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초 록 

실제 산업 현장에서 철골 구조물, 케이블 등의 여러 빔 형태의 구조물이 사용되고 있으며, 이에 

따라 빔 요소 간의 접촉 현상도 시뮬레이션을 요구하는 경우가 많아지고 있다. 그러나 빔 요소를 

이용한 접촉 해석은 주로 원형 단면에 한정되며, 많은 경우 3D 솔리드 모델을 이용할 수 밖에 

없다. 본 학위논문에서는 임의의 단면을 가진 빔 요소의 접촉을 해석하는 방법을 제안한다. 이를 

위해 임의 단면을 가지는 빔 요소를 해석에 이용하며, 접촉 해석 방법은 점 대 점(point-to-

point) 접촉을 개선하여 이용한다. 접촉 거동 모델링의 검증은 기존 논문의 해석 결과 및 상용 

프로그램과의 비교를 통하여 이루어졌다. 

 

핵 심 낱 말  유한요소, 접촉, 빔요소, 임의단면 , 점대점접촉 

 

Abstract 

Beam structures are used in industrial field included steel structures, cables and so on. Therefore, importance of 
contact modeling between beams is increasing. However, contact analysis between beams is limited in circular 
cross-section, so 3D solid elements are used in many beam-to-beam contact cases. In this thesis, the contact 
modeling between arbitrary cross-sections is suggested by using the beam element with arbitrary cross-sections. 
The point-to-point contact is modified according to the beam element with arbitrary cross-sections. The 
validation of contact modeling is performed by reference of existing paper and results of commercial software. 
 

Keywords Finite element, Contact, Beam, Arbitrary cross-section, point-to-point contact 
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Chapter 1. Introduction 

 

Finite element analysis is extensively used in actual field, for example steel frame structures, bridge, 

construction design, and so on. Beam structures are also included such actual fields, so beam structures occupy 

important parts in structure analysis. In that case, finite element analysis using beam elements is efficient instead 

of 3D solid element in terms of cost and time.  

 

In addition, various contact situations are in actual field, for example contact between mechanical 

elements, contact in manufacturing process, and contact between fibrous materials. In recent years, contact 

modeling is used in analysis of biopolymer networks. To solve such many contact problems, the finite element 

analysis is used. The contact problem accompany nonlinear phenomenon as large change of forces and 

displacements. Therefore, the contact formulations and algorithms have been studied about many finite elements. 

However, because solid element is universally used, the contact searching algorithms using 2D and 3D solid 

element were developed quickly such as NTS (Node-to-segment) algorithm [1]. Contact formulation between 

beams was relatively recently developed.  

 

P. Wriggers and G. Zavarise suggested the contact formulation between three-dimensional beams for 

the first time [2]. This formulation searches one closest point pair using orthogonality conditions. This beam 

contact method is called ‘point-to-point’ contact. Most of applied papers about beam-to-beam contact are based 

point-to-point contact, for example self-contacting on beams experiencing loop formation [3], contact between 

3D beams with rectangular cross-sections [4]. Based on point-to-point contact, multiple-point contact between 

beams was also developed [5-7].   

 

However, the point-to-point contact formulation is developed based on circular cross-section beams. 

Therefore, P. Litewka suggest the beam-to-beam contact with rectangular cross-sections [4], A. G. neto and P.M. 

Pimenta suggest the beam-to-beam contact based on smooth curved shape cross-sections, for example 

superellipses [8]. However, these methods cannot use for arbitrary cross-sections such as I beam, L beam and 

even arbitrary quadrilateral cross-section. Therefore, simulator have to use solid elements in many beam contact 

simulations. Most of commercial software also support the beam-to-beam contact between only circular cross-

section beams. Because the beam-to-beam contact formulation is developed based circular or limited cross-

sections, many applications of beam-to-beam contact are used circular cross-section beams as thin rod, fiber or 

fabric material, and knot mechanism, or the contact applications irrelevant to shape of cross-section are developed, 

for example Thermo-electro-mechanical coupling in beam-to-beam contact [16]. 
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In this thesis, the beam-to-beam contact is formulated using the beam with arbitrary cross-sections [7]. 

This beam element based on continuum mechanics has cross-sectional nodes and 2D shape functions for 

interpolation of plane node, and cross-sectional plane can be divided multiple elements in cross-section, so very 

wide variety form of shapes can be made. Using the large displacement analysis for beam contact, the 3D beam 

element is developed to the nonlinear formulation through large displacement kinematics. Using total Lagrangian 

formulation, incremental displacements based on the large displacement kinematics are formulated. 

 

Because of using the beam element with non-circular or arbitrary cross-section, the contact algorithm 

from point-to-point should be modified as applicable to the 3D beam element. In this thesis, the point-to-point 

contact method and its formulations are introduced. In addition, based on the point-to-point contact method, some 

improved contact formulations such as change of cross-section or multiple point contact methods are introduced 

briefly. 

 

Using the 3D degenerated beam element, the new contact searching algorithm and contact formulation 

are suggested. Through global searching and local searching, closest points on beam surfaces can be found. Then, 

it is determined whether contact has occurred at the closest points. For determination of contact, new contact 

determination method is suggested, and modified formulation based on point-to-point contact is introduced. 

Finally, some numerical examples of beam-to-beam contact for various cross-sections are presented.  
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Chapter 2. Continuum Mechanics Based Beam Elements 

 

 In this chapter, the beam elements to be used in the contact formulations are introduced. Kinematics of 

beam elements are introduced. Kinematics and formulation of beam elements refer to the reference [15], K. Yoon, 

Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors and 

the reference [9], K. Yoon, A continuum mechanics based 3-D beam finite element with warping displacements 

and its modeling capabilities. 

 

2.1 Kinematics of beam elements 

 

 The beam elements introduced in this chapter are based on degeneration of 3D solid finite elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1. Interpolation of degenerated elements 
 The beam with arbitrary cross-sections is made by 3D solid elements. The interpolation of the 3D solid 

element m having n-node is given by  

(2-1) 

 
𝑥⃗𝑥(𝑚𝑚) = �ℎ𝑖𝑖(𝑟𝑟, 𝑠𝑠, 𝑡𝑡)𝑥𝑥𝚤𝚤���⃗

(𝑚𝑚)
𝑛𝑛

𝑖𝑖=1

, 

Figure 2.1 3D solid finite elements with longitudinal direction and cross-section 
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where 𝑥⃗𝑥(𝑚𝑚) is the position in 3D solid element m, and 𝑥𝑥𝚤𝚤���⃗
(𝑚𝑚) is the position of nodal point i. ℎ𝑖𝑖(𝑟𝑟, 𝑠𝑠, 𝑡𝑡) is the 

3D interpolation function. Through the degeneration of 3D solid beam, ℎ𝑖𝑖(𝑟𝑟, 𝑠𝑠, 𝑡𝑡) can be divided 1D and 2D 

interpolation functions, ℎ𝑘𝑘(𝑟𝑟) and ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡). The nodes of 3D solid element are substituted to the plane nodes on 

the cross-sections of longitudinal direction. So, the degenerated position interpolation is given by 

 

(2-2) 

where 𝑥𝑥𝑘𝑘����⃗
𝑗𝑗(𝑚𝑚) is the vector of plane node j on the cross-section of longitudinal solid element m (See figure 2.1).  

 

Using the beam nodal point and direction vectors on the cross-section as figure 2.2, node 𝑥𝑥𝑘𝑘����⃗
𝑗𝑗(𝑚𝑚) of the solid 

element can be divided as beam node and cross-sectional node. 𝑥𝑥𝑘𝑘����⃗
𝑗𝑗(𝑚𝑚) is given by 

 (2-3) 

where 𝑦𝑦𝑘𝑘����⃗
𝑗𝑗(𝑚𝑚) and 𝑧𝑧𝑘𝑘���⃗

𝑗𝑗(𝑚𝑚) are coordinates of nodal point j on the cross-section element of the beam node k, 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘
 

and 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘
 are direction vectors on the cross-section of the beam node k. Using (2-2) and (2-3), the equation can be 

divided the beam node and the cross-sectional node as 

𝑥⃗𝑥(𝑚𝑚) = �ℎ𝑘𝑘(𝑟𝑟)�ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡)
𝑝𝑝

𝑖𝑖=1

𝑥𝑥𝑘𝑘����⃗
𝑗𝑗(𝑚𝑚),

𝑞𝑞

𝑖𝑖=1

 

𝑥⃗𝑥𝑗𝑗
𝑗𝑗(𝑚𝑚) = 𝑥𝑥𝑘𝑘����⃗ + 𝑦𝑦𝑘𝑘����⃗

𝑗𝑗(𝑚𝑚)𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘

+ 𝑧𝑧𝑘𝑘���⃗
𝑗𝑗(𝑚𝑚)𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘
, 

Figure 2.2 Degenerated beam with beam element and its cross-section 
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(2-4) 

 

where 

 

 (2-5) 

 

𝑦𝑦�𝑘𝑘(𝑚𝑚) , 𝑧𝑧𝑘̅𝑘(𝑚𝑚)  are the cross-sectional positions on beam node k. These positions are represented by 𝑦𝑦�𝑘𝑘𝑗𝑗(𝑚𝑚) , 

𝑧𝑧𝑘̅𝑘𝑗𝑗(𝑚𝑚) as (2-5). 𝑦𝑦�𝑘𝑘𝑗𝑗(𝑚𝑚), 𝑧𝑧𝑘̅𝑘𝑗𝑗(𝑚𝑚) are nodal point j on the cross-section element of beam node k in the coordinates 

of the cross-sectional directions 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘
and 𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘
. 

 
 The degenerated beam formulation has 6 degrees of freedom as 3 displacements and 3 rotations. The 

displacements and rotation angles are defined as 𝑢𝑢, 𝑣𝑣,𝑤𝑤  and 𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧 . The rotated directions 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡 and 

𝑉𝑉𝑧𝑧���⃗
𝑘𝑘t  on the cross-section are represented by rotation angles as 

 

(2-6) 

 

and the normal direction vector of cross-sectional plane is defined as 𝑉𝑉𝑥̅𝑥����⃗
𝑘𝑘t = 𝑉𝑉𝑦𝑦�����⃗

𝑘𝑘t × 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘

,  

where 𝜃⃗𝜃𝑘𝑘 is the rotation angle vector as 𝜃⃗𝜃𝑘𝑘 = [𝜃𝜃𝑥𝑥𝑘𝑘 𝜃𝜃𝑦𝑦𝑘𝑘 𝜃𝜃𝑧𝑧𝑘𝑘]. From equation (2-4) and (2-6), the interpolation of 
displacements is can derived as 

 

 (2-6) 

 

Then, the nodal displacement DOFs are 𝑈𝑈 = [𝑢𝑢𝑘𝑘 𝑣𝑣𝑘𝑘 𝑤𝑤𝑘𝑘 | 𝜃𝜃𝑥𝑥𝑘𝑘 𝜃𝜃𝑦𝑦𝑘𝑘 𝜃𝜃𝑧𝑧𝑘𝑘].  

