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ABSTRACT 

The partition of unity based shell finite elements are presented. To circumvent locking phenomena, the 

MITC method is used for the standard and high order displacement interpolations. The partition of unity based 

shell finite elements not only capture higher gradients but also decrease inter-elemental stress jumps. In par-

ticular, the enrichment scheme provided by the partition of unity approximation increases solution accuracy 

without any traditional local mesh refinement. A partition of unity based shell element with improved mem-

brane behaviors is also proposed. The total Lagrangian formulation is employed allowing for large displace-

ments and large rotations. Considering several benchmark problems, the solutions using the shell element with 

improved membrane behaviors are compared with those obtained using other shell elements. It is demonstrat-

ed that the partition of unity based shell finite elements are reliable and very effective in both linear and non-

linear analysis. 

 

Keywords: Partition of unity; Partition of unity based finite element method; Shell element; 3-node triangular 

element; 4-node quadrilateral element; MITC method; Geometric nonlinear analysis; Large displacements and 

rotations 
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Chapter 1. Introduction 

 

1.1 Research Background 

The finite element method is a popular and effective procedure for the analysis of solid, fluid, and 

multi-physics problems. In particular, shell elements are probably the most widely used in finite element anal-

ysis, since there are a myriad of shell structures which are widely encountered in many engineering applica-

tions [1-4]. 

 

A promising approach in the development of general shell elements has been the use of the isopara-

metric continuum mechanics based shell element which is generally known as a displacement based Mindlin-

Reissner shell element [5-7]. The continuum mechanics based shell element was very naturally developed 

from the three-dimensional continuum isoparametric element formulation by imposing kinematic constrains. 

In general, transverse shear is accounted for by making use of the Mindlin-Reissner plate/shell theory, denot-

ed “first order theory”, which involves a constant through-the-thickness transverse shear distribution. 

 

Even though the introduction of shear deformations in the shell element seems to be desirable for the 

analysis of thick shells, these shear deformations cause the main difficulty called “locking”, which must be 

alleviated for reliable shell finite element analysis. It is well known that displacement based Mindlin-Ressner 

plate/shell elements often exhibit transverse shear locking as the shell thickness decreases. For shell elements 

and curved geometries, membrane locking might also occur. Shear and membrane locking are particularly 

severe for low order shell elements. 

 

To alleviate the transverse shear locking, many methods have been proposed. Commonly adopted 

remedies to circumvent transverse shear locking are the URI (Uniform Reduced Integration) and SRI (Selec-

tive Reduced Integration) first suggested by Zienkiewicz [8-13]. An alternative method for reducing the trans-

verse shear locking is the hybrid and mixed formulation in which separate interpolations are used for the 

stresses and displacements [14, 15]. Another approach to alleviate locking phenomenon is the ANS (Assumed 

Natural Strain) method, suggested by MacNeal [16, 17], which is generally reported to be an efficient method 

using complete numerical integration rules. In this method, the transverse shear strains are interpolated from 

the displacement dependent strains defined at the mid-side of element edges to reduce locking phenomenon. 

Based on this concept, some efficient methods have been proposed, including the MITC (Mixed Interpolation 

of Tensorial Component) method developed by Bathe’s group [18-29] and the DSG (Discrete Strain Gap) ap-

proach suggested by Bischoff’s group [30, 31]. Another interesting approach arising from mixed variational 

formulations is the EAS (Enhanced Assumed Strain) method first presented by Simo and Rifai [32]. The key 

idea of this approach is based on the use of a strain field composed of a compatible strain field and an en-
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hanced strain field based on the Hu-Washizu variational principle to reduce transverse shear locking. Some of 

these methods are also used to remedy membrane locking, especially the selective reduced integration and the 

mixed interpolation approach. 

 

Furthermore, it is very difficult to develop effective shell finite elements that give reliable and robust 

solutions for general shell problems, when considering the various shell geometries, boundary and loading 

conditions, and mesh patterns used. Specifically, solution accuracy highly depends on how the geometries are 

meshed. To obtain reliable solutions with desired accuracy special mesh refinements are frequently required, 

in particular, in areas where non-smooth and near-singular solutions are sought [1-4]. 

 

To obtain more accurate solutions, a promising approach, which is referred to as the partition of unity  

based finite element method, is used to incorporate special enrichment functions within traditional finite ele-

ment formulations. Within the framework of the partition of unity based finite element method, the partition 

of unity approximation can be easily achieved by directly adopting high order polynomial local approxima-

tions. The concept of the partition of unity approximation was established in the PUM (Partition of Unity 

Method) by Babuška and Melenk [33] and PUFEM (Partition of Unity Finite Element Method) by Melenk 

and Babuška [34]. An idea similar to the partition of unity approximation was also introduced and extensively 

investigated in the hp clouds method by Duarte and Oden [35, 36], the GFEM (Generalized Finite Element 

Method) by Strouboulis et al. [37, 38] and Duarte et al. [39, 40], and the partition of unity based hierarchical 

finite element method by Taylor et al. [41]. 

 

The scheme increases solution accuracy of the traditional low order finite element discretization of sol-

ids without any changes in the mesh. The major advantage of the method is that the higher order enrichment is 

available without introducing additional nodes. That is, traditional nodal point movements or mesh refine-

ments are not used to improve solution accuracy. The partition of unity approximation not only captures high-

er gradients but also decreases inter-element stress jumps. 

 

In this thesis, the MITC methods are adopted to reduce the transverse shear locking. There are two ma-

jor reasons for choosing MITC methods in this work. The MITC methods are very attractive because its for-

mulation is simple and general, and in particular, the behavior of the triangular element with the MITC meth-

od is isotropic, that is, the stiffness matrix of the element does not depend on the sequence of node numbering. 

Another important reason is that the MITC method can be directly integrated into the partition of unity ap-

proximation to improve performances of the shell finite element. 

 

 

 

1.2 Research Purpose 

The first objective of this thesis is to present 3-node triangular and 4-node quadrilateral shell finite el-

ements enriched by the high order local approximations within the MITC (Mixed Interpolation of Tensorial 
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Component) framework, which are called the enriched MITC3 and enriched MITC4, respectively [28]. The 

key idea of enriched MITC shell elements is to use and treat the assumed covariant transverse shear strain 

fields separately for the standard linear and the additional high order displacement interpolations. The en-

riched MITC shell finite elements pass the patch tests and show good convergence behaviors considering a 

full clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems even when dis-

torted meshes are used. Highly varying stresses in shells can be captured only by locally using high order lo-

cal approximations. 

 

The second objective in this thesis is to propose the formulation of the 3-node triangular element with 

enrichment by a cubic bubble function for the rotations in geometric nonlinear analysis [42]. This element is 

referred to as the MITC3+ shell element. The standard total Lagrangian formulation is employed allowing for 

large displacement and large rotations. Solving various shell problems, the performance of the MITC3+ shell 

element is evaluated by comparing the solution accuracies obtained with the other shell elements. The study 

reveals that the performance of the MITC3+ shell element in nonlinear analysis is as good as the performance 

of the MITC4 shell element, which is the 4-node quadrilateral shell element, even when highly distorted 

meshes are used. 

 

Finally, based on the MITC3+ shell element, a 3-node triangular shell element with improved mem-

brane behaviors is presented in this thesis. The partition of unity approximation is only applied to the mem-

brane strains in order to improve the membrane action of the MITC3+ shell element. This element is referred 

to as the enriched MITC3+ shell element. For geometric nonlinear analysis, the standard total Lagrangian 

formulation is adopted allowing for large displacement and large rotations. A number of benchmark problems 

were studied to evaluate its performances in linear and geometric nonlinear ranges. The results confirm that 

the present method can provide accurate solutions for the membrane dominant problems. It is concluded that 

the partition of unity approximation is an effective scheme for improving membrane behaviors in the triangu-

lar shell element. 

 

Hence the research for this thesis has been divided into three major parts: 

I. Development of the partition of unity based 3-node triangular and 4-node quadrilateral shell 

finite elements. 

II. Extension of formulation of the 3-node triangular shell element with an enrichment by a cu-

bic bubble function for the rotations to geometric nonlinear analysis. 

III. Performance evaluation of the 3-node triangular shell finite element for improving mem-

brane behaviors in linear and geometric nonlinear analysis. 

 

The present shell finite elements are applicable to simple plate geometries as well as complex shell ge-

ometries for both thick and thin shell structures. They provide excellent solution accuracy in both displace-

ment and stresses with relatively low computational cost. Also, the proposed shell elements are sufficiently 

robust, i.e., present low sensitivity to element distortion, and are generally applicable to both linear and geo-
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metric nonlinear shell analyses with high reliability. 

 

 

 

1.3 Dissertation Organization 

This thesis is organized as follows: 

 

In Chapter 2, the general description of the locking phenomenon in elastic shell theory and some 

methods to alleviate the locking phenomena are reviewed. In the following sections, the continuum mechanics 

based shell finite element and the key aspects of the MITC method are presented in detail. Also, various 

methods using concept of the partition of unity approximation are briefly reviewed in the last section. 

 

In Chapter 3, the finite element procedure to enrich by local approximations is briefly reviewed and 

the formulation of the partition of unity based 3-node triangular shell element is presented. In the following 

sections, the key theoretical and numerical aspects of the scheme regarding the computational expense and the 

convergence of the method are discussed The results of convergence studies considering a fully clamped 

square plate problem, cylindrical shell problems, and hyperboloid shell problems are given. Two illustrative 

example solutions, a shaft-shaft interaction problem and a ‘highly-sensitive’ shell problem, show the effec-

tiveness of using the partition of unity based 3-node triangular shell finite element, also only locally, that is, 

only in areas of high stress gradients. 

 

In Chapter 4, the formulation of the partition of unity based 4-node quadrilateral element is briefly re-

viewed. The issue of the so-called linear dependence problem for the element and a simple scheme to avoid 

the linear dependence are discussed. The partition of unity based 4-node quadrilateral shell element is pro-

posed in the following section. The results of various benchmark problems including Morley’s 30  skew 

plate, circular plate with uniform load, partly clamped hyperbolic parabolic shell, twisted beam subjected to 

vertical tip load, pinched cylinder, semi-cylindrical shell subjected to an end pinching force, and Scordelis-lo 

roof are given. 

 

In Chapter 5, the linear formulation of the MITC3+ shell element is reviewed. In the following section, 

the geometric nonlinear formulation of the MITC3+ shell element is presented. Also, the performance of the 

MITC3+ shell element in geometric nonlinear analysis through the solutions of various shell problems includ-

ing the cantilever plate subjected to end shear force, cantilever plate subjected to end moment, slit annular 

plate under end shear force, hemisphere shell subjected to alternating radial forces, clamped semi-cylindrical 

shell under point load, and fully clamped plate under uniform pressure is examined. 

 

Chapter 6 presents the partition of unity based 3-node triangular shell element with improved mem-

brane behaviors. The key theoretical and numerical aspects of this element are studied and the geometric non-

linear formulation of the shell element is also presented. The performance of the proposed shell element in 
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linear and geometric nonlinear analysis is tested through the solution of various two-dimensional planestress 

and shell problems, the cantilever beam for mesh distortion test, Cook’s skew beam, MacNeal’s cantilever 

beam, curved cantilever beam, hemispherical shell, Scordelis-Lo roof, Raasch’s hook problem, cantilever 

beam subjected to a tip moment, column under an eccentric compressive load, and slit annular plate. 

 
Chapter 7 draws the conclusions and discusses further studies. 

 

 



 

- 6 - 

 

Chapter 2. Reviews of Related Literatures and Studies 

 

2.1 The Treatment of the Locking Phenomenon 

In finite element analyses, solution accuracy and convergence rate to the analytical solution signifi-

cantly decrease when non-physical stresses appear, that is the locking phenomenon. These may be transverse 

shear, membrane, in-plane shear, trapezoidal locking and Poisson locking phenomenon. The locking phenom-

enon results from numerical backgrounds which are usually related to the low order interpolation functions. 

This section is aimed to review the general descriptions of locking phenomenon and introduce some remedies 

to alleviate the locking in an analysis of the finite element method. The mathematical description of the lock-

ing phenomenon is beyond the scope of this thesis. 

 

 

 

2.1.1 Transverse Shear Locking 
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Figure 2.1. Beam deformation assumptions. (a) Beam deformation including transverse shear effect. (b) A 

two node isoparametric beam element modeling a cantilever beam subjected to a tip moment. 

 

 

In the shear deformable shell based on the Mindlin-Reissner theory [6, 7], the shell element is subject-

ed to transverse shear locking; that is, the shell finite element becomes too stiff as the shell thickness decreas-

es in bending situations. This transverse shear locking phenomenon also occurs in three-dimensional solid 
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elements and can be observed in the analysis of thin-walled structures. To explain the transverse shear locking 

phenomenon, a two-node Timoshenko beam element which includes shear deformations, see Figure 2.1 is 

considered. The transverse displacement and in-plane rotation interpolations are represented by 

 1 1 2 2w h w h w   and 1 1 2 2h h       with 1

1

2

r
h


  and 2

1

2

r
h


   (2.1)

and 

 2

1

2

r
w w


  and 2

1

2

r
  ,  (2.2)

where ih  is the one-dimensional interpolation functions that satisfy the 0C  continuity requirement, iw  

and i  are the nodal displacements and rotation variables, respectively. For a very thin shell subjected to 

moment only, the Bernoulli condition (the shear strain is to be zero) should be fulfilled by the displacements 

and rotations. Imposing this condition gives 

 2
2

1
0

2

wdw r

dx l
  
     .  (2.3)

However, for Equation (2.3) to be zero all along the beam, we should have 2 2 0w   . Hence, a zero shear 

strain in the beam can be reached only when there are no deformations. The transverse shear locking occurs 

since the functions used to interpolate w  and   cannot satisfy the condition of zero shear strain all over 

the element. It is noted that the source of the transverse shear locking is the fact that interpolation functions 

cannot properly represent the pure bending condition with zero shear stresses, regardless of the use of finite or 

exact algebra [1]. 

 

With the development of shell, plate and beam elements, many methods have been proposed to cir-

cumvent the transverse shear locking phenomenon. Remedies to alleviate transverse shear locking commonly 

used are the RI (Reduced Integration) and SRI (Selective Reduced Integration) approach first suggested by 

Zienkiewicz [8-13]. However, the reduced integration technique requires the stabilization matrices to avoid 

spurious modes (hour glass modes). [43, 44]. An alternative method for reducing the transverse shear locking 

is the hybrid and mixed formulation in which separate interpolations are used for the stresses and displace-

ments [14, 15]. Another approach to alleviate transverse shear locking is the ANS (Assumed Natural Strain) 

method, suggested by MacNeal [16, 17], which is generally reported to be an efficient method utilizing com-

plete numerical integration rules. In this approach, the transverse shear strains are interpolated from the dis-

placement dependent strains defined at the mid-side of element edges to reduce transverse shear locking. 

Based on this concept, some efficient methods were proposed, including the MITC (Mixed Interpolation of 

Tensorial Component) method proposed by Bathe’s group [18-29] and the DSG (Discrete Strain Gap) ap-

proach suggested by Bischoff’s group [30, 31]. To alleviate the transverse shear locking behavior, while pre-

serving the properties of consistency and ellipticity, the MITC method has been successfully used to establish 

quadrilateral and triangular shell element. DSG method has some unique features. It is directly applicable to 

both 3-node triangular and 4-node quadrilateral element, without any considerations, like a particular choice 

of sampling points or the introduction of additional nodes or degrees of freedom and it applies directly to ele-

ments of arbitrary polynomial order. Another interesting approach arising from mixed variational formulations 
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is the EAS (Enhanced Assumed Strain) method first presented by Simo and Rifai [32]. The key idea of this 

method is based on the use of a strain field composed of a compatible strain filed and an enhanced strain field 

based on the Hu-Washizu variational principle to reduce transverse shear locking. 

 

 

 

2.1.2 Membrane Locking 

The membrane locking (also known as inextensional locking) addresses the inability of curved shell 

finite elements to exactly represent pure bending (inextensional bending) deformations, severely overestimat-

ing bending stiffness and exhibiting parasitic membrane stresses. Membrane locking phenomenon is different 

from locking problems within the membrane part of shell elements - namely in-plane shear locking, volumet-

ric locking and trapezoidal locking, see Section 2.1.3. Membrane locking comes from the effect of coupling 

membrane and bending and becomes more pronounced as shell thickness becomes zero. A typical symptom of 

the membrane locking is parasitic membrane stresses in the pure bending situations. It is noted that the 3-node 

triangular shell elements are always flat and therefore free from membrane locking. Even though 4-node 

quadrilateral shell elements are flat in many situations, if the shell elements are warped, i.e., all four nodes are 

not in the same plane, the membrane locking occurs in some problems. The modifications of the membrane 

part of shell finite elements to alleviate membrane locking can automatically improve the in-plane behaviors 

of the elements. Also, methods for alleviating the in-plane shear locking, trapezoidal locking and volumetric 

locking influence the behavior with respect to membrane locking. However, this is not guaranteed and there 

seem to be some conflicts [31]. 

 

The ANS (Assumed Natural Strain) methods [17, 45, 46] to eliminate the membrane locking phenom-

enon have been successfully proposed, especially considering 9-node quadrilateral elements. For the 4-node 

quadrilateral element the EAS (Enhanced Assumed Strain) method is often adopted to improve the membrane 

part of shell finite elements [32, 47]. In commercial codes the method of incompatible modes still has some 

significance, although it is similar to the EAS approach from a theoretical point of view. Like in all locking 

problems RI (Reduced Integration) with hourglass control to avoid spurious modes also has a great signifi-

cance especially in commercial codes. Koschnick [31] focused on the application of the DSG (Discrete Strain 

Gap) method to the problem of membrane locking of both beam elements and shell elements. 

 

 

 

2.1.3 In-Plane Shear / Trapezoidal / Volumetric Locking 

 

 

 

2.1.3.1 In-Plane Shear Locking 

Both the 3-node triangular and the 4-node quadrilateral membrane elements show excellent perfor-
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mances in the tractive or compressive dominant problems. However, in situations where bending effects are 

significant, the solution accuracy of both membrane elements dramatically deteriorates. 

 

Conversely, the accuracy of both membrane elements deteriorates in situations where bending actions 

are dominantly involved, and very fine meshes or high order elements are needed to obtain accurate solutions 

in these cases. This is due to the fact that the both 3-node triangular element and 4-node quadrilateral element 

cannot be used to model bending dominated fields. Figure 2.2 considers a single 4-node element subjected to 

the pure bending moment [4]. 
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Figure 2.2. A isolated 4-node element subjected to the pure bending moment: (a) Initial geometry, (b) Defor-

mation of a single 4-node finite element, (c) Correct deformation of a beam segment in pure bending. 

 

 

The analytic solution from beam theory is written as [48] 

 ( , )
M

u r s rs
EI

  and 
2 2 2 2

2 2
( , ) 1 1

2 2

Ma r Mb s
v r s

EI EIa b

   
      

   
,  (2.4)

where E  is the elastic modulus, I  is the second moment of area of the beam’s cross-section. Since the 4-

node finite element sides are always straight as shown in Figure 2.2(b), the finite element cannot represent the 

proper bending mode. From Figure 2.2(b) the finite element solution becomes 

 ( , )u r s urs   and 0v  . (2.5)

It is obvious from the Equation (2.5) that the finite element cannot properly reproduce the quadratic distribu-

tion of vertical displacements for the pure bending case shown in Figure 2.2(c). This lead to excessive stiff-

ness, which is a natural consequence of the inability of the element sides to be curved. In the pure bending 

analysis, the exact shear strain should be zero and only normal strains and stresses exist. The exact shear strain 

from Equation (2.4) is calculated by 

 0xy

u v

y x
  

  
 

.  (2.6)

Also, the shear strain of the 4-node finite element from Equation (2.5) is given by 
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 xy

u v
ur

y x

 
   
 

 .  (2.7)

In the above equation, the 4-node element has an excess of shear strain which leads to an parasitic stiffness. 

This contributes to the poor ability of the element to reproduce the bending situation. Similar results are ob-

tained for moments acting on the horizontal sides by changing the coordinate r  for s  in Equation (2.7). 

The deficiencies of the 4-node element also appear for severely distorted quadrilateral shapes. These disad-

vantages can be usually overcome in practice by using very fine meshes or high order interpolation functions. 

Other alternative methods to improve in-plane behaviors are presented in the Section 2.1.4. 

 

 

 

2.1.3.2 Trapezoidal Locking 
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Figure 2.3. The graphical descriptions of the (a) trapezoidal and (b) volumetric locking phenomenon. 

 

 

When the finite elements are distorted, the phenomenon of the trapezoidal locking (also called curva-

ture thickness locking) phenomenon appears. The trapezoidal locking occurs when the solid elements are used 

to model the curved structures, for example a curved beam subjected to bending. Due to the geometry of the 
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model, the trapezoidal shaped elements appear for a regular mesh. Figure 2.3(a) illustrates the trapezoidal 

locking phenomenon in the curved cantilever beam subjected to the end shear force. Due to the curved geome-

try and the loading condition, the 4-node element shown in Figure 2.3(a) deforms in such a way that the ele-

ment thickness should be decreased. The change of the element thickness causes the parasitic normal stresses 

along the thickness direction of the element. Physically, the thickness of the curved beam should not change. 

Hence this stresses are non-physical and cause the trapezoidal locking. The critical parameter for trapezoidal 

locking is the slenderness of the element. 

 

 

 

2.1.3.3 Volumetric Locking 

Unlike other locking phenomenon, the volumetric locking (also called dilation or Poisson locking) is 

caused by neither kinematic nor geometric reasons. The critical parameter in volumetric locking is the Pois-

son’s ratio v  and ultimately the bulk modulus of elasticity  . The bulk modulus of elasticity is defined as 

/ (3 6 )E v   . Thus, as the Poisson ratio v  closes to 0.5, the bulk modulus of elasticity,   becomes in-

finity which means the material behaves as if it is incompressible. Figure 2.3(b) demonstrates the volumetric 

locking phenomenon in a physical point of view. In the undeformed element, the upper portion of the element 

tries to expand and this demands the shift of the mid-plane of the element. However, the element mid-plane 

cannot move and force to be in the original position because all the points inside the element are linearly in-

terpolated. Thus there evolves a normal strain without any normal force acting on the element. The upper part 

of the element experiences tensile and the lower part of experiences compressive stress. This parasitic stress 

uses up a portion of strain energy that lead to volumetric locking. 

 

To alleviate the volumetric locking phenomenon, Nagtegaal et al. [49] proposed special crossed patch 

arrangements of 3-node triangular elements. Hughes [50] used the B-bar approach for 4-node quadrilateral 

elements. Simo and Rifai [32] employed the EAS (Enhanced Assumed Strain) method to reduce the volumet-

ric locking. Doll et al. [51] describe volumetric locking of low order solid and solid-shell elements. Wells et 

al. [52] developed a p-adaptive scheme to prevent volumetric locking in low order elements. In another ap-

proach to reduce the volumetric locking, the SRI (Selective Reduced Integration) technique [53, 54], the pen-

alty function approach based on a reduced constraint concept [55, 56] and mixed formulation methods [57-60] 

are proposed. Schlebusch et al. [61] described the utilization of the EAS approach to prevent Poisson locking 

and demonstrated application in numerical examples. 

 

To sum up, the popular solutions available for alleviating the various locking phenomenon, see Table 

2.1, are as follows: 

 ANS (Assumed Natural Strain) method 

 MITC (Mixed Interpolation of Tensorial Components) method 

 DSG (Discrete Strain Gap) method 

 RI (Reduce Integration) method with stabilization 
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 SRI (Selective Reduced Integration) with stabilization 

 Method of Incompatible modes 

 EAS (Enhanced Assumed Strain) method 

 Hybrid Stress method 

 High order element (p-element) 

 

 

Table 2.1. The popular solutions available for eliminating the locking phenomenon. 

Type of the locking Methods to alleviating the locking phenomenon 

Transverse shear locking RI, SRI, ANS, MITC, DSG, EAS, p-element 

Membrane locking ANS, EAS, RI, DSG 

In-plane shear locking EAS, RI, SRI, Hybrid stress, p-element, Incompatible modes 

Trapezoidal locking DSG, RI, SRI, p-element 

Volumetric locking EAS, RI, SRI, Hybrid stress, p-element, B-bar method 

 

 

 

2.1.4 Various Methods of Improving Membrane Behaviors 

In this section, various methods to improve the performance of the membrane elements are reviewed. 

Depending on element type, these some procedures reduce or even eliminate parasitic shear strain. 

 

 

 

2.1.4.1 SRI (Selective Reduced Integration) Method 

Equation (2.6) obviously shows that the shear strain in pure bending case should be zero at the ele-

ment center only. Therefore, the excess of shear strain can be eliminated by sampling the shear strain at the 

element center ( 0r s  ). This is simply achieved by using a reduced one point Gauss quadrature for the 

shear terms in the stiffness matrix, that is SRI (Selective Reduced Integration) method. For this purpose the 

element stiffness matrix can be divided into two parts: 

 ( ) ( ) ( )e e e
a s K K K .  (2.8)

In Equation (2.8) ( )e
aK  and ( )e

sK  are the element stiffness matrices including the axial and shear contribu-

tions, respectively. These stiffness matrices can be rewritten by 
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where ( )e
aK  is integrated exactly, either analytically or via a 2 2  Gauss quadrature, whereas a single inte-

gration point is used for ( )e
sK . This SRI technique can also improve the behavior of 4-node quadrilateral ele-

ment of arbitrary shapes. The reduced integration of ( )e
sK  can also be interpreted as a simple procedure to 

reduce the excessive influence of the shear terms in the element stiffness matrix. A disadvantage of reduced 

integration is that 4-node quadrilateral elements applied this technique are not geometric-invariant (also called 

frame-invariant, geometric or spatial isotropic), although it passes the patch test [62] and, therefore, it con-

verges to the exact solution as the element mesh is refined [1, 4]. 

 

 

 

2.1.4.2 Additional Bubble Node 
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Figure 2.4. The quadrilateral finite elements with (a) the additional bubble node and (b) incompatible modes.

 

 

The flexibility of the 4-node quadrilateral element can be improved by adding internal displacement 

modes to original two-dimensional interpolation function. One of the simplest mode is a bubble function asso-

ciated with an additional central node, see Figure 2.4(a). The displacement interpolation with the additional 

bubble node can be expressed by 

 
5

1
i i

i

u h u


   and 
5

1
i i

i

v h v


     with 
2 2

5 2 2
1 1

r s
h

a b

  
    
  

, (2.11)

where ih  ( 1, 2,3, 4i  ) are the two-dimensional interpolation function corresponding to node i  and the 

internal degrees of freedom 5u  and 5v  (also called hierarchical degrees of freedom) can be eliminated after 

the element stiffness matrix is constructed (also known as static condensation). It is noted that unknown vari-

ables, 5u  and 5v , are non-physical displacements which represent the differences between the total dis-

placements of the central node and the bilinear field defined by the four corner displacements. For example, 

the horizontal displacement of the central node is obtained as follows: 
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4

5
1

(0,0) i i
i

u h u u


 
  
 
 .  (2.12)

Also, the behavior of the 4-node quadrilateral element with the additional bubble node can be improved by 

using a reduced single Gauss quadrature for the shear terms as described in the previous section. 

 

 

 

2.1.4.3 Incompatible Modes 

The 4-node quadrilateral element can be also enhanced by using incompatible modes, 2 21 /r a  and 

2 21 / bs  shown in Figure 2.4(b). In 1971 Wilson [63] first suggested the incompatible modes for 4-node 

isoparametric finite elements. Taylor [64] presented a method to correct the incompatible mode using a con-

stant Jocobian during the integration of the incompatible modes, which passed the patch test. In 1986 Simo 

and Rafai [32] introduced the B bar approach to correct the strains produced by incompatible displacements, 

achieving excellent results for non-rectangular elements. The new displacement interpolations with incompat-

ible modes are written as 

 
2 24

1 22 2
1

1 1i i
i

r s
u h u

a b

   
       

   
   ,  (2.13)

 
2 24

3 42 2
1

1 1i i
i

r s
v h v

a b

   
       

   
   ,  (2.14)

where 1 , 2 , 3  and 4  are the additional degrees of freedom (also called nodeless degrees of freedom) 

which are internal to each element and can be eliminated by static condensation after the element stiffness 

matrix is obtained. However, the displacements along the interelemental boundaries are discontinuous and the 

element is incompatible. 

 

The 4-node quadrilateral element with incompatible modes fails to pass the patch test under constant 

stress states unless the shape of the element is rectangular. Fortunately, the element satisfies the patch test for 

arbitrary quadrilateral shapes if the shear terms of the stiffness matrix are evaluated using a reduced point 

Gauss quadrature, whereas the rest terms of the stiffness matrix can be exactly integrated via a 2 2  Gauss 

quadrature. The resulting element is geometric-invariant and does not have any spurious mechanisms [4, 64, 

65].  

 

The incompatible modes approach can also be successfully applied to 4-node quadrilateral element of 

arbitrary shape [4, 66]. The strain-displacement matrix with incompatible modes can be written as 

  C I

 
  

 

u
d B B

α
,  (2.15)

where T
1 2 3 3 4[ ]u u u v vu   and T

1 2 3 4[ ]   α  are the nodal displacement vector and additional 

degrees of freedom vector, respectively. Using the T[ ]xx yy xy  d  and T[ ]xx yy xy  f , the strain 
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energy with the incompatible modes is represented by 

 T T T1 1 1

2 2 2C IW dV dV dV    f d f B u f B α ,  (2.16)

where V  is the volume of the element. To pass the patch test, the strain energy term related to the incompat-

ible modes should be zero for a state of constant element stress. Therefore, the following conditions should be 

satisfied: 

 T1
0

2 I dV f B α  or 0I dV B .  (2.17)

Equation (2.17) can be fulfilled by adding a constant correction matrix ICB  to the matrix IB . To obtain a 

new strain-displacement, I I IC B B B , so that the following equation is satisfied: 

 ( ) 0I IC dV  B B  or 0I ICdV V B B .  (2.18)

Therefore, the correction matrix can be calculated from  

 
1

IC IV
  B B .  (2.19)

 

This approach is general and can be used to add any number of incompatible displacement modes, or 

strain patterns, to all types of isoparametric elements. The same numerical integration rules are used to evalu-

ate the element stiffness matrices. 

 

Recently, Sussman and Bathe [67] reported that the element with incompatible modes can display non-

physical behavior in analyses modeling very large strain and meshes of incompatible modes elements can also 

contain spurious modes in rather simple nonlinear analyses. Nevertheless, The method of incompatible modes 

still has some significance in commercial codes. 

 

 

 

2.1.4.4 Assumed Strain Fields 
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Figure 2.5. Interpolation used. (a) Nodes used for displacements interpolation. (b) Sampling points used for 

strain interpolation. 

 

 

Another method to improve the performance of the 4-node quadrilateral element is to impose over the 

element the assumed strain fields compatible with the condition 0xy   for the pure bending case. Dvorkin 

and Vassolo [20] proposed the assumed strain fields for improving the performance of the 4-node quadrilateral 

element. To interpolate the displacement field inside the element, the interpolation functions of a 5-node iso-

parametric element are used as shown in Figure 2.5(a). At the element level, the two displacements corre-

sponding to node 5 are condensed resulting only eight degrees of freedom. The strain fields are interpolated 

by 

 1 2 3xx x y      , 4 5 6yy x y       and 7xy  , (2.20)

where the i  ( 1,2, 7i   ) are expressed in terms of the nodal displacements by sampling the assumed 

strains at a number of element points and equaling their values to those given by the strains deduced from the 

original displacement filed. This leads to a substitute strain matrix from which the element stiffness matrix can 

be directly obtained on [20]. The proposed element with assumed strain fields does not contain spurious zero 

energy modes and the element passes the path test. 

 

 

 

2.1.4.5 Drilling DOFs (Degrees of Freedom) 

The drilling DOFs (degrees of freedom) are rotational degrees of freedom which lie at right angles to 

the plane. First striking feature of drilling degrees of freedom is that the shell elements can be directly formed 

as the combination of a plane element and a plate bending element [68]. The second advantage of drilling de-

grees of freedom is to improve better membrane performances with only corner nodes. For example, 3-node 

triangular element with drilling degrees of freedom performs much better than the original 3-node triangular 
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element, although not as well as the 6-node triangular element. 

 

 

(b)

1 1u

6

3

4

5

2

1v

4u

4v

3v

3u

5u

5v

2u

2v

5v

5u

1
1u

3

2

1v

2w

1w

3v

3u

2u

2v

3w

(b)(a)

,y v

,y v

i

iw

j

jw

,x um

s

l/2

l/2

�

�

 

Figure 2.6. (a) Side displacement associated with drilling degree of freedom iw  and jw . (b) Nodal dis-

placements of the 6-node triangular element. (c) 3-node triangular element with drilling degree of freedom. 

 

 

The drilling degrees of freedom are simply implemented by adding one rotational degrees of freedom 

at each corner while removing two degrees of freedom at the middle of each side, see Figure 2.6. Hence, the 

6-node triangular element can be converted to elements that have corner nodes only with three degrees of 

freedom per node. In the large finite element mesh of 6-node triangular elements, the conversion reduces the 

total number of degrees of freedom by a factor of 5/8. 

 

Figure 2.6(a) shows a typical side of a plane element. The   is the component of side-normal dis-

placement due to drilling degrees of freedom iw  and jw  at node i  and j . The   and its midside value 

m  are represented by 

 
( )

( )
2 j i

s l s
w w

l


   and ( )

8m j i

l
w w  . (2.21)

 

When iw  is equal to jw , the side becomes straight. When i jw w  , the midside displacement m  

can be regarded as the mid-span deflection of a simply supported beam of length l , loaded by end moments 

such that end rotations are of equal magnitude but opposite sign. Equation (2.21) can be converted by substi-

tuting the x and y components of m  and l , specifically cosm mu   , sinm mv   , cos j il y y  , 

and sin i jl x x  . Side-tangent displacement at midside is taken as the average of side-tangent displace-

ments at the corner nodes at the two ends of the side. Therefore, after adding the contribution to displacement 

from nodes i and j, the midside displacement components can be obtained by 
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1 1

2 2 8
i i j ij im

j j i jm

u u y yw wu

v v x xv

      
                

.  (2.22)

 

Using the transformation matrix, the complete relation between degree of freedom in 6-node triangular 

element and triangular element with drilling degrees of freedom, see Figure 2.6, can be represented by 

     T T

1 1 2 2 5 6 1 1 1 2 2 2 3 3 3u v u v u v u v w u v w u v w T ,  (2.23)

in which  T  is the transformation matrix which contains information from Equation (2.22) to relate the six 

translational degrees of freedom at midside nodes to translational and drilling degrees of freedom at nodes. 

 

In the development of drilling degree of freedom, A zero energy mode exists in elements with drilling 

degree of freedom. For example, mu  and mv  are zero when translational degree of freedom are zero at cor-

ner nodes and i jw w . The results are that a mesh of elements formulated in this way displays no strain en-

ergy if all drilling degrees of freedom in mesh are equal. Therefore, the global stiffness matrix becomes singu-

lar. To eliminating the singularity in this formulation, one drilling degrees of freedom in the mesh should be 

zero. For 4-node elements, an alternative approach to avoid the singularity is to invoke a penalty constraint by 

associating strain energy with the function 1 2 3 4w w w w   . 

 

 

 

2.2 The Continuum Mechanics Based Shell Finite Elements 

In 1970 Ahmad et al. [5] proposed the isoparametric continuum shell element with independent 0C  

interpolations for displacements and rotations. The most promising feature of this shell element is that the 

interpolation functions require only 0C  continuity. However the price for this low order continuity require-

ment is the introduction of shear deformations in the formulation. Hence, this elements are generically known 

as Reissner / Mindlin shell elements [6, 7]. The continuum mechanics based shell element was very naturally 

developed from the three-dimensional continuum isoparametric element formulation by imposing kinematic 

constraints. Even though the introduction of shear deformations in the formulation seems to be desirable for 

the analysis of thick shells, and also makes very natural the transition from 3D to shell elements [1], these 

shear deformations cause the main numerical difficulty of the continuum mechanics based shell element: the 

transverse shear locking phenomenon [1-4]. The extension of the continuum mechanics based shell element 

for nonlinear analysis (small strains) was independently proposed by Ramm [69] and by Krakeland [70]. 

 

 

 

2.2.1 Displacement Interpolation 
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Figure 2.7. Continuum mechanics based shell finite element. (a) Geometry of the 9-node shell element. (b) 

Definition of rotational degrees of freedom k  and k . 

 

 

A continuum mechanics based shell element is shown in Figure 2.7. In order to define its configura-

tion at a given time  , we use the coordinates of the mid-surface nodes referred to a global Cartesian system 

with base vector ie  and director vectors defined at the mid-surface nodes. Theses nodal director vectors are 

defined so as to approximate as closely as possible the shell normal at those nodes. An arbitrary point inside 

the shell element is defined by its natural coordinates system ( , ,r s t ) and the its geometry interpolation is ob-

tained by 

 
1 1

( , , ) ( , ) ( , )
2

q q
i

i i i i n
i i

t
r s t h r s a h r s  

 

  x x V ,  (2.24)

where q is the number of nodes per element, ih  is the two-dimensional interpolation functions of the stand-

ard isoparametric procedure corresponding to node i , i
 x  is the position vector of the node i  at time  , 

ia  is shell thickness at node i  (assumed as invariant during the deformation), and k
n

 V  is the director vec-

tor corresponding to the i -th mid-surface node at time  , which is defined taking into account that 

1k
n

 V . While the natural coordinates ( ,r s ) are defined on the element mid-surface ( 0t  ) the natural co-

ordinate t is measured at any point along the corresponding director vector direction. The second term on the 

RHS in Equation (2.24) shows that at any point on the element mid-surface the unit director vector times the 

thickness is interpolated from the nodal values. 

 

The geometry interpolation in Equation (2.24) satisfies 0C  continuity. For describing the kinematics 

of the continuum mechanics based shell element, the two main assumptions are following. The element thick-

ness remains constant due to the assumed infinitesimal strains deformation and the director vectors remain 

straight during the deformation. 

 

From Equation (2.24) the covariant base vectors of the natural coordinate system (r, s, t) are given by
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 i
ir


 




x
g    with 1r r , 2r s , 3r t   (2.25)

and the contravariant base vectors need to satisfy the following relation: 

 i i
j j

   g g .  (2.26)

The symbol i
j  in the above equation denotes the Kronecker delta and is defined as follows: 

 
1

0
i
j

i j

i j

 
   

 .  (2.27)

 

For linear kinematics the  -configuration is considered to be coincident with the 0-configuration 

(reference configuration). The displacements for the configuration at time   can be expressed as 

 0  u x x   (2.28)

and hence 

  0

1 1

( , , ) ( , ) ( , )
2

q q
i i

i i i i n n
i i

t
r s t h r s a h r s  

 

   u u V V ,  (2.29)

in which i
 u  is the vector of incremental nodal displacements at node i  and 0 i

nV  denotes the director 

vector at node i  in the configuration at time 0. In the reference configuration, two vectors, 0
1V  and 0

2V , 

are defined as shown Figure 2.7(b) and nodal director vector forms the orthonormal basis ( 0 0 0
1 2, , nV V V ). 

