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Abstract

Beam structures are used in industrial field included steel structures, cables and so on. Therefore, importance of
contact modeling between beams is increasing. However, contact analysis between beams is limited in circular
cross-section, so 3D solid elements are used in many beam-to-beam contact cases. In this thesis, the contact
modeling between arbitrary cross-sections is suggested by using the beam element with arbitrary cross-sections.
The point-to-point contact is modified according to the beam element with arbitrary cross-sections. The
validation of contact modeling is performed by reference of existing paper and results of commercial software.

Keywords Finite element, Contact, Beam, Arbitrary cross-section, point-to-point contact
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Chapter 1. Introduction

Finite element analysis is extensively used in actual field, for example steel frame structures, bridge,
construction design, and so on. Beam structures are also included such actual fields, so beam structures occupy
important parts in structure analysis. In that case, finite element analysis using beam elements is efficient instead

of 3D solid element in terms of cost and time.

In addition, various contact situations are in actual field, for example contact between mechanical
elements, contact in manufacturing process, and contact between fibrous materials. In recent years, contact
modeling is used in analysis of biopolymer networks. To solve such many contact problems, the finite element
analysis is used. The contact problem accompany nonlinear phenomenon as large change of forces and
displacements. Therefore, the contact formulations and algorithms have been studied about many finite elements.
However, because solid element is universally used, the contact searching algorithms using 2D and 3D solid
element were developed quickly such as NTS (Node-to-segment) algorithm [1]. Contact formulation between

beams was relatively recently developed.

P. Wriggers and G. Zavarise suggested the contact formulation between three-dimensional beams for
the first time [2]. This formulation searches one closest point pair using orthogonality conditions. This beam
contact method is called ‘point-to-point’ contact. Most of applied papers about beam-to-beam contact are based
point-to-point contact, for example self-contacting on beams experiencing loop formation [3], contact between
3D beams with rectangular cross-sections [4]. Based on point-to-point contact, multiple-point contact between

beams was also developed [5-7].

However, the point-to-point contact formulation is developed based on circular cross-section beams.
Therefore, P. Litewka suggest the beam-to-beam contact with rectangular cross-sections [4], A. G. neto and P.M.
Pimenta suggest the beam-to-beam contact based on smooth curved shape cross-sections, for example
superellipses [8]. However, these methods cannot use for arbitrary cross-sections such as | beam, L beam and
even arbitrary quadrilateral cross-section. Therefore, simulator have to use solid elements in many beam contact
simulations. Most of commercial software also support the beam-to-beam contact between only circular cross-
section beams. Because the beam-to-beam contact formulation is developed based circular or limited cross-
sections, many applications of beam-to-beam contact are used circular cross-section beams as thin rod, fiber or
fabric material, and knot mechanism, or the contact applications irrelevant to shape of cross-section are developed,

for example Thermo-electro-mechanical coupling in beam-to-beam contact [16].



In this thesis, the beam-to-beam contact is formulated using the beam with arbitrary cross-sections [7].
This beam element based on continuum mechanics has cross-sectional nodes and 2D shape functions for
interpolation of plane node, and cross-sectional plane can be divided multiple elements in cross-section, so very
wide variety form of shapes can be made. Using the large displacement analysis for beam contact, the 3D beam
element is developed to the nonlinear formulation through large displacement kinematics. Using total Lagrangian

formulation, incremental displacements based on the large displacement kinematics are formulated.

Because of using the beam element with non-circular or arbitrary cross-section, the contact algorithm
from point-to-point should be modified as applicable to the 3D beam element. In this thesis, the point-to-point
contact method and its formulations are introduced. In addition, based on the point-to-point contact method, some
improved contact formulations such as change of cross-section or multiple point contact methods are introduced

briefly.

Using the 3D degenerated beam element, the new contact searching algorithm and contact formulation
are suggested. Through global searching and local searching, closest points on beam surfaces can be found. Then,
it is determined whether contact has occurred at the closest points. For determination of contact, new contact
determination method is suggested, and modified formulation based on point-to-point contact is introduced.

Finally, some numerical examples of beam-to-beam contact for various cross-sections are presented.



Chapter 2. Continuum Mechanics Based Beam Elements

In this chapter, the beam elements to be used in the contact formulations are introduced. Kinematics of
beam elements are introduced. Kinematics and formulation of beam elements refer to the reference [15], K. Yoon,
Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors and
the reference [9], K. Yoon, A continuum mechanics based 3-D beam finite element with warping displacements

and its modeling capabilities.

2.1 Kinematics of beam elements

The beam elements introduced in this chapter are based on degeneration of 3D solid finite elements.

Beam node k &'x, u

Figure 2.1 3D solid finite elements with longitudinal direction and cross-section

2.1.1. Interpolation of degenerated elements

The beam with arbitrary cross-sections is made by 3D solid elements. The interpolation of the 3D solid

element m having n-node is given by

n
J'C’(m) - Z hi (T, s, t)f;(m) , (2-1)
i=1



where X¥(™ s the position in 3D solid element m, and Y{(m) is the position of nodal pointi. h;(r,s,t) is the

3D interpolation function. Through the degeneration of 3D solid beam, h;(r,s,t) can be divided 1D and 2D
interpolation functions, h,(r) and h;(s, t). The nodes of 3D solid element are substituted to the plane nodes on

the cross-sections of longitudinal direction. So, the degenerated position interpolation is given by

q p
3 = () Y (s, 0T ™, 2
i=1 i=1
where x—k’j(m) is the vector of plane node j on the cross-section of longitudinal solid element m (See figure 2.1).

Beam element

vk Cross-section

Figure 2.2 Degenerated beam with beam element and its cross-section

Using the beam nodal point and direction vectors on the cross-section as figure 2.2, node x_k’j ™) of the solid

j(m)

element can be divided as beam node and cross-sectional node. x; is given by

> — —j —k 7 —k

x]-](m) =%+ ykJ(m)V37 + ZkJ(m) A (2-3)
—j(m) ——j(m) - P ; 7k

where y;, and z; are coordinates of nodal point j on the cross-section element of the beam node k, V5

and 72-k are direction vectors on the cross-section of the beam node k. Using (2-2) and (2-3), the equation can be

divided the beam node and the cross-sectional node as



q q o a ok (2-4)
i = W T+ Y @) T+ Y b 2T
k=1 k=1 k=1
where
P P
yk(m) — Z hj(S, t)ykj(m)’ Z—k(m) = Z hj(S, t)Z_kj(m), (2-5)
k=1 k=1

7™, z,(™ are the cross-sectional positions on beam node k. These positions are represented by ¥,/

Z/™ as (2-5). 7,7, 2,7 are nodal point j on the cross-section element of beam node k in the coordinates

. . . —k —k
of the cross-sectional directions V;; and V; .