 

2.1.2 Kinematics of beam elements for large displacement 
 In this section, the nonlinear formulation of the 3D degenerated beam elements for large displacement 

is introduced. A superscript (or subscript) 0 indicates initial geometry configuration, and t indicates current (at 

time t) configuration. However, t does not mean configuration at actual time, but indicates change of 

configuration. [10]  

 From equation (2-4), the position vector of the configuration at time t is given as 

 

 (2-7) 

𝑥⃗𝑥(𝑚𝑚) = �ℎ𝑘𝑘(𝑟𝑟)𝑥𝑥𝑘𝑘����⃗ + �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚)𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘

+ �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚)𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘

,
𝑞𝑞

𝑘𝑘=1

 

𝑦𝑦�𝑘𝑘(𝑚𝑚) = �ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡)𝑦𝑦�𝑘𝑘𝑗𝑗(𝑚𝑚),
𝑝𝑝

𝑘𝑘=1

    𝑧𝑧𝑘̅𝑘(𝑚𝑚) = �ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡)𝑧𝑧𝑘̅𝑘𝑗𝑗(𝑚𝑚),
𝑝𝑝

𝑘𝑘=1

 

𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘t = 𝜃⃗𝜃𝑘𝑘 × 𝑉𝑉𝑦𝑦�����⃗

𝑘𝑘
, 

𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘t = 𝜃⃗𝜃𝑘𝑘 × 𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘
, 

𝑢𝑢�⃗ (𝑚𝑚) = �ℎ𝑘𝑘(𝑟𝑟)𝑢𝑢𝑘𝑘����⃗ + �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚) �𝜃⃗𝜃𝑘𝑘 × 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘
� + �ℎ𝑘𝑘(𝑟𝑟)

𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚) �𝜃⃗𝜃𝑘𝑘 × 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘
� ,

𝑞𝑞

𝑘𝑘=1

 

𝑥⃗𝑥𝑡𝑡 (𝑚𝑚) = �ℎ𝑘𝑘(𝑟𝑟) 𝑥⃗𝑥𝑘𝑘𝑡𝑡 + �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚) 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡 + �ℎ𝑘𝑘(𝑟𝑟)

𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚) 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘𝑡𝑡 ,

𝑞𝑞

𝑘𝑘=1
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where 𝑥⃗𝑥𝑡𝑡 (𝑚𝑚) is an arbitrary position vector in the beam at time t, 𝑥⃗𝑥𝑘𝑘𝑡𝑡  is the position of beam node k at time t, 

𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡  and 𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘𝑡𝑡  are the direction vector on the cross-sectional plane of the beam node k at time t. At the same 
element m, the incremental displacement is derived from the configuration at time t to the configuration at time 
𝑡𝑡 + ∆𝑡𝑡 as  

,  (2-8) 

Using equation (2-7) and (2-8), the incremental displacement is given as 

(2-9) 

 

where 𝑢𝑢�⃗ 𝑘𝑘0  is the incremental displacement at the beam node k from time 𝑡𝑡 to time 𝑡𝑡 + ∆𝑡𝑡. To represent 

change of director vectors as rotation of director vectors, the Rodrigues rotation formula [11-12] is used as 

 (2-10) 

 

where 𝜃⃗𝜃𝑘𝑘0 = � 𝜃𝜃𝑥𝑥𝑘𝑘0  𝜃𝜃𝑦𝑦𝑘𝑘0  𝜃𝜃𝑧𝑧𝑘𝑘0 �
𝑇𝑇

,   𝜃𝜃𝑘𝑘0 = �� 𝜃𝜃𝑥𝑥𝑘𝑘0 �
2

+ � 𝜃𝜃𝑦𝑦𝑘𝑘0 �
2

+ � 𝜃𝜃𝑧𝑧𝑘𝑘0 �
2

 , 

  

 (2-11) 

 

where 𝜃𝜃𝑥𝑥𝑘𝑘0 , 𝜃𝜃𝑦𝑦𝑘𝑘0 , 𝜃𝜃𝑧𝑧𝑘𝑘0  are the incremental rotation angles at the beam node k from time 𝑡𝑡 to time 𝑡𝑡 + ∆𝑡𝑡, and 

𝑅𝑅� is the antisymmetric matrix by small rotation. It is a matrix form of cross product due to the rotation.  

Using equation (2-10), the director vectors at time 𝑡𝑡 + ∆𝑡𝑡 are represented as 

 (2-12) 

 

Using equation (2-12), the incremental displacement (equation (2-9)) is represented as 

 (2-13) 
 

Additionally, the Taylor expansion can be applied in the Rodrigues rotation formula. If apply the Taylor expansion 

in equation (2-10), the equation can be written as 

(2-14) 

 

In equation (2-14), only linear and quadratic terms are used. Then, equation (2-13) is divided linear terms and 

extra terms as  

 (2-15) 

 

𝑢𝑢�⃗ (𝑚𝑚)
0 = 𝑥⃗𝑥𝑡𝑡+∆𝑡𝑡 (𝑚𝑚) − 𝑥⃗𝑥𝑡𝑡 (𝑚𝑚) 

𝑢𝑢�⃗ (𝑚𝑚)
0 = �ℎ𝑘𝑘(𝑟𝑟) 𝑢𝑢�⃗ 𝑘𝑘0 + �ℎ𝑘𝑘(𝑟𝑟)

𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚)( 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡+∆𝑡𝑡 − 𝑉𝑉𝑦𝑦�����⃗

𝑘𝑘𝑡𝑡 ) + �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚)( 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘
− 𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘𝑡𝑡 ) 𝑡𝑡+∆𝑡𝑡 ,
𝑞𝑞

𝑘𝑘=1

 

𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � = 𝐈𝐈 +
sin 𝜃𝜃𝑘𝑘0

𝜃𝜃𝑘𝑘0
𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 � +

1 − cos 𝜃𝜃𝑘𝑘0

� 𝜃𝜃𝑘𝑘0 �
2 𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 �

2
, 

𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 � = �
0 − 𝜃𝜃𝑧𝑧𝑘𝑘0 𝜃𝜃𝑦𝑦𝑘𝑘0

𝜃𝜃𝑧𝑧𝑘𝑘0 0 − 𝜃𝜃𝑥𝑥𝑘𝑘0

− 𝜃𝜃𝑦𝑦𝑘𝑘0 𝜃𝜃𝑥𝑥𝑘𝑘0 0
�  , 

𝑉𝑉𝑥̅𝑥����⃗
𝑘𝑘𝑡𝑡+∆𝑡𝑡 = 𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � 𝑉𝑉𝑥̅𝑥����⃗

𝑘𝑘𝑡𝑡 , 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡+∆𝑡𝑡 = 𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � 𝑉𝑉𝑦𝑦�����⃗

𝑘𝑘𝑡𝑡 , 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘𝑡𝑡+∆𝑡𝑡 = 𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � 𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘𝑡𝑡 . 

𝑢𝑢�⃗ (𝑚𝑚)
0 = �ℎ𝑘𝑘(𝑟𝑟) 𝑢𝑢�⃗ 𝑘𝑘0 + �ℎ𝑘𝑘(𝑟𝑟)

𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚)(𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � − 𝐈𝐈) 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡 + �ℎ𝑘𝑘(𝑟𝑟)

𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚)(𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � − 𝐈𝐈) 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘𝑡𝑡 ,

𝑞𝑞

𝑘𝑘=1

 

𝐑𝐑� 𝜃⃗𝜃𝑘𝑘0 � = 𝐈𝐈 + 𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 � +
1
2!
𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 �

2
+

1
3!
𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 �

3
+

1
4!
𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 �

4
+ ⋯. 

𝑢𝑢�⃗ 1
(𝑚𝑚)

0 = �ℎ𝑘𝑘(𝑟𝑟) 𝑢𝑢�⃗ 𝑘𝑘0 + �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚)𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 � 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡 + �ℎ𝑘𝑘(𝑟𝑟)

𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚)𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 � 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘𝑡𝑡 ,

𝑞𝑞

𝑘𝑘=1
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 (2-16) 

 

which 𝑢𝑢�⃗ 1
(𝑚𝑚)

0  and 𝑢𝑢�⃗ 2
(𝑚𝑚)

0  are linear and quadratic terms respectively in the incremental displacement 𝑢𝑢�⃗ (𝑚𝑚)
0 .   

In the incremental displacement, nodal DOFs vector at beam node k is given as  

 (2-17) 

and the total nodal DOFs vector of q beam nodes is given as  

  (2-18) 

Then, 𝑢𝑢�⃗ 1
(𝑚𝑚)

0 and 𝑢𝑢�⃗ 2
(𝑚𝑚)

0  are represented in terms of the nodal DOFs vector 𝑈𝑈0  as 

 (2-19) 

where  

 (2-20) 

and 

 

 (2-21) 

 

where  

 (2-22) 

in which  

  (2-23) 

 

where  

(2-24) 

 
So, variations of the incremental displacements are represented as 

𝛿𝛿 𝑢𝑢�⃗ 1
(𝑚𝑚)

0 = 𝐿𝐿(𝑚𝑚)𝛿𝛿 𝑈𝑈0  and 𝛿𝛿 𝑢𝑢�⃗ 2
(𝑚𝑚)

0 = �
𝛿𝛿 𝑢𝑢2

(𝑚𝑚)
0

𝛿𝛿 𝑣𝑣2
(𝑚𝑚)

0

𝛿𝛿 𝑤𝑤2
(𝑚𝑚)

0

� = �
𝛿𝛿 𝑈𝑈𝑇𝑇
0 𝑄𝑄(𝑚𝑚) 𝑈𝑈01

𝛿𝛿 𝑈𝑈𝑇𝑇
0 𝑄𝑄(𝑚𝑚) 𝑈𝑈02

𝛿𝛿 𝑈𝑈𝑇𝑇
0 𝑄𝑄(𝑚𝑚) 𝑈𝑈03

�.                            (2-25) 

 

 

 

𝑢𝑢�⃗ 2
(𝑚𝑚)

0 =
1
2
�ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚)𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 �
2
𝑉𝑉𝑦𝑦�����⃗

𝑘𝑘𝑡𝑡 +
1
2
�ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚)𝐑𝐑�� 𝜃⃗𝜃𝑘𝑘0 �
2
𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘𝑡𝑡 , 

𝑈𝑈𝑘𝑘0 = � 𝑢𝑢𝑘𝑘0  𝑣𝑣𝑘𝑘0  𝑤𝑤𝑘𝑘0  | 𝜃𝜃𝑥𝑥𝑘𝑘0  𝜃𝜃𝑦𝑦𝑘𝑘0  𝜃𝜃𝑧𝑧𝑘𝑘0 �
𝑇𝑇

, 

𝑈𝑈0 = � 𝑈𝑈1𝑇𝑇0  𝑈𝑈2𝑇𝑇0  ⋯  𝑈𝑈𝑞𝑞𝑇𝑇0 �
𝑇𝑇

. 

𝑢𝑢�⃗ 1
(𝑚𝑚)

0 = �𝐿𝐿1
(𝑚𝑚) 𝐿𝐿2

(𝑚𝑚)  ⋯  𝐿𝐿𝑞𝑞
(𝑚𝑚)� 𝑈𝑈0 = 𝐿𝐿(𝑚𝑚) 𝑈𝑈0 , 

𝐿𝐿𝑘𝑘
(𝑚𝑚) = ℎ𝑘𝑘(𝑟𝑟) �𝐈𝐈  − �𝑦𝑦�𝑘𝑘

(𝑚𝑚)𝐑𝐑� � 𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘𝑡𝑡 � + 𝑧𝑧𝑘̅𝑘

(𝑚𝑚)𝐑𝐑� � 𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘𝑡𝑡 ��� , 

𝑢𝑢�⃗ 2
(𝑚𝑚)

0 = �
𝑢𝑢2

(𝑚𝑚)
0

𝑣𝑣2
(𝑚𝑚)

0

𝑤𝑤2
(𝑚𝑚)

0

� =
1
2
�
𝑈𝑈𝑇𝑇
0 𝑄𝑄(𝑚𝑚) 𝑈𝑈01

𝑈𝑈𝑇𝑇
0 𝑄𝑄(𝑚𝑚) 𝑈𝑈02

𝑈𝑈𝑇𝑇
0 𝑄𝑄(𝑚𝑚) 𝑈𝑈03

� , 

𝑄𝑄(𝑚𝑚)
𝑖𝑖 = � 𝑄𝑄1

(𝑚𝑚)
𝑖𝑖  𝑄𝑄2

(𝑚𝑚)
𝑖𝑖  ⋯  𝑄𝑄𝑞𝑞

(𝑚𝑚)
𝑖𝑖 �,   𝑖𝑖 = 1,2,3,  

𝑄𝑄𝑘𝑘
(𝑚𝑚)

𝑖𝑖 = ℎ𝑘𝑘(𝑟𝑟) �
𝟎𝟎3×3 𝟎𝟎3×3

𝟎𝟎3×3 𝑦𝑦�𝑘𝑘
(𝑚𝑚)Ψ𝑖𝑖 � 𝑉𝑉𝑦𝑦�����⃗

𝑘𝑘𝑡𝑡 � + 𝑧𝑧𝑘̅𝑘
(𝑚𝑚)Ψ𝑖𝑖 � 𝑉𝑉𝑧̅𝑧���⃗

𝑘𝑘𝑡𝑡 �� , 

Ψ1(𝑥⃗𝑥) =
1
2
�

0 𝑥𝑥2 𝑥𝑥3
𝑥𝑥2 −2𝑥𝑥1 0
𝑥𝑥3 0 −2𝑥𝑥1

� ,Ψ2(𝑥⃗𝑥) =
1
2
�
−2𝑥𝑥2 𝑥𝑥1 0
𝑥𝑥1 0 𝑥𝑥3
0 𝑥𝑥3 −2𝑥𝑥2

� ,Ψ3(𝑥⃗𝑥) =
1
2
�
−2𝑥𝑥3 0 𝑥𝑥1

0 −2𝑥𝑥3 𝑥𝑥2
𝑥𝑥1 𝑥𝑥2 0

� . 
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2.1.3 Green-Lagrange strain and total Lagrangian formulation 
 The covariant Green-Lagrange strain tensor on the beam element m in the configuration at time t referred 

to the configuration at time 0 is given as 

 (2-26) 

where 𝐠𝐠𝑖𝑖
(𝑚𝑚)𝑡𝑡  is the covariant basis of convective system (r,s,t), and it is given as 

 (2-27) 

Because the cross-sectional deformations are not existed in Timoshenko beam theory, the strain tensors are 

considered about only 5 components as  𝜀𝜀11
(𝑚𝑚)

0
𝑡𝑡 , 𝜀𝜀12

(𝑚𝑚)
0
𝑡𝑡 , 𝜀𝜀21

(𝑚𝑚)
0
𝑡𝑡 , 𝜀𝜀13

(𝑚𝑚)
0
𝑡𝑡 , 𝜀𝜀31

(𝑚𝑚)
0
𝑡𝑡  , and other 4 components as 

𝜀𝜀22
(𝑚𝑚)

0
𝑡𝑡 , 𝜀𝜀23

(𝑚𝑚)
0
𝑡𝑡 , 𝜀𝜀32

(𝑚𝑚)
0
𝑡𝑡 , 𝜀𝜀33

(𝑚𝑚)
0
𝑡𝑡  are zeros. 