For the infinitesimal rotations, director vector corresponding to node i  at time   can be written by [42, 71, 

72] 

 0 0k k k
n n i n

   V V θ V ,  (2.30)

 0 0
1 2
i i

i i i
   θ V V ,  (2.31)

 0 0 0
1 2

i i i i
n n i i

    V V V V .  (2.32)

Therefore, substituting Equation (2.32) into Equation (2.29), displacement interpolation for the linear analy-

sis is obtained by 

  0 0
2 1

1 1

( , , ) ( , ) ( , )
2

q q
i i

i i i i i i
i i

t
r s t h r s a h r s   

 

    u u V V .  (2.33)

Dropping the superscript   in Equation (2.33), the displacement interpolation is rewritten by 

  2 1
1 1

( , , ) ( , ) ( , )
2

q q
i i

i i i i i i
i i

t
r s t h r s a h r s  

 

    u u V V ,  (2.34)

where iu  is the vector of nodal displacements at node i , 1
iV  and 2

iV  are the unit vectors orthogonal to 

i
nV  and to each other, and i  and i  are the rotations of the director vector i

nV  about 1
iV  and 2

iV , re-

spectively, at node i . It is apparent from Equation (2.34) that this continuum mechanics based shell element 

has 5 degrees of freedom per node.  

 

The infinitesimal strain tensor at any point inside the shell can be written by 
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 i j
ije e g g ,  (2.35)

where ije  is the covariant strain components, ig  and jg  are the contravariant base vectors. We use the 

notation ( 0 0i jg g ), to indicate the dyadic tensorial product between the two contravariant base vectors. In 

Equation (2.35), 0tte   because the shell thickness is constant. From the kinematic relations between strain 

components and displacements, the covariant strain components are 

 
1

2ij i j ij
j i

e
r r

  
        

u u
g g B U   (2.36)

with 

  T

1 2 1 1 1 5 1n n n n
u u v w


U        .  (2.37)

 

The complete strain tensor is then written as 

  i j i j
ij ije   e g g B g g U ,  (2.38)

where the strain matrix e  contains all six strain components ( xx , yy , zz , xy , yz , zx ) in the global 

Cartesian coordinate system and the ig  are already mentioned in Equation (2.26). The strain-displacement 

matrix B̂  of the shell element is constructed as 

 ˆe BU ,  (2.39)

where e  is 
T

2 2 2xx yy zz xy yz zx        . 

 

In order to apply the plane stress assumption, that is, the stress normal to the surface should be zero, let 

us introduce the local Cartesian shell-aligned coordinate system, 

 
1 3

1 3r





g g

e
g g

,  
3

3

r
s

r





g e

e
g e

,  
3

3t 
g

e
g

.  (2.40)

The strain in the local coordinate system ( re , se , te ) is then given 

 * *ˆ e QBU B U ,  (2.41)

in which Q  represents a matrix that transforms the strain in the global Cartesian system to the local Carte-

sian system. The elements of the matrix Q  are obtained from the direction cosines of the local base vectors 

( re , se , te ), 

 

2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2
2 2 2
3 2 3 3 3 3 3 3 3

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

2 2 2

2 2 2

2 2 2

l m n l m m n n l

l m n l m m n n l

l m n l m m n n l

l l m m n n l m l m m n m n n l n l

l l m m n n l m l m m n m n n l n l

l l m m n n l m l m m n m n n l n l






 
  

   
  

Q










 

  (2.42)

with 
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 1 1( )rl  e , 1 2( )rm  e , 1 3( )rn  e ,  (2.43)

 2 1( )sl  e , 2 2( )sm  e , 2 3( )sn  e ,  (2.44)

 3 1( )tl  e , 3 2( )tm  e , 3 3( )tn  e .  (2.45)

 

The stress-strain law containing the plane-stress assumption, that is the stress normal to the shell sur-

face is zero, is given by 

 
2

1 0 0 0 0

1 0 0 0 0

0 0 0 0 0 0

1
0 0 0 0 0

21
1

0 0 0 0 0
2

1
0 0 0 0 0

2

v

v

vE

v
v

k

v
k

 
 
 
 
 

 
     

 
 
 
 

C   (2.46)

where k  is a shear correction factor which is to attain results consistent with classical bending theory. In 

Equation (2.46), this amounts to multiplying the transverse shearing moduli by 1k  . 

 

 

 

2.2.2 The MITC (Mixed Interpolation of Tensorial Components) Approaches 

The MITC (Mixed Interpolation of Tensorial Components) approach was originally proposed a 4-node 

shell element, MITC4, by Dvorkin and Bathe [18, 19] as a solution for the transverse shear locking problem 

that does not incorporate numerical drawbacks. Later, this method extended for the high order quadrilateral 

and the triangular shell elements such as MITC3, MITC6, MITC8, MITC9 and MITC16 [21, 23]. In this sec-

tion, the MITC formulations of the continuum mechanics based shell finite elements are briefly reviewed. 

Again, the covariant strain component is as follows: 

 , ,i

1
( )

2ij i j je    g u g u ,  (2.47)

where 

 i
ir





x
g ,  ,i

ir




u

u    with 1r r , 2r s , 3r t . (2.48)

Now let us define a set of the co-called tying points 1, , ijk n   on the shell midsurface with coordinate 

( ,k kr s ), and define the assumed covariant strain components AS
ije  as 

 
( , , )

1

( , , ) ( , )
ij

k k
ij ij

n
AS k
ij ij ij r s t

k

e r s t h r s e


  ,  (2.49)

where ijn  is the number of tying points for the assumed covariant strain component AS
ije , and k

ijh  are the 

assumed interpolation functions satisfying 
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 ( , ) , 1, ,k l l
ij ij ij kl ijh r s l n     (2.50)

for the covariant strain component ije . It is noted that this tying procedure is carried out on the elemental lev-

el for each individual element. The covariant strain in terms of the nodal displacement is obtained by 

 ij ije  B U ,  (2.51)

where B  is the strain-displacement matrix and U  is the nodal displacement vector. Hence the assumed 

covariant strain components are rewritten as 

 
(r ,s , )

1

( , )
ij

k k
ij ij

n
AS k AS
ij ij ij ijt

k

e h r s


 
  
  
 B U B U .  (2.52)

After applying the proper stress-strain law including the shell assumption, the element stiffness matrix is con-

structed in the same manner as the displacement based shell element. 

 

 

 

2.2.2.1 MITC4 Method for the 4-Node Quadrilateral Shell Element 
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Figure 2.8. MITC4 shell finite element in natural coordinate system and its tying points. 

 

 

Using the interpolation and tying position shown in Figure 2.8, the transverse shear components of the 

covariant strain are written by 

 (1) (2)1 1
(1 ) (1 )

2 2
AS
rt rt rte s e s e    , (2.53)

 (1) (2)1 1
(1 ) (1 )

2 2
AS
st st ste r e r e    . (2.54)

 

This assumed transverse shear strain fields in Equation (2.53) are derived as follows: 
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 AS
rte a br cs drs    .  (2.55)

To construct constant strains along the bottom and top edges of the element by the given tying points, the fol-

lowing conditions should be satisfied, see Figure 2.8, 

 (1)( 1, 1)AS
rt rte e   , (1)(1, 1)AS

rt rte e  , (2.56)

 (2)( 1,1)AS
rt rte e  , (2)(1,1)AS

rt rte e .  (2.57)

From above conditions, the four linear equations are obtained by 

 (1)
rta b c d e    , (1)

rta b c d e    , (2.58)

 (2)
rta b c d e    , (2)

rta b c d e    .  (2.59)

and the coefficients are 

 (1) (2)1
( )

2 rt rta e e  , (2) (1)1
( )

2 rt rtc e e   and 0c d  .  (2.60)

The coefficients for the r  terms disappear since the transverse shear strain is constant for the r direction. 

Hence, substituting Equation (2.60) into Equation (2.55), the assumed transverse shear strain, that is the 

same to Equation (2.53), can be obtained. 

 

 

 

2.2.2.2 MITC9 Method for the 9-Node Quadrilateral Shell Element 

 

 

AS

rre

r

s

a a

b

b
r

s

a a

a

a

AS

rse

r

s

a a

c

c

AS

rte

: Tying point

22 2

2 2 2

 

Figure 2.9. Strain interpolations and its tying positions of the MITC9 shell element (the AS
sse  and AS

ste  com-

ponents are interpolated in a symmetric manner); 1 / 3a  , b 3 / 5,  1c  . 

 

 

The MITC9 element has been studied in many publications [1, 21, 22, 26]. Figure 2.9 gives the strain interpo-

lations and tying points used for the MITC9 method in which the covariant strain component fields for the in-

plane actions are interpolated and tied to the also interpolated displacement field. The assumed transverse 

shear strain fields for the MITC9 can be derived as the same procedures of the MITC4 method. For the 
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MITC9, the strain components rre , sse , rte  and ste  have six tying points and in-plane shear strain compo-

nent rse  is interpolated based on four tying points. This approach takes care of both membrane and trans-

verse shearing locking problems. The stiffness matrix of the element is then formed based on these interpolat-

ed strain components and full integration is used. The element does not present any spurious energy modes. In 

view of the more complicated strain interpolation and full integration scheme, the MITC9 is a more computa-

tionally expensive element, but it is accurate and fairly insensitive to element deformations. The MITC9 shell 

element is known to satisfy the ellipticity and consistency conditions and to show good convergence behav-

iors [1, 21, 22, 26]. 

 

 

 

2.2.2.3 MITC3 Method for the 3-Node Triangular Shell Element 
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Figure 2.10. Transverse shear strain tying positions of the 3-node MITC triangular shell element with the con-

stant transverse shear strain along its edges; 1 1 1 / 2r s  . 

 

 

Lee and Bathe [23] proposed the MITC3 shell element which satisfies spatially isotropic condition. 

Since the geometry of the 3-node triangular shell element is always flat, only the mixed (assumed) interpola-

tion for the transverse shear strains are used. The tying and interpolation schemes are shown in Figure 2.10 

and its assumed transverse shear components are obtained by 

 (1)AS
rt rte e cs  ,  (2.61)

 (2)AS
st ste e cr  ,  (2.62)

where (2) (1) (3) (3)
st rt st rtc e e e e     and, at tying points, ( )n

rte  and ( )n
ste  are calculated from Equation (2.47), see 

Figure 2.10. 
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2.2.2.4 MITC6 Method for the 6-Node Triangular Shell Element 
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Figure 2.11. Strain tying positions of the 6-node MITC triangular shell element; 1 1 1 / 2 1/ 2 3r s   , 

2 2 1 / 2 1/ 2 3r s    and 3 3 1/ 3r s  . 

 

 

For the 6-node shell element, in-plane strains are also assumed to avoid the membrane locking. The 

assumed in-plane shear strain component AS
rse  is obtained as follows [23]: 

  1

2
AS AS AS AS
rs rr ss qqe e e e   .  (2.63)

Figure 2.11 shows the tying points corresponding to each normal strain. We assumed the starting polynomials

 1 1 1
AS
rre a b r c s   ,  (2.64)

 2 2 2
AS
sse a b r c s   ,  (2.65)

 3 3 3 (1 )AS
qqe a b r c r s     ,  (2.66)

and have 

 (1) (1)
1 rr rra m l   , (1)

1 2 rrb l  ,  (1)
1 1 1 13 crrc e a b r   ,  (2.67)
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 (2) (2)
1 ss ssa m l   ,  (2)

2 2 2 13 cssb e a c s   , (2)
2 2 ssc l  ,  (2.68)

 (3) (3)
3 qq qqa m l   , (3)

3 2 qqb l   ,  (3)
3 3 3 13 cqqc e a b r   ,  (2.69)

where 

  ( ) ( ) ( )
1 2

1

2
i i i

jj jj jjm e e  ,  ( ) ( ) ( )
2 1

3

2
i i i

jj jj jjl e e     with , ,j r s q  for 1,2,3i  .  (2.70)

Consequently, the isotropic in-plane strain field is obtained and the interpolation function for the in-plane 

shear strain AS
rse  is immediately given by Equation (2.63). For this MITC6 triangular shell element, linear 

transverse shear strains along edges are assumed as 

 2 2
1 1 1 1 1 1

AS
rte a b r c s d rs e r f s      ,  (2.71)

 2 2
2 2 2 2 2 2

AS
ste a b r c s d rs e r f s        (2.72)

and have 

 (1) (1)
1 rt rta m l   , (1)

1 2 rtb l  , 1 0e  ,  (2.73)

 (2) (2)
2 st sta m l   , (2)

2 2 stc l  , 2 0f  ,  (2.74)

 (3) (3)
1 1 1 26 3 2 2 4crt cst st rtc e e m m a b a        ,  (2.75)

 (3) (3)
2 1 2 23 6 2 2 4crt cst st rtb e e m m a a c         ,  (2.76)

 (3) (3) (3) (3)
2 1 2 23 6 3 3 3crt cst st st rt rte e e m l m l b a c           ,  (2.77)

 (3) (3) (3) (3)
1 1 1 26 3 3 3 3crt cst st st rt rtf e e m l m l a b c            ,  (2.78)

 1 2d e  , 2 1d f  , (2.79)

where 

  ( ) ( ) ( )
1 2

1

2
i i i

ji jt jtm e e  ,  ( ) ( ) ( )
2 1

3

2
i i i

ji jt jtl e e    with ,j r s  for 1,2,3i   (2.80)

 

The formulation of the MITC6 shell element given here represents the peculiar unstable behaviors re-

ported in Reference [24]. Kim and Bathe [25] improved the MITC6 shell element which does not show the 

instable sometimes observed with the MITC6 shell element given here. 

 

 

 

2.3 PU (Partition of Unity) Approximation 

Partition of unity approximations have unique features for p-adaptivity and local refinement without 

any traditional local mesh refinement of the problem domain. Some of the recent developments of the meth-

ods associated with the partition of unity approximation are reviewed in this section. 
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2.3.1 Mesh Free Methods 

The key feature of the meshfree methods is that they do not need a mesh to discretize the domain con-

sidered. In simulations where the material can move around or where large deformations can occur, the con-

nectivity of the mesh can be difficult to maintain without introducing error into the simulation. Meshfree 

methods are an excellent approach to solve these problems. Hence, there has been much interest in these 

methods in recent years. Furthermore, meshfree approximations are usually smoother than the finite element 

interpolations and the results from the meshfree approximations are more accurate. The origin of meshfree 

approach can be trace back to the SPH (Smooth Particle Hydrodynamics) proposed by Lucy [73]. Presently, a 

huge amount of literature on meshfree methods have been published. Some of the important works in the 

meshfree method include the DEM (Diffuse Element Method) by Nayroles and Touzot [74], EFG (Element 

Free Galerkin) method by Belytschko et al. [75], RKPM (Reproducing Kernel Particle Method) by Liu et al. 

[76], PIM (Point Interpolation Method) by Liu and Gu [77], MLPG (Meshless Local Petrov-Galerkin) method 

by Atluri and Zhu [78], LBIE (Local Boundary Integral Equation) method by Zhu et al. [79], and LPIM (Lo-

cal Point Interpolation Method) by Liu and Gu [80], LoKrigin (Local Kriging) method by Lam and Wang 

[81], MLNNI (Meshfree Local Natural Neighbour Interpolation) method by Yongchang and Hehua [82] and 

NEM (Natural Element Method) by Braun and Sambridge [83], and so forth. 

 

Although the meshfree methods are free from the drawbacks of finite element method, they have also 

fatal disadvantages. For instance, the meshfree method possess the lack of Kronecker-delta property of shape 

functions which make it rather cumbersome to implement the essential boundary conditions. Furthermore, the 

computational cost of the meshfree methods are in general more expensive than that of the finite element 

methods due to the use of MLS (Moving Least Square) approximation. Choice of an appropriate order of nu-

merical integration influences the convergence of numerical solutions of meshfree methods. Unfortunately, 

the nodal shape functions of meshfree methods, such as MLS, are highly complex in nature and this leads to 

difficulty evaluating an accurate numerical integration [84]. 

 

 

 

2.3.2 Hybrid Methods 

As a result, there have been tremendous efforts in recent years to develop hybrid methods combining 

the finite element methods with meshfree methods. The aim of these methods is to incorporating the strengths 

of both the finite element method and meshfree methods while avoiding their weaknesses. Examples of such 

efforts include combining the FEM (Finite Element Method) with EFG (Element Free Galerkin) [85, 86] and 

coupling the FEM and BEM (Boundary Element Method) with MLPG method [87]. In these methods, the 

domain of the problem is usually divided into two sub-domains which are modelled by the FEM/BEM and 

meshfree methods, respectively. Other approaches, such as hierarchical mixed approximation method pro-

posed by Huerta and Fernandez [88] and coupling of FE (Finite Element) method and EFG method using col-

location approach developed by Xiao and Dhanasekar [89] have also been presented. The coupled finite ele-

ment method with meshfree method offers significant advantages in reducing the computational time of the 
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meshfree methods and imposing the essential boundary conditions easily. Hao et al. [90] presented a new 

method called the MPFEM (Moving Particle Finite Element Method) which provides continuity of both the 

approximated solution and its gradient. The MPFEM do not require any treatment for imposing essential 

boundary conditions. Based on the similar concept of the MPFEM, Liu et al. [91] developed the RKEM (Re-

producing Kernel Element Method) by combining the virtues of finite element approximations and reproduc-

ing kernel particle approximations. Two distinguished features of RKEM are: the arbitrarily high order 

smoothness and the interpolation property of the shape functions. These properties are desirable especially in 

solving Galerkin weak forms of higher order partial differential equations and in treating Dirichlet boundary 

conditions. 

 

 

 

2.3.3 Partition of Unity Based Finite Element Methods 

Another type of hybrid methods called PU (Partition of Unity) based finite element methods has been 

proposed in recent years. The partition of unity based finite elements have been attracted much interest from 

researchers in computational solid mechanics since they offer several advantages over the conventional finite 

element method. The feature of the partition of unity based finite element method is the use of the partition of 

unity approximation. The partition of unity approximation is constructed by the partition of unity function and 

local approximation function that can be defined by user. A free choice of local approximation function allows 

flexibility for modelling complicated problems and the construction of high order approximations without the 

addition of extra nodes. The displacement interpolation of the partition of unity based finite element is repre-

sented by 

 P
( )( ) i

h i i i k i k
i I i I k

u x h u h a
 

    ,  (2.81)

in which 
1

( ) 1
N

ii
h x


  form the partition of unity, Pi

k  is the user-defined local function on cover Pi  

which is composed of elements surrounding node i , and ( )i ka  are the additional degrees of freedom at node 

i . The concept of partition of unity approximation was established in the PUM (Partition of Unity Method) 

[33] and PUFEM (Partition of Unity Finite Element Method) [34] proposed by Babuška and Melenk. The 

similar idea to the partition of unity method was also introduced and extensively investigated in the hp clouds 

method by Duarte and Oden [35, 36], the GFEM (Generalized Finite Element Method) by Strouboulis et al. 

[37, 38] and Duarte et al. [39, 40], and the partition of unity-based hierarchical finite element method by Tay-

lor et al. [41]. The similar partition of unity approximation can also be found, earlier, in the MM (Manifold 

Method) proposed by Shi [92]. In the MM, the partition of unity is the finite element shape function and the 

local function is called cover function. Recently, Jeon et al. [28] proposed a 3-node shell finite element en-

riched by interpolation covers based on the MITC method. The proposed shell element shows the good con-

vergence behaviors in the analysis of various shell problems, even when distorted meshes are used. 

 

The major disadvantage of the partition of unity based finite element methods is the linear dependence 

problem which occurs when both the partition of unity functions and the local functions are taken as explicit 
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polynomials [33, 34, 93]. In order to avoid the linear dependence problem, Oden et al. [36] suggested exclud-

ing the space spanned by the terms of finite element shape functions from that of the local approximation 

functions. The mapped quadrilateral shape functions were used in the work of Strouboulis et al. [37, 38], but 

they could not eliminate the linear dependencies completely. Tian et al. [94] studied some effective approach-

es to eliminate the linear dependency problems. These approaches include suppressing the additional un-

known degrees of freedom, using constant local functions at the boundary nodes, using triangular mesh 

around quadrilateral mesh, and deleting the polynomial terms included in the span of the partition of unity 

function, which was first suggested by Oden et al. [36]. A recent progress on this aspect is the SGFEM (Stable 

Generalized Finite Element Method) by Babuška and Banerjee [95], which is aiming to improve the condi-

tioning property of the GFEM (Generalized Finite Element Method). The basic idea of the SGFEM is to use a 

modified local function. Rajendran et al. [84, 96] proposed PU-based FE-meshfree element wherein the FE 

shape functions are used for partition of unity, and the least-square PIM (Point Interpolation Method) shape 

function are used for local approximation. With this choice, the proposed PU-based FE-meshfree element is 

free of the linear dependence problem. Cai et al. [97] suggested that the local approximation at a boundary 

node is constructed by a modified least-squares approach and that at an inner node using a polynomial basis. 

These dually constructed local approximation avoid the linear dependency problems. 
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Chapter 3. A Partition of Unity Based 3-Node Triangular Shell Element 

 

In this chapter, A new scheme to the partition of unity based 3-node triangular shell finite element 

within the MITC method (also called hereafter enriched MITC3) is presented. The MITC method is used for 

the standard and enriched displacement interpolations. The partition of unity based 3-node shell finite element 

not only captures higher gradients but also decreases inter-elemental stress jumps. In particular, the partition 

of unity approach increases solution accuracy without any traditional local mesh refinement. Convergence 

studies considering a fully clamped square plate problem, cylindrical shell problems, and hyperboloid shell 

problems demonstrate the good predictive capability of the enriched MITC3 shell finite element, even when 

distorted meshes are used. We evaluate the effectiveness of the method, and also illustrate the use of the en-

richment scheme applied only locally through the solution of two additional shell problems: a shaft-shaft in-

teraction problem and a monster shell problem. 

 

 

 

3.1 The Finite Element Method Enriched by Interpolation Covers 

Enriching the finite element procedure is in principle, and theoretically, straightforward but difficulties 

are encountered in obtaining effective schemes. To introduce the basic procedure for the enrichment scheme 

considered here, let us briefly consider in this section a two-dimensional analysis problem. 
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Figure 3.1. Description of sub-domain for enriched over interpolations; (a) usual interpolation function, (b) 

cover region or elements affected by the interpolation cover, and (c) an element. 

 

 

Let   1

nn
i i

Q x  be a set of n  nodal point position vectors T[ ]i i ix y x , and let 

1{ } { }m q
h m    be a family of q  triangles generated by nQ . The triangles correspond to the domain   in 
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which we seek the solution variable u  

 
1

q
m

m



  . (3.1)

The triangles do not overlap, that is, j k     for j k . Figure 3.1 shows the piecewise interpolation 

function ( , )ih x y  used in the solution. Let iC  be the support domain of ih , i.e. supp ( )i iC h , 

1,...,i N  , which we call the cover region. Hence the cover region iC  corresponds to the union of ele-

ments attached to the node i , see Figure 3.1(b). For each m , let ( )ci m  be the set of cover indices defined 

by 

 ( ) { : }m
c ii m i C    . (3.2)

In Figure 3.1, the 3-node triangular element m  coincides with the overlapped region of the three cover re-

gions iC , jC  and kC  and hence ( ) { , , }ci m i j k . To enrich the standard finite element interpolation for 

the solution variable u , we use interpolation cover functions 

 2 2 ˆ[ ] [ ]p p
i i i i i i i i i iu u         u    with 

( ) ( )
,i i

i i
i i

x x y y
 

 
 

  , (3.3)

where iu  is the standard nodal point variable, 
2 2 Tˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]

p

i i i i i i iu u u u u u     u   lists the additional degrees 

of freedom for the cover region, p  is the order of the complete polynomial used, and i  is the diameter of 

the largest finite element sharing the node i . The use of i  can improve the conditioning of the coefficient 

matrix. 

 

The enriched approximation for the solution variable is then given by 

1 ( ) 1 ( ) ( )

ˆ[ ]
c c c

q q
p

i i i i i i
m i i m m i i m i i m

u h u h u
    

 
     

 
     H u  

with 

 2 2[ ]p
i i i i i i i i ih      H  . (3.4)

 

Considering Equation (3.4), the enriched cover approximation consists of the standard finite element 

interpolation plus additional higher order terms. To obtain a well-conditioned stiffness matrix, the local coor-

dinate systems ( i , i ) instead of the global coordinates ( x , y ) are used. Also, not only 0iu   but also 

ˆ i u 0  are always restricted (although not mentioned in the example solutions) when imposing the essential 

boundary conditions at the node i . 

 

The basic properties of the finite element method enriched by interpolation covers were studied for 

general 2D and 3D finite element analyses in Reference. [98]. These basic properties pertain also to the finite 

element analysis of shells. 
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3.2 The Enriched MITC3 Shell Finite Element 

In this section, the displacement interpolation of the MITC3 shell finite element enriched by the linear 

interpolation cover is presented. Therefore, the resulting enriched displacement interpolation can give quadrat-

ic convergence. Also, the assumed covariant strain fields used for the enriched MITC3 shell finite element are 

proposed in this section. 

 

 

 

3.2.1 Enriched Displacement Interpolation 

The geometry of the 3-node continuum mechanics based triangular shell finite element is interpolated 

using [23, 99] 

3 3

1 1

( , , ) ( , ) ( , )
2

i
i i i i n

i i

t
r s t h r s a h r s

 

  x x V  

 with 1h r , 2h s , 3 1h r s   , (3.5)

where r , s , and t  are natural coordinates, ih  is the two-dimensional interpolation function correspond-

ing to node i , ix  is the position vector of node i  in the global Cartesian coordinate system, and ia , i
nV  

denote the shell thickness and the director vector at node i , respectively, see Figure 3.2. 
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Figure 3.2. A 3-node triangular continuum mechanics based shell finite element. 

 

 

The standard displacement interpolation of the shell element is given by 

  
3 3

2 1
1 1 2

i i
i i i i i i

i i

t
h a h  

 

    u u V V , (3.6)
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in which T[ ]i i i iu v wu  is the nodal displacement vector in the global Cartesian coordinate system, 

T
1 1 1 1[ ]i i i i

x y zV V VV  and T
2 2 2 2[ ]i i i i

x y zV V VV  are unit vectors orthogonal to i
nV  and to each other, and i  

and i  are the rotations of the director vector i
nV  about 1

iV  and 2
iV  at node i . 

 

The linear interpolation cover, that is, the first order degree of polynomial bases is used to enrich the 

displacement interpolation in Equation (3.6). The enriched displacement interpolation for the 3-node triangu-

lar shell finite element is given by 

 ˆ u u u  (3.7)

 with  
3 3

2 1
1 1

ˆˆˆ ˆ
2

i i
i i i i i i

i i

t
a

 

    u H u H D α D β , (3.8)

in which Tˆ ˆ ˆ ˆ ˆ ˆ ˆ[ | | ]i i i i i i iu u v v w w     u , Tˆ ˆ ˆ[ ]i i i
  α  and Tˆ ˆ ˆ[ ]i i i

  β  are unknown coefficient 

vectors for the displacements and rotations, and the iH  are the linear cover interpolation matrices for the 

displacements and rotations 
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Note that the enriched displacement interpolation for u  in Equations (3.7) consists of two parts: the stand-

ard linear term u  and the additional quadratic term û . 

 

 

 

3.2.2 Assumed Covariant Transverse Shear Strain Fields 

The covariant strain components are directly obtained by 

  , ,

1

2ij i j j ie    g u g u ,  (3.10)

where i
ir





x
g ,  ,

ˆ( )
i

i ir r

  
 
 
u u u

u    with 1r r , 2r s , 3r t . 

 

Therefore, the enriched covariant strain components are also divided into two parts 

ˆij ij ije e e    

 with  , ,

1

2ij i j j ie    g u g u  and  , ,

1
ˆ ˆ ˆ

2ij i j j ie    g u g u ,  (3.11)

in which ije  and îje  correspond to the standard linear and additional quadratic displacement interpolations, 

respectively. 
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To alleviate the locking phenomenon, the MITC method for the covariant transverse shear strains is 

adopted. However, different assumed covariant transverse shear strain fields are employed for the standard 

and additional quadratic displacement interpolations. The assumed covariant transverse shear strain fields of 

the MITC3 and MITC6 shell elements are used for the strains ije  and îje , respectively [23]. Note that, in the 

MITC6 shell element, the covariant membrane strains are also assumed to reduce membrane locking, but this 

treatment is not necessary and not used for the enriched MITC3 shell element due to its flat geometry. 
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Figure 3.3. Tying points for the covariant transverse shear strains of the enriched MITC3 shell finite element: 

(a) for the standard linear displacement interpolation; 1 1 1/ 2r s  , and (b) for the additional quadratic dis-

placement interpolation; 1 1 1 / 2 1/ 2 3r s    and 2 2 1 / 2 1/ 2 3r s   . 

 

 

The assumed covariant transverse shear strain field used for the standard displacement interpolation is 

[23] 

 (1)AS
rt rte e cs  , (2)AS

st ste e cr  ,  (3.12)
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where (2) (1) (3) (3)
st rt st rtc e e e e     and, at the tying points, ( )n

rte  and ( )n
ste  are calculated from Equation 

(3.11), see Figure 3.3(a). 

 

For the additional quadratic displacement interpolation, the assumed covariant transverse shear strain 

field are used. 

1 1 1ˆAS
rte a b r c s   , 

 2 2 2ˆAS
ste a b r c s     (3.13)

and the coefficients are 

(1) (1)
1 rt rta m l  ,  (1)

1 2 rtb l ,  (2) (2)
2 st sta m l  ,  (2)

2 2 stc l , 

(3) (3) (3) (3)
1 2 2 1( ) ( )st st rt rtc a c a m l m l       , 

 (3) (3) (3) (3)
2 1 1 2( ) ( )st st rt rtb a b a m l m l        (3.14)

 with  ( ) ( ) ( )
1 2

1
ˆ ˆ

2
i i i

jt jt jtm e e  ,  ( ) ( ) ( )
2 1

3
ˆ ˆ

2
i i i

jt jt jtl e e     with ,j r s   for 1, 2, 3i  , (3.15)

where ( )
1̂

i
jte  and ( )

2ˆ
i
jte  are calculated at the tying points in Figure 3.3(b). 

 

Finally, the assumed covariant transverse shear strain fields for the enriched MITC3 shell element are 

obtained as 

 ˆAS AS AS AS
jt jt jt jte e e   B U    with ,j r s , (3.16)

in which AS
jtB  is the covariant transverse shear strain-displacement matrix and U  is the vector that contains 

the degrees of freedom iu , i , i  and the additional degrees of freedom ˆ iu , ˆ
iα , ˆ

iβ . Note that other co-

variant components use only displacement based formulations and hence the scheme will not give spurious 

modes in membrane strains [24, 25]. 

 

Then, using the appropriate stress-strain matrix for shells, the element stiffness is constructed in the 

same manner as for the displacement-based shell element [1]. The 7-point Gauss integration is adopted to 

evaluate the stiffness matrix because the order of the enriched displacement interpolation is quadratic. 

 

Since the cover interpolation is based on the existing nodes, the enriched displacement interpolation 

can be locally used assigning or not assigning interpolation covers in different regions. Without enrichment, 

the element is identical to the original MITC3 shell element. 

 

The enriched MITC3 shell element passes the membrane, bending, and transverse shearing patch tests 

for arbitrary local enrichments, see Refs. [1, 18, 23] for the patch tests performed. Of course, in the tests, the 

nodal forces corresponding to not only the standard degrees of freedom ( iu , i , and i ) but also the addi-

tional degrees of freedom ( ˆ iu , ˆ
iα , and ˆ

iβ ) must be applied [98]. 

 



 

- 37 - 

 

 

3.2.3 Basic Tests 

The following basic tests are performed as a basic requirement to be satisfied for the new triangular 

shell elements. 

 

 

 

3.2.3.1 Isotropic Element Test 
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Figure 3.4. Isotropic test of the present triangular shell element. 

 

 

The isotropic element is to test whether the element considered is indeed isotropic. This test is per-

formed by analyzing the three same equilateral triangular elements with different numbering sequences as 

shown in Figure 3.4. To pass this test, exactly the same tip displacement should be obtained by the models for 

all possible tip force P. 

 

 

 

3.2.3.2 Zero Energy Mode Test 

This test is performed by counting the number of zero eigenvalues of the stiffness matrix of one un-

supported shell finite element, which should be exactly six. We recommend that, when doing this test, various 

possible geometries should be taken into account. The considered element passes this test for certain geometry 

but may not pass the test for other geometries. 

 

 

 

3.2.3.3 Patch Test 
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Figure 3.5. Mesh used for the membrane and bending patch tests 

 

 

The patch test has been widely used as a test for element convergence, despite its limitations for mixed 

formulations. In this thesis, numerical form of the patch test is used to merely assess the sensitivity of our el-

ement to geometric distortions The mesh used for the patch test is shown in Figure 3.5. The minimum number 

of degrees of freedom is fixed to prevent rigid body motion and the nodal point forces which result in constant 

stress condition is considered. The constant stress field should be given by the patch models subjected mem-

brane forces and bending forces, respectively. It is noted that nodal forces should properly applied to not only 

standard degrees of freedom but also additional degrees of freedom to calculated the constant stresses, see 

following Equation. 
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 B S R R R   (3.17)

with 

 
( )

( ) ( ) ( ) T

1 1

[ ]
m

e e
m m m B

B B
m m

d


 

   R R H H f ,  (3.18)

 
( ) ( )

( )

T

1

[ ]
m m

f f f

m
f

e
s s S

s S
m

dS


 R H H f ,  (3.19)

where R  is the load vector, Bf  is the body force, fSf  is the surface traction applied on fS  and ( )mH  is 

the classical finite element interpolation matrix. 

 

The results of the basic test are reported in Table 3.1. The MITC3, MITC6 and enriched MITC3 shell 

element pass all the basic patch tests. 

 

 

Table 3.1. Basic test results of the MITC3, MITC6 and enriched MITC3 triangular shell finite elements. 

Element 
Isotropic 

element test

Zero energy

mode test 

Patch test 

Membrane Bending 

MITC3 Pass Pass Pass Pass 

MITC6a Pass Pass Pass Pass 

MITC6b Pass Pass Pass Pass 

Enriched MITC3 Pass Pass Pass Pass 

 

 

 

3.3 Computational Efficiency 

In this section, some important aspects of the computational efficiency when using the enriched ele-

ment are studied. The standard 3- and 6-node shell elements (the MITC3 and MITC6 shell elements) and the 

enriched 3-node shell element (the enriched MITC3 shell element) are considered. 
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Figure 3.6. Meshes used and stiffness matrix structures: (a) and (d) for the 3-node shell element, (b) and (e) 

for the 6-node shell element, and (c) and (f) for the enriched 3-node shell elements. Non-zero entries are col-

ored in black. 

 

 

Figure 3.6 shows the size and sparseness of the stiffness matrices when using the enriched 3-node 

shell finite element and the standard 3- and 6-node shell elements for the meshes. A simply supported square 

plate problem is considered. The meshes used are given in Figure 3.6(a), (b) and (c) when 8N  . Since the 

standard 3-node shell element is based on the linear displacement interpolation, and the 6-node and enriched 

3-node shell elements are based on quadratic displacement interpolations, we use a twice finer mesh for the 

standard 3-node shell element. 

 

 

Table 3.2. Detailed information on the stiffness matrices of the 3-, 6-, and enriched 3-node shell finite ele-

ments for the meshes shown in Figure 3.6. 

 
Linear shell element Quadratic shell elements 

Standard 3-node Standard 6-node Enriched 3-node 

Elements 512 (2N = 16) 128 (N = 8) 128 (N = 8) 

Nodes 289 289 81 

DOFs 803 803 633 

Non-zero entries 15,313 24,581 32,797 

Half-bandwidth 51 100 83 
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The stiffness matrix entries for the simply supported square plate problem with for some equivalent 

mesh patterns are plotted in Figure 3.6(d), (e)-(f), where the non-zero entries are colored in black. The size of 

the stiffness matrices for the meshes used is 803 803  for the 3- and 6-node shell elements and 633 633  

for the enriched 3-node shell element. The standard 3- and 6-node shell elements and the enriched 3-node 

shell element give 15,313, 24,581 and 32,797 non-zero entries in the matrices, respectively. Also, the matrix 

half-bandwidths are 51, 100 and 83 for the 3- and 6-node shell elements and the enriched 3-node shell ele-

ment, respectively. Table 3.2 lists the information regarding these cases. 
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Figure 3.7. The total number of degrees of freedom (DOFs) when increasing the number of element layers, N, 

along an edge p denotes the number of degrees of freedom per node, hence p = 3 for the simply supported 

plate problem. 

 

 

The number of non-zero entries in the stiffness matrix for the enriched 3-node shell element is substan-

tially larger than in the corresponding matrix for the 6-node shell element. This is due to the fact that the sup-

port of the higher order interpolation functions in the enriched 3-node shell element is larger than for the 3- 

and 6-node shell elements. However, using the enriched 3-node shell element, all degrees of freedom are as-

sociated with vertex nodes which are shared by several elements and the assembled system of equations is in 

general smaller than when using the 6-node shell element where edge nodes are only shared by 2 elements. 

Therefore, the enriched 3-node shell element gives less equations and here also a smaller bandwidth than the 

6-node shell element. This fact shows the effectiveness of the enriched 3-node shell element from a computa-

tional point of view. Figure 3.7 shows how the number of nodal degrees of freedom increases as a function of 

the number of elements used in the meshing of Figure 3.6. 
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Table 3.3. Solution times (in second) for solving the linear equations. The element meshes are 2 2N N  and 

N N  for linear and quadratic shell elements, respectively. (DOFs: degrees of freedom, HB: half-bandwidth)

 Linear shell element Quadratic shell elements 

 Standard 3-node Standard 6-node Enriched 3-node 

N DOFs HB Time DOFs HB Time DOFs HB Time 

4 211 27 0.001 211 52 0.001 177 47 0.001 

8 803 51 0.016 803 100 0.016 633 83 0.016 

16 3,139 99 0.062 3,139 196 0.125 2,409 155 0.062 

32 12,419 195 0.733 12,419 388 1.591 9,417 199 1.045 

64 49,411 387 10.70 49,411 772 23.88 37,257 587 15.49 

 

 

It is valuable to compare solution times required for the three shell finite elements considered. In all 

the cases, of course, symmetric stiffness matrices are generated. To obtain more insight into the computational 

efforts needed in the respective solutions, results are focused on the solution of the linear equations using di-

rect Gauss elimination, in which the factorization of the stiffness matrices represents the major expense. To 

check computational times, a quad-core machine (Intel(R) Core i7-3770 CPU @ 3.40 GHz, 8 GB RAM, Win-

dows 7 64bit) for all solution cases is used. Table 3.3 shows the solution times for the simply supported 

square plate problem. As expected, the factorization time for the enriched 3-node shell element is much small-

er than for the standard 6-node shell element. 