The degenerated beam formulation has 6 degrees of freedom as 3 displacements and 3 rotations. The
—sk
displacements and rotation angles are defined as u,v,w and 6,,6,,6,. The rotated directions tVy and

—k . .
Y, on the cross-section are represented by rotation angles as

t—)k - —sk
Vs =6k xV;,

k. —k (2-6)
W, =0, xV;,

. . . . . t—)k t—»k —k
and the normal direction vector of cross-sectional plane is defined as 'V = V5 X V;,

where §k is the rotation angle vector as 5k = [0k 935 6)]. From equation (2-4) and (2-6), the interpolation of
displacements is can derived as

q q q
I Lk
7 = Z hy (P + z @ 3™ (G x V57 ) + Z he(@) 2, (B, x7;°), (2-6)
k=1 k=1 k=1
Then, the nodal displacement DOFs are U = [u; v, wy | 65 65 65].

2.1.2 Kinematics of beam elements for large displacement

In this section, the nonlinear formulation of the 3D degenerated beam elements for large displacement
is introduced. A superscript (or subscript) 0 indicates initial geometry configuration, and t indicates current (at
time t) configuration. However, t does not mean configuration at actual time, but indicates change of

configuration. [10]

From equation (2-4), the position vector of the configuration at time t is given as

q q q
—k —k
T = B () Tt ) @ T+ ) 5™ T
k=1 k=1 k=1 (2-7)



where x(™ is an arbitrary position vector in the beam at time t, ‘X, is the position of beam node k at time t,

—k —k

tVy and fV, are the direction vector on the cross-sectional plane of the beam node k at time t. At the same
element m, the incremental displacement is derived from the configuration at time t to the configuration at time
t+ At as

Zm = t+Aty(m) _ ty(m) . (2-8)
Using equation (2-7) and (2-8), the incremental displacement is given as
q q q
N N _ —k —k _ —k —k

A = D B gl + Y M@ FTET — T+ @ AMET - Ty, @9)

k=1 k=1 k=1
where 4l is the incremental displacement at the beam node k from time ¢ totime ¢ + At. To represent
change of director vectors as rotation of director vectors, the Rodrigues rotation formula [11-12] is used as

5 sin 0% _, . 1 —cos 0% R
R( o6%) = 1+——R(6") + ——— R(,6%), (2-10)
of (09 )

Gk _ [ gk gk pkl" K — k)2 % k)2

where 8% =[,0F 0K 0K, 40 _J(Oex) +(o05) + (085)" ,
0 - Oezk 09;’;
R(o0%) =| .0k 0 — o0k, (2-11)
— by b 0

where 6%, (6%, (6% are the incremental rotation angles at the beam node k from time ¢ to time ¢ + At, and

R is the antisymmetric matrix by small rotation. It is a matrix form of cross product due to the rotation.

Using equation (2-10), the director vectors at time t + At are represented as

—k > —k —k > —k —k > —k -
LA R( Oek) A ,t+AtVy _ R( Oek) tv37 e R( ng) 0, (2-12)
Using equation (2-12), the incremental displacement (equation (2-9)) is represented as
q q q
— — _ g —sk _ - —sk
A = W) ot + ) M FR( ) =D T+ D h () 2P R(E) =D T @13)
k=1 k=1 k=1

Additionally, the Taylor expansion can be applied in the Rodrigues rotation formula. If apply the Taylor expansion

in equation (2-10), the equation can be written as

o ey ooy 1o, 52 1 53 1 . L 4
R(,0%) =T1+R( 049’()+ZR( 00%) +§R( 00%) +ZR( 00F) + - (2-14)

In equation (2-14), only linear and quadratic terms are used. Then, equation (2-13) is divided linear terms and

extra terms as

™ = Z hi () ofhi + Z he () 7 R( 46%) TV, + Z he () 2 R( 46%) V5, (2-15)



o = Zth(r)yk(m)R( L A th(r)zk(m)R( 69 7 (2-16)

which Ouim) and Oﬁ’g ) are linear and quadratic terms respectively in the incremental displacement (™.

In the incremental displacement, nodal DOFs vector at beam node k is given as
T
oUk = [ ot oVk oWk | obX 09317( 0‘95] ) (2-17)
and the total nodal DOFs vector of q beam nodes is given as
T
oU=[oUl oU7 - oUg] . (2-18)

Then, 0175 Jand Oﬁ’g ™) are represented in terms of the nodal DOFs vector oU as

o_ﬁm) [L(m) L(m) Lgm)] WU =Lm u, (2-19)
where
ok = [ ok

L0 = b (r) [1 (y(m)R( v, )+z‘,§’")R( a7 ))] (2-20)
and

ougm) oUT 1 U
Oﬁgm) ovz(m) ) oUT Q™ U |, (2-21)

o™ oUT 3QM™ oU
where
Q(m)_[ Q(m) ; ém) lQ(m)]’ i=1,23, (2-22)
in which

(m) —h 0 3X3 03x3
—sk -

k() 0ss y(mq,( v, ) 7y, ( i ) ) (2-23)

where
1 0 xZ X3 1 2x2 x1 0 _ZX3 0 x1

W, (%) =5 |* —2x; S (X) = x1 0 x|, W) =5 0 —2x3 x|. (2-24)

X3 0 _le 0 X3 —sz xl xz 0
So, variations of the incremental displacements are represented as

ougm) 8§ oUT QM U
§ o™ =1Mg U and § Ui = |5 ™ | =[5 ,UT Q<m> Ul (2-25)
(M) 5 oUT 30



2.1.3 Green-Lagrange strain and total Lagrangian formulation

The covariant Green-Lagrange strain tensor on the beam element m in the configuration at time t referred

to the configuration at time 0 is given as

felm = (f ). tglm _ ogtm . 0gmYy =123 (2-26)

where fgf"‘) is the covariant basis of convective system (r,s,t), and it is given as

g tx(m
tgfm) . , l,] — 1’2,3 (2-27)
L

Because the cross-sectional deformations are not existed in Timoshenko beam theory, the strain tensors are

considered about only 5 components as £e, e, telm) b 60 and other 4 components as

t.(m) ¢ (m) ¢ (m) ¢ (m)
0522 ,0823 ,0832 ,0833 are zeros.

The local Green-Lagrange strain tensor 55‘(]’”) in the local Cartesian coordinate system has following relationship
with the covariant Green-Lagrange strain tensor Oe(Jm),
—(m)( t,® °, ) _ t.gl({rln)( 0gk(m) @ Ogl(m)), (2-28)

where the base vectors in the local Cartesian coordinate system are given by

%t = hi(r) OVE, Oty = hy () OVE, Oty = by (r) VE, (2-29)
and, °gi(™ is the contravariant basis vectors, and there are have following relationship as

0gi(m) . ogg_m) — 5};‘ ) (2-30)
inwhich & is the Kronecker delta, itmeans &f =1 if i=j ,and 6/ =0 if i # .

