 4×4    | 8×8    | 12×12  | 16×16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $20 \times 20$ |  |  |
| MITC3 <sup>I</sup>           | 0.8845 | 0.5665 | 0.3359 | 0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1400         |  |  |
| MITC3 <sup>II</sup>          | 0.8923 | 0.5627 | 0.3259 | 0.2043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1360         |  |  |
| MITC4                        | 0.6212 | 0.2531 | 0.1251 | 0.0714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0445         |  |  |
| MITC4*                       | 0.6043 | 0.2425 | 0.1194 | 0.0680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0422         |  |  |
| Enriched MITC3 <sup>1</sup>  | 0.3763 | 0.0213 | 0.0571 | 0.0665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0622         |  |  |
| Enriched MITC3 <sup>II</sup> | 0.4021 | 0.1015 | 0.0290 | 0.0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0072         |  |  |
| Enriched MITC4               | 0.5296 | 0.1579 | 0.0593 | 0.0246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0095         |  |  |
| MITC9                        | 0.0369 | 0.0016 | 0.0052 | 0.0079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0092         |  |  |
| MISQ24                       | 0.3584 | 0.0589 | 0.0079 | 0.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| MIN4T                        | 0.4960 | 0.1626 | -      | 0.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| XSHELL41                     | 0.3750 | 0.0740 | -      | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| XSHELL42                     | 0.3750 | 0.0820 | -      | 0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| SRI-4                        | 0.6270 | 0.2530 | -      | 0.0650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| RSDS-4                       | 0.5310 | 0.2090 | -      | 0.0540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| SHELL63 (ANSYS)              | 0.3698 | 0.0629 | -      | 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| QC5D-SA                      | 0.6241 | 0.2536 | -      | 0.0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| QPH                          | 0.6300 | 0.2600 | -      | 0.0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| IBRA-4                       | 0.6296 | 0.2633 | -      | 0.0657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| DKQ-4                        | 0.3643 | 0.0541 | -      | 0.0160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |
| Simo et al.                  | 0.6011 | 0.2372 | -      | 0.0651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |  |  |

| Allman                                                           | 0.4098 | 0.0759 | -      | 0.0043 | - |  |  |  |
|------------------------------------------------------------------|--------|--------|--------|--------|---|--|--|--|
| Cook_Flat-stiffened                                              | 0.4629 | 0.1027 | -      | 0.0033 | - |  |  |  |
| Cook_Curved-softened                                             | 0.0260 | 0.0010 | -      | -      | - |  |  |  |
| Providas and Kattis                                              | 0.5465 | 0.1436 | 0.0176 | -      | - |  |  |  |
| ANDES (OPT)                                                      | 0.3696 | 0.0626 | 0.0064 | -      | - |  |  |  |
|                                                                  |        |        |        |        |   |  |  |  |
| Reference solution $w_A^{ref} = 1.8248\text{E-05}$ [138]         |        |        |        |        |   |  |  |  |
| I and II : mesh patterns shown in Figure 4.16(b) and Figure 4.17 |        |        |        |        |   |  |  |  |

**Table 4.10.** Relative errors in the radial displacement at point *A* for the pinched cylinder with the distorted meshes. Relative error (%) =  $|w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                                                                  | Mesh         |        |        |        |                |  |  |
|------------------------------------------------------------------|--------------|--------|--------|--------|----------------|--|--|
| Element type                                                     | 4×4          | 8×8    | 12×12  | 16×16  | $20 \times 20$ |  |  |
| MITC3 <sup>I</sup>                                               | 0.8628       | 0.4341 | 0.1917 | 0.0953 | 0.0520         |  |  |
| MITC3 <sup>II</sup>                                              | 0.9505       | 0.7354 | 0.4926 | 0.3327 | 0.2312         |  |  |
| MITC4                                                            | 0.7858       | 0.3530 | 0.1927 | 0.1149 | 0.0726         |  |  |
| MITC4*                                                           | 0.7615       | 0.3319 | 0.1779 | 0.1047 | 0.0654         |  |  |
| Enriched MITC3 <sup>1</sup>                                      | 0.3959       | 0.1104 | 0.0456 | 0.0203 | 0.0076         |  |  |
| Enriched MITC3 <sup>II</sup>                                     | 0.7960       | 0.4358 | 0.2626 | 0.1720 | 0.1181         |  |  |
| Enriched MITC4                                                   | 0.6559       | 0.2927 | 0.1575 | 0.0910 | 0.0550         |  |  |
| MITC9                                                            | 0.1470       | 0.0002 | 0.0145 | 0.0176 | 0.0189         |  |  |
| 4                                                                | C            |        |        | 5      |                |  |  |
| Reference solution $w_A^{ref} =$                                 | 1.8248E-05 [ | 138]   |        | 2      |                |  |  |
| I and II : mesh patterns shown in Figure 4.16(b) and Figure 4.17 |              |        |        |        |                |  |  |
|                                                                  |              |        |        |        |                |  |  |
|                                                                  | SI           | NCE 19 | 71     |        |                |  |  |

4.3.6 Semi-Cylindrical Shell Subjected to an End Pinching Force





**Figure 4.19.** Semi-cylindrical shell subjected to an end pinching force. (a) Problem description. (b) Meshes used  $(4 \times 4)$  for the MITC3 and enriched MITC3 shell elements.

| and the second                                                                                                  |                       | 1.2.10 | ·    | 100                                   | - T     |
|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------|------|---------------------------------------|---------|
| - O P                                                                                                           | manda XI              | 1101   | r /1 | Angela 3                              | - C. I. |
|                                                                                                                 | and the second second |        |      |                                       |         |
| the second se |                       |        |      | · · · · · · · · · · · · · · · · · · · |         |

A well-known benchmark problem is the semi-cylindrical shell under a point load shown in **Figure 4.19**(a) [139-142]. The length and radius of the half cylinder are l = 0.3048 and r = 1.016, respectively, and the thickness of the semi-cylindrical shell is h = 0.03. The material constants are  $E = 2.0685 \times 10^7$  and v = 0.3. The unit load applied to the shell at point *A*. The structure is modeled using  $4 \times 4$ ,  $8 \times 8$ ,  $12 \times 12$ ,  $16 \times 16$  and  $20 \times 20$  element meshes of the MITC3, MITC4, enriched MITC3 and enriched MITC4. The reference solutions are obtained using a  $30 \times 30$  element mesh of the MITC9 shell element.



**Figure 4.20.** Normalized displacement of the semi-cylindrical shell with (a) the uniform meshes (b) the distorted meshes shown in Figure 4.19(b) and **Figure 4.17**.

Figure 4.20 shows the normalized displacement at point A for the semi-cylindrical shell with the uniform and distorted meshes. Also, the relative errors in vertical deflection at point A are listed in Table 4.11 and Table 4.12. The enriched MITC4 shell element shows good performance in the solution of this shell problem when using both the uniform and distorted meshes.

**Table 4.11.** Relative errors in the vertical displacement at point *A* for the semi-cylindrical shell with the uniform meshes. Relative error  $(\%) = |w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

한국과학기술원

|                              | Mesh SINCE 1971 |       |       |       |                |  |
|------------------------------|-----------------|-------|-------|-------|----------------|--|
| Element type                 | $4 \times 4$    | 8×8   | 12×12 | 16×16 | $20 \times 20$ |  |
| MITC3 <sup>I</sup>           | 0.636           | 0.339 | 0.210 | 0.142 | 0.102          |  |
| MITC3 <sup>II</sup>          | 0.616           | 0.321 | 0.204 | 0.142 | 0.105          |  |
| MITC4                        | 0.380           | 0.181 | 0.110 | 0.074 | 0.054          |  |
| MITC4*                       | 0.345           | 0.167 | 0.101 | 0.069 | 0.050          |  |
| Enriched MITC3 <sup>I</sup>  | 0.122           | 0.037 | 0.018 | 0.009 | 0.004          |  |
| Enriched MITC3 <sup>II</sup> | 0.173           | 0.065 | 0.037 | 0.024 | 0.016          |  |
| Enriched MITC4               | 0.205           | 0.102 | 0.062 | 0.041 | 0.029          |  |
| MITC9                        | 0.083           | 0.029 | 0.014 | 0.008 | 0.005          |  |

Reference solution  $w_A^{ref} = 4.172e-04$ 

I and II : mesh patterns shown in Figure 4.19(b) and Figure 4.17

**Table 4.12.** Relative errors in the vertical displacement at point *A* for the semi-cylindrical shell with the distorted meshes. Relative error  $\binom{0}{6} = |w_A^{ref} - w_A| / |w_A^{ref}| \times 100$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                              | Mesh         |       |       |       |                |  |  |
|------------------------------|--------------|-------|-------|-------|----------------|--|--|
| Element type                 | $4 \times 4$ | 8×8   | 12×12 | 16×16 | $20 \times 20$ |  |  |
| MITC3 <sup>I</sup>           | 0.539        | 0.170 | 0.072 | 0.038 | 0.021          |  |  |
| MITC3 <sup>II</sup>          | 0.774        | 0.466 | 0.288 | 0.190 | 0.132          |  |  |
| MITC4                        | 0.433        | 0.173 | 0.088 | 0.051 | 0.031          |  |  |
| MITC4*                       | 0.322        | 0.108 | 0.050 | 0.026 | 0.013          |  |  |
| Enriched MITC3 <sup>1</sup>  | 0.093        | 0.007 | 0.002 | 0.006 | 0.009          |  |  |
| Enriched MITC3 <sup>II</sup> | 0.409        | 0.130 | 0.056 | 0.028 | 0.013          |  |  |
| Enriched MITC4               | 0.272        | 0.083 | 0.033 | 0.013 | 0.003          |  |  |
| MITC9                        | 0.024        | 0.005 | 0.012 | 0.014 | 0.016          |  |  |

Reference solution  $w_A^{ref} = 4.172e-04$ 

I and II : mesh patterns shown in Figure 4.19(b) and Figure 4.17

4.3.7 Scordelis-Lo (Barrel Vault) Roof



ELINN





**Figure 4.21.** Scordelis-Lo (Barrel Vault) roof. (a) Problem description. (b) Mesh patterns  $(4 \times 4)$  used for the MITC3 and enriched MITC3 shell elements.

The Scordelis-Lo (Barrel Vault) roof provides one of the standard tests to assess the performance of shell elements in a combined bending-membrane problem with the membrane action being dominant. The roof is modeled as a short cylinder shell, loaded by self-weight and supported by rigid diaphragms at the curved edges while the straight edges are free. The geometry of the problem is shown in **Figure 4.21**(a). The length of the roof is l = 50; the radius of curvature is r = 25 and its thickness h = 0.25. The material has a Young's modulus of  $E = 4.32 \times 10^8$  and a Poisson's ratio of v = 0. The load it experiences is due to its weight, amounting to the force per unit surface  $f_z = 90$  per unit area. According to MacNeal and Harder [143], the theoretical value for the vertical deflection at the center of the free edge is 0.3086, but slightly lower value 0.3024 seems to have become the reference solution for many publications. In this study the latter value is used to normalize numerical results.



**Figure 4.22.** Normalized displacement of the Scordelis-Lo roof with (a) the uniform meshes (b) the distorted meshes shown in Figure 4.21(b).

The results for the normalized vertical displacement at the free edge are shown in **Figure 4.22** and the displacements and its normalized values using the uniform and distorted meshes are shown in **Table 6.12** and **Table 6.13**. The enriched MITC4 shell element shows an excellent performance even when the distorted meshes are used.

**Table 4.13.** Relative errors in the vertical displacement at point *A* for the Scordelis-Lo roof with the uniform meshes. Relative error (%) =  $|w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  denote the reference and finite element solutions, respectively.

|                              | Mesh         | NCE 19       |        |        |        |
|------------------------------|--------------|--------------|--------|--------|--------|
| Element type                 | $2 \times 2$ | $4 \times 4$ | 6×6    | 8×8    | 16×16  |
| MITC3 <sup>I</sup>           | 0.2159       | 0.3598       | 0.2216 | 0.1412 | 0.0437 |
| MITC3 <sup>II</sup>          | 0.9147       | 0.6240       | 0.3528 | 0.2070 | 0.0532 |
| MITC4                        | 0.1921       | 0.0569       | 0.0397 | 0.0271 | 0.0112 |
| MITC4*                       | 0.3892       | 0.0473       | 0.0149 | 0.0053 | 0.0023 |
| Enriched MITC3 <sup>I</sup>  | 0.3059       | 0.0301       | 0.0215 | 0.0146 | 0.0066 |
| Enriched MITC3 <sup>II</sup> | 0.0532       | 0.0840       | 0.0387 | 0.0225 | 0.0083 |
| Enriched MITC4               | 0.3155       | 0.0420       | 0.0169 | 0.0079 | 0.0007 |
| Enriched MITC4*              | 0.3131       | 0.0398       | 0.0150 | 0.0067 | 0.0009 |
| MITC9                        | 0.0407       | 0.0076       | 0.0056 | 0.0050 | 0.0040 |
| QPH                          | -            | 0.0600       | -      | 0.0200 | 0.0100 |
| Simo et al.                  | -            | 0.0830       | -      | 0.0150 | 0.0000 |
| QUAD4                        | -            | 0.0500       | 0.0180 | 0.0080 | -      |
| URI-4                        | -            | 0.2190       | -      | 0.0540 | 0.0170 |

| SRI-4                | -      | 0.0360 | -      | 0.0160 | 0.0010 |
|----------------------|--------|--------|--------|--------|--------|
| DKQ-4                | -      | 0.0480 | -      | 0.0050 | 0.0030 |
| MISQ24               | -      | 0.1912 | -      | 0.0420 | 0.0063 |
| RSDS-4               | -      | 0.2010 | -      | 0.0460 | 0.0100 |
| T029 (SAMCEF)        | -      | 0.0240 | -      | 0.0140 | 0.0070 |
| NMS-4F               | -      | 0.0470 | -      | 0.0050 | 0.0030 |
| IBRA-4               | -      | 0.0470 | -      | 0.0050 | 0.0030 |
| Allman               | 0.4072 | 0.0046 | 0.0129 | 0.0126 | -      |
| Cook_Flat-stiffened  | 0.3512 | 0.0925 | 0.0710 | 0.0494 | -      |
| Cook_Curved-softened | 0.4060 | 0.1200 | -      | 0.0610 | -      |
| Providas and Kattis  | 0.0984 | 0.2655 | 0.1853 | 0.1264 | -      |
| ANDES (OPT)          | 0.5273 | 0.0830 | 0.0304 | 0.0139 | -      |
| AHMA4                | -      | 0.9319 | 0.8985 | 0.8656 | -      |
| EAS7_ANS             | -      | 0.0407 | -      | 0.0063 | -      |

Reference solution  $w_A^{ref} = 0.3024$ 

I and II : mesh patterns shown in Figure 4.21(b) and Figure 4.17

**Table 4.14.** Relative errors in the displacement at the point *A* for the Scordelis-Lo roof with the distorted meshes. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  denote the reference and finite element solutions, respectively.

| Element type                 | Mesh<br>2×2 | 4×4    | 6×6    | 8×8    | 16×16  |
|------------------------------|-------------|--------|--------|--------|--------|
| MITC3 <sup>I</sup>           | 0.3988      | 0.4203 | 0.3039 | 0.2212 | 0.0817 |
| MITC3 <sup>II</sup>          | 0.9180      | 0.8214 | 0.7080 | 0.5893 | 0.2493 |
| MITC4                        | 0.2093      | 0.3138 | 0.2097 | 0.1415 | 0.0460 |
| MITC4*                       | 0.0618      | 0.1028 | 0.0526 | 0.0311 | 0.0099 |
| Enriched MITC3 <sup>I</sup>  | 0.2179      | 0.1227 | 0.0942 | 0.0668 | 0.0235 |
| Enriched MITC3 <sup>II</sup> | 0.0324      | 0.2477 | 0.1243 | 0.0635 | 0.0109 |
| Enriched MITC4               | 0.0874      | 0.1853 | 0.0869 | 0.0441 | 0.0087 |
| MITC9                        | 0.1319      | 0.0231 | 0.0089 | 0.0056 | 0.0033 |

Reference solution  $w_A^{ref} = 0.3024$ 

I and II : mesh patterns shown in Figure 4.21(b) and Figure 4.17

## Chapter 5. MITC3+ Shell Element in Geometric Nonlinear Analysis

### 5.1 The MITC3+ Shell Finite Element for Linear Analysis

In this section, the linear formulation of the MITC3+ shell finite element is extended to geometric nonlinear analysis and its performance is demonstrated. The MITC3+ shell element, recently proposed for linear analysis [29], represents a further development of the MITC3 shell element. The total Lagrangian formulation is employed allowing for large displacements and large rotations. Considering several analysis problems, the nonlinear solutions using the MITC3+ shell element are compared with those obtained using the MITC3 and MITC4 shell elements. It can be concluded that the MITC3+ shell element shows, in the problems considered, the same excellent performance in geometric nonlinear analysis as already observed in linear analysis.



Figure 5.1. The MITC3+ shell finite element with the bubble node: (a) Geometry of the MITC3+ shell finite element. (b) Definition of rotational degrees of freedom  $\alpha_k$  and  $\beta_k$ .

The geometry interpolation of the MITC3+ shell element, shown in Figure 5.1, is given by

$$\mathbf{x}(r,s,\xi) = \sum_{i=1}^{3} h_i(r,s) \mathbf{x}_i + \frac{\xi}{2} \sum_{i=1}^{4} a_i f_i(r,s) \mathbf{V}_n^i$$

with

$$h_1 = 1 - r - s$$
,  $h_2 = r$ ,  $h_3 = s$ ,  $a_4 \mathbf{V}_n^4 = \frac{1}{3} (a_1 \mathbf{V}_n^1 + a_2 \mathbf{V}_n^2 + a_3 \mathbf{V}_n^3)$ , (5.1)

in which  $h_i(r,s)$  is the two-dimensional interpolation function of the standard isoparametric procedure corresponding to node i,  $\mathbf{x}_i$  is the position vector of node i in the global Cartesian coordinate system,  $a_i$ and  $\mathbf{V}_n^i$  denote the shell thickness and the director vector at node i, respectively, and  $f_i(r,s)$  are the twodimensional interpolation functions that include the cubic bubble function  $f_4$  corresponding to the internal node 4

$$f_1 = h_1 - \frac{1}{3}f_4, \quad f_2 = h_2 - \frac{1}{3}f_4, \quad f_3 = h_3 - \frac{1}{3}f_4, \quad f_4 = 27rs(1 - r - s).$$
(5.2)

Unlike the standard 3-node shell elements, the MITC3+ shell element has an internal node and the corresponding cubic bubble function in the geometry interpolation.

From Equation (5.1), the displacement interpolation of the MITC3+ shell element for linear analysis is obtained by [29]

$$\mathbf{u}(r,s,\xi) = \sum_{i=1}^{3} h_i(r,s) \mathbf{u}_i + \frac{\xi}{2} \sum_{i=1}^{4} a_i f_i(r,s) (-\mathbf{V}_2^i \alpha_i + \mathbf{V}_1^i \beta_i),$$
(5.3)

in which  $\mathbf{u}_i$  is the nodal displacement vector in the global Cartesian coordinate system,  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$  are the unit vectors orthogonal to  $\mathbf{V}_n^i$  and to each other, and  $\alpha_i$  and  $\beta_i$  are the rotations of the director vector  $\mathbf{V}_n^i$  about  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$ , respectively, at node *i*.

The interior node, with rotation degrees of freedom only, is positioned on the flat surface defined by the three corner nodes of the element. Only the bending and transverse shear strain fields are enriched by the bubble function, and the geometry of the element remains flat, as for the MITC3 element, in a large deformation analysis. Of course, static condensation can be carried out on the element level for the rotations  $\alpha_4$ and  $\beta_4$ , and hence in practice the element is really a 3-node element.

#### 5.1.2 Assumed Covariant Transverse Shear Strain Fields

For linear analysis, the linear part of the Green-Lagrange strain tensor is used and its covariant strain components are

$$e_{ij} = \frac{1}{2} (\mathbf{g}_i \cdot \mathbf{u}_{,j} + \mathbf{g}_j \cdot \mathbf{u}_{,i}), \qquad (5.4)$$

in which

$$\mathbf{g}_i = \frac{\partial \mathbf{x}}{\partial r_i}, \ \mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_i} \quad \text{with} \ r_1 = r, \ r_2 = s, \ r_3 = \xi.$$
 (5.5)



**Figure 5.2.** Transverse shear strains  $e_{1\xi}$ ,  $e_{2\xi}$  and  $e_{3\xi}$ , and the tying positions (*A*), (*B*), (*C*), (*D*), (*E*) and (*F*) for the assumed transverse shear strain filed.

**Table 5.1.** Tying positions for the assumed transverse shear strain for the MITC3+ shell elements. The distance d is defined in Figure 5.2(c), and d = 1/10,000 is used [29].

|               | Tying position | r       | S                       |
|---------------|----------------|---------|-------------------------|
| Figure 5.2(b) | (A)            | 1/6     | 2/3                     |
|               | ( <i>B</i> )   | 2/3     | 1/6                     |
|               | (C)            | 1/6     | 1/6                     |
|               |                |         |                         |
| Figure 5.2(c) | ( <i>D</i> )   | 1/3 + d | 1/3 <b>-</b> 2 <i>d</i> |

| (E) | 1/3 <b>-</b> 2 <i>d</i> | 1/3 + d |  |
|-----|-------------------------|---------|--|
| (F) | 1/3 + d                 | 1/3 + d |  |

Since the MITC3+ shell element is flat, the covariant in-plane strain components are directly calculated using Equations (5.1)-(5.5). However, the covariant transverse shear strain fields are established using the MITC scheme to alleviate shear locking.

To construct the assumed transverse shear strain filed for MITC3+ shell element, two important factors are considered. First, the tying positions for the assumed covariant transverse shear strain components should be inside the element since the bubble function should be zero along the element edges. Second, the stiffness associated to the in-plane twisting mode should be eliminated. For an original triangular shell element called MITC3 shell element, the transverse shear strains occur in two transverse shearing modes and in an in-plane twisting of the element about the axis normal to the mid-surface at the barycenter. Hence, the transverse shear strain field of the MITC3 shell element can be divided into the constant part corresponding to the transverse shearing modes and the linear part corresponding to the in-plane twisting mode.

$$e_{r\xi}^{AS, MITC3} = e_{r\xi}^{AS, const} + e_{r\xi}^{AS, linear}, \quad e_{s\xi}^{AS, MITC3} = e_{s\xi}^{AS, const} + e_{s\xi}^{AS, linear}.$$
(5.6)

At the barycenter, constant term evaluating the transverse shear strains can be obtained by

$$e_{r\xi}^{AS, \ const} = e_{r\xi}^{AS, \ MITC3} \Big|_{s=1/3} = \frac{2}{3} \left( e_{r\xi}^{(1)} + \frac{1}{2} e_{s\xi}^{(2)} \right) - \frac{1}{3} \left( e_{s\xi}^{(3)} - e_{r\xi}^{(3)} \right), \tag{5.7}$$

$$e_{s\xi}^{AS, \ const} = e_{s\xi}^{AS, \ MITC3} \Big|_{r=1/3} = \frac{2}{3} \left( e_{s\xi}^{(2)} + \frac{1}{2} e_{r\xi}^{(1)} \right) + \frac{1}{3} \left( e_{s\xi}^{(3)} - e_{r\xi}^{(3)} \right),$$
(5.8)

where

$$e_{r\xi}^{AS, MITC3} = e_{r\xi}^{(1)} + cS , \quad e_{s\xi}^{AS, MITC3} = e_{s\xi}^{(2)} - cr , \quad c = (e_{r\xi}^{(3)} - e_{r\xi}^{(1)}) - (e_{s\xi}^{(3)} - e_{s\xi}^{(2)})$$
(5.9)

with

$$e_{r\xi}^{(1)} = e_{r\xi}\Big|_{r=1/2, s=0}, \quad e_{s\xi}^{(2)} = e_{s\xi}\Big|_{r=0, s=1/2}, \quad e_{r\xi}^{(3)} = e_{r\xi}\Big|_{r=1/2, s=1/2}, \quad e_{s\xi}^{(3)} = e_{s\xi}\Big|_{r=1/2, s=1/2}.$$
(5.10)

Subtracting, for the MITC3 shell element, the constant part from transverse shear strain field, the linearly varying part is calculated as follows

$$e_{r\xi}^{AS, \ linear} = e_{r\xi}^{AS, \ MITC3} - e_{r\xi}^{AS, \ const} = \frac{1}{3}c(3s-1), \qquad (5.11)$$

$$e_{s\xi}^{AS, \ linear} = e_{s\xi}^{AS, \ MITC3} - e_{s\xi}^{AS, \ const} = \frac{1}{3}c(1-3r) \ . \tag{5.12}$$

If this approach were used for the MITC3+ shell element, the constant part in Equations (5.7)-(5.8) would not include the effect of the bubble function since the bubble function is zero along the element edges. To include the effect of the bubble function in the constant part, a new tying scheme using element internal

points is designed. First, the three covariant transverse shear strains  $e_{1t}$ ,  $e_{2t}$  and  $e_{3t}$  are defined in the directions of the internal lines from the barycenter to the corners as shown in **Figure 5.2**(a). The following relations are obtained for the covariant transverse shear strain components, for  $0 \le r$ ,  $s \le 1$ ,

$$e_{1\xi} = \frac{1}{\sqrt{5}} (2e_{s\xi} - e_{r\xi}), \quad e_{2\xi} = \frac{1}{\sqrt{5}} (2e_{r\xi} - e_{s\xi}), \quad e_{3\xi} = -\frac{1}{\sqrt{2}} (e_{r\xi} + e_{s\xi}), \quad (5.13)$$

and

$$e_{r\xi} = \frac{\sqrt{5}}{3}e_{2\xi} - \frac{\sqrt{2}}{3}e_{3\xi}, \quad e_{s\xi} = \frac{\sqrt{5}}{3}e_{1\xi} - \frac{\sqrt{2}}{3}e_{3\xi}, \quad e_{q\xi} = \frac{1}{\sqrt{2}}(e_{s\xi} - e_{r\xi}) = \frac{\sqrt{10}}{6}(e_{1\xi} - e_{2\xi}).$$
(5.14)

Using Equation (5.13), the transverse shear strain components are sampled at three internal tying points (*A*), (*B*) and (*C*) on the three internal lines, see Figure 5.2(b) and Table 5.1.

$$e_{1\xi}^{(A)} = \frac{1}{\sqrt{5}} \left( 2e_{s\xi}^{(A)} - e_{r\xi}^{(A)} \right), \quad e_{2\xi}^{(B)} = \frac{1}{\sqrt{5}} \left( 2e_{r\xi}^{(B)} - e_{s\xi}^{(B)} \right), \quad e_{3\xi}^{(C)} = -\frac{1}{\sqrt{2}} \left( e_{s\xi}^{(C)} + e_{r\xi}^{(C)} \right). \tag{5.15}$$

It is important to note that the tying points have been selected to obtain a spatially isotropic element. Using next the relations in Equation (5.14), the constant covariant transverse shear strains along the element edge directions are assumed to be

$$\hat{e}_{r\xi} = \frac{\sqrt{5}}{3} e_{2\xi}^{(B)} - \frac{\sqrt{2}}{3} e_{3\xi}^{(C)} , \quad \hat{e}_{s\xi} = \frac{\sqrt{5}}{3} e_{1\xi}^{(A)} - \frac{\sqrt{2}}{3} e_{3\xi}^{(C)} , \quad \hat{e}_{q\xi} = \frac{\sqrt{10}}{6} (e_{1\xi}^{(A)} - e_{2\xi}^{(B)}) , \quad (5.16)$$

and, using Equation (5.15), a new constant transverse shear strain field is obtained

$$\hat{e}_{r\xi}^{const} = \hat{e}_{r\xi} = \frac{2}{3} \left( e_{r\xi}^{(B)} - \frac{1}{2} e_{s\xi}^{(B)} \right) + \frac{1}{3} \left( e_{r\xi}^{(C)} + e_{s\xi}^{(C)} \right), \qquad (5.17)$$

$$\hat{e}_{s\xi}^{const} = \hat{e}_{s\xi} = \frac{2}{3} \left( e_{s\xi}^{(A)} - \frac{1}{2} e_{r\xi}^{(A)} \right) + \frac{1}{3} \left( e_{r\xi}^{(C)} + e_{s\xi}^{(C)} \right).$$
(5.18)

In order to render the in-plane twisting stiffness more flexible, the linear part is modified by using three tying point (D), (E) and (F).

$$\hat{e}_{r\xi}^{linear} = \frac{1}{3}\hat{c}(3s-1), \quad \hat{e}_{s\xi}^{linear} = \frac{1}{3}\hat{c}(1-3r) \quad \text{with} \quad \hat{c} = (e_{r\xi}^{(F)} - e_{r\xi}^{(D)}) - (e_{s\xi}^{(F)} - e_{s\xi}^{(E)}). \quad (5.19)$$

The tying positions (D), (E) and (F) are positioned on the three internal lines from the barycenter to the centers of the edges with d defined in **Figure 5.2**(c) and **Table 5.1**. As d varies from 1/6 to 0, the three tying positions move from the centers of the edges to the barycenter, resulting in a smaller in-plane twisting stiffness. An effective value for d is determined below. The assumed transverse shear strain fields of the MITC3+ shell element are given by

$$e_{r\xi}^{AS} = \frac{2}{3} (e_{r\xi}^{(B)} - \frac{1}{2} e_{s\xi}^{(B)}) + \frac{1}{3} (e_{r\xi}^{(C)} + e_{s\xi}^{(C)}) + \frac{1}{3} \hat{c} (3s - 1) ,$$
  

$$e_{s\xi}^{AS} = \frac{2}{3} (e_{s\xi}^{(A)} - \frac{1}{2} e_{r\xi}^{(A)}) + \frac{1}{3} (e_{r\xi}^{(C)} + e_{s\xi}^{(C)}) + \frac{1}{3} \hat{c} (1 - 3r) , \qquad (5.20)$$

where  $\hat{c} = e_{r\xi}^{(F)} - e_{r\xi}^{(D)} - e_{s\xi}^{(F)} + e_{s\xi}^{(E)}$  and the tying positions (A), (B), (C), (D), (E), and (F) are presented in Figure 5.2 and Table 5.1.

The MITC3+ shell element is based on the 'basic mathematical shell model' [100, 103, 105] and the MITC scheme. The element passes the basic numerical tests, namely, the isotropy, zero energy mode, and patch tests. Furthermore, the MITC3+ shell element shows an excellent convergence behavior in both membrane and bending dominated shell problems, even when distorted meshes are used [29].

## 5.2 The MITC3+ Shell Element for Geometric Nonlinear Analysis

This section presents the geometric nonlinear formulation of the MITC3+ shell element. The total Lagrangian formulation is employed allowing for large displacements and large rotations. In the formulation, a superscript (and subscript) t is used to denote "time" for general analysis, with in static solutions "time" simply denoting the load step and configuration [1].

The large displacement kinematics and the interpolation of the Green-Lagrange strain components are discussed. With the given expressions, the now classical incremental equations used in the total Lagrangian formulation can directly be established [1].

### 5.2.1 Large Displacement Kinematics

The geometry of the MITC3+ shell finite element in the configuration at time t shown in Figure 5.1 is interpolated with

$${}^{t}\mathbf{x}(r,s,\xi) = \sum_{i=1}^{3} h_{i}(r,s){}^{t}\mathbf{x}_{i} + \frac{\xi}{2} \sum_{i=1}^{4} a_{i}f_{i}(r,s){}^{t}\mathbf{V}_{n}^{i}, \qquad (5.21)$$

in which  ${}^{t}\mathbf{x}_{i}$  is the position vector of node *i* in the configuration at time *t*, and  ${}^{t}\mathbf{V}_{n}^{i}$  denotes the director vector at node *i* in the configuration at time *t*.

The incremental displacements from the configuration at time t to the configuration at time  $t + \Delta t$ are

$$\mathbf{u}(r,s,\xi) = {}^{t+\Delta t} \mathbf{x}(r,s,\xi) - {}^{t} \mathbf{x}(r,s,\xi), \qquad (5.22)$$

and hence

$$\mathbf{u}(r,s,\xi) = \sum_{i=1}^{3} h_i(r,s) \mathbf{u}_i + \frac{\xi}{2} \sum_{i=1}^{4} a_i f_i(r,s) ({}^{t+\Delta t} \mathbf{V}_n^i - {}^t \mathbf{V}_n^i) , \qquad (5.23)$$

where  $\mathbf{u}_i$  is the vector of incremental nodal displacements at node *i* from time *t* to time  $t + \Delta t$ . Note that  $\mathbf{u}(r, s, \xi)$  is the displacement vector in the linear formulation, see Equation (5.3), but here it is the vector of incremental displacements.