 

 

 

3.4 Convergence Studies 

This section presents convergence studies on well-established problems for the enriched MITC3 shell 

element. The solutions can show at most quadratic convergence in the s-norm and the results are compared 

with those of the MITC3, MITC4, and MITC6 shell elements. Various problems are considered: a fully 

clamped square plate problem, cylindrical shell problems, and hyperboloid shell problems using uniform and 

distorted meshes [23, 26, 99, 100]. 

 

The s-norm proposed by Hiller and Bathe [101] is used to measure the convergence of the finite ele-

ment solutions. The s-norm is suitable to check whether the finite element solutions satisfy consistency and 

the inf-sup condition [27, 101-104], and is defined as follows 

 
2 T

h s
d


    u u ε τ ,  (3.20)

where u  is the exact solution, hu  is the solution obtained using the finite element discretization, ε  and 

τ  are the strain and stress vectors, and 

 h  ε ε ε , h  τ τ τ .  (3.21)
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The theoretical convergence behavior can be estimated to be 

 
2 k

h s
ch u u ,  (3.22)

in which c is a constant and h denotes the element size. If a shell element is uniformly optimal, the constant is 

independent of the shell thickness and k represents the optimal order of convergence, with k = 2 for the 3-node 

shell finite element, and k = 4 for the 6-node and the enriched 3-node shell elements. 

 

Instead of the unknown exact solution, a reference finite element solution refu  calculated using a 

very fine mesh and a known reliable element can be used, hence Equation (3.20) becomes 

 
2

ref

T
ref h refs

d


    u u ε τ    with ref h  ε ε ε , ref h  τ τ τ .  (3.23)

To measure the convergence of the finite elements in the shell problems, the relative error hE  are used and 

expressed as 

 

2

2

ref h s
h

ref s

E



u u

u
.  (3.24)

The numerical procedure to calculate the s-norm for shell finite element solutions with general types of ele-

ments and general meshes is explained in detail in Reference [23]. In the use of Equation (3.24), it is very 

important to use accurate reference solutions calculated by a reliable shell finite element. In this study, we use 

well-converged reference solutions calculated using fine meshes of the MITC9 shell finite element. Of course, 

the MITC9 shell finite element is known to satisfy the ellipticity and consistency conditions and to show ade-

quate convergence behavior, see Refs. [22, 26, 101]. 

 

The following sections presents the convergence curves of the MITC3, MITC4, MITC6 shell elements 

and the fully enriched MITC3 shell element to identify the performance of the enriched MITC3 shell element 

compared to other shell elements. Note that some convergence curves of the MITC3, MITC4, and MITC6 

shell elements have been published before in Refs. [23, 99, 100]. 

 

 

 

3.4.1 Fully Clamped Square Plate Problem 
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Figure 3.8. Fully clamped square plate under uniform pressure ( 1.0L  , 71.7472 10E   , 1.0q   and 

0.3v  ) with three different 4 4  mesh patterns: (a) and (b) triangular mesh for the MITC3, MITC6 and 

enriched MITC6 shell elements, and (c) quadrilateral mesh for the MITC4 shell element. 

 

 

The plate problem shown in Figure 3.8 is solved. A square plate of size 2 2L L  and constant thick-

ness t is subjected to a uniform pressure load. Due to symmetry, only one quarter of the plate is modeled, with 

0x yu    along BC, 0y xu    along DC, and 0x y z x yu u u        along AB and AD [23, 99]. 
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Figure 3.9. Distorted meshes used for the fully clamped square plate problem, cylindrical shell problems, and 

hyperboloid shell problems when (a) 4N   and (b) 8N  . The number of triangular elements for an 

N N  mesh is 22N . 

 

 

The convergence behavior is studied not only using uniform meshes but also distorted meshes, as 

shown in Figure 3.9. When the N N  distorted mesh is used, each edge is divided by the ratio 

1 2 3: : : 1 : 2 : 3 :NL L L L N  , leading to quite distorted meshes. The reference solution is obtained 

with a uniform mesh of 96 96  MITC9 shell finite elements. For the MITC3 and MITC4 shell elements, 

N = 8, 16, 32 and 64 are used and for MITC6 shell element and the enriched MITC3 shell element, N = 4, 8, 

16 and 32 are adopted. Note that in these N N  meshes 2N  MITC4 elements and 22N  triangular ele-

ments are used throughout the dissertation. Also, in the figures of results we consider the cases /t L  1/100, 

1/1,000 and 1/10,000 and use as the “element size” /h L N . To fairly compare convergence behaviors 

among different shell elements, the equivalent element sizes 2h , h  and 1.2h  are used for the MITC3 and 

MITC4 shell elements, the MITC6 shell element, and the enriched MITC3 shell element. When using these 

equivalent element sizes, the numbers of degrees of freedom are similar. 
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Figure 3.10. Convergence curves for the fully clamped square plate problem with uniform meshes. For trian-

gular shell elements, the mesh pattern in Figure 3.8(a) is used. The bold line represents the optimal conver-

gence rate, which is 2.0 for linear elements and 4.0 for quadratic elements. 

 

 

To identify the dependency of the convergence behavior on the MITC scheme chosen for the enriched 
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MITC3 shell element, the following three schemes are considered for the covariant transverse shear strain 

field of the additional quadratic displacement interpolation: 

 No MITC scheme is used (denoted by DISP in Figure 3.10). 

 The MITC6a scheme is used, for this scheme see Ref. [23]. 

 The MITC6 scheme in Equation (3.13) is used (referred to as MITC6b in Figure 3.10) 

 

In all these cases, of course, the MITC3 scheme in Equation (3.12) is used for the assumed covariant 

transverse shear strain field of the standard linear displacement interpolation. 

 

Figure 3.10 shows the convergence curves of the original MITC3 shell element and the enriched 

MITC3 shell elements based on the different assumptions for the transverse shear strain fields. The enriched 

MITC3 shell element shows different solution accuracy highly depending on the assumed covariant transverse 

shear strain field used. When the assumed covariant transverse shear strain field of the MITC6 shell element is 

employed, an almost ideal convergence behavior is observed in this fully clamped square plate problem. Note 

that the other enriched MITC3 shell elements show an even worse convergence behavior than the original 

MITC3 shell element. Therefore, in the following sections, we only use the enriched MITC3 shell element 

based on the MITC6 scheme in Equation (3.13). 
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Figure 3.11. Convergence curves for the fully clamped square plate problem with uniform meshes. The solid 

and dotted lines correspond to the results obtained by the mesh patterns in Figure 3.8(a) and (b), respectively. 

The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic 

elements. 
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Figure 3.12. Convergence curves for the fully clamped square plate problem with the distorted meshes shown 

in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 

for quadratic elements. 

 

 

Figure 3.11 and Figure 3.12 present the convergence curves for the fully clamped square plate prob-

lems using uniform and distorted meshes, respectively. The performance of the enriched MITC3 shell element 

is much better than the performance of the MITC3 and MITC6 shell elements. One reason is probably that the 

enrichments span over the cover regions and distortions within the regions are not as severe (are smoothed 

out) in comparison to not using covers. The MITC4 and enriched MITC3 shell finite elements show almost 

optimal convergence behaviors, even though the distorted meshes are used. 

 

 

 

3.4.2 Cylindrical Shell Problem 
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Figure 3.13. Cylindrical shell problem ( 4 4  mesh, 1.0L R  , 52.0 10E   , 1 / 3v   and 

0 1.0p  ). 

 

 

A cylindrical shell with uniform thickness t , length 2L , and radius R  is considered, as shown in 

Figure 3.13. The loading is a smoothly varying periodic pressure ( )p   normal to the shell surface 

 0( ) cos(2 )p p  .  (3.25)

 

The shell problem gives two different asymptotic behaviors depending on the boundary conditions at both 

ends: the bending-dominated behavior under free boundary conditions and the membrane-dominated behavior 

under clamped boundary conditions. 

 

Using the symmetry of the problem, the region ABCD in Figure 3.13 is modeled. In the membrane-

dominated case, the clamped boundary condition is imposed: 0xu    along BC, 0yu    along DC 

0zu    along AB, and 0x y zu u u        along AD. In the bending-dominated case, the free 

boundary condition is imposed: 0xu    along BC, 0yu    along DC, and 0zu    along AB 

[23]. 

 

The reference solution is calculated using a mesh of 96 96  MITC9 shell finite elements for both 

cases. The solutions using the MITC3, MITC4, MITC6 and enriched MITC3 shell elements are obtained with 

N N  meshes ( N = 8, 16, 32 and 64 for the MITC3 and MITC4 shell elements and N = 4, 8, 16, and 32 for 

the MITC6 and enriched MITC3 shell elements). The element size used in the figures is /h L N . The dis-

torted meshes used are generated as shown in Figure 3.9. 
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Figure 3.14. Convergence curves for the clamped cylindrical shell problem with uniform meshes. The bold 

line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements. 
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Figure 3.15. Convergence curves for the clamped cylindrical shell problem with the distorted meshes shown 

in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 

for quadratic elements. 

 

 

Figure 3.14 and Figure 3.15 present the convergence behaviors for the clamped cylindrical shell prob-

lems with uniform and distorted meshes, respectively. All the shell finite elements considered show excellent 
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convergence behavior with uniform and distorted meshes. 
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Figure 3.16. Convergence curves for the free cylindrical shell problem with uniform meshes. The bold line 

represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements. 
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Figure 3.17. Convergence curves for the free cylindrical shell problem with the distorted meshes shown in 

Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for 

quadratic elements. 
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Figure 3.16 and Figure 3.17 present the convergence curves for the free cylindrical shell problems ob-

tained with uniform and distorted meshes, respectively. When distorted meshes are used, the solutions of the 

MITC3, MITC4, and MITC6 shell elements deteriorate as the shell thickness decreases, due to some locking. 

However, the enriched MITC3 shell element presents good convergence behavior even when using the dis-

torted meshes. 

 

 

 

3.4.3 Hyperboloid Shell Problem 
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Figure 3.18. Hyperboloid shell problem ( 112.0 10E   , 1 / 3v   and 0 1.0p  ). (a) Shell geometry and 

boundary conditions, (b) Graded mesh for the clamped case ( 8 8  mesh, t / L = 1/1,000), (c) Mesh for the 

free case ( 8 8  mesh). 

 

 

The hyperboloid shell shown in Figure 3.18 is considered, where the mid-surface of the shell structure 

is given by 

 2 2 21x y y   ,  [ 1, 1]y  .  (3.26)

A smoothly varying periodic pressure is applied normal to the surface, as in Figure 3.13, 

 0( ) cos(2 )p p  ,  (3.27)
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When both ends are clamped, a membrane-dominated problem is obtained, and when the ends are free, a 

bending-dominated problem is obtained. The bending-dominated hyperboloid shell problem is known to be 

difficult to solve [23, 99, 105]. 

 

Due to symmetry, the analyses are carried out using one-eighth of the structure, corresponding to the 

shaded region ABCD in Figure 3.18(a). For the membrane-dominated case, the clamped boundary condition 

is imposed using: 0zu    along BC, 0xu    along AD, and 0yu    along DC, and 

0x y zu u u        along AB. For the bending- dominated case, the free boundary condition is im-

posed using: 0zu   ,u-z.=β=0 along BC, 0xu    along AD, and 0yu    along DC [23, 99]. 

 

In common with previous problems, the reference solutions calculated with a mesh of 96 96  

MITC9 shell elements are used. The solutions using the MITC3, MITC4, MITC6 and enriched MITC3 shell 

elements are obtained with N N  meshes ( N = 8, 16, 32 and 64 for the MITC3 and MITC4 shell elements 

and N = 4, 8, 16, and 32 for the MITC6 and enriched MITC3 shell elements). The element size used in the 

convergence curves is /h L N . In the clamped hyperboloid shell problem, a boundary layer of width 6 t  

is used for half of the mesh, see Figure 3.18(b). In the free hyperboloid shell problem, the thin boundary layer 

is not specially meshed. 
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Figure 3.19. Convergence curves for the clamped hyperboloid shell problem with uniform meshes. The bold 

line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements. 
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Figure 3.20. Convergence curves for the clamped hyperboloid shell problem with the distorted meshes shown 

in Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 

for quadratic elements. 

 

 

Figure 3.19 and Figure 3.20 show the convergence curves for both uniform and distorted meshes in 

the membrane dominated case (that is, the clamped hyperboloid shell problem). The performance of all shell 

elements is good. 
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Figure 3.21. Convergence curves for the free hyperboloid shell problem with uniform meshes. The bold line 



 

- 54 - 

represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements. 
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Figure 3.22. Convergence curves for the free hyperboloid shell problem with the distorted meshes shown in 

Figure 3.9. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for 

quadratic elements. 

 

 

For the bending-dominated case (that is, the free hyperboloid shell problem), the convergence curves 

are shown in Figure 3.21 and Figure 3.22. The enriched MITC3 shell element shows the best convergence 

behavior among the shell elements considered. Even in the use of distorted meshes, the performance of the 

enriched MITC3 shell element is excellent while the other shell elements show some degree of locking. 

 

 

 

3.5 Local Use of Cover Interpolations 

In the convergence studies given in Section 3.4, the enriched MITC3 shell finite element showed a 

good performance when the its element is used throughout the mesh. In this section, the local use of cover 

interpolation functions over the solution domains is illustrated. This scheme of increasing solution accuracy is 

quite different from using conventional standard shell finite elements with mesh refinements. Two numerical 

examples are considered: a shaft-shaft interaction problem and a ‘monster’ shell problem. The maximum ef-

fective stress, the strain energy and the deformed shape will be evaluated with and without using local en-

richments. 
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3.5.1 Shaft-Shaft Interaction Problem 
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Figure 3.23. Shaft-shaft interaction problem with fillets ( 112.07 10E   , 0.29v  ). 
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Figure 3.24. Distributions of effective stress for the shaft-shaft interaction problem: for (a) the 2,193 node 

model of the MITC4 shell elements, (b) the 2,582 node model of the MITC3 shell elements, (c) the 641 node 

model of the MITC3 shell elements, (d) the 641 node model fully enriched, and (e) the 641 node model local-

ly enriched. The red dot represents enriched nodes (DOFs: total number of degrees of freedom used, Error = 

( ) / 100ref h ref
v v v    ). 

 

 

Consider the two cylindrical shafts connected with fillets of radius 0.002m, in which the horizontal 

shaft is subjected to a line load of 1000 N / m, as shown in Figure 3.23, and the vertical shaft is fully clamped 

at its lower end. Figure 3.24 presents the distribution of the effective stress (von Mises stress) obtained using 

the MITC4 and MITC3 shell elements, and using the enriched MITC3 shell element throughout the mesh or 

only locally. The reference solution is given by a fine mesh of the MITC4 shell element, in which 2,150 ele-

ments and 10,805 DOFs are used, see Figure 3.24(a). Figure 3.24(b) presents a finer mesh of the MITC3 

shell element and Figure 3.24(c)-(e) show the same coarse mesh used for the MITC3 shell element and the 

fully and locally enriched shell models. The red dots in Figure 3.24(e) represent the selected nodes carrying 
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interpolation covers around the fillet area where stress concentration is expected. 

 

 

Table 3.4. Relative errors in maximum effective stress in the shaft-shaft interaction problem for the five dif-

ferent shell models in Figure 3.24. Relative error (%) = max max max( ) / 100ref h ref    . 

 Fine mesh Coarse mesh 

 
MITC4 

(reference)
MITC3 MITC3 

Fully 

enriched MITC3 

Locally 

enriched MITC3 

Elements 2,150 5,078 1,240 1,240 1,240 

Nodes 2,193 2,582 641 641 641 

Enriched nodes - - - 641 72 

Free DOFs 10,805 12,750 3,125 9,375 3,845 

Max. effective stress ( max ) 1.78E+09 1.68E+09 1.29E+09 1.69E+09 1.66E+09 

Relative error (%) - 5.68 27.54 5.28 6.75 

 

 

Table 3.4 gives the numbers of elements, nodes, degrees of freedom used, and the relative errors in the 

maximum effective stress obtained when using the shell models in Figure 3.24. In the shaft-shaft interaction 

problem, the maximum effective stress is obtained around the fillet area. Using the local enrichments, the 

maximum effective stress is well predicted with a much smaller number of degrees of freedom. 

 

 

 

3.5.2 Highly-Sensitive Shell Problem 
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Figure 3.25. A “highly-sensitive” shell problem. ( 10L R  , 76.285 10E   , 0.3v  , and 
24( ) rp r e ). 

 

MITC4
(DOFs = 46,080, Reference)

(a)

  
MITC3
(DOFs = 46,080, Error = 45.66%)

(b)

 

 

MITC3
(DOFs = 5,120, Error = 75.81%)

Fully enriched MITC3
(DOFs = 15,360, Error = 3.11%)

Locally enriched MITC3
(DOFs = 9,120, Error = 6.49%)

(c) (d) (e)

 

Figure 3.26. Deformed shapes for the monster shell problem ( / 1 /10,000t L  ): for (a) the 

48(axial) 192(circumferential) mesh of the MITC4 shell elements, (b) the 48 192 mesh of the MITC3 shell 

elements, (c) the 16 64 mesh of the MITC3 shell elements, (d) the 16 64 mesh model fully enriched, and 

(e) the 16 64 mesh model locally enriched. In the figure (e), the red dot represents enriched nodes. (DOFs: 

the total number of degrees of freedom used, Error = ( ) / 100ref h refE E E  ). 

 

 

Figure 3.25 shows the problem considered (referred to also as “the monster shell problem”) [106]. The 

shell geometry corresponds to a half-sphere with the top sliced off. The shell is clamped around its entire low-

er boundary. A smoothly distributed pressure is applied over a small part of the interior of the shell. Since 

there is no exact solution to the problem, the reference solution is calculated by a fine mesh of 48 (axial) 192 

(circumferential) MITC4 shell elements; see Figure 3.26(a). This is a sufficiently fine mesh to identify and 

reasonably resolve the boundary layer on the free top. Figure 3.26(b) presents a finer mesh of MITC3 shell 

elements, and Figure 3.26(c)-(e) show a coarser mesh for the MITC3 shell element and the fully and locally 

enriched cases. 
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Table 3.5. Relative errors in strain energy in the monster shell problem for the five different shell models in 

Figure 3.26. Relative error (%) ( ) / 100ref h refE E E   . 

 
Fine mesh 

48(axial) 192(circumferential)

Coarse mesh 

16(axial) 64(circumferential) 

 
MITC4 

(reference) 
MITC3 MITC3 

Fully 

enriched MITC3

Locally 

enriched MITC3 

Elements 9,216 18,432 2,048 2,048 2,048 

Nodes 9,408 9408 1,088 1,088 1,088 

Enriched nodes - - - 1,088 409 

Free DOFs 46,080 46,080 5,120 15,360 9,120 

Oscillations 4 3 2 4 4 

Strain energy (E) 5.21E-04 2.83E-04 1.26E-04 5.37E-04 4.87E-04 

Relative error (%) - 45.66 75.81 3.11 6.49 

 

 

Figure 3.26 shows the deformed shapes of the shell problem when the shell thickness is 0.001 (t / L = 

1/10,000). For visualization, the displacements are normalized so that the maximum outward total displace-

ment value is equal to 2.0. Note that the displacements are dominant in the immediate vicinity of the free 

boundary, namely within the boundary layer. Figure 3.26(b) and (c) show that the MITC3 shell element 

meshes are not effective in predicting the displacement oscillations2 in the circumferential direction within 

the boundary layer. However, when the coarse MITC3 shell element mesh is fully enriched, the displacements 

in the boundary layer are calculated accurately as shown in Figure 3.26(d). Also, the local use of the cover 

interpolations within the boundary layer results in excellent overall accuracy with a significantly reduced 

number of degrees of freedom, see Figure 3.26(e). Table 3.5 shows the number of elements, nodes and de-

grees of freedom used, the number of displacement oscillations, and the relative errors in the strain energies. 

 

 

 

 

 

 

                                                           
2 In the monster shell problem, the number of displacement oscillations in the boundary layer increases as the shell thick-

ness decreases. The number is given by log( / )L t . 
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Chapter 4. A Partition of Unity Based 4-Node Quadrilateral Shell Element 

 

4.1 A 4-Node Element Based on Partition of Unity 

The partition of unity (PU) approximation offers enormous advantages over the standard finite element 

approximation by its local enrichments and excellent solution accuracy. This feature is particularly advanta-

geous for modeling crack propagation and areas where non-smooth and near singular solution are sought. This 

is due to the fact that solution accuracy can effectively increase without any local mesh refinements. However, 

the partition of unity approximation faces some difficulties such as the linear dependence problem. When both 

the partition of unity function and the local approximation function are taken as polynomials, the global stiff-

ness matrix becomes singular, that is rank deficient [33, 34, 93]. 

 

Many researchers have studied the elimination of the singularity of the stiffness matrix in the methods 

using the partition of unity approximation concept. Oden et al. [36] proposed excluding the space spanned by 

the terms of finite element shape functions from that of the local approximation functions in order to avoid the 

linear dependence. Strouboulis et al. [37, 38] suggested the mapped quadrilateral shape functions, but the line-

ar dependencies are not completely eliminated in their method. Tian et al. [94] studied some effective ap-

proaches to avoid the linear dependency problems. These approaches include suppressing the additional un-

known degrees of freedom, using constant local functions at the boundary nodes, using the triangular mesh 

around quadrilateral mesh, and deleting the polynomial terms included in the span of the partition of unity 

function, which was first suggested by Oden et al. [36]. Babuška and Banerjee [95] developed the SGFEM 

(Stable Generalized Finite Element Method) which is aim to improve the conditioning property of the GFEM 

(Generalized Finite Element Method). The basic idea of the SGFEM is to use a modified local function. Ra-

jendran et al. [84, 96] suggested the partition of unity based FE-meshfree element. They adopted the finite 

element shape functions as the partition of unity and the least-square PIM (Point Interpolation Method) shape 

function as the local approximation. With this choice, the proposed scheme eliminates the linear dependence 

problem. Cai et al. [97] suggested that the local approximation at a boundary node is constructed by a modi-

fied least-squares approach and that at an inner node using a polynomial basis. These dually constructed local 

approximation avoid the linear dependence problem. Schweitzer used the flat hat functions as a partition of 

unity to construct a parallel multilevel partition of unity method [107]. The linear dependence issue is also 

discussed in the context of XFEM (eXtended Finite Element Method) [108, 109]. 

 

In this chapter, a partition of unity based 4-node quadrilateral shell finite element (also herein called 

enriched MITC4) is presented. The MITC (Mixed Interpolation of Tensorial Components) method is applied 

to avoid the transverse shear locking phenomenon. To eliminate the linear dependence problem, the additional 

unknown coefficients around the domain boundary are constrained and the standard MITC4 shell elements are 

only used in that region. 
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4.1.1 Partition of Unity Approximation 
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Figure 4.1. Description of sub-domain; finite element shape function ih , an element e  and cover region 

iC  and jC  constructed by all the elements connected to node i  and j , respectively. 

 

 

A partition of unity is a set of functions that sum to unity at an arbitrary point in the domain consid-

ered. In order to construct the partition of unity, the domain   under consideration is discretized by a set of 

covers iC  and jC  which satisfy a certain overlap condition, see Figure 4.1. The functions i  which satis-

fy the partition of unity are defined by 

 1i
i

  ,  (4.1)

where the functions i  form a partition of unity subordinate to the cover iC . Let a set of functions 

1{ | ( )i i
i iV v v H C    associated with each cover iC  be given. Then, a partition of unity approximation 

is represented by 

 i i
PUM i i i j j

i i j

u V v d 
 

   
 

   ,   i
j iv V .  (4.2)

 

Equation (4.2) is the basic definition of the PUM (partition of unity method) and a more detailed de-

scription of the partition of unity method can be found in References [33, 34, 93]. The key feature of the parti-

tion of unity method is that any functions that reflect the local characteristics of the solution can be adopted in 

the partition of unity functions to construct the high order approximation. However, when both the partition of 

unity functions { }i  and the local functions { }i
jv  in Equation (4.2) are polynomials, the partition of unity 

approximation is linearly dependent. 
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With this concept of the partition of unity method, the partition of unity based finite element method 

based on the concept of the PU approximation has been developed. The finite element shape functions natural-

ly satisfy a partition of unity. Then, the partition of unity based finite element method is constructed by replac-

ing the partition of unity functions i  with the finite element shape function ih . The displacement interpola-

tion for the partition of unity based 4-node quadrilateral element is given by 

 
4

1

( ) ( )l e
i i

i

u h u


 x x hu ,  (4.3)

in which x  is the position vector collecting nodal coordinates at a point and  1 2 3 4h h h hh  is a ma-

trix of shape functions as for a convectional 4-node ( 1, 2,3, 4i  ) quadrilateral finite element. In Equation 

(4.3), the vector eu  is not a nodal displacement vector as in the standard finite element method but a vector 

of nodal displacement functions (also called local approximation) and is defined by 

 
T

1 2 3 4( ) ( ) ( ) ( )e l l l lu u u u   u x x x x ,  (4.4)

where the superscript l  indicates the local nature of the functions. The local approximation over the cover 

iC  is constructed by [28, 36-39, 84, 93, 96-98, 110-112] 

 
1

T
1

0

( ) ( ) ( ) ( )
m

l
i k ki

k

u p a





  x p x a x x ,  (4.5)

where  T ( ) 1 x y xyp x   is a polynomial basis vector, m  is the number of monomials in the ba-

sis, and kia  are the corresponding unknown coefficients to each monomial in the basis. Using only bilinear 

polynomial in Equation (4.5), the local approximation can be rewritten as 

 0 1 2 3( )l
i i i i iu a a x a y a xy   x ,  (4.6)

where i  is the node index and 0ia  to 3ia  are the corresponding unknown coefficients to be determined. 

By enforcing ( )l
iu x  to be equal to the nodal value at node i , Equation (4.6) can be rewritten as 

 0 1 2 3( , )l
i i i i i i i iu x y a a x a y a xy u       (4.7)

and 

 0 1 2 3i i i i i i i ia u a x a y a x y    ,  (4.8)

where iu  is the unknown nodal displacement at the node i  in the x  direction. Substituting Equation 

(4.8) into Equation (4.6), the local approximation is obtained by 

 ˆ ˆ ˆ( )l
i i i i i i i iu u u u u       x   (4.9)

with 

 i ix x   , i iy y   , i i ixy x y   , 1ˆi iu a  , 2ˆi iu a  , 3ˆi iu a  ,  (4.10)

where the ˆiu , ˆiu  and ˆiu are the additional unknown coefficients over the cover iC . 

 

Finally, substituting Equation (4.9) and Equation (4.10) into Equation (4.3), displacement approxi-

mation for the partition of unity based 4-node element is represented by 

 ˆu u u    (4.11)
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with 

 
4

1
i i

i

u h u


  ,  
4

1

ˆ ˆ ˆ ˆi i i i i i i
i

u h u u u    


   .  (4.12)

 

The partition of unity based displacement approximation in (4.11) consists of two parts: the standard 

displacement interpolation of the 4-node element, u  and the additional high order term, û . 

 

 

 

4.1.2 Linear Dependence 

The linear dependence problem occurs when the partition of unity function and the local approxima-

tion are polynomials in the partition of unity method. Tian et al. [93] introduced the linear dependence prob-

lem of the partition of unity method when solving the Hemholz problem. One dimensional Hemholz equation 

is given by 

 2 2u k u f C     [0,1]  on (0,1] ,  (4.13)

 (0) 0u  , (1)u g R   . (4.14)

 

The PUM approximation of the above equation is constructed by 

 0 0
1

n

PUM i i
i

u v v 


  ,  (4.15)

in which the total 1n   nodes are arranged at ix ih , 0,1, ,i n   evenly in the domain [0,1] , 1/h n . 

The partition of unity functions i ( 0,1, ,i n  ) are the usual piecewise linear hat functions defined at the 

nodes. These functions form the partition of unity. Using the polynomial, the local approximations are repre-

sented by 

 1 0
0 0

p
pv xa x a   ,  (4.16)

 0 1( ) ( )i i p i
i i i pv a x x a x x a      ,   0p  ,  (4.17)

at the Dirichlet boundary 0x   and inside the domain (0,1] , respectively. The local approximation 0v  at 

the Dirichlet boundary is defined such that the Equation (4.14) is satisfied naturally. The approximation 

 i ii
v  for the partition of unity method has a total of ( 1)n p p   unknowns, i.e., a total of 

( 1)n p p   shape functions i iv , but the partition of unity method basis has a width of only ( 1)n p  . 

Therefore, for 1p  , ( 1) ( 1)n p p n p    , the approximation for the partition of unity method is linearly 

dependent and the resulting stiffness matrix of the method becomes singular. 
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Figure 4.2. Linear dependence and independence problem in the partition of unity based finite element meth-

od: (a) one-dimensional element of unit length, (b) linearly independent interpolations with prescribed bound-

ary conditions for the 3-node triangular element and (c) linearly dependent interpolations for the 4-node quad-

rilateral element even though prescribed boundary conditions are applied. 

 

 

To verify the linear dependence in the partition of unity based finite element method, one-dimensional 

single element shown in Figure 4.2(a) is considered. The displacement approximation for a one-dimensional 

element with the partition of unity approximation (  T ( ) 1p xx ) is expressed as follows: 

 1 1 2 2 1 1 1 2 2 2ˆ ˆ( ) ( )u h u h u h x x u h x x u         (4.18)

with 

 1 1h x  , 2h x , 1 0x   and 2 1x  .  (4.19)

Hence Equation (4.18) becomes 

 1 2 1 2ˆ ˆ(1 ) (1 ) ( 1)u x u xu x xu x x u        .  (4.20)

Using quadratic polynomials into the local approximation ( T 2( ) 1p x x   x ), displacement approxima-

tion is obtained by 
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 2 2 2 2
1 1 2 2 1 1 11 1 1 12 2 2 21 2 2 22ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )u h u h u h x x u h x x u h x x u h x x u               (4.21)

and using the Equation (4.19), the displacement approximation is rewritten as 

 2 2
1 2 11 12 21 22ˆ ˆ ˆ ˆ(1 ) (1 ) (1 ) ( 1) ( 1)u x u xu x xu x x u x x u x x u              .  (4.22)

In the above Equations (4.20) and (4.22), the displacement approximations are linearly dependent due to the 

unknown degrees of freedom 1̂u , 2û , 11û  and 21û . The linearly dependent terms in the displacement ap-

proximations are underlined. 

 

However, assume that we impose at node 1 the displacement 1u  (as usual, to take out the rigid body 

mode) and also eliminate the additional unknown degrees of freedom 1̂u  at that node. Then the remaining 

interpolation functions are linearly independent, for the local approximation using linear polynomials 

 1 2 2ˆ(1 ) ( 1)u x u xu x x u        (4.23)

where 1u  would now be prescribed, and for the local approximation using quadratic polynomials 

 2
1 2 21 22ˆ ˆ(1 ) ( 1) ( 1)u x u xu x x u x x u          (4.24)

where 1u  would be also prescribed. 

 

The partition of unity approximation of a 3-node triangular element is obtained by 

 ˆu u u  ,  (4.25)

where 

 1 1 2 2 3 3u h u h u h u   ,  (4.26)

 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )u h x x u h x x u h x x u h y y u h y y u h y y ux x x h h h              (4.27)

with 

 1 1h x y   , 2h x , 3h y , 1 0x  , 2 1x  , 3 0x  , 1 0y  , 2 0y   and 3 1y  .  (4.28)

Therefore, 

 1 2 3 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 ) ( 1) (1 ) ( 1)u x y xu x x u yxu x y yu xy u y y ux x x h h h            .  (4.29)

The displacement interpolation v  is obtained in the same way. The displacement approximation in Equation 

(4.29) is linearly independent. If the displacements are prescribed at nodes 1 and 3, as in Figure 4.2(b), the 

additional unknown degrees of freedom 1̂u  and 3û  are all fixed, and the linearly independent interpola-

tions are obtained as follows: 

 1 2 3 2 2ˆ ˆ(1 ) ( 1)u x y u xu yu x x u xyu         ,  (4.30)

 1 2 3 2 2ˆ ˆ(1 ) ( 1)v x y v xv yv x x v xyv         .  (4.31)

 

This implies that the stiffness matrix is positive definite for the single elements considered provided 

the rigid body modes have been removed, as usual by constraining appropriate degrees of freedom, with all 

ˆiu  and ˆiu  degrees of freedom also removed at the nodes with any prescribed displacements. Consider now 

that additional elements are attached to these single elements, with no further iu  degrees of freedom pre-
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scribed and all ˆiu  and ˆiu  degrees of freedom free at the additional nodes used in the mesh. Then, by the 

above argument, for any nonzero values of the iu , ˆiu and ˆiu  degrees of freedom in the mesh, positive 

strain energy is stored in the mesh. Therefore, all eigenvalues of the stiffness matrix are positive, which means 

that the matrix is positive definite. 

 

 

Mesh (a) Mesh (b) Mesh (c) Mesh (d)

 

Figure 4.3. Element meshes of the eigenvalue analysis for 4-node quadrilateral elements and mixed meshes 

with the 3-node triangular and 4-node quadrilateral elements. This work was done by Tian [93]. 

 

 

However, for a 4-node quadrilateral element shown in Figure 4.2(c), displacement interpolation is lin-

early dependent even though the additional unknown degrees of freedom are constrained in the same manner 

as the partition of unity based 3-node triangular element. For the partition of unity based 4-node quadrilateral 

element, Tian et al. [93] conducted the eigenvalue analyses as shown in Figure 4.3. The mesh (a) consists of 

only 4-node quadrilateral elements. It is well known that the partition of unity based 4-node quadrilateral ele-

ment definitely suffers from the linearly dependence. Meshes (b), (c) and (d) are generated by mixing 3-node 

triangular elements and the problematic squares in specified manners. Table 4.1 shows the number of spurious 

zero eigenvalues after the support treatments. Using the 3-node triangular elements around mesh boundaries 

as in meshes (c) and (d), the spurious zero eigenvalues can be completely removed. In this thesis, to apply the 

partition of unity approximation into the 4-node quadrilateral shell element, the additional unknown degrees 

of freedom around mesh boundaries are constrained instead of using the 3-node triangular elements. 

 

 

Table 4.1. Results of eigenvalue analyses of the partition of unity based finite element method, see Figure 4.3 

for the meshes. This work was conducted by Tian [93]. 

Mixed meshes Number of zero eigenvalue (zero-order local functions are specified at the two 

of the nodes; essential boundary conditions are applied to the two nodes) Linearly 

dependent? 
Method Mesh p=0/FEM p=1 p=2 p=3 p=4 p=5 

Quad (a) 0 14 28 28 28 28 Yes 

Mixed (b) 0 2 4 4 4 4 Yes 

Mixed (c) 0 0 0 0 0 0 No 

Mixed (d) 0 0 0 0 0 0 No 
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4.2 The Enriched MITC4 Shell Finite Element 

In this section, the formulation of the partition of unity based 4-node quadrilateral shell finite element 

(also called enriched MITC4) is presented. 

 

 

 

4.2.1 Enriched Displacement Interpolation 
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Figure 4.4. The MITC4 shell finite element: (a) Geometry of the MITC4 shell finite element. (b) Definition of 

rotational degrees of freedom k  and k . 

 

 

The geometry of the continuum mechanics based 4-node quadrilateral shell element is interpolated by 
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with 
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1
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4
h r s   ,  (4.34)

where r , s  and t  are natural coordinates, ih  is the two-dimensional interpolation function correspond-

ing to node i , ix  is the position vector of node i  in the global Cartesian coordinate system, and ia , i
nV  

denote the shell thickness and the director vector at node i , respectively, see Figure 4.4. The standard dis-

placement interpolation of the 4-node quadrilateral shell finite element is represented by 
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t
h a h
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    u u V V  ,  (4.35)

in which  Ti i i iu v wu  is the nodal displacement vector in the global Cartesian coordinate system, 

T

1 1 1 1
i i i i

x y zV V V   V  and 
T

2 2 2 2
i i i i

x y zV V V   V  are unit vectors orthogonal to i
nV  and to each other, 

and i  and i  are the rotations of the director vector i
nV  about 1

iV  and 2
iV  at node i . 

 

To apply the partition of unity approximation into the 4-node shell finite element, the only bilinear 

polynomials are adopted in the local approximation. The partition of unity approximation of the 4-node quad-

rilateral shell finite element is given by 

 ˆ u u u ,  (4.36)

where 

  
4 4
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ˆˆˆ ˆ
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i i
i i i i i i
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with 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ| |i i i i i i i i i iu u u v v v w w v   u          ,  (4.38)

 
T
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i i i i   α      , 

Tˆ ˆ ˆ ˆ
i i i i

   β      ,  (4.39)

in which ˆ iu , ˆ
iα  and ˆ

iβ  are unknown coefficient vectors for the displacements and rotations, and the iH  

are the interpolation matrices associated with the high order displacements and rotations 
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Note that the partition of unity displacement approximation for u  in Equation (4.36) consists of two 

parts: the standard bilinear term u  and the additional high order term û . 

 

 

 

4.2.2 Assumed Covariant Transverse Shear Strain Fields 
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Figure 4.5. Polynomial terms in two-dimensional analysis: Pascal triangle for (a) the standard 3-node triangu-

lar element, the partition of unity based 3-node triangular element, the (b) standard 4-node quadrilateral ele-

ment and the partition of unity based 4-node quadrilateral element. 

 

 

Figure 4.5 shows the polynomial terms in standard elements and partition of unity based elements and 

they include complete polynomials in x  and y  for two-dimensional analysis. Figure 4.5(a) also shows 

important notation for polynomial spaces. The spaces kP  correspond to the complete polynomials up to de-

gree k . They can also be thought of as the basis functions of standard and partition of unity based triangular 

element. The function in 2P  corresponds to the functions of the parabolic displacement (standard 6-node 

element) and the partition of unity based displacement with the local approximation  T ( ) 1 x yp x . In 

addition, Figure 4.5(b) shows the polynomial spaces kQ , 1, 2,3k  , which correspond to the 4-node, 9-

node, and 16-node elements. The polynomial spaces of the standard 9-node element are exactly the same to 

that of the partition of unity based quadrilateral element with the local approximation 

 T ( ) 1 x y xyp x . From the results, the methods for the assumed strain field of the 9-node shell element 

can be used in construction of assumed strain fields for unknown high order strain components of the PU 

based 4-node shell element 

 

The covariant strain components of the PU based 4-node shell element are directly obtained by 
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where 

 i
ir





x
g ,  ,

ˆ( )
j

i ir r

  
 
 
u u u

u    with 1r r , 2r s , 3r t .  (4.44)

Therefore, the covariant strain components of the PU based 4-node shell element are also splitted into two 

parts 

 ˆij ij ije e e    (4.45)

with 

  , ,

1

2ij i j j ie    g u g u  and  , ,

1
ˆ ˆ ˆ

2ij i j j ie    g u g u ,  (4.46)

in which ije  and îje  correspond to the standard bilinear and additional high order displacement interpola-

tions, respectively. 