Using equation (2-26), the incremental covariant Green-Lagrange strain on the beam element m is represented as

ofi(}n) t+AL l(Jm) (Tn) (t (m) 017_(]") + tg(m) (im) + Oﬁ,(im)' oﬁ,(}”)) (2-31)

—(m)
— 9 o
where ou(m) -

6T'i
Using 2™ ~ i, ™ + ,,"™, equation (2-31) can be divided linear term and nonlinear term as
) o -

i~ ot o o @)
where Oei(}”) is linear term and Oni(}’.”) is nonlinear term by the linear incremental displacement Oﬁl(m), and
OKL'(;") is nonlinear term by the quadratic incremental displacement Ouz(m) as follows,

(m) t (m) =(m) te(Mm) | =(m) (m) _ 2(m) | —=(m)

( ul] + g] ull Onu (Oulz Oulj
(m) — (t (m) | ﬁg‘l) + tggm) ﬁg?)) (2-33)

Using equation (2-19) and (2-21), the relations between incremental Green-Lagrange strain and incremental nodal

DOFs are obtained as



1
onf,’”’ oUT(LF?)TLF}”’) U =5 oUT N U,

1

1 A
l(JTn) OUT( tg (m) Q(m) + g(m) Q‘Em)) OU — E OUT ZN(m) U, (2-34)

L(m) L(m) and Q(m) _ [a 1Q(m) ) 2(‘?(m) 9 3Q(m)]T
i - .

where
aTi ar; or; or;

Using equation (2-28), the incremental covariant Green-Lagrange strains are changed to the local Green-Lagrange

strains as

Oe_i(}Tn) = Bi(jm)(ti ) gk(m))(tj ' gl(m)) oU = Ei(jm) oU,

_ 1 1
oy = 2 oUT (NG (6 g4 (5 - ) oU = 20 V" AN ol
=L g N gkom Y gL v g
K =5 oU" 2N;; (t:-g™)(t; - g'™) U =5 oU" 2N~ oU, (2-35)

The equilibrium equation in nonlinear analysis is obtained to the principal virtual work at time t + At, and the
configuration at time t is known. Through the principal virtual work, the equilibrium equation is represented to
the incremental equation, that process is called total Lagrangian formulation. From the total Lagrangian
formulation, the equilibrium equation consists of three parts, tangential stiffness matrix, force vector and internal
force. [10]

The total Lagrangian formulation is given by

f 8 08ij Cijrs 08rsd °V +f §5:;8 oflijd °V +f £5,6 ofcij d OV = AR — f £5:;6 o&;;d °V, (2-36)
Oy Oy Oy Oy

where °V is the volume of beam element at time 0, “*“R is the external virtual work, Cj;,s is the material law
in local Cartesian coordinate and §S;; is the second Piola-Kirchhoff stress in local Cartesian coordinate. Because
the strain tensor has only 5 non-zero components as (i,j) are (1,1), (1,2), (2,1), (1,3) and (3,1), the material law
tensor also has only 5 non-zero components as Cyq11; = E, Ci212 = C121 = Ci313 = C3131 = G, where E is

Young’s modulus and G is shear modulus.

Using equation (2-35), equation (2-36) can be discretized as

Z f B Cjy B VO™ + Z f (NS dv ™ + Z f NIV ESdv e | U
Oy (m) 0y (m) Oy (m)

Z J- (m)T tS dV(m)
O (m)

8 oU"

=8 JUTHHAR — 5 ,UT (2-37)

where n is total number of the beam elements, °V( s the volume of beam element m at time 0.



Equation (2-37) can be simplified as follows

('K, + ‘Kys + Kyz) oU = "R (F

where
n
T = =
‘K, = Z fo Bi}'m) CiJ'TSBT(;n)dV(m) ’
=1 v
n
=1 v
n
tKNz = ZJ- ZNi(jm)SgijdV(m) ,
m=1 v

n
F= f BOVTLS, v
oym)
m=1

Finally, we can obtain the incremental displacement U through equation (2-38).

10

(2-38)

(2-39)



Chapter 3. Beam-to-beam Contact

In this chapter, the existing beam-to-beam contact methods will be introduced. The contact method in
the thesis is motivated by point-to-point contact method, so the contact formulation of point-to-point will be
explained. The concept of penalty method used in point-to-point contact is also explained. In addition, improved

contact formulations based on point-to-point contact are introduced.

3.1 Beam-to-beam contact methods

P. Wriggers and G. Zavarise suggest the beam-to-beam contact formulation between three-
dimensional beams at first in 1997 [2]. This formulation has two features, the beam is circular cross-section and
the contact points is one pair in minimum distance between the beams. This formulation is called to ‘Point-to-
point’ contact. Many beam-to-beam contact formulations are improved by based the point-to-point contact
formulation. Improved formulations revise the two features, for example, the cross-sections are changed, or the

contact points are changed. The point-to-point contact and the improved formulations are introduced briefly.

3.1.1 Concept of point-to-point contact

Figure 3.1 Kinematics of point-to-point contact [6]

The two beams are supposed that have circular cross-section. The radii of beams are R; and R,. The
beam centerlines are represented two parameters & and # respectively. Therefore the centerlines of the beam are
represented as 7, (&) and r,(n). The curves 11 (%) and r,(n) have the unique tangent vector at point & and #,
thus the curves are at least continuous in their partial derivative (C* continuity). As figure 3.1, the distance
between beams is represented the function of & and # as
d,m = ln@) —rmll 3-1)
and when the distance is minimum, let the two parameters be &, and n.. In this closest point pair, the direction

of distance vector and the beam centerline are perpendicular to each other. Therefore, the orthogonality
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conditions are satisfied as

p1(&,n) = 7{,{("1(5) - 7’2(77)) - piun)=0,

3-2
&) =1y () —1m) = pEn) =0, (3-2)
where Tig = Z—;f , is tangent vector of beam centerline.
J
And using distance, the gap function is created for detection of contact. The gap function is given as
g=dEon) — Ry — Ry (3-3)

Using the gap function, contact is determined whether it occurs. If the gap function become a negative value,
contact occurs between the beams. When contact occurs, the force and potential are applied between the beams.
At this time, the closest centerline points (¢.,71.) are used as the reaction force direction and size as follow,

fee = =g}, (3-4)
where

(&) —r.(me) () = {g, g<o0
I (€e) = r(m)II’ 00 g>0"

n=

In which, ¢ is the penalty parameter for the penalty method. The form of reaction force can be changed by the
contact contribution method (penalty method or Lagrange multiplier or etc.). the process of contact

determination and applying contact force is as shown figure 3.2.