The director vector at time  $t + \Delta t$  at node *i* is obtained from the director vector at time *t* 

$${}^{t+\Delta t}\mathbf{V}_{n}^{i} = {}^{t+\Delta t}_{t}\mathbf{Q}^{i} {}^{t}\mathbf{V}_{n}^{i}, \qquad (5.24)$$

in which  ${}^{t+\Delta t}_{t}\mathbf{Q}^{i}$  is the rotation matrix which rotates the director vector at node *i* from the configuration at time *t* to the configuration at time  $t + \Delta t$ . Additionally, the two unit vectors  ${}^{t}\mathbf{V}_{1}^{i}$  and  ${}^{t}\mathbf{V}_{2}^{i}$  are obtained by (see **Figure 5.1**(b)),

$${}^{t}\mathbf{V}_{1}^{i} = \frac{\mathbf{e}_{2} \times {}^{t}\mathbf{V}_{n}^{i}}{\left|\mathbf{e}_{2} \times {}^{t}\mathbf{V}_{n}^{i}\right|}, \quad {}^{t}\mathbf{V}_{2}^{i} = {}^{t}\mathbf{V}_{n}^{i} \times {}^{t}\mathbf{V}_{1}^{i}.$$
(5.25)

For the vector-like parameterization of finite rotations [1, 144], the well-known formula is employed by

TTE OF OF

$${}^{+\Delta t}_{t} \mathbf{Q}^{i} = \mathbf{I}_{3} + \frac{\sin\left({}^{t+\Delta t}_{t} \boldsymbol{\theta}^{i}\right)}{{}^{t+\Delta t}_{t} \boldsymbol{\theta}^{i}} {}^{t+\Delta t}_{t} \mathbf{\Theta}^{i} + \frac{1}{2} \left[ \frac{\sin\left({}^{t+\Delta t}_{t} \boldsymbol{\theta}^{i} / 2\right)}{{}^{t+\Delta t}_{t} \boldsymbol{\theta}^{i} / 2} \right]^{2} \left({}^{t+\Delta t}_{t} \mathbf{\Theta}^{i}\right)^{2}$$
(5.26)

with

$${}^{t+\Delta t}_{t} \boldsymbol{\Theta}^{i} = \begin{bmatrix} 0 & -\frac{t+\Delta t}{t} \theta_{3}^{i} & \frac{t+\Delta t}{t} \theta_{2}^{i} \\ \frac{t+\Delta t}{t} \theta_{3}^{i} & 0 & -\frac{t+\Delta t}{t} \theta_{1}^{i} \\ -\frac{t+\Delta t}{t} \theta_{2}^{i} & \frac{t+\Delta t}{t} \theta_{1}^{i} & 0 \end{bmatrix},$$
(5.27)

$${}^{t+\Delta t}_{t}\boldsymbol{\theta}^{i} = \alpha_{i}{}^{t}\mathbf{V}_{1}^{i} + \beta_{i}{}^{t}\mathbf{V}_{2}^{i}, \qquad (5.28)$$

in which  $\mathbf{I}_3$  is the 3×3 identity matrix,  ${}^{t+\Delta t}_{t} \Theta^i$  is the skew-symmetric matrix operator,  ${}^{t+\Delta t}_{t} \Theta^i = [{}^{t+\Delta t}_{t} \theta^i_1 {}^{t+\Delta t}_{t} \theta^j_2 {}^{t+\Delta t}_{t} \theta^j_3]^{\mathrm{T}}$ , and  ${}^{t+\Delta t}_{t} \theta^i = \sqrt{({}^{t+\Delta t}_{t} \theta^i_1)^2 + ({}^{t+\Delta t}_{t} \theta^j_2)^2 + ({}^{t+\Delta t}_{t} \theta^j_3)^2}$ .

Using a Taylor series expansion, the finite rotation tensor  $t^{t+\Delta t} \mathbf{Q}^{t}$  can be represented by

$${}^{t+\Delta t}_{t}\mathbf{Q}^{i} = \mathbf{I}_{3} + {}^{t+\Delta t}_{t}\mathbf{\Theta}^{i} + \frac{1}{2!} ({}^{t+\Delta t}_{t}\mathbf{\Theta}^{i})^{2} + \frac{1}{3!} ({}^{t+\Delta t}_{t}\mathbf{\Theta}^{i})^{3} + \cdots \cdots$$
(5.29)

Using only the terms up to quadratic order in Equation (5.29), the following equation is obtained

$${}^{t+\Delta t}\mathbf{V}_{n}^{i}-{}^{t}\mathbf{V}_{n}^{i}={}^{t+\Delta t}_{t}\mathbf{\Theta}^{i}{}^{t}\mathbf{V}_{n}^{i}+\frac{1}{2}{}^{t+\Delta t}_{t}\mathbf{\Theta}^{i}{}^{t+\Delta t}_{t}\mathbf{\Theta}^{i}{}^{t}\mathbf{V}_{n}^{i},$$
(5.30)

$${}^{t+\Delta t}\mathbf{V}_{n}^{i}-{}^{t}\mathbf{V}_{n}^{i}={}^{t+\Delta t}_{t}\boldsymbol{\theta}^{i}\times{}^{t}\mathbf{V}_{n}^{i}+\frac{1}{2}{}^{t+\Delta t}_{t}\boldsymbol{\theta}^{i}\times({}^{t+\Delta t}_{t}\boldsymbol{\theta}^{i}\times{}^{t}\mathbf{V}_{n}^{i}),$$
(5.31)

and using Equation (5.28) in Equation (5.31), we obtain for a 'consistent linearization' of the element displacements [1]

$${}^{t+\Delta t}\mathbf{V}_{n}^{i} - {}^{t}\mathbf{V}_{n}^{i} = -\alpha_{i}{}^{t}\mathbf{V}_{2}^{i} + \beta_{i}{}^{t}\mathbf{V}_{1}^{i} - \frac{1}{2}(\alpha_{i}^{2} + \beta_{i}^{2}){}^{t}\mathbf{V}_{n}^{i}.$$
(5.32)

Substituting Equation (5.32) into Equation (5.23), the vector of incremental displacements including second-order rotation effects is

$$\mathbf{u}(r,s,\xi) = \sum_{i=1}^{3} h_i(r,s) \mathbf{u}_i + \frac{\xi}{2} \sum_{i=1}^{4} a_i f_i(r,s) \left[ -\alpha_i^{\ t} \mathbf{V}_2^i + \beta_i^{\ t} \mathbf{V}_1^i - \frac{1}{2} (\alpha_i^2 + \beta_i^2)^t \mathbf{V}_n^i \right],$$
(5.33)

in which  $\alpha_i$  and  $\beta_i$  are the incremental rotations of the director vector  ${}^t \mathbf{V}_n^i$  about  ${}^t \mathbf{V}_1^i$  and  ${}^t \mathbf{V}_2^i$ , respectively, at node i.

Note that the incremental displacement in Equation (5.33) consists of two parts, the linear part  $\mathbf{u}_{l}$  and the quadratic part  $\mathbf{u}_{a}$ , hence

$$\mathbf{u}(r,s,\xi) = \mathbf{u}_{l}(r,s,\xi) + \mathbf{u}_{a}(r,s,\xi), \qquad (5.34)$$

with 
$$\mathbf{u}_{i}(r,s,\xi) = \sum_{i=1}^{3} h_{i}(r,s) \mathbf{u}_{i} + \frac{\xi}{2} \sum_{i=1}^{4} a_{i} f_{i}(r,s) (-\alpha_{i}^{\ t} \mathbf{V}_{2}^{i} + \beta_{i}^{\ t} \mathbf{V}_{1}^{i}),$$
 (5.35)

and 
$$\mathbf{u}_{q}(r,s,\xi) = -\frac{\xi}{4} \sum_{i=1}^{4} a_{i} f_{i}(r,s) [(\alpha_{i}^{2} + \beta_{i}^{2})^{t} \mathbf{V}_{n}^{i}].$$
 (5.36)

## 5.2.2 Green-Lagrange Strain and Its interpolation

The Green-Lagrange strain tensor in the configuration at time t, referred to the configuration at time 0 and measured in the convected system is conventionally defined by

OF SI

$${}_{0}^{t} \boldsymbol{\varepsilon} = \frac{1}{2} (\mathbf{F}^{\mathrm{T}} \mathbf{F} - \mathbf{I}) \quad \text{with} \quad \mathbf{F} = {}^{t} \mathbf{g}_{i} \otimes {}^{0} \mathbf{g}^{i} , \qquad (5.37)$$

in which  $\mathbf{F}$  is the deformation gradient tensor in terms of the covariant and contravariant base vectors. The covariant base vectors are obtained as the partial derivatives of the position vectors with respect to the curvilinear coordinates. Thus, the covariant base vectors for any point within the shell body in the configuration at time 0 and time t is defined by

$${}^{0}\mathbf{g}_{i} = \frac{\partial^{0}\mathbf{x}}{\partial r_{i}}, \quad {}^{t}\mathbf{g}_{i} = \frac{\partial^{t}\mathbf{x}}{\partial r_{i}} = {}^{0}\mathbf{g}_{i} + {}^{t}\mathbf{u}_{,i} \quad \text{with} \quad r_{1} = r , \quad r_{2} = s , \quad r_{3} = \xi .$$
(5.38)

Similarly, in the incremental step from time t to  $t + \Delta t$ ,

$${}^{+\Delta t}\mathbf{g}_{i} = \frac{\partial^{t+\Delta t}\mathbf{x}}{\partial r_{i}} = {}^{t}\mathbf{g}_{i} + \frac{\partial^{t+\Delta t}\mathbf{u}}{\partial r_{i}} \,.$$
(5.39)

Using the Equation (5.38), the covariant components of the metric tensor can be determined as

$${}^{\scriptscriptstyle 0}\boldsymbol{g}_{ij} = {}^{\scriptscriptstyle 0}\boldsymbol{g}_i \cdot {}^{\scriptscriptstyle 0}\boldsymbol{g}_j, \quad {}^{\scriptscriptstyle i}\boldsymbol{g}_{ij} = {}^{\scriptscriptstyle i}\boldsymbol{g}_i \cdot {}^{\scriptscriptstyle i}\boldsymbol{g}_j$$
(5.40)

The contravariant basis vectors needed for the calculation of the Green-Lagrange strain tensor can be derived as

$${}^{0}\mathbf{g}^{i} = {}^{0}\mathbf{g}^{-1} {}^{0}\mathbf{g}_{i} , \qquad (5.41)$$

in which  ${}^{0}\mathbf{g}^{-1}$  is the inverse of the metric tensor with components  ${}^{0}g_{ij}$ . Substituting Equations (5.38)-(5.41) into Equation (5.37), the covariant components of the Green-Lagrange strain tensor in the configuration at time *t*, referred to the configuration at time 0, are defined by

$${}_{0}^{t}\boldsymbol{\varepsilon} = {}_{0}^{t}\boldsymbol{\varepsilon}_{ij} \,{}^{0}\boldsymbol{g}_{i} \otimes {}^{0}\boldsymbol{g}_{j} \,, \tag{5.42}$$

where

$${}_{0}^{t}\varepsilon_{ij} = \frac{1}{2} \left( {}^{t}\mathbf{g}_{i} \cdot {}^{t}\mathbf{g}_{j} - {}^{0}\mathbf{g}_{i} \cdot {}^{0}\mathbf{g}_{j} \right) \quad \text{with} \quad {}^{0}\mathbf{g}_{i} = \frac{\partial^{0}\mathbf{x}}{\partial r_{i}}, \quad {}^{t}\mathbf{g}_{i} = \frac{\partial^{t}\mathbf{x}}{\partial r_{i}} = {}^{0}\mathbf{g}_{i} + {}^{t}\mathbf{u}_{,i}, \quad (5.43)$$

in which 
$${}^{t}\mathbf{u}_{,i} = \frac{\partial^{t}\mathbf{u}}{\partial r_{i}}, \quad {}^{t}\mathbf{u} = {}^{t}\mathbf{x} - {}^{0}\mathbf{x}, \quad r_{1} = r, \quad r_{2} = s, \quad r_{3} = \xi.$$
 (5.44)

Hence the incremental covariant strains are

$${}_{0}\varepsilon_{ij} = {}^{i+\Delta t}_{0}\varepsilon_{ij} - {}^{t}_{0}\varepsilon_{ij} = \frac{1}{2}(\mathbf{u}_{,i} \cdot {}^{t}\mathbf{g}_{j} + {}^{t}\mathbf{g}_{i} \cdot \mathbf{u}_{,j} + \mathbf{u}_{,i} \cdot \mathbf{u}_{,j}) \quad \text{with} \quad \mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_{i}}$$
(5.45)

Using Equation (5.34) in Equation (5.45), these strains are approximated as

$${}_{_{0}}\varepsilon_{ij} = {}_{_{0}}e_{ij} + {}_{_{0}}\eta_{ij} , \qquad (5.46)$$

where  ${}_{0}e_{ij}$  and  ${}_{0}\eta_{ij}$  are the linear and nonlinear parts, respectively,

S

$${}_{0}\boldsymbol{e}_{ij} = \frac{1}{2} \left( \frac{\partial \mathbf{u}_{l}}{\partial r_{i}} \cdot {}^{t} \mathbf{g}_{j} + {}^{t} \mathbf{g}_{i} \cdot \frac{\partial \mathbf{u}_{l}}{\partial r_{j}} \right) = \mathbf{B}_{ij} \mathbf{U}, \qquad (5.47)$$

$${}_{0}\eta_{ij} = \frac{1}{2} \left( \frac{\partial \mathbf{u}_{l}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{l}}{\partial r_{j}} \right) + \frac{1}{2} \left( \frac{\partial \mathbf{u}_{q}}{\partial r_{i}} \cdot {}^{\prime} \mathbf{g}_{j} + {}^{\prime} \mathbf{g}_{i} \cdot \frac{\partial \mathbf{u}_{q}}{\partial r_{j}} \right) = \frac{1}{2} \mathbf{U}^{T} \mathbf{N}_{ij} \mathbf{U} , \qquad (5.48)$$

in which  $\mathbf{B}_{ij}$  and  $\mathbf{N}_{ij}$  are the strain-displacement matrices and  $\mathbf{U}$  is the vector of incremental nodal displacements and rotations  $\mathbf{u}_i$ ,  $\alpha_i$  and  $\beta_i$  for all element nodes. In addition, the strain variations are

$$\delta_0 e_{ij} = \mathbf{B}_{ij} \delta \mathbf{U} , \quad \delta_0 \eta_{ij} = \delta \mathbf{U}^T \mathbf{N}_{ij} \mathbf{U} .$$
(5.49)

Note that Equations (5.46)-(5.49) contain all the strain terms to have a consistent linearization in the establishment of the tangent stiffness matrix.

# SINCE 1971

To alleviate shear locking, the MITC scheme used in the linear formulation of the MITC3+ shell element is also employed for the incremental covariant transverse shear strains in the nonlinear formulation. Therefore, the covariant transverse shear strains in Equations (5.46)-(5.49) are substituted by

$${}_{_{0}}\varepsilon_{r\xi}^{AS} = \frac{2}{3} \left( {}_{_{0}}\varepsilon_{r\xi}^{(B)} - \frac{1}{2} {}_{_{0}}\varepsilon_{s\xi}^{(B)} \right) + \frac{1}{3} \left( {}_{_{0}}\varepsilon_{r\xi}^{(C)} + {}_{_{0}}\varepsilon_{s\xi}^{(C)} \right) + \frac{1}{3} {}_{_{0}}\hat{c}(3s-1), \qquad (5.50)$$

$${}_{0}\varepsilon_{s\xi}^{AS} = \frac{2}{3} \left( {}_{0}\varepsilon_{s\xi}^{(A)} - \frac{1}{2} {}_{0}\varepsilon_{r\xi}^{(A)} \right) + \frac{1}{3} \left( {}_{0}\varepsilon_{r\xi}^{(C)} + {}_{0}\varepsilon_{s\xi}^{(C)} \right) + \frac{1}{3} {}_{0}\hat{c}(1-3r), \qquad (5.51)$$

$${}_{_{0}}\varepsilon^{AS}_{j\xi} = {}_{_{0}}e^{AS}_{j\xi} + {}_{_{0}}\eta^{AS}_{j\xi}, \quad {}_{_{0}}e^{AS}_{j\xi} = \mathbf{B}^{AS}_{j\xi}\mathbf{U}, \quad {}_{_{0}}\eta^{AS}_{j\xi} = \frac{1}{2}\mathbf{U}^{T}\mathbf{N}^{AS}_{j\xi}\mathbf{U} \quad \text{with} \quad j = r, s$$
(5.52)

in which  $_{0}\hat{c} = {}_{0}\varepsilon_{r\xi}^{(F)} - {}_{0}\varepsilon_{r\xi}^{(D)} - {}_{0}\varepsilon_{s\xi}^{(F)} + {}_{0}\varepsilon_{s\xi}^{(E)}$ ,  $\mathbf{B}_{j\xi}^{AS}$  and  $\mathbf{N}_{j\xi}^{AS}$  are the strain-displacement matrices for the assumed covariant transverse shear strains. Of course, the tying positions defined in Figure 5.2 and Table 5.1 are used.



Figure 5.3. Flow chart of the iterative procedures for solving the linearized equilibrium equation in the total Lagrangian formulation.

Finally, the global equilibrium equations are solved in iterative incremental manner, using the full Newton-Raphson method as shown in **Figure 5.3**. For the evaluation of the element stiffness matrix and internal nodal force vector, we use 7-point Gauss integration in the *r-s* plane (as for the MITC6 shell element) due to the cubic bubble function. Hence, since also 6 tying points and the fourth node are used, compared to the MITC3 shell element (using 3 tying points and 3-point Gauss integration), the MITC3+ shell element requires for the evaluation of these element quantities clearly more computational time.

### 5.3 Numerical Examples

To assess the performance of the MITC3+ shell element in geometric nonlinear analysis, the solutions

of several benchmark problems are given in this section. The problems involve the large displacement and large rotation response of shells with various shell geometries. The results calculated using the following MITC shell elements are given

- MITC3: 3-node triangular shell element
- MITC3+: 3-node triangular shell element enriched by a cubic bubble function
- MITC4: 4-node quadrilateral shell element

In each example, the reference solutions are given by either an analytical result or a calculated solution using a fine uniform mesh of the MITC9 shell element (these meshes used twice the number of elements in each direction as employed in the MITC4 element solutions) [22]. The MITC9 element is known to satisfy the ellipticity and consistency conditions and to show good convergence behavior [22, 26, 27]. For comparison, we also plot the results of the linear analysis calculated using the MITC9 shell element. The iterations to solve the nonlinear equations have been performed in each load step to a convergence tolerance of 0.1 percent on the relative incremental energy.

Note that in some benchmark problems, point loads are used, which cause a stress singularity at the point of loading. However, the use of point loads is acceptable in the studies here given because the meshes are not very fine (the point loads act as an equivalent pressure applied over a small area) [1].



**Figure 5.4.** Cantilever plate subjected to end shear force. (a) Problem description. (b) Meshes used for the MITC4 (top), MITC3 and MITC3+ (bottom) shell elements.

The cantilever plate shown in **Figure 5.4**(a) is subjected to a shear force at the free end. This problem has been considered many times before, see e.g. [145-147]. The material properties, geometry and applied force are chosen as  $E = 1.2 \times 10^6$ , v = 0, l = 10, b = 1, h = 0.1 and  $P_{\text{max}} = 4$ . **Figure 5.4**(b) shows the 16×1 mesh used for the solution with the MITC4 shell element and the corresponding mesh used for the MITC3 and MITC3+ shell elements. The reference solutions are calculated using a 32×2 element mesh of the MITC9 shell element.



**Figure 5.5.** Load-displacement curves for the cantilever plate subjected to end shear force. For the triangular element meshes, essentially the same response is measured at the two corners.

**Table 5.2.** Relative errors in the vertical and horizontal displacements at the free end for the cantilever plate subjected to end shear force. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  or  $|v^{ref} - v^h| / |v^{ref}| \times 100$  where  $w^{ref}$  and  $v^{ref}$  denote the reference solution, and  $w^h$  and  $v^h$  are finite element solutions.

| Normalized load | Relative errors in the vertical dis-<br>placement |        |        | Relative e | Relative errors in the horizontal dis-<br>placement |        |  |
|-----------------|---------------------------------------------------|--------|--------|------------|-----------------------------------------------------|--------|--|
| $P / P_{\max}$  | MITC4                                             | MITC3  | MITC3+ | MITC4      | MITC3                                               | MITC3+ |  |
| 0.1             | 0.0916                                            | 0.3588 | 0.0611 | 0.2317     | 0.9173                                              | 0.1738 |  |
| 0.2             | 0.0641                                            | 0.2605 | 0.0361 | 0.1834     | 0.7361                                              | 0.1336 |  |
| 0.3             | 0.0372                                            | 0.1432 | 0.0115 | 0.1269     | 0.5116                                              | 0.0837 |  |
| 0.4             | 0.0093                                            | 0.0349 | 0.0163 | 0.0674     | 0.2951                                              | 0.0337 |  |
| 0.5             | 0.0142                                            | 0.0527 | 0.0365 | 0.0249     | 0.1183                                              | 0.0062 |  |
| 0.6             | 0.0294                                            | 0.1194 | 0.0496 | 0.0100     | 0.0299                                              | 0.0349 |  |
| 0.7             | 0.0444                                            | 0.1724 | 0.0632 | 0.0379     | 0.1475                                              | 0.0632 |  |
| 0.8             | 0.0517                                            | 0.2115 | 0.0694 | 0.0591     | 0.2437                                              | 0.0812 |  |

| 0.9     | 0.0603 | 0.2427 | 0.0788 | 0.0796 | 0.3186 | 0.0996 |
|---------|--------|--------|--------|--------|--------|--------|
| 1.0     | 0.0657 | 0.2642 | 0.0821 | 0.0942 | 0.3799 | 0.1125 |
| Average | 0.0468 | 0.1860 | 0.0504 | 0.0915 | 0.3698 | 0.0822 |



Figure 5.6. Deformed configurations of the cantilever plate under end shear force.

Figure 5.5 shows the calculated load-displacement curves and the same results are tabulated in Table 5.2. Figure 5.6 depicts the deformed configurations of the cantilever plate obtained using the MITC3+ shell element at various load levels ( $P = 0.25P_{max}$ ,  $0.5P_{max}$ ,  $0.75P_{max}$ , and  $P_{max}$ ). All shell elements considered show excellent performance in the solution of this problem.

## 5.3.2 Cantilever Plate Subjected to End Moment



**Figure 5.7.** Cantilever plate subjected to end moment. (a) Problem description. (b) Meshes used for the MITC4 (top), MITC3 and MITC3+ (bottom) shell elements.

**Figure 5.7** shows the cantilever plate subjected to a moment at the free end. This is a good problem to test the large rotation capability of shell elements [139, 140, 148, 149]. The cantilever plate has length l = 12, width b = 1, thickness h = 0.1, Young's modulus  $E = 1.2 \times 10^6$  and Poisson's ratio v = 0. We use the end moment  $M_{\text{max}} = 2\pi M_0$  with  $M_0 = EI/L$ , and hence the cantilever rolls up into a complete circle. The structure is modeled using a  $16 \times 1$  element mesh of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes, see Figure 5.4(b). The reference solutions are calculated using a  $32 \times 2$  element mesh of the MITC9 shell element.

The cantilever forms a circular arc of radius R given by the classical formula R = EI / M. Thus, the analytical tip displacements are derived as

$$\frac{u}{l} = \frac{M_0}{M} \sin\left(\frac{M}{M_0}\right) - 1, \quad \frac{w}{l} = \frac{M_0}{M} \left(1 - \cos\frac{M}{M_0}\right).$$
(5.53)



**Figure 5.8.** Load-displacement curves for the cantilever plate subjected to end moment. For the triangular element meshes, essentially the same response is measured at the two corners.

**Table 5.3.** Relative errors in the vertical and horizontal displacements at the free end for the cantilever plate subjected to end moment. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  or  $|u^{ref} - u^h| / |u^{ref}| \times 100$  where  $w^{ref}$  and  $u^{ref}$  denote the reference solution, and  $w^h$  and  $u^h$  are finite element solutions.

| Normalized load              | Relative errors in the vertical displace- |                |                | Relative errors in the horizontal dis- |        |        |
|------------------------------|-------------------------------------------|----------------|----------------|----------------------------------------|--------|--------|
| Normalized load              | ment                                      | 아구고            | 1072 술         | placement                              |        |        |
| M / M <sub>max</sub>         | MITC4                                     | MITC3          | MITC3+         | MITC4                                  | MITC3  | MITC3+ |
| 0.1                          | 0.0302                                    | 0.0302         | 0.0302         | 0.0362                                 | 0.0362 | 0.0362 |
| 0.2                          | 0.1015                                    | 0.1015         | 0.1015         | 0.1199                                 | 0.1199 | 0.1199 |
| 0.3                          | 0.1428                                    | 0.1428         | 0.1428         | 0.3398                                 | 0.3398 | 0.3398 |
| 0.4                          | 0.0174                                    | 0.0174         | 0.0174         | 0.5569                                 | 0.5569 | 0.5569 |
| 0.5                          | 0.5301                                    | 0.5301         | 0.5301         | 0.6750                                 | 0.6750 | 0.6750 |
| 0.6                          | 1.9780                                    | 1.9780         | 1.9780         | 0.5695                                 | 0.5695 | 0.5695 |
| 0.7                          | 5.3451                                    | 5.3451         | 5.3451         | 0.1233                                 | 0.1233 | 0.1233 |
| 0.8                          | 13.349                                    | 13.349         | 13.349         | 0.7288                                 | 0.7288 | 0.7288 |
| 0.9                          | 37.330                                    | 37.330         | 37.364         | 1.8797                                 | 1.8797 | 1.8797 |
| 1.0                          | -                                         | -              | -              | 2.7917                                 | 2.7917 | 2.7583 |
| Average                      | 6.5360                                    | 6.5360         | 6.5398         | 0.7821                                 | 0.7821 | 0.7787 |
| $w^{ref}$ and $u^{ref}$ : An | alytical solutio                          | ns given by Eq | uation (5.53). |                                        |        |        |



Figure 5.9. Deformed configurations of the cantilever plate under end moment.

Figure 5.8 depicts the calculated load-displacement curves and Table 5.3 presents the displacements at the free end for this problem. Figure 5.9 shows successive deformed configurations calculated using the MITC3+ shell element at various load stages ( $M = 0.1M_{max}, 0.2M_{max}, 0.3M_{max}, ..., M_{max}$ ). All computed results show good agreement with the analytical solutions.

197

SINCE

5.3.3 Slit Annular Plate under End Shear Force



Figure 5.10. Slit annular plate under end shear force. (a) Problem description. (b) Meshes used.

A slit annular plate shown in **Figure 5.10**(a) is examined. This example was suggested by Başar and Ding [150] and has been widely considered [139-141, 151-154]. The geometry and elastic material properties are given by  $r_i = 6$ ,  $r_e = 10$ , h = 0.03,  $E = 21 \times 10^6$  and v = 0. The transverse shear force  $P_{\text{max}} = 3.2$  is incrementally applied at one end of the slit while the other end of the slit is fully clamped. The plate undergoes large displacements and large rotations. This structure is modeled using a  $6 \times 30$  element mesh of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes, see **Figure 5.10**(b). The reference solutions are obtained using a  $12 \times 60$  element mesh of the MITC9 shell element.



Figure 5.11. Load-displacement curves for the slit annular plate under end shear force.

**Table 5.4.** Relative errors in the vertical displacements at point *A* and *B* for slit annular plate under transverse end shear force. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  denote the reference and finite element solutions, respectively.

| Normalized load      | Relative e | Relative errors in the vertical displace- |        |            | Relative errors in the vertical displace- |        |  |
|----------------------|------------|-------------------------------------------|--------|------------|-------------------------------------------|--------|--|
|                      | ment at po | oint A                                    |        | ment at po | ment at point B                           |        |  |
| $P / P_{\text{max}}$ | MITC4      | MITC3                                     | MITC3+ | MITC4      | MITC3                                     | MITC3+ |  |
| 0.1                  | 1.5972     | 19.067                                    | 4.0407 | 2.0637     | 19.844                                    | 4.9036 |  |
| 0.2                  | 1.4592     | 17.434                                    | 3.1043 | 1.9778     | 19.030                                    | 4.0838 |  |
| 0.3                  | 1.6257     | 16.503                                    | 3.1621 | 2.2202     | 18.942                                    | 4.2687 |  |
| 0.4                  | 1.9299     | 16.373                                    | 3.5276 | 2.6072     | 19.452                                    | 4.7875 |  |
| 0.5                  | 2.2547     | 16.619                                    | 3.9930 | 3.0144     | 20.162                                    | 5.3828 |  |
| 0.6                  | 2.5799     | 17.090                                    | 4.5250 | 3.4173     | 20.979                                    | 6.0425 |  |
| 0.7                  | 2.8945     | 17.769                                    | 5.1221 | 3.8008     | 21.965                                    | 6.7895 |  |
| 0.8                  | 3.2398     | 18.653                                    | 5.5707 | 4.2093     | 23.126                                    | 7.3167 |  |
| 0.9                  | 3.6011     | 19.613                                    | 6.0335 | 4.6480     | 24.342                                    | 7.8624 |  |
| 1.0                  | 3.8708     | 20.560                                    | 6.1635 | 4.9516     | 25.509                                    | 7.9616 |  |
| Average              | 2.5053     | 17.968                                    | 4.5242 | 3.2910     | 21.335                                    | 5.9399 |  |

 $w^{ref}$ : Reference solutions calculated using the  $6 \times 30$  element mesh of the MITC9 shell elements



The load-displacement curves at two different points, A and B, are depicted in Figure 5.11. Also, the same results are listed in Table 5.4. The deformed configurations calculated using the MITC4, MITC3 and MITC3+ shell elements are shown in Figure 5.12. As seen, the MITC3 shell element displays too stiff a behavior. However, the results using the MITC3+ shell element are in agreement with those using the MITC4 shell element and reasonably close to the reference solutions.

5.3.4 Hemisphere Shell Subjected to Alternating Radial Forces



Figure 5.13. Hemisphere shell subjected to alternating radial forces. (a) Problem solved. (b) Meshes used  $(8 \times 32)$ .

|     |      |     | -        |          |
|-----|------|-----|----------|----------|
| 01- | 1711 | でトフ | $ \leq $ |          |
|     |      | -17 | and and  | <u> </u> |

Next benchmark problem is a hemispherical shell with an 18° circular cutout, as shown in **Figure 5.13**(a). The shell is pinched along one direction at points *B* and *D* and pulled along the perpendicular direction at points *A* and *C* [120, 145, 147, 151, 152]. The material and geometric properties are given by  $E = 6.825 \times 10^7$ , v = 0.3, r = 10, and the thickness is 0.04. The point load is incrementally applied to a maximum value  $P_{\text{max}} = 400$ . The shell is modeled using  $8 \times 32$  and  $12 \times 48$  element meshes of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes, see **Figure 5.13**(b). A  $24 \times 96$  element mesh of the MITC9 shell element is used to obtain the reference solutions.



**Figure 5.14.** Load-displacement curves for the hemisphere shell subjected to alternating radial forces when (a)  $8 \times 32$  and (b)  $12 \times 48$  element meshes are used.

**Table 5.5.** Relative errors in the radial displacements at point *A* and *B* for the hemisphere shell subjected to alternating radial forces. Relative error  $(\%) = |u^{ref} - u^h| / |u^{ref}| \times 100$  or  $|v^{ref} - v^h| / |v^{ref}| \times 100$  where  $u^{ref}$  and  $v^{ref}$  denote the reference solution, and  $u^h$  and  $v^h$  are finite element solutions.

|                      | Relative en | rors in the d | lisplacement at | Relative e | rrors in the c | lisplacement at |
|----------------------|-------------|---------------|-----------------|------------|----------------|-----------------|
| Normalized load      | point A     |               |                 | point B    |                |                 |
| P / P <sub>max</sub> | MITC4       | MITC3         | MITC3+          | MITC4      | MITC3          | MITC3+          |
| 0.1                  | 0.9285      | 15.978        | 1.3626          | 1.1691     | 16.000         | 2.2284          |
| 0.2                  | 1.4665      | 14.256        | 1.6563          | 1.9768     | 14.974         | 2.8722          |
| 0.3                  | 1.6875      | 13.305        | 1.7372          | 2.3749     | 14.738         | 2.9756          |

| 0.4     | 1.8621 | 12.695 | 1.8652 | 2.7121 | 14.719 | 3.0115 |
|---------|--------|--------|--------|--------|--------|--------|
| 0.5     | 1.9998 | 12.254 | 2.0145 | 2.9814 | 14.751 | 3.0208 |
| 0.6     | 2.1217 | 11.914 | 2.2080 | 3.2229 | 14.792 | 3.0846 |
| 0.7     | 2.2460 | 11.644 | 2.4330 | 3.4805 | 14.852 | 3.2167 |
| 0.8     | 2.3517 | 11.412 | 2.6722 | 3.6963 | 14.881 | 3.3913 |
| 0.9     | 2.4509 | 11.210 | 2.9114 | 3.9057 | 14.903 | 3.5965 |
| 1.0     | 2.5401 | 11.037 | 3.1480 | 4.1014 | 14.918 | 3.8287 |
| Average | 1.9655 | 12.571 | 2.2008 | 2.9621 | 14.953 | 3.1226 |

 $u^{ref}$  and  $v^{ref}$ : Reference solutions calculated using the 12×48 element mesh of the MITC9 shell elements



Figure 5.15. Deformed configurations of the hemisphere shell subjected to alternating radial forces.

Figure 5.14 shows the load-radial displacement curves at the loaded points A and B. Table 5.5 tabulates the same results of Figure 5.14. The deformed configurations obtained using a  $8 \times 32$  element mesh of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes are shown in Figure 5.15. For the meshes used, the MITC4 and MITC3+ shell elements produce much better solution accuracy than the MITC3 shell element in this problem.

## 5.3.5 Clamped Semi-Cylindrical Shell under Point Load



Figure 5.16. Clamped semi-cylindrical shell under point load. (a) Problem description (b) Meshes used  $(20 \times 20)$ 

| 한국과학/(술원) |      |           |              | 100       | - 14 · |
|-----------|------|-----------|--------------|-----------|--------|
| T 1       | 01   | 1 1 1 1 2 | <b>JF 71</b> | < <u></u> | 21     |
|           | 61-6 |           | -171         |           |        |

A well-known benchmark problem for geometric nonlinear analysis of shells is the semi-cylindrical shell under a point load shown in Figure 5.16(a) [139-142]. The length and radius of the half cylinder are l = 0.3048 and r = 1.016, respectively, and the thickness is h = 0.03; the material constants are  $E = 2.0685 \times 10^7$  and v = 0.3. The load applied to the shell increases up to  $P_{\text{max}} = 2000$ . The structure is modeled using  $20 \times 20$  and  $32 \times 32$  element meshes of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes, see Figure 5.16(b). The reference solutions are obtained using a  $64 \times 64$  element mesh of the MITC9 shell element.



Figure 5.17. Load-displacement curves for the clamped semi-cylindrical shell under point load when (a)  $20 \times 20$  and (b)  $32 \times 32$  element meshes are used.