The local Green-Lagrange strain tensor 𝜀𝜀𝑖̅𝑖𝑖𝑖
(𝑚𝑚)

0
𝑡𝑡  in the local Cartesian coordinate system has following relationship 

with the covariant Green-Lagrange strain tensor 𝜀𝜀𝑖𝑖𝑖𝑖
(𝑚𝑚)

0
𝑡𝑡 , 

 (2-28) 

where the base vectors in the local Cartesian coordinate system are given by 

 (2-29) 

and, 𝐠𝐠𝑖𝑖(𝑚𝑚)0  is the contravariant basis vectors, and there are have following relationship as 

(2-30) 

in which 𝛿𝛿𝑗𝑗𝑖𝑖 is the Kronecker delta, it means 𝛿𝛿𝑗𝑗𝑖𝑖 = 1 if 𝑖𝑖 = 𝑗𝑗 ,and 𝛿𝛿𝑗𝑗𝑖𝑖 = 0 if 𝑖𝑖 ≠ 𝑗𝑗. 

Using equation (2-26), the incremental covariant Green-Lagrange strain on the beam element m is represented as 

 (2-31) 

where 𝑢𝑢�⃗ ,𝑖𝑖
(𝑚𝑚)

0 =
𝜕𝜕 𝑢𝑢��⃗ (𝑚𝑚)
0

𝜕𝜕𝑟𝑟𝑖𝑖
 . 

Using 𝑢𝑢�⃗ (𝑚𝑚)
0 ≈ 𝑢𝑢�⃗ 1

(𝑚𝑚)
0 + 𝑢𝑢�⃗ 2

(𝑚𝑚)
0 , equation (2-31) can be divided linear term and nonlinear term as 

(2-32) 

where 𝑒𝑒𝑖𝑖𝑖𝑖
(𝑚𝑚)

0  is linear term and 𝜂𝜂𝑖𝑖𝑖𝑖
(𝑚𝑚)

0  is nonlinear term by the linear incremental displacement 𝑢𝑢�⃗ 1
(𝑚𝑚)

0 , and 

𝜅𝜅𝑖𝑖𝑖𝑖
(𝑚𝑚)

0  is nonlinear term by the quadratic incremental displacement 𝑢𝑢�⃗ 2
(𝑚𝑚)

0  as follows, 

𝑒𝑒𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 = 1
2
� 𝐠𝐠𝑖𝑖

(𝑚𝑚)𝑡𝑡 ∙ 𝑢𝑢�⃗ 1,𝑗𝑗
(𝑚𝑚)

0 + 𝐠𝐠𝑗𝑗
(𝑚𝑚)𝑡𝑡 ∙ 𝑢𝑢�⃗ 1,𝑖𝑖

(𝑚𝑚)
0 �, 𝜂𝜂𝑖𝑖𝑖𝑖

(𝑚𝑚)
0 = 1

2
� 𝑢𝑢�⃗ 1,𝑖𝑖

(𝑚𝑚)
0 ∙ 𝑢𝑢�⃗ 1,𝑗𝑗

(𝑚𝑚)
0 �,  

  (2-33) 

Using equation (2-19) and (2-21), the relations between incremental Green-Lagrange strain and incremental nodal 

DOFs are obtained as  

𝜀𝜀𝑖𝑖𝑖𝑖
(𝑚𝑚)

0
𝑡𝑡 =

1
2
� 𝐠𝐠𝑖𝑖

(𝑚𝑚)𝑡𝑡 ∙ 𝐠𝐠𝑗𝑗
(𝑚𝑚)𝑡𝑡 − 𝐠𝐠𝑖𝑖

(𝑚𝑚)0 ∙ 𝐠𝐠𝑗𝑗
(𝑚𝑚)0 � , 𝑖𝑖, 𝑗𝑗 = 1,2,3 

𝐠𝐠𝑖𝑖
(𝑚𝑚)𝑡𝑡 =

𝜕𝜕 𝑥𝑥(𝑚𝑚)𝑡𝑡

𝜕𝜕𝑟𝑟𝑖𝑖
, 𝑖𝑖, 𝑗𝑗 = 1,2,3 

𝜀𝜀𝑖̅𝑖𝑖𝑖
(𝑚𝑚)

0
𝑡𝑡 � 𝑡𝑡𝑖𝑖0 ⊗ 𝑡𝑡𝑗𝑗0 � = 𝜀𝜀𝑘𝑘𝑘𝑘

(𝑚𝑚)
0
𝑡𝑡 � 𝐠𝐠𝑘𝑘(𝑚𝑚)0 ⊗ 𝐠𝐠𝑙𝑙(𝑚𝑚)0 �, 

𝑡𝑡10 = ℎ𝑘𝑘(𝑟𝑟) 𝑉𝑉𝑥̅𝑥𝑘𝑘0 , 𝑡𝑡20 = ℎ𝑘𝑘(𝑟𝑟) 𝑉𝑉𝑦𝑦�𝑘𝑘0 , 𝑡𝑡30 = ℎ𝑘𝑘(𝑟𝑟) 𝑉𝑉𝑧̅𝑧𝑘𝑘0 , 

𝐠𝐠𝑖𝑖(𝑚𝑚)0 ∙ 𝐠𝐠𝑗𝑗
(𝑚𝑚)0 = 𝛿𝛿𝑗𝑗𝑖𝑖 , 

𝜀𝜀𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 = 𝜀𝜀𝑖𝑖𝑖𝑖
(𝑚𝑚)

0
𝑡𝑡+∆𝑡𝑡 − 𝜀𝜀𝑖𝑖𝑖𝑖

(𝑚𝑚)
0
𝑡𝑡 =

1
2
� 𝐠𝐠𝑖𝑖

(𝑚𝑚)𝑡𝑡 ∙ 𝑢𝑢�⃗ ,𝑗𝑗
(𝑚𝑚)

0 + 𝐠𝐠𝑗𝑗
(𝑚𝑚)𝑡𝑡 ∙ 𝑢𝑢�⃗ ,𝑖𝑖

(𝑚𝑚)
0 + 𝑢𝑢�⃗ ,𝑖𝑖

(𝑚𝑚)
0 ∙ 𝑢𝑢�⃗ ,𝑗𝑗

(𝑚𝑚)
0 �  

𝜀𝜀𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 ≈ 𝑒𝑒𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 + 𝜂𝜂𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 + 𝜅𝜅𝑖𝑖𝑖𝑖
(𝑚𝑚)

0  , 

𝜅𝜅𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 =
1
2
� 𝐠𝐠𝑖𝑖

(𝑚𝑚)𝑡𝑡 ∙ 𝑢𝑢�⃗ 2,𝑗𝑗
(𝑚𝑚)

0 + 𝐠𝐠𝑗𝑗
(𝑚𝑚)𝑡𝑡 ∙ 𝑢𝑢�⃗ 2,𝑖𝑖

(𝑚𝑚)
0 � 
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 (2-34) 

 

where 𝐿𝐿,𝑖𝑖
(𝑚𝑚) = 𝜕𝜕𝐿𝐿(𝑚𝑚)

𝜕𝜕𝑟𝑟𝑖𝑖
 and 𝑄𝑄�,𝑖𝑖

(𝑚𝑚) = �𝜕𝜕 𝑄𝑄(𝑚𝑚)
1
𝜕𝜕𝑟𝑟𝑖𝑖

𝜕𝜕 𝑄𝑄(𝑚𝑚)
2
𝜕𝜕𝑟𝑟𝑖𝑖

𝜕𝜕 𝑄𝑄(𝑚𝑚)
3
𝜕𝜕𝑟𝑟𝑖𝑖

�
𝑇𝑇

. 

Using equation (2-28), the incremental covariant Green-Lagrange strains are changed to the local Green-Lagrange 

strains as 

 

  

 

 (2-35) 

The equilibrium equation in nonlinear analysis is obtained to the principal virtual work at time 𝑡𝑡 + ∆𝑡𝑡, and the 

configuration at time t is known. Through the principal virtual work, the equilibrium equation is represented to 

the incremental equation, that process is called total Lagrangian formulation. From the total Lagrangian 

formulation, the equilibrium equation consists of three parts, tangential stiffness matrix, force vector and internal 

force. [10] 

The total Lagrangian formulation is given by 

 (2-36) 

 

where 𝑉𝑉0  is the volume of beam element at time 0, 𝐑𝐑𝑡𝑡+Δ𝑡𝑡  is the external virtual work, 𝐶̅𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the material law 

in local Cartesian coordinate and 𝑆𝑆𝑖̅𝑖𝑖𝑖0
𝑡𝑡  is the second Piola-Kirchhoff stress in local Cartesian coordinate. Because 

the strain tensor has only 5 non-zero components as (i,j) are (1,1), (1,2), (2,1), (1,3) and (3,1), the material law 

tensor also has only 5 non-zero components as 𝐶̅𝐶1111 = 𝐸𝐸, 𝐶̅𝐶1212 = 𝐶̅𝐶2121 = 𝐶̅𝐶1313 = 𝐶̅𝐶3131 = 𝐺𝐺 , where E is 

Young’s modulus and G is shear modulus. 

Using equation (2-35), equation (2-36) can be discretized as 

 (2-37) 

 

where n is total number of the beam elements, 𝑉𝑉0 (𝑚𝑚) is the volume of beam element m at time 0. 

𝑒𝑒𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 =
1
2
� 𝐠𝐠𝑖𝑖

(𝑚𝑚)𝑡𝑡 ∙ 𝐿𝐿,𝑗𝑗
(𝑚𝑚) + 𝐠𝐠𝑗𝑗

(𝑚𝑚)𝑡𝑡 ∙ 𝐿𝐿,𝑖𝑖
(𝑚𝑚)� 𝑈𝑈0 = 𝐵𝐵𝑖𝑖𝑖𝑖

(𝑚𝑚) 𝑈𝑈0 , 

𝜂𝜂𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 =
1
2

𝑈𝑈𝑇𝑇
0 �𝐿𝐿,𝑖𝑖

(𝑚𝑚)𝑇𝑇𝐿𝐿,𝑗𝑗
(𝑚𝑚)� 𝑈𝑈0 =

1
2

𝑈𝑈𝑇𝑇
0 𝑁𝑁𝑖𝑖𝑖𝑖

(𝑚𝑚)
1 𝑈𝑈0 , 

𝜅𝜅𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 =
1
2

𝑈𝑈𝑇𝑇
0 � 𝐠𝐠𝑖𝑖

(𝑚𝑚)𝑡𝑡 ∙ 𝑄𝑄�,𝑗𝑗
(𝑚𝑚) + 𝐠𝐠𝑗𝑗

(𝑚𝑚)𝑡𝑡 ∙ 𝑄𝑄�,𝑖𝑖
(𝑚𝑚)� 𝑈𝑈0 =

1
2

𝑈𝑈𝑇𝑇
0 𝑁𝑁𝑖𝑖𝑖𝑖

(𝑚𝑚)
2 𝑈𝑈0 , 

𝑒̅𝑒𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 = 𝐵𝐵𝑖𝑖𝑖𝑖
(𝑚𝑚)�𝑡𝑡𝑖𝑖 ∙ 𝐠𝐠𝑘𝑘(𝑚𝑚)��𝑡𝑡𝑗𝑗 ∙ 𝐠𝐠𝑙𝑙(𝑚𝑚)� 𝑈𝑈0 = 𝐵𝐵�𝑖𝑖𝑖𝑖