Jee = —€(g)

Figure 3.2 Diagram of contact situation

3.1.2 Penalty method

In equation (3-4), the penalty method is used for calculation of the contact force. In this condition,
epsilon (g) means the penalty parameter. As figure 3.3, the ideal condition is written gf.. = 0. However, the
penetration between the beams is not allowed in the ideal condition. If use the ideal condition, solution can be
unstable and oscillated. This unstable solution convergence is called ‘chattering’. If use the penalty method, the
penetration between the beams is allowed. The quantity of penetration is controlled by the penalty parameter e,
S0 proper penalty parameter should be determined according to problem cases. However, using the penalty

method has better convergence than the ideal condition.
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fee (contact force) fc¢ (contact force)

A

> g (gap) —-=— g (gap)

Figure 3.3 (left) Ideal contact force condition

(right) Contact force using penalty parameter

Lagrange multiplier method is also widely used like the penalty method. In the case of penalty method, the
penalty parameter is constant value by problem cases. However, the Lagrange multiplier 4 is determined by the
solution process of the finite element analysis. If contact is occurred, the penalty method and the Lagrange
multiplier method satisfy to the strain energy functions (potential equations) respectively as

M = My, + My, + I, (3-5)

where II,; and I, are the potential from of two beams, and I, is the potential by contact condition as

€
M, = Egz -+ penalty method ’
Ag -« Lagrange multiplier (3-6)

where g is gap function as equation (3-3). The form of gap function can be changed by the contact formulation
method. The potential equation has solution in the extremal value of the equation, so the potential equation has
the condition as

SI1 = 81y, + 8My, + 611, =0 (3-7)
Using equation (3-7), the solutions of beam contact problem are obtained. As can be seen from the form of the
contact potential, the Lagrange multiplier method behaves like the ideal condition as left of figure 3.3. The
Lagrange multiplier method find the proper multiplier A through potential equation, so the parameters do not
need to be determined by problem cases. However, if use the Lagrange multiplier method, the solution
convergence process can require additional equilibrium iterations because the solution convergence can be
oscillated, in other words ‘chattering’. By comparison, the penalty method requires few equilibrium iterations
compared to the Lagrange multiplier method. Besides, in case of multiple contact, the Lagrange multipliers are
given at many points. This situation cause increasing in number of DOFs. In this thesis, the penalty method is

used for good convergence and convenient formulation compared to the Lagrange multiplier method.
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3.1.3 Formulation of point-to-point contact

The formulation of point-to-point contact refer to the reference [2], P. Wriggers, On contact between
three-dimensional beams undergoing large deflections. Using the penalty parameter and the gap function, the

potential by contact condition can be discretized. The potential term by contact condition is represented as

no=>g°, (3-9)
The finite element solution exist in an extremal value of IT, so 8IT becomes 0. Therefore, the variation of
potential equation can write as

8I1 = 81y, + 811y, + 811, = 8y, + 8y, +eg-8g =0 . (3-9)
The linearization of equation (3-9) for the iteration of nonlinear equation is given as

ASIT = Ablly, + AbIly,, + eAg - 6g + g - eAg - ASg . (3-10)

Remind the orthogonality condition of two beam. Equation (3-2) is given as

{rfs(rz ) = 11(©) = () = 71(9) 116 =0

7'27:71 (7”2 m—-n (f)) = (7”2 m—-n (f)) Ty =0 ' (3-2a)
From this orthogonality condition, the linearization of the condition is obtained as
[_7’1,5 "Tet (r,—m) ‘T e T2 T ] [AE] _ [_(7”2 — 1) 'ﬁ,{]
=T T2y Tom  Top+ (T2 —11) " Toy An —(ry — 1) "1y (3-11)

Using the linearization of the orthogonality condition, we get Ag, 8g, ASg. First, the gap function g is given by

g =llrz(m) = GIll = (Ry + Ry) (3-39)
The variation of the gap function is obtained using equation (3-3a) as
59 = [51‘2 (nc) - 57'1 (fc)] ' ﬁ(fc' nc)' (3'12)

where 71 is the normal unit vector as follows,

2 (nc) -n (fc)
||7”z(77c) - Tl(fc)” .

P (3-13)

Using 6x = x¢6¢ + du, equation (3-12) is rewritten as

59 = [5112 (nc) + T2n (nc)anc - 5u1 (fc) - rl,{(fc)afc] ' ﬁ(fa: nc); (3'14)
according to the orthogonality condition, 7y £(&.) - i(§, 1) = 12, () - 1(Ec, ) = 0, so equation (3-14) is
rewritten as

69 = [6u2 (nc) - aui(fc)] 'ﬁ(fc' nc): (3'15)
The linearization of the gap function goes through same process to variation, so the linearization of the gap

function is represented as

Ag = [Auz (nc) — Ay (fc)] ’ ﬁ(fu nc) (3'16)
From equation (3-12), the linearization of the variation of the gap function is obtained as
A(sg = [A&”z (nc) - Aérl(fc)] ' ﬂ(fct nc) + [57”2 (nc) - 6T1(fc)] ' Aﬁ(fc' Tlc); (3'17)

where A7 is given from equation (3-13) as

S 1 o ) |
At = I (12) — 1 GOl (1 -7 @) (Ary(n,) — Ary (£)), (3-18)
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and using 6x = x;6¢ + du, equation (3-18) is rewritten as

1
ATt = 1— 7 ® ) (Auy + Ary, Ay — Auy — Ary £A8), (3-19)
TraG10) — Gl (g + Aoyl = ity = %)

Using equation (3-19) and 6x = x ;8¢ + du and the linearization of the orthogonality condition at &, 7.,
equation (3-17) is rewritten as
A8g = [(Buz) pAne — (Suy) gASc] - 71 + [(Auy) 461 — (Duy) g 88| - 7+ [rpymSncdne — 1y g68AE,] - 7
N 1
lIra(nc) — (€

In equation (3-20), A&, An, is solved the linearized orthogonality condition equation (3-11) at closest points

| [6uy + 1,00 — Suy — 11 £6¢] - (1 — 7 @ W) (Au, + 1A — Auy — 1y sAE)  (3-20)

¢om. as follow

1] = 181 [ge] + 1) [ﬁzﬂ (3-21)

where the matrices A,B and C is given by

[A] = [_T“ gt n) g Tan Tig ]
=T Toy Tom Tom + (1 —71) " To
T T
e T —(r, =)’
[B]=[' ] €= | | _
Tin —Tin o7 7y —1)7 (3-22)

In equation (3-22), all quantities are obtained with respect to the closest points &, 7.