**Table 5.6.** Relative errors in the vertical and horizontal displacements at point *A* for the clamped semicylindrical shell under a point load. Relative error  $(\%) = |w^{ref} - w^h| / |w^{ref}| \times 100$  or  $|v^{ref} - v^h| / |v^{ref}| \times 100$ where  $w^{ref}$  and  $v^{ref}$  denote the reference solution, and  $w^h$  and  $v^h$  are finite element solutions.

|                      | Relative errors in the vertical displace- |        |        | Relative e | errors in the | horizontal dis- |
|----------------------|-------------------------------------------|--------|--------|------------|---------------|-----------------|
| Normalized load      | ment                                      |        |        | placement  |               |                 |
| P / P <sub>max</sub> | MITC4                                     | MITC3  | MITC3+ | MITC4      | MITC3         | MITC3+          |
| 0.1                  | 3.5799                                    | 7.4891 | 5.5065 | 18.929     | 36.429        | 24.762          |
| 0.2                  | 1.7906                                    | 4.4274 | 3.8040 | 5.3651     | 14.244        | 11.879          |
| 0.3                  | 2.7969                                    | 5.8230 | 4.7734 | 5.6135     | 12.446        | 9.8334          |

| 0.4     | 0.8735 | 3.0748 | 2.2711 | 1.8427 | 6.5769 | 4.6288 |
|---------|--------|--------|--------|--------|--------|--------|
| 0.5     | 0.1804 | 1.2776 | 0.6989 | 0.4528 | 3.2554 | 1.7271 |
| 0.6     | 0.0692 | 0.6781 | 0.1937 | 0.1247 | 2.0033 | 0.6533 |
| 0.7     | 0.2285 | 0.3656 | 0.0718 | 0.5130 | 1.2778 | 0.0278 |
| 0.8     | 0.3556 | 0.1622 | 0.2495 | 0.8267 | 0.7577 | 0.4302 |
| 0.9     | 0.4927 | 0.0060 | 0.3845 | 1.0846 | 0.3358 | 0.8139 |
| 1.0     | 0.6232 | 0.1048 | 0.5067 | 1.3280 | 0.0417 | 1.1595 |
| Average | 1.0990 | 2.3409 | 1.8460 | 3.6080 | 7.7367 | 5.5914 |

 $w^{ref}$  and  $v^{ref}$ : Reference solutions calculated using the 32×32 element mesh of the MITC9 shell elements



Figure 5.18. Deformed configurations of the clamped semi-cylindrical shell under point load.

Figure 5.17 and Table 5.6 give the obtained load-displacement curves and tabulated data, respectively. Figure 5.18 shows the deformed shapes calculated using the  $20 \times 20$  element mesh of the MITC3+ shell finite elements at various load levels,  $P = P_{\text{max}} / 3$ ,  $2P_{\text{max}} / 3$ , and  $P_{\text{max}}$ . The three shell elements show good performance in the solution of this shell problem with the meshes used.



Figure 5.19. Distorted mesh patterns of the clamped semi-cylindrical shell (N = 4) (a) for the MITC4 shell element and (b) for the MITC3 and MITC3+ shell elements.





**Figure 5.20.** Load-displacement curves for the clamped semi-cylindrical shell with the distorted mesh patterns shown in Figure 5.19.

The analysis with the distorted mesh patterns shown in **Figure 5.19** is performed. For an  $N \times N$  element mesh, each edge is discretized with the following ratio :  $L_1 : L_2 : L_3 : ... L_N = 1 : 2 : 3 : ... N$ . The solutions are obtained with a 24×24 element mesh of the MITC4, MITC3 and MITC3+ shell elements. **Figure 5.20** and **Table 5.6** show the calculated load-displacement curves and tabulated values when the distorted mesh patterns in **Figure 5.19** are used. The MITC3+ shell element shows a good performance regardless of which mesh pattern in **Figure 5.19**(b) is used.

### 5.3.6 Fully Clamped Plate under Uniform Pressure


Figure 5.21. Fully clamped plate under uniform pressure and mesh used (4×4).

**Figure 5.21** shows the fully clamped plate under uniform pressure [115, 120, 146, 148, 154, 155]. A square plate of dimensions  $2l \times 2l$  and uniform thickness h is considered and all edges are fully clamped with the hard boundary condition [1]. Due to symmetry, only one-quarter of the plate is modeled, with the following boundary conditions:  $u_x = \theta_y = 0$  along BC,  $u_y = \theta_x = 0$  along DC and  $u_x = u_y = \theta_x = \theta_y = 0$  along AB and AD. The material properties used are  $E = 1.7472 \times 10^3$  and v = 0.3. The pressure applied to the plate increases up to  $q_{\text{max}} = h^3 \times 10^5$ . The length of the plate is l = 1 and four different plate thicknesses (h/L = 1/10, 1/100, 1/1,000 and 1/10,000) are considered. This problem is modeled using a  $10 \times 10$  element mesh of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element.

# **SINCE 1971**



Figure 5.22. Load-displacement curves for the fully clamped plate under uniform pressure.

**Table 5.7.** Relative errors in the vertical displacement at point *C* for the fully clamped plate under uniform pressure (for the cases h/L = 1/10 and h/L = 1/100). Relative error  $(\%) = |w^{ref} - w^h|/|w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  is denote the reference and finite element solutions, respectively.

| Normalized load | Relative er $h/L = 1/1$ | rors in the vert<br>0 case | ical displacemen | t at point C<br>h/L = 1/1 | point C<br>h/L = 1/100 case |        |  |
|-----------------|-------------------------|----------------------------|------------------|---------------------------|-----------------------------|--------|--|
| $q / q_{\max}$  | MITC4 MITC3 MITC3+      |                            | MITC4            | MITC3                     | MITC3+                      |        |  |
| 0.1             | 0.1798                  | 1.3936                     | 1.1351           | 0.1145                    | 5.4983                      | 1.3746 |  |
| 0.2             | 0.2772                  | 1.1548                     | 0.9547           | 0.1561                    | 4.1374                      | 1.1710 |  |
| 0.3             | 0.3114                  | 1.0424                     | 0.8581           | 0.1931                    | 3.6036                      | 1.0940 |  |
| 0.4             | 0.3359                  | 0.9797                     | 0.8006           | 0.2266                    | 3.3428                      | 1.0198 |  |
| 0.5             | 0.3413                  | 0.9372                     | 0.7641           | 0.2062                    | 3.1443                      | 0.9794 |  |

| 0.6     | 0.3544 | 0.9026 | 0.7277 | 0.2391 | 3.0607 | 0.9565 |
|---------|--------|--------|--------|--------|--------|--------|
| 0.7     | 0.3597 | 0.8792 | 0.7060 | 0.2247 | 2.9663 | 0.9438 |
| 0.8     | 0.3663 | 0.8548 | 0.6863 | 0.2130 | 2.9399 | 0.9374 |
| 0.9     | 0.3739 | 0.8362 | 0.6674 | 0.2034 | 2.8885 | 0.9357 |
| 1.0     | 0.3743 | 0.8257 | 0.6598 | 0.2344 | 2.8516 | 0.8984 |
| Average | 0.3274 | 0.9806 | 0.7960 | 0.2011 | 3.4433 | 1.0311 |

**Table 5.8.** Relative errors in the vertical displacement at point *C* for the fully clamped plate under uniform pressure (for the cases h/L = 1/1,000 and h/L = 1/10,000). Relative error (%) =  $|w^{ref} - w^h|/|w^{ref}| \times 100$  where  $w^{ref}$  and  $w^h$  denote the reference and finite element solutions, respectively.

| Normalized load                   | Relative error $h/L = 1/1, 0$ | Relative errors in the vertical displacement at p<br>h/L = 1/1,000 case |                  |                | point C<br>h / L = 1 / 10,000 case |        |  |
|-----------------------------------|-------------------------------|-------------------------------------------------------------------------|------------------|----------------|------------------------------------|--------|--|
| $q$ / $q_{ m max}$                | MITC4                         | MITC3                                                                   | MITC3+           | MITC4          | MITC3                              | MITC3+ |  |
| 0.1                               | 0.1261                        | 82.900                                                                  | 1.3179           | 0.1261         | 99.803                             | 1.3316 |  |
| 0.2                               | 0.0000                        | 76.819                                                                  | 0.7813           | 0.2031         | 99.731                             | 1.1560 |  |
| 0.3                               | 0.6452                        | 71.550                                                                  | 0.6452           | 0.2189         | 99.667                             | 1.0816 |  |
| 0.4                               | 0.5682                        | 67.000                                                                  | 0.5682           | 0.2210         | 99.609                             | 1.0371 |  |
| 0.5                               | 0.0000                        | 63.127                                                                  | 1.0309           | 0.2268         | 99.556                             | 1.0002 |  |
| 0.6                               | 0.4785                        | 59.612                                                                  | 0.9569           | 0.2200         | 99.506                             | 0.9803 |  |
| 0.7                               | 0.0000                        | 56.639                                                                  | 1.3453           | 0.2157         | 99.458                             | 0.9617 |  |
| 0.8                               | 0.0000                        | 54.043                                                                  | 1.2766           | 0.2174         | 99.412                             | 0.9461 |  |
| 0.9                               | 0.0000                        | 51.220                                                                  | 1.2195           | 0.2116         | 99.369                             | 0.9319 |  |
| 1.0                               | 0.3906                        | 49.219                                                                  | 0.7813           | 0.2110         | 99.327                             | 0.9180 |  |
| Average                           | 0.2208                        | 63.213                                                                  | 0.9923           | 0.2071         | 99.544                             | 1.0345 |  |
| w <sup>ref</sup> : Reference solu | tions calculated              | using the 10                                                            | ×10 element mesh | n of the MITC9 | shell element                      | S      |  |

Figure 5.22, Table 5.7 and Table 5.8 show the calculated vertical displacement at point C versus the uniform pressure. The solutions using the MITC3 shell element deteriorate as the shell thickness decreases due to shear locking. However, the MITC3+ and MITC4 shell finite elements show excellent results compared to the reference solutions.



**Figure 5.23.** Distorted meshes of the fully clamped plate (a) for the MITC4 shell element and (b) for the MITC3 and MITC3+ shell elements.



**Figure 5.24.** Load-displacement curves for the fully clamped plate with the distorted meshes shown in Figure 5.23.

The same problem with the distorted  $4 \times 4$  element mesh shown in **Figure 5.23** is also considered when h/L = 1/100. In the distorted element meshes, each edge is divided by the ratio :  $L_1 : L_2 : L_3 : L_4 = 1 : 2 : 3 : 4$ . **Figure 5.24** shows the calculated load-displacement curves. The MITC3+ and MITC4 shell elements show an excellent performance even when the distorted meshes are used. It is also observed that, compared to the MITC3 shell element, the MITC3+ shell element gives less sensitive solutions to mesh patterns.



# **Chapter 6.** 3-Node Triangular Shell Element with Improved Membrane Behaviors

# 6.1 The Enriched MITC3+ Shell Finite Element for Linear Analysis

In this section, a new triangular shell finite element with improved membrane behaviors is presented. The proposed shell element (hereafter named enriched MITC3+) is based on the MITC3+ shell element [29] which uses a cubic bubble function for the rotations and assumed shear strain to alleviate the transverse shear locking phenomenon. In order to improve membrane behaviors, the partition of unity approximation is applied into only membrane part of the MITC3+ shell element. For geometric nonlinear analysis, the total Lagrangian formulation is employed allowing for large displacements and large rotations. The enriched MITC3+ shell element convergence behavior in several problems. The nonlinear performance of the enriched MITC3+ shell element was numerically studied by solving several benchmark tests.



**Figure 6.1.** The MITC3+ shell finite element with the bubble node: (a) Geometry of the MITC3+ shell finite element. (b) Definition of rotational degrees of freedom  $\alpha_k$  and  $\beta_k$ .

The geometry interpolation of the MITC3+ shell element for linear analysis, shown in Figure 6.1, is given by [29, 156]

$$\overline{\mathbf{x}}(r,s,t) = \sum_{i=1}^{3} h_i(r,s)\overline{\mathbf{x}}_i + \frac{t}{2} \sum_{i=1}^{4} a_i f_i(r,s) \mathbf{V}_n^i$$
  
ith  $h_1 = 1 - r - s$ ,  $h_2 = r$ ,  $h_3 = s$ ,  $a_4 \mathbf{V}_n^4 = \frac{1}{3} (a_1 \mathbf{V}_n^1 + a_2 \mathbf{V}_n^2 + a_3 \mathbf{V}_n^3)$ , (6.1)

in which  $h_i(r,s)$  is the two-dimensional interpolation function of the standard isoparametric procedure corresponding to node i,  $\overline{\mathbf{x}}_i$  is the position vector of node i in the global Cartesian coordinate system,  $a_i$ and  $\mathbf{V}_n^i$  denote the shell thickness and the director vector at node i, respectively, and  $f_i(r,s)$  are the twodimensional interpolation functions that include the cubic bubble function  $f_4$  corresponding to the internal node 4

W

$$f_1 = h_1 - \frac{1}{3}f_4, \quad f_2 = h_2 - \frac{1}{3}f_4, \quad f_3 = h_3 - \frac{1}{3}f_4, \quad f_4 = 27rs(1 - r - s).$$
(6.2)

Unlike the standard 3-node shell elements [23], the MITC3+ shell element has an internal node and the corresponding a cubic bubble function for rotations in the geometry interpolation.

From Equation (6.1), the displacement interpolation of the MITC3+ shell element is obtained by [29, 156]

$$\overline{\mathbf{u}}(r,s,t) = \sum_{i=1}^{3} h_i(r,s) \overline{\mathbf{u}}_i + \frac{t}{2} \sum_{i=1}^{4} a_i f_i(r,s) (-\mathbf{V}_2^i \alpha_i + \mathbf{V}_1^i \beta_i), \qquad (6.3)$$

in which  $\overline{\mathbf{u}}_i = \begin{bmatrix} \overline{u}_i & \overline{v}_i & \overline{w}_i \end{bmatrix}^T$  is the nodal displacement vector in the global Cartesian coordinate system,  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$  are the unit vectors orthogonal to  $\mathbf{V}_n^i$  and to each other, and  $\alpha_i$  and  $\beta_i$  are the rotations of the director vector  $\mathbf{V}_n^i$  about  $\mathbf{V}_1^i$  and  $\mathbf{V}_2^i$ , respectively, at node *i*.

The additional internal node, with rotation degrees of freedom only, is positioned on the flat surface defined by the three corner nodes of the element. Only the bending and transverse shear strain fields are enriched by the bubble function, and the geometry of the element remains flat, as for the MITC3 element, in a large deformation analysis. Of course, static condensation can be carried out on the element level for the rotation  $\alpha_4$  and  $\beta_4$ , and hence in practice the MITC3+ shell element is really a 3-node element with 5 degrees of freedom per node.

## 6.1.2 The Partition of Unity Approximation to Improve Membrane Behaviors



Figure 6.2. Description of sub-domain; (a) usual interpolation function,  $h_i$  and an element, e, (b) cover region,  $C_i$  constructed by all the elements connected to node i.

A partition of unity is a set of functions that, for every point in the domain under consideration, sum to unity and subordinated to each cover. The cover of a node is defined as the region around a node consisting of all the elements that share that node shown in **Figure 6.2**. The finite shape function,  $h_i$ , then form a partition of unity subordinate to the cover  $C_i$ . A partition of unity based displacement approximation applied only to only the tangential displacements associated with membrane strains of the MITC3+ shell element is given by

$$\mathbf{u} = \sum_{i=1}^{3} h_{i} u_{i}^{i}(\mathbf{x}) + \sum_{i=1}^{4} a_{i} f_{i}(-\mathbf{V}_{2}^{i} \alpha_{i} + \mathbf{V}_{1}^{i} \beta_{i}), \qquad (6.4)$$

where  $u_i^l(\mathbf{x})$  is not a nodal displacement vector as in the standard finite element method but a vector of nodal displacement functions (also called local approximation) defined on the cover,  $C_i$ . In the above Equation (6.4), the finite element shape functions are used as the partition of unity functions and the local approximation is constructed by polynomials. A more detailed description of the partition of unity method can be found in References [28, 33-41, 84, 92-98, 157, 158]. The local approximation on the cover  $C_i$  is constructed as

$$u_{i}^{l}(\mathbf{x}) = \begin{bmatrix} \mathbf{p}^{\mathrm{T}}(\mathbf{x}) \mathbf{a}^{u} \\ \mathbf{p}^{\mathrm{T}}(\mathbf{x}) \mathbf{a}^{v} \\ \overline{w}_{i} \end{bmatrix} = \begin{bmatrix} \sum_{k=0}^{m-1} p_{k+1} a_{ki}^{u} & \sum_{k=0}^{m-1} p_{k+1} a_{ki}^{v} & \overline{w}_{i} \end{bmatrix}^{\mathrm{T}}, \qquad (6.5)$$

in which  $\mathbf{p}^{\mathrm{T}}(\mathbf{x}) = [1 \ x \ y \ xy \ ...]$  is a polynomial basis vector, *m* is the number of monomials in the basis, and  $a_{ki}^{u}$  and  $a_{ki}^{v}$  are the additional degrees of freedom for the cover region,  $\overline{w}_{i}$  is the nodal displacement corresponding to node *i*. In the development of the shell element, the only linear polynomial in Equation (6.5) is adopted and the local approximation can be rewritten by

$$u_{i}^{l}(\mathbf{x}) = \begin{bmatrix} a_{0i}^{u} + xa_{1i}^{u} + ya_{2i}^{u} \\ a_{0i}^{v} + xa_{1i}^{v} + ya_{2i}^{v} \\ \overline{w}_{i} \end{bmatrix},$$
(6.6)

where  $a_{0i}^{u}$  to  $a_{2i}^{u}$ , and  $a_{0i}^{v}$  to  $a_{2i}^{v}$  are the corresponding to unknown coefficients to be determined. Enforc-

ing  $u_i^l(\mathbf{x})$  to be equal to the nodal value at node *i* gives

$$u_{i}^{l}(x_{i}, y_{i}) = \begin{bmatrix} a_{0i}^{u} + x_{i}a_{1i}^{u} + y_{i}a_{2i}^{u} \\ a_{0i}^{v} + x_{i}a_{1i}^{v} + y_{i}a_{2i}^{v} \\ \overline{w}_{i} \end{bmatrix} = \begin{bmatrix} \overline{u}_{i} \\ \overline{\overline{v}_{i}} \\ \overline{\overline{w}_{i}} \end{bmatrix}$$
(6.7)

and therefore

$$a_{0i}^{u} = \overline{u}_{i} - x_{i}a_{1i}^{u} - y_{i}a_{2i}^{u} \quad \text{and} \quad a_{0i}^{v} = \overline{v}_{i} - x_{i}a_{1i}^{v} - y_{i}a_{2i}^{v} \,.$$
(6.8)

Substituting Equation (6.8) into Equation (6.7), the local approximation expressed as

1

$$u_i^l(\mathbf{x}) = \begin{bmatrix} \overline{u}_i + \xi_i \hat{u}_i^{\xi} + \eta_i \hat{u}_i^{\eta} \\ \overline{v}_i + \xi_i \hat{v}_i^{\xi} + \eta_i \hat{v}_i^{\eta} \\ \overline{w}_i \end{bmatrix}$$
(6.9)

with  $x - x_i = \xi_i$ ,  $y - y_i = \eta_i$ ,  $\hat{u}_i^{\xi} = a_{1i}^u$ ,  $\hat{u}_i^{\eta} = a_{2i}^u$ ,  $\hat{v}_i^{\xi} = a_{1i}^v$  and  $\hat{v}_i^{\eta} = a_{2i}^v$ . (6.10)

Finally, substituting Equations (6.9) and (6.10) into Equation (6.4), the partition of unity based displacement approximation for the 3-node shell finite element with a cubic bubble function is given by

$$\mathbf{u}(r,s,t) = \overline{\mathbf{u}}(r,s,t) + \hat{\mathbf{u}}(r,s) \quad \text{with} \quad \hat{\mathbf{u}}(r,s) = \sum_{i=1}^{3} \mathbf{H}_{i}(r,s)\hat{\mathbf{u}}_{i} , \qquad (6.11)$$

ur.

in which  $\hat{\mathbf{u}}_i = [\hat{u}_i^{\xi} \ \hat{u}_i^{\eta} \ \hat{v}_i^{\xi} \ \hat{v}_i^{\eta} \ 0]^{\mathrm{T}}$  are unknown coefficient vector for the displacements and the  $\mathbf{H}_i$  are the linear cover interpolation matrices for the displacements

$$\mathbf{H}_{i} = h_{i} \begin{bmatrix} \xi_{i} & \eta_{i} & 0 & 0 & 0 \\ 0 & 0 & \xi_{i} & \eta_{i} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$
(6.12)

The partition of unity based displacement approximation in Equation (6.11) consists of two parts: the standard displacement interpolation of the MITC3+ shell element,  $\bar{\mathbf{u}}$  and the additional quadratic term,  $\hat{\mathbf{u}}$ . Note that resulting global partition of unity approximation may be linearly dependent when both the partition of unity functions (used as the finite element shape function in this research) and the local approximation are chosen as polynomials. To avoid linear dependencies for the triangular element, we enforce not only  $u_i = 0$  but also  $\hat{\mathbf{u}}_i = \mathbf{0}$  when imposing the essential boundary conditions at the node *i* [28, 93, 98].

# 6.1.3 Assumed Covariant Transverse Shear Strain Fields

For linear analysis, the linear part of the Green-Lagrange strain tensor is used and its covariant strain components are

$$e_{ij} = \frac{1}{2} (\mathbf{g}_i \cdot \mathbf{u}_{,j} + \mathbf{g}_j \cdot \mathbf{u}_{,i}), \qquad (6.13)$$

in which

$$\mathbf{g}_{i} = \frac{\partial \mathbf{x}}{\partial r_{i}} = \frac{\partial (\overline{\mathbf{x}} + \widetilde{\mathbf{x}}')}{\partial r_{i}} = \frac{\partial \overline{\mathbf{x}}}{\partial r_{i}} = \overline{\mathbf{g}}_{i}, \quad \mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_{i}} = \frac{\partial (\overline{\mathbf{u}} + \widehat{\mathbf{u}})}{\partial r_{i}} = \overline{\mathbf{u}}_{,i} + \widehat{\mathbf{u}}_{,i}$$
(6.14)

with

$$r_1 = r, r_2 = s, r_3 = t.$$
 (6.15)

Therefore, the partition of unity based covariant strain components are also divided into two parts

$$e_{ij} = \overline{e}_{ij} + \hat{e}_{ij} \tag{6.16}$$

with 
$$\overline{e}_{ij} = \frac{1}{2} (\overline{\mathbf{g}}_i \cdot \overline{\mathbf{u}}_{,j} + \overline{\mathbf{g}}_j \cdot \overline{\mathbf{u}}_{,i})$$
 and  $\hat{e}_{ij} = \frac{1}{2} (\overline{\mathbf{g}}_i \cdot \hat{\mathbf{u}}_{,j} + \overline{\mathbf{g}}_j \cdot \hat{\mathbf{u}}_{,i}),$  (6.17)

in which  $\overline{e}_{ij}$  and  $\hat{e}_{ij}$  correspond to the standard linear displacement interpolation and the additional quadratic term, respectively.



**Figure 6.3.** Tying points (*A*), (*B*), (*C*), (*D*), (*E*) and (*F*) for the assumed transverse shear strains of the MITC3+ shell finite element.

To reduce the locking phenomenon, the MITC (Mixed Interpolation of Tensorial Components) method is used. Since the 3-node triangular shell element is always flat, present shell element is free from the membrane locking and thus the covariant in-plane strain components are directly calculated using Equations (6.16) and (6.17). However, the covariant transverse shear strain fields are established using the MITC scheme to alleviate transverse shear locking. The assumed transverse shear strain filed used for the MITC3+ shell element [29, 156] is directly used because additional unknown coefficients  $\hat{\mathbf{u}}$  are not involved in determining the transverse shear strain fields. Therefore, the assumed transverse shear strain fields of the enriched MITC3+ shell element are given by

$$e_{rt}^{AS} = \frac{2}{3} \left( \overline{e}_{rt}^{(B)} - \frac{1}{2} \overline{e}_{st}^{(B)} \right) + \frac{1}{3} \left( \overline{e}_{rt}^{(C)} + \overline{e}_{st}^{(C)} \right) + \frac{1}{3} \hat{c} (3s - 1) , \qquad (6.18)$$

$$e_{st}^{AS} = \frac{2}{3} \left( \overline{e}_{st}^{(A)} - \frac{1}{2} \overline{e}_{rt}^{(A)} \right) + \frac{1}{3} \left( \overline{e}_{rt}^{(C)} + \overline{e}_{st}^{(C)} \right) + \frac{1}{3} \hat{c} (1 - 3r) , \qquad (6.19)$$

where  $\hat{c} = \overline{e}_{rt}^{(F)} - \overline{e}_{rt}^{(D)} - \overline{e}_{st}^{(F)} + \overline{e}_{st}^{(E)}$  and the tying positions (*A*), (*B*), (*C*), (*D*), (*E*), and (*F*) are presented in **Figure 6.3** and **Table 6.** As suggested [29, 156], d = 1/10,000 is used. If d = 0.0 is used, there is one spurious zero eigenvalue for a single element, which however disappears as soon as two elements are used in the mesh. This shell element is referred to as the enriched MITC3+ shell element hereafter. The enriched MITC3+ shell element is based on the 'basic mathematical shell model' [100, 103, 105] and the MITC scheme. The enriched MITC3+ shell element passes the basic numerical tests, namely, the isotropy, zero energy mode, and patch tests.

**Table 6.1.** Tying positions for the assumed transverse shear strain of the enriched MITC3+ shell element. The distance *d* defined in Figure 6.3(b), and d = 1/10,000 is used [29, 156].



6.2 The Enriched MITC3+ Shell Element for Geometric Nonlinear Analysis

In this section, the geometric nonlinear formulation of the enriched MITC3+ shell element is presented. The total Lagrangian formulation is employed allowing for large displacements and large rotations. In the formulation, a superscript (and subscript)  $\tau$  is used to denote "time" for general analysis, with in static solutions "time" simply denoting the load step and configuration [1, 42].

The large displacement kinematics and the interpolation of the Green-Lagrange strain components are discussed. With the given expressions, the general incremental equations used in the total Lagrangian formulation are presented.

# 6.2.1 Large Displacement Kinematics

The geometry of the enriched MITC3+ shell finite element in the configuration at time  $\tau$  is interpolated with

$$\bar{\mathbf{x}}(r,s,t) = \bar{\mathbf{x}}(r,s,t) + \bar{\mathbf{x}}(r,s)$$
(6.20)

with

$${}^{\tau}\overline{\mathbf{x}}(r,s,t) = \sum_{i=1}^{3} h_i(r,s) {}^{\tau}\overline{\mathbf{x}}_i + \frac{t}{2} \sum_{i=1}^{4} a_i f_i(r,s) {}^{\tau} \mathbf{V}_n^i$$
(6.21)

and 
$${}^{\mathsf{r}}\hat{\mathbf{x}}(r,s) = \sum_{i=1}^{3} \mathbf{H}_{i}(r,s){}^{\mathsf{r}}\hat{\mathbf{x}}_{i}$$
 (6.22)

in which  ${}^{\tau}\mathbf{x}_i = [{}^{\tau}x_i {}^{\tau}y_i {}^{\tau}z_i]^{\mathrm{T}}$  is the position vector of node *i* in the configuration at time  $\tau$ ,  ${}^{\tau}\mathbf{V}_n^i = [{}^{\tau}\mathbf{V}_{nx}^i {}^{\tau}\mathbf{V}_{ny}^i {}^{\tau}\mathbf{V}_{nz}^i]^{\mathrm{T}}$  denotes the director vector at node *i* in the configuration at time  $\tau$ , and  $\hat{\mathbf{x}}_i = [{}^{\tau}\hat{\mathbf{x}}_i^{\xi} {}^{\tau}\hat{\mathbf{x}}_i^{\eta} {}^{\tau}\hat{\mathbf{y}}_i^{\xi} {}^{\tau}\hat{\mathbf{y}}_i^{\eta} 0]^{\mathrm{T}}$  are coefficient vectors for the positions in the configuration at time  $\tau$ .

The incremental partition of unity displacements from the configuration at time  $\tau$  to the configuration at time  $\tau + \Delta \tau$  are

$$\mathbf{u}(r,s,t) = {}^{\tau+\Delta\tau} \mathbf{x}(r,s,t) - {}^{\tau} \mathbf{x}(r,s,t) , \qquad (6.23)$$

and, using Equation (6.20), the Equation (6.23) can be written as

$$\mathbf{u}(r,s,t) = \overline{\mathbf{u}}(r,s,t) + \hat{\mathbf{u}}(r,s)$$
(6.24)

$$\mathbf{u}(r,s,t) = \sum_{i=1}^{3} h_i(r,s) \mathbf{u}_i + \frac{t}{2} \sum_{i=1}^{4} a_i f_i(r,s) ({}^{\tau+\Delta\tau} \mathbf{V}_n^i - {}^{\tau} \mathbf{V}_n^i), \qquad (6.25)$$

where  $\mathbf{u}_i$  is the vector of incremental nodal displacements based on the partition of unity. Using Equation (6.20), Equation (6.23) can be rewritten as

$$\mathbf{u}(r,s,t) = \overline{\mathbf{u}}(r,s,t) + \hat{\mathbf{u}}(r,s)$$
(6.26)

with

$$\overline{\mathbf{u}}(r,s,t) = \sum_{i=1}^{3} h_i(r,s)\overline{\mathbf{u}}_i + \frac{t}{2} \sum_{i=1}^{4} a_i f_i(r,s) (\tau + \Delta \tau \mathbf{V}_n^i - \tau \mathbf{V}_n^i), \qquad (6.27)$$

$$\hat{\mathbf{u}}(r,s) = \sum_{i=1}^{3} \mathbf{H}_{i} \hat{\mathbf{u}}_{i} , \qquad (6.28)$$

where  $\overline{\mathbf{u}}_i = \begin{bmatrix} \overline{u}_i & \overline{v}_i & \overline{w}_i \end{bmatrix}^T$  and  $\hat{\mathbf{u}}_i = \begin{bmatrix} \hat{u}_i^{\varepsilon} & \hat{u}_i^{\eta} & \hat{v}_i^{\varepsilon} & \hat{v}_i^{\eta} & 0 \end{bmatrix}^T$  are the vector of incremental nodal displacements and the vector of incremental unknown coefficients at node *i* from time  $\tau$  to time  $\tau + \Delta \tau$ , respectively. Note that  $\overline{\mathbf{u}}(r,s,t)$  and  $\hat{\mathbf{u}}(r,s)$  are the displacement and unknown coefficient vector in the linear formulation, see Equation (6.11), but here it is the vector of incremental displacements and unknown coefficients, respectively.

The director vector at time  $\tau + \Delta \tau$  at node *i* is obtained from the director vector at time  $\tau$ 

$${}^{\tau+\Delta\tau}\mathbf{V}_n^i = {}^{\tau+\Delta\tau}_{\tau}\mathbf{Q}^i {}^{\tau}\mathbf{V}_n^i, \qquad (6.29)$$

in which  $\tau^{\tau+\Delta\tau}_{\tau} \mathbf{Q}^{i}$  is the rotation matrix which rotates the director vector at node *i* from the configuration at time  $\tau$  to the configuration at time  $\tau + \Delta \tau$ . Additionally, the two unit vectors  ${}^{\tau}\mathbf{V}_{1}^{i}$  and  ${}^{\tau}\mathbf{V}_{2}^{i}$  are obtained by (see **Figure 6.1**(b)),

$${}^{\mathsf{r}}\mathbf{V}_{1}^{i} = \frac{\mathbf{e}_{2} \times {}^{\mathsf{r}}\mathbf{V}_{n}^{i}}{\left|\mathbf{e}_{2} \times {}^{\mathsf{r}}\mathbf{V}_{n}^{i}\right|}, \quad {}^{\mathsf{r}}\mathbf{V}_{2}^{i} = {}^{\mathsf{r}}\mathbf{V}_{n}^{i} \times {}^{\mathsf{r}}\mathbf{V}_{1}^{i}.$$
(6.30)

For the vector-like parameterization of finite rotations [1, 144, 159, 160], see Appendix A, the well-known formula is employed as follow

$${}^{\tau+\Delta\tau}_{\tau} \mathbf{Q}^{i} = \mathbf{I}_{3} + \frac{\sin\left(\frac{\tau+\Delta\tau}{\tau}\boldsymbol{\theta}^{i}\right)}{\frac{\tau+\Delta\tau}{\tau}\boldsymbol{\theta}^{i}} {}^{\tau+\Delta\tau}_{\tau} \mathbf{\Theta}^{i} + \frac{1}{2} \left[\frac{\sin\left(\frac{\tau+\Delta\tau}{\tau}\boldsymbol{\theta}^{i}/2\right)}{\frac{\tau+\Delta\tau}{\tau}\boldsymbol{\theta}^{i}/2}\right]^{2} \left({}^{\tau+\Delta\tau}_{\tau} \mathbf{\Theta}^{i}\right)^{2}$$
(6.31)

with

$${}^{\tau+\Delta r}_{\tau} \mathbf{\Theta}^{i} = \begin{bmatrix} 0 & -\frac{\tau+\Delta \tau}{\tau} \theta_{3}^{i} & \frac{\tau+\Delta \tau}{\tau} \theta_{2}^{i} \\ \frac{\tau+\Delta \tau}{\tau} \theta_{3}^{i} & 0 & -\frac{\tau+\Delta \tau}{\tau} \theta_{1}^{i} \\ -\frac{\tau+\Delta \tau}{\tau} \theta_{2}^{i} & \frac{\tau+\Delta \tau}{\tau} \theta_{1}^{i} & 0 \end{bmatrix},$$
(6.32)

$${}^{\tau+\Delta\tau}_{\tau}\boldsymbol{\theta}^{i} = \boldsymbol{\alpha}_{i} \, {}^{\tau}\mathbf{V}_{1}^{i} + \boldsymbol{\beta}_{i} \, {}^{\tau}\mathbf{V}_{2}^{i}, \qquad (6.33)$$

in which  $\mathbf{I}_3$  is the 3×3 identity matrix,  ${}^{r+\Delta r}_{\tau} \Theta^i$  is the skew-symmetric matrix operator (also called spin tensor),  ${}^{r+\Delta r}_{\tau} \mathbf{\theta}^i = [{}^{r+\Delta r}_{\tau} \theta^i_1 {}^{r+\Delta r}_{\tau} \theta^i_2 {}^{r+\Delta r}_{\tau} \theta^i_3]^T$ , and  ${}^{r+\Delta r}_{\tau} \theta^i = \sqrt{({}^{r+\Delta r}_{\tau} \theta^i_1)^2 + ({}^{r+\Delta r}_{\tau} \theta^i_2)^2 + ({}^{r+\Delta r}_{\tau} \theta^i_3)^2}$ .