(𝑚𝑚) 𝑈𝑈0 ,  

𝜂̅𝜂𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 =
1
2

𝑈𝑈𝑇𝑇
0 𝑁𝑁𝑖𝑖𝑖𝑖

(𝑚𝑚)
1 �𝑡𝑡𝑖𝑖 ∙ 𝐠𝐠𝑘𝑘(𝑚𝑚)��𝑡𝑡𝑗𝑗 ∙ 𝐠𝐠𝑙𝑙(𝑚𝑚)� 𝑈𝑈0 =

1
2

𝑈𝑈𝑇𝑇
0 𝑁𝑁�𝑖𝑖𝑖𝑖

(𝑚𝑚)
1 𝑈𝑈0 , 

𝜅̅𝜅𝑖𝑖𝑖𝑖
(𝑚𝑚)

0 =
1
2

𝑈𝑈𝑇𝑇
0 𝑁𝑁𝑖𝑖𝑖𝑖

(𝑚𝑚)
2 �𝑡𝑡𝑖𝑖 ∙ 𝐠𝐠𝑘𝑘(𝑚𝑚)��𝑡𝑡𝑗𝑗 ∙ 𝐠𝐠𝑙𝑙(𝑚𝑚)� 𝑈𝑈0 =

1
2

𝑈𝑈𝑇𝑇
0 𝑁𝑁�𝑖𝑖𝑖𝑖

(𝑚𝑚)
2 𝑈𝑈0 , 

� 𝛿𝛿 𝑒̅𝑒𝑖𝑖𝑖𝑖0
𝑉𝑉0

𝐶̅𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒̅𝑒𝑟𝑟𝑟𝑟0 𝑑𝑑 𝑉𝑉0 + � 𝑆𝑆𝑖̅𝑖𝑖𝑖0
𝑡𝑡 𝛿𝛿 𝜂̅𝜂𝑖𝑖𝑖𝑖0

𝑉𝑉0
𝑑𝑑 𝑉𝑉0 + � 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡 𝛿𝛿 𝜅̅𝜅𝑖𝑖𝑖𝑖0
𝑉𝑉0

𝑑𝑑 𝑉𝑉0 = 𝐑𝐑𝑡𝑡+Δ𝑡𝑡 − � 𝑆𝑆𝑖̅𝑖𝑖𝑖0
𝑡𝑡 𝛿𝛿 𝑒̅𝑒𝑖𝑖𝑖𝑖0

𝑉𝑉0
𝑑𝑑 𝑉𝑉0 , 

δ 𝑈𝑈𝑇𝑇
0 �� � 𝐵𝐵�𝑖𝑖𝑖𝑖

(𝑚𝑚)𝑇𝑇𝐶̅𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵�𝑟𝑟𝑟𝑟
(𝑚𝑚)𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

+ �� 𝑁𝑁�𝑖𝑖𝑖𝑖
(𝑚𝑚) 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡
1 𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

+ �� 𝑁𝑁�𝑖𝑖𝑖𝑖
(𝑚𝑚) 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡
2 𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

� 𝑈𝑈0  

= δ 𝑈𝑈𝑇𝑇
0 𝑅𝑅𝑡𝑡+Δ𝑡𝑡 − δ 𝑈𝑈𝑇𝑇

0 �� � 𝐵𝐵�𝑖𝑖𝑖𝑖
(𝑚𝑚)𝑇𝑇 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡 𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

� , 
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Equation (2-37) can be simplified as follows 

 (2-38) 

where  

 

 

 

 

 

 (2-39) 

 

Finally, we can obtain the incremental displacement 𝑈𝑈0  through equation (2-38). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 𝐾𝐾𝐿𝐿𝑡𝑡 + 𝐾𝐾𝑁𝑁1𝑡𝑡 + 𝐾𝐾𝑁𝑁2𝑡𝑡 ) 𝑈𝑈0 = 𝑅𝑅𝑡𝑡+Δ𝑡𝑡 − 𝐹𝐹0𝑡𝑡  

𝐾𝐾𝐿𝐿𝑡𝑡 = �� 𝐵𝐵�𝑖𝑖𝑖𝑖
(𝑚𝑚)𝑇𝑇𝐶̅𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵�𝑟𝑟𝑟𝑟

(𝑚𝑚)𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

 , 

𝐾𝐾𝑁𝑁1𝑡𝑡 = �� 𝑁𝑁�𝑖𝑖𝑖𝑖
(𝑚𝑚) 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡
1 𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

 , 

𝐾𝐾𝑁𝑁2𝑡𝑡 = �� 𝑁𝑁�𝑖𝑖𝑖𝑖
(𝑚𝑚) 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡
2 𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

 , 

𝐹𝐹0𝑡𝑡 = �� 𝐵𝐵�𝑖𝑖𝑖𝑖
(𝑚𝑚)𝑇𝑇 𝑆𝑆𝑖̅𝑖𝑖𝑖0

𝑡𝑡 𝑑𝑑𝑉𝑉(𝑚𝑚)

𝑉𝑉0 (𝑚𝑚)

𝑛𝑛

𝑚𝑚=1

 . 
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Chapter 3. Beam-to-beam Contact 
 

In this chapter, the existing beam-to-beam contact methods will be introduced. The contact method in 

the thesis is motivated by point-to-point contact method, so the contact formulation of point-to-point will be 

explained. The concept of penalty method used in point-to-point contact is also explained. In addition, improved 

contact formulations based on point-to-point contact are introduced. 

 

3.1 Beam-to-beam contact methods  
 P. Wriggers and G. Zavarise suggest the beam-to-beam contact formulation between three-

dimensional beams at first in 1997 [2]. This formulation has two features, the beam is circular cross-section and 

the contact points is one pair in minimum distance between the beams. This formulation is called to ‘Point-to-

point’ contact. Many beam-to-beam contact formulations are improved by based the point-to-point contact 

formulation. Improved formulations revise the two features, for example, the cross-sections are changed, or the 

contact points are changed. The point-to-point contact and the improved formulations are introduced briefly. 

 

3.1.1 Concept of point-to-point contact 

 
Figure 3.1 Kinematics of point-to-point contact [6] 

 The two beams are supposed that have circular cross-section. The radii of beams are 𝑅𝑅1 and 𝑅𝑅2. The 

beam centerlines are represented two parameters ξ and η respectively. Therefore the centerlines of the beam are 

represented as 𝑟𝑟1(ξ) and 𝑟𝑟2(η). The curves 𝑟𝑟1(ξ) and 𝑟𝑟2(η) have the unique tangent vector at point ξ and η, 

thus the curves are at least continuous in their partial derivative (𝐶𝐶1 continuity). As figure 3.1, the distance 

between beams is represented the function of ξ and η as  

 (3-1) 

and when the distance is minimum, let the two parameters be 𝜉𝜉𝑐𝑐 and 𝜂𝜂𝑐𝑐. In this closest point pair, the direction 

of distance vector and the beam centerline are perpendicular to each other. Therefore, the orthogonality 

𝑑𝑑(𝜉𝜉, 𝜂𝜂) = ‖𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂)‖ , 
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conditions are satisfied as 

 

(3-2) 

  

where 𝑟𝑟𝑖𝑖,𝜉𝜉𝑗𝑗 = 𝜕𝜕𝑟𝑟𝑖𝑖
𝜕𝜕𝜉𝜉𝑗𝑗

 , is tangent vector of beam centerline.  

And using distance, the gap function is created for detection of contact. The gap function is given as 

(3-3) 

Using the gap function, contact is determined whether it occurs. If the gap function become a negative value, 

contact occurs between the beams. When contact occurs, the force and potential are applied between the beams. 

At this time, the closest centerline points (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) are used as the reaction force direction and size as follow,  

(3-4) 

where  

 

 

In which, 𝜀𝜀 is the penalty parameter for the penalty method. The form of reaction force can be changed by the 

contact contribution method (penalty method or Lagrange multiplier or etc.). the process of contact 

determination and applying contact force is as shown figure 3.2.   

 

 

 

3.1.2 Penalty method 
In equation (3-4), the penalty method is used for calculation of the contact force. In this condition, 

epsilon (ε) means the penalty parameter. As figure 3.3, the ideal condition is written 𝑔𝑔𝑓𝑓𝑐𝑐𝑐𝑐 = 0. However, the 

penetration between the beams is not allowed in the ideal condition. If use the ideal condition, solution can be 

unstable and oscillated. This unstable solution convergence is called ‘chattering’. If use the penalty method, the 

penetration between the beams is allowed. The quantity of penetration is controlled by the penalty parameter ε, 

so proper penalty parameter should be determined according to problem cases. However, using the penalty 

method has better convergence than the ideal condition.  

 

 

 

 

𝑝𝑝1(𝜉𝜉, 𝜂𝜂) = 𝑟𝑟1,𝜉𝜉
𝑇𝑇 �𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂)�   →   𝑝𝑝1(𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) = 0 , 

𝑝𝑝2(𝜉𝜉, 𝜂𝜂) = 𝑟𝑟2,𝜂𝜂
𝑇𝑇 �𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂)�   →   𝑝𝑝2(𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) = 0 , 

𝑔𝑔 = 𝑑𝑑(𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) − 𝑅𝑅1 − 𝑅𝑅2 

𝑓𝑓𝑐𝑐𝑐𝑐 = −𝜀𝜀〈𝑔𝑔〉𝑛𝑛�⃗ , 

𝑛𝑛�⃗ =
𝑟𝑟1(𝜉𝜉𝑐𝑐) − 𝑟𝑟2(𝜂𝜂𝑐𝑐)
‖𝑟𝑟1(𝜉𝜉𝑐𝑐) − 𝑟𝑟2(𝜂𝜂𝑐𝑐)‖

,   〈𝑔𝑔〉 = �𝑔𝑔, 𝑔𝑔 ≤ 0
0, 𝑔𝑔 > 0  . 

Figure 3.2 Diagram of contact situation 
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Lagrange multiplier method is also widely used like the penalty method. In the case of penalty method, the 

penalty parameter is constant value by problem cases. However, the Lagrange multiplier λ is determined by the 

solution process of the finite element analysis. If contact is occurred, the penalty method and the Lagrange 

multiplier method satisfy to the strain energy functions (potential equations) respectively as 

 (3-5) 

where Πb1 and Πb2 are the potential from of two beams, and Πc is the potential by contact condition as 

 

(3-6) 

where 𝑔𝑔 is gap function as equation (3-3). The form of gap function can be changed by the contact formulation 

method. The potential equation has solution in the extremal value of the equation, so the potential equation has 

the condition as 

 (3-7) 

Using equation (3-7), the solutions of beam contact problem are obtained. As can be seen from the form of the 

contact potential, the Lagrange multiplier method behaves like the ideal condition as left of figure 3.3. The 

Lagrange multiplier method find the proper multiplier λ through potential equation, so the parameters do not 

need to be determined by problem cases. However, if use the Lagrange multiplier method, the solution 

convergence process can require additional equilibrium iterations because the solution convergence can be 

oscillated, in other words ‘chattering’. By comparison, the penalty method requires few equilibrium iterations 

compared to the Lagrange multiplier method. Besides, in case of multiple contact, the Lagrange multipliers are 

given at many points. This situation cause increasing in number of DOFs. In this thesis, the penalty method is 

used for good convergence and convenient formulation compared to the Lagrange multiplier method. 