For obtain the finite element solution, the linearization of displacement is needed [4]. The displacement with
respect to the centerline of beam is given by

u, = H; ()t

So, equation (3-21) can be expressed as

§§Z]=[A]-1{[B] ;(1)1 2] c [Hlf HM]}[QEZ]:[D] [QZ;’;] (3.23)

In similar to equation (3-23), the variation of ., 7. is also obtained as

O] _ oy 0]

N, Suyl’ (3-24)
So, the contact contribution by the penalty method is expressed as
AS8TL, = (Sufy, Suz) [Kc](Augy, Augy)T, (3-25)
8I; = (uly, sul IR, (3-26)
where

{[ Hl{] [—Hy¢ H2n]}+s g{[_HlTﬁ 0 ][D]

+[D]" [




1
Al Hopl + [ rep DI (=) {[=Hag Hay] + [=rig oy ]DI, (3-27)

—HT.7n
1,5"] (3-28)

Hzrnﬁ

3.2 Improved formulation — non-circular cross-sections

3.2.1 Beam-to-beam contact between rectangular cross-section beams

P. Litewka and P. Wriggers suggested contact between 3D beams with rectangular cross-sections at

2002 [4]. The beam elements are used 3D rectangular Timoshenko beam formulation.

Figure 3.4 A pair of contacting beams with rectangular cross-sections [4]

Existing point-to-point contact formulation is formulated based on the beam centerlines. However,
this contact formulation is developed on the edges of beam. The positions and displacements of the beam edges
are obtained through the positions and displacements of the beam centerline and the rotation of nodal points at
beam elements. So, using the positions of edges, minimal distances and closest points between edges of beams
are obtained through the distance searching processes. Because one beam element has four edges, the contact
possibility should be determined at which corners will contact. This paper suggest that two closest edges on

beam per another beam centerline are checked.
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o<
“::\\_ J-th element, beam No. 2

Figure 3.5 Contact search — two closest edges per beam centerline [4]

For example, as figure 3.5, two edges 1.1 and 1.2 from the beam no.1 are closest with the beam no.2. Similar to,
two edges 2.1 and 2.2 from the beam no.2 are closest with the beam no.1. Therefore, four edge pairs as 1.1 and
2.1,1.1and 2.2,1.2and 2.1, 1.2 and 2.2, are checked whether contact is occurred or not.

This formulation change cross-section from circular cross-section to rectangular cross-section.
However the beam contact formulation still cannot solve for arbitrary cross-section as I-beam, H-beam,
quadrilateral cross-section or curved cross-section. Further, if ratio width and height of rectangular cross-section

is big difference, searching process can undergo error.

3.2.2 Beam-to-beam contact between curbed cross-section beams

A. G. Neto suggested contact between 3D beams with curve shape cross-sections at 2016 [8]. The

surfaces of the beam are given by the convective coordinate systems.

Xan =
Qua sy

Figure 3.6 Beam-to-beam contact with curved surfaces [8]

Surfaces depended the convective coordinate are represented as
l—‘A = FA((AI HA! a)A)' l—‘A = 1—‘B ({Bl HB! a)B)' (3'29)

where {;, 8; are the convective coordinates and &i is the generalized displacements vector.
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From these surface functions, the orthogonality conditions are given by
Tag, Ta—Tg) =0
Tao, " Ta—Tp) =0 (3-30)
Igep - (Ta—Tg) =0
Tgo,  (Ta—Tp)=0
Because of these conditions, surfaces respected to the convective variables are required at least continuous in
their partial derivative, thus C*-continuous. Using these surface representations, the surface parameterization
and the cross-sections of beams are given as
[(¢,0) =% +d(,0) (3-31)
where X({) is the description of beam axis, and d(¢,8) is the positions of material positions at the beam

surface. d(g,0) has the cross-section information and cross-section orientation by rotation.

y

A

> X

Figure 3.7 Cross-section and convective coordinate
The contact points are given as one closest point pair, differently to case of rectangular cross-section. Using
convective coordinates, cross-section can be made close to the rectangular shape for the superellipse curve.
However, if surface is not satisfied at least C*-continuous or surface has a severe inflection, the contact process
can fail for the contact formulation, so, in order to describe the arbitrary cross-section, the convective coordinate

is not enough, and other beam elements and formulation are needed.
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Figure 3.8 Severe inflection, sharped shape (not satisfied C*-continuous)

3.2 Improved formulation — multiple contact formulation

3.2.1 Concept of line-to-line contact

E,.; EIHI
e
—-4 ho
Mok i _n-e.kﬂ -
(a) Space continuous problem setting. (b) Discretized problem setting.

Figure 3.9 Kinematics of line-to-line contact [6]

In line-to-line contact, the minimum distance is not fixed value. From point r;(¢) on the slave
element, the closest points r,(n.) are found. Finally, the minimum distances become function of point on the
slave element. If the points on the slave elements are discretized, the slave points have the closest points on the
master element. The closest point n. in the master beam to a given slave point & is determined by the minimal
distance function as follow,
dyi(§) = mind(§,n) = d(,nc) (3-32)
in which, the distance function is given by d(¢,n) = |11 (&) — ().

In similar to the point-to-point contact, the orthogonality condition is given, but compared to the point-to-point
contact, only one condition is given as

P2 &M =10, =) - pAEM) =0, (3-33)
As you can see from the equation (3-33), the orthogonality condition consists of a function for slave point &, so
the closest master point 7. is determined according to the slave point ¢.

Using the minimal distance function, equation (3-32), the gap function is suggested for contact determination.
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The gap function also represented the function by points on slave elements as

g =dyu(§) — R — R, (3-34)
From the gap function, contact determined whether it occurs. Similar to the point-to-point contact, if the gap
function become negative value, contact occurs between the beams, but the gap function form the field along the
slave beam in line-to-line contact case. Because the gap function is changed from the determined constant to the

function of slave point, the potential of contact by the penalty method is changed as

ly
Mo=a e[ (g©)ds, (3-35)
2 0

where [, is length of the slave beam, and the gap function according to contact condition is given by

9, g <0

wen={3"" 153,

and the contact force vector and the normal vector are given by

-

fee = —&(g(H(E),

— _ rl(f) - rZ(nc)
O = Mm@ ol

As you can see the form of contact force and normal vector, these are parametrized to the slave point £.
The process of contact determination and applying the contact force is as shown figure 3.2. Because the gap
function is parametrized, the reaction force also becomes a function. The reaction force is applied as a

distributed load.

- LN S—
b M fCE(f) = _5(9(5))
’() | ,

Figure 3.10 diagram of line-to-line contact situation

In the point-to-point contact formulation, the unique closest point pair is required for developing the contact
formulation. However, two beams can contact at multiple points depending on the geometrical configuration of
beams, for example, two parallel beams or between straight beam and helical beam. Depending on the angle
between the two beam elements, the unique closest point condition can be broken and has error by geometrical

configuration. C. Meier suggested the contact angle condition to can use the point-to-point contact. [6]
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{a) Two parallel beams. (b} Straight + circular beam. (c) Straight + helical beam.