Using a Taylor series expansion, the finite rotation tensor  ${}^{\tau+\Delta\tau}_{\tau}\mathbf{Q}^i$  can be represented by

$${}^{\tau+\Delta\tau}_{\tau}\mathbf{Q}^{i} = \mathbf{I}_{3} + {}^{\tau+\Delta\tau}_{\tau}\mathbf{\Theta}^{i} + \frac{1}{2!}({}^{\tau+\Delta\tau}_{\tau}\mathbf{\Theta}^{i})^{2} + \frac{1}{3!}({}^{\tau+\Delta\tau}_{\tau}\mathbf{\Theta}^{i})^{3} + \dots$$
(6.34)

Using only the terms up to quadratic order in Equation (6.34), the following equation is obtained

$${}^{\tau+\Delta\tau}\mathbf{V}_{n}^{i}-{}^{\tau}\mathbf{V}_{n}^{i}={}^{\tau+\Delta\tau}{}_{\tau}\boldsymbol{\theta}^{i}\times{}^{\tau}\mathbf{V}_{n}^{i}+\frac{1}{2}{}^{\tau+\Delta\tau}{}_{\tau}\boldsymbol{\theta}^{i}\times({}^{\tau+\Delta\tau}{}_{\tau}\boldsymbol{\theta}^{i}\times{}^{\tau}\mathbf{V}_{n}^{i}), \qquad (6.35)$$

and using Equation (6.33) in Equation (6.35), we obtain for a 'consistent linearization' of the element displacements [1]

$${}^{\tau+\Delta\tau}\mathbf{V}_{n}^{i}-{}^{\tau}\mathbf{V}_{n}^{i}=-\alpha_{i}{}^{\tau}\mathbf{V}_{2}^{i}+\beta_{i}{}^{\tau}\mathbf{V}_{1}^{i}-\frac{1}{2}(\alpha_{i}^{2}+\beta_{i}^{2}){}^{\tau}\mathbf{V}_{n}^{i}.$$
(6.36)

Substituting Equation (6.36) into Equation (6.27), the vector of incremental displacements including second-order rotation effects is

$$\overline{\mathbf{u}}(r,s,t) = \sum_{i=1}^{3} h_i(r,s) \overline{\mathbf{u}}_i + \frac{t}{2} \sum_{i=1}^{4} a_i f_i(r,s) \bigg[ -\alpha_i^{\ r} \mathbf{V}_2^i + \beta_i^{\ r} \mathbf{V}_1^i - \frac{1}{2} (\alpha_i^2 + \beta_i^2)^{\ r} \mathbf{V}_n^i \bigg],$$
(6.37)

in which  $\alpha_i$  and  $\beta_i$  are the incremental rotations of the director vector  ${}^{r}\mathbf{V}_n^i$  about  ${}^{r}\mathbf{V}_1^i$  and  ${}^{r}\mathbf{V}_2^i$ , respectively, at node *i*.

Note that the incremental displacements of Equation (6.37) consists of two parts, the linear part  $\overline{\mathbf{u}}_{l}$  and the quadratic part  $\overline{\mathbf{u}}_{q}$ , hence

$$\overline{\mathbf{u}}(r,s,t) = \overline{\mathbf{u}}_{l}(r,s,t) + \overline{\mathbf{u}}_{q}(r,s,t)$$
(6.38)

with

$$\overline{\mathbf{u}}_{l}(r,s,t) = \sum_{i=1}^{3} h_{i}(r,s)\overline{\mathbf{u}}_{i} + \frac{t}{2} \sum_{i=1}^{4} a_{i} f_{i}(r,s) \left(-\alpha_{i}^{\ \tau} \mathbf{V}_{2}^{i} + \beta_{i}^{\ \tau} \mathbf{V}_{1}^{i}\right),$$
(6.39)

$$\overline{\mathbf{u}}_{q}(r,s,t) = -\frac{t}{4} \sum_{i=1}^{4} a_{i} f_{i}(r,s) \Big[ (\alpha_{i}^{2} + \beta_{i}^{2})^{\tau} \mathbf{V}_{n}^{i} \Big].$$
(6.40)

# 6.2.2 Green-Lagrange Strain and Its Interpolation

The covariant components of the Green-Lagrange strain tensor in the configuration at time  $\tau$ , referred to the configuration at time 0 (also called reference configuration), are defined by [1]

$${}_{0}^{\mathsf{r}}\varepsilon_{ij} = \frac{1}{2} \left( {}^{\mathsf{r}}\mathbf{g}_{i} \cdot {}^{\mathsf{r}}\mathbf{g}_{j} - {}^{0}\mathbf{g}_{i} \cdot {}^{0}\mathbf{g}_{j} \right)$$
(6.41)

with

$$\mathbf{g}_{i} = \frac{\partial ({}^{0}\overline{\mathbf{x}} + {}^{0}\underline{\hat{\mathbf{x}}})}{\partial r_{i}} = \frac{\partial {}^{0}\overline{\mathbf{x}}}{\partial r_{i}}, \quad {}^{r}\mathbf{g}_{i} = \frac{\partial ({}^{r}\overline{\mathbf{x}} + {}^{r}\hat{\mathbf{x}})}{\partial r_{i}} = {}^{0}\overline{\mathbf{g}}_{i} + {}^{r}\overline{\mathbf{u}}_{,i} + {}^{r}\hat{\mathbf{u}}_{,i}, \quad (6.42)$$

in which

$$\overline{\mathbf{u}}_{,i} = \frac{\partial^{\tau} \overline{\mathbf{u}}}{\partial r_{i}}, \quad {}^{\tau} \hat{\mathbf{u}}_{,i} = \frac{\partial^{\tau} \hat{\mathbf{u}}}{\partial r_{i}}, \quad {}^{\tau} \overline{\mathbf{u}} = {}^{\tau} \overline{\mathbf{x}} - {}^{0} \overline{\mathbf{x}}, \quad {}^{\tau} \hat{\mathbf{u}} = {}^{\tau} \hat{\mathbf{x}}, \quad r_{1} = r, \quad r_{2} = s, \quad r_{3} = t.$$
(6.43)

Hence the incremental covariant strains based on the partition of unity approximation are

$${}_{0}\varepsilon_{ij} = {}^{\tau+\Delta\tau}{}_{0}\varepsilon_{ij} - {}^{\tau}{}_{0}\varepsilon_{ij} = \frac{1}{2}(\mathbf{u}_{,i} \cdot {}^{\tau}\mathbf{g}_{,j} + {}^{\tau}\mathbf{g}_{,i} \cdot \mathbf{u}_{,j} + \mathbf{u}_{,i} \cdot \mathbf{u}_{,j}) \quad \text{with} \quad \mathbf{u}_{,i} = \frac{\partial(\overline{\mathbf{u}} + \hat{\mathbf{u}})}{\partial r_{i}}.$$
(6.44)

Using Equations (6.41)-(6.43) in Equation (6.44), these covariant strains are approximated as

$${}_{0}\varepsilon_{ij} = {}_{0}e_{ij} + {}_{0}\eta_{ij} , \qquad (6.45)$$

where  $_{0}e_{ii}$  and  $_{0}\eta_{ii}$  are the linear and nonlinear parts, respectively,

$${}_{_{0}}\boldsymbol{e}_{ij} = \frac{1}{2} \left( \frac{\partial(\bar{\mathbf{u}}_{l} + \hat{\mathbf{u}})}{\partial r_{i}} \cdot \left({}^{t} \bar{\mathbf{g}}_{j} + {}^{t} \hat{\mathbf{g}}_{j}\right) + \left({}^{t} \bar{\mathbf{g}}_{i} + {}^{t} \hat{\mathbf{g}}_{i}\right) \cdot \frac{\partial(\bar{\mathbf{u}}_{l} + \hat{\mathbf{u}})}{\partial r_{j}} \right) = \mathbf{B}_{ij} \mathbf{U}, \qquad (6.46)$$

$${}_{0}\eta_{ij} = \frac{1}{2} \left( \frac{\partial (\overline{\mathbf{u}}_{l} + \hat{\mathbf{u}})}{\partial r_{i}} \cdot \frac{\partial (\overline{\mathbf{u}}_{l} + \hat{\mathbf{u}})}{\partial r_{j}} \right) + \frac{1}{2} \left( \frac{\partial \overline{\mathbf{u}}_{q}}{\partial r_{i}} \cdot \left({}^{t}\overline{\mathbf{g}}_{j} + {}^{t}\hat{\mathbf{g}}_{j}\right) + \left({}^{t}\overline{\mathbf{g}}_{i} + {}^{t}\hat{\mathbf{g}}_{i}\right) \cdot \frac{\partial \overline{\mathbf{u}}_{q}}{\partial r_{j}} \right) = \frac{1}{2} \mathbf{U}^{T} \mathbf{N}_{ij} \mathbf{U} , \qquad (6.47)$$

in which  $\mathbf{B}_{ij}$  and  $\mathbf{N}_{ij}$  are the strain-displacement matrices and  $\mathbf{U}$  is the vector of incremental nodal displacements  $\mathbf{\bar{u}}_i$ ,  $\alpha_i$  and  $\beta_i$ , and incremental unknown coefficient vector  $\hat{\mathbf{u}}_i$  for all element nodes. In addition, the strain variations are

$$\delta_{0} e_{ij} = \mathbf{B}_{ij} \delta \mathbf{U} , \quad \delta_{0} \eta_{ij} = \delta \mathbf{U}^{T} \mathbf{N}_{ij} \mathbf{U} .$$
(6.48)

Note that Equations (6.45)-(6.48) contain all the strain terms to have a consistent linearization in the establishment of the tangent stiffness matrix.

To alleviate shear locking, the MITC scheme used in the linear formulation of the enriched MITC3+ shell element is also employed for the incremental covariant transverse shear strains in the nonlinear formulation. The additional coefficient vector  $\hat{\mathbf{u}}$  are not used in determining the transverse shear strain fields, as mentioned in section 6.1.3, the incremental covariant Green-Lagrange strain for assumed transverse shear strain field can be rewritten as

$${}_{_{0}}\tilde{\varepsilon}_{ij} = {}_{_{0}}\tilde{e}_{ij} + {}_{_{0}}\tilde{\eta}_{ij} \tag{6.49}$$

with

$${}_{_{0}}\tilde{e}_{ij} = \frac{1}{2} \left( \frac{\partial \overline{\mathbf{u}}_{l}}{\partial r_{i}} \cdot \left( {}^{t} \overline{\mathbf{g}}_{j} + {}^{t} \hat{\mathbf{g}}_{j} \right) + \left( {}^{t} \overline{\mathbf{g}}_{i} + {}^{t} \hat{\mathbf{g}}_{i} \right) \cdot \frac{\partial \overline{\mathbf{u}}_{l}}{\partial r_{j}} \right),$$
(6.50)

$${}_{0}\tilde{\eta}_{ij} = \frac{1}{2} \left( \frac{\partial \bar{\mathbf{u}}_{l}}{\partial r_{i}} \cdot \frac{\partial \bar{\mathbf{u}}_{l}}{\partial r_{j}} \right) + \frac{1}{2} \left( \frac{\partial \bar{\mathbf{u}}_{q}}{\partial r_{i}} \cdot \left( {}^{t} \bar{\mathbf{g}}_{j} + {}^{t} \hat{\mathbf{g}}_{j} \right) + \left( {}^{t} \bar{\mathbf{g}}_{i} + {}^{t} \hat{\mathbf{g}}_{i} \right) \cdot \frac{\partial \bar{\mathbf{u}}_{q}}{\partial r_{j}} \right).$$
(6.51)

Therefore, the covariant transverse shear strains in Equations (6.49)-(6.51) are substituted by

$${}_{0}\mathcal{E}_{r\xi}^{AS} = \frac{2}{3} ({}_{0}\tilde{\mathcal{E}}_{r\xi}^{(B)} - \frac{1}{2} {}_{0}\tilde{\mathcal{E}}_{s\xi}^{(B)}) + \frac{1}{3} ({}_{0}\tilde{\mathcal{E}}_{r\xi}^{(C)} + {}_{0}\tilde{\mathcal{E}}_{s\xi}^{(C)}) + \frac{1}{3} {}_{0}\hat{\mathcal{E}}(3s-1), \qquad (6.52)$$

$${}_{0}\varepsilon_{st}^{AS} = \frac{2}{3} \left( {}_{0}\tilde{\varepsilon}_{st}^{(A)} - \frac{1}{2} {}_{0}\tilde{\varepsilon}_{rt}^{(A)} \right) + \frac{1}{3} \left( {}_{0}\tilde{\varepsilon}_{rt}^{(C)} + {}_{0}\tilde{\varepsilon}_{st}^{(C)} \right) + \frac{1}{3} {}_{0}\hat{c}(1-3r) , \qquad (6.53)$$

$${}_{0}\mathcal{E}_{jt}^{AS} = {}_{0}e_{jt}^{AS} + {}_{0}\eta_{jt}^{AS}, \quad {}_{0}e_{jt}^{AS} = \mathbf{B}_{jt}^{AS}\mathbf{U}, \quad {}_{0}\eta_{jt}^{AS} = \frac{1}{2}\mathbf{U}^{T}\mathbf{N}_{jt}^{AS}\mathbf{U} \quad \text{with} \quad j = r, s$$
(6.54)

in which  $_{0}\hat{c} = {}_{0}\tilde{\varepsilon}_{rt}^{(F)} - {}_{0}\tilde{\varepsilon}_{st}^{(D)} - {}_{0}\tilde{\varepsilon}_{st}^{(F)} + {}_{0}\tilde{\varepsilon}_{st}^{(E)}$ ,  $\mathbf{B}_{jt}^{AS}$  and  $\mathbf{N}_{jt}^{AS}$  are the strain-displacement matrices for the assumed covariant transverse shear strains. Of course, the tying positions defined in Figure 6.3 and Table 6. are used.



#### 6.2.3 Total Lagrangian Formulation and Incremental Equilibrium Equation

The nonlinear response is calculated using an incremental formulation, in which the configuration is sought for time (load step)  $\tau + \Delta \tau$ , when the configuration for time  $\tau$  is known. Applying the principle of virtual work to the configuration at time  $\tau + \Delta \tau$ , the following equilibrium equation is obtained [1, 18]

$$\int_{{}^{0}_{V}}{}^{\tau+\Delta\tau}S^{ij}\delta^{\tau+\Delta\tau}{}^{0}\varepsilon_{ij} \ d^{0}V = {}^{\tau+\Delta\tau}\Re, \qquad (6.55)$$

where  ${}^{0}V$  is the initial volume,  ${}^{r+\Delta r}_{0}S^{ij}$  and  ${}^{r+\Delta r}_{0}\varepsilon_{ij}$  are the contravariant components of the second Piola-Kirchhoff stress tensor and the covariant components of the Green-Lagrange strain tensor, respectively, at time  $\tau + \Delta \tau$ , referred to the configuration at time 0, and  ${}^{r+\Delta r}\Re$  is the external virtual work due to the applied surface and body forces.

The stress and strain tensors are incrementally decomposed as follows

$${}^{+\Delta \tau}_{0}S^{ij} = {}^{\tau}_{0}S^{ij} + {}_{0}S^{ij} , \qquad (6.56)$$

$${}^{\tau+\Delta\tau}_{0}\varepsilon_{ij} = {}^{\tau+\Delta\tau}_{0}\varepsilon_{ij} + {}_{0}\varepsilon_{ij} = {}^{\tau+\Delta\tau}_{0}\varepsilon_{ij} + {}_{0}e_{ij} + {}_{0}\eta_{ij}.$$
(6.57)

Substituting from Equations (6.56) and (6.57) into Equation (6.55) and using  ${}_{0}S^{ij} = {}_{0}C^{ijkl}{}_{0}\varepsilon_{kl}$  and  $\delta_{0}\varepsilon_{kl} = \delta_{0}e_{ii}$ , the linearized equilibrium equation is obtained by

$$\int_{{}^{0}_{V}{}^{0}} C^{ijkl}{}_{0} e_{kl} \delta_{0} e_{ij} d^{0}V + \int_{{}^{0}_{V}{}^{0}} S^{ij} \delta_{0} \eta_{ij} d^{0}V = {}^{r+\Delta \tau} \Re - \int_{{}^{0}_{V}{}^{0}} S^{ij} \delta_{0} e_{ij} d^{0}V, \qquad (6.58)$$

in which  ${}_{0}C^{ijkl}$  is the fourth-order contravariant constitutive tensor corresponding to the strain-stress law for shells.

Using Equations (6.46)-(6.47) in Equation (6.58), the following incremental equilibrium equation is obtained by

$${}_{0}^{\tau}\mathbf{K}\mathbf{U} = ({}_{0}^{\tau}\mathbf{K}_{L} + {}_{0}^{\tau}\mathbf{K}_{NL})\mathbf{U} = {}^{\tau+\Delta\tau}\mathbf{R} - {}_{0}^{\tau}\mathbf{F}, \qquad (6.59)$$

where

$${}^{r}_{0}\mathbf{K}_{L} = \int_{{}^{0}_{V}} \mathbf{B}_{ij}^{\mathsf{T}} {}_{0}C^{ijkl}\mathbf{B}_{kl}d^{0}V, \quad {}^{r}_{0}\mathbf{K}_{NL} = \int_{{}^{0}_{V}} \mathbf{N}_{ij}^{\mathsf{T}} {}_{0}S^{ij}d^{0}V, \quad {}^{r}_{0}\mathbf{F} = \int_{{}^{0}_{V}} \mathbf{B}_{ij}^{\mathsf{T}} {}_{0}S^{ij}d^{0}V, \quad (6.60)$$

in which  ${}_{0}^{\tau}\mathbf{K}_{L}$  and  ${}_{0}^{\tau}\mathbf{K}_{NL}$  are the linear and nonlinear tangent stiffness matrices, respectively, and  ${}_{0}^{\tau}\mathbf{F}$  is the vector of nodal point forces equivalent to the element stresses at time  $\tau$ . For the evaluation of the element stiffness matrix and internal nodal force vector, 7-point Gauss integration in the *r*-*s* plane (as for the 6node shell element) is adopted due to the cubic bubble function and additional quadratic unknown coefficient.

With the full Newton-Raphson iteration scheme, the equations for the i-th iteration in a finite elements model are

$${}_{0}^{\tau}\mathbf{K}^{(i-1)}\mathbf{U}^{(i)} = {}^{\tau+\Delta\tau}\mathbf{R} - {}_{0}^{\tau}\mathbf{F}^{(i-1)} \qquad \text{with} \quad {}^{\tau+\Delta\tau}\mathbf{U}^{(i)} = {}^{\tau+\Delta\tau}\mathbf{U}^{(i-1)} + \mathbf{U}^{(i)} \,. \tag{6.61}$$

The configuration at time  $\tau + \Delta \tau$  is determined iterating on Equation (6.61) until equilibrium is fulfilled with a preset energy tolerance  $\varepsilon_E$  [1],

$$\mathbf{U}^{(i)^{\mathrm{T}}}\left({}^{\tau+\Delta\tau}\mathbf{R}-{}^{\tau+\Delta\tau}\mathbf{F}^{(i-1)}\right) \leq \mathcal{E}_{E}\left(\mathbf{U}^{(1)^{\mathrm{T}}}\left({}^{\tau+\Delta\tau}\mathbf{R}-{}^{\tau}\mathbf{F}\right)\right).$$
(6.62)

# 6.2.4 Condensing Out in the Present Element

The bubble function does not affect the mid-surface displacement of the shell element, and the corresponding degrees of freedom can be statically condensed out on the element level. In order to establish the equations used in static condensation, the stiffness matrix and corresponding displacement and force vectors of the element under consideration are partitioned into the following form

$$\begin{bmatrix} {}^{\tau}\mathbf{K}_{aa}^{(i-1)} & {}^{\tau}_{0}\mathbf{K}_{ac}^{(i-1)} \\ {}^{\tau}_{0}\mathbf{K}_{ca}^{(i-1)} & {}^{\tau}_{0}\mathbf{K}_{cc}^{(i-1)} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{U}_{a}^{(i)} \\ \Delta \mathbf{U}_{c}^{(i)} \end{bmatrix} = \begin{bmatrix} {}^{\tau+\Delta\tau}\mathbf{R}_{a} \\ {}^{\tau+\Delta\tau}\mathbf{R}_{c} \end{bmatrix} - \begin{bmatrix} {}^{\tau}_{0}\mathbf{F}_{a}^{(i-1)} \\ {}^{\tau}_{0}\mathbf{F}_{c}^{(i-1)} \end{bmatrix},$$
(6.63)

where  $\Delta \mathbf{U}_{a}^{(i)}$  and  $\Delta \mathbf{U}_{c}^{(i)}$  are the vector of displacements combined with the unknown coefficient vector to be retained and the vector of bubble displacements to be condensed out, respectively. The matrix  ${}_{0}^{r}\mathbf{K}_{aa}^{(i-1)}$ ,

 ${}_{0}^{\tau}\mathbf{K}_{ac}^{(i-1)}$ ,  ${}_{0}^{\tau}\mathbf{K}_{ca}^{(i-1)}$  and  ${}_{0}^{\tau}\mathbf{K}_{cc}^{(i-1)}$  and vector  ${}^{\tau+\Delta\tau}\mathbf{R}_{a}$  and  ${}^{\tau+\Delta\tau}\mathbf{R}_{c}$  correspond to the displacement vectors  $\Delta \mathbf{U}_{a}^{(i)}$  and  $\Delta \mathbf{U}_{c}^{(i)}$ .

Using the second matrix equation in Equation (6.63), we obtain

$$\Delta \mathbf{U}_{c}^{(i)} = {}_{0}^{\tau} \mathbf{K}_{cc}^{(i-1)-1} ({}^{\tau+\Delta\tau} \mathbf{R}_{c} - {}_{0}^{\tau} \mathbf{F}_{c}^{(i-1)} - {}_{0}^{\tau} \mathbf{K}_{ca}^{(i-1)} \Delta \mathbf{U}_{a}^{(i)}).$$
(6.64)

The relation in Equation (6.64) is used to substitute  $\Delta U_c^{(i)}$  into the first matrix equation in Equation (6.63) to obtain the condensed equations

$${}^{\tau}_{0} \mathbf{K}^{(i-1)}_{con} \Delta \mathbf{U}^{(i)}_{a} = {}^{\tau+\Delta\tau} \mathbf{R}_{con} - {}^{\tau}_{0} \mathbf{F}^{(i-1)}_{con}, \qquad (6.65)$$

where

$${}^{\tau}_{0}\mathbf{K}^{(i-1)}_{con} = {}^{\tau}_{0}\mathbf{K}^{(i-1)}_{aa} - {}^{\tau}_{0}\mathbf{K}^{(i-1)}_{ac} {}^{\tau}_{0}\mathbf{K}^{(i-1)^{-1}}_{cc} {}^{\tau}_{0}\mathbf{K}^{(i-1)}_{ca}, \qquad (6.66)$$

$${}^{+\Delta\tau}\mathbf{R}_{con} = {}^{\tau+\Delta\tau}\mathbf{R}_{a} - {}^{\tau}_{0}\mathbf{K}^{(i-1)}_{ac} {}^{\tau}_{0}\mathbf{K}^{(i-1)^{-1}}_{cc} {}^{\tau+\Delta\tau}\mathbf{R}_{c}, \qquad (6.67)$$

$${}^{\tau}_{0}\mathbf{F}_{con}^{(i-1)} = {}^{\tau}_{0}\mathbf{F}_{a}^{(i-1)} + {}^{\tau}_{0}\mathbf{K}_{ac}^{(i-1)} {}^{\tau}_{0}\mathbf{K}_{cc}^{(i-1)^{-1}} {}^{\tau}_{0}\mathbf{F}_{c}^{(i-1)} .$$
(6.68)

# 6.3 Computational Efficiency

In this section, some important aspects of the computational efficiency are studied when using the enriched MITC3+ shell element. The standard 3- and 6-node shell elements (the MITC3 and MITC6 shell elements) and the enriched MITC3+ shell element are considered.



**Figure 6.4.** (a) The total number of degrees of freedom (DOFs) and (b) solution times for solving the linear equations when increasing the number of element layers, N, along an edge p denotes the number of DOFs per node in the standard shell element, hence p = 5 for Scordelis-Lo roof shown in Figure 6.12.

Of course, the enriched MITC3+ shell element generate symmetric stiffness or coefficient matrices. The numerical operations for the factorizations of the banded stiffness matrices are then approximately  $(1/2)nm_k^2$  where *n* is the number of equations and  $m_k$  is the half-handwidth. Let the number of elements along the sides be *N*, and let us ignore in all cases the zero entries within the band, then we have for Scordelis-Lo roof problem, see Figure 6.12,

- for the solution of the enriched MITC3+,  $n = (N+1)^2 \times (p+4)$ ,  $m_k = (N+1) \times (p+4)$ ;
- for the solution using the 3- or 4-node element,  $n = (N+1)^2 \times p$ ,  $m_k = (N+1) \times p$ ;
- for the solution using the 6- or 9-node element,  $n = (2N+1)^2 \times p$ ,  $m_k = (2N+1) \times p$ .

All degrees of freedom for the enriched MITC3+ shell element are associated with vertex nodes which are shared by several elements and the assembled system of equations is in general smaller than when using the 6-node shell elements where edge nodes are only shared by 2 elements. Therefore, the enriched MITC3+ shell element gives less equations and a smaller bandwidth than the 6-node shell elements. This fact shows the effectiveness of the enriched MITC3+ shell element from a computational point of view. **Figure 6.4** shows how the number of nodal degrees increases as a function of the number of elements used in the meshing of **Figure 6.12**.

|    | Linear element           | Quadratic elements       | Enriched MITC3+ (condensed out) |               |
|----|--------------------------|--------------------------|---------------------------------|---------------|
|    | (Standard 3- and 4-node) | (Standard 6- and 9-node) |                                 |               |
| N  | Free DOFs Time           | Free DOFs Time           | Free DOFs                       | Time          |
| 20 | 2,080 0.000              | 8,160 0.140              | 5,320 (3,720)                   | 0.062 (0.031) |

12.29

46.85

32,320 72,480

128,640

21,040 (14,640)

47,160 (32,760)

83,680 (58,080)

1.045 (0.374)

5.101 (1.731)

17.20 (5.335)

0.078

0.359

1.045

40

60

80

8,160

18,240

32,320

 Table 6.2. Solution times (in second) for solving the linear problem shown in Figure 6.12. (DOFs: degrees of freedom)

It is valuable to compare solution times required for the three shell finite elements considered. In all the cases, of course, symmetric stiffness matrices are generated. To obtain more insight into the computational efforts needed in the respective solutions, it is focused on the solution of the linear equations using direct Gauss elimination, in which the factorization of the stiffness matrices represents the major expense. To check computational times, we use a quad-core machine (Intel(R) Core i7-3770 CPU @ 3.40 GHz, 8GB RAM, Windows 7 64bit) for all solution cases. **Figure 6.4** and **Table 6.2** show the solution times for linear analysis of the Scordelis-Lo roof problem. As expected, the factorization time for the enriched MITC3+ shell element is much smaller than for the quadratic shell element.

# 6.4 Numerical Examples

To assess the performance of the enriched MITC3+ shell element in linear and nonlinear analyses, the solutions of several benchmark problems are given in this section, see **Table 6.3**. The nonlinear problems involve the large displacement and large rotation response of shells with various shell geometries. The results calculated using the following MITC shell elements are given in **Table 6.4**.

| Benchmark problems                                                                | Problem | n type | Descriptions | Results                                                                                                                                         |  |  |
|-----------------------------------------------------------------------------------|---------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cantilever beam for mesh distortion test                                          | Р       | L      | Figure 6.5   | Table 6.5, Figure 6.5                                                                                                                           |  |  |
| Cook's skew beam                                                                  | Р       | L      | Figure 6.6   | Table 6.6                                                                                                                                       |  |  |
| MacNeal's cantilever beam                                                         | Р       | L      | Figure 6.7   | Table 6.7-Table 6.8                                                                                                                             |  |  |
| Curved cantilever beam                                                            | P,S     | L,N    | Figure 6.8   | Table         6.9,         Table         6.17-Table         6.18,           Figure         6.8,         Figure         6.19-Figure         6.20 |  |  |
| Hemispherical shell                                                               | S       | L,N    | Figure 6.9   | Table 6.10-Table 6.11, Table 6.19-         Table 6.24, Figure 6.11, Figure         6.21-Figure 6.23                                             |  |  |
| Scordelis-Lo (Barrel Vault) roof                                                  | S       | L,N    | Figure 6.12  | Table 6.12-Table 6.13, Table 6.25-         Table 6.28, Figure 6.13, Figure         6.24-Figure 6.25                                             |  |  |
| Raasch's hook problem                                                             | S       | L      | Figure 6.14  | Table 6.14, Figure 6.14                                                                                                                         |  |  |
| Cantilever beam subjected to a tip moment                                         | Р       | N      | Figure 6.15  | Table 6.15, Figure 6.15-Figure 6.16                                                                                                             |  |  |
| Column under an eccentric compressive load                                        | Р       | Ν      | Figure 6.17  | Table 6.16, Figure 6.17-Figure 6.18                                                                                                             |  |  |
| Slit annular plate                                                                | S       | Ν      | Figure 6.26  | Table 6.29-Table 6.30, Figure 6.27-<br>Figure 6.28                                                                                              |  |  |
| P. Plane stress problem S. Shell problem L. Linear analysis N. Nonlinear analysis |         |        |              |                                                                                                                                                 |  |  |

Table 6.3. List of ten benchmark problems solved.

In each example, the reference solutions are given by either an analytical result or a calculated solution using a fine uniform mesh of the MITC9 shell element (these meshes used twice the number of elements in each direction as employed in the MITC4 element solutions). The MITC9 element is known to satisfy the ellipticity and consistency conditions and to show good convergence behavior [26, 27].

By imposing  $w = \alpha = \beta = 0$  for all nodes, plane stress condition is used for some benchmark problems in linear and nonlinear analyses to verify the effect on membrane behaviors.

Note that in some benchmark problems, point loads are used, which cause a stress singularity at the point of loading. However, the use of point loads is acceptable in the studies here given because the meshes are not very fine (the point loads act as an equivalent pressure applied over a small area) [1].

| Symbols              | Brief description                                                         | Ref.       |
|----------------------|---------------------------------------------------------------------------|------------|
| MITC3                | 3-node triangular shell element with the MITC method                      | [23]       |
| MITC4                | 4-node quadrilateral shell element with the MITC method                   | [19]       |
| MITC4*               | MITC4 shell element with incompatible modes                               | [63, 64].  |
| MITC3+               | Triangular shell element with an enrichment by cubic bubble function      | [29, 156]  |
| Enriched MITC3+      | MITC3+ shell element with improved membrane behaviors                     |            |
| MITC6                | 6-node triangular shell element with the MITC method                      | [23]       |
| MITC9                | 9-node quadrilateral shell element with the MITC method                   | [21]       |
| Q6                   | 4-node isoparametric element with internal parameters                     | [63]       |
| QM6                  | 4-node isoparametric element with internal parameters                     | [64]       |
| P-S                  | Assumed stress elements (hybrid element by the Hellinger-Reissner)        | [161]      |
| QE2                  | 4-node quadrilateral enhanced strain element                              | [162]      |
| ALL-3I/ EX/ LS       | Allman 88 triangular element with corner drilling freedoms                | [121]      |
| FF84                 | 1984 free formulation element of Bergan and Felippa                       | [163]      |
| LST-Ret              | Retrofitted linear strain triangular element                              | [121]      |
| OPT                  | Triangular element with the optimal assumed natural deviatoric strain     | [121]      |
| HL S                 | A plane element based in the assumed stress hybrid principle              | [164]      |
| XSHELL41/42          | 4-node quasi-conforming flat shell element with drilling DOFs             | [124]      |
| PEAS7                | Enhanced assumed strain elements                                          | [113]      |
| PN340                | 8-node brick element representing constant stress fields                  | [165]      |
| RGD20                | Refined hybrid isoparametric element                                      | [166]      |
| QUAD4                | 4-node shell element with modifications which relax excessive constraints | [16]       |
| Simo et al.          | Geometrically exact stress resultant shell model                          | [149, 167] |
| ANS6S                | 6-node $C^0$ curved shell element with the assumed natural strain         | [168]      |
| S3R                  | General purpose 3-node shell element in ABAQUS                            | [116]      |
| C0                   | $C^0$ triangular plate element with one-point quadrature                  | [169]      |
| DSG                  | 3- and 4-node shell finite element with discrete shear gap method         | [170]      |
| RTS18                | Flat triangular element based on the refined non-conforming method        | [171]      |
| QHP                  | 4-node quadrilateral shell element with physical hourglass control        | [128]      |
| URI-4                | 9-node uniformly reduced integrated element                               | [131]      |
| SRI-4                | Bilinear degenerated shell element with selective reduced integration     | [12]       |
| DKQ-4                | 4-node discrete Kirchhoff quadrilateral element                           | [130]      |
| Allman               | Discrete Kirchhoff-Mindlin triangle with Allman's rotational DOFs         | [117, 118] |
| Cook, Flat-stiffened | Stabilized 18 DOF triangular flat shell element                           | [119]      |
| Providas and Kattis  | Triangular shell element with an arbitrary small true drilling stiffness  | [120]      |
| Collapsed Plane42    | Triangular element obtained from Plane42 quadrilateral element of ANSYS   | [126]      |
| Plane82              | 8-node quadrilateral element of ANSYS                                     | [126]      |

| Table 6.4. | Summary | of | element | models | for | comparison. |
|------------|---------|----|---------|--------|-----|-------------|
|            | ~       |    |         |        |     |             |

## 6.4.1 Linear Benchmark Problems

Several benchmark problems are examined to demonstrate the efficiency of the present element. To test enhanced membrane behavior, we select membrane-dominant problem sets.