 

To alleviate the transverse shear locking, the MITC (Mixed Interpolation of Tensorial Components) 

method for the covariant transverse shear strains is adopted. However, different assumed covariant transverse 

shear strain fields are employed for the standard and additional high order displacement interpolations. The 

assumed covariant transverse shear strain fields of the MITC4 and MITC9 shell elements are used for the 

strains ije  and îje , respectively [18, 19, 21, 26]. Note that, in the MITC9 shell element, the covariant mem-

brane strains are also assumed to reduce membrane locking, but this treatment is not necessary and not used 

for the PU based 4-node quadrilateral shell element. 
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Figure 4.6. Tying positions for the covariant transverse shear strains of the PU based 4-node quadrilateral 

shell finite element: (a) for the standard bilinear displacement interpolations and (b) for the additional high 

order displacement interpolations. Note that the scheme referred to as MITC9 in Reference [26] is used. 

 

 

The assumed covariant transverse shear strain field used for the standard bilinear displacement inter-

polation is  

 (1) (2)1 1
(1 ) (1 )

2 2
AS

rt rt rte s e s e    ,  (4.47)

 (1) (2)1 1
(1 ) (1 )

2 2
AS

st st ste r e r e      (4.48)

where the tying points ( )n
rte  and ( )n

ste  are calculated from Equation (4.46), see Figure 4.6(a). For the addi-

tional high order displacement interpolation, the assumed strain fields shown in Figure 4.6(b) are used. Final-

ly, the assumed covariant transverse shear strain fields for the PU based 4-node shell element are obtained as 

 ˆAS AS AS AS
jt jt jt jte e e   B U    with ,j r s ,  (4.49)

in which AS
jtB  is the covariant transverse shear strain-displacement matrix and U  is the vector that contains 
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the degrees of freedom iu , i , i  and the additional degrees of freedom ˆ iu , ˆ
iα , ˆ

iβ . Note that the as-

sumed covariant strain fields are only used for transverse shear strain components. This shell element is here-

after referred to as the enriched MITC4. 

 

Then, using the appropriate stress-strain matrix for shells, the element stiffness is constructed in the 

same manner as for the displacement-based shell element [1]. The 3 3  Gauss integration is adopted to 

evaluate the stiffness matrix because the order of the additional high order displacements are quadratic. Since 

the partition of unity approximation is based on the existing nodes, the displacement interpolation of the en-

riched MITC4 shell element can be locally used assigning or not assigning polynomial expansions in different 

regions. With the only T ( ) 1p x , the element is identical to the original MITC4 shell element. 

 

 

 

4.3 Benchmark Problems 

In order to assess the performance of the proposed enriched MITC4 shell element, several problems 

selected from the literature are solved. The obtained results are compared to those previously published using 

well-known shell element formulations. Table 4.2 presents a list of several benchmark problems solved in the 

section. Also, a list of the analyzed shell elements and the abbreviations used to identify them henceforth are 

contained in Table 4.3. 

 

 

Table 4.2. List of seven benchmark problems considered in this chapter. 

Benchmark problems Descriptions Results 

Morley’s 30  skew plate under uniform pressure Figure 4.7 
Figure 4.7-Figure 4.8, Table 

4.4 

Circular plate under uniform pressure Figure 4.9 
Figure 4.11, Table 4.5-Table 

4.6 

Partly clamped hyperbolic paraboloid shell Figure 4.12 Figure 4.12, Table 4.7 

Twisted beam subjected to vertical tip load Figure 4.14 Figure 4.15, Table 4.8 

Pinched cylinder Figure 4.16 
Figure 4.18, Table 4.9-Table 

4.10 

Semi-cylindrical shell subjected to an end pinching force Figure 4.19 
Figure 4.20, Table 4.11-Table 

4.12 

Scordelis-Lo (Barrel Vault) roof Figure 4.21 
Figure 4.22, Table 4.13-Table 

4.14 
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Table 4.3. List of shell finite element models for comparison. 

Symbols Brief description Ref. 

MITC3 3-node triangular shell element with the MITC method [23] 

MITC4 4-node quadrilateral shell element with the MITC method [19] 

MITC4* MITC4 shell element with incompatible modes [63, 64]. 

Enriched MITC3 MITC3 shell element with the partition of unity approximation [28] 

Enriched MITC4 Present shell element with the local approximation  T ( ) 1 x yp x    

Enriched MITC4* Present shell element with the local approximation  T ( ) 1 x y xyp x   

MITC9 9-node quadrilateral shell element with the MITC method [21, 22] 

EAS7_ANS In-plane bilinear enhanced shell element [113] 

SIMO_1990 Enhanced shear formulation [32] 

AHMA4 Bilinear degenerated shell element [5] 

Macro-ANS 3-node macro ANS triangular shell element [114, 115]

ANS 3-node triangular shell element based on the ANS formulation [114] 

S3R General purpose 3-node shell element in ABAQUS [116] 

T3DISP Displacement based 3-node shell element with reduced integration.  

Allman Discrete Kirchhoff-Mindlin triangle with Allman’s rotational DOFs [117, 118]

Cook, Flat-stiffened Stabilized 18 DOFs triangular flat shell element proposed by Cook [119] 

Cook, Curved-softened Stabilized 18 DOFs triangular curved shell proposed by Cook [119] 

Providas and Kattis Triangular shell element with an arbitrary small true drilling stiffness [120] 

ANDES (OPT) Triangular element with the optimal assumed natural deviatoric strain [121] 

MISQ24 Mixed interpolation smoothing quadrilateral element with 24 DOFs [122] 

MIN4T 4-node flat shell with drilling DOFs via explicit Kirchhoff constrains [123] 

XSHELL41/42 4-node quasi-conforming flat shell element with drilling DOFs [124] 

SRI-4 Bilinear degenerated shell element with selective reduced integration [12] 

RSDS-4 Bilinear resultant-stress degenerated shell element with reduced integration [125] 

SHELL63 (ANSYS) 4-node thin shell element with drilling DOFs in ANSYS [126] 

QC5D-SA 4-node flat shell with drilling DOFs and 5-point quadrature [127] 

QPH 4-node quadrilateral shell element with physical hourglass control [128] 

IBRA-4 4-node shell element with drilling DOFs [129] 

DKQ-4 4-node discrete Kirchhoff quadrilateral element [130] 

QUAD4 4-node shell element with modifications which relax excessive constraints [16] 

URI-4 9-node uniformly reduced integrated element [131] 

T029 (SAMCEF) 4-node Mindlin shell element in Samtech [132] 

NMS-4F Defect-free 4-node flat shell element with drilling DOFs [133] 

 

 

 

4.3.1 Morley’s 30  Skew Plate Under Uniform Pressure 

 

 



 

- 74 - 

(a) (b)

5

0.6

0.7

0.8

0.9

1.0

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t

Number of elements per side

MITC4

E MITC3 (mesh I)riched

E MITC3 (mesh II)riched

E MITC4riched

MITC9

Reference

10 15 20 25 30

A

l

All edges simply supported

x

y

Mesh pattern I Mesh pattern II

l

30�

 

Figure 4.7. Morley’s 30  skew plate under uniform pressure. (a) Problem description and mesh patterns 

( 4 4 ) used for the MITC3 and enriched MITC3 shell elements. (b) Normalized displacement at point A for 

the Morley’s 30  skew plate. 

 

 

Figure 4.7(a) shows the skew plate under uniform pressure. Morley [134] originally proposed the 

skew plate to test the sensitivity of the proposed shell elements to mesh distortions. A plate of dimensions 

l l  and uniform thickness h  are considered and all edges are simply supported. The material properties 

and length of the skew plate are 510E  , 0.3v   and 100l   which are based on the work of Andelfinger 

and Ramm [113]. Still following this work, the Kirchhoff reference solution of 4.455 suggested by Morley is 

replaced by the value 4.640, as even for the length to thickness ratio of 100 shear deformation effects cannot 

be neglected. 

 

The present results are compared with the ones obtained by MITC3, MITC4, enriched MITC3 and 

MITC9 shell elements. The values for the central point deflection of the plate are listed in Table 4.4 and 

graphically in Figure 4.7(b) and Figure 4.8. The enriched MITC4 shell element shows remarkably good re-

sults even for coarse meshes, leading to the same numerical values. 
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Figure 4.8. Normalized displacement at point A for the Morley’s 30  skew plate when the (a) triangular and 

(b) quadrilateral shell elements are used. 

 

 

Table 4.4. Relative errors in the vertical displacement at point A for the Morley’s 30  skew plate under uni-

form pressure. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and fi-

nite element solutions, respectively. 

Element type 

Relative errors in the vertical displacement at point A 

Mesh 

4 4  6 6  8 8  10 10  12 12  14 14  16 16  32 32  

MITC3I 0.151 0.159 0.140 0.113 0.091 0.074 0.062 0.024 

MITC3II 0.858 0.730 0.624 0.535 0.460 0.397 0.347 0.158 

MITC4 0.156 0.164 0.164 0.150 0.132 0.116 0.104 0.054 

Enriched MITC3I 0.034 0.109 0.098 0.077 0.061 0.050 0.041 0.017 

Enriched MITC3II 0.375 0.299 0.260 0.227 0.200 0.179 0.161 0.087 

Enriched MITC4 0.100 0.134 0.129 0.111 0.094 0.081 0.070 0.032 

Enriched MITC4* 0.099 0.116 0.098 0.078 0.063 0.052 0.045 0.019 

MITC9 0.176 0.129 0.100 0.082 0.069 0.059 0.052 0.023 

EAS7_ANS [113] 0.092 - 0.090 - - - 0.057 0.034 

Simo_1990 [32] 0.153 - 0.141 - - - 0.079 0.037 

AHMA4 [5] 0.975 - 0.917 - - - 0.787 0.588 

 

Reference solution 4.640ref
Aw    [134] 

I and II : mesh patterns shown in Figure 4.7(a) 

 

 



 

- 76 - 

 

4.3.2 Circular Plate Under Uniform Pressure 
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Figure 4.9. Circular plate under uniform pressure. 

 

 

Figure 4.9 presents a circular plate of thickness h  and radius r , loaded with a uniform downward 

pressure. A simply supported and clamped circular plate subjected to uniform loading are analyzed to demon-

strate more features of the present element. The plate used in this test has a radius r  of 1 and two kinds of 

thickness h  (0.1 and 0.01). The material has a Young’s modulus of 71.7472 10E    and Poisson’s ratio of 

0.3v  . The pressure load has a magnitude of 1q  . The classical mesh patterns are shown in Figure 4.10 

and only a quarter of the plate is modeled due to symmetry. 
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Figure 4.10. Mesh used for the circulate plate under uniform pressure. Mesh pattern I and II are used for the 

MITC3 and enriched MITC3 shell elements. 

 

 

This problem is often used to verify results of new elements since analytical solutions are readily 

available in this case. Using small displacements assumption, an analytic solution for displacements can be 

found following the procedures in [135]. Using Resissner-Mindlin shell theory, vertical displacements at the 

center of the circular plate can be calculated by 

 Simply supported circular plate : 
4 2

2 25
(1 ) 16

64 1
oq r v

w
D v

 


 
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,  (4.50)

 Clamped circular plate : 
4 2

2 2(1 ) 1 16
64

oq r
w

D

 


 
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 
,  (4.51)

where D  represents its flexural rigidity. The flexural rigidity is obtained by 

 
3

212(1 )

Eh
D

v



,  (4.52)

where h  is the thickness, E  is the Young’s modulus, v  is the Poisson’s ratio, /R r   is an adimen-
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sional radial coordinate, /h r   is an index of how the plate is thin with respect to its radius and   is a 

characteristic parameter, which is, as far as homogeneous plates are concerned, equal to 5(1 )v . Hence, the 

reference solution of the circular plate from Equations (4.50) and (4.51) are used. 
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Figure 4.11. Normalized displacement at the center for the circular plate with / 0.1h r   and / 0.01h r   

when the circulate plate is (a) simply supported and (b) clamped. 

 

 

Figure 4.11(a) and Figure 4.11(b) present the normalized displacements for the simply supported and 

clamped circular plate, respectively. Additionally, the relative errors for the central point deflection of the 

plate are listed in Table 4.5 and Table 4.6. The enriched MITC3 shell finite element reveals some sensitivity 

to coarse meshes, converging to the performance of the elements as the mesh is refined. The present enriched 

MITC4 element produces much better solution results than other shell elements. 
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Table 4.5. Relative errors in the vertical displacement at point A for the simply supported circular plate under 

uniform pressure. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and 

finite element solutions, respectively. 

Element type 

Relative errors in the vertical displacement at point A for the simply supported plate 

/ 0.1h r   / 0.01h r   

1 1  2 2  3 3  4 4  1 1  2 2  3 3  4 4  

MITC3I 21.655 5.8477 2.5715 1.4896 31.370 12.984 8.0714 4.8375 

MITC3II 18.133 4.9722 2.2392 1.3105 30.003 11.126 6.0761 3.6132 

MITC4 8.9344 2.1880 1.0725 0.6828 8.9120 2.0046 0.8953 0.5018 

Enriched MITC3I 0.2576 1.0378 0.5007 0.2355 0.2850 1.1864 0.6628 0.4058 

Enriched MITC3II 6.9076 1.9940 0.8492 0.4103 7.0804 2.0948 0.9945 0.5754 

Enriched MITC4 6.2292 1.3753 0.6716 0.4478 7.4785 1.5154 0.5588 0.2933 

Enriched MITC4* 8.2046 2.0646 0.9637 0.5939 8.8357 2.0209 0.8413 0.4289 

MITC9 0.1525 0.1813 0.1841 0.1845 0.0452 0.0023 0.0015 0.0018 

 

Reference solution = 4.026E-05ref
Aw   for / 0.1h r   and = 3.982E-02ref

Aw   for / 0.01h r   

I and II : mesh patterns shown in Figure 4.10 

 

 

Table 4.6. Relative errors in the vertical displacement at point A for the clamped circular plate under uniform 

pressure. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and finite 

element solutions, respectively. 

Element type 

Relative errors in the vertical displacement at point A for the clamped circular plate 

/ 0.1h r   / 0.01h r   

1 1  2 2  3 3  4 4  1 1  2 2  3 3  4 4  

MITC3I 64.785 16.887 6.9421 4.0065 99.097 87.844 55.804 27.994 

MITC3II 59.005 14.239 6.0037 3.5079 98.944 78.667 43.502 21.287 

MITC4 8.2247 1.4532 1.0086 0.8754 7.8238 0.6659 0.2831 0.1450 

Enriched MITC3I 21.430 4.2715 1.9614 1.2955 22.135 3.9415 1.4733 0.7313 

Enriched MITC3II 58.002 9.5016 3.0473 1.5981 71.050 14.737 5.1137 2.4941 

Enriched MITC4 3.3057 0.0333 0.2096 0.3809 7.5536 0.8979 0.0341 0.1252 

Enriched MITC4* 4.7700 0.9587 0.5797 0.5249 7.4946 0.7353 0.0616 0.1508 

MITC9 0.4769 0.7090 0.7246 0.7276 0.2951 0.0155 0.0028 0.0060 

 

Reference solution = 1.021E-05ref
Aw   for / 0.1h r   and = 9.770E-03ref

Aw   for / 0.01h r   

I and II : mesh patterns shown in Figure 4.10 
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4.3.3 Partly Clamped Hyperbolic Paraboloid Shell 
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Figure 4.12. Partly clamped hyperbolic paraboloid shell. (a) Problem description and mesh pattern (8 4 ) 

used for the MITC and enriched MITC3 shell elements. (b) Normalized displacement at point A in the analy-

sis of the partly clamped hyperbolic paraboloid shell. 

 

 

The partly clamped hyperbolic paraboloid shell problem shown in Figure 4.12(a) is classified as a 

bending dominated problem. This problem was suggested as a suitable test for locking behavior [136, 137]. 

The surface is defined as 

 2 2Z X Y  ;  2
( , ) ( / 2; / 2)X Y l l  ,  (4.53)

clamped along the side / 2X l  . 

 

The shell is clamped at one end and subjected to self-weight which is 8 per unit area. The problem ge-

ometry and material properties are 1l  , 112 10E   , 0.3v   and the thickness of the shell is 0.001h  . 

As a result of symmetry, only one half of the surface is considered in this problem. For the finite element 

analysis, sequences of / 2N N  meshes, where N  is the number of subdivisions along the x-direction. 

 

Currently, an analytic solution is not available for this shell problem; instead, a 32 16  element mesh 

of the MITC9 shell element is used to obtain the reference solution. The reference solution of the vertical dis-

placement at point A is -0.0064. Figure 4.12(b) and Figure 4.13 report the normalized displacement at point A 

for this shell problem and Table 4.7 presents the relative errors in vertical deflection compared with other 

shell elements. The results of the enriched MITC3 shell element are sensitive to mesh patterns shown in Fig-
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ure 4.12(a). The enriched MITC4 shell element exhibits better results even for the coarse meshes. 
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Figure 4.13. Normalized displacement at point A for the partly clamped hyperbolic paraboloid shell when the 

(a) triangular and (b) quadrilateral shell elements are used. 

 

 

Table 4.7. Relative errors in the vertical displacement at point A for the partly clamped hyperbolic paraboloid 

shell. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and finite ele-

ment solutions, respectively. 

Element type 
Mesh 

4 2  8 4  12 6  16 8  20 10 24 12 28 14  32 16  

MITC3 I 99.59 96.23 88.39 77.03 64.63 53.25 43.60 35.65 

MITC3 II 99.86 98.83 95.68 89.85 82.12 73.45 64.59 56.12 

MITC4 2.373 4.887 5.367 4.850 4.194 3.590 3.072 2.638 

Enriched MITC3I 6.532 1.613 2.880 2.943 2.677 2.323 1.972 1.657 

Enriched MITC3II 1.485 5.712 5.800 4.936 3.992 3.167 2.493 1.953 

Enriched MITC4 0.036 2.757 2.788 2.450 2.061 1.690 1.368 1.100 

Enriched MITC4* 1.802 0.190 1.551 1.667 1.431 1.156 0.912 0.710 

MITC9 15.92 0.185 1.208 0.917 0.557 0.296 0.120 0.000 

 

Reference solution 0.00637115ref
Aw    

I and II : mesh patterns shown in Figure 4.12(a) 
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4.3.4 Twisted Beam Subjected to Vertical Tip Load 
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Figure 4.14. Twisted beam subjected to vertical tip load. (a) Problem description. (b) Mesh patterns used for 

the MITC3 and enriched MITC3 shell elements. 

 

 

Figure 4.14(a) shows the twisted beam proposed by Belytschko et al. [131]. This benchmark problem 

is to test the effect of element warping. The performance of elements of two kind of thickness (0.32 and 

0.0032) was studied under out-of-plane shear force. The geometrical property and load are 12l  , 1.1w   

and 1F  , respectively. The Young’s modulus is 629 10E   , while the Poisson’s ration is 0.22v  . 
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Figure 4.15. Normalized displacement of the twisted beam subjected to vertical tip load for different thick-

ness cases (left) 0.32h   and (right) 0.0032h  . 

 

 

Figure 4.15 represents the normalized displacement at point A for the twisted beam and Table 4.8 
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shows the relative errors in vertical deflection at point A comparing with the results from other shell elements 

in some literatures. The solutions using the MITC3 shell element deteriorate as the shell thickness decreases. 

However, all enriched shell elements show excellent results when compared with the reference solutions. 

 

 

Table 4.8. Relative errors in displacement at point A for the twisted beam subjected to vertical tip load. Rela-

tive error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and finite element solutions, 

respectively. 

Element type 
0.32h   0.0032h   

4 2  8 4  12 6 16 8 4 2 8 4  12 6  16 8  

MITC3I 4.029 2.717 2.075 1.722 3.867 3.748 3.672 3.617 

MITC3II 4.156 2.790 2.097 1.719 3.890 3.769 3.694 3.639 

MITC4 3.015 1.563 0.983 0.707 3.774 2.967 2.169 1.621 

Enriched MITC3I 1.169 0.078 0.050 0.074 1.797 0.639 0.493 0.479 

Enriched MITC3II 1.294 0.152 0.001 0.039 1.787 0.639 0.493 0.470 

Enriched MITC4 2.750 1.409 0.862 0.609 3.374 2.455 1.789 1.361 

MITC9 1.657 0.527 0.362 0.308 2.250 0.338 0.114 0.294 

Macro-ANSII 3.500 2.000 1.400 1.000 2.800 0.000 0.300 0.500 

ANSII 3.500 2.100 1.500 1.100 3.100 2.700 2.100 1.600 

S3RII 18.70 3.500 1.900 1.400 64.60 6.000 2.700 1.600 

T3DISPII 94.60 80.30 63.10 47.40 99.99 99.99 99.88 99.76 

AllmanI - - - - 97.40 98.45 - 92.59 

Cook, flat-stiffenedI - - - - 97.69 93.71 - 55.47 

Cook, curved-softenedI - - - - 3.800 0.800 - 0.100 

Providas and KattisI - - - - 99.54 0.020 - 0.340 

ANDES (OPT)I - - - - 99.54 98.04 - 91.43 

 

Reference solution 5.424E-03ref
Aw   for 0.32h   and 5.256E+03ref

Aw   for 0.0032h   

I and II : mesh patterns shown in Figure 4.14(b) 

 

 

 

4.3.5 Pinched Cylinder 
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Figure 4.16. Pinched cylinder. (a) Problem description. (b) Mesh patterns ( 4 4 ) used for the MITC3 and 

enriched MITC3 shell elements and the distorted mesh. 

 

 

 

Figure 4.16(a) illustrates a short cylinder subjected to two pinching forces. The shell is bounded by 

rigid diaphragms at each end. This pinched cylinder is one of the most sever benchmark problem which is to 

test an element’s ability to model both inextensional bending and complex membrane states. Belytschko et al. 

[138] pointed out the difficulty in passing this test. Due to symmetry, only one octant of the cylinder is ana-

lyzed. 

 

The length and radius of the full cylinder are 600l   and 300r  , respectively. The thickness of the 

cylinder is 3h   and the material constants are 73 10E    and 0.3v  . The load applied to the cylinder is 

1P  . The vertical displacement at the location of the point load is 1.8248e-05 which is given in Belytschko 

et al. [138]. 
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Figure 4.17. Distorted meshes used for the pinched cylinder, semi-cylindrical shell subjected to an end pinch-

ing force and Scordelis-Lo roof when 4N  . Two mesh patterns for the MITC3 and enriched MITC3 shell 

elements. 

 

 

The convergence behavior not only using uniform meshes but also distorted meshes is studied in the 

pinched cylinder, semi-cylindrical shell subjected to an end pinching force, and Scordelis-Lo roof, see Figure 

4.17. When the N N  distorted mesh is used, each edge is discretized by the ratio 

1 2 3: : : , 1: 2 : 3 : ,NL L L L N  , leading to quite distorted meshes. 

 

For the pinched cylinder problem, the best performance is obtained with the MITC9 shell element, and 

next with the enriched MITC4 shell element, as illustrated in Figure 4.18. Table 4.9 and Table 4.10 tabulate 

the results of MITC shell elements and other shell elements published using the uniform and distorted meshes. 

The enriched MITC3 shell element performs well when the uniform meshes are used. However, for the dis-

torted meshes, the enriched MITC3 shell element shows slightly poor results when the mesh pattern II is used. 

When the uniform meshes are used, the enriched scheme for the 4-node shell element increases solution accu-

racy even though the performance of the MITC4 and enriched MITC4 are similar for this problem with the 

distorted meshes. 
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Figure 4.18. Normalized displacement of the pinched cylinder with (a) the uniform meshes (b) the distorted 

meshes shown in Figure 4.16(b) and Figure 4.17. 

 

 

Table 4.9. Relative errors in the radial displacement at point A for the pinched cylinder with the uniform 

meshes. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and finite ele-

ment solutions, respectively. 

Element type 
Mesh 

4 4  8 8  12 12  16 16  20 20  

MITC3I 0.8845 0.5665 0.3359 0.2111 0.1400 

MITC3II 0.8923 0.5627 0.3259 0.2043 0.1360 

MITC4 0.6212 0.2531 0.1251 0.0714 0.0445 

MITC4* 0.6043 0.2425 0.1194 0.0680 0.0422 

Enriched MITC3I 0.3763 0.0213 0.0571 0.0665 0.0622 

Enriched MITC3II 0.4021 0.1015 0.0290 0.0036 0.0072 

Enriched MITC4 0.5296 0.1579 0.0593 0.0246 0.0095 

MITC9 0.0369 0.0016 0.0052 0.0079 0.0092 

MISQ24 0.3584 0.0589 0.0079 0.0018 - 

MIN4T 0.4960 0.1626 - 0.0381 - 

XSHELL41 0.3750 0.0740 - 0.0050 - 

XSHELL42 0.3750 0.0820 - 0.0080 - 

SRI-4 0.6270 0.2530 - 0.0650 - 

RSDS-4 0.5310 0.2090 - 0.0540 - 

SHELL63 (ANSYS) 0.3698 0.0629 - 0.0029 - 

QC5D-SA 0.6241 0.2536 - 0.0700 - 

QPH 0.6300 0.2600 - 0.0700 - 

IBRA-4 0.6296 0.2633 - 0.0657 - 

DKQ-4 0.3643 0.0541 - 0.0160 - 

Simo et al. 0.6011 0.2372 - 0.0651 - 
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Allman 0.4098 0.0759 - 0.0043 - 

Cook_Flat-stiffened 0.4629 0.1027 - 0.0033 - 

Cook_Curved-softened 0.0260 0.0010 - - - 

Providas and Kattis 0.5465 0.1436 0.0176 - - 

ANDES (OPT) 0.3696 0.0626 0.0064 - - 

 

Reference solution 1.8248E-05ref
Aw   [138] 

I and II : mesh patterns shown in Figure 4.16(b) and Figure 4.17 

 

 

Table 4.10. Relative errors in the radial displacement at point A for the pinched cylinder with the distorted 

meshes. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and finite ele-

ment solutions, respectively. 

Element type 
Mesh 

4 4  8 8  12 12  16 16  20 20  

MITC3I 0.8628 0.4341 0.1917 0.0953 0.0520 

MITC3II 0.9505 0.7354 0.4926 0.3327 0.2312 

MITC4 0.7858 0.3530 0.1927 0.1149 0.0726 

MITC4* 0.7615 0.3319 0.1779 0.1047 0.0654 

Enriched MITC3I 0.3959 0.1104 0.0456 0.0203 0.0076 

Enriched MITC3II 0.7960 0.4358 0.2626 0.1720 0.1181 

Enriched MITC4 0.6559 0.2927 0.1575 0.0910 0.0550 

MITC9 0.1470 0.0002 0.0145 0.0176 0.0189 

 

Reference solution 1.8248E-05ref
Aw   [138] 

I and II : mesh patterns shown in Figure 4.16(b) and Figure 4.17 

 

 

 

4.3.6 Semi-Cylindrical Shell Subjected to an End Pinching Force 
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Figure 4.19. Semi-cylindrical shell subjected to an end pinching force. (a) Problem description. (b) Meshes 

used ( 4 4 ) for the MITC3 and enriched MITC3 shell elements. 

 

 

A well-known benchmark problem is the semi-cylindrical shell under a point load shown in Figure 

4.19(a) [139-142]. The length and radius of the half cylinder are 0.3048l   and 1.016r  , respectively, 

and the thickness of the semi-cylindrical shell is 0.03h  . The material constants are 72.0685 10E    and 

0.3v  . The unit load applied to the shell at point A. The structure is modeled using 4 4 , 8 8 , 12 12 , 

16 16  and 20 20  element meshes of the MITC3, MITC4, enriched MITC3 and enriched MITC4. The 

reference solutions are obtained using a 30 30  element mesh of the MITC9 shell element. 
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Figure 4.20. Normalized displacement of the semi-cylindrical shell with (a) the uniform meshes (b) the dis-

torted meshes shown in Figure 4.19(b) and Figure 4.17. 

 

 

Figure 4.20 shows the normalized displacement at point A for the semi-cylindrical shell with the uni-

form and distorted meshes. Also, the relative errors in vertical deflection at point A are listed in Table 4.11 

and Table 4.12. The enriched MITC4 shell element shows good performance in the solution of this shell prob-

lem when using both the uniform and distorted meshes. 

 

 

Table 4.11. Relative errors in the vertical displacement at point A for the semi-cylindrical shell with the uni-

form meshes. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and finite 

element solutions, respectively. 

Element type 
Mesh 

4 4  8 8  12 12  16 16  20 20  

MITC3I 0.636 0.339 0.210 0.142 0.102 

MITC3II 0.616 0.321 0.204 0.142 0.105 

MITC4 0.380 0.181 0.110 0.074 0.054 

MITC4* 0.345 0.167 0.101 0.069 0.050 

Enriched MITC3I 0.122 0.037 0.018 0.009 0.004 

Enriched MITC3II 0.173 0.065 0.037 0.024 0.016 

Enriched MITC4 0.205 0.102 0.062 0.041 0.029 

MITC9 0.083 0.029 0.014 0.008 0.005 

 

Reference solution 4.172e-04ref
Aw   

I and II : mesh patterns shown in Figure 4.19(b) and Figure 4.17 
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Table 4.12. Relative errors in the vertical displacement at point A for the semi-cylindrical shell with the dis-

torted meshes. Relative error (%) = / 100ref ref
A A Aw w w   where ref

Aw  and Aw  denote the reference and fi-

nite element solutions, respectively. 

Element type 
Mesh 

4 4  8 8  12 12  16 16  20 20  

MITC3I 0.539 0.170 0.072 0.038 0.021 

MITC3II 0.774 0.466 0.288 0.190 0.132 

MITC4 0.433 0.173 0.088 0.051 0.031 

MITC4* 0.322 0.108 0.050 0.026 0.013 

Enriched MITC3I 0.093 0.007 0.002 0.006 0.009 

Enriched MITC3II 0.409 0.130 0.056 0.028 0.013 

Enriched MITC4 0.272 0.083 0.033 0.013 0.003 

MITC9 0.024 0.005 0.012 0.014 0.016 

 

Reference solution 4.172e-04ref
Aw   

I and II : mesh patterns shown in Figure 4.19(b) and Figure 4.17 

 

 

 

4.3.7 Scordelis-Lo (Barrel Vault) Roof 
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Figure 4.21. Scordelis-Lo (Barrel Vault) roof. (a) Problem description. (b) Mesh patterns ( 4 4 ) used for the 

MITC3 and enriched MITC3 shell elements. 

 

 

The Scordelis-Lo (Barrel Vault) roof provides one of the standard tests to assess the performance of 

shell elements in a combined bending-membrane problem with the membrane action being dominant. The 

roof is modeled as a short cylinder shell, loaded by self-weight and supported by rigid diaphragms at the 

curved edges while the straight edges are free. The geometry of the problem is shown in Figure 4.21(a). The 

length of the roof is 50l  ; the radius of curvature is 25r   and its thickness 0.25h  . The material has a 

Young’s modulus of 84.32 10E    and a Poisson’s ratio of 0v  . The load it experiences is due to its 

weight, amounting to the force per unit surface 90zf   per unit area. According to MacNeal and Harder 

[143], the theoretical value for the vertical deflection at the center of the free edge is 0.3086, but slightly lower 

value 0.3024 seems to have become the reference solution for many publications. In this study the latter value 

is used to normalize numerical results. 
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Figure 4.22. Normalized displacement of the Scordelis-Lo roof with (a) the uniform meshes (b) the distorted 

meshes shown in Figure 4.21(b). 

 

 

The results for the normalized vertical displacement at the free edge are shown in Figure 4.22 and the 

displacements and its normalized values using the uniform and distorted meshes are shown in Table 6.12 and 

Table 6.13. The enriched MITC4 shell element shows an excellent performance even when the distorted 

meshes are used. 

 

 

Table 4.13. Relative errors in the vertical displacement at point A for the Scordelis-Lo roof with the uniform 

meshes. Relative error (%) / 100ref h refw w w    where refw  and hw  denote the reference and finite 

element solutions, respectively. 

Element type 
Mesh 

2 2  4 4  6 6  8 8  16 16  

MITC3I 0.2159 0.3598 0.2216 0.1412 0.0437 

MITC3II 0.9147 0.6240 0.3528 0.2070 0.0532 

MITC4 0.1921 0.0569 0.0397 0.0271 0.0112 

MITC4* 0.3892 0.0473 0.0149 0.0053 0.0023 

Enriched MITC3I 0.3059 0.0301 0.0215 0.0146 0.0066 

Enriched MITC3II 0.0532 0.0840 0.0387 0.0225 0.0083 

Enriched MITC4 0.3155 0.0420 0.0169 0.0079 0.0007 

Enriched MITC4* 0.3131 0.0398 0.0150 0.0067 0.0009 

MITC9 0.0407 0.0076 0.0056 0.0050 0.0040 

QPH - 0.0600 - 0.0200 0.0100 

Simo et al. - 0.0830 - 0.0150 0.0000 

QUAD4 - 0.0500 0.0180 0.0080 - 

URI-4 - 0.2190 - 0.0540 0.0170 
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SRI-4 - 0.0360 - 0.0160 0.0010 

DKQ-4 - 0.0480 - 0.0050 0.0030 

MISQ24 - 0.1912 - 0.0420 0.0063 

RSDS-4 - 0.2010 - 0.0460 0.0100 

T029 (SAMCEF) - 0.0240 - 0.0140 0.0070 

NMS-4F - 0.0470 - 0.0050 0.0030 

IBRA-4 - 0.0470 - 0.0050 0.0030 

Allman 0.4072 0.0046 0.0129 0.0126 - 

Cook_Flat-stiffened 0.3512 0.0925 0.0710 0.0494 - 

Cook_Curved-softened 0.4060 0.1200 - 0.0610 - 

Providas and Kattis 0.0984 0.2655 0.1853 0.1264 - 

ANDES (OPT) 0.5273 0.0830 0.0304 0.0139 - 

AHMA4 - 0.9319 0.8985 0.8656 - 

EAS7_ANS - 0.0407 - 0.0063 - 

 

Reference solution =0.3024ref
Aw  

I and II : mesh patterns shown in Figure 4.21(b) and Figure 4.17 

 

 

Table 4.14. Relative errors in the displacement at the point A for the Scordelis-Lo roof with the distorted 

meshes. Relative error (%) / 100ref h refw w w    where refw  and hw  denote the reference and finite 

element solutions, respectively. 

Element type 
Mesh 

2 2  4 4  6 6  8 8  16 16  

MITC3I 0.3988 0.4203 0.3039 0.2212 0.0817 

MITC3II 0.9180 0.8214 0.7080 0.5893 0.2493 

MITC4 0.2093 0.3138 0.2097 0.1415 0.0460 

MITC4* 0.0618 0.1028 0.0526 0.0311 0.0099 

Enriched MITC3I 0.2179 0.1227 0.0942 0.0668 0.0235 

Enriched MITC3II 0.0324 0.2477 0.1243 0.0635 0.0109 

Enriched MITC4 0.0874 0.1853 0.0869 0.0441 0.0087 

MITC9 0.1319 0.0231 0.0089 0.0056 0.0033 

 

Reference solution =0.3024ref
Aw  

I and II : mesh patterns shown in Figure 4.21(b) and Figure 4.17 
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Chapter 5. MITC3+ Shell Element in Geometric Nonlinear Analysis 

 

5.1 The MITC3+ Shell Finite Element for Linear Analysis 

In this section, the linear formulation of the MITC3+ shell finite element is extended to geometric non-

linear analysis and its performance is demonstrated. The MITC3+ shell element, recently proposed for linear 

analysis [29], represents a further development of the MITC3 shell element. The total Lagrangian formulation 

is employed allowing for large displacements and large rotations. Considering several analysis problems, the 

nonlinear solutions using the MITC3+ shell element are compared with those obtained using the MITC3 and 

MITC4 shell elements. It can be concluded that the MITC3+ shell element shows, in the problems considered, 

the same excellent performance in geometric nonlinear analysis as already observed in linear analysis. 

 

 

 

5.1.1 Geometry and Displacement Interpolations 
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Figure 5.1. The MITC3+ shell finite element with the bubble node: (a) Geometry of the MITC3+ shell finite 

element. (b) Definition of rotational degrees of freedom k  and k . 

 

 

The geometry interpolation of the MITC3+ shell element, shown in Figure 5.1, is given by 

3 4

1 1

( , , ) ( , ) ( , )
2

i
i i i i n

i i

r s h r s a f r s


 

  x x V  

with 
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 1 1h r s   , 2h r , 3h s , 4 1 2 3
4 1 2 3

1
( )

3n n n na a a a  V V V V , (5.1)

in which ( , )ih r s  is the two-dimensional interpolation function of the standard isoparametric procedure cor-

responding to node i , ix  is the position vector of node i  in the global Cartesian coordinate system, ia  

and i
nV  denote the shell thickness and the director vector at node i , respectively, and ( , )if r s  are the two-

dimensional interpolation functions that include the cubic bubble function 4f  corresponding to the internal 

node 4 

 1 1 4

1

3
f h f  , 2 2 4

1

3
f h f  , 3 3 4

1

3
f h f  , 4 27 (1 )f rs r s   .  (5.2)

 

Unlike the standard 3-node shell elements, the MITC3+ shell element has an internal node and the cor-

responding cubic bubble function in the geometry interpolation. 

 

From Equation (5.1), the displacement interpolation of the MITC3+ shell element for linear analysis 

is obtained by [29] 

 
3 4

2 1
1 1

( , , ) ( , ) ( , )( )
2

i i
i i i i i i

i i

r s h r s a f r s
  

 

  u u V V-∑ ∑ ,  (5.3)

in which iu  is the nodal displacement vector in the global Cartesian coordinate system, 1
iV  and 2

iV  are 

the unit vectors orthogonal to i
nV  and to each other, and i  and i  are the rotations of the director vector 

i
nV  about 1

iV  and 2
iV , respectively, at node i . 

 

The interior node, with rotation degrees of freedom only, is positioned on the flat surface defined by 

the three corner nodes of the element. Only the bending and transverse shear strain fields are enriched by the 

bubble function, and the geometry of the element remains flat, as for the MITC3 element, in a large defor-

mation analysis. Of course, static condensation can be carried out on the element level for the rotations 4  

and 4 , and hence in practice the element is really a 3-node element. 

 

 

 

5.1.2 Assumed Covariant Transverse Shear Strain Fields 

For linear analysis, the linear part of the Green-Lagrange strain tensor is used and its covariant strain 

components are 

 , ,

1
( )

2ij i j j ie    g u g u ,  (5.4)

in which 

 i
ir





x
g , , i

ir




u

u    with 1r r , 2r s , 3r  .  (5.5)



 

- 96 - 

 

 

(a) (b)

r

s

�se

�re

�1e

�2e
�3e

0 1

1

�qe

Barycenter

r

s

0 1

1

)(

1

Ae �

)(

2

Be �

)(

3

Ce �

: Tying point

1/ 6

1/ 6

2 / 3

2 / 3

(c)

r

s

( )D

( )F( )E

0 1

1

: Tying point

d2d

 

Figure 5.2. Transverse shear strains 1e  , 2e   and 3e  , and the tying positions (A), (B), (C), (D), (E) and 

(F) for the assumed transverse shear strain filed. 