Figure 3.11 Different geometrical configurations concerning contact angle and curvature [6]

The maximal cross-section to curvature radius ratio is given by

R
Hmax = 1 (3-36)
mm(ﬁ)
where i = ||rg||, with s € [0;1] is the coordinate according to the arc-length of the current,
and the lower bound for the contact angle is given by
o> Apyin = arccos(1l — 2umqy) (3-37)
»i =
o o o & Gauss point [GP) - o
- {H T.-ﬂ-':h‘ .111 3‘ @ UL-CPP _._._.-rM.:..:_. i jli ,E;
AB. i ® BL-CPP — A e as |

b L 4k

Figure 3.12 Contact of two beams given contact angle o [7]
You can refer to the reference paper [8] for detailed derived process. The line-to-line formulation search all
discretized point in the slave beam, so the calculation accuracy is higher, but the time performance is poor than
the point-to-point contact method. Therefore, the line-to-line method and point-to-point method should be selected
depending on the problem situation. Similar to the point-to-point contact, the line-to-line contact formulation is
also developed based circular cross-section. If use the line-to-line contact formulation at arbitrary cross-section,

the maximal cross-section to curvature radius ratio should be redefined according to the shape of the cross-section.
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Chapter 4. Contact Algorithm

In this chapter, the contact detection algorithm is introduced. The process of closest point searching
and determination of contact are explained.

Before applying force, the closest surface points are searched through global and local search. In the
local search, the contact possibility of the element edges are determined because of decreasing in cost. After the
closest edge points are searched, the external forces are applied. If the beam converge through force step without
contact force, the contact determination is performed. If contact occurs between the beams, the contact forces

are applied until the gap is converged in the tolerance.

4.1. Global and local search

Figure 4.1 Global search — searching between beam nodes

Using the beam nodes, the closest nodal points are searched. If a beam is circular cross-section, the
direction between the closest nodal points on the beam centerline and the direction between the closest surface
points on the beam are same direction, and the closest surface points are on the line connecting the closest nodal
points, so the contact forces apply on a same paosition in the two cases. However, in case of an arbitrary cross-
section, the closest surface points may not be on the line connecting the closest nodal points, so applied points of
the contact force are different in the two cases. Therefore, the closest surface or edge points should be searched.
However, searching along all discretized surface or edge points takes a lot of time, so the closest surface points
are searched based on the found closest nodal points. This process of finding the closest nodal point is called

‘global search’.

Closest centerline points Closest centerline points
[ —
/ T
[_ R \“‘& /\ S \
pat Y L T ~
R BN B P, \>
\\\ / \
)
Closest points on surfaces Closest points on surfaces

Figure 4.2 Difference of closest points with circular and arbitrary cross-section
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Based on the found closest nodal points, the closest surface point searching is performed between
edges of the cross-sectional plane about the beam centerline point. Let call it ‘local search’. The local search is
performed together with both side elements of the element with the closest nodal points. For example, if closest
nodal points are in the element i in one beam and in the element j in another beam respectively, elements from i-
1to i+1 in one beam and elements from j-1 to j+1 are used in searching of the closest surface points. In the
candidate elements using searching, the beam centerline discretize through the interpolation of beam nodal
points on the element. This centerline points have each cross-section including the centerline point. For

searching of the closest surface points, the edges of cross-section including each centerline point are used.

Figure 4.3 Local search — searching between beam edges

The local search is performed between edges of cross-section including the discretized beam
centerline point. If searching is performed for all edges, it takes a lot of time. Therefore, the contact possibility
of edge is determined using the positional relationships between the cross-sections. At the first time, the edges
are determined whether the edges are in the surface or not. The edges in inner side are not used for the local
search. This possibility information is given by the cross-sectional shape and placement of the cross-sectional
elements, so the possibility information does not change by the geometry configuration of beams, thus it can be

given as initial information.
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Figure 4.4 Contact possibility determination — First step

To the next, the positional relationships between elements of the cross-section are used in
determination of contact possibility. If dot product between the relative position vector and the normal vector of
edge is positive, then that edge can contact and the edge is used for local search. This contact possibility
information is changed by the geometrical configuration of beams, so the possibility is checked in each step

between each cross-sectional elements.

AB

AB - m; > 0 : can contact

Figure 4.5 Contact possibility determination — Second step

Using the contact possibility information by two determination steps, the closest surface points on
beams are searched faster than case without possibility information. Through the local search, information as
beam centerline points on the cross-section of the closest surface point, edge with the closest surface points and
the positions of the closest surface points are saved. If there are a multiple cross-sectional elements, this

information is recorded every number of cases that can contact between the cross-sectional elements.
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Figure 4.6 Closest points are checked between every cross-sectional elements

4.2. Contact determination

Let discuss new contact determination method by comparing with the existing contact search method

Figure 4.7 Contact search of circular cross-section

In case of a circular cross-section, contact is determined using the radii of beams. The contact
condition is givingas g = d — R, — R, < 0. This contact search method is very simple, but it cannot use in
noncircular cross section. Searching of the closest points is performed along the beam centerline. Therefore, this
method applies the contact force toward the center of beams. As figure 4.2, the position and direction applied
the contact force are different between case of applied in the center of beam and case of applied in the edge or

surface of beams. Many noncircular cross section cases is applied the contact force in various direction.
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Figure 4.8 Difference of applying contact force on circular and non-circular cross-sections

. coser <0

e COS (G, < 0

Figure 4.9 Contact search of rectangular cross-section [4]

P. Litewka, P. Wriggers, suggests the contact determination method in 2002 [4]. In case of rectangular
cross-section, contact is determined in the edge points of beams. As figure 4.7, the closest edge points are Cs,
and C,,, respectively, and the beam centerline points of the cross-section where the closest edge points exist

are Ag, and C,,, respectively. The distance vector connecting edge points Cs,, Cp, and the vector
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connecting points edge point and beam centerline point make angles. This angle is a5 and «a,, respectively.

Using this two angle, the contact condition is giving as cosa,, < 0, cosa; < 0.

Figure 4.10 Unstable example of edge contact searching
This method cannot use in non-rectangular cross section even case of quadrilateral cross section, and
there are counter examples in extreme cases and often unstable searching results are shown in some cases,

especially two beams or two cross-sections are parallel, problem can occur as figure 4.10.