 

 

 

 

 

Π = Πb1 + Πb2 + Πc, 

Πc = �
𝜀𝜀
2
𝑔𝑔2     ⋯   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜   

𝜆𝜆𝜆𝜆     ⋯  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 , 

δΠ = δΠb1 + δΠb2 + δΠc = 0 , 

Figure 3.3 (left) Ideal contact force condition     

(right) Contact force using penalty parameter 
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3.1.3 Formulation of point-to-point contact 
 The formulation of point-to-point contact refer to the reference [2], P. Wriggers, On contact between 

three-dimensional beams undergoing large deflections. Using the penalty parameter and the gap function, the 

potential by contact condition can be discretized. The potential term by contact condition is represented as  

(3-8)  

The finite element solution exist in an extremal value of Π, so δΠ becomes 0. Therefore, the variation of 

potential equation can write as 

 (3-9) 

The linearization of equation (3-9) for the iteration of nonlinear equation is given as 

(3-10) 

Remind the orthogonality condition of two beam. Equation (3-2) is given as 

  

(3-2a) 

From this orthogonality condition, the linearization of the condition is obtained as 

 

 (3-11) 

Using the linearization of the orthogonality condition, we get ∆𝑔𝑔, δ𝑔𝑔,∆δ𝑔𝑔. First, the gap function g is given by 

 (3-3a) 

The variation of the gap function is obtained using equation (3-3a) as 

 (3-12) 

where 𝑛𝑛�⃗  is the normal unit vector as follows, 

 (3-13) 

 

Using 𝛿𝛿𝛿𝛿 = 𝑥𝑥,𝜉𝜉𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿, equation (3-12) is rewritten as 

 (3-14) 

according to the orthogonality condition, 𝑟𝑟1,𝜉𝜉(𝜉𝜉𝑐𝑐) ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) = 𝑟𝑟2,𝜂𝜂(𝜂𝜂𝑐𝑐) ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) = 0, so equation (3-14) is 

rewritten as 

 (3-15) 

The linearization of the gap function goes through same process to variation, so the linearization of the gap 

function is represented as 

 (3-16) 

From equation (3-12), the linearization of the variation of the gap function is obtained as 

 (3-17) 

where ∆𝑛𝑛�⃗  is given from equation (3-13) as 

(3-18) 

Πc =
𝜀𝜀
2
𝑔𝑔2 , 

δΠ = δΠb1 + δΠb1 + δΠc = δΠb1 + δΠb1 + 𝜀𝜀𝜀𝜀 ∙ δ𝑔𝑔 = 0 . 

∆δΠ = ∆δΠb1 + ∆δΠb1 + 𝜀𝜀∆𝑔𝑔 ∙ δ𝑔𝑔 + 𝜀𝜀𝜀𝜀 ∙ 𝜀𝜀∆𝑔𝑔 ∙ ∆δ𝑔𝑔 . 

�
𝑟𝑟1,𝜉𝜉
𝑇𝑇 �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� = �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� ∙ 𝑟𝑟1,𝜉𝜉 = 0
𝑟𝑟2,𝜂𝜂
𝑇𝑇 �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� = �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� ∙ 𝑟𝑟2,𝜂𝜂 = 0

 , 

�
−𝑟𝑟1,𝜉𝜉 ∙ 𝑟𝑟1,𝜉𝜉 + (𝑟𝑟2 − 𝑟𝑟1) ∙ 𝑟𝑟1,𝜉𝜉𝜉𝜉 𝑟𝑟2,𝜂𝜂 ∙ 𝑟𝑟1,𝜉𝜉

−𝑟𝑟1,𝜉𝜉 ∙ 𝑟𝑟2,𝜂𝜂 𝑟𝑟2,𝜂𝜂 ∙ 𝑟𝑟2,𝜂𝜂 + (𝑟𝑟2 − 𝑟𝑟1) ∙ 𝑟𝑟2,𝜂𝜂𝜂𝜂
� �∆𝜉𝜉∆𝜂𝜂� = �

−(𝑟𝑟2 − 𝑟𝑟1) ∙ 𝑟𝑟1,𝜉𝜉
−(𝑟𝑟2 − 𝑟𝑟1) ∙ 𝑟𝑟2,𝜂𝜂

� 

𝑔𝑔 = ‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖ − (𝑅𝑅1 + 𝑅𝑅2) 

𝛿𝛿𝛿𝛿 = [𝛿𝛿𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝛿𝛿𝛿𝛿1(𝜉𝜉𝑐𝑐)] ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐), 

𝑛𝑛�⃗ =
𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)
‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖  . 

𝛿𝛿𝛿𝛿 = �𝛿𝛿𝑢𝑢2(𝜂𝜂𝑐𝑐) + 𝑟𝑟2,𝜂𝜂(𝜂𝜂𝑐𝑐)𝛿𝛿𝜂𝜂𝑐𝑐 − 𝛿𝛿𝛿𝛿1(𝜉𝜉𝑐𝑐) − 𝑟𝑟1,𝜉𝜉(𝜉𝜉𝑐𝑐)𝛿𝛿𝜉𝜉𝑐𝑐� ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐), 

𝛿𝛿𝛿𝛿 = [𝛿𝛿𝑢𝑢2(𝜂𝜂𝑐𝑐) − 𝛿𝛿𝛿𝛿1(𝜉𝜉𝑐𝑐)] ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐), 

∆𝑔𝑔 = [∆𝑢𝑢2(𝜂𝜂𝑐𝑐) − ∆𝑢𝑢1(𝜉𝜉𝑐𝑐)] ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐). 

∆𝛿𝛿𝛿𝛿 = [∆𝛿𝛿𝑟𝑟2(𝜂𝜂𝑐𝑐) − ∆𝛿𝛿𝛿𝛿1(𝜉𝜉𝑐𝑐)] ∙ 𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐) + [𝛿𝛿𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝛿𝛿𝛿𝛿1(𝜉𝜉𝑐𝑐)] ∙ ∆𝑛𝑛�⃗ (𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐), 

∆𝑛𝑛�⃗ =
1

‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖
(1 − 𝑛𝑛�⃗ ⊗ 𝑛𝑛�⃗ )�∆𝑟𝑟2(𝜂𝜂𝑐𝑐) − ∆𝑟𝑟1(𝜉𝜉𝑐𝑐)�, 
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and using 𝛿𝛿𝛿𝛿 = 𝑥𝑥,𝜉𝜉𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿, equation (3-18) is rewritten as 

 (3-19) 

 

Using equation (3-19) and 𝛿𝛿𝛿𝛿 = 𝑥𝑥,𝜉𝜉𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿 and the linearization of the orthogonality condition at 𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐, 

equation (3-17) is rewritten as 

In equation (3-20), ∆𝜉𝜉𝑐𝑐 ,∆𝜂𝜂𝑐𝑐 is solved the linearized orthogonality condition equation (3-11) at closest points 

𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐 as follow 

(3-21) 

where the matrices A,B and C is given by 

 

 

(3-22) 

 

In equation (3-22), all quantities are obtained with respect to the closest points 𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐 . 

For obtain the finite element solution, the linearization of displacement is needed [4]. The displacement with 

respect to the centerline of beam is given by 

 

So, equation (3-21) can be expressed as 

 (3-23) 

 

In similar to equation (3-23), the variation of 𝜉𝜉𝑐𝑐 , 𝜂𝜂𝑐𝑐 is also obtained as 

 (3-24) 

So, the contact contribution by the penalty method is expressed as 

 (3-25) 

(3-26) 

where 

 

 

 

∆𝑛𝑛�⃗ =
1

‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖
(1 − 𝑛𝑛�⃗ ⊗ 𝑛𝑛�⃗ )�∆𝑢𝑢2 + ∆𝑟𝑟2,𝜂𝜂∆𝜂𝜂 − ∆𝑢𝑢1 − ∆𝑟𝑟1,𝜉𝜉∆𝜉𝜉�, 

∆𝛿𝛿𝛿𝛿 = �(𝛿𝛿𝑢𝑢2),𝜂𝜂∆𝜂𝜂𝑐𝑐 − (𝛿𝛿𝑢𝑢1),𝜉𝜉∆𝜉𝜉𝑐𝑐� ∙ 𝑛𝑛�⃗ + �(∆𝑢𝑢2),𝜂𝜂𝛿𝛿𝜂𝜂𝑐𝑐 − (∆𝑢𝑢1),𝜉𝜉𝛿𝛿𝛿𝛿𝑐𝑐� ∙ 𝑛𝑛�⃗ + �𝑟𝑟2,𝜂𝜂𝜂𝜂𝛿𝛿𝜂𝜂𝑐𝑐∆𝜂𝜂𝑐𝑐 − 𝑟𝑟1,𝜉𝜉𝜉𝜉𝛿𝛿𝜉𝜉𝑐𝑐∆𝜉𝜉𝑐𝑐� ∙ 𝑛𝑛�⃗  

+
1

‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖ �𝛿𝛿𝑢𝑢2 + 𝑟𝑟2,𝜂𝜂𝛿𝛿𝛿𝛿 − 𝛿𝛿𝑢𝑢1 − 𝑟𝑟1,𝜉𝜉𝛿𝛿𝛿𝛿� ∙ (1 − 𝑛𝑛�⃗ ⊗ 𝑛𝑛�⃗ )�∆𝑢𝑢2 + 𝑟𝑟2,𝜂𝜂∆𝜂𝜂 − ∆𝑢𝑢1 − 𝑟𝑟1,𝜉𝜉∆𝜉𝜉� 

 

(3-20) 

[A] �∆𝜉𝜉𝑐𝑐∆𝜂𝜂𝑐𝑐
� = [𝐵𝐵] �∆𝑢𝑢1∆𝑢𝑢2

� + [C] �
∆𝑢𝑢1,𝜉𝜉
∆𝑢𝑢2,𝜂𝜂

� , 

[A] = �
−𝑟𝑟1,𝜉𝜉 ∙ 𝑟𝑟1,𝜉𝜉 + (𝑟𝑟2 − 𝑟𝑟1) ∙ 𝑟𝑟1,𝜉𝜉𝜉𝜉 𝑟𝑟2,𝜂𝜂 ∙ 𝑟𝑟1,𝜉𝜉

−𝑟𝑟1,𝜉𝜉 ∙ 𝑟𝑟2,𝜂𝜂 𝑟𝑟2,𝜂𝜂 ∙ 𝑟𝑟2,𝜂𝜂 + (𝑟𝑟2 − 𝑟𝑟1) ∙ 𝑟𝑟2,𝜂𝜂𝜂𝜂
� , 

[B] = �
𝑟𝑟1,𝜉𝜉
𝑇𝑇 −𝑟𝑟1,𝜉𝜉

𝑇𝑇

𝑟𝑟2,𝜂𝜂
𝑇𝑇 −𝑟𝑟2,𝜂𝜂

𝑇𝑇 � , [C] = �−
(𝑟𝑟2 − 𝑟𝑟1)𝑇𝑇 0𝑇𝑇

0𝑇𝑇 −(𝑟𝑟2 − 𝑟𝑟1)𝑇𝑇� . 

𝑢𝑢𝚤𝚤���⃗ = 𝐻𝐻𝑖𝑖(𝜉𝜉𝑖𝑖)𝑢𝑢�⃗ 𝑖𝑖𝑖𝑖, 

�∆𝜉𝜉𝑐𝑐∆𝜂𝜂𝑐𝑐
� = [𝐴𝐴]−1 �[𝐵𝐵] �𝐻𝐻1 0

0 𝐻𝐻2
� + [C] �

𝐻𝐻1,𝜉𝜉 0
0 𝐻𝐻2,𝜂𝜂

�� �∆𝑢𝑢1𝑘𝑘∆𝑢𝑢2𝑘𝑘
� = [D] �∆𝑢𝑢1𝑘𝑘∆𝑢𝑢2𝑘𝑘

� , 

�𝛿𝛿𝛿𝛿𝑐𝑐𝛿𝛿𝜂𝜂𝑐𝑐
� = [D] �𝛿𝛿𝑢𝑢1𝑘𝑘𝛿𝛿𝑢𝑢2𝑘𝑘

� , 

ΔδΠc = (𝛿𝛿𝑢𝑢1𝑘𝑘𝑇𝑇 ,𝛿𝛿𝑢𝑢2𝑘𝑘𝑇𝑇 )[𝐾𝐾𝑐𝑐](∆𝑢𝑢1𝑘𝑘,∆𝑢𝑢2𝑘𝑘)𝑇𝑇, 

δΠc = (𝛿𝛿𝑢𝑢1𝑘𝑘𝑇𝑇 ,𝛿𝛿𝑢𝑢2𝑘𝑘𝑇𝑇 )[𝑅𝑅𝑐𝑐], 

𝐾𝐾c = 𝜀𝜀 ∙ ��
−𝐻𝐻1,𝜉𝜉

𝑇𝑇

𝐻𝐻2,𝜂𝜂
𝑇𝑇 � 𝑛𝑛�⃗ ∙ 𝑛𝑛�⃗ 𝑇𝑇[−𝐻𝐻1,𝜉𝜉 𝐻𝐻2,𝜂𝜂]� + 𝜀𝜀 ∙ 𝑔𝑔 ��−𝐻𝐻1

𝑇𝑇𝑛𝑛�⃗ 0
0 𝐻𝐻2𝑇𝑇𝑛𝑛�⃗

� [𝐷𝐷] 

+[𝐷𝐷]𝑇𝑇 �−𝑛𝑛�⃗
𝑇𝑇𝐻𝐻1 0
0 𝑛𝑛�⃗ 𝑇𝑇𝐻𝐻2

� + [𝐷𝐷]𝑇𝑇 �
−𝑛𝑛�⃗ 𝑇𝑇𝑟𝑟1,𝜉𝜉𝜉𝜉 0

0 𝑛𝑛�⃗ 𝑇𝑇𝑟𝑟2,𝜂𝜂𝜂𝜂
� [𝐷𝐷] 
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 (3-27) 

 

and 

 (3-28) 

 

 

3.2 Improved formulation – non-circular cross-sections 

 3.2.1 Beam-to-beam contact between rectangular cross-section beams 
P. Litewka and P. Wriggers suggested contact between 3D beams with rectangular cross-sections at 

2002 [4]. The beam elements are used 3D rectangular Timoshenko beam formulation.  