 

 

Table 5.1. Tying positions for the assumed transverse shear strain for the MITC3+ shell elements. The dis-

tance d  is defined in Figure 5.2(c), and 1/10,000d   is used [29]. 

 Tying position r s 

Figure 5.2(b) (A) 1/6 2/3 

 (B) 2/3 1/6 

 (C) 1/6 1/6 

    

Figure 5.2(c) (D) 1/3 + d 1/3 - 2d 
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 (E) 1/3 - 2d 1/3 + d 

 (F) 1/3 + d 1/3 + d 

 

 

 

Since the MITC3+ shell element is flat, the covariant in-plane strain components are directly calculat-

ed using Equations (5.1)-(5.5). However, the covariant transverse shear strain fields are established using the 

MITC scheme to alleviate shear locking. 

 

To construct the assumed transverse shear strain filed for MITC3+ shell element, two important fac-

tors are considered. First, the tying positions for the assumed covariant transverse shear strain components 

should be inside the element since the bubble function should be zero along the element edges. Second, the 

stiffness associated to the in-plane twisting mode should be eliminated. For an original triangular shell ele-

ment called MITC3 shell element, the transverse shear strains occur in two transverse shearing modes and in 

an in-plane twisting of the element about the axis normal to the mid-surface at the barycenter. Hence, the 

transverse shear strain field of the MITC3 shell element can be divided into the constant part corresponding to 

the transverse shearing modes and the linear part corresponding to the in-plane twisting mode. 

 , 3 , ,AS MITC AS const AS linear
r r re e e    ,  , 3 , ,AS MITC AS const AS linear

s s se e e    .  (5.6)

 

At the barycenter, constant term evaluating the transverse shear strains can be obtained by 

  , , 3 (1) (2) (3) (3)

1/3

2 1 1

3 2 3
AS const AS MITC
r r r s s rs

e e e e e e     

      
 

,  (5.7)

  , , 3 (2) (1) (3) (3)

1/3

2 1 1

3 2 3
AS const AS MITC
s s s r s rr

e e e e e e     

      
 

,  (5.8)

where 

 , 3 (1)AS MITC
r re e cs   ,  , 3 (2)AS MITC

s se e cr   ,  (3) (1) (3) (2)( ) ( )r r s sc e e e e         (5.9)

with 

 (1)

1/2, 0r r r s
e e   

 ,  (2)

0, 1/2s s r s
e e   

 ,  (3)

1/ 2, 1/ 2r r r s
e e   

 ,  (3)

1/2, 1/2s s r s
e e   

 .  (5.10)

 

Subtracting, for the MITC3 shell element, the constant part from transverse shear strain field, the line-

arly varying part is calculated as follows 

 , , 3 , 1
(3 1)

3
AS linear AS MITC AS const
r r re e e c s      ,  (5.11)

 , , 3 , 1
(1 3 )

3
AS linear AS MITC AS const
s s se e e c r      .  (5.12)

 

If this approach were used for the MITC3+ shell element, the constant part in Equations (5.7)-(5.8) 

would not include the effect of the bubble function since the bubble function is zero along the element edges. 

To include the effect of the bubble function in the constant part, a new tying scheme using element internal 
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points is designed. First, the three covariant transverse shear strains 1te , 2te  and 3te  are defined in the di-

rections of the internal lines from the barycenter to the corners as shown in Figure 5.2(a). The following rela-

tions are obtained for the covariant transverse shear strain components, for 0 r , 1s  , 

 1

1
(2 )

5
s re e e    ,  2

1
(2 )

5
r se e e    ,  3

1
( )

2
r se e e     ,  (5.13)

and  

 2 3

5 2

3 3re e e    ,  1 3

5 2

3 3se e e    ,  1 2

1 10
( ) ( )

62
q s re e e e e        .  (5.14)

Using Equation (5.13), the transverse shear strain components are sampled at three internal tying points (A), 

(B) and (C) on the three internal lines, see Figure 5.2(b) and Table 5.1. 

 ( ) ( ) ( )
1

1
(2 )

5
A A A

s re e e    ,  ( ) ( ) ( )
2

1
(2 )

5
B B B

r se e e    ,  ( ) ( ) ( )
3

1
( )

2
C C C

s re e e     .  (5.15)

It is important to note that the tying points have been selected to obtain a spatially isotropic element. Using 

next the relations in Equation (5.14), the constant covariant transverse shear strains along the element edge 

directions are assumed to be 

 ( ) ( )
2 3

5 2
ˆ

3 3
B C

re e e    ,  ( ) ( )
1 3

5 2
ˆ

3 3
A C

se e e    ,  ( ) ( )
1 2

10
ˆ ( )

6
A B

qe e e    ,  (5.16)

and, using Equation (5.15), a new constant transverse shear strain field is obtained 

 ( ) ( ) ( ) ( )2 1 1
ˆ ˆ ( ) ( )

3 2 3
const B B C C
r r r s r se e e e e e          ,  (5.17)

 ( ) ( ) ( ) ( )2 1 1
ˆ ˆ ( ) ( )

3 2 3
const A A C C
s s s r r se e e e e e          .  (5.18)

In order to render the in-plane twisting stiffness more flexible, the linear part is modified by using three tying 

point (D), (E) and (F). 

 
1

ˆ ˆ(3 1)
3

linear
re c s   ,  

1
ˆ ˆ(1 3 )

3
linear
se c r      with ( ) (D) ( ) ( )ˆ ( ) ( )F F E

r r s sc e e e e       .  (5.19)

 

The tying positions (D), (E) and (F) are positioned on the three internal lines from the barycenter to 

the centers of the edges with d defined in Figure 5.2(c) and Table 5.1. As d  varies from 1/6 to 0, the three 

tying positions move from the centers of the edges to the barycenter, resulting in a smaller in-plane twisting 

stiffness. An effective value for d  is determined below. The assumed transverse shear strain fields of the 

MITC3+ shell element are given by 

( ) ( ) ( ) ( )2 1 1 1
ˆ( ) ( ) (3 1)

3 2 3 3
AS B B C C
r r s r se e e e e c s       - - , 

 ( ) ( ) ( ) ( )2 1 1 1
ˆ( ) ( ) (1 3 )

3 2 3 3
AS A A C C
s s r r se e e e e c r          ,  (5.20)

where ( ) ( ) ( ) ( )ˆ F D F E
r r s sc e e e e        and the tying positions (A), (B), (C), (D), (E), and (F) are presented in Fig-

ure 5.2 and Table 5.1. 

 



 

- 99 - 

The MITC3+ shell element is based on the ‘basic mathematical shell model’ [100, 103, 105] and the 

MITC scheme. The element passes the basic numerical tests, namely, the isotropy, zero energy mode, and 

patch tests. Furthermore, the MITC3+ shell element shows an excellent convergence behavior in both mem-

brane and bending dominated shell problems, even when distorted meshes are used [29]. 

 

 

 

5.2 The MITC3+ Shell Element for Geometric Nonlinear Analysis 

This section presents the geometric nonlinear formulation of the MITC3+ shell element. The total La-

grangian formulation is employed allowing for large displacements and large rotations. In the formulation, a 

superscript (and subscript) t  is used to denote “time” for general analysis, with in static solutions “time” 

simply denoting the load step and configuration [1]. 

 

The large displacement kinematics and the interpolation of the Green-Lagrange strain components are 

discussed. With the given expressions, the now classical incremental equations used in the total Lagrangian 

formulation can directly be established [1]. 

 

 

 

5.2.1 Large Displacement Kinematics 

The geometry of the MITC3+ shell finite element in the configuration at time t  shown in Figure 5.1 

is interpolated with 

 
3 4

1 1

( , , ) ( , ) ( , )
2

t t t i
i i i i n

i i

r s h r s a f r s


 

  x x V ,  (5.21)

in which t
ix  is the position vector of node i  in the configuration at time t , and t i

nV  denotes the director 

vector at node i  in the configuration at time t . 

 

The incremental displacements from the configuration at time t  to the configuration at time t t   

are 

 ( , , ) ( , , ) ( , , )t t tr s r s r s   u x x ,  (5.22)

and hence 

 
3 4

1 1

( , , ) ( , ) ( , )( )
2

t t i t i
i i i i n n

i i

r s h r s a f r s
 

 

   u u V V ,  (5.23)

where iu  is the vector of incremental nodal displacements at node i  from time t  to time t t  . Note 

that ( , , )r s u  is the displacement vector in the linear formulation, see Equation (5.3), but here it is the vec-

tor of incremental displacements. 

 

The director vector at time t t   at node i  is obtained from the director vector at time t  
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 t t i t t i t i
n t n

 V Q V ,  (5.24)

in which t t i
t

 Q  is the rotation matrix which rotates the director vector at node i  from the configuration at 

time t  to the configuration at time t t  . Additionally, the two unit vectors 1
t iV  and 2

t iV  are obtained 

by (see Figure 5.1(b)), 

 2
1

2

t i
t i n

t i
n






e V
V

e V
, 2 1

t i t i t i
n V V V .  (5.25)

 

For the vector-like parameterization of finite rotations [1, 144], the well-known formula is employed 

by 

 
  2

2
3

sin / 2sin( ) 1
( )

2 / 2

t t it t i
tt t i t t i t t it

t t tt t i t t i
t t


 


  

 

 
   
  

Q I Θ Θ   (5.26)

with 

 
3 2

3 1

2 1

0

0

0

t t i t t i
t t

t t i t t i t t i
t t t

t t i t t i
t t

 
 
 

 

  

 

 
   
  

Θ ,  (5.27)

 1 2
t t i t i t i

t i i   θ V V ,  (5.28)

in which 3I  is the 3 3  identity matrix, t t i
t

 Θ  is the skew-symmetric matrix operator, 

t t i
t

 θ = T
1 2 3[ ]t t i t t i t t i

t t t     , and 2 2 2
1 2 3( ) ( ) ( )t t i t t i t t i t t i

t t t t         . 

 

Using a Taylor series expansion, the finite rotation tensor t t i
t

 Q  can be represented by 

 t t i t t i t t i 2 t t i 3
t 3 t t t

1 1
( ) ( )

2! 3!
       Q I Θ Θ Θ  .  (5.29)

 

Using only the terms up to quadratic order in Equation (5.29), the following equation is obtained 

 
1

2
t t i t i t t i t i t t i t t i t i

n n t n t t n
     V V Θ V Θ Θ V ,  (5.30)

 
1

( )
2

t t i t i t t i t i t t i t t i t i
n n t n t t n

        V V θ V θ θ V ,  (5.31)

and using Equation (5.28) in Equation (5.31), we obtain for a ‘consistent linearization’ of the element dis-

placements [1] 

 2 2
2 1

1
( )

2
t t i t i t i t i t i

n n i i i i n        V V V V V .  (5.32)

 

Substituting Equation (5.32) into Equation (5.23), the vector of incremental displacements including 

second-order rotation effects is 

 
3 4

2 2
2 1

1 1

1
( , , ) ( , ) ( , ) ( )

2 2
t i t i t i

i i i i i i i i n
i i

r s h r s a f r s
    

 

        
 u u V V V ,  (5.33)
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in which i  and i  are the incremental rotations of the director vector t i
nV  about 1

t iV  and 2
t iV , respec-

tively, at node i . 

 

Note that the incremental displacement in Equation (5.33) consists of two parts, the linear part lu  

and the quadratic part qu , hence 

 ( , , ) ( , , ) ( , , )l qr s r s r s   u u u ,  (5.34)

 with 
3 4

2 1
1 1

( , , ) ( , ) ( , ) ( )
2

t i t i
l i i i i i i

i i

r s h r s a f r s
  

 

    u u V V ,  (5.35)

 and 
4

2 2

1

( , , ) ( , )[( ) ]
4

t i
q i i i i n

i

r s a f r s
  



  u V .  (5.36)

 

 

 

5.2.2 Green-Lagrange Strain and Its interpolation 

The Green-Lagrange strain tensor in the configuration at time t , referred to the configuration at time 

0 and measured in the convected system is conventionally defined by 

 T
0

1
( )

2
t  ε F F I  with 0t i

i F g g ,  (5.37)

in which F  is the deformation gradient tensor in terms of the covariant and contravariant base vectors. The 

covariant base vectors are obtained as the partial derivatives of the position vectors with respect to the curvi-

linear coordinates. Thus, the covariant base vectors for any point within the shell body in the configuration at 

time 0 and time t is defined by 

 
0

0
i

ir





x

g ,  0
,

t
t t

i i i
ir


  


x
g g u    with 1r r , 2r s , 3r x .  (5.38)

Similarly, in the incremental step from time t  to t t  , 

 
t t t t

t t t
i i

i ir r

 
  

  
 

x u
g g .  (5.39)

Using the Equation (5.38), the covariant components of the metric tensor can be determined as 

 0 0 0
ij i jg  g g ,  t t t

ij i jg  g g   (5.40)

 

The contravariant basis vectors needed for the calculation of the Green-Lagrange strain tensor can be 

derived as 

 0 0 1 0i
i

g g g ,  (5.41)

in which 0 1g  is the inverse of the metric tensor with components 0
ijg . Substituting Equations (5.38)-

(5.41) into Equation (5.37), the covariant components of the Green-Lagrange strain tensor in the configura-

tion at time t , referred to the configuration at time 0 , are defined by 

 0 0
0 0
t t

ij i jε ε g g ,  (5.42)
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where 

 0 0
0

1
( )

2
t t t

ij i j i jε    g g g g    with 
0

0
i

ir





x

g , 0
,

t
t t

i i i
ir


  


x
g g u ,  (5.43)

 in which ,

t
t

i
ir





u
u , 0t t u x x , 1r r , 2r s , 3r  .  (5.44)

 

Hence the incremental covariant strains are 

 0 0 0 , , , ,

1
( )

2
t t t t t

ij ij ij i j i j i jε ε ε       u g g u u u    with ,i
ir




u

u   (5.45)

 

Using Equation (5.34) in Equation (5.45), these strains are approximated as 

 0 0 0ij ij ijε e   ,  (5.46)

where 0 ije  and 0 ij  are the linear and nonlinear parts, respectively, 

 0

1

2
t tl l

ij j i ij
i j

e
r r

  
        

u u
g g B U ,  (5.47)

 0

1 1 1

2 2 2
q qt t Tl l

ij j i ij
i j i jr r r r


     

                  

u uu u
g g U N U ,  (5.48)

in which ijB  and ijN  are the strain-displacement matrices and U  is the vector of incremental nodal dis-

placements and rotations iu , i  and i  for all element nodes. In addition, the strain variations are 

 0 ij ije  B U ,  0
T

ij ij   U N U .  (5.49)

 

Note that Equations (5.46)-(5.49) contain all the strain terms to have a consistent linearization in the 

establishment of the tangent stiffness matrix. 

 

To alleviate shear locking, the MITC scheme used in the linear formulation of the MITC3+ shell ele-

ment is also employed for the incremental covariant transverse shear strains in the nonlinear formulation. 

Therefore, the covariant transverse shear strains in Equations (5.46)-(5.49) are substituted by 

 ( ) ( ) ( ) ( )
0 0 0 0 0 0

2 1 1 1
ˆ( ) ( ) (3 1)

3 2 3 3
AS B B C C
r r s r s c s              ,  (5.50)

 ( ) ( ) ( ) ( )
0 0 0 0 0 0

2 1 1 1
ˆ( ) ( ) (1 3 )

3 2 3 3
AS A A C C
s s r r s c r              ,  (5.51)

 0 0 0
AS AS AS
j j je     ,  0

AS AS
j je   B U ,  0

1

2
AS T AS
j j   U N U    with ,j r s   (5.52)

in which ( ) ( ) ( ) ( )
0 0 0 0 0ˆ F D F E

r r s sc           , AS
jB  and AS

jN  are the strain-displacement matrices for the as-

sumed covariant transverse shear strains. Of course, the tying positions defined in Figure 5.2 and Table 5.1 

are used. 
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Figure 5.3. Flow chart of the iterative procedures for solving the linearized equilibrium equation in the total 

Lagrangian formulation. 

 

 

Finally, the global equilibrium equations are solved in iterative incremental manner, using the full 

Newton-Raphson method as shown in Figure 5.3. For the evaluation of the element stiffness matrix and inter-

nal nodal force vector, we use 7-point Gauss integration in the r-s plane (as for the MITC6 shell element) due 

to the cubic bubble function. Hence, since also 6 tying points and the fourth node are used, compared to the 

MITC3 shell element (using 3 tying points and 3-point Gauss integration), the MITC3+ shell element requires 

for the evaluation of these element quantities clearly more computational time. 

 

 

 

5.3 Numerical Examples 

To assess the performance of the MITC3+ shell element in geometric nonlinear analysis, the solutions 
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of several benchmark problems are given in this section. The problems involve the large displacement and 

large rotation response of shells with various shell geometries. The results calculated using the following 

MITC shell elements are given 

 

 MITC3: 3-node triangular shell element 

 MITC3+: 3-node triangular shell element enriched by a cubic bubble function 

 MITC4: 4-node quadrilateral shell element 

 

In each example, the reference solutions are given by either an analytical result or a calculated solution 

using a fine uniform mesh of the MITC9 shell element (these meshes used twice the number of elements in 

each direction as employed in the MITC4 element solutions) [22]. The MITC9 element is known to satisfy the 

ellipticity and consistency conditions and to show good convergence behavior [22, 26, 27]. For comparison, 

we also plot the results of the linear analysis calculated using the MITC9 shell element. The iterations to solve 

the nonlinear equations have been performed in each load step to a convergence tolerance of 0.1 percent on 

the relative incremental energy. 

 

Note that in some benchmark problems, point loads are used, which cause a stress singularity at the 

point of loading. However, the use of point loads is acceptable in the studies here given because the meshes 

are not very fine (the point loads act as an equivalent pressure applied over a small area) [1]. 

 

 

 

5.3.1 Cantilever Plate Subjected to End Shear Force 
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Figure 5.4. Cantilever plate subjected to end shear force. (a) Problem description. (b) Meshes used for the 

MITC4 (top), MITC3 and MITC3+ (bottom) shell elements. 
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The cantilever plate shown in Figure 5.4(a) is subjected to a shear force at the free end. This problem 

has been considered many times before, see e.g. [145-147]. The material properties, geometry and applied 

force are chosen as 61.2 10E   , 0v  , 10l  , 1b  , 0.1h   and max 4P  . Figure 5.4(b) shows the 

16 1  mesh used for the solution with the MITC4 shell element and the corresponding mesh used for the 

MITC3 and MITC3+ shell elements. The reference solutions are calculated using a 32 2  element mesh of 

the MITC9 shell element. 
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Figure 5.5. Load-displacement curves for the cantilever plate subjected to end shear force. For the triangular 

element meshes, essentially the same response is measured at the two corners. 

 

 

Table 5.2. Relative errors in the vertical and horizontal displacements at the free end for the cantilever plate 

subjected to end shear force. Relative error (%) / 100ref h refw w w    or / 100ref h refv v v   where 

refw  and refv  denote the reference solution, and hw  and hv  are finite element solutions. 

Normalized load 

max/P P  

 
Relative errors in the vertical dis-

placement 

Relative errors in the horizontal dis-

placement 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  0.0916 0.3588 0.0611 0.2317 0.9173 0.1738 

0.2  0.0641 0.2605 0.0361 0.1834 0.7361 0.1336 

0.3  0.0372 0.1432 0.0115 0.1269 0.5116 0.0837 

0.4  0.0093 0.0349 0.0163 0.0674 0.2951 0.0337 

0.5  0.0142 0.0527 0.0365 0.0249 0.1183 0.0062 

0.6  0.0294 0.1194 0.0496 0.0100 0.0299 0.0349 

0.7  0.0444 0.1724 0.0632 0.0379 0.1475 0.0632 

0.8  0.0517 0.2115 0.0694 0.0591 0.2437 0.0812 



 

- 106 - 

0.9  0.0603 0.2427 0.0788 0.0796 0.3186 0.0996 

1.0  0.0657 0.2642 0.0821 0.0942 0.3799 0.1125 

Average  0.0468 0.1860 0.0504 0.0915 0.3698 0.0822 

 
refw  and refv : Reference solutions calculated using the 16 1  element mesh of the MITC9 shell elements
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Figure 5.6. Deformed configurations of the cantilever plate under end shear force. 

 

 

Figure 5.5 shows the calculated load-displacement curves and the same results are tabulated in Table 

5.2. Figure 5.6 depicts the deformed configurations of the cantilever plate obtained using the MITC3+ shell 

element at various load levels ( max0.25P P , max0.5P , max0.75P , and maxP ). All shell elements considered 

show excellent performance in the solution of this problem. 

 

 

 

5.3.2 Cantilever Plate Subjected to End Moment 
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Figure 5.7. Cantilever plate subjected to end moment. (a) Problem description. (b) Meshes used for the 

MITC4 (top), MITC3 and MITC3+ (bottom) shell elements. 

 

 

Figure 5.7 shows the cantilever plate subjected to a moment at the free end. This is a good problem to 

test the large rotation capability of shell elements [139, 140, 148, 149]. The cantilever plate has length 12l  , 

width 1b  , thickness 0.1h  , Young’s modulus 61.2 10E    and Poisson’s ratio 0v  . We use the end 

moment max 02M M  with 0 /M EI L , and hence the cantilever rolls up into a complete circle. The 

structure is modeled using a 16 1  element mesh of the MITC4 shell element and the corresponding MITC3 

and MITC3+ shell element meshes, see Figure 5.4(b). The reference solutions are calculated using a 32 2  

element mesh of the MITC9 shell element. 

 

The cantilever forms a circular arc of radius R given by the classical formula /R EI M . Thus, the 

analytical tip displacements are derived as 

 0

0

sin 1
Mu M

l M M

 
  

 
,  0

0

1 cos
Mw M

l M M

 
  

 
.  (5.53)
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Figure 5.8. Load-displacement curves for the cantilever plate subjected to end moment. For the triangular 

element meshes, essentially the same response is measured at the two corners. 

 

 

Table 5.3. Relative errors in the vertical and horizontal displacements at the free end for the cantilever plate 

subjected to end moment. Relative error (%) / 100ref h refw w w    or / 100ref h refu u u   where refw  

and refu  denote the reference solution, and hw  and hu  are finite element solutions. 

Normalized load 

max/M M  

 
Relative errors in the vertical displace-

ment 

Relative errors in the horizontal dis-

placement 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  0.0302 0.0302 0.0302 0.0362 0.0362 0.0362 

0.2  0.1015 0.1015 0.1015 0.1199 0.1199 0.1199 

0.3  0.1428 0.1428 0.1428 0.3398 0.3398 0.3398 

0.4  0.0174 0.0174 0.0174 0.5569 0.5569 0.5569 

0.5  0.5301 0.5301 0.5301 0.6750 0.6750 0.6750 

0.6  1.9780 1.9780 1.9780 0.5695 0.5695 0.5695 

0.7  5.3451 5.3451 5.3451 0.1233 0.1233 0.1233 

0.8  13.349 13.349 13.349 0.7288 0.7288 0.7288 

0.9  37.330 37.330 37.364 1.8797 1.8797 1.8797 

1.0  - - - 2.7917 2.7917 2.7583 

Average  6.5360 6.5360 6.5398 0.7821 0.7821 0.7787 

 
refw  and refu : Analytical solutions given by Equation (5.53). 
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Figure 5.9. Deformed configurations of the cantilever plate under end moment. 

 

 

Figure 5.8 depicts the calculated load-displacement curves and Table 5.3 presents the displacements 

at the free end for this problem. Figure 5.9 shows successive deformed configurations calculated using the 

MITC3+ shell element at various load stages ( max max max max0.1 ,0.2 ,0.3 , ,M M M M M  ). All computed re-

sults show good agreement with the analytical solutions. 

 

 

 

5.3.3 Slit Annular Plate under End Shear Force 
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Figure 5.10. Slit annular plate under end shear force. (a) Problem description. (b) Meshes used. 

 

 

A slit annular plate shown in Figure 5.10(a) is examined. This example was suggested by Başar and 

Ding [150] and has been widely considered [139-141, 151-154]. The geometry and elastic material properties 

are given by 6ir  , 10er  , 0.03h  , 621 10E    and 0v  . The transverse shear force max 3.2P   is 

incrementally applied at one end of the slit while the other end of the slit is fully clamped. The plate under-

goes large displacements and large rotations. This structure is modeled using a 6 30  element mesh of the 

MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes, see Figure 5.10(b). 

The reference solutions are obtained using a 12 60 element mesh of the MITC9 shell element. 
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Figure 5.11. Load-displacement curves for the slit annular plate under end shear force. 

 

 

Table 5.4. Relative errors in the vertical displacements at point A and B for slit annular plate under transverse 

end shear force. Relative error (%) / 100ref h refw w w    where refw  and hw  denote the reference and 

finite element solutions, respectively. 

Normalized load 

max/P P  

 
Relative errors in the vertical displace-

ment at point A 

Relative errors in the vertical displace-

ment at point B 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  1.5972 19.067 4.0407 2.0637 19.844 4.9036 

0.2  1.4592 17.434 3.1043 1.9778 19.030 4.0838 

0.3  1.6257 16.503 3.1621 2.2202 18.942 4.2687 

0.4  1.9299 16.373 3.5276 2.6072 19.452 4.7875 

0.5  2.2547 16.619 3.9930 3.0144 20.162 5.3828 

0.6  2.5799 17.090 4.5250 3.4173 20.979 6.0425 

0.7  2.8945 17.769 5.1221 3.8008 21.965 6.7895 

0.8  3.2398 18.653 5.5707 4.2093 23.126 7.3167 

0.9  3.6011 19.613 6.0335 4.6480 24.342 7.8624 

1.0  3.8708 20.560 6.1635 4.9516 25.509 7.9616 

Average  2.5053 17.968 4.5242 3.2910 21.335 5.9399 

 
refw : Reference solutions calculated using the 6 30  element mesh of the MITC9 shell elements 
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Figure 5.12. Deformed configurations of the slit annular plate under end shear force. 

 

 

The load-displacement curves at two different points, A and B, are depicted in Figure 5.11. Also, the 

same results are listed in Table 5.4. The deformed configurations calculated using the MITC4, MITC3 and 

MITC3+ shell elements are shown in Figure 5.12. As seen, the MITC3 shell element displays too stiff a be-

havior. However, the results using the MITC3+ shell element are in agreement with those using the MITC4 

shell element and reasonably close to the reference solutions. 

 

 

 

5.3.4 Hemisphere Shell Subjected to Alternating Radial Forces 

 

 



 

- 113 - 

x y

z

18˚

P

P P

P
A B

r

CD

(a)

(b)  

Figure 5.13. Hemisphere shell subjected to alternating radial forces. (a) Problem solved. (b) Meshes used 

( 8 32 ). 

 

 

Next benchmark problem is a hemispherical shell with an 18  circular cutout, as shown in Figure 

5.13(a). The shell is pinched along one direction at points B and D and pulled along the perpendicular direc-

tion at points A and C [120, 145, 147, 151, 152]. The material and geometric properties are given by 

76.825 10E   , 0.3v  , 10r  , and the thickness is 0.04. The point load is incrementally applied to a 

maximum value max 400P  . The shell is modeled using 8 32  and 12 48  element meshes of the MITC4 

shell element and the corresponding MITC3 and MITC3+ shell element meshes, see Figure 5.13(b). A 

24 96  element mesh of the MITC9 shell element is used to obtain the reference solutions. 
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Figure 5.14. Load-displacement curves for the hemisphere shell subjected to alternating radial forces when 

(a) 8 32  and (b) 12 48 element meshes are used. 

 

 

Table 5.5. Relative errors in the radial displacements at point A and B for the hemisphere shell subjected to 

alternating radial forces. Relative error (%) / 100ref h refu u u    or / 100ref h refv v v   where refu  

and refv  denote the reference solution, and hu  and hv  are finite element solutions. 

Normalized load 

max/P P  

 
Relative errors in the displacement at 

point A 

Relative errors in the displacement at 

point B 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  0.9285 15.978 1.3626 1.1691 16.000 2.2284 

0.2  1.4665 14.256 1.6563 1.9768 14.974 2.8722 

0.3  1.6875 13.305 1.7372 2.3749 14.738 2.9756 
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0.4  1.8621 12.695 1.8652 2.7121 14.719 3.0115 

0.5  1.9998 12.254 2.0145 2.9814 14.751 3.0208 

0.6  2.1217 11.914 2.2080 3.2229 14.792 3.0846 

0.7  2.2460 11.644 2.4330 3.4805 14.852 3.2167 

0.8  2.3517 11.412 2.6722 3.6963 14.881 3.3913 

0.9  2.4509 11.210 2.9114 3.9057 14.903 3.5965 

1.0  2.5401 11.037 3.1480 4.1014 14.918 3.8287 

Average  1.9655 12.571 2.2008 2.9621 14.953 3.1226 

 
refu  and refv : Reference solutions calculated using the 12 48  element mesh of the MITC9 shell elements 
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Figure 5.15. Deformed configurations of the hemisphere shell subjected to alternating radial forces. 

 

 

Figure 5.14 shows the load-radial displacement curves at the loaded points A  and B . Table 5.5 

tabulates the same results of Figure 5.14. The deformed configurations obtained using a 8 32  element 

mesh of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes are 

shown in Figure 5.15. For the meshes used, the MITC4 and MITC3+ shell elements produce much better so-

lution accuracy than the MITC3 shell element in this problem. 

 

 

 

5.3.5 Clamped Semi-Cylindrical Shell under Point Load 
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Figure 5.16. Clamped semi-cylindrical shell under point load. (a) Problem description (b) Meshes used 

( 20 20 ) 

 

 

A well-known benchmark problem for geometric nonlinear analysis of shells is the semi-cylindrical 

shell under a point load shown in Figure 5.16(a) [139-142]. The length and radius of the half cylinder are 

0.3048l   and 1.016r  , respectively, and the thickness is 0.03h  ; the material constants are 

72.0685 10E    and 0.3v  . The load applied to the shell increases up to max 2000P  . The structure is 

modeled using 20 20  and 32 32  element meshes of the MITC4 shell element and the corresponding 

MITC3 and MITC3+ shell element meshes, see Figure 5.16(b). The reference solutions are obtained using a 

64 64  element mesh of the MITC9 shell element. 

 

 



 

- 117 - 

0.0

0.2

0.4

0.6

0.8

1.0

P
o

in
t 

lo
ad

 (
/

)
P

P
m

ax

0.0

0.2

0.4

0.6

0.8

1.0

P
o

in
t 

lo
ad

 (
/

)
P

P
m

ax

MITC4

MITC3+

Linear analysis

Reference

MITC3

MITC4

MITC3+

Linear analysis

Reference

MITC3

0.00 0.000.45 0.90 1.35 1.80 0.15 0.30 0.45 0.60

Vertical d at pointisplacement A,
Aw� Horizontal d at pointisplacement A,

Av

0.00 0.000.45 0.90 1.35 1.80 0.15 0.30 0.45 0.60

Vertical d at pointisplacement A,
Aw� Horizontal d at pointisplacement A,

Av

0.0

0.2

0.4

0.6

0.8

1.0

P
o

in
t 

lo
ad

 (
/

)
P

P
m

ax

0.0

0.2

0.4

0.6

0.8

1.0

P
o

in
t 

lo
ad

 (
/

)
P

P
m

ax

(a)

(b)

MITC4

MITC3+

Linear analysis

Reference

MITC3

MITC4

MITC3+

Linear analysis

Reference

MITC3

 

Figure 5.17. Load-displacement curves for the clamped semi-cylindrical shell under point load when (a) 

20 20  and (b) 32 32 element meshes are used. 

 

 

Table 5.6. Relative errors in the vertical and horizontal displacements at point A for the clamped semi-

cylindrical shell under a point load. Relative error (%) / 100ref h refw w w    or / 100ref h refv v v   

where refw  and refv  denote the reference solution, and hw  and hv  are finite element solutions. 

Normalized load 

max/P P  

 
Relative errors in the vertical displace-

ment 

Relative errors in the horizontal dis-

placement 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  3.5799 7.4891 5.5065 18.929 36.429 24.762 

0.2  1.7906 4.4274 3.8040 5.3651 14.244 11.879 

0.3  2.7969 5.8230 4.7734 5.6135 12.446 9.8334 
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0.4  0.8735 3.0748 2.2711 1.8427 6.5769 4.6288 

0.5  0.1804 1.2776 0.6989 0.4528 3.2554 1.7271 

0.6  0.0692 0.6781 0.1937 0.1247 2.0033 0.6533 

0.7  0.2285 0.3656 0.0718 0.5130 1.2778 0.0278 

0.8  0.3556 0.1622 0.2495 0.8267 0.7577 0.4302 

0.9  0.4927 0.0060 0.3845 1.0846 0.3358 0.8139 

1.0  0.6232 0.1048 0.5067 1.3280 0.0417 1.1595 

Average  1.0990 2.3409 1.8460 3.6080 7.7367 5.5914 

 
refw and refv : Reference solutions calculated using the 32 32  element mesh of the MITC9 shell elements 
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Figure 5.18. Deformed configurations of the clamped semi-cylindrical shell under point load. 

 

 

Figure 5.17 and Table 5.6 give the obtained load-displacement curves and tabulated data, respective-

ly. Figure 5.18 shows the deformed shapes calculated using the 20 20  element mesh of the MITC3+ shell 

finite elements at various load levels, max / 3P P , max2 / 3P , and maxP . The three shell elements show good 

performance in the solution of this shell problem with the meshes used. 
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Figure 5.19. Distorted mesh patterns of the clamped semi-cylindrical shell ( 4N  ) (a) for the MITC4 shell 

element and (b) for the MITC3 and MITC3+ shell elements. 
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Figure 5.20. Load-displacement curves for the clamped semi-cylindrical shell with the distorted mesh patterns 

shown in Figure 5.19. 

 

 

The analysis with the distorted mesh patterns shown in Figure 5.19 is performed. For an N N  ele-

ment mesh, each edge is discretized with the following ratio : 1 :L 2 :L 3 :L  NL  1: 2 : 3 : N . The solu-

tions are obtained with a 24 24  element mesh of the MITC4, MITC3 and MITC3+ shell elements. Figure 

5.20 and Table 5.6 show the calculated load-displacement curves and tabulated values when the distorted 

mesh patterns in Figure 5.19 are used. The MITC3+ shell element shows a good performance regardless of 

which mesh pattern in Figure 5.19(b) is used. 

 

 

 

5.3.6 Fully Clamped Plate under Uniform Pressure 
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Figure 5.21. Fully clamped plate under uniform pressure and mesh used ( 4 4 ). 

 

 

Figure 5.21 shows the fully clamped plate under uniform pressure [115, 120, 146, 148, 154, 155]. A 

square plate of dimensions 2 2l l  and uniform thickness h  is considered and all edges are fully clamped 

with the hard boundary condition [1]. Due to symmetry, only one-quarter of the plate is modeled, with the 

following boundary conditions: 0x yu    along BC, 0y xu    along DC and 0x y x yu u       

along AB and AD. The material properties used are 31.7472 10E    and 0.3v  . The pressure applied to 

the plate increases up to 3 5
max 10q h  . The length of the plate is 1l   and four different plate thicknesses 

( / 1/10h L  , 1 /100 , 1/1,000  and 1/10,000 ) are considered. This problem is modeled using a 10 10  

element mesh of the MITC4 shell element and the corresponding MITC3 and MITC3+ shell element meshes. 

The reference solutions are calculated using a 20 20  element mesh of the MITC9 shell element. 
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Figure 5.22. Load-displacement curves for the fully clamped plate under uniform pressure. 

 

 

Table 5.7. Relative errors in the vertical displacement at point C for the fully clamped plate under uniform 

pressure (for the cases / 1/10h L   and / 1/100h L  ). Relative error (%) / 100ref h refw w w    where 

refw  and hw  is denote the reference and finite element solutions, respectively. 

Normalized load 

max/q q  

 Relative errors in the vertical displacement at point C 

 / 1 / 10h L   case / 1 / 100h L   case 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  0.1798 1.3936 1.1351 0.1145 5.4983 1.3746 

0.2  0.2772 1.1548 0.9547 0.1561 4.1374 1.1710 

0.3  0.3114 1.0424 0.8581 0.1931 3.6036 1.0940 

0.4  0.3359 0.9797 0.8006 0.2266 3.3428 1.0198 

0.5  0.3413 0.9372 0.7641 0.2062 3.1443 0.9794 
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0.6  0.3544 0.9026 0.7277 0.2391 3.0607 0.9565 

0.7  0.3597 0.8792 0.7060 0.2247 2.9663 0.9438 

0.8  0.3663 0.8548 0.6863 0.2130 2.9399 0.9374 

0.9  0.3739 0.8362 0.6674 0.2034 2.8885 0.9357 

1.0  0.3743 0.8257 0.6598 0.2344 2.8516 0.8984 

Average  0.3274 0.9806 0.7960 0.2011 3.4433 1.0311 

 
refw : Reference solutions calculated using the 10 10  element mesh of the MITC9 shell elements 

 

 

Table 5.8. Relative errors in the vertical displacement at point C for the fully clamped plate under uniform 

pressure (for the cases / 1/1,000h L   and / 1/10,000h L  ). Relative error (%) / 100ref h refw w w    

where refw  and hw  denote the reference and finite element solutions, respectively. 

Normalized load 

max/q q  

 Relative errors in the vertical displacement at point C 

 / 1 / 1,000h L   case / 1 / 10,000h L   case 

 MITC4 MITC3 MITC3+ MITC4 MITC3 MITC3+ 

0.1  0.1261 82.900 1.3179 0.1261 99.803 1.3316 

0.2  0.0000 76.819 0.7813 0.2031 99.731 1.1560 

0.3  0.6452 71.550 0.6452 0.2189 99.667 1.0816 

0.4  0.5682 67.000 0.5682 0.2210 99.609 1.0371 

0.5  0.0000 63.127 1.0309 0.2268 99.556 1.0002 

0.6  0.4785 59.612 0.9569 0.2200 99.506 0.9803 

0.7  0.0000 56.639 1.3453 0.2157 99.458 0.9617 

0.8  0.0000 54.043 1.2766 0.2174 99.412 0.9461 

0.9  0.0000 51.220 1.2195 0.2116 99.369 0.9319 

1.0  0.3906 49.219 0.7813 0.2110 99.327 0.9180 

Average  0.2208 63.213 0.9923 0.2071 99.544 1.0345 

 
refw : Reference solutions calculated using the 10 10  element mesh of the MITC9 shell elements 

 

 

Figure 5.22, Table 5.7 and Table 5.8 show the calculated vertical displacement at point C  versus 

the uniform pressure. The solutions using the MITC3 shell element deteriorate as the shell thickness decreases 

due to shear locking. However, the MITC3+ and MITC4 shell finite elements show excellent results com-

pared to the reference solutions. 
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Figure 5.23. Distorted meshes of the fully clamped plate (a) for the MITC4 shell element and (b) for the 

MITC3 and MITC3+ shell elements. 