Aq A,
edge point B
]
N / A4 A3

(cosB,, < cosB,p)

(Apply conditionin 4 cases) A4y - A1A4 < A4Ay - A4B

Figure 4.11 Contact search of arbitrary cross-section
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New contact determination method is used arbitrary cross-sections. The plane elements are divided
into several quadrilateral elements. Figure 4.11 is the cross-section that has the closest points searched by global
and local searching, and the edge point B found in local search is used contact determination process. About the
edge point B on the beam B, the point B can lie on other plane element on the cross-section having the closest
points on beam A. To determine whether the point B is in the plane element on the beam A, the contact

determination process is performed as

—_—

A1A2 - A1A4 < A1A2 " AlB

_

A2A3 : A2A1 < A2A3 ) AzB

—_—

A3A4 ) A3A2 < A3A4 " A3B

A,A;1 A As < A,AL- AB 1)

where point A;, A,, Az, A, is the cross-sectional nodal point of plane element on beam A, and point B is the
edge point B found in the closest point searching. The detailed situation is shown in the figure 4.11. If four
conditions of equation (4-1) are satisfied all, searching method determine that contact occur. Because the contact
determination method use the geometrical configuration of the cross-sectional plane element, this method can be
performed not only rectangular elements but also any quadrilateral elements. For using this method, the edges of
plane element should be straight line. If the edges are not straight line as curve, the shape needs to be replaced by
several straight lines. In addition, internal angle of quadrilateral element is not more than 180 degrees. If plane
elements are not quadrilateral but polygon shape with more than four edges, condition equations (4-1) increase to
the number of edges. For example, the plane element is octagonal shape, condition equations increase to 8
equations. However, plane element has severe inflection as I-shape or H-shape or etc., the plane element should

be divided to sub-elements as convex shape or quadrilateral shape that internal angle is not more than 180 degrees.

Figure 4.12 Octagonal shape example — this case requires eight condition equations
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4.3. Contact formulation

Figure 4.13 A pair of beams and closest edge points

The contact formulation process is similar to formulation of the point-to-point contact. However, the

point-to-point contact is developed the formulation about the beam centerline. Therefore, the formulation process

is modified from about the beam centerline to about the line of beam surface, and the line of beam surface is

represented a parameter of the beam node. The formulation of point-to-point contact is in chapter 3.1.1 and 3.1.3.

Here is review of point-to-point contact as

*  Orthogonality condition

{Ts(rz(n) =) = (M =11(§) 11 =0

TzT,n(rz(n) - T1(f)) = (Tz(n) - 7’1(5)) oy = 0

e Gap function

g = llr2(mne) =)l = (Ry + Ry)
e Normal unit vector

p) (nc) —n (fc)
I (me) — Gl

—
n=

As you can see from the equations, the point-to-point contact formulation is developed along the beam

centerlines, r;(¢) and 7,(n). The position vector of 3D degenerated beam in chapter 2 is given by

q q q
—sk —k
XM = Z h (r)x; + Z hy () )_’k(m)Vy + Z hi (1) 2,V
k=1 k=1 k=1

where
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p p
yk(WI) = Z h] (Sl t)}_/kj(m)' Z_k(m) = Z h] (Sl t)Z_kJ(m)l (2'5)
k=1 k=1

In equation (2-4) and (2-5), the coordinate r is longitudinal direction and s,t are tangential direction on the
cross-section. In closest surface points, the tangential line at the closest point on beam surface consist of the
parameter r, and the cross-sectional parameters s, t are fixed value by position of the closest point. So
tangential line at the closest point x; (§.) is given by
X =X (1,8, t) = %15, Se, te) = %1(§) (4-2)
where s, t. are the fixed value by determining of the closest point. To configure the tangential line x; on
another beam, same process applies to another beam. Using the surface tangential line x; and X, the
formulations of point-to-point contact are modified as
*  Orthogonality condition
{551,;(552(77) - 7_51(5)) = (552(7]) - 551(5)) : f1,§’ =0 (4-3)
(% () = () = (%) = (8)) %y =0

*  Gap function

g = 1%2(mc) — %I (4-4)
e Normal unit vector

552 (nc) - 551 (gc)
1%, (o) — 2, G

7= (4-5)

These conditions (4-3) to (4-5) are applied the process of contact formulation in chapter 3.1.3.
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Chapter 5. Numerical Results

5.1 Confirmation of difference between 3D beam and 3D solid element

For validation of the contact formulation, commercial software ANSY'S is used in the validation
examples. However, only contact between circular beams is possible in ANSYS. Most of commercial software are
not supported beam contact between non-circular beams. Therefore, examples are validated using contact between
3D solid elements. 3D solid element and 3D beam have different kinematics, so analysis result can be different.

In this sub-chapter, differences between 3D solid element in ANSYS and 3D beam element are compared by
examples of beam deflection.

The example is the cantilever straight beam and the tip of beam is displaced -30 along Z-axis.
Fixed

A=-30

Figure 5.1 Cantilever square beam

Young’s modulus E is 20 x 103 and Poisson’s ratio is 0.3. The length of beam L is 100, and the thickness of

square beam b is 1. Results are obtained as

Reference result of ANSYS Result of code — 10 elements Result of code — 100 elements
Uy -5.576 Uy -5.4207 Uy -5.4368
uy ~( uy =~ (0 uy =~ (0
u, -30 u, -30 u, -30

Table 5.1 Results of cantilever square beam deflection
The displacements of z-axis direction are given value, and the displacements of y-axis direction are near zero
because beam is not affected in y-axis direction due to force direction. Therefore, the displacements of x-axis
direction are compared. These values have error of about 3 percent. The difference depending on the number of

elements is insignificant. In the examples, there will be errors due to difference of element.
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5.2 Contact between rectangular cross-section beams

The example is in paper ‘Contact between 3D beams with rectangular cross-sections’, Litewka and
Wriggers, 2002 [4]. The configuration and properties of the example are shown in figure 5.2 and table 5.2. In the
example, the cross-section of beam is rhombic (diamond shape), so contact points exist at the edge of the beams.

In the paper, rectangular 3D Timoshenko beam element is used, and contact is checked as figure 4.7.