 

Figure 3.4 A pair of contacting beams with rectangular cross-sections [4] 

Existing point-to-point contact formulation is formulated based on the beam centerlines. However, 

this contact formulation is developed on the edges of beam. The positions and displacements of the beam edges 

are obtained through the positions and displacements of the beam centerline and the rotation of nodal points at 

beam elements. So, using the positions of edges, minimal distances and closest points between edges of beams 

are obtained through the distance searching processes. Because one beam element has four edges, the contact 

possibility should be determined at which corners will contact. This paper suggest that two closest edges on 

beam per another beam centerline are checked.  

+
1
𝑔𝑔
∙ ��−𝐻𝐻1,𝜉𝜉  𝐻𝐻2,𝜂𝜂� + �−𝑟𝑟1,𝜉𝜉  𝑟𝑟2,𝜂𝜂�[𝐷𝐷]�𝑇𝑇(1 − 𝑛𝑛�⃗ ∙ 𝑛𝑛�⃗ 𝑇𝑇) ∙ ��−𝐻𝐻1,𝜉𝜉  𝐻𝐻2,𝜂𝜂� + �−𝑟𝑟1,𝜉𝜉  𝑟𝑟2,𝜂𝜂�[𝐷𝐷]�� , 

𝑅𝑅𝑐𝑐 =  𝜀𝜀𝜀𝜀 �
−𝐻𝐻1,𝜉𝜉

𝑇𝑇 𝑛𝑛�⃗
𝐻𝐻2,𝜂𝜂
𝑇𝑇 𝑛𝑛�⃗

� . 
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Figure 3.5 Contact search – two closest edges per beam centerline [4] 

For example, as figure 3.5, two edges 1.1 and 1.2 from the beam no.1 are closest with the beam no.2. Similar to, 

two edges 2.1 and 2.2 from the beam no.2 are closest with the beam no.1. Therefore, four edge pairs as 1.1 and 

2.1, 1.1 and 2.2, 1.2 and 2.1, 1.2 and 2.2, are checked whether contact is occurred or not.  

 This formulation change cross-section from circular cross-section to rectangular cross-section. 

However the beam contact formulation still cannot solve for arbitrary cross-section as I-beam, H-beam, 

quadrilateral cross-section or curved cross-section. Further, if ratio width and height of rectangular cross-section 

is big difference, searching process can undergo error. 

 

3.2.2 Beam-to-beam contact between curbed cross-section beams 

 A. G. Neto suggested contact between 3D beams with curve shape cross-sections at 2016 [8]. The 

surfaces of the beam are given by the convective coordinate systems.  

 

Figure 3.6 Beam-to-beam contact with curved surfaces [8] 

Surfaces depended the convective coordinate are represented as  

 (3-29) 

where 𝜁𝜁𝑖𝑖 ,𝜃𝜃𝑖𝑖 are the convective coordinates and 𝑑𝑑𝑖𝑖 is the generalized displacements vector. 

ΓA = ΓA�𝜁𝜁𝐴𝐴,𝜃𝜃𝐴𝐴,𝑑𝑑𝐴𝐴�, ΓA = ΓB�𝜁𝜁𝐵𝐵,𝜃𝜃𝐵𝐵,𝑑𝑑𝐵𝐵�, 
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From these surface functions, the orthogonality conditions are given by 

 

(3-30) 

 

 

Because of these conditions, surfaces respected to the convective variables are required at least continuous in 

their partial derivative, thus 𝐶𝐶1-continuous. Using these surface representations, the surface parameterization 

and the cross-sections of beams are given as  

(3-31) 

where 𝑥⃗𝑥(𝜁𝜁) is the description of beam axis, and 𝑎⃗𝑎(𝜁𝜁,𝜃𝜃) is the positions of material positions at the beam 

surface. 𝑎⃗𝑎(𝜁𝜁,𝜃𝜃) has the cross-section information and cross-section orientation by rotation.  

  

Figure 3.7 Cross-section and convective coordinate 

The contact points are given as one closest point pair, differently to case of rectangular cross-section. Using 

convective coordinates, cross-section can be made close to the rectangular shape for the superellipse curve. 

However, if surface is not satisfied at least 𝐶𝐶1-continuous or surface has a severe inflection, the contact process 

can fail for the contact formulation, so, in order to describe the arbitrary cross-section, the convective coordinate 

is not enough, and other beam elements and formulation are needed. 

 

⎩
⎪
⎨

⎪
⎧ΓA,𝜁𝜁𝐴𝐴 ∙ (ΓA − ΓB) = 0
ΓA,𝜃𝜃𝐴𝐴 ∙ (ΓA − ΓB) = 0
ΓB,𝜁𝜁𝐵𝐵 ∙ (ΓA − ΓB) = 0
ΓB,𝜃𝜃𝐵𝐵 ∙ (ΓA − ΓB) = 0

 

Γ(𝜁𝜁,𝜃𝜃) = 𝑥⃗𝑥(𝜁𝜁) + 𝑎⃗𝑎(𝜁𝜁,𝜃𝜃) 
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Figure 3.8 Severe inflection, sharped shape (not satisfied 𝑪𝑪𝟏𝟏-continuous) 

 

3.2 Improved formulation – multiple contact formulation 

3.2.1 Concept of line-to-line contact 

 
Figure 3.9 Kinematics of line-to-line contact [6] 

 In line-to-line contact, the minimum distance is not fixed value. From point 𝑟𝑟1(𝜉𝜉) on the slave 

element, the closest points 𝑟𝑟2(𝜂𝜂𝑐𝑐) are found. Finally, the minimum distances become function of point on the 

slave element. If the points on the slave elements are discretized, the slave points have the closest points on the 

master element. The closest point 𝜂𝜂𝑐𝑐 in the master beam to a given slave point 𝜉𝜉 is determined by the minimal 

distance function as follow,  

(3-32) 

in which, the distance function is given by 𝑑𝑑(𝜉𝜉, 𝜂𝜂) = ‖𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂)‖. 

In similar to the point-to-point contact, the orthogonality condition is given, but compared to the point-to-point 

contact, only one condition is given as 

(3-33) 

As you can see from the equation (3-33), the orthogonality condition consists of a function for slave point 𝜉𝜉, so 

the closest master point 𝜂𝜂𝑐𝑐 is determined according to the slave point 𝜉𝜉.  

Using the minimal distance function, equation (3-32), the gap function is suggested for contact determination. 

𝑑𝑑𝑢𝑢𝑢𝑢(𝜉𝜉) = min𝑑𝑑(𝜉𝜉, 𝜂𝜂) = 𝑑𝑑(𝜉𝜉, 𝜂𝜂𝑐𝑐) , 

𝑝𝑝2(𝜉𝜉, 𝜂𝜂) = 𝑟𝑟2,𝜂𝜂
𝑇𝑇 �𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂)�   →   𝑝𝑝2(𝜉𝜉, 𝜂𝜂𝑐𝑐) = 0 , 
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The gap function also represented the function by points on slave elements as  

 (3-34) 

From the gap function, contact determined whether it occurs. Similar to the point-to-point contact, if the gap 

function become negative value, contact occurs between the beams, but the gap function form the field along the 

slave beam in line-to-line contact case. Because the gap function is changed from the determined constant to the 

function of slave point, the potential of contact by the penalty method is changed as 

 (3-35) 

 

where 𝑙𝑙1 is length of the slave beam, and the gap function according to contact condition is given by 

 

 

and the contact force vector and the normal vector are given by 

 

 

 

 

As you can see the form of contact force and normal vector, these are parametrized to the slave point 𝜉𝜉. 

The process of contact determination and applying the contact force is as shown figure 3.2. Because the gap 

function is parametrized, the reaction force also becomes a function. The reaction force is applied as a 

distributed load. 

 

Figure 3.10 diagram of line-to-line contact situation 

 

In the point-to-point contact formulation, the unique closest point pair is required for developing the contact 

formulation. However, two beams can contact at multiple points depending on the geometrical configuration of 

beams, for example, two parallel beams or between straight beam and helical beam. Depending on the angle 

between the two beam elements, the unique closest point condition can be broken and has error by geometrical 

configuration. C. Meier suggested the contact angle condition to can use the point-to-point contact. [6] 

𝑔𝑔(𝜉𝜉) = 𝑑𝑑𝑢𝑢𝑢𝑢(𝜉𝜉) − 𝑅𝑅1 − 𝑅𝑅2 

Πc =
1
2

 𝜀𝜀 � 〈𝑔𝑔(𝜉𝜉)〉2
𝑙𝑙1

0
𝑑𝑑𝑠𝑠1, 

〈𝑔𝑔(𝜉𝜉)〉 = �𝑔𝑔
(𝜉𝜉), 𝑔𝑔(𝜉𝜉) ≤ 0

0,       𝑔𝑔(𝜉𝜉) > 0 , 

𝑓𝑓𝑐𝑐𝑐𝑐 = −𝜀𝜀〈𝑔𝑔(𝜉𝜉)〉𝑛𝑛�⃗ (𝜉𝜉), 

𝑛𝑛�⃗ (𝜉𝜉) =
𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂𝑐𝑐)
‖𝑟𝑟1(𝜉𝜉) − 𝑟𝑟2(𝜂𝜂𝑐𝑐)‖

, 
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Figure 3.11 Different geometrical configurations concerning contact angle and curvature [6] 

 

The maximal cross-section to curvature radius ratio is given by 

(3-36) 

 

where 𝜅̅𝜅 = �𝑟𝑟,𝑠𝑠𝑠𝑠�, with 𝑠𝑠 ∈ [0; 𝑙𝑙] is the coordinate according to the arc-length of the current, 

and the lower bound for the contact angle is given by 

 (3-37) 

 

Figure 3.12 Contact of two beams given contact angle 𝛂𝛂 [7] 

You can refer to the reference paper [8] for detailed derived process. The line-to-line formulation search all 

discretized point in the slave beam, so the calculation accuracy is higher, but the time performance is poor than 

the point-to-point contact method. Therefore, the line-to-line method and point-to-point method should be selected 

depending on the problem situation. Similar to the point-to-point contact, the line-to-line contact formulation is 

also developed based circular cross-section. If use the line-to-line contact formulation at arbitrary cross-section, 

the maximal cross-section to curvature radius ratio should be redefined according to the shape of the cross-section. 

 

 

 

 

 

 

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑅𝑅

𝑚𝑚𝑚𝑚𝑚𝑚 (1
𝜅̅𝜅)

 , 

α > 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = arccos (1 − 2𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚) 
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Chapter 4. Contact Algorithm 

 

In this chapter, the contact detection algorithm is introduced. The process of closest point searching 

and determination of contact are explained. 

Before applying force, the closest surface points are searched through global and local search. In the 

local search, the contact possibility of the element edges are determined because of decreasing in cost. After the 

closest edge points are searched, the external forces are applied. If the beam converge through force step without 

contact force, the contact determination is performed. If contact occurs between the beams, the contact forces 

are applied until the gap is converged in the tolerance.  

 

 4.1. Global and local search 

  

 

 
 

 

 Using the beam nodes, the closest nodal points are searched. If a beam is circular cross-section, the 

direction between the closest nodal points on the beam centerline and the direction between the closest surface 

points on the beam are same direction, and the closest surface points are on the line connecting the closest nodal 

points, so the contact forces apply on a same position in the two cases. However, in case of an arbitrary cross-

section, the closest surface points may not be on the line connecting the closest nodal points, so applied points of 

the contact force are different in the two cases. Therefore, the closest surface or edge points should be searched. 

However, searching along all discretized surface or edge points takes a lot of time, so the closest surface points 

are searched based on the found closest nodal points. This process of finding the closest nodal point is called 

‘global search’. 