 

 

Vertical displacement at point C, Cw�

MITC4 ( )uniform mesh

Reference

MITC4 (distorted mesh)

0.0

0.2

0.4

0.6

0.8

1.0

U
n

if
o

rm
 p

re
ss

u
re

 (
/

)
q

q
m

ax

0.000 0.007 0.014 0.021 0.028

MITC   ( )3 uniform mesh

MITC3+ ( )uniform mesh

Reference

MITC3 ( )distorted mesh

MITC3+ ( )distorted mesh
0.0

0.2

0.4

0.6

0.8

1.0

U
n

if
o

rm
 p

re
ss

u
re

 (
/

)
q

q
m

ax

0.000

0.0

0.2

0.4

0.6

0.8

1.0

U
n

if
o

rm
 p

re
ss

u
re

 (
/

)
q

q
m

ax

Vertical displacement at point C, Cw�Vertical displacement at point C, Cw�

0.007 0.014 0.021 0.0280.000 0.007 0.014 0.021 0.028

MITC   ( )3 uniform mesh

MITC3+ ( )uniform mesh

Reference

MITC3 ( )distorted mesh

MITC3+ ( )distorted mesh

Mesh Ⅰ Mesh Ⅱ

h L/ =1/100

h L/ =1/100 h L/ =1/100

 



 

- 125 - 

Figure 5.24. Load-displacement curves for the fully clamped plate with the distorted meshes shown in Figure 

5.23. 

 

 

The same problem with the distorted 4 4  element mesh shown in Figure 5.23 is also considered 

when / 1/100h L  . In the distorted element meshes, each edge is divided by the ratio : 

1 2 3 4: : :L L L L  1: 2 : 3 : 4 . Figure 5.24 shows the calculated load-displacement curves. The MITC3+ and 

MITC4 shell elements show an excellent performance even when the distorted meshes are used. It is also ob-

served that, compared to the MITC3 shell element, the MITC3+ shell element gives less sensitive solutions to 

mesh patterns. 
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Chapter 6. 3-Node Triangular Shell Element  

with Improved Membrane Behaviors 

 

6.1 The Enriched MITC3+ Shell Finite Element for Linear Analysis 

In this section, a new triangular shell finite element with improved membrane behaviors is presented. 

The proposed shell element (hereafter named enriched MITC3+) is based on the MITC3+ shell element [29] 

which uses a cubic bubble function for the rotations and assumed shear strain to alleviate the transverse shear 

locking phenomenon. In order to improve membrane behaviors, the partition of unity approximation is applied 

into only membrane part of the MITC3+ shell element. For geometric nonlinear analysis, the total Lagrangian 

formulation is employed allowing for large displacements and large rotations. The enriched MITC3+ shell 

element passes the three basic tests (the isotropy, patch and zero energy mode tests) and shows excellent con-

vergence behavior in several problems. The nonlinear performance of the enriched MITC3+ shell element was 

numerically studied by solving several benchmark tests. 

 

 

 

6.1.1 Displacement Interpolation of the MITC3+ Shell Element 
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Figure 6.1. The MITC3+ shell finite element with the bubble node: (a) Geometry of the MITC3+ shell finite 

element. (b) Definition of rotational degrees of freedom k  and k . 

 

 

The geometry interpolation of the MITC3+ shell element for linear analysis, shown in Figure 6.1, is 

given by [29, 156] 
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in which ( , )ih r s  is the two-dimensional interpolation function of the standard isoparametric procedure cor-

responding to node i , ix  is the position vector of node i  in the global Cartesian coordinate system, ia  

and i
nV  denote the shell thickness and the director vector at node i , respectively, and ( , )if r s  are the two-

dimensional interpolation functions that include the cubic bubble function 4f  corresponding to the internal 

node 4 

 1 1 4
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3
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Unlike the standard 3-node shell elements [23], the MITC3+ shell element has an internal node and the 

corresponding a cubic bubble function for rotations in the geometry interpolation. 

 

From Equation (6.1), the displacement interpolation of the MITC3+ shell element is obtained by [29, 

156] 
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in which  Ti i i iu v wu  is the nodal displacement vector in the global Cartesian coordinate system, 1
iV  

and 2
iV  are the unit vectors orthogonal to i

nV  and to each other, and i  and i  are the rotations of the 

director vector i
nV  about 1

iV  and 2
iV , respectively, at node i . 

 

The additional internal node, with rotation degrees of freedom only, is positioned on the flat surface 

defined by the three corner nodes of the element. Only the bending and transverse shear strain fields are en-

riched by the bubble function, and the geometry of the element remains flat, as for the MITC3 element, in a 

large deformation analysis. Of course, static condensation can be carried out on the element level for the rota-

tion 4  and 4 , and hence in practice the MITC3+ shell element is really a 3-node element with 5 degrees 

of freedom per node. 

 

 

 

6.1.2 The Partition of Unity Approximation to Improve Membrane Behaviors 
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Figure 6.2. Description of sub-domain; (a) usual interpolation function, ih  and an element, e, (b) cover re-

gion, iC  constructed by all the elements connected to node i . 

 

 

A partition of unity is a set of functions that, for every point in the domain under consideration, sum to 

unity and subordinated to each cover. The cover of a node is defined as the region around a node consisting of 

all the elements that share that node shown in Figure 6.2. The finite shape function, ih , then form a partition 

of unity subordinate to the cover iC . A partition of unity based displacement approximation applied only to 

only the tangential displacements associated with membrane strains of the MITC3+ shell element is given by 
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where ( )l
iu x  is not a nodal displacement vector as in the standard finite element method but a vector of  

nodal displacement functions (also called local approximation) defined on the cover, iC . In the above Equa-

tion (6.4), the finite element shape functions are used as the partition of unity functions and the local approx-

imation is constructed by polynomials. A more detailed description of the partition of unity method can be 

found in References [28, 33-41, 84, 92-98, 157, 158]. The local approximation on the cover iC  is construct-

ed as 

 

T
T1 1

T
1 1

0 0

( )

( ) ( )

u

m m
l v u v
i k ki k ki i

k k

i

u p a p a w

w

 

 
 

 
          

 
p x a

x p x a ,  (6.5)

in which T ( ) [1 ]x y xyp x  is a polynomial basis vector, m  is the number of monomials in the basis, 

and u
kia  and v

kia  are the additional degrees of freedom for the cover region, iw  is the nodal displacement 

corresponding to node i . In the development of the shell element, the only linear polynomial in Equation 

(6.5) is adopted and the local approximation can be rewritten by 

 
0 1 2

0 1 2( )

u u u
i i i

l v v v
i i i i

i

a xa ya

u a xa ya

w

  
    
  

x ,  (6.6)

where 0
u
ia  to 2

u
ia , and 0

v
ia  to 2

v
ia  are the corresponding to unknown coefficients to be determined. Enforc-
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ing ( )l
iu x  to be equal to the nodal value at node i  gives 

 
0 1 2

0 1 2( , )

u u u
i i i i i i

l v v v
i i i i i i i i i

i i

a x a y a u

u x y a x a y a v

w w

    
         
     

  (6.7)

and therefore 

 0 1 2
u u u
i i i i i ia u x a y a    and 0 1 2

v v v
i i i i i ia v x a y a   .  (6.8)

Substituting Equation (6.8) into Equation (6.7), the local approximation expressed as 

 

ˆ ˆ

ˆ ˆ( )
i i i i i

l
i i i i i i

i

u u u

u v v v

w

  
    
  

x

 

 

 
    (6.9)

 with i ix x   , i iy y   , 1ˆ u
i iu a  , 2ˆ u

i iu a  , 1ˆ v
i iv a   and 2ˆ v

i iv a  .  (6.10)

Finally, substituting Equations (6.9) and (6.10) into Equation (6.4), the partition of unity based displace-

ment approximation for the 3-node shell finite element with a cubic bubble function is given by 

 ˆ( , , ) ( , , ) ( , )r s t r s t r s u u u    with 
3

1

ˆ ˆ( , ) ( , )i i
i

r s r s


 u H u , (6.11)

in which Tˆ ˆ ˆ ˆ ˆ[ 0]i i i i iu u v v   u  are unknown coefficient vector for the displacements and the iH  are the 

linear cover interpolation matrices for the displacements 

 

0 0 0

0 0 0

0 0 0 0 0

i i

i i i ih

 
 

 
   
  

H .  (6.12)

 

The partition of unity based displacement approximation in Equation (6.11) consists of two parts: the 

standard displacement interpolation of the MITC3+ shell element, u  and the additional quadratic term, û . 

Note that resulting global partition of unity approximation may be linearly dependent when both the partition 

of unity functions (used as the finite element shape function in this research) and the local approximation are 

chosen as polynomials. To avoid linear dependencies for the triangular element, we enforce not only 0iu   

but also ˆ i u 0  when imposing the essential boundary conditions at the node i  [28, 93, 98]. 

 

 

 

6.1.3 Assumed Covariant Transverse Shear Strain Fields 

For linear analysis, the linear part of the Green-Lagrange strain tensor is used and its covariant strain 

components are 

 , ,

1
( )

2ij i j j ie    g u g u ,  (6.13)

in which 
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ˆ(

i
ir

  
 


x x x
g

)
i

i ir r


 

 
x

g ,  , , ,

ˆ( )
ˆi i i

i ir r

  
   
 
u u u

u u u   (6.14)

with 

 1r r , 2r s , 3r t .  (6.15)

 

Therefore, the partition of unity based covariant strain components are also divided into two parts 

 ˆij ij ije e e    (6.16)

 with , ,

1
( )

2ij i j j ie    g u g u  and , ,

1
ˆ ˆ ˆ( )

2ij i j j ie    g u g u ,  (6.17)

in which ije  and îje  correspond to the standard linear displacement interpolation and the additional quadrat-

ic term, respectively. 
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Figure 6.3. Tying points (A), (B), (C), (D), (E) and (F) for the assumed transverse shear strains of the 

MITC3+ shell finite element. 

 

 

To reduce the locking phenomenon, the MITC (Mixed Interpolation of Tensorial Components) method 

is used. Since the 3-node triangular shell element is always flat, present shell element is free from the mem-

brane locking and thus the covariant in-plane strain components are directly calculated using Equations (6.16) 

and (6.17). However, the covariant transverse shear strain fields are established using the MITC scheme to 

alleviate transverse shear locking. The assumed transverse shear strain filed used for the MITC3+ shell ele-

ment [29, 156] is directly used because additional unknown coefficients û  are not involved in determining 

the transverse shear strain fields. Therefore, the assumed transverse shear strain fields of the enriched 

MITC3+ shell element are given by 

 ( ) ( ) ( ) ( )2 1 1 1
ˆ( ) ( ) (3 1)

3 2 3 3
AS B B C C
rt rt st rt ste e e e e c s   - - ,  (6.18)
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 ( ) ( ) ( ) ( )2 1 1 1
ˆ( ) ( ) (1 3 )

3 2 3 3
AS A A C C
st st rt rt ste e e e e c r      ,  (6.19)

where ( ) ( ) ( ) ( )ˆ F D F E
rt rt st stc e e e e     and the tying positions (A), (B), (C), (D), (E), and (F) are presented in 

Figure 6.3 and Table 6. As suggested [29, 156], 1/10,000d   is used. If 0.0d   is used, there is one spu-

rious zero eigenvalue for a single element, which however disappears as soon as two elements are used in the 

mesh. This shell element is referred to as the enriched MITC3+ shell element hereafter. The enriched 

MITC3+ shell element is based on the ‘basic mathematical shell model’ [100, 103, 105] and the MITC 

scheme. The enriched MITC3+ shell element passes the basic numerical tests, namely, the isotropy, zero en-

ergy mode, and patch tests. 

 

 

Table 6.1. Tying positions for the assumed transverse shear strain of the enriched MITC3+ shell element. The 

distance d defined in Figure 6.3(b), and 1/10,000d   is used [29, 156]. 

 Tying position r s 

Figure 6.3(a) (A) 1/6 2/3 

 (B) 2/3 1/6 

 (C) 1/6 1/6 

    

Figure 6.3(b) (D) 1/3 + d 1/3 - 2d 

 (E) 1/3 - 2d 1/3 + d 

 (F) 1/3 + d 1/3 + d 

 

 

 

6.2 The Enriched MITC3+ Shell Element for Geometric Nonlinear Analysis 

In this section, the geometric nonlinear formulation of the enriched MITC3+ shell element is present-

ed. The total Lagrangian formulation is employed allowing for large displacements and large rotations. In the 

formulation, a superscript (and subscript)   is used to denote “time” for general analysis, with in static solu-

tions “time” simply denoting the load step and configuration [1, 42]. 

 

The large displacement kinematics and the interpolation of the Green-Lagrange strain components are 

discussed. With the given expressions, the general incremental equations used in the total Lagrangian formu-

lation are presented. 

 

 

 

6.2.1 Large Displacement Kinematics 

The geometry of the enriched MITC3+ shell finite element in the configuration at time   is interpo-

lated with 
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 ˆ( , , ) ( , , ) ( , )r s t r s t r s   x x x   (6.20)

with 

 
3 4

1 1

( , , ) ( , ) ( , )
2

i
i i i i n

i i

t
r s t h r s a f r s  

 

  x x V   (6.21)

 and 
3

1

ˆ ˆ( , ) ( , )i i
i

r s r s 



 x H x   (6.22)

in which T[ ]i i i ix y z   x  is the position vector of node i  in the configuration at time  , 

T[ ]i i i i
n nx ny nz

   V V V V  denotes the director vector at node i  in the configuration at time  , and 

Tˆ ˆ ˆ ˆ ˆ[ 0]i i i i ix x y y       x  are coefficient vectors for the positions in the configuration at time  . 

 

The incremental partition of unity displacements from the configuration at time   to the configura-

tion at time     are 

 ( , , ) ( , , ) ( , , )r s t r s t r s t   u x x ,  (6.23)

and, using Equation (6.20), the Equation (6.23) can be written as 

 ˆ( , , ) ( , , ) ( , )r s t r s t r s u u u   (6.24)

 
3 4

1 1

( , , ) ( , ) ( , )( )
2

i i
i i i i n n

i i

t
r s t h r s a f r s   

 

   u u V V ,  (6.25)

where iu  is the vector of incremental nodal displacements based on the partition of unity. Using Equation 

(6.20), Equation (6.23) can be rewritten as 

 ˆ( , , ) ( , , ) ( , )r s t r s t r s u u u   (6.26)

with 

 
3 4

1 1

( , , ) ( , ) ( , )( )
2

i i
i i i i n n

i i

t
r s t h r s a f r s   

 

   u u V V ,  (6.27)

 
3

1

ˆ ˆ( , ) i i
i

r s


 u H u ,  (6.28)

where  Ti i i iu v wu  and Tˆ ˆ ˆ ˆ ˆ[ 0]i i i i iu u v v   u  are the vector of incremental nodal displacements and 

the vector of incremental unknown coefficients at node i  from time   to time    , respectively. Note 

that ( , , )r s tu  and ˆ ( , )r su  are the displacement and unknown coefficient vector in the linear formulation, 

see Equation (6.11), but here it is the vector of incremental displacements and unknown coefficients, respec-

tively. 

 

The director vector at time     at node i  is obtained from the director vector at time   

 i i i
n n

    


 V Q V ,  (6.29)

in which i 


 Q  is the rotation matrix which rotates the director vector at node i  from the configuration at 

time   to the configuration at time    . Additionally, the two unit vectors 1
i V  and 2

i V  are obtained 

by (see Figure 6.1(b)), 
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 2
1

2

i
i n

i
n











e V
V

e V
,  2 1

i i i
n

   V V V .  (6.30)

 

For the vector-like parameterization of finite rotations [1, 144, 159, 160], see Appendix A, the well-

known formula is employed as follow 

 
  2

2
3

sin / 2sin( ) 1
( )

2 / 2

ii
i i i

i i

  
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     
 


 


  

 

 
   
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Q I Θ Θ   (6.31)

with 

 
3 2

3 1

2 1

0

0

0

i i

i i i

i i
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 
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   
 

 
 
 

 

  

 

 
   
  

Θ ,  (6.32)

 1 2
i i i

i i
   

    θ V V ,  (6.33)

in which 3I  is the 3 3  identity matrix, i 


 Θ  is the skew-symmetric matrix operator (also called spin 

tensor), 1 2 3[ ]i i i i T       
        θ , and 2 2 2

1 2 3( ) ( ) ( )i i i i       
            . 

 

Using a Taylor series expansion, the finite rotation tensor i 


 Q  can be represented by 

 i i i 2 i 3
3

1 1
( ) ( )

2! 3!
   

       Q I Θ Θ Θ    (6.34)

 

Using only the terms up to quadratic order in Equation (6.34), the following equation is obtained 

 
1

( )
2

i i i i i i i
n n n n

          
  

        V V θ V θ θ V ,  (6.35)

and using Equation (6.33) in Equation (6.35), we obtain for a ‘consistent linearization’ of the element dis-

placements [1] 

 2 2
2 1

1
( )

2
i i i i i
n n i i i i n

             V V V V V .  (6.36)

 

Substituting Equation (6.36) into Equation (6.27), the vector of incremental displacements including 

second-order rotation effects is 

 
3 4

2 2
2 1

1 1

1
( , , ) ( , ) ( , ) ( )

2 2
i i i

i i i i i i i i n
i i

t
r s t h r s a f r s      

 

        
 u u V V V ,  (6.37)

in which i  and i  are the incremental rotations of the director vector i
n

 V  about 1
i V  and 2

i V , re-

spectively, at node i . 

 

Note that the incremental displacements of Equation (6.37) consists of two parts, the linear part lu  

and the quadratic part qu , hence 
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 ( , , ) ( , , ) ( , , )l qr s t r s t r s t u u u   (6.38)

with 

  
3 4

2 1
1 1

( , , ) ( , ) ( , )
2

i i
l i i i i i i

i i

t
r s t h r s a f r s   

 

    u u V V ,  (6.39)

 
4

2 2

1

( , , ) ( , ) ( )
4

i
q i i i i n

i

t
r s t a f r s  



    u V .  (6.40)

 

 

 

6.2.2 Green-Lagrange Strain and Its Interpolation 

The covariant components of the Green-Lagrange strain tensor in the configuration at time  , re-

ferred to the configuration at time 0  (also called reference configuration), are defined by [1] 

 0 0
0

1
( )

2ij i j i jε     g g g g   (6.41)

with  

 
0 0

0 ˆ(
i

 


x x
g
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i ir r




 
x

, 0
, ,
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ˆi i i i

ir

 
   
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
x x

g g u u ,  (6.42)

in which 

 ,i
ir


 




u
u , ,

ˆ
ˆ i

ir


 




u
u , 0  u x x , ˆ ˆ u x , 1r r , 2r s , 3r t .  (6.43)

Hence the incremental covariant strains based on the partition of unity approximation are 

 0 0 0 , , , ,

1
( )

2ij ij ij i j i j i jε ε ε           u g g u u u    with ,

ˆ( )
i

ir

 



u u

u .  (6.44)

Using Equations (6.41)-(6.43) in Equation (6.44), these covariant strains are approximated as 

 0 0 0ij ij ijε e   ,  (6.45)

where 0 ije  and 0 ij  are the linear and nonlinear parts, respectively, 

    0

ˆ ˆ( ) ( )1
ˆ ˆ

2
t t t tl l

ij j j i i ij
i j

e
r r

    
          

u u u u
g g g g B U ,  (6.46)

    0

ˆ ˆ( ) ( )1 1 1
ˆ ˆ

2 2 2
q qt t t t Tl l

ij j j i i ij
i j i jr r r r


       

                    

u uu u u u
g g g g U N U ,  (6.47)

in which ijB  and ijN  are the strain-displacement matrices and U  is the vector of incremental nodal dis-

placements iu , i  and i , and incremental unknown coefficient vector ˆ iu  for all element nodes. In addi-

tion, the strain variations are 

 0 ij ije  B U ,  0
T

ij ij   U N U .  (6.48)

 

Note that Equations (6.45)-(6.48) contain all the strain terms to have a consistent linearization in the 

establishment of the tangent stiffness matrix. 
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To alleviate shear locking, the MITC scheme used in the linear formulation of the enriched MITC3+ 

shell element is also employed for the incremental covariant transverse shear strains in the nonlinear formula-

tion. The additional coefficient vector û  are not used in determining the transverse shear strain fields, as 

mentioned in section 6.1.3, the incremental covariant Green-Lagrange strain for assumed transverse shear 

strain field can be rewritten as 

 0 0 0ij ij ijε e       (6.49)

with 

    0

1
ˆ ˆ

2
t t t tl l

ij j j i i
i j

e
r r

  
         

u u
g g g g ,  (6.50)

    0

1 1
ˆ ˆ

2 2
q qt t t tl l

ij j j i i
i j i jr r r r


     

                   

u uu u
g g g g .  (6.51)

Therefore, the covariant transverse shear strains in Equations (6.49)-(6.51) are substituted by 

 ( ) ( ) ( ) ( )
0 0 0 0 0 0

2 1 1 1
ˆ( ) ( ) (3 1)

3 2 3 3
AS B B C C
r r s r s c s                 ,  (6.52)

 ( ) ( ) ( ) ( )
0 0 0 0 0 0

2 1 1 1
ˆ( ) ( ) (1 3 )

3 2 3 3
AS A A C C
st st rt rt st c r             ,  (6.53)

 0 0 0
AS AS AS
jt jt jte   , 0

AS AS
jt jte  B U , 0

1

2
AS T AS
jt jt  U N U    with ,j r s   (6.54)

in which ( ) ( ) ( ) ( )
0 0 0 0 0ˆ F D F E

rt rt st stc           , AS
jtB  and AS

jtN  are the strain-displacement matrices for the as-

sumed covariant transverse shear strains. Of course, the tying positions defined in Figure 6.3 and Table 6. are 

used. 

 

 

 

6.2.3 Total Lagrangian Formulation and Incremental Equilibrium Equation 

The nonlinear response is calculated using an incremental formulation, in which the configuration is 

sought for time (load step)    , when the configuration for time   is known. Applying the principle of 

virtual work to the configuration at time    , the following equilibrium equation is obtained [1, 18] 

 
0

0
0 0

ij
ijV

S ε d V         ,  (6.55)

where 0V  is the initial volume, 0
ijS   and 0 ijε

   are the contravariant components of the second Piola-

Kirchhoff stress tensor and the covariant components of the Green-Lagrange strain tensor, respectively, at 

time    , referred to the configuration at time 0 , and     is the external virtual work due to the ap-

plied surface and body forces. 

 

The stress and strain tensors are incrementally decomposed as follows 

 0 0 0
ij ij ijS S S     ,  (6.56)
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 0 0 0 0 0 0ij ij ij ij ij ijε ε ε ε e             .  (6.57)

Substituting from Equations (6.56) and (6.57) into Equation (6.55) and using 0 0 0
ij ijkl

klS C ε  and 

0 0kl ijε e  , the linearized equilibrium equation is obtained by 

 
0 0 0

0 0 0
0 0 0 0 0 0 0

ijkl ij ij
kl ij ij ijV V V

C e e d V S d V S e d V           ,  (6.58)

in which 0
ijklC  is the fourth-order contravariant constitutive tensor corresponding to the strain-stress law for 

shells. 

 

Using Equations (6.46)-(6.47) in Equation (6.58), the following incremental equilibrium equation is 

obtained by 

 0 0 0 0( )L NL
        KU K K U R F ,  (6.59)

where 

 
0

T 0
0 0

ijkl
L ij klV

C d V  K B B ,  
0

0
0 0

ij
NL ijV

S d V  K N ,  
0

T 0
0 0

ij
ijV

S d V  F B ,  (6.60)

in which 0 L
 K  and 0 NL

 K  are the linear and nonlinear tangent stiffness matrices, respectively, and 0
 F  is 

the vector of nodal point forces equivalent to the element stresses at time  . For the evaluation of the ele-

ment stiffness matrix and internal nodal force vector, 7-point Gauss integration in the r-s plane (as for the 6-

node shell element) is adopted due to the cubic bubble function and additional quadratic unknown coefficient.

 

With the full Newton-Raphson iteration scheme, the equations for the i -th iteration in a finite ele-

ments model are 

 ( 1) ( ) ( 1)
0 0

i i i      K U R F    with ( ) ( 1) ( )i i i      U U U .  (6.61)

The configuration at time     is determined iterating on Equation (6.61) until equilibrium is fulfilled 

with a preset energy tolerance E  [1], 

 
T T( ) ( 1) (1)( ) ( ( ))i i

E
           U R F U R F .  (6.62)

 

 

 

6.2.4 Condensing Out in the Present Element 

The bubble function does not affect the mid-surface displacement of the shell element, and the corre-

sponding degrees of freedom can be statically condensed out on the element level. In order to establish the 

equations used in static condensation, the stiffness matrix and corresponding displacement and force vectors 

of the element under consideration are partitioned into the following form 

 
( 1) ( 1) ( ) ( 1)

0 0 0
( 1) ( 1) ( ) ( 1)

0 0 0

i i i i
aa ac a a a
i i i i

ca cc c c c

    

    

   

   

       
               

K K U R F

K K U R F
,  (6.63)

where ( )i
aU  and ( )i

cU  are the vector of displacements combined with the unknown coefficient vector to 

be retained and the vector of bubble displacements to be condensed out, respectively. The matrix ( 1)
0

i
aa

 K , 
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( 1)
0

i
ac

 K , ( 1)
0

i
ca

 K  and ( 1)
0

i
cc

 K  and vector a
  R  and c

  R  correspond to the displacement vectors 

( )i
aU  and ( )i

cU . 

 

Using the second matrix equation in Equation (6.63), we obtain 

 ( ) ( 1) 1 ( 1) ( 1) ( )
0 0 0( )i i i i i

c cc c c ca a
            U K R F K U .  (6.64)

The relation in Equation (6.64) is used to substitute ( )i
cU  into the first matrix equation in Equation (6.63) 

to obtain the condensed equations 

 ( 1) ( ) ( 1)
0 0

i i i
con a con con

       K U R F ,  (6.65)

where 

 
1( 1) ( 1) ( 1) ( 1) ( 1)

0 0 0 0 0
i i i i i

con aa ac cc ca
         K K K K K ,  (6.66)

 
1( 1) ( 1)

0 0
i i

con a ac cc c
            R R K K R ,  (6.67)

 
1( 1) ( 1) ( 1) ( 1) ( 1)

0 0 0 0 0
i i i i i

con a ac cc c
         F F K K F .  (6.68)

 

 

 

6.3 Computational Efficiency 

In this section, some important aspects of the computational efficiency are studied when using the en-

riched MITC3+ shell element. The standard 3- and 6-node shell elements (the MITC3 and MITC6 shell ele-

ments) and the enriched MITC3+ shell element are considered. 
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Figure 6.4. (a) The total number of degrees of freedom (DOFs) and (b) solution times for solving the linear 

equations when increasing the number of element layers, N, along an edge p denotes the number of DOFs per 

node in the standard shell element, hence p = 5 for Scordelis-Lo roof shown in Figure 6.12. 

 



 

- 138 - 

 

Of course, the enriched MITC3+ shell element generate symmetric stiffness or coefficient matrices. 

The numerical operations for the factorizations of the banded stiffness matrices are then approximately 

2(1/ 2) knm  where n is the number of equations and km  is the half-handwidth. Let the number of elements 

along the sides be N, and let us ignore in all cases the zero entries within the band, then we have for Scordelis-

Lo roof problem, see Figure 6.12, 

 for the solution of the enriched MITC3+, 2( 1) ( 4)n N p    , ( 1) ( 4)km N p    ; 

 for the solution using the 3- or 4-node element, 2( 1)n N p   , ( 1)km N p   ; 

 for the solution using the 6- or 9-node element, 2(2 1)n N p   , (2 1)km N p   . 

 

All degrees of freedom for the enriched MITC3+ shell element are associated with vertex nodes which 

are shared by several elements and the assembled system of equations is in general smaller than when using 

the 6-node shell elements where edge nodes are only shared by 2 elements. Therefore, the enriched MITC3+ 

shell element gives less equations and a smaller bandwidth than the 6-node shell elements. This fact shows the 

effectiveness of the enriched MITC3+ shell element from a computational point of view. Figure 6.4 shows 

how the number of nodal degrees increases as a function of the number of elements used in the meshing of 

Figure 6.12. 

 

 

Table 6.2. Solution times (in second) for solving the linear problem shown in Figure 6.12. (DOFs: degrees of 

freedom) 

 Linear element 

(Standard 3- and 4-node) 

Quadratic elements 

(Standard 6- and 9-node) 
Enriched MITC3+ (condensed out) 

 

N Free DOFs Time Free DOFs Time Free DOFs Time 

20 2,080 0.000 8,160 0.140 5,320 (3,720) 0.062 (0.031) 

40 8,160 0.078 32,320 2.122 21,040 (14,640) 1.045 (0.374) 

60 18,240 0.359 72,480 12.29 47,160 (32,760) 5.101 (1.731) 

80 32,320 1.045 128,640 46.85 83,680 (58,080) 17.20 (5.335) 

 

 

It is valuable to compare solution times required for the three shell finite elements considered. In all 

the cases, of course, symmetric stiffness matrices are generated. To obtain more insight into the computational 

efforts needed in the respective solutions, it is focused on the solution of the linear equations using direct 

Gauss elimination, in which the factorization of the stiffness matrices represents the major expense. To check 

computational times, we use a quad-core machine (Intel(R) Core i7-3770 CPU @ 3.40 GHz, 8GB RAM, 

Windows 7 64bit) for all solution cases. Figure 6.4 and Table 6.2 show the solution times for linear analysis 

of the Scordelis-Lo roof problem. As expected, the factorization time for the enriched MITC3+ shell element 

is much smaller than for the quadratic shell element. 
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6.4 Numerical Examples 

To assess the performance of the enriched MITC3+ shell element in linear and nonlinear analyses, the 

solutions of several benchmark problems are given in this section, see Table 6.3. The nonlinear problems in-

volve the large displacement and large rotation response of shells with various shell geometries. The results 

calculated using the following MITC shell elements are given in Table 6.4. 

 

 

Table 6.3. List of ten benchmark problems solved. 

Benchmark problems Problem type Descriptions Results 

Cantilever beam for mesh distortion test P L Figure 6.5 Table 6.5, Figure 6.5 

Cook’s skew beam P L  Figure 6.6 Table 6.6 

MacNeal’s cantilever beam P L Figure 6.7 Table 6.7-Table 6.8 

Curved cantilever beam P,S L,N Figure 6.8 
Table 6.9, Table 6.17-Table 6.18, 

Figure 6.8, Figure 6.19-Figure 6.20

Hemispherical shell S L,N Figure 6.9 

Table 6.10-Table 6.11, Table 6.19-

Table 6.24, Figure 6.11, Figure 

6.21-Figure 6.23 

Scordelis-Lo (Barrel Vault) roof S L,N Figure 6.12 

Table 6.12-Table 6.13, Table 6.25-

Table 6.28, Figure 6.13, Figure 

6.24-Figure 6.25 

Raasch’s hook problem S L Figure 6.14 Table 6.14, Figure 6.14 

Cantilever beam subjected to a tip moment P N Figure 6.15 Table 6.15, Figure 6.15-Figure 6.16

Column under an eccentric compressive load P N Figure 6.17 Table 6.16, Figure 6.17-Figure 6.18

Slit annular plate S N Figure 6.26 
Table 6.29-Table 6.30, Figure 6.27-

Figure 6.28 

 

P: Plane stress problem, S: Shell problem, L : Linear analysis, N : Nonlinear analysis 

 

 

In each example, the reference solutions are given by either an analytical result or a calculated solution 

using a fine uniform mesh of the MITC9 shell element (these meshes used twice the number of elements in 

each direction as employed in the MITC4 element solutions). The MITC9 element is known to satisfy the 

ellipticity and consistency conditions and to show good convergence behavior [26, 27]. 

 

By imposing 0w      for all nodes, plane stress condition is used for some benchmark prob-

lems in linear and nonlinear analyses to verify the effect on membrane behaviors. 

 

Note that in some benchmark problems, point loads are used, which cause a stress singularity at the 

point of loading. However, the use of point loads is acceptable in the studies here given because the meshes 

are not very fine (the point loads act as an equivalent pressure applied over a small area) [1]. 
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Table 6.4. Summary of element models for comparison. 

Symbols Brief description Ref. 

MITC3 3-node triangular shell element with the MITC method [23] 

MITC4 4-node quadrilateral shell element with the MITC method [19] 

MITC4* MITC4 shell element with incompatible modes [63, 64]. 

MITC3+ Triangular shell element with an enrichment by cubic bubble function [29, 156] 

Enriched MITC3+ MITC3+ shell element with improved membrane behaviors  

MITC6 6-node triangular shell element with the MITC method [23] 

MITC9 9-node quadrilateral shell element with the MITC method [21] 

Q6 4-node isoparametric element with internal parameters [63] 

QM6 4-node isoparametric element with internal parameters [64] 

P-S Assumed stress elements (hybrid element by the Hellinger-Reissner) [161] 

QE2 4-node quadrilateral enhanced strain element [162] 

ALL-3I/ EX/ LS Allman 88 triangular element with corner drilling freedoms [121] 

FF84 1984 free formulation element of Bergan and Felippa [163] 

LST-Ret Retrofitted linear strain triangular element [121] 

OPT Triangular element with the optimal assumed natural deviatoric strain [121] 

HL A plane element based in the assumed stress hybrid principle [164] 

XSHELL41/ 42 4-node quasi-conforming flat shell element with drilling DOFs [124] 

PEAS7 Enhanced assumed strain elements [113] 

PN340 8-node brick element representing constant stress fields [165] 

RGD20 Refined hybrid isoparametric element [166] 

QUAD4 4-node shell element with modifications which relax excessive constraints [16] 

Simo et al. Geometrically exact stress resultant shell model [149, 167]

ANS6S 6-node C0 curved shell element with the assumed natural strain [168] 

S3R General purpose 3-node shell element in ABAQUS [116] 

C0 C0 triangular plate element with one-point quadrature [169] 

DSG 3- and 4-node shell finite element with discrete shear gap method [170] 

RTS18 Flat triangular element based on the refined non-conforming method [171] 

QHP 4-node quadrilateral shell element with physical hourglass control [128] 

URI-4 9-node uniformly reduced integrated element [131] 

SRI-4 Bilinear degenerated shell element with selective reduced integration [12] 

DKQ-4 4-node discrete Kirchhoff quadrilateral element [130] 

Allman Discrete Kirchhoff-Mindlin triangle with Allman’s rotational DOFs [117, 118]

Cook, Flat-stiffened Stabilized 18 DOF triangular flat shell element [119] 

Providas and Kattis Triangular shell element with an arbitrary small true drilling stiffness [120] 

Collapsed Plane42 Triangular element obtained from Plane42 quadrilateral element of ANSYS [126] 

Plane82 8-node quadrilateral element of ANSYS [126] 
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6.4.1 Linear Benchmark Problems 

Several benchmark problems are examined to demonstrate the efficiency of the present element. To 

test enhanced membrane behavior, we select membrane-dominant problem sets. 

 

 

 

6.4.1.1 Cantilever Beam for Mesh Distortion Test 
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Figure 6.5. Cantilever beam for distortion test. (a) Problem description and mesh pattern used for the MITC3, 

MITC3+ and enriched MITC3+ shell elements. (b) Vertical deflection versus distortion parameter e. 

 

 

The cantilever beam to test distortion sensitivity shown in Figure 6.5 is discretized by two elements. 

The shape of the two elements varies with the distorted parameter e. The cantilever beam has the geometry of 

length l = 10, width b = 2 and thickness 1h  , its Young modulus E = 1500 and the Poisson ratio 0.25v  . 

The moment 2000M   is applied at the free end. When distorted parameter e is equal to zero, both element 

are rectangular. But with the increase of distorted parameter e, the mesh will be distorted more and more seri-

ously. The results of the tip deflection at point A are shown in Figure 6.5 and Table 6.5. Beside the present 

elements, the solutions obtained by other elements are also given for comparison. Enriched MITC3+ shell 

element can keep providing the exact solution when e varies from 0 to 5. The present element gives the best 
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performance and is more robust that other elements compared with. The enriched MITC3+ shell element can 

overcome the trapezoidal locking completely. 

 

 

Table 6.5. Vertical deflections and relative errors at point A for the cantilever beam for distortion test shown in 

Figure 6.5(a). Relative error (%) ( ) / 100ref ref
A A Av v v    where ref

Av  and Av  denote the reference and finite 

element solutions, respectively. 

Element type 
Vertical displacement, Av  and its relative error 

e = 0.0 e = 1.0 e = 2.0 e = 3.0 e = 4.0 e = 4.9 

MITC3I 09.4 (90.6) 05.0 (95.0) 04.1 (95.9) 03.6 (96.4) 03.3 (96.7) 03.1 (96.9) 

MITC3II 09.6 (90.4) 10.8 (89.2) 09.5 (90.5) 08.8 (91.2) 07.0 (93.0) 03.5 (96.5) 

MITC4 28.0 (72.0) 14.1 (85.9) 09.8 (90.2) 08.3 (91.7) 07.1 (92.9) 06.2 (93.8) 

MITC4* 100.0 (0.0) 35.5 (64.5) 26.5 (73.5) 27.8 (72.2) 29.9 (70.1) 30.7 (69.3) 

MITC6 I [23] 98.9 (01.1) 80.2 (19.8) 48.5 (51.5) 28.2 (71.8) 18.7 (81.3) 43.1 (56.9) 

MITC6 II [23] 98.9 (01.1) 82.4 (17.6) 56.2 (43.8) 24.4 (75.6) 37.6 (62.4) 41.7 (58.3) 

MITC9 [21] 99.4 (00.6) 98.9 (01.1) 87.7 (12.3) 61.6 (38.4) 39.2 (60.8) 26.3 (73.7) 

QM6 [64] 100.0 (0.0) 62.7 (37.3) 54.4 (45.6) 53.6 (46.4) 51.2 (48.8) 46.8 (53.2) 

P-S [161] 100.0 (0.0) 62.9 (37.1) 55.0 (45.0) 54.7 (45.3) 53.1 (46.9) 49.8 (50.2) 

QE2 [162] 100.0 (0.0) 63.4 (36.6) 56.5 (43.5) 57.5 (42.5) 57.9 (42.1) 56.9 (43.1) 

Enriched MITC3+I 98.9 (01.1) 99.0 (01.0) 98.9 (01.1) 98.8 (01.2) 98.6 (01.4) 98.5 (01.5) 

Enriched MITC3+II 98.9 (01.1) 99.2 (00.8) 99.6 (00.4) 99.8 (00.2) 99.9 (00.1) 99.4 (00.6) 

 

Reference (analytic) solution 100ref
Av   

I and II : mesh patterns shown in Figure 6.5(b) 
 

 

 

6.4.1.2 Cook’s Skew Beam 
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Figure 6.6. Cook’s skew beam. (a) Problem description. (b) Mesh patterns ( 2 2 ) used for the MITC3, 

MITC3+ and enriched MITC3+ shell elements. 