## 6.4.1.1 Cantilever Beam for Mesh Distortion Test



**Figure 6.5.** Cantilever beam for distortion test. (a) Problem description and mesh pattern used for the MITC3, MITC3+ and enriched MITC3+ shell elements. (b) Vertical deflection versus distortion parameter *e*.

The cantilever beam to test distortion sensitivity shown in **Figure 6.5** is discretized by two elements. The shape of the two elements varies with the distorted parameter e. The cantilever beam has the geometry of length l = 10, width b = 2 and thickness h = 1, its Young modulus E = 1500 and the Poisson ratio v = 0.25. The moment M = 2000 is applied at the free end. When distorted parameter e is equal to zero, both element are rectangular. But with the increase of distorted parameter e, the mesh will be distorted more and more seriously. The results of the tip deflection at point A are shown in **Figure 6.5** and **Table 6.5**. Beside the present elements, the solutions obtained by other elements are also given for comparison. Enriched MITC3+ shell element can keep providing the exact solution when e varies from 0 to 5. The present element gives the best performance and is more robust that other elements compared with. The enriched MITC3+ shell element can overcome the trapezoidal locking completely.

**Table 6.5.** Vertical deflections and relative errors at point *A* for the cantilever beam for distortion test shown in Figure 6.5(a). Relative error  $(\%) = (v_A^{ref} - v_A) / v_A^{ref} \times 100$  where  $v_A^{ref}$  and  $v_A$  denote the reference and finite element solutions, respectively.

|                          | Vertical disp | Vertical displacement, $v_A$ and its relative error |                |                |                |                |  |  |
|--------------------------|---------------|-----------------------------------------------------|----------------|----------------|----------------|----------------|--|--|
| Element type             | e = 0.0       | <i>e</i> = 1.0                                      | <i>e</i> = 2.0 | <i>e</i> = 3.0 | <i>e</i> = 4.0 | <i>e</i> = 4.9 |  |  |
| MITC3 <sup>I</sup>       | 9.4 (90.6)    | 5.0 (95.0)                                          | 4.1 (95.9)     | 3.6 (96.4)     | 3.3 (96.7)     | 3.1 (96.9)     |  |  |
| MITC3 <sup>II</sup>      | 9.6 (90.4)    | 10.8 (89.2)                                         | 9.5 (90.5)     | 8.8 (91.2)     | 7.0 (93.0)     | 3.5 (96.5)     |  |  |
| MITC4                    | 28.0 (72.0)   | 14.1 (85.9)                                         | 9.8 (90.2)     | 8.3 (91.7)     | 7.1 (92.9)     | 6.2 (93.8)     |  |  |
| MITC4*                   | 100.0 (0.0)   | 35.5 (64.5)                                         | 26.5 (73.5)    | 27.8 (72.2)    | 29.9 (70.1)    | 30.7 (69.3)    |  |  |
| MITC6 <sup>1</sup> [23]  | 98.9 ( 1.1)   | 80.2 (19.8)                                         | 48.5 (51.5)    | 28.2 (71.8)    | 18.7 (81.3)    | 43.1 (56.9)    |  |  |
| MITC6 <sup>II</sup> [23] | 98.9 ( 1.1)   | 82.4 (17.6)                                         | 56.2 (43.8)    | 24.4 (75.6)    | 37.6 (62.4)    | 41.7 (58.3)    |  |  |
| MITC9 [21]               | 99.4 ( 0.6)   | 98.9 ( 1.1)                                         | 87.7 (12.3)    | 61.6 (38.4)    | 39.2 (60.8)    | 26.3 (73.7)    |  |  |
| QM6 [64]                 | 100.0 (0.0)   | 62.7 (37.3)                                         | 54.4 (45.6)    | 53.6 (46.4)    | 51.2 (48.8)    | 46.8 (53.2)    |  |  |
| P-S [161]                | 100.0 (0.0)   | 62.9 (37.1)                                         | 55.0 (45.0)    | 54.7 (45.3)    | 53.1 (46.9)    | 49.8 (50.2)    |  |  |
| QE2 [162]                | 100.0 (0.0)   | 63.4 (36.6)                                         | 56.5 (43.5)    | 57.5 (42.5)    | 57.9 (42.1)    | 56.9 (43.1)    |  |  |
| Enriched MITC3+I         | 98.9 ( 1.1)   | 99.0 ( 1.0)                                         | 98.9 ( 1.1)    | 98.8 ( 1.2)    | 98.6 (1.4)     | 98.5 ( 1.5)    |  |  |
| Enriched MITC3+II        | 98.9 ( 1.1)   | 99.2 ( 0.8)                                         | 99.6 ( 0.4)    | 99.8 ( 0.2)    | 99.9 ( 0.1)    | 99.4 ( 0.6)    |  |  |

Reference (analytic) solution  $v_A^{ref} = 100$ I and II : mesh patterns shown in Figure 6.5(b)



6.4.1.2 Cook's Skew Beam



Figure 6.6. Cook's skew beam. (a) Problem description. (b) Mesh patterns  $(2 \times 2)$  used for the MITC3, MITC3+ and enriched MITC3+ shell elements.

This problem shown in Figure 6.6 was proposed by Cook et al. [4], which involves a skew beam with distributed shear load P = 1/16 at the right end. Young's modulus is E = 1.0 and the Poisson's ratio is v = 1/3. The problem is modelled using  $2 \times 2$ ,  $4 \times 4$  and  $8 \times 8$  meshes of different shell elements. The deflection at point A is computed and listed in Table 6.6 along with the results of other types of elements. Compared with the other elements, the present elements give the best results of all known triangular elements, such as OPT, LST-Ret and All-3I.

**Table 6.6.** Vertical displacements and relative errors at point *A* for the Cook's skew beam shown in Figure 6.6(a). Relative error  $(\%) = (v_A^{ref} - v_A) / v_A^{ref} \times 100$  where  $v_A^{ref}$  and  $v_A$  denote the reference and finite element solutions, respectively.

|                     | Displacement (Relative error) |                           |                  |  |  |  |  |
|---------------------|-------------------------------|---------------------------|------------------|--|--|--|--|
| Element type        | $2 \times 2$ element mesh     | $4 \times 4$ element mesh | 8×8 element mesh |  |  |  |  |
| MITC3 <sup>I</sup>  | 11.97 (49.92)                 | 18.26 (23.60)             | 22.00 ( 7.95)    |  |  |  |  |
| MITC3 <sup>II</sup> | 6.71 (71.92)                  | 11.22 (53.05)             | 17.31 (27.57)    |  |  |  |  |
| MITC4               | 3.48 (85.44)                  | 18.25 (23.64)             | 22.05 (7.74)     |  |  |  |  |
| MITC4*              | 5.08 (78.74)                  | 22.97 ( 3.89)             | 23.65 ( 1.05)    |  |  |  |  |
| ALL-3I [121]        | 21.61 ( 9.58)                 | 23.00 ( 3.77)             | 23.66 ( 1.00)    |  |  |  |  |
| ALL-EX [121]        | 19.01 (20.46)                 | 21.83 ( 8.66)             | 23.43 ( 1.97)    |  |  |  |  |
| ALL-LS [121]        | 19.43 (18.70)                 | 22.32 ( 6.61)             | 23.44 ( 1.92)    |  |  |  |  |
| FF84 [163]          | 20.36 (14.81)                 | 22.42 ( 6.19)             | 23.41 ( 2.05)    |  |  |  |  |
| LST-Ret [121]       | 19.82 (17.07)                 | 22.62 ( 5.36)             | 23.58 ( 1.34)    |  |  |  |  |
| OPT [121]           | 20.56 (13.97)                 | 22.45 ( 6.07)             | 23.43 ( 1.97)    |  |  |  |  |
| HL [164]            | 18.17 (23.97)                 | 22.03 (7.82)              | 23.39 ( 2.13)    |  |  |  |  |

| Q6 [63]                                         | 22.94 ( 4.02) | 23.48 ( 1.76) | 23.80 ( 0.42) |  |  |  |
|-------------------------------------------------|---------------|---------------|---------------|--|--|--|
| QM6 [64]                                        | 21.05 (11.92) | 23.02 ( 3.68) | 23.65 ( 1.05) |  |  |  |
| Enriched MITC3+I                                | 22.78 ( 4.69) | 23.59 ( 1.29) | 23.81 ( 0.38) |  |  |  |
| Enriched MITC3+II                               | 20.06 (16.07) | 22.97 ( 3.89) | 23.70 ( 0.84) |  |  |  |
|                                                 |               |               |               |  |  |  |
| Reference solution $v_A^{ref}$                  | = 23.9 [4]    |               |               |  |  |  |
| I and II : mesh patterns shown in Figure 6.6(b) |               |               |               |  |  |  |

# 6.4.1.3 MacNeal's Cantilever Beam



**Figure 6.7.** MacNeal's cantilever beam subjected to two different loading: Unit tip shear force, P and tip bending moment, M. (a) Problem description. (b) Mesh patterns (1×6) used for the MITC3, MITC3+ and enriched MITC3+ shell elements.

MacNeal's cantilever beam [143] shown in **Figure 6.7**(a) is a frequently used test problem due to its simplicity and fact that the principle element deformation modes can be evoked by loads applied to the free end. Three different mesh shapes shown in **Figure 6.7**(b), rectangular (mesh (a)), parallelogram (mesh (b))

and trapezoidal (mesh (c)), are adopted. Two types of loading, viz., unit tip shear force, P = 1, and tip moment, M = 0.2, are considered. The cantilever beam has geometry of length l = 6, width b = 0.2 and thickness h = 0.1. The material properties of the cantilever beam are given by  $E = 10^7$ , v = 0.3. The results of the tip displacement at point A are shown in **Table 6.7** and **Table 6.8**. Besides the presented elements, the results obtained by other element models are also given for comparison. The enriched MITC3+ element possess high accuracy for all three mesh divisions and is insensitive to three types of distortion. Thus, The present element can successfully avoid trapezoidal locking, which can always keep the second-order completeness in Cartesian coordinates under distortion meshes.

**Table 6.7.** Vertical displacements and relative errors at point *A* for the MacNeal's thin cantilever beam subjected to unit shear force shown in Figure 6.7(a). Relative error  $(\%) = (v_A^{ref} - v_A) / v_A^{ref} \times 100$  where  $v_A^{ref}$  and  $v_A$  denote the reference and finite element solutions, respectively.

|                                                | Load P                 | GIEA.                |                      |  |  |  |
|------------------------------------------------|------------------------|----------------------|----------------------|--|--|--|
| Element type                                   | Mesh (a)               | Mesh (b)             | Mesh (c)             |  |  |  |
|                                                | Displacement (Error)   | Displacement (Error) | Displacement (Error) |  |  |  |
| MITC3 <sup>I</sup>                             | -0.0034 (96.85)        | -0.0024 (97.78)      | -0.0016 (98.52)      |  |  |  |
| MITC3 <sup>II</sup>                            | -0.0034 (96.85)        | -0.0012 (98.89)      | -0.0021 (98.06)      |  |  |  |
| MITC4                                          | -0.0101 (90.66)        | -0.0037 (96.58)      | -0.0029 (97.32)      |  |  |  |
| MITC4*                                         | -0.1073 ( 0.74)        | -0.0683 (36.82)      | -0.0056 (94.82)      |  |  |  |
| Q6 [63]                                        | -0.1073 ( 0.70)        | -0.0732 (32.30)      | -0.0115 (89.40)      |  |  |  |
| QM6 [64]                                       | -0.1073 ( 0.70)        | -0.0673 (37.70)      | -0.0048 (95.60)      |  |  |  |
| P-S [161]                                      | -0.1073 ( 0.70)        | -0.0863 (20.20)      | -0.0239 (77.90)      |  |  |  |
| XSHELL41 [124]                                 | -0.0977 ( 9.60)        | -0.0098 (90.90)      | -0.0124 (88.50)      |  |  |  |
| XSHELL42 [124]                                 | -0.0977 ( 9.60)        | -0.0963 (10.90)      | -0.0895 (17.20)      |  |  |  |
| PEAS7 [113]                                    | -0.1062 ( 1.80)        | -0.0859 (20.50)      | -0.0235 (78.30)      |  |  |  |
| PN340 [165]                                    | -0.1062 ( 1.80)        | -0.0670 (38.00)      | -0.0070 (93.50)      |  |  |  |
| RGD20 [166]                                    | -0.1060 ( 1.90)        | -0.0676 (37.60)      | -0.0051 (95.30)      |  |  |  |
| Enriched MITC3+I                               | -0.1063 ( 1.67)        | -0.1049 ( 2.96)      | -0.1039 ( 3.89)      |  |  |  |
| Enriched MITC3+II                              | -0.1063 ( 1.67)        | -0.1029 ( 4.81)      | -0.1042 ( 3.61)      |  |  |  |
|                                                |                        |                      |                      |  |  |  |
| Reference solution $v_A^{ref} = -0.1081$ [143] |                        |                      |                      |  |  |  |
| I and II : mesh patterns s                     | shown in Figure 6.7(b) |                      |                      |  |  |  |

**Table 6.8.** Vertical displacements and relative errors at point *A* for the MacNeal's thin cantilever beam subjected to end moment shown in Figure 6.7(a). Relative error  $(\%) = (v_A^{ref} - v_A) / v_A^{ref} \times 100$  where  $v_A^{ref}$  and  $v_A$  denote the reference and finite element solutions, respectively.

| Element type | Load M               |                      |                      |  |
|--------------|----------------------|----------------------|----------------------|--|
|              | Mesh (a)             | Mesh (b)             | Mesh (c)             |  |
|              | Displacement (Error) | Displacement (Error) | Displacement (Error) |  |

| MITC3 <sup>I</sup>  | -0.0002 (96.30) | -0.0001 (98.15) | -0.0001 (98.15) |  |
|---------------------|-----------------|-----------------|-----------------|--|
| MITC3 <sup>II</sup> | -0.0002 (96.30) | -0.0001 (98.15) | -0.0001 (98.15) |  |
| MITC4               | -0.0005 (90.74) | -0.0002 (96.30) | -0.0001 (98.15) |  |
| MITC4*              | -0.0054 ( 0.00) | -0.0039 (27.78) | -0.0003 (94.44) |  |
| Q6 [63]             | -0.0054 ( 0.00) | -0.0041 (24.10) | -0.0005 (90.70) |  |
| QM6 [64]            | -0.0054 ( 0.00) | -0.0039 (27.80) | -0.0002 (96.30) |  |
| P-S [161]           | -0.0054 ( 0.00) | -0.0046 (14.80) | -0.0009 (83.30) |  |
| Enriched MITC3+I    | -0.0054 ( 0.00) | -0.0054 ( 0.00) | -0.0054 ( 0.00) |  |
| Enriched MITC3+II   | -0.0054 ( 0.00) | -0.0054 ( 0.00) | -0.0054 ( 0.00) |  |
|                     |                 |                 |                 |  |

Reference solution  $v_A^{ref} = -0.0054$  [143]

I and II : mesh patterns shown in Figure 6.7(b)



**Figure 6.8.** Curved cantilever beam. (a) Problem description and mesh patterns  $(1 \times 6)$  used for the MITC3, MITC3+ and enriched MITC3+ shell elements. (b) Normalized strain energy in the linear analysis of the curved cantilever beam.

The curved cantilever beam shown in Figure 6.8(a) is clamped at one end and loaded by two unit forces at the other. The forces is applied along the in-plain axis and the out-of plane axis. The problem geometry and material properties are  $r_1 = 4.12$ ,  $r_2 = 4.32$ ,  $E = 1.0 \times 10^7$ , v = 0.25 and the thickness of the curved cantilever beam is h = 0.1. The elements used for analyzing the curved cantilever beam would unavoidably be distorted. In addition to this, a coarse mesh of  $1 \times 6$  would make a high aspect ratio for each element. The displacements at point A are computed and normalized by the reference solution of MacNeal and Harder [143]. The reference solution of the curved beam problem is 0.08734 for in-plane loading and 0.5022 for out-of-plane loading. From the vertical and horizontal reference displacements, we obtain the reference solution of the strain energy,  $0.29477 = 0.5 \times (0.08734 + 0.5022)$ . The results are shown in Figure 6.8(b) and Table 6.9 compared with other elements. The present element produce much better solution accuracy than other elements in this problem.

**Table 6.9.** Displacements and normalized displacements at point A for the curved cantilever beam shown in Figure 6.8(a). The solutions are obtained with a  $1 \times 6$  element mesh. Normalized displacement (ND) =  $v_A / v_A^{ref}$  and  $w_A / w_A^{ref}$ , where  $v_A^{ref}$  and  $w_A^{ref}$  is the reference solution and  $v_A$  and  $w_A$  denote the finite element solutions.

| Element type        | Load $P_1$ and $P_2$     |                           |  |  |  |
|---------------------|--------------------------|---------------------------|--|--|--|
|                     | Displacement (ND), $v_A$ | Displacement (ND), $-w_A$ |  |  |  |
| MITC3 <sup>I</sup>  | 0.0022 (0.0249)          | 0.3121 (0.6214)           |  |  |  |
| MITC3 <sup>II</sup> | 0.0022 (0.0253)          | 0.3153 (0.6278)           |  |  |  |
| MITC4               | 0.0064 (0.0734)          | 0.4741 (0.9441)           |  |  |  |
| MITC4*              | 0.0775 (0.8875)          | 0.4741 (0.9441)           |  |  |  |
| XSHELL41 [124]      | 0.0801 (0.9170)          | 0.4339 (0.8640)           |  |  |  |
| XSHELL42 [124]      | 0.0834 (0.9550)          | 0.4339 (0.8640)           |  |  |  |
| QUAD4 [16]          | 0.0728 (0.8330)          | 0.4776 (0.9510)           |  |  |  |
| Enriched MITC3+I    | 0.0728 (0.9966)          | 0.3990 (0.7944)           |  |  |  |
| Enriched MITC3+II   | 0.0737 (0.9974)          | 0.3931 (0.7828)           |  |  |  |
|                     |                          |                           |  |  |  |

Reference solution :  $v_A^{ref} = 0.08734$  and  $-w_A^{ref} = 0.5022$  [143] I and II : mesh patterns shown in Figure 6.8(a)

# 6.4.1.5 Hemispherical Shell



**Figure 6.9.** Descriptions of the hemispherical shell problems: (a) Hemispherical shell with 18° hole and (b) full hemispherical shell. Mesh patterns used for the MITC3, MITC3+ and enriched MITC3+ shell elements. Distorted meshes shown in Figure 6.10 are used.

Two geometries have been used for this problem; one is a hemispherical shell with an 18° hole shown in **Figure 6.9**(a) and another is a full hemispherical shell shown in **Figure 6.9**(b). Both shells have the same radius, thickness, material properties but different loading conditions. The radius of hemispherical shells is r = 10 and its thickness h = 0.04. The material has a Young's modulus of  $E = 6.825 \times 10^7$  and a Poisson's ratio of v = 0.3. The problems are modeled using only one quarter of the hemisphere due to symmetry.



Figure 6.10. Distorted meshes used for the numerical problems solved when N = 4.

For a hemispherical shell with an 18° hole, two pairs of opposite radial concentrated loads P = 2 are applied. This problem is a very useful example to check the ability of the element to handle rigid body rotation about the shell surface and the inextensible bending modes. We study the performance not only using uniform meshes but also distorted meshes, as shown in **Figure 6.10**. When the  $N \times N$  distorted mesh is used, each edge is divided by the ratio  $L_1 : L_2 : L_3 : ..., L_N = 1:2:3:...N$ , leading to quite distorted meshes. Shell elements without the membrane locking treatment cannot correctly solve this problem when the distorted meshes are used. The analytical radial displacement coincident at point load is 0.094 [143], the solutions given in **Figure 6.11**(a) and **Table 6.10** are normalized with this value. The solution for the MITC4 shell element is significantly deteriorated due to the effect of mesh distortion. However, The numerical results confirm the assertion that linear triangles are free from membrane locking without additional measures taken for the membrane part. Of course MITC3 does not behave well due to transverse shear locking. It can be observed that the present results agree well with analytic solutions.

**Table 6.10.** Radial displacements and normalized displacements at point A for the hemispherical shell with 18° hole shown in Figure 6.9(a). Normalized displacement (ND) =  $u_A / u_A^{ref}$  where  $u_A^{ref}$  and  $u_A$  denote the reference and finite element solutions, respectively.

|                        | Mesh              |                   |                   |  |  |
|------------------------|-------------------|-------------------|-------------------|--|--|
| Element type           | $4 \times 4$      | 8×8               | 16×16             |  |  |
|                        | Displacement (ND) | Displacement (ND) | Displacement (ND) |  |  |
| MITC3 <sup>I</sup>     | 0.004 (0.043)     | 0.028 (0.298)     | 0.077 (0.819)     |  |  |
| MITC3 <sup>II</sup>    | 0.004 (0.043)     | 0.029 (0.309)     | 0.080 (0.851)     |  |  |
| MITC4                  | 0.097 (1.032)     | 0.094 (1.000)     | 0.093 (0.989)     |  |  |
| MITC4*                 | 0.097 (1.032)     | 0.094 (1.000)     | 0.093 (0.989)     |  |  |
| Simo et al. [149, 167] | 0.094 (1.004)     | 0.094 (0.998)     | 0.094 (0.999)     |  |  |

| XSHELL41 [124]                                 | 0.098 (1.038) | 0.095(1.012)  | 0.094 (1.001) |  |  |  |
|------------------------------------------------|---------------|---------------|---------------|--|--|--|
| XSHELL42 [124]                                 | 0.025 (0.269) | 0.062 (0.659) | 0.091 (0.970) |  |  |  |
| ANS6S [168]                                    | 0.088 (0.949) | 0.091 (0.982) | 0.093 (1.001) |  |  |  |
| S3R [172]                                      | 0.033 (0.357) | 0.085 (0.913) | 0.091 (0.981) |  |  |  |
| C0 [169]                                       | 0.081 (0.870) | 0.089 (0.960) | -             |  |  |  |
| DSG [170]                                      | 0.090 (0.965) | 0.091 (0.981) | 0.092 (0.989) |  |  |  |
| RTS18 [171]                                    | 0.091 (0.968) | 0.096 (1.021) | 0.094 (1.000) |  |  |  |
| Enriched MITC3+I                               | 0.097 (1.032) | 0.094 (1.000) | 0.093 (0.989) |  |  |  |
| Enriched MITC3+II                              | 0.094 (1.000) | 0.093 (0.989) | 0.093 (0.989) |  |  |  |
|                                                |               |               |               |  |  |  |
| Reference solution $u_A^{ref} = 0.0094$ [143]  |               |               |               |  |  |  |
| Land II : mesh patterns shown in Figure 6.9(a) |               |               |               |  |  |  |

For a full hemispherical shell, shell is clamped at the bottom and subjected to a uniform pressure load. This problem possess no available analytic solution, therefore the reference solution is calculated using a mesh of  $30 \times 30$  MITC9 shell finite elements which is known to satisfy the ellipticity and the consistency conditions and to show adequate convergence behaviors, see Refs. [21, 26, 101]. The results of normalized strain energy compare well with the results from other shell elements as shown in **Table 6.11** and **Figure 6.11**(b). From the obtained results it is clear that the convergence of enriched MITC3+ shell element for this problem is fast compared to other elements.



**Table 6.11.** Strain energy (SE) and relative errors in strain energy for the full hemispherical shell shown in Figure 6.9(b). Relative error (RE) (%) =  $(SE^{ref} - SE)/SE^{ref} \times 100$  where  $SE^{ref}$  and SE denote the reference and finite element strain energy, respectively.

|                     | Uniform mesh          |                       |                       | Distorted mesh        |                       |                       |
|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Element type        | $2 \times 2$          | 4×4                   | 6×6                   | 2×2                   | $4 \times 4$          | 6×6                   |
|                     | $SE \times 10^4$ (RE) |
| MITC3 <sup>I</sup>  | 13.19 (0.61)          | 18.27 (0.85)          | 19.77 (0.92)          | 12.38 (0.57)          | 16.74 (0.77)          | 18.43 (0.85)          |
| MITC3 <sup>II</sup> | 11.83 (0.55)          | 17.60 (0.82)          | 19.41 (0.90)          | 12.35 (0.57)          | 17.92 (0.83)          | 19.50 (0.90)          |
| MITC3+ <sup>I</sup> | 14.72 (0.68)          | 18.84 (0.87)          | 20.10 (0.93)          | 13.69 (0.63)          | 17.76 (0.82)          | 19.16 (0.89)          |
| MITC3+II            | 12.84 (0.59)          | 18.09 (0.84)          | 19.72 (0.91)          | 14.34 (0.66)          | 18.86 (0.87)          | 20.05 (0.93)          |
| MITC4               | 14.55 (0.67)          | 19.43 (0.90)          | 20.54 (0.95)          | 14.61 (0.68)          | 18.87 (0.87)          | 20.07 (0.93)          |
| MITC4*              | 15.47 (0.72)          | 19.89 (0.92)          | 20.78 (0.96)          | 15.60 (0.72)          | 19.67 (0.91)          | 20.61 (0.95)          |
| Enriched MITC3+I    | 17.16 (0.79)          | 20.36 (0.94)          | 21.10 (0.98)          | 15.59 (0.72)          | 19.33 (0.89)          | 20.48 (0.95)          |
| Enriched MITC3+II   | 14.87 (0.69)          | 19.58 (0.91)          | 20.71 (0.96)          | 16.46 (0.76)          | 20.39 (0.94)          | 21.31 (0.99)          |

Reference solution  $SE^{ref} = 21.60 \times 10^4$ 

I and II : mesh patterns shown in Figure 6.9(a)



**Figure 6.11.** Convergence curves for the hemispherical shell problems. (a) Normalized displacement of the hemispherical shell with an 18° hole using the uniform meshes (left) and the distorted meshes (right). (b) Normalized strain energy of the full hemispherical shell with the uniform meshes (left) and the distorted meshes (right).

6.4.1.6 Scordelis-Lo (Barrel Vault) Roof



Figure 6.12. Scordelis-Lo roof. (a) Problem description. (b) Mesh patterns  $(4 \times 4)$  used for the MITC3, MITC3+ and enriched MITC3+ shell elements.

The Scordelis-Lo roof provides one of the standard tests to assess the performance of shell elements in a combined bending-membrane problem with the membrane action being dominant. The roof is modelled as a short cylinder shell, loaded by self-weight and supported by rigid diaphragms at the curved edges while the straight edges are free. The geometry of the problem is shown in **Figure 6.12**(a). The length of the roof is l = 50; the radius of curvature is r = 25 and its thickness h = 0.25. The material has a Young's modulus of  $E = 4.32 \times 10^8$  and a Poisson's ratio of v = 0. The load it experiences is due to its weight, amounting to the force per unit surface  $f_z = 90$  per unit area. According to MacNeal and Harder [143], the theoretical value for the vertical deflection at the center of the free edge is 0.3086, but slightly lower value 0.3024 seems to have become the reference solution for many publications. In this study the latter value is used to normalize numerical results. The results for the normalized vertical displacement at the free edge are shown in **Figure 6.13** and the displacement and its normalized value using the uniform and distorted meshes are shown in **Table 6.12** and **Table 6.13**. The enriched MITC3+ shell element shows an excellent performance even when the distorted meshes are used.



**Figure 6.13.** Normalized displacement of the Scordelis-Lo roof with (a) the uniform meshes (b) the distorted meshes shown in Figure 6.10.

**Table 6.12.** Displacements and normalized displacements at point *A* for the Scordelis-Lo roof using the uniform meshes. Normalized displacement (ND) =  $w_A / w_A^{ref}$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                     | Uniform mesh      |                   |                   |  |
|---------------------|-------------------|-------------------|-------------------|--|
| Element type        | $4 \times 4$      | 8×8               | 16×16             |  |
| H                   | Displacement (ND) | Displacement (ND) | Displacement (ND) |  |
| MITC3 <sup>I</sup>  | 0.1936 (0.6402)   | 0.2597 (0.8588)   | 0.2892 (0.9563)   |  |
| MITC3 <sup>II</sup> | 0.1137 (0.3760)   | 0.2398 (0.7930)   | 0.2863 (0.9468)   |  |
| MITC3+ <sup>I</sup> | 0.2211 (0.7312)   | 0.2644 (0.8743)   | 0.2901 (0.9593)   |  |
| MITC3+II            | 0.2019 (0.6677)   | 0.2588 (0.8558)   | 0.2885 (0.9540)   |  |
| MITC4               | 0.2852 (0.9431)   | 0.2942 (0.9729)   | 0.2990 (0.9888)   |  |
| MITC4*              | 0.3167 (1.0473)   | 0.3040 (1.0053)   | 0.3017 (0.9977)   |  |
| QPH [128]           | 0.2843 (0.9400)   | 0.2964 (0.9800)   | 0.3054 (1.0100)   |  |
| Simo et al. [167]   | 0.3275 (1.0830)   | 0.3069 (1.0150)   | 0.3024 (1.0000)   |  |
| QUAD4 [16]          | 0.3175 (1.0500)   | 0.3048 (1.0080)   | -                 |  |
| URI-4               | 0.3686 (1.2190)   | 0.3187 (1.0540)   | 0.3075 (1.0170)   |  |
| SRI-4               | 0.2915 (0.9640)   | 0.2976 (0.9840)   | 0.3021 (0.9990)   |  |
| DKQ-4               | 0.3169 (1.0480)   | 0.3039 (1.0050)   | 0.3015 (0.9970)   |  |
| Enriched MITC3+I    | 0.2866 (0.9478)   | 0.2964 (0.9802)   | 0.3001 (0.9924)   |  |
| Enriched MITC3+II   | 0.2705 (0.8945)   | 0.2940 (0.9722)   | 0.2996 (0.9907)   |  |
|                     |                   |                   |                   |  |

Reference solution  $w_A^{ref} = 0.3024$  [143]

I and II : mesh patterns shown in Figure 6.12(b)

**Table 6.13.** Displacements and normalized displacements at point *A* for the Scordelis-Lo roof using the distorted meshes. Normalized displacement (ND) =  $w_A / w_A^{ref}$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                                                                                                                                                                               | Distorted mesh shown in Figure 6.10                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Element type                                                                                                                                                                  | $4 \times 4$                                                                                                                                         | 8×8                                                                                                                                                                                                   | 16×16                                                                                                                                             |  |  |
|                                                                                                                                                                               | Displacement (ND) Displacement (ND)                                                                                                                  |                                                                                                                                                                                                       | Displacement (ND)                                                                                                                                 |  |  |
| MITC3 <sup>I</sup>                                                                                                                                                            | 0.1753 (0.5797)                                                                                                                                      | 0.2355 (0.7788)                                                                                                                                                                                       | 0.2777 (0.9183)                                                                                                                                   |  |  |
| MITC3 <sup>II</sup>                                                                                                                                                           | 0.0540 (0.1786)                                                                                                                                      | 0.1242 (0.4107)                                                                                                                                                                                       | 0.2270 (0.7507)                                                                                                                                   |  |  |
| MITC3+ <sup>I</sup>                                                                                                                                                           | 0.1990 (0.6581)                                                                                                                                      | 0.2421 (0.8006)                                                                                                                                                                                       | 0.2794 (0.9239)                                                                                                                                   |  |  |
| MITC3+II                                                                                                                                                                      | 0.1108 (0.3664)                                                                                                                                      | 0.1729 (0.5718)                                                                                                                                                                                       | 0.2458 (0.8128)                                                                                                                                   |  |  |
| MITC4                                                                                                                                                                         | 0.2075 (0.6862)                                                                                                                                      | 0.2596 (0.8585)                                                                                                                                                                                       | 0.2885 (0.9540)                                                                                                                                   |  |  |
| MITC4*                                                                                                                                                                        | 0.2713 (0.8972)                                                                                                                                      | 0.2930 (0.9689)                                                                                                                                                                                       | 0.2994 (0.9901)                                                                                                                                   |  |  |
| Enriched MITC3+I                                                                                                                                                              | 0.2541 (0.8403)                                                                                                                                      | 0.2793 (0.9236)                                                                                                                                                                                       | 0.2946 (0.9742)                                                                                                                                   |  |  |
| Enriched MITC3+II                                                                                                                                                             | 0.2027 (0.6703)                                                                                                                                      | 0.2722 (0.9001)                                                                                                                                                                                       | 0.2955 (0.9772)                                                                                                                                   |  |  |
| MITC3 <sup>I</sup><br>MITC3 <sup>II</sup><br>MITC3+ <sup>I</sup><br>MITC3+ <sup>II</sup><br>MITC4<br>MITC4*<br>Enriched MITC3+ <sup>II</sup><br>Enriched MITC3+ <sup>II</sup> | 0.1753 (0.5797)<br>0.0540 (0.1786)<br>0.1990 (0.6581)<br>0.1108 (0.3664)<br>0.2075 (0.6862)<br>0.2713 (0.8972)<br>0.2541 (0.8403)<br>0.2027 (0.6703) | 0.2355 (0.7788)           0.1242 (0.4107)           0.2421 (0.8006)           0.1729 (0.5718)           0.2596 (0.8585)           0.2930 (0.9689)           0.2793 (0.9236)           0.2722 (0.9001) | 0.2777 (0.9183)           0.2270 (0.7507)           0.2458 (0.8128)           0.2994 (0.9901)           0.2994 (0.9901)           0.2945 (0.9772) |  |  |

Reference solution  $w_A^{ref}$  [143] = 0.3024 I and II : mesh patterns shown in Figure 6.12(b)



**Figure 6.14.** Raasch's Hook. (a) Problem description. (b) Normalized displacement in the linear analysis of the Raasch's Hook problem.