TTITTTIY

Fined el

e

XY -view AL VI

[ IIZ.ZZI...I'.I_:. LTI

¥ Leview

AD=view T =000

Figure 5.2 Contact between rectangular cross-section beams

Upper beam Lower beam
E (Young’s modulus) 20 x 103 E (Young’s modulus) 30 x 103

v (Poisson’s ratio) 0.3 v (Poisson’s ratio) 0.17
bg = b, 5 bg = b, 10
L 100 L 100

Initial gap 1.393

The tip of upper beam is displaced -30 along Z-axis toward

16 elements

Table 5.2 Properties of two rectangular cross-section beams
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Figure 5.3 Result of contact between rectangular cross-section beams

Reference result of paper Reference result of ANSYS Result of code

Upper beam Upper beam Upper beam

Uy 3.261 Uy 2.1561 Uy 2.314

Uy -8.260 Uy -8.3781 Uy -8.67

U, -30 u, -30 u, -30
Lower beam Lower beam Lower beam

Uy -0.103 Uy -0.0968 Uy -0.07

Uy -1.331 Uy -2.2207 Uy -0.67

U, -4.147 U, -3.5772 U, -3.59

Table 5.3 Results of contact between rectangular cross-section beams

For the cross validation, result of ANSYS is used. In analysis of ANSYS, use fine mesh and 3D solid
element contact. In the upper beam where displacement control is applied, the results show an error of between 3
and 7 percent. this error is similar to the error due to the element difference compared in 5.1. In the lower beam,
which changes due to contact with the upper beam, the result is much more error than for the upper beam. In
particular, the error is larger in the non-main displacement part as w,, of the lower beam. This error difference
seems to be due to the difference in direction of the contact force or contact method, but the displacement results
have the same order. The reference of the paper and the result of ANSYS show a similar difference. If consider
difference between reference of the paper and the results of ANSY'S, the results of code is an acceptable range of

analysis.
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5.3 Contact between beams for four plane elements in cross-section

In this example, two cantilever beams having an octagonal cross-section are used. The configuration and
properties of the example are shown in figure 5.4 and table 5.4. Similar to the example in 5.2, contact points will

exist at the edge of the beams, but as the beam deforms downward, the contacting edge will change.

fixed fixed

Cross-section

Figure 5.4 Contact between beams for four plane elements in cross-section

Beams
E (Young’s modulus) 20 x 103
v (Poisson’s ratio) 0.3
T 2.5
L 100
Initial gap 1
The tip of upper beam is displaced -30 along Z-axis toward
10 elements

Table 5.4 Properties of two beams for four plane elements in cross-section

34



Figure 5.5 Results of contact between beams for four plane elements in cross-section

Reference result of ANSYS

Result — 40step

Result — 100step

Upper beam Upper beam Upper beam
Uy 3.1307 Uy 3.2270 Uy 3.198
Uy -5.9954 Uy -5.9418 Uy -6.02
u, -30 U, -30 U, -30
Lower beam Lower beam Lower beam
Uy -1.7615 Uy -1.2797 Uy -1.40
Uy -4.1277 Uy -2.9222 Uy -3.04
U, -17.047 u, -15.3463 u, -15.81

Table 5.5 Results of contact between beams for four plane elements in cross-section
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Similar to the example in 5.2, in the upper beam where displacement control is applied, the results
show errors within 2 percent, the error is similar to the error due to the element difference compared in 5.1. On
the other hand, in the lower beam, which changes due to contact with the upper beam, the result is much more
error than for the upper beam. In particular, the error is larger in the non-main displacement part as u,,u,, of
the lower beam. This error difference seems to be due to the difference in direction of contact force or contact
method, but the displacement results have the same order in both results. In addition, the more force steps, the
more converging on the result of the ANSYS reference. This is because if the displacement is larger than the

elements size, an error occurs in the contact process.

5.4 Contact between square hollow rectangular beam and square beam

In this example, a cantilever beam having a hollow rectangular cross-section and a cantilever beam
having a square cross-section are used. The configuration and properties of the example are shown in figure 5.6
and table 5.6. In existing beam-to-beam contact methods, there is no way to analysis beams having a cross-section
of I, H and etc. In the example, as the inner beam moves to the left and up, the inner beam contact the inner

surface of the hollow beam.

fixed

Figure 5.6 Contact between square hollow rectangular beam and square beam
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Hollow beam Inner beam
E (Young’s modulus) 20 x10° E (Young’s modulus) 20 x 10°
v (Poisson’s ratio) 0.3 v (Poisson’s ratio) 0.3
t 2 b; 2
L 70 L 100
Initial gap 2

The tip of inner beam is displaced 7.5 along Z-axis toward

displaced -7.5 along Y-axis toward
10 elements

Table 5.6 Properties of square hollow rectangular beam and square beam

Figure 5.7 Results of contact between square hollow rectangular beam and square beam
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Reference result of ANSYS Result — 50step Result — 100step
Hollow beam Hollow beam Hollow beam
Uy -0.144 Uy -0.18 Uy -0.18
Uy -1.126 Uy -0.853 Uy -0.886
u, 1.126 u, 0.874 u, 0.901
Inner beam Inner beam Inner beam
Uy -1.379 Uy -0.86 Uy 0.9
uy 7.5 Uy -1.5 Uy -1.5
U, 75 U, 75 u, 75

Table 5.7 Results of contact between square hollow rectangular beam and square beam

Unlike to the example in 5.2 and 5.3, both the inner beam and the hollow beam have relatively large
errors than the error due to the element difference. The difference from the previous examples is that this example
uses parallel beams. Parallel beams can have an error when it is solved as the point-to-point contact method
because the multiple contact points can exist along the longitudinal direction of beam [6]. In the results, the hollow
beam has a larger displacement in the longitudinal direction than the reference, the inner beam has a smaller
displacement in the longitudinal direction than the reference. This seems to be the result of pushing in the
longitudinal direction because a concentrated load is applied at one contact point. As the hollow beam is pressed
in the longitudinal direction, the displacement in the cross-sectional direction is relatively small. However, the
displacement results still have the same order in both results. It can be confirmed that the beam of the shape, which
cannot be analyzed previously, can be solved as an order similar to that of a commercial software. In addition, the
more force steps, the more converging on the result of the ANSYS reference. This is because if the displacement

is larger than the elements size, an error occurs in the contact process.
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Chapter 6. Conclusions

In this paper, suggest modeling of beam-to-beam contact method with arbitrary cross-sections. For
contact method, 3D beam elements with arbitrary cross-sections are used. 3D beam elements are made based on
3D solid elements and degeneration of solid elements. These elements have information of cross-section in

beam node. And these elements have warping degree of freedom.

Point-to-point contact method is widely used beam contact method. This formulation searches closest
points using orthogonality conditions. Most of applied papers about beam-to-beam contact are based point-to-
point contact. Based on point-to-point contact, multiple-point contact between beams was also developed. But
point-to-point contact method was developed on the basis of circular cross-section beams. beam-to-beam
contact with rectangular cross-sections is suggested, but that method can’t use for arbitrary cross sections such

as | beam, L beam and even arbitrary quadrilateral cross-section.

For simulate beam contact with arbitrary cross-sections, contact formulation based on point-to-point
contact is modified. First, closest surface points are searched. For efficient searching of closest points, search
step is divided into two parts, global search and local search, and determination of contact possibility is
performed in local search. To the next, contact formulation is performed along surface line of beam similar to
point-to-point contact. Finally, validation was performed through several examples. The results are converged
with the results of 3D solid elements in commercial software, and the results are shown that can solve examples

where existing beam-to-beam contact methods cannot be solved.
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