 

Figure 4.2 Difference of closest points with circular and arbitrary cross-section 

 

Figure 4.1 Global search – searching between beam nodes 
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Based on the found closest nodal points, the closest surface point searching is performed between 

edges of the cross-sectional plane about the beam centerline point. Let call it ‘local search’. The local search is 

performed together with both side elements of the element with the closest nodal points. For example, if closest 

nodal points are in the element i in one beam and in the element j in another beam respectively, elements from i-

1 to i+1 in one beam and elements from j-1 to j+1 are used in searching of the closest surface points. In the 

candidate elements using searching, the beam centerline discretize through the interpolation of beam nodal 

points on the element. This centerline points have each cross-section including the centerline point. For 

searching of the closest surface points, the edges of cross-section including each centerline point are used. 

 

    

 

 

 

 The local search is performed between edges of cross-section including the discretized beam 

centerline point. If searching is performed for all edges, it takes a lot of time. Therefore, the contact possibility 

of edge is determined using the positional relationships between the cross-sections. At the first time, the edges 

are determined whether the edges are in the surface or not. The edges in inner side are not used for the local 

search. This possibility information is given by the cross-sectional shape and placement of the cross-sectional 

elements, so the possibility information does not change by the geometry configuration of beams, thus it can be 

given as initial information. 

 

 

 

Figure 4.3 Local search – searching between beam edges 
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To the next, the positional relationships between elements of the cross-section are used in 

determination of contact possibility. If dot product between the relative position vector and the normal vector of 

edge is positive, then that edge can contact and the edge is used for local search. This contact possibility 

information is changed by the geometrical configuration of beams, so the possibility is checked in each step 

between each cross-sectional elements.  

 

 

  

 

 Using the contact possibility information by two determination steps, the closest surface points on 

beams are searched faster than case without possibility information. Through the local search, information as 

beam centerline points on the cross-section of the closest surface point, edge with the closest surface points and 

the positions of the closest surface points are saved. If there are a multiple cross-sectional elements, this 

information is recorded every number of cases that can contact between the cross-sectional elements. 

 

Figure 4.4 Contact possibility determination – First step 

Figure 4.5 Contact possibility determination – Second step 
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Figure 4.6 Closest points are checked between every cross-sectional elements 

 

4.2. Contact determination 
 

 Let discuss new contact determination method by comparing with the existing contact search method 

 

 

 

 In case of a circular cross-section, contact is determined using the radii of beams. The contact 

condition is giving as 𝑔𝑔 = 𝑑𝑑 − 𝑅𝑅1 − 𝑅𝑅2 < 0. This contact search method is very simple, but it cannot use in 

noncircular cross section. Searching of the closest points is performed along the beam centerline. Therefore, this 

method applies the contact force toward the center of beams. As figure 4.2, the position and direction applied 

the contact force are different between case of applied in the center of beam and case of applied in the edge or 

surface of beams. Many noncircular cross section cases is applied the contact force in various direction.  

Figure 4.7 Contact search of circular cross-section 
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Figure 4.8 Difference of applying contact force on circular and non-circular cross-sections 

 

 
Figure 4.9 Contact search of rectangular cross-section [4] 

 

 P. Litewka, P. Wriggers, suggests the contact determination method in 2002 [4]. In case of rectangular 

cross-section, contact is determined in the edge points of beams. As figure 4.7, the closest edge points are 𝐶𝐶𝑠𝑠𝑠𝑠 

and 𝐶𝐶𝑚𝑚𝑚𝑚 respectively, and the beam centerline points of the cross-section where the closest edge points exist 

are 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝐶𝐶𝑚𝑚𝑚𝑚 respectively. The distance vector connecting edge points 𝐶𝐶𝑠𝑠𝑠𝑠, 𝐶𝐶𝑚𝑚𝑚𝑚 and the vector 
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connecting points edge point and beam centerline point make angles. This angle is 𝛼𝛼𝑠𝑠 and 𝛼𝛼𝑚𝑚 respectively. 

Using this two angle, the contact condition is giving as cos𝛼𝛼𝑚𝑚 < 0, cos𝛼𝛼𝑠𝑠 < 0.  

 

    

Figure 4.10 Unstable example of edge contact searching 

This method cannot use in non-rectangular cross section even case of quadrilateral cross section, and 

there are counter examples in extreme cases and often unstable searching results are shown in some cases, 

especially two beams or two cross-sections are parallel, problem can occur as figure 4.10.  

 

 

   

Figure 4.11 Contact search of arbitrary cross-section 
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New contact determination method is used arbitrary cross-sections. The plane elements are divided 

into several quadrilateral elements. Figure 4.11 is the cross-section that has the closest points searched by global 

and local searching, and the edge point B found in local search is used contact determination process. About the 

edge point B on the beam B, the point B can lie on other plane element on the cross-section having the closest 

points on beam A. To determine whether the point B is in the plane element on the beam A, the contact 

determination process is performed as  

 

 

 

 

(4-1) 

where point 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4 is the cross-sectional nodal point of plane element on beam A, and point 𝐵𝐵 is the 

edge point B found in the closest point searching. The detailed situation is shown in the figure 4.11. If four 

conditions of equation (4-1) are satisfied all, searching method determine that contact occur. Because the contact 

determination method use the geometrical configuration of the cross-sectional plane element, this method can be 

performed not only rectangular elements but also any quadrilateral elements. For using this method, the edges of 

plane element should be straight line. If the edges are not straight line as curve, the shape needs to be replaced by 

several straight lines. In addition, internal angle of quadrilateral element is not more than 180 degrees. If plane 

elements are not quadrilateral but polygon shape with more than four edges, condition equations (4-1) increase to 

the number of edges. For example, the plane element is octagonal shape, condition equations increase to 8 

equations. However, plane element has severe inflection as I-shape or H-shape or etc., the plane element should 

be divided to sub-elements as convex shape or quadrilateral shape that internal angle is not more than 180 degrees. 

 

Figure 4.12 Octagonal shape example – this case requires eight condition equations 

 

 

 

 

𝐴𝐴1𝐴𝐴2����������⃗ ∙ 𝐴𝐴1𝐴𝐴4����������⃗ < 𝐴𝐴1𝐴𝐴2����������⃗ ∙ 𝐴𝐴1𝐵𝐵�������⃗  

𝐴𝐴2𝐴𝐴3����������⃗ ∙ 𝐴𝐴2𝐴𝐴1����������⃗ < 𝐴𝐴2𝐴𝐴3����������⃗ ∙ 𝐴𝐴2𝐵𝐵�������⃗  

𝐴𝐴3𝐴𝐴4����������⃗ ∙ 𝐴𝐴3𝐴𝐴2����������⃗ < 𝐴𝐴3𝐴𝐴4����������⃗ ∙ 𝐴𝐴3𝐵𝐵�������⃗  

𝐴𝐴4𝐴𝐴1����������⃗ ∙ 𝐴𝐴4𝐴𝐴3����������⃗ < 𝐴𝐴4𝐴𝐴1����������⃗ ∙ 𝐴𝐴4𝐵𝐵�������⃗  
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4.3. Contact formulation 

   
Figure 4.13 A pair of beams and closest edge points 

 The contact formulation process is similar to formulation of the point-to-point contact. However, the 

point-to-point contact is developed the formulation about the beam centerline. Therefore, the formulation process 

is modified from about the beam centerline to about the line of beam surface, and the line of beam surface is 

represented a parameter of the beam node. The formulation of point-to-point contact is in chapter 3.1.1 and 3.1.3. 

Here is review of point-to-point contact as 

 Orthogonality condition 

(3-2a) 

  

 Gap function 

 (3-3a) 

 Normal unit vector 

 (3-13) 

 

As you can see from the equations, the point-to-point contact formulation is developed along the beam 

centerlines, 𝑟𝑟1(𝜉𝜉) and 𝑟𝑟2(𝜂𝜂). The position vector of 3D degenerated beam in chapter 2 is given by 

(2-4) 

where  

�
𝑟𝑟1,𝜉𝜉
𝑇𝑇 �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� = �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� ∙ 𝑟𝑟1,𝜉𝜉 = 0
𝑟𝑟2,𝜂𝜂
𝑇𝑇 �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� = �𝑟𝑟2(𝜂𝜂) − 𝑟𝑟1(𝜉𝜉)� ∙ 𝑟𝑟2,𝜂𝜂 = 0

 , 

𝑔𝑔 = ‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖ − (𝑅𝑅1 + 𝑅𝑅2) 

𝑛𝑛�⃗ =
𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)
‖𝑟𝑟2(𝜂𝜂𝑐𝑐) − 𝑟𝑟1(𝜉𝜉𝑐𝑐)‖  . 

𝑥⃗𝑥(𝑚𝑚) = �ℎ𝑘𝑘(𝑟𝑟)𝑥𝑥𝑘𝑘����⃗ + �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑦𝑦�𝑘𝑘(𝑚𝑚)𝑉𝑉𝑦𝑦�����⃗
𝑘𝑘

+ �ℎ𝑘𝑘(𝑟𝑟)
𝑞𝑞

𝑘𝑘=1

𝑧𝑧𝑘̅𝑘(𝑚𝑚)𝑉𝑉𝑧̅𝑧���⃗
𝑘𝑘

,
𝑞𝑞

𝑘𝑘=1
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 (2-5) 

 

In equation (2-4) and (2-5), the coordinate 𝑟𝑟 is longitudinal direction and 𝑠𝑠, 𝑡𝑡 are tangential direction on the 

cross-section. In closest surface points, the tangential line at the closest point on beam surface consist of the 

parameter 𝑟𝑟, and the cross-sectional parameters 𝑠𝑠, 𝑡𝑡 are fixed value by position of the closest point. So 

tangential line at the closest point 𝑥𝑥1(ξc) is given by 

 (4-2) 

where 𝑠𝑠𝑐𝑐 , 𝑡𝑡𝑐𝑐 are the fixed value by determining of the closest point. To configure the tangential line 𝑥𝑥2����⃗  on 

another beam, same process applies to another beam. Using the surface tangential line 𝑥𝑥1���⃗  and 𝑥𝑥2����⃗ , the 

formulations of point-to-point contact are modified as 

 Orthogonality condition 

(4-3) 

  

 Gap function 

 (4-4) 

 Normal unit vector 

 (4-5) 

 

These conditions (4-3) to (4-5) are applied the process of contact formulation in chapter 3.1.3. 

 

𝑦𝑦�𝑘𝑘(𝑚𝑚) = �ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡)𝑦𝑦�𝑘𝑘𝑗𝑗(𝑚𝑚),
𝑝𝑝

𝑘𝑘=1

    𝑧𝑧𝑘̅𝑘(𝑚𝑚) = �ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡)𝑧𝑧𝑘̅𝑘𝑗𝑗(𝑚𝑚),
𝑝𝑝

𝑘𝑘=1

 

𝑥𝑥1���⃗ = 𝑥𝑥1���⃗ (𝑟𝑟, 𝑠𝑠𝑐𝑐 , 𝑡𝑡𝑐𝑐) = 𝑥𝑥1���⃗ (𝜉𝜉, 𝑠𝑠𝑐𝑐 , 𝑡𝑡𝑐𝑐) = 𝑥𝑥1���⃗ (𝜉𝜉) 

�
𝑥⃗𝑥1,𝜉𝜉
𝑇𝑇 �𝑥⃗𝑥2(𝜂𝜂) − 𝑥⃗𝑥1(𝜉𝜉)� = �𝑥⃗𝑥2(𝜂𝜂) − 𝑥⃗𝑥1(𝜉𝜉)� ∙ 𝑥⃗𝑥1,𝜉𝜉 = 0

𝑥⃗𝑥2,𝜂𝜂
𝑇𝑇 �𝑥⃗𝑥2(𝜂𝜂) − 𝑥⃗𝑥1(𝜉𝜉)� = �𝑥⃗𝑥2(𝜂𝜂) − 𝑥⃗𝑥1(𝜉𝜉)� ∙ 𝑥⃗𝑥2,𝜂𝜂 = 0

 , 

𝑔𝑔 = ‖𝑥⃗𝑥2(𝜂𝜂𝑐𝑐) − 𝑥⃗𝑥1(𝜉𝜉𝑐𝑐)‖ 

𝑛𝑛�⃗ =
𝑥⃗𝑥2(𝜂𝜂𝑐𝑐) − 𝑥⃗𝑥1(𝜉𝜉𝑐𝑐)
‖𝑥⃗𝑥2(𝜂𝜂𝑐𝑐) − 𝑥⃗𝑥1(𝜉𝜉𝑐𝑐)‖  . 
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Chapter 5. Numerical Results 

 
5.1 Confirmation of difference between 3D beam and 3D solid element 
 
 For validation of the contact formulation, commercial software ANSYS is used in the validation 

examples. However, only contact between circular beams is possible in ANSYS. Most of commercial software are 

not supported beam contact between non-circular beams. Therefore, examples are validated using contact between 

3D solid elements. 3D solid element and 3D beam have different kinematics, so analysis result can be different. 