The Raasch's Hook problem [173] is useful in the evaluation of a given element's ability to properly reproduce coupling among bending, extension and twisting deformation patterns. A curved strip is clamped rigidly at one end and subjected to a unit load distributed along the width of the free end, see **Figure 6.14**(a). The width and radius of the Raasch's hook are b = 20,  $r_1 = 46$  and  $r_2 = 14$ , respectively, and the thickness is h = 0.03; the material constants are  $E = 3.3 \times 10^3$  and v = 0.35. The linear loading  $\mathbf{F} = F\mathbf{e}_z$ , where F = 1 is applied on the side of the hook. The reference solution of 5.027 for the displacement in the load direction of the free edge is used [173]. The structure is modeled using  $1 \times 9$ ,  $3 \times 18$ ,  $5 \times 36$ ,  $10 \times 72$  and  $20 \times 144$  element meshes of the shell elements. **Figure 6.14**(b) and **Table 6.14** present the tip deflection at free end that was normalized by the reference solution. The performance of the enriched MITC3+ shell element is compared to those obtained with the different types of other MITC shell elements. The results show that the proposed shell element possesses fast convergence to the reference solution.

**Table 6.14.** Displacements and normalized displacements at point *A* for the Raasch's Hook problem shown in Figure 6.14(a). Normalized displacement (ND) =  $w_A / w_A^{ref}$  where  $w_A^{ref}$  and  $w_A$  denote the reference and finite element solutions, respectively.

|                      | Mesh                      |                |                |                |                |  |
|----------------------|---------------------------|----------------|----------------|----------------|----------------|--|
| Element type         | 1×9                       | 3×18           | 5×36           | 10×72          | 20×144         |  |
|                      | Disp. (ND)                | Disp. (ND)     | Disp. (ND)     | Disp. (ND)     | Disp. (ND)     |  |
| MITC3                | -3.853 (0.766)            | -4.617 (0.918) | -4.778 (0.951) | -4.877 (0.970) | -4.951 (0.985) |  |
| MITC3+               | -4.463 (0.888)            | -4.774 (0.950) | -4.827 (0.960) | -4.899 (0.975) | -4.962 (0.987) |  |
| MITC4                | -4.784 (0.952)            | -4.811 (0.957) | -4.852 (0.965) | -4.923 (0.979) | -4.976 (0.990) |  |
| MITC4*               | -4.797 (0.954)            | -4.816 (0.958) | -4.854 (0.966) | -4.923 (0.979) | -4.976 (0.990) |  |
| Enriched MITC3+      | -4.847 (0.964)            | -4.861 (0.967) | -4.871 (0.969) | -4.918 (0.978) | -4.988 (0.992) |  |
| Allman               | -4.233 (0.842)            | -4.644 (0.924) | -4.805 (0.956) | -5.330 (1.060) | -7.343 (1.461) |  |
| Cook, Flat-stiffened | -4.249 (0.845)            | -4.656 (0.926) | -4.902 (0.975) | -5.951 (1.184) | -9.582 (1.906) |  |
| Providas and Kattis  | -4.265 (0.848)            | -4.687 (0.932) | -5.106 (1.016) | -7.132 (1.419) | -15.13 (3.010) |  |
| OPT                  | -4.261 (0.848)            | -4.644 (0.924) | -4.756 (0.946) | -4.876 (0.970) | -4.972 (0.989) |  |
|                      |                           |                |                |                |                |  |
| Reference solution   | $w_A^{ref} = -5.027$ [173 | 5]             |                |                |                |  |

## 6.4.2 Nonlinear Benchmark Problems

In this section, the performance of the enriched MITC3+ shell element is evaluated in the nonlinear range. The iterations to solve the nonlinear equations have been performed in each load step to a convergence tolerance of 0.1 percent on the relative incremental energy.

# 6.4.2.1 Cantilever Beam Subjected to a Tip Moment



Figure 6.15. Cantilever beam subjected to a tip moment. (a) Problem description. (b) Load-displacement curve for the cantilever beam subjected to a tip moment.

A cantilever beam subjected to a tip moment  $M = 10\pi$  as shown in Figure 6.15(a) is considered for large deformation test. The length, depth and thickness of the beam are l = 20, b = 1 and h = 1, respectively. The Young's modulus and Poisson's ratio are taken as E = 1200 and v = 0.2, respectively. By classical beam theory, this tip moment is just sufficient to roll up the cantilever beam into a circular ring with its ends butting each other. This cantilever beam is modeled using a  $2 \times 20$  element mesh and results are not depend on mesh patterns for triangular elements. The reference solutions are obtained using a  $4 \times 40$  element mesh of the MITC9 shell element. The vertical displacement at point A for this problem are plotted in Figure 6.15(b) and listed in Table 6.15. As we can see, the present element gives better performance than collapsed Plane 42 triangular element [174], MITC3 and MITC4 element, and compares favorably with MITC9 element [22]. The final deformed shapes are shown in Figure 6.16. The present element is able to simulate very large deformation accurately.




MITC4



MITC4 (incompatible modes)

Enriched MITC3+

Figure 6.16. Deformed configurations of the cantilever beam subjected a tip moment.

|                 | 1.20  |       |        |                    |                                  |         |           |
|-----------------|-------|-------|--------|--------------------|----------------------------------|---------|-----------|
| Normalized load | MITC3 | MITC4 | MITC4* | Enriched<br>MITC3+ | Collapsed<br>Plane42<br>triangle | Plane82 | Reference |
| 0.1             | 2.23  | 4.24  | 6.07   | 5.84               | 1.81                             | 5.84    | 5.84      |
| 0.2             | 4.41  | 8.10  | 11.01  | 10.68              | 3.60                             | 10.66   | 10.70     |
| 0.3             | 6.47  | 11.25 | 13.91  | 13.69              | 5.31                             | 13.68   | 13.71     |
| 0.4             | 8.37  | 13.40 | 14.39  | 14.42              | 6.90                             | 14.50   | 14.42     |
| 0.5             | 10.07 | 14.40 | 12.61  | 12.96              | 8.35                             | 13.22   | 12.90     |
| 0.6             | 11.53 | 14.22 | 9.24   | 9.88               | 9.61                             | 10.38   | 9.74      |
| 0.7             | 12.72 | 12.98 | 5.32   | 6.12               | 10.62                            | 6.82    | 5.92      |
| 0.8             | 13.60 | 10.91 | 2.01   | 2.73               | 11.48                            | 3.46    | 2.53      |
| 0.9             | 14.18 | 8.33  | 0.14   | 0.57               | 12.11                            | 1.06    | 0.46      |
| 1.0             | 14.45 | 5.64  | 0.05   | 0.04               | -                                | 0.03    | 0.07      |

 Table 6.15. Normalized load-vertical deflections at point A for the cantilever beam subjected a tip moment.

The reference solutions are obtained using a  $4 \times 40$  element mesh of the MITC9 shell elements

#### 6.4.2.2 Column under an Eccentric Compressive Load



Figure 6.17. Column under an eccentric compressive load. (a) Problem description. (b) Load-displacement curves for the column.

|               |                       | -         |      |        |  |
|---------------|-----------------------|-----------|------|--------|--|
| TOP           | - N - N               | 1-071     | - 71 | $\sim$ |  |
| 21            | and the second second | $1 \ge 1$ | 1    |        |  |
| Second Second |                       |           |      | 1      |  |

A column is subjected to an eccentric compressive load shown in Figure 6.17(a). The length l, width b and thickness h are 10, 1 and 1, respectively. The Young's modulus and Poisson's ratio are given by  $E = 10^6$  and v = 0, respectively. The geometry is meshed with  $2 \times 10$  elements as shown in Figure 6.18. The reference solutions are obtained using a  $4 \times 20$  element mesh of the MITC9 shell element. The horizontal deflection at point A for the column and the corresponding load-deflection responses are plotted in Figure 6.17(b) and listed in Table 6.16. The final deformed shapes are shown in Figure 6.18. As seen from these results, the deflections given by the present element are almost the same as that of the reference using the MITC9 shell element, MITC4 with incompatible modes, whereas the collapsed Plane 42 [174], MITC3 and MITC4 element yields very bad results.



Figure 6.18. Deformed configurations for the column under an eccentric compressive load.

Geo.

| Table 6.16. | Normalized | load-horizontal | deflections | at point A | for the o | column | under an | eccentric | compressive |  |
|-------------|------------|-----------------|-------------|------------|-----------|--------|----------|-----------|-------------|--|
| load.       |            | 59              |             |            |           |        | Z.       |           |             |  |

| Normalized load    | MITC3          | MITC4         | MITC4*    | Enriched<br>MITC3+ | Collapsed<br>Plane42<br>triangle | Plane82  | Reference |
|--------------------|----------------|---------------|-----------|--------------------|----------------------------------|----------|-----------|
| 0.071              | 0.0207         | 0.0429        | 0.0667    | 0.0668             | 0.0414                           | 0.0090   | 0.0669    |
| 0.143              | 0.0430         | 0.0923        | 0.1499    | 0.1503             | 0.0846                           | 0.0210   | 0.1505    |
| 0.214              | 0.0669         | 0.1499        | 0.2562    | 0.2570             | 0.0130                           | 0.0360   | 0.2574    |
| 0.286              | 0.0926         | 0.2178        | 0.3965    | 0.3980             | 0.0178                           | 0.0560   | 0.3987    |
| 0.357              | 0.1204         | 0.2987        | 0.5891    | 0.5917             | 0.0228                           | 0.0870   | 0.5928    |
| 0.429              | 0.1506         | 0.3969        | 0.8672    | 0.8718             | 0.0282                           | 0.1360   | 0.8736    |
| 0.500              | 0.1833         | 0.5181        | 1.2946    | 1.3032             | 0.0339                           | 0.2300   | 1.3062    |
| 0.571              | 0.2189         | 0.6709        | 1.9911    | 2.0072             | 0.0401                           | 0.4380   | 2.0127    |
| 0.643              | 0.2579         | 0.8687        | 3.0960    | 3.1210             | 0.0468                           | 0.9060   | 3.1312    |
| 0.714              | 0.3007         | 1.1320        | 4.4440    | 4.4682             | 0.0541                           | 1.7620   | 4.4843    |
| 0.786              | 0.3479         | 1.4931        | 5.5777    | 5.5928             | 0.0622                           | 2.8370   | 5.6125    |
| 0.857              | 0.4002         | 1.9979        | 6.3531    | 6.3596             | 0.0711                           | 3.9350   | 6.3798    |
| 0.929              | 0.4583         | 2.6912        | 6.8441    | 6.8452             | 0.0812                           | 4.9430   | 6.8638    |
| 1.000              | 0.5234         | 3.5544        | 7.1415    | 7.1392             | 0.0926                           | 5.8620   | 7.1553    |
| The reference solu | tions are obta | ained using a | 4×20 eler | ment mesh of the   | MITC9 shell                      | elements |           |

6.4.2.3 Curved Cantilever Beam



Figure 6.19. Load-displacement curves for the curved cantilever beam.

The curved cantilever beam shown in **Figure 6.8**(a) is clamped at one end and subjected to two forces at the other. This problem is tested in the linear range, see section 6.1.4. The material properties and geometry are chosen as the same in the linear analysis. The forces applied to the cantilever beam are increased up to  $P_N = 100 \times (P_1 + P_2)$ . The problem is modeled using a  $1 \times 6$  element mesh of the MITC4, MITC3, MITC3+ and enriched MITC3+ shell element. The reference solutions are calculated using  $2 \times 12$  element mesh of the MITC9 shell element. **Figure 6.19**(b), **Table 6.17** and **Table 6.18** show the calculated displacement at point *A* versus the forces, and **Figure 6.20** shows the deformed shapes calculated using the  $1 \times 6$  element mesh of the MITC4, MITC3, and enriched MITC3+ shell element. The vertical displacements using the MITC4, MITC3 and MITC3+ shell element display much too stiff compared with the reference. However, the MITC4 with incompatible modes and enriched MITC3+ shell finite element show excellent results compared to the reference solutions.

Table 6.17. Normalized load-vertical displacements at point A for the curved beam.

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.<br>MITC9 |
|--------------|-------------------|--------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|---------------|
| 0.1          | -0.247            | -0.237             | -0.293             | -0.283              | -0.244 | 0.268  | 0.339                          | 0.347                           | 0.295         |
| 0.2          | -0.362            | -0.330             | -0.363             | -0.343              | -0.268 | 0.382  | 0.462                          | 0.471                           | 0.401         |
| 0.3          | -0.339            | -0.294             | -0.298             | -0.275              | -0.209 | 0.457  | 0.536                          | 0.545                           | 0.472         |
| 0.4          | -0.276            | -0.228             | -0.215             | -0.193              | -0.144 | 0.509  | 0.585                          | 0.593                           | 0.522         |
| 0.5          | -0.213            | -0.166             | -0.141             | -0.121              | -0.088 | 0.544  | 0.618                          | 0.625                           | 0.557         |
| 0.6          | -0.157            | -0.113             | -0.079             | -0.061              | -0.042 | 0.570  | 0.640                          | 0.647                           | 0.583         |
| 0.7          | -0.110            | -0.068             | -0.028             | -0.012              | -0.003 | 0.588  | 0.655                          | 0.663                           | 0.602         |

| 0.8 | -0.070 | -0.030 | 0.016 | 0.030 | 0.031 | 0.601 | 0.666 | 0.673 | 0.616 |
|-----|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| 0.9 | -0.035 | 0.003  | 0.055 | 0.066 | 0.059 | 0.610 | 0.673 | 0.680 | 0.626 |
| 1.0 | -0.005 | 0.031  | 0.090 | 0.099 | 0.084 | 0.617 | 0.677 | 0.685 | 0.634 |

Nor. Load :  $P_N / P_{N \text{ max}}$ 

Ref. : Reference solutions obtained using a  $2 \times 12$  element mesh of the MITC9 shell elements

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.<br>MITC9 |
|--------------|-------------------|--------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|---------------|
| 0.1          | -1.804            | -1.847             | -2.155             | -2.143              | -2.526 | -2.529 | -2.212                         | -2.195                          | -2.591        |
| 0.2          | -2.519            | -2.578             | -2.915             | -2.906              | -3.252 | -3.207 | -2.926                         | -2.910                          | -3.261        |
| 0.3          | -2.892            | -2.943             | -3.263             | -3.252              | -3.533 | -3.485 | -3.258                         | -3.242                          | -3.532        |
| 0.4          | -3.102            | -3.142             | -3.441             | -3.428              | -3.667 | -3.637 | -3.452                         | -3.435                          | -3.681        |
| 0.5          | -3.232            | -3.262             | -3.545             | -3.530              | -3.743 | -3.738 | -3.581                         | -3.564                          | -3.777        |
| 0.6          | -3.320            | -3.344             | -3.613             | -3.596              | -3.793 | -3.811 | -3.676                         | -3.659                          | -3.848        |
| 0.7          | -3.385            | -3.404             | -3.661             | -3.644              | -3.828 | -3.869 | -3.750                         | -3.732                          | -3.903        |
| 0.8          | -3.436            | -3.451             | -3.699             | -3.680              | -3.856 | -3.916 | -3.809                         | -3.792                          | -3.947        |
| 0.9          | -3.478            | -3.490             | -3.729             | -3.710              | -3.878 | -3.955 | -3.859                         | -3.842                          | -3.985        |
| 1.0          | -3.514            | -3.524             | -3.755             | -3.735              | -3.897 | -3.989 | -3.902                         | -3.885                          | -4.017        |
|              |                   |                    |                    |                     |        |        |                                |                                 |               |

Table 6.18. Normalized load-horizontal displacements at point A for the curved beam.

Nor. Load :  $P_N / P_{N \text{ max}}$ Ref. : Reference solutions obtained using a 2×12 element mesh of the MITC9 shell elements



Figure 6.20. Deformed configurations for the curved cantilever beam.

## 6.4.2.4 Hemispherical Shell



**Figure 6.21.** Load-displacement curves for the hemispherical shell with an 18° hole when (a) the uniform meshes and (b) the distorted meshes are used.

Again we consider two hemispherical shell problems, hemispherical shell with an  $18^{\circ}$  hole and full hemispherical shell, as shown **Figure 6.9**(a). The material and geometric properties are given as the same in the linear analysis, see Section 6.1.5. Taking advantage of symmetry, a quadrant of the shell is used.

| Nor    | MITC3    | MITC3     | MITC3+   | MITC3+    |        |          | Enriched | Enriched  |        |
|--------|----------|-----------|----------|-----------|--------|----------|----------|-----------|--------|
| T to 1 |          | ( 1 m     |          | ( 1 1)    | MITC4  | MITC4*   | MITC3+   | MITC3+    | Ref.   |
| Load   | (mesh I) | (mesh II) | (mesh I) | (mesh II) |        |          | (mesh I) | (mesh II) |        |
| 0.1    | -0.262   | -0.257    | -1.915   | -1.813    | -1.563 | -1.577   | -1.919   | -1.817    | -1.825 |
| 0.2    | -0.525   | -0.528    | -3.463   | -3.168    | -2.442 | -2.474   | -3.474   | -3.178    | -3.233 |
| 0.3    | -0.784   | -0.809    | -4.679   | -4.162    | -3.041 | -3.085   | -4.693   | -4.177    | -4.303 |
| 0.4    | -1.039   | -1.095    | -5.686   | -4.925    | -3.498 | -3.552   | -5.705   | -4.944    | -5.154 |
| 0.5    | -1.286   | -1.382    | -6.554   | -5.534    | -3.869 | -3.932   | -6.576   | -5.559    | -5.856 |
| 0.6    | -1.526   | -1.666    | -7.321   | -6.041    | -4.182 | -4.252   | -7.344   | -6.071    | -6.449 |
| 0.7    | -1.757   | -1.944    | -8.009   | -6.478    | -4.453 | -4.528   | -8.034   | -6.514    | -6.958 |
| 0.8    | -1.979   | -2.213    | -8.636   | -6.872    | -4.691 | -4.771   | -8.661   | -6.915    | -7.400 |
| 0.9    | -2.193   | -2.472    | -9.211   | -7.246    | -4.903 | -4.988   | -9.235   | -7.296    | -7.788 |
| 1.0    | -2.398   | -2.719    | -9.745   | -7.628    | -5.094 | -5.184   | -9.767   | -7.688    | -8.132 |
|        |          |           |          |           |        | 30 - 0 - |          |           |        |

**Table 6.19.** Normalized load-radial displacements at the point *B* for the hemispherical shell with an  $18^{\circ}$  hole with the uniform meshes. The results are obtained using the  $6 \times 6$  element mesh of the shell elements.

Nor. Load :  $P_N / P_{N \text{ max}}$ 

Ref. : Reference solutions obtained using a 16×16 element mesh of the MITC9 shell elements

| Nor. | MITC3    | MITC3    | MITC3+   | MITC3+    | MITC4 | MITC4* | Enriched<br>MITC3+ | Enriched<br>MITC3+ | Ref.  |
|------|----------|----------|----------|-----------|-------|--------|--------------------|--------------------|-------|
| Ioau | (mesn I) | (mesh n) | (mesh I) | (mesh II) |       |        | (mesh I)           | (mesh II)          |       |
| 0.1  | 0.241    | 0.258    | 1.522    | 1.438     | 1.279 | 1.289  | 1.524              | 1.441              | 1.498 |
| 0.2  | 0.463    | 0.508    | 2.361    | 2.203     | 1.816 | 1.833  | 2.365              | 2.208              | 2.321 |
| 0.3  | 0.668    | 0.746    | 2.875    | 2.655     | 2.131 | 2.153  | 2.878              | 2.662              | 2.818 |
| 0.4  | 0.855    | 0.970    | 3.228    | 2.956     | 2.351 | 2.375  | 3.232              | 2.966              | 3.156 |
| 0.5  | 1.026    | 1.177    | 3.489    | 3.177     | 2.519 | 2.545  | 3.493              | 3.188              | 3.405 |
| 0.6  | 1.181    | 1.368    | 3.691    | 3.351     | 2.652 | 2.680  | 3.694              | 3.364              | 3.597 |
| 0.7  | 1.323    | 1.541    | 3.850    | 3.497     | 2.763 | 2.793  | 3.853              | 3.512              | 3.750 |
| 0.8  | 1.453    | 1.697    | 3.978    | 3.628     | 2.858 | 2.888  | 3.981              | 3.644              | 3.876 |
| 0.9  | 1.572    | 1.839    | 4.082    | 3.752     | 2.939 | 2.971  | 4.084              | 3.770              | 3.981 |
| 1.0  | 1.682    | 1.967    | 4.166    | 3.879     | 3.011 | 3.043  | 4.169              | 3.898              | 4.070 |
|      |          |          |          |           |       |        |                    |                    |       |

**Table 6.20.** Normalized load-radial displacements at the point *A* for the hemispherical shell with an 18° hole with the uniform meshes. The results are obtained using the  $6 \times 6$  element mesh of the shell elements.

Nor. Load :  $P_N / P_{N \text{ max}}$ 

Ref. : Reference solutions obtained using a 16×16 element mesh of the MITC9 shell elements

For the hemispherical shell with an  $18^{\circ}$  hole, this problem is a very useful example to check the ability of the element to handle rigid body rotation about the normal to the shell surface and the inextensible bending modes. The point load is incrementally applied to a maximum value  $P_{\text{max}} = 400/2$ . The shell is modeled using a  $6 \times 6$  element mesh of the shell element with the uniform and distorted meshes. A  $16 \times 16$  element mesh of the MITC9 shell element is used to obtain the reference solutions.

**Table 6.21.** Normalized load-radial displacements at the point *B* for the hemispherical shell with an  $18^{\circ}$  hole with the distorted meshes shown in Figure 6.10. The results are obtained using the  $6 \times 6$  element mesh of the shell elements.

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.   |
|--------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|--------|
| 0.1          | -0.316            | -0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.912             | -1.749              | -0.170 | -0.176 | -1.913                         | -1.760                          | -1.825 |
| 0.2          | -0.669            | -0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.435             | -3.153              | -0.365 | -0.378 | -3.440                         | -3.167                          | -3.233 |
| 0.3          | -1.050            | -0.367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.545             | -4.202              | -0.595 | -0.618 | -4.554                         | -4.219                          | -4.303 |
| 0.4          | -1.449            | -0.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.400             | -5.029              | -0.880 | -0.920 | -5.411                         | -5.049                          | -5.154 |
| 0.5          | -1.854            | -0.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.090             | -5.706              | -1.265 | -1.347 | -6.102                         | -5.727                          | -5.856 |
| 0.6          | -2.256            | -0.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.667             | -6.275              | -2.074 | -2.779 | -6.680                         | -6.297                          | -6.449 |
| 0.7          | -2.647            | -0.899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7.161             | -6.762              | -2.946 | -3.176 | -7.175                         | -6.787                          | -6.958 |
| 0.8          | -3.023            | -1.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7.591             | -7.186              | -3.303 | -3.483 | -7.608                         | -7.214                          | -7.400 |
| 0.9          | -3.379            | -1.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7.972             | -7.560              | -3.658 | -3.848 | -7.990                         | -7.591                          | -7.788 |
| 1.0          | -3.716            | -1.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8.312             | -7.894              | -4.373 | -      | -8.333                         | -7.927                          | -8.132 |
|              |                   | and the second sec |                    |                     |        |        | 0                              |                                 |        |

Nor. Load :  $P_N / P_{N \text{ max}}$ 

Ref. : Reference solutions obtained using a  $16 \times 16$  element mesh of the MITC9 shell elements

# 한국과학기술원

**Table 6.22.** Normalized load-radial displacements at the point A for the hemispherical shell with an  $18^{\circ}$  hole with the distorted meshes shown in Figure 6.10. The results are obtained using the  $6 \times 6$  element mesh of the shell elements.

| Nor. | MITC3    | MITC3       | MITC3+   | MITC3+    | E 197 | 1      | Enriched | Enriched  |       |
|------|----------|-------------|----------|-----------|-------|--------|----------|-----------|-------|
| load | (mesh I) | (mesh II)   | (mesh I) | (mesh II) | MITC4 | MITC4* | MITC3+   | MITC3+    | Ref.  |
| Ioad | (mesh I) | (incsii ii) | (mesh I) | (mesh ff) |       |        | (mesh I) | (mesh II) |       |
| 0.1  | 0.334    | 0.112       | 1.494    | 1.359     | 0.161 | 0.166  | 1.495    | 1.365     | 1.498 |
| 0.2  | 0.668    | 0.224       | 2.297    | 2.136     | 0.333 | 0.343  | 2.299    | 2.142     | 2.321 |
| 0.3  | 0.991    | 0.334       | 2.772    | 2.611     | 0.516 | 0.533  | 2.775    | 2.617     | 2.818 |
| 0.4  | 1.293    | 0.444       | 3.096    | 2.938     | 0.716 | 0.742  | 3.100    | 2.945     | 3.156 |
| 0.5  | 1.566    | 0.554       | 3.335    | 3.182     | 0.940 | 0.983  | 3.340    | 3.189     | 3.405 |
| 0.6  | 1.810    | 0.664       | 3.523    | 3.373     | 1.261 | 1.430  | 3.528    | 3.380     | 3.597 |
| 0.7  | 2.025    | 0.774       | 3.674    | 3.526     | 1.575 | 1.636  | 3.680    | 3.534     | 3.750 |
| 0.8  | 2.214    | 0.884       | 3.801    | 3.654     | 1.792 | 1.849  | 3.806    | 3.662     | 3.876 |
| 0.9  | 2.380    | 0.995       | 3.907    | 3.762     | 2.050 | 2.131  | 3.913    | 3.771     | 3.981 |
| 1.0  | 2.525    | 1.106       | 3.999    | 3.855     | 2.569 | -      | 4.005    | 3.864     | 4.070 |

Nor. Load :  $P_N / P_{N \text{ max}}$ 

Ref. : Reference solutions obtained using a 16×16 element mesh of the MITC9 shell elements

Figure 6.21 shows the load-radial displacement curves at the loaded point *A* and *B*. Table 6.19 - Table 6.22 list the same deflections and Figure 6.22 shows the deformed configurations obtained using a  $6 \times 6$  element mesh of the enriched MITC3+ shell element. The enriched MITC3+ shell element shows a good performance regardless of which mesh pattern in Figure 6.10 is used.



Figure 6.22. Deformed configurations for the hemispherical shell with an 18° hole.

For the full hemispherical shell, the load applied to z-direction at point C is increased up to  $P_{NZ max} = 150000/4$ . The shell is modeled using  $3 \times 4 \times 4$  and  $3 \times 6 \times 6$  element meshes of the shell element and the reference solution is obtained by  $3 \times 8 \times 8$  element mesh of the MITC9 shell element. Figure 6.23 shows the load-radial displacement curves at the loaded points C. Numerical results are also tabulated in Table 6.23 and Table 6.24. The MITC4 with incompatible modes and enriched MITC3+ shell elements produce much better solution accuracy than the MITC3 and MITC4 shell element in this problem.



**Figure 6.23.** Load-displacement curves for the full hemispherical shell with a  $3 \times 4 \times 4$  element mesh (left) and a  $3 \times 6 \times 6$  element mesh (right).

**Table 6.23.** Normalized load-vertical displacements at the point *C* for the full hemispherical shell with  $3 \times 4 \times 4$  element meshes.

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4 | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.  |
|--------------|-------------------|--------------------|--------------------|---------------------|-------|--------|--------------------------------|---------------------------------|-------|
| 0.1          | 0.307             | 0.389              | 0.336              | 0.439               | 0.430 | 0.451  | 0.448                          | 0.453                           | 0.560 |
| 0.2          | 0.513             | 0.625              | 0.538              | 0.669               | 0.673 | 0.702  | 0.694                          | 0.702                           | 0.837 |
| 0.3          | 0.679             | 0.811              | 0.700              | 0.850               | 0.863 | 0.897  | 0.885                          | 0.896                           | 1.049 |
| 0.4          | 0.822             | 0.969              | 0.840              | 1.004               | 1.025 | 1.064  | 1.047                          | 1.061                           | 1.227 |
| 0.5          | 0.951             | 1.110              | 0.967              | 1.142               | 1.169 | 1.212  | 1.191                          | 1.207                           | 1.384 |
| 0.6          | 1.068             | 1.237              | 1.083              | 1.267               | 1.299 | 1.346  | 1.322                          | 1.339                           | 1.526 |
| 0.7          | 1.177             | 1.355              | 1.190              | 1.383               | 1.420 | 1.469  | 1.442                          | 1.461                           | 1.657 |
| 0.8          | 1.279             | 1.465              | 1.291              | 1.491               | 1.532 | 1.584  | 1.555                          | 1.575                           | 1.778 |
| 0.9          | 1.375             | 1.569              | 1.386              | 1.593               | 1.638 | 1.693  | 1.660                          | 1.682                           | 1.892 |
| 1.0          | 1.466             | 1.667              | 1.477              | 1.690               | 1.738 | 1.796  | 1.760                          | 1.783                           | 2.000 |

Nor. Load :  $P_{NZ} / P_{NZ \text{ max}}$ Ref. : Reference solutions obtained using a  $3 \times 8 \times 8$  element mesh of the MITC9 shell elements

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4 | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.  |
|--------------|-------------------|--------------------|--------------------|---------------------|-------|--------|--------------------------------|---------------------------------|-------|
| 0.1          | 0.380             | 0.449              | 0.403              | 0.465               | 0.484 | 0.498  | 0.498                          | 0.500                           | 0.560 |
| 0.2          | 0.605             | 0.695              | 0.623              | 0.709               | 0.736 | 0.756  | 0.752                          | 0.757                           | 0.837 |
| 0.3          | 0.783             | 0.887              | 0.797              | 0.899               | 0.932 | 0.956  | 0.948                          | 0.956                           | 1.049 |
| 0.4          | 0.935             | 1.051              | 0.947              | 1.060               | 1.099 | 1.126  | 1.114                          | 1.125                           | 1.227 |
| 0.5          | 1.071             | 1.195              | 1.082              | 1.204               | 1.246 | 1.276  | 1.260                          | 1.274                           | 1.384 |
| 0.6          | 1.194             | 1.327              | 1.204              | 1.335               | 1.380 | 1.413  | 1.394                          | 1.408                           | 1.526 |
| 0.7          | 1.308             | 1.448              | 1.318              | 1.455               | 1.504 | 1.538  | 1.516                          | 1.533                           | 1.657 |
| 0.8          | 1.415             | 1.561              | 1.424              | 1.567               | 1.619 | 1.655  | 1.630                          | 1.649                           | 1.778 |
| 0.9          | 1.516             | 1.667              | 1.524              | 1.673               | 1.727 | 1.765  | 1.738                          | 1.758                           | 1.892 |
| 1.0          | 1.611             | 1.768              | 1.619              | 1.773               | 1.829 | 1.869  | 1.840                          | 1.862                           | 2.000 |
|              |                   |                    |                    |                     |       |        | - ma                           |                                 |       |

**Table 6.24.** Normalized load-vertical displacements at the point *C* for the full hemispherical shell with  $3 \times 6 \times 6$  element meshes.

Nor. Load :  $P_{NZ} / P_{NZ \max}$ 

Ref. : Reference solutions obtained using a  $3 \times 8 \times 8$  element mesh of the MITC9 shell elements





**Figure 6.24.** Load-displacement curves for the Scordelis-Lo roof with (a) the uniform meshes and (b) the distorted meshes.

Scordelis-Lo Roof problem is also considered in nonlinear range. The same geometry and material properties that is used in the linear analysis are adopted. The load applied to the shell increases up to  $f_{Nz} = 50 \times 90$  per unit area. The shell is modeled using  $14 \times 14$  element meshes of the shell elements and  $24 \times 24$  element meshes of the MITC9 shell element is used to obtain the reference solutions. Figure 6.24 shows the calculated load-displacement curves when the uniform and distorted mesh patterns in Figure 6.10. Numerical results are also presented in Table 6.25-Table 6.28. Figure 6.24. The deformed configurations calculated in the enriched MITC3+ shell element are depicted in Figure 6.25. The enriched MITC3+ shell element exhibits the best performance, even though the distorted meshes are used.

| Nor  | MITC2    | MITC2     | MITC2                | MITC2     |        |        | Enriched | Enriched  |        |
|------|----------|-----------|----------------------|-----------|--------|--------|----------|-----------|--------|
| NOF. | MITCS    | MIICS     | MITC3+               | MITC3+    | MITC4  | MITC4* | MITC3+   | MITC3+    | Ref.   |
| load | (mesh I) | (mesh II) | (mesh I)             | (mesh II) |        |        | (mesh I) | (mesh II) |        |
| 0.1  | -0.024   | -0.024    | -0.024               | -0.024    | -0.024 | -0.025 | -0.024   | -0.024    | -0.025 |
| 0.2  | -0.028   | -0.029    | -0.027               | -0.028    | -0.028 | -0.028 | -0.027   | -0.028    | -0.028 |
| 0.3  | -0.022   | -0.023    | -0.020               | -0.022    | -0.021 | -0.021 | -0.020   | -0.021    | -0.021 |
| 0.4  | 0.004    | 0.005     | 0.029                | 0.023     | 0.031  | 0.034  | 0.047    | 0.038     | 0.068  |
| 0.5  | 0.110    | 0.101     | 0.164                | 0.152     | 0.161  | 0.167  | 0.214    | 0.192     | 0.250  |
| 0.6  | 0.248    | 0.213     | 0.330                | 0.305     | 0.319  | 0.330  | 0.420    | 0.376     | 0.483  |
| 0.7  | 0.415    | 0.343     | 0.513                | 0.475     | 0.504  | 0.523  | 0.641    | 0.577     | 0.732  |
| 0.8  | 0.594    | 0.482     | 0.696                | 0.648     | 0.700  | 0.726  | 0.848    | 0.776     | 0.959  |
| 0.9  | 0.768    | 0.624     | 0.861                | 0.817     | 0.893  | 0.924  | 1.029    | 0.960     | 1.152  |
| 1.0  | 0.929    | 0.763     | 1.006                | 0.971     | 1.070  | 1.103  | 1.185    | 1.123     | 1.314  |
|      |          |           | at the second second |           |        |        |          |           |        |

**Table 6.25.** Normalized load-horizontal displacements at the point A for the Scordelis-Lo roof with the uniform meshes. The results are obtained using the  $14 \times 14$  element mesh of the shell elements.