 

 

This problem shown in Figure 6.6 was proposed by Cook et al. [4], which involves a skew beam with 

distributed shear load 1/16P   at the right end. Young’s modulus is 1.0E   and the Poisson’s ratio is 

1/ 3v  . The problem is modelled using 2 2 , 4 4  and 8 8  meshes of different shell elements. The 

deflection at point A  is computed and listed in Table 6.6 along with the results of other types of elements. 

Compared with the other elements, the present elements give the best results of all known triangular elements, 

such as OPT, LST-Ret and All-3I. 

 

 

Table 6.6. Vertical displacements and relative errors at point A for the Cook’s skew beam shown in Figure 

6.6(a). Relative error (%) ( ) / 100ref ref
A A Av v v    where ref

Av  and Av  denote the reference and finite ele-

ment solutions, respectively. 

Element type 
Displacement (Relative error) 

2 2  element mesh 4 4 element mesh 8 8  element mesh 

MITC3I 11.97 (49.92) 18.26 (23.60) 22.00 (07.95) 

MITC3II 06.71 (71.92) 11.22 (53.05) 17.31 (27.57) 

MITC4 03.48 (85.44) 18.25 (23.64) 22.05 (07.74) 

MITC4* 05.08 (78.74) 22.97 (03.89) 23.65 (01.05) 

ALL-3I [121] 21.61 (09.58) 23.00 (03.77) 23.66 (01.00) 

ALL-EX [121] 19.01 (20.46) 21.83 (08.66) 23.43 (01.97) 

ALL-LS [121] 19.43 (18.70) 22.32 (06.61) 23.44 (01.92) 

FF84 [163] 20.36 (14.81) 22.42 (06.19) 23.41 (02.05) 

LST-Ret [121] 19.82 (17.07) 22.62 (05.36) 23.58 (01.34) 

OPT [121] 20.56 (13.97) 22.45 (06.07) 23.43 (01.97) 

HL [164] 18.17 (23.97) 22.03 (07.82) 23.39 (02.13) 
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Q6 [63] 22.94 (04.02) 23.48 (01.76) 23.80 (00.42) 

QM6 [64] 21.05 (11.92) 23.02 (03.68) 23.65 (01.05) 

Enriched MITC3+I 22.78 (04.69) 23.59 (01.29) 23.81 (00.38) 

Enriched MITC3+II 20.06 (16.07) 22.97 (03.89) 23.70 (00.84) 

 

Reference solution 23.9ref
Av   [4] 

I and II : mesh patterns shown in Figure 6.6(b) 

 

 

 

6.4.1.3 MacNeal’s Cantilever Beam 
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Figure 6.7. MacNeal’s cantilever beam subjected to two different loading: Unit tip shear force, P  and tip 

bending moment, M . (a) Problem description. (b) Mesh patterns (1 6 ) used for the MITC3, MITC3+ and 

enriched MITC3+ shell elements. 

 

 

MacNeal’s cantilever beam [143] shown in Figure 6.7(a) is a frequently used test problem due to its 

simplicity and fact that the principle element deformation modes can be evoked by loads applied to the free 

end. Three different mesh shapes shown in Figure 6.7(b), rectangular (mesh (a)), parallelogram (mesh (b)) 
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and trapezoidal (mesh (c)), are adopted. Two types of loading, viz., unit tip shear force, 1P  , and tip mo-

ment, 0.2M  , are considered. The cantilever beam has geometry of length 6l  , width 0.2b   and 

thickness 0.1h  . The material properties of the cantilever beam are given by 710E  , 0.3v  . The results 

of the tip displacement at point A are shown in Table 6.7 and Table 6.8. Besides the presented elements, the 

results obtained by other element models are also given for comparison. The enriched MITC3+ element pos-

sess high accuracy for all three mesh divisions and is insensitive to three types of distortion. Thus, The present 

element can successfully avoid trapezoidal locking, which can always keep the second-order completeness in 

Cartesian coordinates under distortion meshes. 

 

 

Table 6.7. Vertical displacements and relative errors at point A for the MacNeal’s thin cantilever beam sub-

jected to unit shear force shown in Figure 6.7(a). Relative error (%) ( ) / 100ref ref
A A Av v v    where ref

Av  and 

Av  denote the reference and finite element solutions, respectively. 

Element type 

Load P 

Mesh (a) 

Displacement (Error) 

Mesh (b) 

Displacement (Error) 

Mesh (c) 

Displacement (Error) 

MITC3I -0.0034 (96.85) -0.0024 (97.78) -0.0016 (98.52) 

MITC3II -0.0034 (96.85) -0.0012 (98.89) -0.0021 (98.06) 

MITC4 -0.0101 (90.66) -0.0037 (96.58) -0.0029 (97.32) 

MITC4* -0.1073 (00.74) -0.0683 (36.82) -0.0056 (94.82) 

Q6 [63] -0.1073 (00.70) -0.0732 (32.30) -0.0115 (89.40) 

QM6 [64] -0.1073 (00.70) -0.0673 (37.70) -0.0048 (95.60) 

P-S [161] -0.1073 (00.70) -0.0863 (20.20) -0.0239 (77.90) 

XSHELL41 [124] -0.0977 (09.60) -0.0098 (90.90) -0.0124 (88.50) 

XSHELL42 [124] -0.0977 (09.60) -0.0963 (10.90) -0.0895 (17.20) 

PEAS7 [113] -0.1062 (01.80) -0.0859 (20.50) -0.0235 (78.30) 

PN340 [165] -0.1062 (01.80) -0.0670 (38.00) -0.0070 (93.50) 

RGD20 [166] -0.1060 (01.90) -0.0676 (37.60) -0.0051 (95.30) 

Enriched MITC3+I -0.1063 (01.67) -0.1049 (02.96) -0.1039 (03.89) 

Enriched MITC3+II -0.1063 (01.67) -0.1029 (04.81) -0.1042 (03.61) 

 

Reference solution 0.1081ref
Av    [143] 

I and II : mesh patterns shown in Figure 6.7(b) 

 

 

Table 6.8. Vertical displacements and relative errors at point A for the MacNeal’s thin cantilever beam sub-

jected to end moment shown in Figure 6.7(a). Relative error (%) ( ) / 100ref ref
A A Av v v    where ref

Av  and 

Av  denote the reference and finite element solutions, respectively. 

Element type 

Load M 

Mesh (a) 

Displacement (Error) 

Mesh (b) 

Displacement (Error) 

Mesh (c) 

Displacement (Error) 
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MITC3I -0.0002 (96.30) -0.0001 (98.15) -0.0001 (98.15) 

MITC3II -0.0002 (96.30) -0.0001 (98.15) -0.0001 (98.15) 

MITC4 -0.0005 (90.74) -0.0002 (96.30) -0.0001 (98.15) 

MITC4* -0.0054 (00.00) -0.0039 (27.78) -0.0003 (94.44) 

Q6 [63] -0.0054 (00.00) -0.0041 (24.10) -0.0005 (90.70) 

QM6 [64] -0.0054 (00.00) -0.0039 (27.80) -0.0002 (96.30) 

P-S [161] -0.0054 (00.00) -0.0046 (14.80) -0.0009 (83.30) 

Enriched MITC3+I -0.0054 (00.00) -0.0054 (00.00) -0.0054 (00.00) 

Enriched MITC3+II -0.0054 (00.00) -0.0054 (00.00) -0.0054 (00.00) 

 

Reference solution 0.0054ref
Av    [143] 

I and II : mesh patterns shown in Figure 6.7(b) 

 

 

 

6.4.1.4 Curved Cantilever Beam 
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Figure 6.8. Curved cantilever beam. (a) Problem description and mesh patterns (1 6 ) used for the MITC3, 

MITC3+ and enriched MITC3+ shell elements. (b) Normalized strain energy in the linear analysis of the 

curved cantilever beam. 
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The curved cantilever beam shown in Figure 6.8(a) is clamped at one end and loaded by two unit forc-

es at the other. The forces is applied along the in-plain axis and the out-of plane axis. The problem geometry 

and material properties are 1 4.12r  , 2 4.32r  , 71.0 10E   , 0.25v   and the thickness of the curved 

cantilever beam is 0.1h  . The elements used for analyzing the curved cantilever beam would unavoidably 

be distorted. In addition to this, a coarse mesh of 1 6  would make a high aspect ratio for each element. The 

displacements at point A are computed and normalized by the reference solution of MacNeal and Harder 

[143]. The reference solution of the curved beam problem is 0.08734 for in-plane loading and 0.5022 for out-

of-plane loading. From the vertical and horizontal reference displacements, we obtain the reference solution of 

the strain energy, 0.29477 0.5 (0.08734 0.5022)   . The results are shown in Figure 6.8(b) and Table 6.9 

compared with other elements. The present element produce much better solution accuracy than other ele-

ments in this problem. 

 

 

Table 6.9. Displacements and normalized displacements at point A for the curved cantilever beam shown in 

Figure 6.8(a). The solutions are obtained with a 1 6  element mesh. Normalized displacement (ND) = 

/ ref
A Av v  and / ref

A Aw w , where ref
Av  and ref

Aw  is the reference solution and Av  and Aw  denote the finite 

element solutions. 

Element type 
Load 1P  and 2P  

Displacement (ND), Av  Displacement (ND), Aw  

MITC3I 0.0022 (0.0249) 0.3121 (0.6214) 

MITC3II 0.0022 (0.0253) 0.3153 (0.6278) 

MITC4 0.0064 (0.0734) 0.4741 (0.9441) 

MITC4* 0.0775 (0.8875) 0.4741 (0.9441) 

XSHELL41 [124] 0.0801 (0.9170) 0.4339 (0.8640) 

XSHELL42 [124] 0.0834 (0.9550) 0.4339 (0.8640) 

QUAD4 [16] 0.0728 (0.8330) 0.4776 (0.9510) 

Enriched MITC3+I 0.0728 (0.9966) 0.3990 (0.7944) 

Enriched MITC3+II 0.0737 (0.9974) 0.3931 (0.7828) 

 

Reference solution : 0.08734ref
Av   and 0.5022ref

Aw   [143] 

I and II : mesh patterns shown in Figure 6.8(a) 

 

 

 

6.4.1.5 Hemispherical Shell 
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Figure 6.9. Descriptions of the hemispherical shell problems: (a) Hemispherical shell with 18  hole and (b) 

full hemispherical shell. Mesh patterns used for the MITC3, MITC3+ and enriched MITC3+ shell elements. 

Distorted meshes shown in Figure 6.10 are used. 

 

 

Two geometries have been used for this problem; one is a hemispherical shell with an 18  hole 

shown in Figure 6.9(a) and another is a full hemispherical shell shown in Figure 6.9(b). Both shells have the 

same radius, thickness, material properties but different loading conditions. The radius of hemispherical shells 

is 10r   and its thickness 0.04h  . The material has a Young’s modulus of 76.825 10E    and a Pois-

son’s ratio of 0.3v  . The problems are modeled using only one quarter of the hemisphere due to symmetry. 
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Figure 6.10. Distorted meshes used for the numerical problems solved when 4N  . 

 

 

For a hemispherical shell with an 18  hole, two pairs of opposite radial concentrated loads 2P   

are applied. This problem is a very useful example to check the ability of the element to handle rigid body 

rotation about the shell surface and the inextensible bending modes. We study the performance not only using 

uniform meshes but also distorted meshes, as shown in Figure 6.10. When the N N  distorted mesh is 

used, each edge is divided by the ratio 1 2 3: : : , 1: 2 : 3 :NL L L L N  , leading to quite distorted meshes. 

Shell elements without the membrane locking treatment cannot correctly solve this problem when the distort-

ed meshes are used. The analytical radial displacement coincident at point load is 0.094 [143], the solutions 

given in Figure 6.11(a) and Table 6.10 are normalized with this value. The solution for the MITC4 shell ele-

ment is significantly deteriorated due to the effect of mesh distortion. However, The numerical results confirm 

the assertion that linear triangles are free from membrane locking without additional measures taken for the 

membrane part. Of course MITC3 does not behave well due to transverse shear locking. It can be observed 

that the present results agree well with analytic solutions. 

 

 

Table 6.10. Radial displacements and normalized displacements at point A for the hemispherical shell with 

18  hole shown in Figure 6.9(a). Normalized displacement (ND) = / ref
A Au u  where ref

Au  and Au  denote 

the reference and finite element solutions, respectively. 

Element type 

Mesh 

4 4  

Displacement (ND) 

8 8  

Displacement (ND) 

16 16  

Displacement (ND) 

MITC3I 0.004 (0.043) 0.028 (0.298) 0.077 (0.819) 

MITC3II 0.004 (0.043) 0.029 (0.309) 0.080 (0.851) 

MITC4 0.097 (1.032) 0.094 (1.000) 0.093 (0.989) 

MITC4* 0.097 (1.032) 0.094 (1.000) 0.093 (0.989) 

Simo et al. [149, 167] 0.094 (1.004) 0.094 (0.998) 0.094 (0.999) 
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XSHELL41 [124] 0.098 (1.038) 0.095 (1.012) 0.094 (1.001) 

XSHELL42 [124] 0.025 (0.269) 0.062 (0.659) 0.091 (0.970) 

ANS6S [168] 0.088 (0.949) 0.091 (0.982) 0.093 (1.001) 

S3R [172] 0.033 (0.357) 0.085 (0.913) 0.091 (0.981) 

C0 [169] 0.081 (0.870) 0.089 (0.960) - 

DSG [170] 0.090 (0.965) 0.091 (0.981) 0.092 (0.989) 

RTS18 [171] 0.091 (0.968) 0.096 (1.021) 0.094 (1.000) 

Enriched MITC3+I 0.097 (1.032) 0.094 (1.000) 0.093 (0.989) 

Enriched MITC3+II 0.094 (1.000) 0.093 (0.989) 0.093 (0.989) 

 

Reference solution 0.0094ref
Au   [143] 

I and II : mesh patterns shown in Figure 6.9(a) 

 

 

For a full hemispherical shell, shell is clamped at the bottom and subjected to a uniform pressure load. 

This problem possess no available analytic solution, therefore the reference solution is calculated using a 

mesh of 30 30  MITC9 shell finite elements which is known to satisfy the ellipticity and the consistency 

conditions and to show adequate convergence behaviors, see Refs. [21, 26, 101]. The results of normalized 

strain energy compare well with the results from other shell elements as shown in Table 6.11 and Figure 

6.11(b). From the obtained results it is clear that the convergence of enriched MITC3+ shell element for this 

problem is fast compared to other elements. 

 

 

Table 6.11. Strain energy (SE) and relative errors in strain energy for the full hemispherical shell shown in 

Figure 6.9(b). Relative error (RE) (%) = (SE SE) / SE 100ref ref   where SEref  and SE  denote the refer-

ence and finite element strain energy, respectively. 

Element type 

Uniform mesh Distorted mesh 

2 2  

SE 410 (RE) 

4 4  

SE 410 (RE)

6 6  

SE 410 (RE)

2 2  

SE 410 (RE)

4 4  

SE 410 (RE) 

6 6  

SE 410 (RE)

MITC3I 13.19 (0.61) 18.27 (0.85) 19.77 (0.92) 12.38 (0.57) 16.74 (0.77) 18.43 (0.85) 

MITC3II 11.83 (0.55) 17.60 (0.82) 19.41 (0.90) 12.35 (0.57) 17.92 (0.83) 19.50 (0.90) 

MITC3+I 14.72 (0.68) 18.84 (0.87) 20.10 (0.93) 13.69 (0.63) 17.76 (0.82) 19.16 (0.89) 

MITC3+II 12.84 (0.59) 18.09 (0.84) 19.72 (0.91) 14.34 (0.66) 18.86 (0.87) 20.05 (0.93) 

MITC4 14.55 (0.67) 19.43 (0.90) 20.54 (0.95) 14.61 (0.68) 18.87 (0.87) 20.07 (0.93) 

MITC4* 15.47 (0.72) 19.89 (0.92) 20.78 (0.96) 15.60 (0.72) 19.67 (0.91) 20.61 (0.95) 

Enriched MITC3+I 17.16 (0.79) 20.36 (0.94) 21.10 (0.98) 15.59 (0.72) 19.33 (0.89) 20.48 (0.95) 

Enriched MITC3+II 14.87 (0.69) 19.58 (0.91) 20.71 (0.96) 16.46 (0.76) 20.39 (0.94) 21.31 (0.99) 

 

Reference solution 4SE 21.60 10ref    

I and II : mesh patterns shown in Figure 6.9(a) 
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Figure 6.11. Convergence curves for the hemispherical shell problems. (a) Normalized displacement of the 

hemispherical shell with an 18  hole using the uniform meshes (left) and the distorted meshes (right). (b) 

Normalized strain energy of the full hemispherical shell with the uniform meshes (left) and the distorted 

meshes (right). 

 

 

 

6.4.1.6 Scordelis-Lo (Barrel Vault) Roof 
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Figure 6.12. Scordelis-Lo roof. (a) Problem description. (b) Mesh patterns ( 4 4 ) used for the MITC3, 

MITC3+ and enriched MITC3+ shell elements. 

 

 

The Scordelis-Lo roof provides one of the standard tests to assess the performance of shell elements in 

a combined bending-membrane problem with the membrane action being dominant. The roof is modelled as a 

short cylinder shell, loaded by self-weight and supported by rigid diaphragms at the curved edges while the 

straight edges are free. The geometry of the problem is shown in Figure 6.12(a). The length of the roof is 

50l  ; the radius of curvature is 25r   and its thickness 0.25h  . The material has a Young’s modulus of 

84.32 10E    and a Poisson’s ratio of 0v  . The load it experiences is due to its weight, amounting to the 

force per unit surface 90zf   per unit area. According to MacNeal and Harder [143], the theoretical value 

for the vertical deflection at the center of the free edge is 0.3086, but slightly lower value 0.3024 seems to 

have become the reference solution for many publications. In this study the latter value is used to normalize 

numerical results. The results for the normalized vertical displacement at the free edge are shown in Figure 

6.13 and the displacement and its normalized value using the uniform and distorted meshes are shown in Ta-

ble 6.12 and Table 6.13. The enriched MITC3+ shell element shows an excellent performance even when the 

distorted meshes are used. 
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Figure 6.13. Normalized displacement of the Scordelis-Lo roof with (a) the uniform meshes (b) the distorted 

meshes shown in Figure 6.10. 

 

 

Table 6.12. Displacements and normalized displacements at point A for the Scordelis-Lo roof using the uni-

form meshes. Normalized displacement (ND) = / ref
A Aw w  where ref

Aw  and Aw  denote the reference and 

finite element solutions, respectively. 

Element type 

Uniform mesh 

4 4  

Displacement (ND) 

8 8  

Displacement (ND) 

16 16  

Displacement (ND) 

MITC3I 0.1936 (0.6402) 0.2597 (0.8588) 0.2892 (0.9563) 

MITC3II 0.1137 (0.3760) 0.2398 (0.7930) 0.2863 (0.9468) 

MITC3+I 0.2211 (0.7312) 0.2644 (0.8743) 0.2901 (0.9593) 

MITC3+II 0.2019 (0.6677) 0.2588 (0.8558) 0.2885 (0.9540) 

MITC4 0.2852 (0.9431) 0.2942 (0.9729) 0.2990 (0.9888) 

MITC4* 0.3167 (1.0473) 0.3040 (1.0053) 0.3017 (0.9977) 

QPH [128] 0.2843 (0.9400) 0.2964 (0.9800) 0.3054 (1.0100) 

Simo et al. [167] 0.3275 (1.0830) 0.3069 (1.0150) 0.3024 (1.0000) 

QUAD4 [16] 0.3175 (1.0500) 0.3048 (1.0080) - 

URI-4 0.3686 (1.2190) 0.3187 (1.0540) 0.3075 (1.0170) 

SRI-4 0.2915 (0.9640) 0.2976 (0.9840) 0.3021 (0.9990) 

DKQ-4 0.3169 (1.0480) 0.3039 (1.0050) 0.3015 (0.9970) 

Enriched MITC3+I 0.2866 (0.9478) 0.2964 (0.9802) 0.3001 (0.9924) 

Enriched MITC3+II 0.2705 (0.8945) 0.2940 (0.9722) 0.2996 (0.9907) 

 

Reference solution 0.3024ref
Aw   [143] 

I and II : mesh patterns shown in Figure 6.12(b) 
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Table 6.13. Displacements and normalized displacements at point A for the Scordelis-Lo roof using the dis-

torted meshes. Normalized displacement (ND) = / ref
A Aw w  where ref

Aw  and Aw  denote the reference and 

finite element solutions, respectively. 

Element type 

Distorted mesh shown in Figure 6.10 

4 4  

Displacement (ND) 

8 8  

Displacement (ND) 

16 16  

Displacement (ND) 

MITC3I 0.1753 (0.5797) 0.2355 (0.7788) 0.2777 (0.9183) 

MITC3II 0.0540 (0.1786) 0.1242 (0.4107) 0.2270 (0.7507) 

MITC3+I 0.1990 (0.6581) 0.2421 (0.8006) 0.2794 (0.9239) 

MITC3+II 0.1108 (0.3664) 0.1729 (0.5718) 0.2458 (0.8128) 

MITC4 0.2075 (0.6862) 0.2596 (0.8585) 0.2885 (0.9540) 

MITC4* 0.2713 (0.8972) 0.2930 (0.9689) 0.2994 (0.9901) 

Enriched MITC3+I 0.2541 (0.8403) 0.2793 (0.9236) 0.2946 (0.9742) 

Enriched MITC3+II 0.2027 (0.6703) 0.2722 (0.9001) 0.2955 (0.9772) 

 

Reference solution ref
Aw  [143] = 0.3024 

I and II : mesh patterns shown in Figure 6.12(b) 

 

 

 

6.4.1.7 Raasch’s Hook Problem 
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Figure 6.14. Raasch’s Hook. (a) Problem description. (b) Normalized displacement in the linear analysis of 

the Raasch’s Hook problem. 
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The Raasch’s Hook problem [173] is useful in the evaluation of a given element’s ability to properly 

reproduce coupling among bending, extension and twisting deformation patterns. A curved strip is clamped 

rigidly at one end and subjected to a unit load distributed along the width of the free end, see Figure 6.14(a). 

The width and radius of the Raasch’s hook are 20b  , 1 46r   and 2 14r  , respectively, and the thickness 

is 0.03h  ; the material constants are 33.3 10E    and 0.35v  . The linear loading zFF e , where 

1F   is applied on the side of the hook. The reference solution of 5.027 for the displacement in the load di-

rection of the free edge is used [173]. The structure is modeled using 1 9 , 3 18 , 5 36 , 10 72  and 

20 144  element meshes of the shell elements. Figure 6.14(b) and Table 6.14 present the tip deflection at 

free end that was normalized by the reference solution. The performance of the enriched MITC3+ shell ele-

ment is compared to those obtained with the different types of other MITC shell elements. The results show 

that the proposed shell element possesses fast convergence to the reference solution. 

 

 

Table 6.14. Displacements and normalized displacements at point A for the Raasch’s Hook problem shown in 

Figure 6.14(a). Normalized displacement (ND) = / ref
A Aw w  where ref

Aw  and Aw  denote the reference and 

finite element solutions, respectively. 

Element type 

Mesh 

1 9  

Disp. (ND) 

3 18  

Disp. (ND) 

5 36  

Disp. (ND) 

10 72  

Disp. (ND) 

20 144  

Disp. (ND) 

MITC3 -3.853 (0.766) -4.617 (0.918) -4.778 (0.951) -4.877 (0.970) -4.951 (0.985) 

MITC3+ -4.463 (0.888) -4.774 (0.950) -4.827 (0.960) -4.899 (0.975) -4.962 (0.987) 

MITC4 -4.784 (0.952) -4.811 (0.957) -4.852 (0.965) -4.923 (0.979) -4.976 (0.990) 

MITC4* -4.797 (0.954) -4.816 (0.958) -4.854 (0.966) -4.923 (0.979) -4.976 (0.990) 

Enriched MITC3+ -4.847 (0.964) -4.861 (0.967) -4.871 (0.969) -4.918 (0.978) -4.988 (0.992) 

Allman -4.233 (0.842) -4.644 (0.924) -4.805 (0.956) -5.330 (1.060) -7.343 (1.461) 

Cook, Flat-stiffened -4.249 (0.845) -4.656 (0.926) -4.902 (0.975) -5.951 (1.184) -9.582 (1.906) 

Providas and Kattis -4.265 (0.848) -4.687 (0.932) -5.106 (1.016) -7.132 (1.419) -15.13 (3.010) 

OPT -4.261 (0.848) -4.644 (0.924) -4.756 (0.946) -4.876 (0.970) -4.972 (0.989) 

 

Reference solution 5.027ref
Aw    [173] 

 

 

 

6.4.2 Nonlinear Benchmark Problems 

In this section, the performance of the enriched MITC3+ shell element is evaluated in the nonlinear 

range. The iterations to solve the nonlinear equations have been performed in each load step to a convergence 

tolerance of 0.1 percent on the relative incremental energy. 
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6.4.2.1 Cantilever Beam Subjected to a Tip Moment 
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Figure 6.15. Cantilever beam subjected to a tip moment. (a) Problem description. (b) Load-displacement 

curve for the cantilever beam subjected to a tip moment. 

 

 

A cantilever beam subjected to a tip moment 10M   as shown in Figure 6.15(a) is considered for 

large deformation test. The length, depth and thickness of the beam are 20l  , 1b   and 1h  , respective-

ly. The Young’s modulus and Poisson’s ratio are taken as 1200E   and 0.2v  , respectively. By classical 

beam theory, this tip moment is just sufficient to roll up the cantilever beam into a circular ring with its ends 

butting each other. This cantilever beam is modeled using a 2 20  element mesh and results are not depend 

on mesh patterns for triangular elements. The reference solutions are obtained using a 4 40  element mesh 

of the MITC9 shell element. The vertical displacement at point A for this problem are plotted in Figure 

6.15(b) and listed in Table 6.15. As we can see, the present element gives better performance than collapsed 

Plane 42 triangular element [174], MITC3 and MITC4 element, and compares favorably with MITC9 element 

[22]. The final deformed shapes are shown in Figure 6.16. The present element is able to simulate very large 

deformation accurately. 
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Figure 6.16. Deformed configurations of the cantilever beam subjected a tip moment. 

 

 

Table 6.15. Normalized load-vertical deflections at point A for the cantilever beam subjected a tip moment. 

Normalized load MITC3 MITC4 MITC4* 
Enriched

MITC3+

Collapsed

Plane42 

triangle 

Plane82 Reference

0.1 2.23 4.24 6.07 5.84 1.81 5.84 5.84 

0.2 4.41 8.10 11.01 10.68 3.60 10.66 10.70 

0.3 6.47 11.25 13.91 13.69 5.31 13.68 13.71 

0.4 8.37 13.40 14.39 14.42 6.90 14.50 14.42 

0.5 10.07 14.40 12.61 12.96 8.35 13.22 12.90 

0.6 11.53 14.22 9.24 9.88 9.61 10.38 9.74 

0.7 12.72 12.98 5.32 6.12 10.62 6.82 5.92 

0.8 13.60 10.91 2.01 2.73 11.48 3.46 2.53 

0.9 14.18 8.33 0.14 0.57 12.11 1.06 0.46 

1.0 14.45 5.64 0.05 0.04 - 0.03 0.07 

 

The reference solutions are obtained using a 4 40  element mesh of the MITC9 shell elements 
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6.4.2.2 Column under an Eccentric Compressive Load 
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Figure 6.17. Column under an eccentric compressive load. (a) Problem description. (b) Load-displacement 

curves for the column. 

 

 

A column is subjected to an eccentric compressive load shown in Figure 6.17(a). The length l , width 

b  and thickness h  are 10, 1 and 1, respectively. The Young’s modulus and Poisson’s ratio are given by 

610E   and 0v  , respectively. The geometry is meshed with 2 10  elements as shown in Figure 6.18. 

The reference solutions are obtained using a 4 20  element mesh of the MITC9 shell element. The horizon-

tal deflection at point A  for the column and the corresponding load-deflection responses are plotted in Fig-

ure 6.17(b) and listed in Table 6.16. The final deformed shapes are shown in Figure 6.18. As seen from these 

results, the deflections given by the present element are almost the same as that of the reference using the 

MITC9 shell element, MITC4 with incompatible modes, whereas the collapsed Plane 42 [174], MITC3 and 

MITC4 element yields very bad results. 
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Figure 6.18. Deformed configurations for the column under an eccentric compressive load. 

 

 

Table 6.16. Normalized load-horizontal deflections at point A for the column under an eccentric compressive 

load. 

Normalized load MITC3 MITC4 MITC4*
Enriched 

MITC3+ 

Collapsed

Plane42 

triangle 

Plane82 Reference

0.071 0.0207 0.0429 0.0667 0.0668 0.0414 0.0090 0.0669 

0.143 0.0430 0.0923 0.1499 0.1503 0.0846 0.0210 0.1505 

0.214 0.0669 0.1499 0.2562 0.2570 0.0130 0.0360 0.2574 

0.286 0.0926 0.2178 0.3965 0.3980 0.0178 0.0560 0.3987 

0.357 0.1204 0.2987 0.5891 0.5917 0.0228 0.0870 0.5928 

0.429 0.1506 0.3969 0.8672 0.8718 0.0282 0.1360 0.8736 

0.500 0.1833 0.5181 1.2946 1.3032 0.0339 0.2300 1.3062 

0.571 0.2189 0.6709 1.9911 2.0072 0.0401 0.4380 2.0127 

0.643 0.2579 0.8687 3.0960 3.1210 0.0468 0.9060 3.1312 

0.714 0.3007 1.1320 4.4440 4.4682 0.0541 1.7620 4.4843 

0.786 0.3479 1.4931 5.5777 5.5928 0.0622 2.8370 5.6125 

0.857 0.4002 1.9979 6.3531 6.3596 0.0711 3.9350 6.3798 

0.929 0.4583 2.6912 6.8441 6.8452 0.0812 4.9430 6.8638 

1.000 0.5234 3.5544 7.1415 7.1392 0.0926 5.8620 7.1553 

 

The reference solutions are obtained using a 4 20  element mesh of the MITC9 shell elements 

 

 

 

6.4.2.3 Curved Cantilever Beam 
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Figure 6.19. Load-displacement curves for the curved cantilever beam. 

 

 

The curved cantilever beam shown in Figure 6.8(a) is clamped at one end and subjected to two forces 

at the other. This problem is tested in the linear range, see section 6.1.4. The material properties and geometry 

are chosen as the same in the linear analysis. The forces applied to the cantilever beam are increased up to 

1 2100 ( )NP P P   . The problem is modeled using a 1 6  element mesh of the MITC4, MITC3, MITC3+ 

and enriched MITC3+ shell element. The reference solutions are calculated using 2 12  element mesh of the 

MITC9 shell element. Figure 6.19(b), Table 6.17 and Table 6.18 show the calculated displacement at point 

A  versus the forces, and Figure 6.20 shows the deformed shapes calculated using the 1 6  element mesh 

of the MITC4, MITC3, and enriched MITC3+ shell finite element. The vertical displacements using the 

MITC4, MITC3 and MITC3+ shell element display much too stiff compared with the reference. However, the 

MITC4 with incompatible modes and enriched MITC3+ shell finite element show excellent results compared 

to the reference solutions. 

 

 

Table 6.17. Normalized load-vertical displacements at point A for the curved beam. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

MITC9

0.1 -0.247 -0.237 -0.293 -0.283 -0.244 0.268 0.339 0.347 0.295 

0.2 -0.362 -0.330 -0.363 -0.343 -0.268 0.382 0.462 0.471 0.401 

0.3 -0.339 -0.294 -0.298 -0.275 -0.209 0.457 0.536 0.545 0.472 

0.4 -0.276 -0.228 -0.215 -0.193 -0.144 0.509 0.585 0.593 0.522 

0.5 -0.213 -0.166 -0.141 -0.121 -0.088 0.544 0.618 0.625 0.557 

0.6 -0.157 -0.113 -0.079 -0.061 -0.042 0.570 0.640 0.647 0.583 

0.7 -0.110 -0.068 -0.028 -0.012 -0.003 0.588 0.655 0.663 0.602 
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0.8 -0.070 -0.030 0.016 0.030 0.031 0.601 0.666 0.673 0.616 

0.9 -0.035 0.003 0.055 0.066 0.059 0.610 0.673 0.680 0.626 

1.0 -0.005 0.031 0.090 0.099 0.084 0.617 0.677 0.685 0.634 

 

Nor. Load : max/N NP P  

Ref. : Reference solutions obtained using a 2 12  element mesh of the MITC9 shell elements 

 

 

Table 6.18. Normalized load-horizontal displacements at point A for the curved beam. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

MITC9

0.1 -1.804 -1.847 -2.155 -2.143 -2.526 -2.529 -2.212 -2.195 -2.591 

0.2 -2.519 -2.578 -2.915 -2.906 -3.252 -3.207 -2.926 -2.910 -3.261 

0.3 -2.892 -2.943 -3.263 -3.252 -3.533 -3.485 -3.258 -3.242 -3.532 

0.4 -3.102 -3.142 -3.441 -3.428 -3.667 -3.637 -3.452 -3.435 -3.681 

0.5 -3.232 -3.262 -3.545 -3.530 -3.743 -3.738 -3.581 -3.564 -3.777 

0.6 -3.320 -3.344 -3.613 -3.596 -3.793 -3.811 -3.676 -3.659 -3.848 

0.7 -3.385 -3.404 -3.661 -3.644 -3.828 -3.869 -3.750 -3.732 -3.903 

0.8 -3.436 -3.451 -3.699 -3.680 -3.856 -3.916 -3.809 -3.792 -3.947 

0.9 -3.478 -3.490 -3.729 -3.710 -3.878 -3.955 -3.859 -3.842 -3.985 

1.0 -3.514 -3.524 -3.755 -3.735 -3.897 -3.989 -3.902 -3.885 -4.017 

 

Nor. Load : max/N NP P  

Ref. : Reference solutions obtained using a 2 12  element mesh of the MITC9 shell elements 
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Figure 6.20. Deformed configurations for the curved cantilever beam. 
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6.4.2.4 Hemispherical Shell 
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Figure 6.21. Load-displacement curves for the hemispherical shell with an 18  hole when (a) the uniform 

meshes and (b) the distorted meshes are used. 

 

 

Again we consider two hemispherical shell problems, hemispherical shell with an 18  hole and full 

hemispherical shell, as shown Figure 6.9(a). The material and geometric properties are given as the same in 

the linear analysis, see Section 6.1.5. Taking advantage of symmetry, a quadrant of the shell is used. 
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Table 6.19. Normalized load-radial displacements at the point B for the hemispherical shell with an 18  hole 

with the uniform meshes. The results are obtained using the 6 6  element mesh of the shell elements. 

Nor. 

Load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.262 -0.257 -1.915 -1.813 -1.563 -1.577 -1.919 -1.817 -1.825 

0.2 -0.525 -0.528 -3.463 -3.168 -2.442 -2.474 -3.474 -3.178 -3.233 

0.3 -0.784 -0.809 -4.679 -4.162 -3.041 -3.085 -4.693 -4.177 -4.303 

0.4 -1.039 -1.095 -5.686 -4.925 -3.498 -3.552 -5.705 -4.944 -5.154 

0.5 -1.286 -1.382 -6.554 -5.534 -3.869 -3.932 -6.576 -5.559 -5.856 

0.6 -1.526 -1.666 -7.321 -6.041 -4.182 -4.252 -7.344 -6.071 -6.449 

0.7 -1.757 -1.944 -8.009 -6.478 -4.453 -4.528 -8.034 -6.514 -6.958 

0.8 -1.979 -2.213 -8.636 -6.872 -4.691 -4.771 -8.661 -6.915 -7.400 

0.9 -2.193 -2.472 -9.211 -7.246 -4.903 -4.988 -9.235 -7.296 -7.788 

1.0 -2.398 -2.719 -9.745 -7.628 -5.094 -5.184 -9.767 -7.688 -8.132 

 

Nor. Load : max/N NP P  

Ref. : Reference solutions obtained using a 16 16  element mesh of the MITC9 shell elements 

 

 

Table 6.20. Normalized load-radial displacements at the point A for the hemispherical shell with an 18  hole 

with the uniform meshes. The results are obtained using the 6 6  element mesh of the shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 0.241 0.258 1.522 1.438 1.279 1.289 1.524 1.441 1.498 

0.2 0.463 0.508 2.361 2.203 1.816 1.833 2.365 2.208 2.321 

0.3 0.668 0.746 2.875 2.655 2.131 2.153 2.878 2.662 2.818 

0.4 0.855 0.970 3.228 2.956 2.351 2.375 3.232 2.966 3.156 

0.5 1.026 1.177 3.489 3.177 2.519 2.545 3.493 3.188 3.405 

0.6 1.181 1.368 3.691 3.351 2.652 2.680 3.694 3.364 3.597 

0.7 1.323 1.541 3.850 3.497 2.763 2.793 3.853 3.512 3.750 

0.8 1.453 1.697 3.978 3.628 2.858 2.888 3.981 3.644 3.876 

0.9 1.572 1.839 4.082 3.752 2.939 2.971 4.084 3.770 3.981 

1.0 1.682 1.967 4.166 3.879 3.011 3.043 4.169 3.898 4.070 

 

Nor. Load : max/N NP P  

Ref. : Reference solutions obtained using a 16 16  element mesh of the MITC9 shell elements 

 

 

For the hemispherical shell with an 18  hole, this problem is a very useful example to check the abil-

ity of the element to handle rigid body rotation about the normal to the shell surface and the inextensible 

bending modes. The point load is incrementally applied to a maximum value max 400 / 2P  . The shell is 



 

- 164 - 

modeled using a 6 6  element mesh of the shell element with the uniform and distorted meshes. A 16 16  

element mesh of the MITC9 shell element is used to obtain the reference solutions. 