In this sub-chapter, differences between 3D solid element in ANSYS and 3D beam element are compared by 

examples of beam deflection. 

 The example is the cantilever straight beam and the tip of beam is displaced -30 along Z-axis. 

 
Figure 5.1 Cantilever square beam 

Young’s modulus E is 20 × 105 and Poisson’s ratio is 0.3. The length of beam L is 100, and the thickness of 

square beam b is 1. Results are obtained as 

Reference result of ANSYS Result of code – 10 elements Result of code – 100 elements 

𝑢𝑢𝑥𝑥 -5.576 𝑢𝑢𝑥𝑥 -5.4207 𝑢𝑢𝑥𝑥 -5.4368 

𝑢𝑢𝑦𝑦 ≈ 0 𝑢𝑢𝑦𝑦 ≈ 0 𝑢𝑢𝑦𝑦 ≈ 0 

𝑢𝑢𝑧𝑧 -30 𝑢𝑢𝑧𝑧 -30 𝑢𝑢𝑧𝑧 -30 

Table 5.1 Results of cantilever square beam deflection 

The displacements of z-axis direction are given value, and the displacements of y-axis direction are near zero 

because beam is not affected in y-axis direction due to force direction. Therefore, the displacements of x-axis 

direction are compared. These values have error of about 3 percent. The difference depending on the number of 

elements is insignificant. In the examples, there will be errors due to difference of element. 

 

 

Fixed 
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5.2 Contact between rectangular cross-section beams 
  

The example is in paper ‘Contact between 3D beams with rectangular cross-sections’, Litewka and 

Wriggers, 2002 [4]. The configuration and properties of the example are shown in figure 5.2 and table 5.2. In the 

example, the cross-section of beam is rhombic (diamond shape), so contact points exist at the edge of the beams. 

In the paper, rectangular 3D Timoshenko beam element is used, and contact is checked as figure 4.7. 

 
 Figure 5.2 Contact between rectangular cross-section beams 

  
Table 5.2 Properties of two rectangular cross-section beams 

 

Upper beam Lower beam 

𝐸𝐸 (Young’s modulus) 20 × 103 𝐸𝐸 (Young’s modulus) 30 × 103 

𝜐𝜐 (Poisson’s ratio) 0.3 𝜐𝜐 (Poisson’s ratio) 0.17 

𝑏𝑏𝑠𝑠 = 𝑏𝑏𝑡𝑡 5 𝑏𝑏𝑠𝑠 = 𝑏𝑏𝑡𝑡 10 

𝐿𝐿 100 𝐿𝐿 100 

Initial gap 1.393 
The tip of upper beam is displaced -30 along Z-axis toward 

16 elements 
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Figure 5.3 Result of contact between rectangular cross-section beams 

 

Reference result of paper Reference result of ANSYS Result of code 

Upper beam Upper beam Upper beam 

𝑢𝑢𝑥𝑥 3.261 𝑢𝑢𝑥𝑥 2.1561 𝑢𝑢𝑥𝑥 2.314 

𝑢𝑢𝑦𝑦 -8.260 𝑢𝑢𝑦𝑦 -8.3781 𝑢𝑢𝑦𝑦 -8.67 

𝑢𝑢𝑧𝑧 -30 𝑢𝑢𝑧𝑧 -30 𝑢𝑢𝑧𝑧 -30 

Lower beam Lower beam Lower beam 

𝑢𝑢𝑥𝑥 -0.103 𝑢𝑢𝑥𝑥 -0.0968 𝑢𝑢𝑥𝑥 -0.07 

𝑢𝑢𝑦𝑦 -1.331 𝑢𝑢𝑦𝑦 -2.2207 𝑢𝑢𝑦𝑦 -0.67 

𝑢𝑢𝑧𝑧 -4.147 𝑢𝑢𝑧𝑧 -3.5772 𝑢𝑢𝑧𝑧 -3.59 

Table 5.3 Results of contact between rectangular cross-section beams 

 For the cross validation, result of ANSYS is used. In analysis of ANSYS, use fine mesh and 3D solid 

element contact. In the upper beam where displacement control is applied, the results show an error of between 3 

and 7 percent. this error is similar to the error due to the element difference compared in 5.1. In the lower beam, 

which changes due to contact with the upper beam, the result is much more error than for the upper beam. In 

particular, the error is larger in the non-main displacement part as 𝑢𝑢𝑦𝑦 of the lower beam. This error difference 

seems to be due to the difference in direction of the contact force or contact method, but the displacement results 

have the same order. The reference of the paper and the result of ANSYS show a similar difference. If consider 

difference between reference of the paper and the results of ANSYS, the results of code is an acceptable range of 

analysis. 
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5.3 Contact between beams for four plane elements in cross-section 
 
 In this example, two cantilever beams having an octagonal cross-section are used. The configuration and 

properties of the example are shown in figure 5.4 and table 5.4. Similar to the example in 5.2, contact points will 

exist at the edge of the beams, but as the beam deforms downward, the contacting edge will change.  

 

 
Figure 5.4 Contact between beams for four plane elements in cross-section 

 

 

 

 

 

 

Table 5.4 Properties of two beams for four plane elements in cross-section 

 

 

Beams 

𝐸𝐸 (Young’s modulus) 20 × 103 

𝜐𝜐 (Poisson’s ratio) 0.3 
𝑟𝑟 2.5 
𝐿𝐿 100 

Initial gap 1 
The tip of upper beam is displaced -30 along Z-axis toward  

10 elements 
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Reference result of ANSYS Result – 40step Result – 100step 

Upper beam Upper beam Upper beam 

𝑢𝑢𝑥𝑥 3.1307 𝑢𝑢𝑥𝑥 3.2270 𝑢𝑢𝑥𝑥 3.198 

𝑢𝑢𝑦𝑦 -5.9954 𝑢𝑢𝑦𝑦 -5.9418 𝑢𝑢𝑦𝑦 -6.02 

𝑢𝑢𝑧𝑧 -30 𝑢𝑢𝑧𝑧 -30 𝑢𝑢𝑧𝑧 -30 

Lower beam Lower beam Lower beam 

𝑢𝑢𝑥𝑥 -1.7615 𝑢𝑢𝑥𝑥 -1.2797 𝑢𝑢𝑥𝑥 -1.40 

𝑢𝑢𝑦𝑦 -4.1277 𝑢𝑢𝑦𝑦 -2.9222 𝑢𝑢𝑦𝑦 -3.04 

𝑢𝑢𝑧𝑧 -17.047 𝑢𝑢𝑧𝑧 -15.3463 𝑢𝑢𝑧𝑧 -15.81 

Table 5.5 Results of contact between beams for four plane elements in cross-section 

  

 

 

Figure 5.5 Results of contact between beams for four plane elements in cross-section 



36 

 

Similar to the example in 5.2, in the upper beam where displacement control is applied, the results 

show errors within 2 percent, the error is similar to the error due to the element difference compared in 5.1. On 

the other hand, in the lower beam, which changes due to contact with the upper beam, the result is much more 

error than for the upper beam. In particular, the error is larger in the non-main displacement part as 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦 of 

the lower beam. This error difference seems to be due to the difference in direction of contact force or contact 

method, but the displacement results have the same order in both results. In addition, the more force steps, the 

more converging on the result of the ANSYS reference. This is because if the displacement is larger than the 

elements size, an error occurs in the contact process.   

 

5.4 Contact between square hollow rectangular beam and square beam 
 

In this example, a cantilever beam having a hollow rectangular cross-section and a cantilever beam 

having a square cross-section are used. The configuration and properties of the example are shown in figure 5.6 

and table 5.6. In existing beam-to-beam contact methods, there is no way to analysis beams having a cross-section 

of I, H and etc. In the example, as the inner beam moves to the left and up, the inner beam contact the inner 

surface of the hollow beam.  
 

 
Figure 5.6 Contact between square hollow rectangular beam and square beam 
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Figure 5.7 Results of contact between square hollow rectangular beam and square beam 

 

Hollow beam Inner beam 
𝐸𝐸 (Young’s modulus)  𝐸𝐸 (Young’s modulus) 20 × 105 
𝜐𝜐 (Poisson’s ratio) 0.3 𝜐𝜐 (Poisson’s ratio) 0.3 

𝑡𝑡 2 𝑏𝑏𝑖𝑖 2 
𝐿𝐿 70 𝐿𝐿 100 

Initial gap 2 
The tip of inner beam is displaced 7.5 along Z-axis toward 
                    displaced -7.5 along Y-axis toward 

10 elements 

Table 5.6 Properties of square hollow rectangular beam and square beam 
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Reference result of ANSYS Result – 50step Result – 100step 

Hollow beam Hollow beam Hollow beam 

𝑢𝑢𝑥𝑥 -0.144 𝑢𝑢𝑥𝑥 -0.18 𝑢𝑢𝑥𝑥 -0.18 

𝑢𝑢𝑦𝑦 -1.126 𝑢𝑢𝑦𝑦 -0.853 𝑢𝑢𝑦𝑦 -0.886 

𝑢𝑢𝑧𝑧 1.126 𝑢𝑢𝑧𝑧 0.874 𝑢𝑢𝑧𝑧 0.901 

Inner beam Inner beam Inner beam 

𝑢𝑢𝑥𝑥 -1.379 𝑢𝑢𝑥𝑥 -0.86 𝑢𝑢𝑥𝑥 -0.9 

𝑢𝑢𝑦𝑦 -7.5 𝑢𝑢𝑦𝑦 -7.5 𝑢𝑢𝑦𝑦 -7.5 

𝑢𝑢𝑧𝑧 7.5 𝑢𝑢𝑧𝑧 7.5 𝑢𝑢𝑧𝑧 7.5 
Table 5.7 Results of contact between square hollow rectangular beam and square beam 

 

Unlike to the example in 5.2 and 5.3, both the inner beam and the hollow beam have relatively large 

errors than the error due to the element difference. The difference from the previous examples is that this example 

uses parallel beams. Parallel beams can have an error when it is solved as the point-to-point contact method 

because the multiple contact points can exist along the longitudinal direction of beam [6]. In the results, the hollow 

beam has a larger displacement in the longitudinal direction than the reference, the inner beam has a smaller 

displacement in the longitudinal direction than the reference. This seems to be the result of pushing in the 

longitudinal direction because a concentrated load is applied at one contact point. As the hollow beam is pressed 

in the longitudinal direction, the displacement in the cross-sectional direction is relatively small. However, the 

displacement results still have the same order in both results. It can be confirmed that the beam of the shape, which 

cannot be analyzed previously, can be solved as an order similar to that of a commercial software. In addition, the 

more force steps, the more converging on the result of the ANSYS reference. This is because if the displacement 

is larger than the elements size, an error occurs in the contact process. 
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Chapter 6. Conclusions 
 

In this paper, suggest modeling of beam-to-beam contact method with arbitrary cross-sections. For 

contact method, 3D beam elements with arbitrary cross-sections are used. 3D beam elements are made based on 

3D solid elements and degeneration of solid elements. These elements have information of cross-section in 

beam node. And these elements have warping degree of freedom. 

Point-to-point contact method is widely used beam contact method. This formulation searches closest 

points using orthogonality conditions. Most of applied papers about beam-to-beam contact are based point-to-

point contact. Based on point-to-point contact, multiple-point contact between beams was also developed. But 

point-to-point contact method was developed on the basis of circular cross-section beams. beam-to-beam 

contact with rectangular cross-sections is suggested, but that method can’t use for arbitrary cross sections such 

as I beam, L beam and even arbitrary quadrilateral cross-section. 

For simulate beam contact with arbitrary cross-sections, contact formulation based on point-to-point 

contact is modified. First, closest surface points are searched. For efficient searching of closest points, search 

step is divided into two parts, global search and local search, and determination of contact possibility is 

performed in local search. To the next, contact formulation is performed along surface line of beam similar to 

point-to-point contact. Finally, validation was performed through several examples. The results are converged 

with the results of 3D solid elements in commercial software, and the results are shown that can solve examples 

where existing beam-to-beam contact methods cannot be solved.  
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