Nor. Load :  $f_{NZ} / f_{NZ \text{ max}}$ 

Ref. : Reference solutions obtained using a 24×24 element mesh of the MITC9 shell elements

**Table 6.26.** Normalized load-vertical displacements at the point A for the Scordelis-Lo roof with the uniform meshes. The results are obtained using the  $14 \times 14$  element mesh of the shell elements.

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.   |
|--------------|-------------------|--------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|--------|
| 0.1          | -0.810            | -0.798             | -0.813             | -0.802              | -0.836 | -0.844 | -0.844                         | -0.835                          | -0.845 |
| 0.2          | -1.245            | -1.228             | -1.251             | -1.234              | -1.277 | -1.287 | -1.291                         | -1.276                          | -1.291 |
| 0.3          | -1.599            | -1.581             | -1.612             | -1.590              | -1.633 | -1.643 | -1.653                         | -1.634                          | -1.655 |
| 0.4          | -1.992            | -1.987             | -2.161             | -2.119              | -2.218 | -2.245 | -2.323                         | -2.259                          | -2.460 |
| 0.5          | -2.736            | -2.643             | -2.990             | -2.911              | -3.011 | -3.047 | -3.241                         | -3.120                          | -3.387 |
| 0.6          | -3.426            | -3.205             | -3.713             | -3.582              | -3.700 | -3.747 | -4.029                         | -3.834                          | -4.215 |
| 0.7          | -4.064            | -3.716             | -4.342             | -4.157              | -4.327 | -4.384 | -4.689                         | -4.436                          | -4.902 |
| 0.8          | -4.624            | -4.173             | -4.866             | -4.649              | -4.871 | -4.935 | -5.207                         | -4.929                          | -5.433 |
| 0.9          | -5.093            | -4.575             | -5.282             | -5.062              | -5.330 | -5.393 | -5.612                         | -5.326                          | -5.840 |
| 1.0          | -5.482            | -4.923             | -5.624             | -5.396              | -5.706 | -5.765 | -5.939                         | -5.643                          | -6.163 |

Nor. Load :  $f_{NZ} / f_{NZ \text{ max}}$ 

Ref. : Reference solutions obtained using a  $24 \times 24$  element mesh of the MITC9 shell elements

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.   |
|--------------|-------------------|--------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|--------|
| 0.1          | -0.025            | -0.023             | -0.025             | -0.023              | -0.024 | -0.025 | -0.025                         | -0.026                          | -0.025 |
| 0.2          | -0.030            | -0.032             | -0.029             | -0.030              | -0.029 | -0.029 | -0.029                         | -0.032                          | -0.028 |
| 0.3          | -0.024            | -0.032             | -0.023             | -0.028              | -0.024 | -0.023 | -0.022                         | -0.028                          | -0.021 |
| 0.4          | -0.004            | -0.020             | 0.014              | -0.012              | 0.001  | 0.007  | 0.026                          | -0.009                          | 0.068  |
| 0.5          | 0.069             | -0.004             | 0.125              | 0.042               | 0.086  | 0.099  | 0.174                          | 0.078                           | 0.250  |
| 0.6          | 0.165             | 0.020              | 0.257              | 0.114               | 0.168  | 0.187  | 0.361                          | 0.179                           | 0.483  |
| 0.7          | 0.282             | 0.054              | 0.453              | 0.198               | 0.252  | 0.280  | 0.579                          | 0.285                           | 0.732  |
| 0.8          | 0.423             | 0.094              | 0.627              | 0.287               | 0.342  | 0.379  | 0.773                          | 0.392                           | 0.959  |
| 0.9          | 0.571             | 0.136              | 0.782              | 0.373               | 0.438  | 0.483  | 0.943                          | 0.497                           | 1.152  |
| 1.0          | 0.715             | 0.178              | 0.919              | 0.456               | 0.537  | 0.589  | 1.090                          | 0.596                           | 1.314  |

**Table 6.27.** Normalized load-horizontal displacements at the point *A* for the Scordelis-Lo roof with the distorted meshes. The results are obtained using the  $14 \times 14$  element mesh of the shell elements.

Nor. Load :  $f_{NZ} / f_{NZ \text{ max}}$ 

Ref. : Reference solutions obtained using a 24×24 element mesh of the MITC9 shell elements

**Table 6.28.** Normalized load-vertical displacements at the point A for the Scordelis-Lo roof with the distorted meshes. The results are obtained using the  $14 \times 14$  element mesh of the shell elements.

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.   |
|--------------|-------------------|--------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|--------|
| 0.1          | -0.785            | -0.636             | -0.789             | -0.671              | -0.803 | -0.838 | -0.828                         | -0.814                          | -0.845 |
| 0.2          | -1.213            | -1.002             | -1.222             | -1.048              | -1.230 | -1.276 | -1.270                         | -1.237                          | -1.291 |
| 0.3          | -1.563            | -1.313             | -1.582             | -1.379              | -1.577 | -1.627 | -1.629                         | -1.577                          | -1.655 |
| 0.4          | -1.916            | -1.607             | -2.048             | -1.698              | -1.970 | -2.049 | -2.175                         | -1.918                          | -2.460 |
| 0.5          | -2.494            | -1.859             | -2.789             | -2.181              | -2.582 | -2.684 | -3.060                         | -2.529                          | -3.387 |
| 0.6          | -3.054            | -2.099             | -3.416             | -2.627              | -3.038 | -3.150 | -3.851                         | -3.017                          | -4.215 |
| 0.7          | -3.592            | -2.356             | -4.180             | -3.034              | -3.429 | -3.554 | -4.526                         | -3.421                          | -4.902 |
| 0.8          | -4.115            | -2.601             | -4.682             | -3.384              | -3.786 | -3.920 | -5.021                         | -3.762                          | -5.433 |
| 0.9          | -4.575            | -2.824             | -5.074             | -3.676              | -4.114 | -4.252 | -5.401                         | -4.051                          | -5.840 |
| 1.0          | -4.965            | -3.028             | -5.391             | -3.925              | -4.412 | -4.551 | -5.706                         | -4.297                          | -6.163 |

Nor. Load :  $f_{NZ} / f_{NZ \text{ max}}$ 

Ref. : Reference solutions obtained using a  $24 \times 24$  element mesh of the MITC9 shell elements





**Figure 6.26.** Slit annular plate subjected to lifting line force. (a) Problem description. (b) Mesh patterns used for the MITC3, MITC3+ and enriched MITC3+ shell elements.

A slit annular plate, as shown in **Figure 6.26**(a) is considered. This example was suggested by Başar and Ding [150] and has been widely considered [139, 140, 151, 156]. The geometry and elastic material properties are given by  $r_i = 6$ ,  $r_e = 10$ , h = 0.03,  $E = 21 \times 10^6$  and v = 0. The transverse shear force  $P_{\text{max}} = 3.2$  is incrementally applied at one end of the slit while the other end of the slit is fully clamped. The plate undergoes large displacements and large rotations. This structure is modeled using a  $6 \times 30$  element mesh of the shell element. For triangular shell element two different types of mesh patterns are used, see in **Figure 6.26**(b). The reference solutions are obtained using a  $12 \times 60$  element mesh of the MITC9 shell element. The load-displacement curves at two different points, *A* and *B*, are depicted in **Figure 6.27**. The displacements calculated are also tabulated in **Table 6.29** and **Table 6.30**. The deformed configurations calculated el using the MITC3, MITC4, MITC3+ and enriched MITC3+shell elements are shown in **Figure 6.28**. As seen, the MITC3 shell element displays too stiff a behavior. However, the results using the enriched MITC3+ shell element are in agreement with those using the MITC4 shell element with incompatible modes and reasonably close to the reference solutions.



Figure 6.27. Load-displacement curves for the slit annular plate subjected to lifting line force.

**Table 6.29.** Normalized load-vertical displacements at the point A for the slit annular plate subjected to lift line force when the  $6 \times 30$  element mesh is used.

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I) | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.   |
|--------------|-------------------|--------------------|--------------------|---------------------|--------|--------|--------------------------------|---------------------------------|--------|
| 0.1          | 4.706             | 4.743              | 5.630              | 5.630               | 5.764  | 5.839  | 5.797                          | 5.797                           | 5.862  |
| 0.2          | 7.467             | 7.548              | 8.858              | 8.858               | 9.009  | 9.089  | 9.023                          | 9.024                           | 9.143  |
| 0.3          | 9.268             | 9.347              | 10.841             | 10.842              | 11.013 | 11.107 | 11.023                         | 11.025                          | 11.196 |
| 0.4          | 10.540            | 10.573             | 12.196             | 12.197              | 12.399 | 12.518 | 12.419                         | 12.421                          | 12.640 |
| 0.5          | 11.504            | 11.464             | 13.201             | 13.200              | 13.439 | 13.587 | 13.476                         | 13.477                          | 13.742 |
| 0.6          | 12.275            | 12.148             | 13.992             | 13.990              | 14.273 | 14.452 | 14.322                         | 14.325                          | 14.643 |
| 0.7          | 12.915            | 12.698             | 14.649             | 14.653              | 14.995 | 15.198 | 15.038                         | 15.044                          | 15.435 |
| 0.8          | 13.462            | 13.157             | 15.296             | 15.274              | 15.650 | 15.873 | 15.694                         | 15.692                          | 16.165 |
| 0.9          | 13.945            | 13.550             | 15.907             | 15.841              | 16.249 | 16.493 | 16.322                         | 16.296                          | 16.846 |
| 1.0          | 14.387            | 13.895             | 16.441             | 16.414              | 16.813 | 17.073 | 16.909                         | 16.865                          | 17.484 |

Nor. Load :  $f_{NZ} / f_{NZ \max}$ 

Ref. : Reference solutions obtained using a  $12 \times 60$  element mesh of the MITC9 shell elements

| Nor.<br>load | MITC3<br>(mesh I) | MITC3<br>(mesh II) | MITC3+<br>(mesh I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MITC3+<br>(mesh II) | MITC4  | MITC4* | Enriched<br>MITC3+<br>(mesh I) | Enriched<br>MITC3+<br>(mesh II) | Ref.   |
|--------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|--------|--------------------------------|---------------------------------|--------|
| 0.1          | -0.731            | -0.956             | -1.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.078              | -1.052 | -1.037 | -1.039                         | -1.036                          | -1.019 |
| 0.2          | -1.042            | -1.569             | -1.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.465              | -1.386 | -1.341 | -1.374                         | -1.370                          | -1.304 |
| 0.3          | -1.090            | -1.924             | -1.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.423              | -1.278 | -1.200 | -1.265                         | -1.261                          | -1.139 |
| 0.4          | -1.006            | -2.119             | -1.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.241              | -1.026 | -0.906 | -0.997                         | -0.996                          | -0.822 |
| 0.5          | -0.863            | -2.215             | -1.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.020              | -0.737 | -0.573 | -0.688                         | -0.688                          | -0.466 |
| 0.6          | -0.697            | -2.247             | -0.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.790              | -0.431 | -0.225 | -0.372                         | -0.370                          | -0.087 |
| 0.7          | -0.522            | -2.238             | -0.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.539              | -0.082 | 0.155  | -0.043                         | -0.037                          | 0.339  |
| 0.8          | -0.341            | -2.200             | -0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.190              | 0.316  | 0.574  | 0.347                          | 0.339                           | 0.821  |
| 0.9          | -0.151            | -2.145             | 0.301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.188               | 0.738  | 1.019  | 0.813                          | 0.763                           | 1.338  |
| 1.0          | 0.069             | -2.077             | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.703               | 1.204  | 1.491  | 1.299                          | 1.219                           | 1.871  |
|              |                   |                    | and the second s |                     |        |        |                                |                                 |        |

**Table 6.30.** Normalized load-vertical displacements at the point *C* for the slit annular plate subjected to lift line force when the  $6 \times 30$  element mesh is used.

Nor. Load :  $f_{NZ} / f_{NZ \max}$ 

Ref. : Reference solutions obtained using a  $12 \times 60$  element mesh of the MITC9 shell elements



Figure 6.28. Deformed configuration for the slit annular plate subjected to lifting line force.

# Chapter 7. Conclusions and Future Works

### 7.1 Conclusions

This thesis focused on a general procedure to improve solutions of the classical shell finite element using the partition of unity concept. The proposed shell elements are a direct extension of the traditional finite element formulation for the analyses of linear and nonlinear elastic shell structures. The partition of unity based shell elements provide smoother solutions and good convergence, and can be used with relatively coarse meshes. It has been demonstrated that the proposed elements are very effective and reliable both in linear and nonlinear analyses.

First, a partition of unity based 3-node triangular shell finite element was presented. The shell element was based on the MITC method to alleviate transverse shear locking, and referred to as the enriched MITC3 shell element. The enriched MITC3 shell finite element is obtained by applying linear displacement interpolation covers to the standard 3-node shell element, and using the MITC procedure. Good convergence behavior in the analysis of various shell problems has been seen, even when distorted meshes were used. The fact that, in the solutions considered, the enriched 3-node element sometimes performed significantly better than the MITC4 and MITC6 shell elements when distorted meshes were used is particularly noteworthy. The effectiveness of using the enrichment scheme only locally was also illustrated by using the cover interpolation functions only in critical areas of an analysis domain. It is concluded that cover interpolations and the MITC method are promising schemes for enriching shell element behaviors.

Second, a partition of unity based 4-node quadrilateral shell finite element was also proposed and called the enriched MITC4 shell element. To reduce the transverse shear locking, the enriched MITC4 shell element adopts the MITC4 method for the linear displacements and applies the MITC9 procedure for additional high order coefficients. Unlike the enriched MITC3 shell element, a special treatment constraining the additional unknown coefficients around the boundary nodes of the domain is applied to avoid the linear dependence problem. Good convergence behavior in the analysis of various benchmark shell problems has been seen, even when distorted meshes were used.

Third, the formulation of the MITC3+ shell element was reviewed and extended to geometric nonlinear analysis. The total Lagrangian formulation was employed allowing for large displacements and large rotations. The nonlinear formulation is based on the same discretization assumptions that are employed in the linear formulation of the element. The nonlinear performance of the MITC3+ shell element was numerically investigated by solving several benchmark problems. In the tests considered, the predictive capability of the MITC3+ shell element was seen to be much better than of the MITC3 shell element. Indeed, the MITC3+ element gave results that were practically as accurate as the MITC4 shell element. Also, considering the excellent behavior of the MITC3+ shell element in linear analysis, it is concluded that the element is a very attractive element for general shell analyses.

Finally, a triangular shell finite element with improved membrane behaviors is proposed. The partition of unity approximation was only applied into the membrane part of the MITC3+ shell element to enhance membrane behaviors. The key theoretical and numerical aspects of this element were discussed and the formulation of the shell was extended to geometric nonlinear analysis. A number of benchmark problems were studied to evaluate its performances in linear and geometric nonlinear ranges. The results confirm that the present method can provide accurate solutions for membrane dominant problems. It is concluded that the partition of unity approximation is an effective remedy for improving membrane behaviors in the triangular shell element.

# 7.2 Future Works

Based on the observed good behavior of the partition of unity based shell finite elements, it is expected that the partition of unity approximation will likely also be effective in other structural elements such as flat shell and beam elements. It would be valuable to mathematically analyze the method, to further test the scheme, and to develop the formulation for large strain solutions of shell structures [175] and for solving problems containing very high stress gradients, like shell problems containing cracks [40, 157, 158]. In all of these developments, the ultimate aim should probably be to establish automatic procedures for improving stress solutions [176-181].

NSTITUTE OF SCIENC

As an extension of this work, we recommend the following future works.

In Chapter 3, 4 and 6, performance was obtained through a complete set of benchmark problems and its fundamental information. Based on the detailed solution, the free vibration analysis of shell problems needs to be proposed and their solution needs to be provided. Also, using a posteriori error estimators [177-181], element size and polynomial order can be effectively controlled around the area where stress concentration is expected.

SINCE 1971

In Chapter 5, nonlinear extension of the MITC3+ shell element would be important developments in the specific topics. However, there are of course many more areas of research developments considering the general elasto-plastic analysis of shells. These include the large strain analysis of shells, the analysis of composite shells, the modeling of contact conditions, and the analysis of shells in multi-physics conditions.

# **Appendix A.** The Finite Rotations

In this Appendix, the mathematical formulation of the finite rotations is reviewed. This explanations about the finite rotation are extracted from Reference [159]. The finite rotation is useful for the finite shell element in geometrical nonlinear analysis. One difficulty for studying the finite rotation is that different normalization has been used by different research groups.

## A.1 Spatial Rotations

.1 Spatial Rotations The two-dimensional plane rotations can be dealt with in finite element analysis. A rotation in the plane  $(x_1, x_2)$  is defined by just a scalar with the rotation angle  $\theta$  about the perpendicular axis. Plane rotations commute  $\theta_1 + \theta_2 = \theta_2 + \theta_1$  because the rotation angle  $\theta$  is numbers. However the study of spatial finite three dimensional rotation is more difficult because they do not obey the laws of vector calculus. Within the framework of matrix algebra, finite rotations can be represented in two ways; **R** is  $3 \times 3$  orthogonal matrices called rotation tensor or rotators and  $\Omega$  is real skew-symmetric matrices called spin tensor or spinors.

# **한국과학기술**원

The spin tensor is important in theory and modeling since the matrix entries are closely related to the ingredients of Euler's theorem. The rotation tensor is convenient for numerical analysis and related to the polar factorization of a transformation matrix. The two representations are connected as shown in Figure A.1(a), which also includes the axial and skew vector introduced below. Of the  $\Omega \to R$  links, the Rodrigues-Cayley formulation is historically the first, see reference [182].

The spin tensor  $\Omega$  which is a 3×3 skew-symmetric matrix and it is defined by three scalar parameters. These three numbers can be arranged as components of an axial vector  $\omega$ . Although the axial vector  $\omega$ looks like a 3-vector, it violates certain properties of classical vectors such as the composition rule. Therefore the term pseudovector is sometimes used for  $\omega$ . This Appendix is aimed to convey that finite threedimensional rotations can appear in alternative mathematical representations, as Figure A.1(a).



**Figure A.1.** (a) Representations of finite spatial rotations. (b) The rotation angle is positive obeying the righthand screw rule about the rotation axis.

**SINCE 1971** 

## A.2 Spin Tensor $\Omega$

A three dimensional rotation by an angle  $\theta$  about an axis of rotation  $\omega$  is represented by **Figure A.1**(b). The origin of coordinates O is placed on  $\omega$ . The rotation axis consists of three directors  $\omega_1$ ,  $\omega_2$ and  $\omega_3$ . At least one of three directors should be nonzero. These components may be scaled by an nonzero factor  $\gamma$  through which the vector can be normalized in various ways. The rotation takes an arbitrary point  $P(\mathbf{x})$ , located by its position vector  $\mathbf{x}$ , into  $Q(\mathbf{x},\theta)$ , located by its position vector  $\mathbf{x}'$ . The center of rotation C is defined by projecting P on the rotation axis. The plane of rotation CPQ is normal to that axis at C. The radius of rotation is vector  $\mathbf{r}$  of magnitude r from C to P. As shown in **Figure A.1**(b) the distance between P and Q is  $2r\sin(\theta/2)$ . The positive sense of  $\theta$  obeys the RHS screw rule: positive counterclockwise if observed from the tip of the rotation axis. The angle shown in **Figure A.1**(b) is positive.

## A.3 Spin Tensor and Axial Vector

With the three directors  $\omega_1$ ,  $\omega_2$ , and  $\omega_3$  of the axis  $\omega$ , the 3×3 skew-symmetric spin tensor  $\Omega$  can be represented by

$$\mathbf{\Omega} = \operatorname{Spin}(\mathbf{\omega}) = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} = -\mathbf{\Omega}^{\mathrm{T}} .$$
(8.1)

The cross product of  $\boldsymbol{\omega}$  and  $\mathbf{v}$  is equivalent as

$$\boldsymbol{\omega} \times \mathbf{v} = \boldsymbol{\Omega} \mathbf{v} = \operatorname{Spin}(\boldsymbol{\omega}) \mathbf{v} = -\operatorname{Spin}(\mathbf{v}) \boldsymbol{\omega} = -\mathbf{v} \times \boldsymbol{\omega} \,. \tag{8.2}$$

In particular  $\mathbf{\Omega}\boldsymbol{\omega} = 0$ , and  $\mathbf{v}^{T}\mathbf{\Omega}\mathbf{v} = 0$ , as may be directly verified. The operation converse to Equation (8.1) extracts the 3-vector  $\boldsymbol{\omega}$ , called axial vector or pseudovector, from a given spin tensor

$$\boldsymbol{\omega} = \operatorname{Axial}(\boldsymbol{\Omega}) = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 \end{bmatrix}^{\mathrm{T}}.$$
(8.3)

The length of the vector  $\omega$  is calculated by

$$\omega = |\omega| = +\sqrt{\omega_1^2 + \omega_2^2 + \omega_3^2} .$$
(8.4)

## A.4 From Spin Tensor to Rotation Tensor

Figure A.1 illustrates that a rotation tensor is a linear operator that maps an arbitrary point  $P(\mathbf{x})$  to  $Q(\mathbf{x}')$  given the rotation axis w and the angle  $\theta$ . The rotator representations in the form of  $3 \times 3$  rotation matrices **R** are obtained by

$$\mathbf{x}' = \mathbf{R}\mathbf{x} , \quad \mathbf{x} = \mathbf{R}^{\mathrm{T}}\mathbf{x}' . \tag{8.5}$$

The rotation matrix is proper orthogonal which satisfies  $\mathbf{R}^{T}\mathbf{R} = \mathbf{I}$  and  $\det(\mathbf{R}) = 1$ . It must reduce to  $\mathbf{I}$  if the rotation vanishes.

## A.5 Rotator Parameterizations

The rotation tensor  $\mathbf{R}$  has the trace property. Hence the rotation tensor is represented by

$$\operatorname{trace}(\mathbf{R}) = 1 + 2\cos\theta \,. \tag{8.6}$$

To construct the rotation tensor **R** from rotation data, the rotation tensor is assumed to be analytic in  $\Omega$ . Hence it must have the Taylor expansion as follows:

$$\mathbf{R} = \mathbf{I} + c_1 \mathbf{\Omega} + c_2 \mathbf{\Omega}^2 + c_3 \mathbf{\Omega}^3 + \cdots,$$
(8.7)

where the  $c_i$  must vanish when the angle  $\theta$  is equal to zero. By the Cayley-Hamilton theorem,  $\Omega$  satis-

fies its own characteristic equation,

$$\Omega^3 = -\omega^2 \Omega$$
,  $\Omega^4 = -\omega^2 \Omega^2$ , and  $\Omega^n = -\omega^2 \Omega^{n-2}$ ,  $n \ge 3$ . (8.8)

Hence if n = 3, 5,... the odd powers  $\Omega^n$  are skew-symmetric with distinct pure imaginary eigenvalues, whereas if n = 2, 4,..., then even power  $\Omega^n$  are symmetric with repeated real eigenvalues. Due to the Cayley-Hamilton theorem, all power of order 3 or higher can be eliminated. Therefore rotation tensor **R** must be a linear function of **I**,  $\Omega$  and  $\Omega^2$ . Hence the rotation tensor is rewritten by

$$\mathbf{R} = \mathbf{I} + \alpha (\gamma \mathbf{\Omega}) + \beta (\gamma \mathbf{\Omega})^2, \qquad (8.9)$$

where  $\gamma$  is the normalization factor of the spin tensor and  $\alpha$  and  $\beta$  are scalar functions of  $\theta$  and of invariants of  $\Omega$  or  $\omega$ . Since the only invariant of the latter is  $\omega$ , it is anticipated that  $\alpha = \alpha(\theta, \omega)$  and  $\beta = \beta(\theta, \omega)$ , both vanishing when the angle  $\theta$  becomes zero. Approach to determine those coefficients for  $\gamma = 1$  is discussed in the next sections. **Table A.1** lists several representations of a rotator in terms of the scaled  $\Omega$ .

| Parameterization   | Ŷ                                 | α                           | β                                    | Spin tensor                                  | Rotation tensor <b>R</b>                                                                                        |
|--------------------|-----------------------------------|-----------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| None (unscaled)    | <sup>y</sup>                      | $\frac{\sin\theta}{\omega}$ | $\frac{2\sin^2(\theta/2)}{\omega^2}$ | Ω                                            | $\mathbf{I} + \frac{\sin\theta}{\omega} \mathbf{\Omega} + \frac{2\sin^2(\theta/2)}{\omega^2} \mathbf{\Omega}^2$ |
| Unit axial-vector  | $\frac{1}{\omega}$                | sin $	heta$                 | $2\sin^2(\theta/2)$                  | $\mathbf{N} = \gamma \mathbf{\Omega}$        | $\mathbf{I} + \sin\theta \mathbf{N} + 2\sin^2(\theta/2)\mathbf{N}^2$                                            |
| Rodrigues-Cayley   | $\frac{\tan(\theta / 2)}{\omega}$ | $2\cos^2(\theta/2)$         | $2\cos^2(\theta/2)$                  | $\Sigma = \gamma \Omega$                     | $\mathbf{I} + 2\cos^2(\theta/2)(\boldsymbol{\Sigma} + \boldsymbol{\Sigma}^2)$                                   |
| Fraeijs de Veubeke | $\frac{\sin(\theta/2)}{\omega}$   | $2\cos(\theta/2)$           | 2                                    | $\mathbf{\Omega}_p = \gamma \mathbf{\Omega}$ | $\mathbf{I} + 2\cos^2(\theta/2)\mathbf{\Omega}_p + 2\mathbf{\Omega}_p^2$                                        |
| Exponential map    | $\frac{\theta}{\omega}$           | $\frac{\sin\theta}{\theta}$ | $\frac{2\sin^2(\theta/2)}{\theta^2}$ | $\Theta = \gamma \Omega$                     | $\mathbf{I} + \frac{\sin\theta}{\theta}\mathbf{\Theta} + \frac{2\sin^2(\theta/2)}{\theta^2}\mathbf{\Theta}^2$   |

Table A.1. Rotation tensor with several spin tensor normalizations.

#### A.6 Rotation Tensor from Algebra

It is possible to find  $\alpha$  and  $\beta$  for  $\gamma = 1$  directly from algebraic conditions. Taking the trace of the rotation tensor in Equation (8.9) for  $\gamma = 1$  and applying the trace property in Equation (8.6) require

$$3-2\beta\omega^2 = 1+2\cos\theta$$
, with  $\beta = \frac{1-\cos\theta}{\omega^2} = \frac{2\sin^2(\theta/2)}{\omega^2}$ . (8.10)

Using the orthogonal property of the rotation tensor,

$$\mathbf{I} = \mathbf{R}^{\mathrm{T}} \mathbf{R} = (\mathbf{I} - \alpha \mathbf{\Omega} + \beta \mathbf{\Omega}^{2})(\mathbf{I} + \alpha \mathbf{\Omega} + \beta \mathbf{\Omega}^{2}), \qquad (8.11)$$

$$\mathbf{I} = \mathbf{I} + (2\beta - \alpha^2)\mathbf{\Omega}^2 + \beta\mathbf{\Omega}^4 = \mathbf{I} + (2\beta - \alpha^2 - \beta^2\omega^2)\mathbf{\Omega}^2 .$$
(8.12)

we can obtain the following condition,

$$2\beta - \alpha^2 - \beta^2 \omega^2 = 0$$
 with  $\alpha = \frac{\sin \theta}{\omega}$ . (8.13)

Finally, the rotation tensor can be represented by, see Table A.1,

$$\mathbf{R} = \mathbf{I} + \frac{\sin\theta}{\omega} \mathbf{\Omega} + \frac{1 - \cos\theta}{\omega^2} \mathbf{\Omega}^2 = \mathbf{I} + \frac{\sin\theta}{\omega} \mathbf{\Omega} + \frac{2\sin^2(\theta/2)}{\omega^2} \mathbf{\Omega}^2.$$
(8.14)

From a numerical standpoint the sine-squared form should be preferred to avoid the cancellation in computing  $1 - \cos \theta$  for small  $\theta$ . Replacing the components of  $\Omega$  and  $\Omega^2$  gives the explicit rotator form 1E Ur So.

~11

$$\mathbf{R} = \frac{1}{\omega^2} = \begin{bmatrix} \omega_1^2 + (\omega_2^2 + \omega_3^2)\cos\theta & 2\omega_1\omega_2\sin^2(\theta/2) - \omega_3\omega\sin\theta & 2\omega_1\omega_3\sin^2(\theta/2) + \omega_2\omega\sin\theta \\ 2\omega_1\omega_2\sin^2(\theta/2) + \omega_3\omega\sin\theta & \omega_2^2 + (\omega_3^2 + \omega_1^2)\cos\theta & 2\omega_2\omega_3\sin^2(\theta/2) - \omega_1\omega\sin\theta \\ 2\omega_1\omega_3\sin^2(\theta/2) - \omega_2\omega\sin\theta & 2\omega_2\omega_3\sin^2(\theta/2) + \omega_1\omega\sin\theta & \omega_3^2 + (\omega_1^2 + \omega_2^2)\cos\theta \end{bmatrix}.$$
(8.15)

If  $\gamma \neq 1$  but nonzero, the results are  $\alpha = \sin \theta / (\gamma \omega)$  and  $\beta = (1 - \cos \theta) / (\gamma^2 \omega^2)$ . It follows that Equation ECHN (8.14) and (8.15) are independent of  $\gamma$ , as was to be expected.



# Appendix B. Path Following Techniques

The load and displacement control methods fail to find the complete equilibrium path presenting limit points with 'snap-throughs' and 'snap-backs' behaviors. The arc-length control method is aimed to handle these critical points. Hence the finite element solution with this method can draw the entire load-displacement curves. The general algorithm of this approach is given in this section.

#### **B.1** Limit Points Analysis

In relation to structural analysis, Riks [183] and Wempner [184] published the first attempt in this respect, using a linear constraint equation such that the iterative change was normal to the tangent. Later, several scholars modified the method by the means of altering the constraint equation, and therefore, the way of the corrector steps of the iterative procedure was developed. For example, Ramm [185] used a different linear constraint such that iterative change was normal to the secant change. The previous two methods were the first versions of the linearized arc-length method. At the same time, Crisfield [186] proposed the spherical arclength method which uses a quadratic constraint or the Euclidean norm of the incremental displacement to a fixed quantity. To avoid the problems that arise in choice of a proper root, as Crisfield method required, a consistently linearized version of arc-length method using the same quadratic constraint was proposed by Schweizerhof and Wriggers [187].

The equilibrium equation in term of the residuum  $\mathbf{r}$  is given by  $\mathbf{r}(\mathbf{d}, \lambda) = \mathbf{q}_i(\mathbf{d}) - \lambda \mathbf{q}_e = 0$ , (9.1)

where **d** is the displacement vector,  $\lambda$  is the scalar and load level parameter,  $\mathbf{q}_i$  is the internal force vector which is function of the nodal displacements, and  $\mathbf{q}_e$  is the external load vector. The additional constraint is added to complete the set of equations. This constraint equation is the arc length *s* which is defined by

$$s = \int ds \tag{9.2}$$

with

$$ds = \sqrt{d\mathbf{d}^{\mathrm{T}}d\mathbf{d} + d\lambda^{2}\psi^{2}\mathbf{q}_{e}^{\mathrm{T}}\mathbf{q}_{e}} .$$
(9.3)

The aim of the arc-length method is to find the intersection of a given arc length s with the equilibrium equation as follows:

$$\mathbf{r}(s) = \mathbf{q}_i(\mathbf{d}(s)) - \lambda(s)\mathbf{q}_e = 0.$$
(9.4)

To solve Equation (9.4), a predictor-corrector scheme is used. Initially, the differential form of (9.3) can be replaced with an incremental form, such that

$$a^{i} = (\Delta \mathbf{d}^{i})^{\mathrm{T}} \Delta \mathbf{d}^{i} + (\Delta \lambda^{i})^{2} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e} - \Delta l^{2} = 0, \qquad (9.5)$$

where  $\Delta l$  is the incremental length which is the constant radius of the desired intersection with the equilibrium path,  $\psi$  is the scaling parameter to combine different dimensions for the load and displacement terms. The vector  $\Delta \mathbf{d}$  and the scalar  $\Delta \lambda$  are incrementals and are related back to the last converged equilibrium state. Meanwhile  $\delta \mathbf{d}$  and  $\delta \lambda$  are the iterative displacement vector and load level respectively. These are associated to the previous iteration step that, in most cases, is not an equilibrium state.

The distinguished feature of the arc-length method is that the load level  $\lambda$  is also a parameter to be determined. Therefore, the total unknowns are n+1; n from the displacement variables of vector **d** and the one of the load parameter  $\lambda$ . To solve for these, equation (9.1) gives a total of n equilibrium equations, while equation (9.5) gives one constraint equation.

These n+1 equations can be solved by iteratively applying the Newton-Raphson method to (9.1) and (9.5). This idea was first proposed by Riks [183, 188] and Wempner [184], though with a different constraint equation.

A truncated Taylor series of (9.1) and (9.5) respectively yields

$$\mathbf{r}^{i+1} = \mathbf{r}^{i} + \frac{\partial \mathbf{r}}{\partial \mathbf{d}} \delta \mathbf{d}^{i} + \frac{\partial \mathbf{r}}{\partial \lambda} \delta \lambda^{i} = \mathbf{r}^{i} + \mathbf{K}_{i} \delta \mathbf{d}^{i} + \mathbf{q}_{e} \delta \lambda^{i} = 0$$
(9.6)

and

$$a^{i+1} = a^{i} + \frac{\partial a}{\partial \mathbf{d}} \delta \mathbf{d}^{i} + \frac{\partial a}{\partial \lambda} \delta \lambda^{i} = a^{i} + 2(\Delta \mathbf{d}^{i})^{\mathrm{T}} \delta \mathbf{d}^{i} + 2\Delta \lambda^{i} \delta \lambda^{i} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e} = 0, \qquad (9.7)$$

where  $\mathbf{K}_{t}$  is the tangent stiffness matrix. The other terms have been already defined. Equations (9.6) and (9.7) can be combined in a different fashion

$$\begin{bmatrix} \delta \mathbf{d}^{i} \\ \delta \lambda^{i} \end{bmatrix} = -\begin{bmatrix} \mathbf{K}_{i} & -\mathbf{q}_{e} \\ 2(\Delta \mathbf{d}^{i})^{\mathrm{T}} & 2\Delta \lambda^{i} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{r}^{i} \\ a^{i} \end{bmatrix}.$$
(9.8)

At this point, there are different ways to obtain the solution of (9.8). Two different possibilities are given next.