 

Table 6.21. Normalized load-radial displacements at the point B for the hemispherical shell with an 18  hole 

with the distorted meshes shown in Figure 6.10. The results are obtained using the 6 6  element mesh of the 

shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.316 -0.120 -1.912 -1.749 -0.170 -0.176 -1.913 -1.760 -1.825 

0.2 -0.669 -0.243 -3.435 -3.153 -0.365 -0.378 -3.440 -3.167 -3.233 

0.3 -1.050 -0.367 -4.545 -4.202 -0.595 -0.618 -4.554 -4.219 -4.303 

0.4 -1.449 -0.495 -5.400 -5.029 -0.880 -0.920 -5.411 -5.049 -5.154 

0.5 -1.854 -0.626 -6.090 -5.706 -1.265 -1.347 -6.102 -5.727 -5.856 

0.6 -2.256 -0.760 -6.667 -6.275 -2.074 -2.779 -6.680 -6.297 -6.449 

0.7 -2.647 -0.899 -7.161 -6.762 -2.946 -3.176 -7.175 -6.787 -6.958 

0.8 -3.023 -1.042 -7.591 -7.186 -3.303 -3.483 -7.608 -7.214 -7.400 

0.9 -3.379 -1.189 -7.972 -7.560 -3.658 -3.848 -7.990 -7.591 -7.788 

1.0 -3.716 -1.341 -8.312 -7.894 -4.373 - -8.333 -7.927 -8.132 

 

Nor. Load : max/N NP P  

Ref. : Reference solutions obtained using a 16 16  element mesh of the MITC9 shell elements 

 

 

Table 6.22. Normalized load-radial displacements at the point A for the hemispherical shell with an 18  hole 

with the distorted meshes shown in Figure 6.10. The results are obtained using the 6 6  element mesh of the 

shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 0.334 0.112 1.494 1.359 0.161 0.166 1.495 1.365 1.498 

0.2 0.668 0.224 2.297 2.136 0.333 0.343 2.299 2.142 2.321 

0.3 0.991 0.334 2.772 2.611 0.516 0.533 2.775 2.617 2.818 

0.4 1.293 0.444 3.096 2.938 0.716 0.742 3.100 2.945 3.156 

0.5 1.566 0.554 3.335 3.182 0.940 0.983 3.340 3.189 3.405 

0.6 1.810 0.664 3.523 3.373 1.261 1.430 3.528 3.380 3.597 

0.7 2.025 0.774 3.674 3.526 1.575 1.636 3.680 3.534 3.750 

0.8 2.214 0.884 3.801 3.654 1.792 1.849 3.806 3.662 3.876 

0.9 2.380 0.995 3.907 3.762 2.050 2.131 3.913 3.771 3.981 

1.0 2.525 1.106 3.999 3.855 2.569 - 4.005 3.864 4.070 

 

Nor. Load : max/N NP P  

Ref. : Reference solutions obtained using a 16 16  element mesh of the MITC9 shell elements 
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Figure 6.21 shows the load-radial displacement curves at the loaded point A and B. Table 6.19 - Table 

6.22 list the same deflections and Figure 6.22 shows the deformed configurations obtained using a 6 6  

element mesh of the enriched MITC3+ shell element. The enriched MITC3+ shell element shows a good per-

formance regardless of which mesh pattern in Figure 6.10 is used. 
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Figure 6.22. Deformed configurations for the hemispherical shell with an 18  hole. 

 

 

For the full hemispherical shell, the load applied to z-direction at point C  is increased up to 

NZ max 150000 / 4P  . The shell is modeled using 3 4 4   and 3 6 6   element meshes of the shell element 

and the reference solution is obtained by 3 8 8   element mesh of the MITC9 shell element. Figure 6.23 

shows the load-radial displacement curves at the loaded points C. Numerical results are also tabulated in Ta-

ble 6.23 and Table 6.24. The MITC4 with incompatible modes and enriched MITC3+ shell elements produce 

much better solution accuracy than the MITC3 and MITC4 shell element in this problem. 
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Figure 6.23. Load-displacement curves for the full hemispherical shell with a 3 4 4   element mesh (left) 

and a 3 6 6   element mesh (right). 

 

 

Table 6.23. Normalized load-vertical displacements at the point C for the full hemispherical shell with 

3 4 4   element meshes. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 0.307 0.389 0.336 0.439 0.430 0.451 0.448 0.453 0.560 

0.2 0.513 0.625 0.538 0.669 0.673 0.702 0.694 0.702 0.837 

0.3 0.679 0.811 0.700 0.850 0.863 0.897 0.885 0.896 1.049 

0.4 0.822 0.969 0.840 1.004 1.025 1.064 1.047 1.061 1.227 

0.5 0.951 1.110 0.967 1.142 1.169 1.212 1.191 1.207 1.384 

0.6 1.068 1.237 1.083 1.267 1.299 1.346 1.322 1.339 1.526 

0.7 1.177 1.355 1.190 1.383 1.420 1.469 1.442 1.461 1.657 

0.8 1.279 1.465 1.291 1.491 1.532 1.584 1.555 1.575 1.778 

0.9 1.375 1.569 1.386 1.593 1.638 1.693 1.660 1.682 1.892 

1.0 1.466 1.667 1.477 1.690 1.738 1.796 1.760 1.783 2.000 

 

Nor. Load : max/NZ NZP P  

Ref. : Reference solutions obtained using a 3 8 8   element mesh of the MITC9 shell elements 
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Table 6.24. Normalized load-vertical displacements at the point C for the full hemispherical shell with 

3 6 6   element meshes. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 0.380 0.449 0.403 0.465 0.484 0.498 0.498 0.500 0.560 

0.2 0.605 0.695 0.623 0.709 0.736 0.756 0.752 0.757 0.837 

0.3 0.783 0.887 0.797 0.899 0.932 0.956 0.948 0.956 1.049 

0.4 0.935 1.051 0.947 1.060 1.099 1.126 1.114 1.125 1.227 

0.5 1.071 1.195 1.082 1.204 1.246 1.276 1.260 1.274 1.384 

0.6 1.194 1.327 1.204 1.335 1.380 1.413 1.394 1.408 1.526 

0.7 1.308 1.448 1.318 1.455 1.504 1.538 1.516 1.533 1.657 

0.8 1.415 1.561 1.424 1.567 1.619 1.655 1.630 1.649 1.778 

0.9 1.516 1.667 1.524 1.673 1.727 1.765 1.738 1.758 1.892 

1.0 1.611 1.768 1.619 1.773 1.829 1.869 1.840 1.862 2.000 

 

Nor. Load : max/NZ NZP P  

Ref. : Reference solutions obtained using a 3 8 8   element mesh of the MITC9 shell elements 

 

 

 

6.4.2.5 Scordelis-Lo (Barrel Vault) Roof 
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Figure 6.24. Load-displacement curves for the Scordelis-Lo roof with (a) the uniform meshes and (b) the dis-

torted meshes. 

 

 

Scordelis-Lo Roof problem is also considered in nonlinear range. The same geometry and material 

properties that is used in the linear analysis are adopted. The load applied to the shell increases up to 

50 90Nzf    per unit area. The shell is modeled using 14 14  element meshes of the shell elements and 

24 24  element meshes of the MITC9 shell element is used to obtain the reference solutions. Figure 6.24 

shows the calculated load-displacement curves when the uniform and distorted mesh patterns in Figure 6.10. 

Numerical results are also presented in Table 6.25-Table 6.28. Figure 6.24. The deformed configurations cal-

culated in the enriched MITC3+ shell element are depicted in Figure 6.25. The enriched MITC3+ shell ele-

ment exhibits the best performance, even though the distorted meshes are used. 
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Table 6.25. Normalized load-horizontal displacements at the point A for the Scordelis-Lo roof with the uni-

form meshes. The results are obtained using the 14 14  element mesh of the shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.024 -0.024 -0.024 -0.024 -0.024 -0.025 -0.024 -0.024 -0.025 

0.2 -0.028 -0.029 -0.027 -0.028 -0.028 -0.028 -0.027 -0.028 -0.028 

0.3 -0.022 -0.023 -0.020 -0.022 -0.021 -0.021 -0.020 -0.021 -0.021 

0.4 0.004 0.005 0.029 0.023 0.031 0.034 0.047 0.038 0.068 

0.5 0.110 0.101 0.164 0.152 0.161 0.167 0.214 0.192 0.250 

0.6 0.248 0.213 0.330 0.305 0.319 0.330 0.420 0.376 0.483 

0.7 0.415 0.343 0.513 0.475 0.504 0.523 0.641 0.577 0.732 

0.8 0.594 0.482 0.696 0.648 0.700 0.726 0.848 0.776 0.959 

0.9 0.768 0.624 0.861 0.817 0.893 0.924 1.029 0.960 1.152 

1.0 0.929 0.763 1.006 0.971 1.070 1.103 1.185 1.123 1.314 

 

Nor. Load : max/NZ NZf f  

Ref. : Reference solutions obtained using a 24 24  element mesh of the MITC9 shell elements 

 

 

Table 6.26. Normalized load-vertical displacements at the point A for the Scordelis-Lo roof with the uniform 

meshes. The results are obtained using the 14 14  element mesh of the shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.810 -0.798 -0.813 -0.802 -0.836 -0.844 -0.844 -0.835 -0.845 

0.2 -1.245 -1.228 -1.251 -1.234 -1.277 -1.287 -1.291 -1.276 -1.291 

0.3 -1.599 -1.581 -1.612 -1.590 -1.633 -1.643 -1.653 -1.634 -1.655 

0.4 -1.992 -1.987 -2.161 -2.119 -2.218 -2.245 -2.323 -2.259 -2.460 

0.5 -2.736 -2.643 -2.990 -2.911 -3.011 -3.047 -3.241 -3.120 -3.387 

0.6 -3.426 -3.205 -3.713 -3.582 -3.700 -3.747 -4.029 -3.834 -4.215 

0.7 -4.064 -3.716 -4.342 -4.157 -4.327 -4.384 -4.689 -4.436 -4.902 

0.8 -4.624 -4.173 -4.866 -4.649 -4.871 -4.935 -5.207 -4.929 -5.433 

0.9 -5.093 -4.575 -5.282 -5.062 -5.330 -5.393 -5.612 -5.326 -5.840 

1.0 -5.482 -4.923 -5.624 -5.396 -5.706 -5.765 -5.939 -5.643 -6.163 

 

Nor. Load : max/NZ NZf f  

Ref. : Reference solutions obtained using a 24 24  element mesh of the MITC9 shell elements 
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Table 6.27. Normalized load-horizontal displacements at the point A for the Scordelis-Lo roof with the dis-

torted meshes. The results are obtained using the 14 14  element mesh of the shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.025 -0.023 -0.025 -0.023 -0.024 -0.025 -0.025 -0.026 -0.025 

0.2 -0.030 -0.032 -0.029 -0.030 -0.029 -0.029 -0.029 -0.032 -0.028 

0.3 -0.024 -0.032 -0.023 -0.028 -0.024 -0.023 -0.022 -0.028 -0.021 

0.4 -0.004 -0.020 0.014 -0.012 0.001 0.007 0.026 -0.009 0.068 

0.5 0.069 -0.004 0.125 0.042 0.086 0.099 0.174 0.078 0.250 

0.6 0.165 0.020 0.257 0.114 0.168 0.187 0.361 0.179 0.483 

0.7 0.282 0.054 0.453 0.198 0.252 0.280 0.579 0.285 0.732 

0.8 0.423 0.094 0.627 0.287 0.342 0.379 0.773 0.392 0.959 

0.9 0.571 0.136 0.782 0.373 0.438 0.483 0.943 0.497 1.152 

1.0 0.715 0.178 0.919 0.456 0.537 0.589 1.090 0.596 1.314 

 

Nor. Load : max/NZ NZf f  

Ref. : Reference solutions obtained using a 24 24  element mesh of the MITC9 shell elements 

 

 

Table 6.28. Normalized load-vertical displacements at the point A for the Scordelis-Lo roof with the distorted 

meshes. The results are obtained using the 14 14  element mesh of the shell elements. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.785 -0.636 -0.789 -0.671 -0.803 -0.838 -0.828 -0.814 -0.845 

0.2 -1.213 -1.002 -1.222 -1.048 -1.230 -1.276 -1.270 -1.237 -1.291 

0.3 -1.563 -1.313 -1.582 -1.379 -1.577 -1.627 -1.629 -1.577 -1.655 

0.4 -1.916 -1.607 -2.048 -1.698 -1.970 -2.049 -2.175 -1.918 -2.460 

0.5 -2.494 -1.859 -2.789 -2.181 -2.582 -2.684 -3.060 -2.529 -3.387 

0.6 -3.054 -2.099 -3.416 -2.627 -3.038 -3.150 -3.851 -3.017 -4.215 

0.7 -3.592 -2.356 -4.180 -3.034 -3.429 -3.554 -4.526 -3.421 -4.902 

0.8 -4.115 -2.601 -4.682 -3.384 -3.786 -3.920 -5.021 -3.762 -5.433 

0.9 -4.575 -2.824 -5.074 -3.676 -4.114 -4.252 -5.401 -4.051 -5.840 

1.0 -4.965 -3.028 -5.391 -3.925 -4.412 -4.551 -5.706 -4.297 -6.163 

 

Nor. Load : max/NZ NZf f  

Ref. : Reference solutions obtained using a 24 24  element mesh of the MITC9 shell elements 
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Figure 6.25. Deformed configurations for the Scordelis-Lo roof. 

 

 

 

6.4.2.6 Slit Annular Plate 
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Figure 6.26. Slit annular plate subjected to lifting line force. (a) Problem description. (b) Mesh patterns used 

for the MITC3, MITC3+ and enriched MITC3+ shell elements. 

 

 

A slit annular plate, as shown in Figure 6.26(a) is considered. This example was suggested by Başar 

and Ding [150] and has been widely considered [139, 140, 151, 156]. The geometry and elastic material prop-

erties are given by 6ir  , 10er  , 0.03h  , 621 10E    and 0v  . The transverse shear force 

max 3.2P   is incrementally applied at one end of the slit while the other end of the slit is fully clamped. The 

plate undergoes large displacements and large rotations. This structure is modeled using a 6 30  element 

mesh of the shell element. For triangular shell element two different types of mesh patterns are used, see in 

Figure 6.26(b). The reference solutions are obtained using a 12 60 element mesh of the MITC9 shell ele-

ment. The load-displacement curves at two different points, A and B, are depicted in Figure 6.27. The dis-

placements calculated are also tabulated in Table 6.29 and Table 6.30. The deformed configurations calculat-

ed using the MITC3, MITC4, MITC3+ and enriched MITC3+shell elements are shown in Figure 6.28. As 

seen, the MITC3 shell element displays too stiff a behavior. However, the results using the enriched MITC3+ 

shell element are in agreement with those using the MITC4 shell element with incompatible modes and rea-

sonably close to the reference solutions. 
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Figure 6.27. Load-displacement curves for the slit annular plate subjected to lifting line force. 

 

 

Table 6.29. Normalized load-vertical displacements at the point A for the slit annular plate subjected to lift 

line force when the 6 30  element mesh is used. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 4.706 4.743 5.630 5.630 5.764 5.839 5.797 5.797 5.862 

0.2 7.467 7.548 8.858 8.858 9.009 9.089 9.023 9.024 9.143 

0.3 9.268 9.347 10.841 10.842 11.013 11.107 11.023 11.025 11.196 

0.4 10.540 10.573 12.196 12.197 12.399 12.518 12.419 12.421 12.640 

0.5 11.504 11.464 13.201 13.200 13.439 13.587 13.476 13.477 13.742 

0.6 12.275 12.148 13.992 13.990 14.273 14.452 14.322 14.325 14.643 

0.7 12.915 12.698 14.649 14.653 14.995 15.198 15.038 15.044 15.435 

0.8 13.462 13.157 15.296 15.274 15.650 15.873 15.694 15.692 16.165 

0.9 13.945 13.550 15.907 15.841 16.249 16.493 16.322 16.296 16.846 

1.0 14.387 13.895 16.441 16.414 16.813 17.073 16.909 16.865 17.484 

 

Nor. Load : max/NZ NZf f  

Ref. : Reference solutions obtained using a 12 60  element mesh of the MITC9 shell elements 
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Table 6.30. Normalized load-vertical displacements at the point C for the slit annular plate subjected to lift 

line force when the 6 30  element mesh is used. 

Nor. 

load 

MITC3 

(mesh I) 

MITC3 

(mesh II) 

MITC3+ 

(mesh I) 

MITC3+

(mesh II) 
MITC4 MITC4*

Enriched

MITC3+

(mesh I) 

Enriched 

MITC3+ 

(mesh II) 

Ref. 

0.1 -0.731 -0.956 -1.080 -1.078 -1.052 -1.037 -1.039 -1.036 -1.019 

0.2 -1.042 -1.569 -1.468 -1.465 -1.386 -1.341 -1.374 -1.370 -1.304 

0.3 -1.090 -1.924 -1.424 -1.423 -1.278 -1.200 -1.265 -1.261 -1.139 

0.4 -1.006 -2.119 -1.239 -1.241 -1.026 -0.906 -0.997 -0.996 -0.822 

0.5 -0.863 -2.215 -1.015 -1.020 -0.737 -0.573 -0.688 -0.688 -0.466 

0.6 -0.697 -2.247 -0.784 -0.790 -0.431 -0.225 -0.372 -0.370 -0.087 

0.7 -0.522 -2.238 -0.543 -0.539 -0.082 0.155 -0.043 -0.037 0.339 

0.8 -0.341 -2.200 -0.151 -0.190 0.316 0.574 0.347 0.339 0.821 

0.9 -0.151 -2.145 0.301 0.188 0.738 1.019 0.813 0.763 1.338 

1.0 0.069 -2.077 0.700 0.703 1.204 1.491 1.299 1.219 1.871 

 

Nor. Load : max/NZ NZf f  

Ref. : Reference solutions obtained using a 12 60  element mesh of the MITC9 shell elements 
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Figure 6.28. Deformed configuration for the slit annular plate subjected to lifting line force. 
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Chapter 7. Conclusions and Future Works 

 

7.1 Conclusions 

This thesis focused on a general procedure to improve solutions of the classical shell finite element us-

ing the partition of unity concept. The proposed shell elements are a direct extension of the traditional finite 

element formulation for the analyses of linear and nonlinear elastic shell structures. The partition of unity 

based shell elements provide smoother solutions and good convergence, and can be used with relatively 

coarse meshes. It has been demonstrated that the proposed elements are very effective and reliable both in 

linear and nonlinear analyses. 

 

First, a partition of unity based 3-node triangular shell finite element was presented. The shell element 

was based on the MITC method to alleviate transverse shear locking, and referred to as the enriched MITC3 

shell element. The enriched MITC3 shell finite element is obtained by applying linear displacement interpola-

tion covers to the standard 3-node shell element, and using the MITC procedure. Good convergence behavior 

in the analysis of various shell problems has been seen, even when distorted meshes were used. The fact that, 

in the solutions considered, the enriched 3-node element sometimes performed significantly better than the 

MITC4 and MITC6 shell elements when distorted meshes were used is particularly noteworthy. The effec-

tiveness of using the enrichment scheme only locally was also illustrated by using the cover interpolation 

functions only in critical areas of an analysis domain. It is concluded that cover interpolations and the MITC 

method are promising schemes for enriching shell element behaviors. 

 

Second, a partition of unity based 4-node quadrilateral shell finite element was also proposed and 

called the enriched MITC4 shell element. To reduce the transverse shear locking, the enriched MITC4 shell 

element adopts the MITC4 method for the linear displacements and applies the MITC9 procedure for addi-

tional high order coefficients. Unlike the enriched MITC3 shell element, a special treatment constraining the 

additional unknown coefficients around the boundary nodes of the domain is applied to avoid the linear de-

pendence problem. Good convergence behavior in the analysis of various benchmark shell problems has been 

seen, even when distorted meshes were used. 

 

Third, the formulation of the MITC3+ shell element was reviewed and extended to geometric nonline-

ar analysis. The total Lagrangian formulation was employed allowing for large displacements and large rota-

tions. The nonlinear formulation is based on the same discretization assumptions that are employed in the lin-

ear formulation of the element. The nonlinear performance of the MITC3+ shell element was numerically 

investigated by solving several benchmark problems. In the tests considered, the predictive capability of the 

MITC3+ shell element was seen to be much better than of the MITC3 shell element. Indeed, the MITC3+ 



 

- 176 - 

element gave results that were practically as accurate as the MITC4 shell element. Also, considering the ex-

cellent behavior of the MITC3+ shell element in linear analysis, it is concluded that the element is a very at-

tractive element for general shell analyses. 

 

Finally, a triangular shell finite element with improved membrane behaviors is proposed. The partition 

of unity approximation was only applied into the membrane part of the MITC3+ shell element to enhance 

membrane behaviors. The key theoretical and numerical aspects of this element were discussed and the for-

mulation of the shell was extended to geometric nonlinear analysis. A number of benchmark problems were 

studied to evaluate its performances in linear and geometric nonlinear ranges. The results confirm that the 

present method can provide accurate solutions for membrane dominant problems. It is concluded that the par-

tition of unity approximation is an effective remedy for improving membrane behaviors in the triangular shell 

element. 

 

 

 

7.2 Future Works 

Based on the observed good behavior of the partition of unity based shell finite elements, it is expected 

that the partition of unity approximation will likely also be effective in other structural elements such as flat 

shell and beam elements. It would be valuable to mathematically analyze the method, to further test the 

scheme, and to develop the formulation for large strain solutions of shell structures [175] and for solving 

problems containing very high stress gradients, like shell problems containing cracks [40, 157, 158]. In all of 

these developments, the ultimate aim should probably be to establish automatic procedures for improving 

stress solutions [176-181]. 

 

As an extension of this work, we recommend the following future works. 

 

In Chapter 3, 4 and 6, performance was obtained through a complete set of benchmark problems and 

its fundamental information. Based on the detailed solution, the free vibration analysis of shell problems 

needs to be proposed and their solution needs to be provided. Also, using a posteriori error estimators [177-

181], element size and polynomial order can be effectively controlled around the area where stress concentra-

tion is expected. 

 

In Chapter 5, nonlinear extension of the MITC3+ shell element would be important developments in 

the specific topics. However, there are of course many more areas of research developments considering the 

general elasto-plastic analysis of shells. These include the large strain analysis of shells, the analysis of com-

posite shells, the modeling of contact conditions, and the analysis of shells in multi-physics conditions. 
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Appendix A. The Finite Rotations 

 

In this Appendix, the mathematical formulation of the finite rotations is reviewed. This explanations 

about the finite rotation are extracted from Reference [159]. The finite rotation is useful for the finite shell 

element in geometrical nonlinear analysis. One difficulty for studying the finite rotation is that different nor-

malization has been used by different research groups. 

 

 

 

A.1 Spatial Rotations 

The two-dimensional plane rotations can be dealt with in finite element analysis. A rotation in the 

plane ( 1x , 2x ) is defined by just a scalar with the rotation angle   about the perpendicular axis. Plane rota-

tions commute 1 2 2 1       because the rotation angle   is numbers. However the study of spatial fi-

nite three dimensional rotation is more difficult because they do not obey the laws of vector calculus. Within 

the framework of matrix algebra, finite rotations can be represented in two ways; R  is 3 3  orthogonal 

matrices called rotation tensor or rotators and Ω  is real skew-symmetric matrices called spin tensor or 

spinors. 

 

The spin tensor is important in theory and modeling since the matrix entries are closely related to the 

ingredients of Euler’s theorem. The rotation tensor is convenient for numerical analysis and related to the po-

lar factorization of a transformation matrix. The two representations are connected as shown in Figure A.1(a), 

which also includes the axial and skew vector introduced below. Of the Ω R  links, the Rodrigues-Cayley 

formulation is historically the first, see reference [182]. 

 

The spin tensor Ω  which is a 3 3  skew-symmetric matrix and it is defined by three scalar parame-

ters. These three numbers can be arranged as components of an axial vector  . Although the axial vector   

looks like a 3-vector, it violates certain properties of classical vectors such as the composition rule. Therefore 

the term pseudovector is sometimes used for  . This Appendix is aimed to convey that finite three-

dimensional rotations can appear in alternative mathematical representations, as Figure A.1(a). 
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Figure A.1. (a) Representations of finite spatial rotations. (b) The rotation angle is positive obeying the right-

hand screw rule about the rotation axis. 

 

 

 

A.2 Spin Tensor Ω  

A three dimensional rotation by an angle   about an axis of rotation ω  is represented by Figure 

A.1(b). The origin of coordinates O  is placed on ω . The rotation axis consists of three directors 1 , 2  

and 3 . At least one of three directors should be nonzero. These components may be scaled by an nonzero 

factor   through which the vector can be normalized in various ways. The rotation takes an arbitrary point 

( )P x , located by its position vector x , into ( , )Q x , located by its position vector x . The center of rota-

tion C is defined by projecting P on the rotation axis. The plane of rotation CPQ is normal to that axis at C. 

The radius of rotation is vector r  of magnitude r  from C to P. As shown in Figure A.1(b) the distance 

between P and Q is 2 sin( / 2)r  . The positive sense of   obeys the RHS screw rule: positive counter-

clockwise if observed from the tip of the rotation axis. The angle shown in Figure A.1(b) is positive. 
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A.3 Spin Tensor and Axial Vector 

With the three directors 1 , 2 , and 3  of the axis ω , the 3 3  skew-symmetric spin tensor Ω  

can be represented by 

 
3 2

T
3 1

2 1

0

Spin( ) 0

0

 
      
  

Ω ω Ω

 
 
 

.  (8.1)

The cross product of ω  and v  is equivalent as 

 Spin( ) Spin( )       ω v Ωv ω v v ω v ω .  (8.2)

In particular 0Ωω , and T 0v Ωv , as may be directly verified. The operation converse to Equation (8.1) 

extracts the 3-vector ω , called axial vector or pseudovector, from a given spin tensor 

  T1 2 3Axial( ) ω Ω    .  (8.3)

The length of the vector ω  is calculated by 

 2 2 2
1 2 3       ω .  (8.4)

 

 

 

A.4 From Spin Tensor to Rotation Tensor 

Figure A.1 illustrates that a rotation tensor is a linear operator that maps an arbitrary point ( )P x  to 

( )Q x  given the rotation axis w  and the angle q . The rotator representations in the form of 3 3  rotation 

matrices R  are obtained by 

  x Rx ,  T x R x .  (8.5)

The rotation matrix is proper orthogonal which satisfies T R R I  and det( ) 1R . It must reduce to I  if the 

rotation vanishes. 

 

 

 

A.5 Rotator Parameterizations 

The rotation tensor R  has the trace property. Hence the rotation tensor is represented by 

 trace( ) 1 2cos R .  (8.6)

To construct the rotation tensor R  from rotation data, the rotation tensor is assumed to be analytic in Ω . 

Hence it must have the Taylor expansion as follows: 

 2 3
1 2 3c c c    R I Ω Ω Ω  ,  (8.7)

where the ic  must vanish when the angle   is equal to zero. By the Cayley-Hamilton theorem, Ω  satis-
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fies its own characteristic equation, 

 3 2 Ω Ω , 4 2 2 , Ω Ω  and 2 2 , 3n n n   Ω Ω .  (8.8)

Hence if 3,5,n   the odd powers nΩ  are skew-symmetric with distinct pure imaginary eigenvalues, 

whereas if 2, 4,n   , then even power nΩ  are symmetric with repeated real eigenvalues. Due to the Cay-

ley-Hamilton theorem, all power of order 3 or higher can be eliminated. Therefore rotation tensor R  must 

be a linear function of I , Ω  and 2Ω . Hence the rotation tensor is rewritten by 

 2( ) ( )     R I Ω Ω ,  (8.9)

where   is the normalization factor of the spin tensor and   and   are scalar functions of   and of 

invariants of Ω  or  . Since the only invariant of the latter is  , it is anticipated that ( , )     and 

( , )    , both vanishing when the angle   becomes zero. Approach to determine those coefficients for 

1   is discussed in the next sections. Table A.1 lists several representations of a rotator in terms of the 

scaled Ω . 

 

 

Table A.1. Rotation tensor with several spin tensor normalizations. 

Parameterization       Spin tensor Rotation tensor R  

None (unscaled)   sin


 
2

2

2sin ( / 2)


Ω  
2

2
2

sin 2sin ( / 2) 
 

 I Ω Ω

Unit axial-vector 
1


 sin  22sin ( / 2)  N Ω  2 2sin 2sin ( / 2)  I N N  

Rodrigues-Cayley 
tan( / 2)


 22cos ( / 2) 22cos ( / 2) Σ Ω  2 22cos ( / 2)( ) I Σ Σ  

Fraeijs de Veubeke 
sin( / 2)


 2cos( / 2) 2  p Ω Ω 2 22cos ( / 2) 2p p I Ω Ω  

Exponential map 



 
sin


 
2

2

2sin ( / 2)


Θ Ω  
2

2
2

sin 2sin ( / 2) 
 

 I Θ Θ

 

 

 

A.6 Rotation Tensor from Algebra 

It is possible to find   and   for 1   directly from algebraic conditions. Taking the trace of the 

rotation tensor in Equation (8.9) for 1   and applying the trace property in Equation (8.6) require 

 23 2 1 2cos    ,   with 
2

2 2

1 cos 2sin ( / 2) 
 


  .  (8.10)
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Using the orthogonal property of the rotation tensor, 

 T 2 2( )( )     I R R I Ω Ω I Ω Ω    ,  (8.11)

 2 2 4 2 2 2 2(2 ) (2 )b a b b a b w       I I Ω Ω I Ω .  (8.12)

we can obtain the following condition, 

 2 2 22 0         with 
sin


 .  (8.13)

Finally, the rotation tensor can be represented by, see Table A.1, 

 
2

2 2
2 2

sin 1 cos sin 2sin ( / 2)   
  


     R I Ω Ω I Ω Ω .  (8.14)

 

From a numerical standpoint the sine-squared form should be preferred to avoid the cancellation in 

computing 1 cos  for small  . Replacing the components of Ω  and 2Ω  gives the explicit rotator form

 

2

2 2 2 2 2
1 2 3 1 2 3 1 3 2

2 2 2 2 2
1 2 3 2 3 1 2 3 1

2 2 2 2 2
1 3 2 2 3 1 3 1 2

1

( ) cos 2 sin ( / 2) sin 2 sin ( / 2) sin

2 sin ( / 2) sin ( )cos 2 sin ( / 2) sin

2 sin ( / 2) sin 2 sin ( / 2) sin ( ) cos


             

             
             

 

    
     
     

R

.  (8.15)

If 1   but nonzero, the results are sin / ( )    and 2 2(1 cos ) / ( )     . It follows that Equation 

(8.14) and (8.15) are independent of  , as was to be expected. 
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Appendix B. Path Following Techniques 

 

The load and displacement control methods fail to find the complete equilibrium path presenting limit 

points with ‘snap-throughs’ and ‘snap-backs’ behaviors. The arc-length control method is aimed to handle 

these critical points. Hence the finite element solution with this method can draw the entire load-displacement 

curves. The general algorithm of this approach is given in this section. 

 

 

 

B.1 Limit Points Analysis 

In relation to structural analysis, Riks [183] and Wempner [184] published the first attempt in this re-

spect, using a linear constraint equation such that the iterative change was normal to the tangent. Later, several 

scholars modified the method by the means of altering the constraint equation, and therefore, the way of the 

corrector steps of the iterative procedure was developed. For example, Ramm [185] used a different linear 

constraint such that iterative change was normal to the secant change. The previous two methods were the first 

versions of the linearized arc-length method. At the same time, Crisfield [186] proposed the spherical arc-

length method which uses a quadratic constraint or the Euclidean norm of the incremental displacement to a 

fixed quantity. To avoid the problems that arise in choice of a proper root, as Crisfield method required, a 

consistently linearized version of arc-length method using the same quadratic constraint was proposed by 

Schweizerhof and Wriggers [187]. 

 

The equilibrium equation in term of the residuum r  is given by 

 ( , ) ( ) 0i e   r d q d q ,  (9.1)

where d  is the displacement vector,   is the scalar and load level parameter, iq  is the internal force vec-

tor which is function of the nodal displacements, and eq  is the external load vector. The additional constraint 

is added to complete the set of equations. This constraint equation is the arc length s which is defined by 

 s ds    (9.2)

with 

 T 2 2 T
e eds d d d  d d q q .  (9.3)

 

The aim of the arc-length method is to find the intersection of a given arc length s  with the equilibri-

um equation as follows: 

 ( ) ( ( )) ( ) 0i es s s  r q d q .  (9.4)
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To solve Equation (9.4), a predictor-corrector scheme is used. Initially, the differential form of (9.3) can be 

replaced with an incremental form, such that 

 T 2 2 T 2( ) ( ) 0i i i i
e ea l       d d q q ,  (9.5)

where l  is the incremental length which is the constant radius of the desired intersection with the equilibri-

um path,   is the scaling parameter to combine different dimensions for the load and displacement terms. 

The vector d  and the scalar   are incrementals and are related back to the last converged equilibrium 

state. Meanwhile d  and   are the iterative displacement vector and load level respectively. These are 

associated to the previous iteration step that, in most cases, is not an equilibrium state. 

 

The distinguished feature of the arc-length method is that the load level   is also a parameter to be 

determined. Therefore, the total unknowns are 1n  ; n  from the displacement variables of vector d  and 

the one of the load parameter  . To solve for these, equation (9.1) gives a total of n  equilibrium equa-

tions, while equation (9.5) gives one constraint equation. 

 

These 1n   equations can be solved by iteratively applying the Newton-Raphson method to (9.1) 

and (9.5). This idea was first proposed by Riks [183, 188] and Wempner [184], though with a different con-

straint equation. 

 

A truncated Taylor series of (9.1) and (9.5) respectively yields 

 1 0i i i i i i i
t e   


  
      

 
r r

r r d r K d q
d

  (9.6)

and 

 1 T 2 T2( ) 2 0i i i i i i i i i
e e

a a
a a a    


  
        

 
d d d q q

d
,  (9.7)

where tK  is the tangent stiffness matrix. The other terms have been already defined. Equations (9.6) and 

(9.7) can be combined in a different fashion 

 
1

T 2 T2( ) 2

i i
t e
i ii i

e e a




    
          

K qd r

d q q
.  (9.8)

At this point, there are different ways to obtain the solution of (9.8). Two different possibilities are given 

next. 
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Linearized arc-length method Spherical arc-length method

(a) (b)  

Figure B.1. (a) The linearized arc-length method. (b) The spherical arc-length method. 

 

 

 

B.1 Linearized Arc-Length Method 

The simplest way is to solve Equation (9.8) directly [187]. One may first find an expression for d  

and then replace it into  . Consequently, from equation (9.6), d  can be given by 

 1 1i i i
t t e    d K r K q .  (9.9)

Equation (9.9) is exactly for displacement control. Therefore by means of the two iterative displacement vec-

tors d  and td , equation (9.9) can be rewritten as 

 i i i i
t    d d d   (9.10)

with 

 1i i
t  d K r  and 1i

t t e d K q .  (9.11)

Substituting Equation (9.10) into Equation (9.7) leads to 

 T 2 T2( ) ( ) 2
2

i
i i i i i i

t e e

a         d d d q q .  (9.12)

Therefore, the iterative load level   can be given by 

 
T

T 2 T

( / 2) ( )

( )

i i i
i

i i i
t e e

a 
 

  


  
d d

d d q q
.  (9.13)

The incremental displacements and load level should be updated as 

 1i i i   d d d ,  (9.14)

 1i i i      .  (9.15)
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B.2 Spherical Arc-Length Method 

To solve equation (9.8) Crisfield [186] suggested another alternative method, that is the spherical arc-

length method. Here, the constraint equation (9.5) for a , is satisfied through the entire set of iterations and 

not only when convergence is achieved, as in the linearized arc-length. Substituting Equation (9.10) into 

Equation (9.14) leads to 

 1i i i i i
t      d d d d ,  (9.16)

where   is the only unknown. The constraint Equation (9.5) can be rewritten as 

 T 2 2 T 1 T 1 1 2 2 T 2( ) ( ) ( ) ( )i i i i i i
e e e e l               d d q q d d q q .  (9.17)

The radius of the desired intersection is always constant during the iterative process and therefore 
ia  is equal 

to zero, see Figure B.1(b). Substitution of Equation (9.16) into Equation (9.17) leads to the scalar quadratic 

equation: 

 2
1 2 3( ) 0i ic c c    ,  (9.18)

where 

 T 2 T
1 ( )i i

t t e ec    d d q q ,  (9.19)

 T 2 T
2 2( ) ( ) 2i i i i

t e ec       d d d q q ,  (9.20)

 T 2 2 2 T
3 ( )( ) ( )i i i i i

e ec l           d d d d q q .  (9.21)

After solving (9.18) for i  Equation (9.16) can be fully computed. Finally, with the aid of Equation 

(9.15), the complete iteration is defined. 

 

The main disadvantage of the spherical arc-length method, compared to the Linearized version, is the 

additional computational cost to solve the quadratic equation, and then the choice of the proper root that yields 

from Equation (9.18). 
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요 약 문 

PU 기반 쉘 유한요소 

유한요소법은 쉘 구조물의 선형 및 비선형 해석에 가장 널리 사용되는 

수치해석기법이며, 지난 수십년간 보다 더 정확하고 일관된 수치적 결과를 얻기 위한 많은 

연구가 활발하게 진행되었다. 하지만 눈부신 연구결과에도 불구하고, 응력이 집중되거나 특이 

해가 존재하는 특정영역에서의 유한요소 해는 상당한 오차를 보여주며 이러한 문제점을 

해결하기 위한 노력은 지속적으로 진행 중이다. 

 

최근, 기존 절점에 새로운 자유도를 추가 함으로써 요소 및 절점의 개수를 증가시키지 

않고 고차 형상함수를 구성할 수 있는 PU 기반 유한요소법이 제안되었다. PU 기반 

유한요소법은 기존 형상정보를 변화시키지 않고 정교한 수치 해석을 얻을 수 있다는 장점으로 

2D 또는 3D 솔리드 요소의 범위에서 큰 주목을 받아 왔다. 쉘 유한요소의 경우에는 쉘 두께가 

작아짐에 따라 발생하는 잠김현상에 대한 처리 기법이 제안되지 않아 PU 기반 유한요소법이 

적용되는데 문제가 존재 했다. 

 

본 학위논문에서는 PU 기반 3 절점 삼각형 및 4 절점 사각형 쉘 유한요소들을 

제안하였다. 기존 변형률과 고차 형상함수의 변위에 의한 변형률을 분리 하였으며 분리된 

변형률에 각각 다른 대체변형률장을 구성함으로써 제안된 쉘 요소의 잠김현상을 처리 할 수 

있었다. 잘 알려진 수렴문제들을 통하여 기존에 존재 하는 쉘 요소들과 성능을 비교 

평가하였다. 또한 응력 집중을 가진 축 문제, 기하학적 거동이 복잡한 실제 쉘 문제를 

풀어봄으로써 PU 기반 쉘 유한요소의 뛰어난 성능을 입증하였다. 

 

또한, PU 기반 변위보간을 사용하여 3 절점 삼각형 쉘 요소의 면거동 성능향상에 대한 

가능성을 제안하였다. 4 절점 사각형 쉘 유한요소의 경우, 비적합 모드 및 대체 변형장등을 

사용하여 면거동의 성능을 개선할 수 있지만, 3 절점 삼각형 쉘 요소의 경우에는 면거동 

성능향상에 대한 적합한 방법론이 제시되지 않았다. 본 논문에서는 PU 를 사용한 변위보간을 

통해 기존 삼각형 면거동을 효율적으로 보강하였으며 선형 및 비선형 영역에서 다양한 문제를 

풀어 보면서 제안된 요소 쉘 유한요소를 비교 검증하였다. 선형 및 비선형영역에서, PU 기반 

변위보간을 통한 쉘의 면 거동은 4 절점 사각형 쉘 요소에서 사용되는 비적합 모드와 비교하여 

뛰어난 성능을 보여주었다. 

 

 

 

핵심어: PU 기반 유한 요소법; 쉘 유한요소; 잠김현상; 비선형 해석; 대변위 및 대회전 
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