Figure B.1. (a) The linearized arc-length method. (b) The spherical arc-length method.

B.1 Linearized Arc-Length Method

The simplest way is to solve Equation (9.8) directly [187]. One may first find an expression for  $\delta \mathbf{d}$  and then replace it into  $\delta \lambda$ . Consequently, from equation (9.6),  $\delta \mathbf{d}$  can be given by

$$\delta \mathbf{d}^{i} = -\mathbf{K}_{t}^{-1} \mathbf{r}^{i} + \delta \lambda^{i} \mathbf{K}_{t}^{-1} \mathbf{q}_{e} \,. \tag{9.9}$$

Equation (9.9) is exactly for displacement control. Therefore by means of the two iterative displacement vectors  $\delta \mathbf{d}$  and  $\delta \mathbf{d}_t$ , equation (9.9) can be rewritten as

$$\delta \mathbf{d}^{i} = \delta \overline{\mathbf{d}}^{i} + \delta \lambda^{i} \delta \mathbf{d}^{i}_{t}$$
(9.10)

with

$$\delta \overline{\mathbf{d}}^i = -\mathbf{K}_t^{-1} \mathbf{r}^i \quad \text{and} \quad \delta \mathbf{d}_t^i = \mathbf{K}_t^{-1} \mathbf{q}_e.$$
(9.11)

Substituting Equation (9.10) into Equation (9.7) leads to

$$2(\Delta \mathbf{d}^{i})^{\mathrm{T}}(\delta \overline{\mathbf{d}}^{i} + \delta \lambda^{i} \delta \mathbf{d}^{i}_{t}) + 2\Delta \lambda^{i} \delta \lambda^{i} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e} = -\frac{a^{i}}{2}.$$
(9.12)

Therefore, the iterative load level  $\delta \lambda$  can be given by

$$\delta\lambda^{i} = \frac{-(a^{i}/2) - (\Delta \mathbf{d}^{i})^{\mathrm{T}} \delta \mathbf{d}^{i}}{(\Delta \mathbf{d}^{i})^{\mathrm{T}} \delta \mathbf{\overline{d}}^{i}_{t} + \Delta\lambda^{i} \psi^{2} \mathbf{q}^{\mathrm{T}}_{e} \mathbf{q}_{e}}.$$
(9.13)

The incremental displacements and load level should be updated as

$$\Delta \mathbf{d}^{i+1} = \Delta \mathbf{d}^i + \delta \mathbf{d}^i \,, \tag{9.14}$$

$$\Delta \lambda^{i+1} = \Delta \lambda^i + \delta \lambda^i . \tag{9.15}$$

## **B.2 Spherical Arc-Length Method**

To solve equation (9.8) Crisfield [186] suggested another alternative method, that is the spherical arclength method. Here, the constraint equation (9.5) for a, is satisfied through the entire set of iterations and not only when convergence is achieved, as in the linearized arc-length. Substituting Equation (9.10) into Equation (9.14) leads to

$$\Delta \mathbf{d}^{i+1} = \Delta \mathbf{d}^i + \delta \overline{\mathbf{d}}^i + \delta \lambda^i \delta \mathbf{d}^i_t, \qquad (9.16)$$

where  $\delta \lambda$  is the only unknown. The constraint Equation (9.5) can be rewritten as

$$(\Delta \mathbf{d}^{i})^{\mathrm{T}} \Delta \mathbf{d}^{i} + (\Delta \lambda^{i})^{2} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e} = (\Delta \mathbf{d}^{i+1})^{\mathrm{T}} \Delta \mathbf{d}^{i+1} + (\Delta \lambda^{i+1})^{2} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e} = \Delta l^{2}.$$
(9.17)

The radius of the desired intersection is always constant during the iterative process and therefore  $a^i$  is equal to zero, see Figure B.1(b). Substitution of Equation (9.16) into Equation (9.17) leads to the scalar quadratic equation:

$$c_1(\delta\lambda^i)^2 + c_2\delta\lambda^i + c_3 = 0$$
, (9.18)

where

$$c_1 = (\delta \mathbf{d}_t^i)^{\mathrm{T}} \delta \mathbf{d}_t^i + \psi^2 \mathbf{q}_e^{\mathrm{T}} \mathbf{q}_e , \qquad (9.19)$$

$$c_2 = 2(\delta \mathbf{d}_t^i)^{\mathrm{T}} (\delta \mathbf{d}^i + \delta \overline{\mathbf{d}}^i) + 2\Delta \lambda^i \psi^2 \mathbf{q}_e^{\mathrm{T}} \mathbf{q}_e, \qquad (9.20)$$

$$c_{3} = (\delta \mathbf{d}^{i} + \delta \overline{\mathbf{d}}^{i})(\delta \mathbf{d}^{i} + \delta \overline{\mathbf{d}}^{i})^{\mathrm{T}} - \Delta l^{2} + (\Delta \lambda^{i})^{2} \psi^{2} \mathbf{q}_{e}^{\mathrm{T}} \mathbf{q}_{e}.$$

$$(9.21)$$

After solving (9.18) for  $\delta \lambda^i$  Equation (9.16) can be fully computed. Finally, with the aid of Equation (9.15), the complete iteration is defined.

The main disadvantage of the spherical arc-length method, compared to the Linearized version, is the additional computational cost to solve the quadratic equation, and then the choice of the proper root that yields from Equation (9.18).

# Reference

[1] Bathe KJ. Finite element procedures: Klaus-Jurgen Bathe; 2006.

[2] Zienkiewicz OC, Morice P. The finite element method in engineering science: McGraw-hill London; 1971.

[3] Hughes TJ. The finite element method: linear static and dynamic finite element analysis: Courier Dover Publications; 2012.

[4] Cook RD. Concepts and applications of finite element analysis: John Wiley & Sons; 2007.

[5] Ahmad S, Irons BM, Zienkiewicz O. Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering. 1970;2:419-51.

[6] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. Journal of applied Mechanics. 1945;12:69-77.

[7] Mindlin RD. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J of Appl Mech. 1951;18:31-8.

[8] Zienkiewicz O, Taylor R, Too J. Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering. 1971;3:275-90.

[9] Pawsey SF, Clough RW. Improved numerical integration of thick shell finite elements. International Journal for Numerical Methods in Engineering. 1971;3:575-86.

[10] Hughes TJ, Cohen M, Haroun M. Reduced and selective integration techniques in the finite element analysis of plates. Nuclear Engineering and Design. 1978;46:203-22.

[11] Pugh E, Hinton E, Zienkiewicz O. A study of quadrilateral plate bending elements with 'reduced'integration. International Journal for Numerical Methods in Engineering. 1978;12:1059-79.

[12] Hughes TJ, Liu WK. Nonlinear finite element analysis of shells-part II. two-dimensional shells. Computer Methods in Applied Mechanics and Engineering. 1981;27:167-81.

[13] Stolarski H, Belytschko T. Shear and membrane locking in curved  $C^0$  elements. Computer Methods in Applied Mechanics and Engineering. 1983;41:279-96.

[14] Lee S, H. Plan T. Improvement of plate and shell finite elements by mixed formulations. AIAA journal. 1978;16:29-34.

[15] Noor AK, Peters JM. Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. International Journal for Numerical Methods in Engineering. 1981;17:615-31.

[16] Macneal RH. A simple quadrilateral shell element. Computers & Structures. 1978;8:175-83.

[17] Macneal RH. Derivation of element stiffness matrices by assumed strain distributions. Nuclear Engineering and Design. 1982;70:3-12.

[18] Dvorkin EN, Bathe KJ. A continuum mechanics based four-node shell element for general nonlinear analysis. Engineering computations. 1984;1:77-88.

[19] Bathe KJ, Dvorkin EN. A formulation of general shell elements—the use of mixed interpolation of tensorial components. International Journal for Numerical Methods in Engineering. 1986;22:697-722.

[20] Dvorkin EN, Vassolo SI. A quadrilateral 2-D finite element based on mixed interpolation of tensorial components. Engineering computations. 1989;6:217-24.

[21] Bucalem ML, Bathe KJ. Higher-order MITC general shell elements. International Journal for Numerical Methods in Engineering. 1993;36:3729-54.

[22] Bathe KJ, Lee PS, Hiller JF. Towards improving the MITC9 shell element. Computers & Structures. 2003;81:477-89.

[23] Lee PS, Bathe KJ. Development of MITC isotropic triangular shell finite elements. Computers & Structures. 2004;82:945-62.

[24] Beirão da Veiga L, Chapelle D, Paris Suarez I. Towards improving the MITC6 triangular shell element. Computers & Structures. 2007;85:1589-610.

[25] Kim DN, Bathe KJ. A triangular six-node shell element. Computers & Structures. 2009;87:1451-60.

[26] Lee PS, Bathe KJ. The quadratic MITC plate and MITC shell elements in plate bending. Advances in Engineering Software. 2010;41:712-28.

[27] Bathe KJ, Lee PS. Measuring the convergence behavior of shell analysis schemes. Computers & Structures. 2011;89:285-301.

[28] Jeon HM, Lee PS, Bathe KJ. The MITC3 shell finite element enriched by interpolation covers. Computers & Structures. 2014;134:128-42.

[29] Lee Y, Lee PS, Bathe KJ. The MITC3+ shell element and its performance. Computers & Structures. 2014;138:12-23.

[30] Bischoff M, Bletzinger K. Stabilized DSG plate and shell elements. Trends in Computational Structural Mechanics, CIMNE, Barcelona. 2001:253-63.

[31] Koschnick F, Bischoff M, Camprubí N, Bletzinger KU. The discrete strain gap method and membrane locking. Computer Methods in Applied Mechanics and Engineering. 2005;194:2444-63.

[32] Simo JC, Rifai M. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering. 1990;29:1595-638.

[33] Babuska I, Melenk JM. The partition of unity finite element method. DTIC Document; 1995.

[34] Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering. 1996;139:289-314.

[35] Duarte CA, Oden JT. An *h-p* adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering. 1996;139:237-62.

[36] Oden JT, Duarte C, Zienkiewicz OC. A new cloud-based *hp* finite element method. Computer Methods in Applied Mechanics and Engineering. 1998;153:117-26.

[37] Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering. 2000;181:43-69.

[38] Strouboulis T, Copps K, Babuška I. The generalized finite element method. Computer Methods in Applied Mechanics and Engineering. 2001;190:4081-193.

[39] Duarte CA, Babuška I, Oden JT. Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures. 2000;77:215-32.

[40] Duarte C, Hamzeh O, Liszka T, Tworzydlo W. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering. 2001;190:2227-62.

[41] Taylor RL, Zienkiewicz OC, Oñate E. A hierarchical finite element method based on the partition of unity. Computer Methods in Applied Mechanics and Engineering. 1998;152:73-84.

[42] Jeon HM, Lee Y, Lee PS, Bathe KJ. The MITC3+ shell element in geometric nonlinear analysis. Computers & Structures. 2015;146:91-104.

[43] Belytschko T, Tsay CS. A stabilization procedure for the quadrilateral plate element with one-point quadrature. International Journal for Numerical Methods in Engineering. 1983;19:405-19.

[44] Belytschko T, Lin JI, Chen-Shyh T. Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering. 1984;42:225-51.

INCE 19

[45] Park K, Stanley G. A curved  $C^0$  shell element based on assumed natural-coordinate strains. Journal of applied Mechanics. 1986;53:278-90.

[46] Huang H, Hinton E. A new nine node degenerated shell element with enhanced membrane and shear interpolation. International Journal for Numerical Methods in Engineering. 1986;22:73-92.

[47] Braess D. Enhanced assumed strain elements and locking in membrane problems. Computer Methods in Applied Mechanics and Engineering. 1998;165:155-74.

[48] Timoshenko SG, Goodier JN: Theory of elasticity. Hill Book Co, New York. 1970.

[49] Nagtegaal JC, Parks DM, Rice J. On numerically accurate finite element solutions in the fully plastic range. Computer Methods in Applied Mechanics and Engineering. 1974;4:153-77.

[50] Hughes TJ. Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering. 1980;15:1413-8.

[51] Doll S, Schweizerhof K, Hauptmann R, Freischläger C. On volumetric locking of low-order solid and solid-shell elements for finite elastoviscoplastic deformations and selective reduced integration. Engineering computations. 2000;17:874-902.

[52] Wells G, Sluys L, De Borst R. A *p*-adaptive scheme for overcoming volumetric locking during plastic flow. Computer Methods in Applied Mechanics and Engineering. 2002;191:3153-64.

[53] Naylor D. Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures. International Journal for Numerical Methods in Engineering. 1974;8:443-60.

[54] Malkus DS, Hughes TJ. Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Computer Methods in Applied Mechanics and Engineering. 1978;15:63-81.

[55] Jankovich E, et al., Leblanc F, Durand M, Bercovier M. A finite element method for the analysis of rubber parts, experimental and analytical assessment. Computers & Structures. 1981;14:385-91.

[56] Oden J, Kikuchi N. Finite element methods for constrained problems in elasticity. International Journal for Numerical Methods in Engineering. 1982;18:701-25.

[57] Taylor RL, Pister KS, Herrmann LR. On a variational theorem for incompressible and nearlyincompressible orthotropic elasticity. International Journal of Solids and Structures. 1968;4:875-83.

[58] Argyris JH, Dunne P, Angelopoulos T, Bichat B. Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements. Computer Methods in Applied Mechanics and Engineering. 1974;4:219-78.

[59] Simo J, Taylor R, Pister K. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering. 1985;51:177-208.

[60] Canga ME, Becker EB. An iterative technique for the finite element analysis of nearincompressible materials. Computer Methods in Applied Mechanics and Engineering. 1999;170:79-101.

[61] Schlebusch R, Matheas J, Zastrau B. On the avoidance of Poisson thickness locking in surfacerelated shell theories by an extension of thw EAS method. Machine Dynamics Problems. 2002;26:101-14.

[62] Irons BM, Razzaque A. Experience with the patch test for convergence of finite elements. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. 1972;557:587.

[63] Wilson E, Taylor R, Doherty W, Ghaboussi J. Incompatible displacement models(isoparametric finite elements in solid and thick shell structural analysis). Numerical and computer methods in structural mechanics(A 74-17756 06-32) New York, Academic Press, Inc, 1973. 1973:43-57.

[64] Taylor RL, Beresford PJ, Wilson EL. A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering. 1976;10:1211-9.

[65] Fröier M, Nilsson L, Samuelsson A. The rectangular plane stress element by Turner, Pian and Wilson. International Journal for Numerical Methods in Engineering. 1974;8:433-7.

[66] Oñate E. Structural Analysis with the Finite Element Method. Linear Statics: Volume 2: Beams, Plates and Shells: Springer; 2013.

[67] Sussman T, Bathe KJ. Spurious modes in geometrically nonlinear small displacement finite elements with incompatible modes. Computers & Structures. 2014;140:14-22.

[68] MacNeal R. Finite elements: their design and performance. 1994. M Dekker.406-10.

[69] Ramm E. A plate/shell element for large deflections and rotations. Formulations and computational algorithms in finite element analysis. 1977:264-93.

[70] Krakeland B. Nonlinear analysis of shells using degenerate isoparametric elements. Finite Elements in Nonlinear Mechanics. 1978;1:265-84.

[71] Dvorkin EN, Onte E, Oliver J. On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. International Journal for Numerical Methods in Engineering. 1988;26:1597-613.

[72] Dvorkin EN, Toscano RG. Finite element analysis of the collapse and post-collapse behavior of steel pipes applications to the oil industry: Springer; 2013.

[73] Lucy LB. A numerical approach to the testing of the fission hypothesis. The astronomical journal. 1977;82:1013-24.

[74] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational mechanics. 1992;10:307-18.

[75] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1994;37:229-56.

[76] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International journal for numerical methods in fluids. 1995;20:1081-106.

[77] Liu GR, Gu Y. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering. 2001;50:937-51.

[78] Atluri S, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational mechanics. 1998;22:117-27.

[79] Zhu T, Zhang JD, Atluri S. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational mechanics. 1998;21:223-35.

[80] Liu G, Gu Y. Local point interpolation method for stress analysis of two-dimensional solids. 2001.

[81] Lam K, Wang Q, Li H. A novel meshless approach–Local Kriging (LoKriging) method with two-dimensional structural analysis. Computational mechanics. 2004;33:235-44.

[82] Yongchang C, Hehua Z. A meshless local natural neighbour interpolation method for stress analysis of solids. Engineering analysis with boundary elements. 2004;28:607-13.

[83] Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature. 1995;376:655-60.

[84] Rajendran S, Zhang B. A "FE-meshfree" QUAD4 element based on partition of unity. Computer Methods in Applied Mechanics and Engineering. 2007;197:128-47.

[85] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element-free Galerkin method. Computational mechanics. 1995;17:186-95.

[86] Hegen D. Element-free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering. 1996;135:143-66.

[87] Liu GR, Gu Y. Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Computational mechanics. 2000;26:536-46.

[88] Huerta A, Fernandez Mendez S. Enrichment and coupling of the finite element and meshless methods. 2000.

[89] Xiao Q, Dhanasekar M. Coupling of FE and EFG using collocation approach. Advances in Engineering Software. 2002;33:507-15.

[90] Hao S, Park HS, Liu WK. Moving particle finite element method. International Journal for Numerical Methods in Engineering. 2002;53:1937-58.

[91] Liu WK, Han W, Lu H, Li S, Cao J. Reproducing kernel element method. Part I: Theoretical formulation. Computer Methods in Applied Mechanics and Engineering. 2004;193:933-51.

[92] Shi GH. Manifold method of material analysis. DTIC Document; 1992.

[93] Tian R, Yagawa G, Terasaka H. Linear dependence problems of partition of unity-based generalized FEMs. Computer Methods in Applied Mechanics and Engineering. 2006;195:4768-82.

[94] Tian R, Yagawa G. Generalized nodes and high-performance elements. International Journal for Numerical Methods in Engineering. 2005;64:2039-71.

[95] Babuška I, Banerjee U. Stable generalized finite element method (SGFEM). Computer Methods in Applied Mechanics and Engineering. 2012;201:91-111.

[96] Xu J, Rajendran S. A 'FE-Meshfree'TRIA3 element based on partition of unity for linear and geometry nonlinear analyses. Computational mechanics. 2013;51:843-64.

[97] Cai Y, Zhuang X, Augarde C. A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Computer Methods in Applied Mechanics and Engineering. 2010;199:1036-43.

[98] Kim J, Bathe KJ. The finite element method enriched by interpolation covers. Computers & Structures. 2013;116:35-49.

[99] Lee PS, Noh HC, Bathe KJ. Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns. Computers & Structures. 2007;85:404-18.

[100] Chapelle D, Bathe KJ. The finite element analysis of shells: fundamentals: Springer; 2011.

[101] Hiller JF, Bathe KJ. Measuring convergence of mixed finite element discretizations: an application to shell structures. Computers & Structures. 2003;81:639-54.

[102] Bathe KJ, Iosilevich A, Chapelle D. An inf-sup test for shell finite elements. Computers & Structures. 2000;75:439-56.

[103] Chapelle D, Bathe KJ. The mathematical shell model underlying general shell elements. International Journal for Numerical Methods in Engineering. 2000;48:289-313.

[104] Bathe KJ. The inf-sup condition and its evaluation for mixed finite element methods. Computers & Structures. 2001;79:243-52.

[105] Lee PS, Bathe KJ. Insight into finite element shell discretizations by use of the "basic shell mathematical model". Computers & Structures. 2005;83:69-90.

[106] Bathe KJ, Chapelle D, Lee PS. A shell problem 'highly sensitive'to thickness changes. International Journal for Numerical Methods in Engineering. 2003;57:1039-52.

[107] Schweitzer MA. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations2002.

[108] Chessa J, Wang H, Belytschko T. On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering. 2003;57:1015-38.

[109] Fries TP, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering. 2010;84:253-304.

[110] An X, Li L, Ma G, Zhang H. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes. Computer Methods in Applied Mechanics and Engineering. 2011;200:665-74.

[111] An XM, Zhao ZY, Zhang HH, Li LX. Investigation of linear dependence problem of threedimensional partition of unity-based finite element methods. Computer Methods in Applied Mechanics and Engineering. 2012;233:137-51.

[112] Xu J, Rajendran S. A partition-of-unity based 'FE-Meshfree'QUAD4 element with radial-polynomial basis functions for static analyses. Computer Methods in Applied Mechanics and Engineering. 2011;200:3309-23.

[113] Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods
in Engineering. 1993;36:1311-37.

[114] Kim JH, Kim YH. Three-node macro triangular shell element based on the assumed natural strains. Computational mechanics. 2002;29:441-58.

[115] Kim JH, Kim YH. A three-node  $C^0$  ANS element for geometrically non-linear structural analysis. Computer Methods in Applied Mechanics and Engineering. 2002;191:4035-59.

[116] Hibbitt, Karlsson, Sorensen. ABAQUS: Theory Manual: Hibbitt, Karlsson and Sorensen; 1997.

[117] Katili I. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields—part I: An extended DKT element for thick-plate bending analysis. International Journal for Numerical Methods in Engineering. 1993;36:1859-83.

[118] Allman D. A compatible triangular element including vertex rotations for plane elasticity analysis. Computers & Structures. 1984;19:1-8.

[119] Cook RD. Further development of a three-node triangular shell element. International Journal for Numerical Methods in Engineering. 1993;36:1413-25.

[120] Providas E, Kattis M. A simple finite element model for the geometrically nonlinear analysis of thin shells. Computational mechanics. 1999;24:127-37.

[121] Felippa CA. A study of optimal membrane triangles with drilling freedoms. Computer Methods in Applied Mechanics and Engineering. 2003;192:2125-68.

[122] Nguyen-Van H, Mai-Duy N, Tran-Cong T. An improved quadrilateral flat element with drilling degrees of freedom for shell structural analysis. CMES: Computer Modeling in Engineering and Sciences. 2009;49:81-110.

[123] Liu J, Riggs H, Tessler A. A four-node, shear-deformable shell element developed via explicit Kirchhoff constraints. International Journal for Numerical Methods in Engineering. 2000;49:1065-86.

[124] Kim K, Lomboy G, Voyiadjis G. A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom. International Journal for Numerical Methods in Engineering. 2003;58:2177-200.

[125] Liu WK, Law E, Lam D, Belytschko T. Resultant-stress degenerated-shell element. Computer Methods in Applied Mechanics and Engineering. 1986;55:259-300.

[126] Kohnke P. ANSYS: theory of reference release 5.4. ANSYS. Inc, Canonsburg. 1997.

[127] Groenwold AA, Stander N. An efficient 4-node 24 dof thick shell finite element with 5-point quadrature. Engineering computations. 1995;12:723-47.

[128] Belytschko T, Leviathan I. Physical stabilization of the 4-node shell element with one point quadrature. Computer Methods in Applied Mechanics and Engineering. 1994;113:321-50.

[129] Ibrahimbegović A, Frey F. Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics. International Journal for Numerical Methods in Engineer-

ing. 1994;37:3659-83.

[130] Taylor RL. Finite element analysis of linear shell problems. Whiteman, JR (ed), Proceedings of the Mathematics in Finite Elements and Applications1987. p. 191-203.

[131] Belytschko T, Wong BL, Stolarski H. Assumed strain stabilization procedure for the 9-node Lagrange shell element. International Journal for Numerical Methods in Engineering. 1989;28:385-414.

[132] Samtech S. SAMCEF User manuals. Version; 1999.

[133] Choi CK, Lee TY. Efficient remedy for membrane locking of 4-node flat shell elements by non-conforming modes. Computer Methods in Applied Mechanics and Engineering. 2003;192:1961-71.

[134] Morley LSD. Skew plates and structures: Pergamon Press;[distributed in the Western Hemisphere by Macmillan, New York]; 1963.

[135] Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells: McGraw-hill New York; 1959.

[136] Bathe KJ. Fundamental considerations for the finite element analysis of shell structures. Computers & Structures. 1998;66:19-36.

[137] Bathe KJ, Iosilevich A, Chapelle D. An evaluation of the MITC shell elements. Computers & Structures. 2000;75:1-30.

[138] Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong JS. Stress projection for membrane and shear locking in shell finite elements. Computer Methods in Applied Mechanics and Engineering. 1985;51:221-58.

[139] Sze K, Liu X, Lo S. Popular benchmark problems for geometric nonlinear analysis of shells. Finite elements in Analysis and Design. 2004;40:1551-69.

E 197

SING

[140] Arciniega R, Reddy J. Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Computer Methods in Applied Mechanics and Engineering. 2007;196:1048-73.

[141] Brank B, Damjanić F, Perić D. On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells. Computational mechanics. 1995;16:341-59.

[142] Klinkel S, Gruttmann F, Wagner W. A continuum based three-dimensional shell element for laminated structures. Computers & Structures. 1999;71:43-62.

[143] Macneal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite elements in Analysis and Design. 1985;1:3-20.

[144] Argyris J. An excursion into large rotations. Computer Methods in Applied Mechanics and Engineering. 1982;32:85-155.

[145] Jiang L, Chernuka M. A simple four-noded corotational shell element for arbitrarily large rota-

tions. Computers & Structures. 1994;53:1123-32.

[146] To C, Liu M. Hybrid strain based three node flat triangular shell elements—II. Numerical investigation of nonlinear problems. Computers & Structures. 1995;54:1057-76.

[147] Briassoulis D. Non-linear behaviour of the RFNS element—large displacements and rotations. Computer Methods in Applied Mechanics and Engineering. 2003;192:2909-24.

[148] Kuo-Mo H, Yeh-Ren C. Nonlinear analysis of shell structures by degenerated isoparametric shell element. Computers & Structures. 1989;31:427-38.

[149] Simo J, Fox D, Rifai M. On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Computer Methods in Applied Mechanics and Engineering. 1990;79:21-70.

[150] Başar Y, Ding Y. Finite-rotation shell elements for the analysis of finite-rotation shell problems. International Journal for Numerical Methods in Engineering. 1992;34:165-9.

[151] Sansour C, Bocko J. On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom. International Journal for Numerical Methods in Engineering. 1998;43:175-92.

[152] Sansour C, Kollmann F. Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Computational mechanics. 2000;24:435-47.

[153] Hong WI, Kim JH, Kim YH, Lee SW. An assumed strain triangular curved solid shell element formulation for analysis of plates and shells undergoing finite rotations. International Journal for Numerical Methods in Engineering. 2001;52:747-61.

[154] Kim C, Sze K, Kim Y. Curved quadratic triangular degenerated-and solid-shell elements for geometric non-linear analysis. International Journal for Numerical Methods in Engineering. 2003;57:2077-97.

[155] Bucalem ML, Shimura da Nóbrega SH. A mixed formulation for general triangular isoparametric shell elements based on the degenerated solid approach. Computers & Structures. 2000;78:35-44.

SINCE 1971

[156] Jeon HM, Lee Y, Lee PS, Bathe KJ. The MITC3+ shell element in geometric nonlinear analysis. Computers & Structures. 2014.

[157] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering. 1999;45:601-20.

[158] Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Meth Engng. 1999;46:131-50.

[159] Felippa C, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory. Computer Methods in Applied Mechanics and Engineering. 2005;194:2285-335.

[160] Wisniewski K. Finite rotation shells. Basic Equations and Finite Elements for Reissner Kinematics, CIMNE-Springer. 2010. [161] Pian T, Sumihara K. Rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering. 1984;20:1685-95.

[162] Piltner R, Taylor R. A systematic construction of B-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems. International Journal for Numerical Methods in Engineering. 1999;44:615-39.

[163] Bergan P, Felippa C. A triangular membrane element with rotational degrees of freedom. Computer Methods in Applied Mechanics and Engineering. 1985;50:25-69.

[164] Cook RD. Improved two-dimensional finite element. Journal of the Structural Division. 1974;100:1851-63.

[165] Bassayya K, Bhattacharya K, Shrinivasa U. Eight-node brick, PN340, represents constant stress fields exactly. Computers & Structures. 2000;74:441-60.

[166] Chen W, Cheung Y. Three-dimensional 8-node and 20-node refined hybrid isoparametric elements. International Journal for Numerical Methods in Engineering. 1992;35:1871-89.

[167] Simo J, Fox D, Rifai M. On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Computer Methods in Applied Mechanics and Engineering. 1989;73:53-92.

[168] Sze K, Zhu D. A quadratic assumed natural strain curved triangular shell element. Computer Methods in Applied Mechanics and Engineering. 1999;174:57-71.

[169] Belytschko T, Stolarski H, Carpenter N. A C<sup>0</sup> triangular plate element with one-point quadrature. International Journal for Numerical Methods in Engineering. 1984;20:787-802.

[170] Bletzinger KU, Bischoff M, Ramm E. A unified approach for shear-locking-free triangular and rectangular shell finite elements. Computers & Structures. 2000;75:321-34.

[171] Wanji C, Cheung Y. Refined non-conforming triangular elements for analysis of shell structures. International Journal for Numerical Methods in Engineering. 1999;46:433-55.

[172] Hibbett, Karlsson, Sorensen. ABAQUS/standard: User's Manual: Hibbitt, Karlsson & Sorensen; 1998.

[173] Knight N. Raasch challenge for shell elements. AIAA journal. 1997;35:375-81.

[174] Dunavant D. High degree efficient symmetrical Gaussian quadrature rules for the triangle. International Journal for Numerical Methods in Engineering. 1985;21:1129-48.

[175] Sussman T, Bathe KJ. 3D-shell elements for structures in large strains. Computers & Structures. 2013;122:2-12.

[176] Kim J, Bathe KJ. Towards a procedure to automatically improve finite element solutions by interpolation covers. Computers & Structures. 2014;131:81-97.

[177] Babuška I, Rheinboldt WC. A-posteriori error estimates for the finite element method. Interna-

tional Journal for Numerical Methods in Engineering. 1978;12:1597-615.

[178] Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering. 1987;24:337-57.

[179] Babuvška I, Rheinboldt WC. Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis. 1978;15:736-54.

[180] Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis: John Wiley & Sons; 2011.

[181] Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering. 1997;142:1-88.

[182] Cheng H, Gupta K. An historical note on finite rotations. Journal of applied Mechanics. 1989;56:139-45.

[183] Riks E. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures. 1979;15:529-51.

[184] Wempner GA. Discrete approximations related to nonlinear theories of solids. International Journal of Solids and Structures. 1971;7:1581-99.

[185] Ramm E. Strategies for tracing the nonlinear response near limit points: Springer; 1981.

[186] Crisfield MA. A fast incremental/iterative solution procedure that handles "snap-through". Computers & Structures. 1981;13:55-62.

[187] Schweizerhof K, Wriggers P. Consistent linearization for path following methods in nonlinear FE analysis. Computer Methods in Applied Mechanics and Engineering. 1986;59:261-79.

[188] Riks E. The application of Newton's method to the problem of elastic stability. Journal of applied Mechanics. 1972;39:1060-5.



## 요약문

## PU 기반 쉘 유한요소

유한요소법은 쉘 구조물의 선형 및 비선형 해석에 가장 널리 사용되는 수치해석기법이며, 지난 수십년간 보다 더 정확하고 일관된 수치적 결과를 얻기 위한 많은 연구가 활발하게 진행되었다. 하지만 눈부신 연구결과에도 불구하고, 응력이 집중되거나 특이 해가 존재하는 특정영역에서의 유한요소 해는 상당한 오차를 보여주며 이러한 문제점을 해결하기 위한 노력은 지속적으로 진행 중이다.

최근, 기존 절점에 새로운 자유도를 추가 함으로써 요소 및 절점의 개수를 증가시키지 않고 고차 형상함수를 구성할 수 있는 PU 기반 유한요소법이 제안되었다. PU 기반 유한요소법은 기존 형상정보를 변화시키지 않고 정교한 수치 해석을 얻을 수 있다는 장점으로 2D 또는 3D 솔리드 요소의 범위에서 큰 주목을 받아 왔다. 쉘 유한요소의 경우에는 쉘 두께가 작아짐에 따라 발생하는 잠김현상에 대한 처리 기법이 제안되지 않아 PU 기반 유한요소법이 적용되는데 문제가 존재 했다.

본 학위논문에서는 PU 기반 3 절점 삼각형 및 4 절점 사각형 쉘 유한요소들을 제안하였다. 기존 변형률과 고차 형상함수의 변위에 의한 변형률을 분리 하였으며 분리된 변형률에 각각 다른 대체변형률장을 구성함으로써 제안된 쉘 요소의 잠김현상을 처리 할 수 있었다. 잘 알려진 수렴문제들을 통하여 기존에 존재 하는 쉘 요소들과 성능을 비교 평가하였다. 또한 응력 집중을 가진 축 문제, 기하학적 거동이 복잡한 실제 쉘 문제를 풀어봄으로써 PU 기반 쉘 유한요소의 뛰어난 성능을 입증하였다.

또한, PU 기반 변위보간을 사용하여 3 절점 삼각형 쉘 요소의 면거동 성능향상에 대한 가능성을 제안하였다. 4 절점 사각형 쉘 유한요소의 경우, 비적합 모드 및 대체 변형장등을 사용하여 면거동의 성능을 개선할 수 있지만, 3 절점 삼각형 쉘 요소의 경우에는 면거동 성능향상에 대한 적합한 방법론이 제시되지 않았다. 본 논문에서는 PU 를 사용한 변위보간을 통해 기존 삼각형 면거동을 효율적으로 보강하였으며 선형 및 비선형 영역에서 다양한 문제를 풀어 보면서 제안된 요소 쉘 유한요소를 비교 검증하였다. 선형 및 비선형영역에서, PU 기반 변위보간을 통한 쉘의 면 거동은 4 절점 사각형 쉘 요소에서 사용되는 비적합 모드와 비교하여 뛰어난 성능을 보여주었다.

핵심어: PU 기반 유한 요소법; 쉘 유한요소; 잠김현상; 비선형 해석; 대변위 및 대회전