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초 록 

본 학위 논문에서는 변형률 완화 요소법(strain-smoothed element method; SSE method)을 적용한 다각형 

유한 요소를 제안하고, 변형률 완화 요소법이 적용된 3절점 삼각 요소에서의 체적 잠김을 개선하는 방안을 

제안하고자 한다. 변형률 완화 요소법은 평활화된 변형률을 기반으로 별도의 평활 도메인 없이 요소 내에 

선형의 변형률장을 구성하며, 삼각형 및 사각형 요소에 적용되어 많은 성능 개선을 이루었다. 다각형 요소는 

격자 생성의 유연성 등의 이점이 있어 여러 활용방안이 모색되어왔으나 공학 문제에서의 활용을 위해서는 

요소의 성능 개선이 여전히 필요하며, 변형률 완화 요소법(SSE)을 이용하여 개선된 다각형 유한요소를 

제안하고자 한다. SSE 기법을 다각형 요소에 적용하기 위하여, 요소의 삼각분할을 통한 부분 선형 

형상함수(piecewise linear shape function)가 이용되며 각 요소를 단위로 평활화된 변형률장이 구성된다. 

또한 비압축성에 가까운 재료의 해석 시 체적 잠김이 발생하는데, 3절점 삼각 요소의 경우 보간 함수의 

차수가 낮아 이를 완화하는데 어려움이 있으며, 평활화가 적용된 변형률 완화 3절점 삼각 요소 또한 체적 

잠김 개선에 어려움이 있었다. 본 연구에서는 요소의 적분점들에 할당되어 있던 변형률로부터 절점에서의 

평활화된 체적 변형률을 새로 정의하고, 절점에서의 체적 변형률로부터 요소 내의 체적 변형률장을 구성한다. 

제안하는 요소의 성능을 검증하기 위하여 다양한 수치 예제에서의 수렴 거동을 관찰하였다. 

핵 심 낱 말  유한요소해석, 변형률 완화 요소법, 솔리드 요소, 삼각형 요소, 다각형 요소, 체적 잠김 

Abstract 

Herein, we present effective polygonal finite elements to which the strain-smoothed element (SSE) method is applied. Recently, 

the SSE method has been developed for conventional triangular and quadrilateral finite elements; furthermore, it has been 

shown to improve the performance of finite elements. Polygonal elements enable various applications through flexible mesh 

handling; however, further development is still required to use them more effectively in engineering practice. In this study, 

piecewise linear shape functions are adopted, the SSE method is applied through the triangulation of polygonal elements, and 

a smoothed strain field is constructed within the element. In addition, volumetric locking occurs when analyzing materials that 

are close to incompressible. In the case of 3-node triangular element, the lower order of interpolation functions makes it 

challenging to alleviate the locking. Furthermore, the 3-node strain-smoothed element is also facing difficulties in alleviating 

volumetric locking. In this study, a new definition of the smoothed volumetric strain at the nodal points is derived from the 

strains assigned at the integration points, and the volumetric strain field within the element is formed from the nodal smoothed 

volumetric strains. The strain-smoothed polygonal elements and the strain-smoothed 3-node triangular element with volumetric 

locking alleviation pass basic tests and show improved convergence behaviors in various numerical problems. 

Keywords Finite element analysis, Strain-smoothed element method, Solid elements, Triangular elements, Polygonal elements, 

Volumetric locking  
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Chapter 1. Introduction 

 

The finite element method (FEM) has been widely used to analyze problems in various scientific and engineering 

fields [1-3]. The accuracy of finite element solutions relies upon the quality of the meshes used. However, because 

the geometries used in engineering practice are very complex, considerable effort is required to create well-shaped 

meshes. Conventional triangular and quadrilateral finite elements have usually been preferred owing to their 

efficiency and simplicity [4]. 

 

Recently, polygonal finite elements have been investigated as they can provide a high level of flexibility in mesh 

generation, transition, and refinement [4-20]; simpler meshing algorithms are possible, such as conformal 

decomposition [5-8] and Voronoi tessellations [9,10]. They can effectively solve various problems such as contact 

problems on non-conformal meshes [6,11], crack propagation problems with minimum remeshing [8,12], and the 

modeling of polycrystalline materials [13]. Further research is required to develop polygonal finite elements that 

provide more accurate and reliable solutions. 

 

Polygonal finite elements typically adopt barycentric coordinates to construct shape functions, such as Wachspress 

coordinates [14] and mean value coordinates [15]. In these coordinates, the shape functions are constructed in the 

form of rational functions using the sub-areas or interior angles of an element. Then, it is difficult to accurately 

calculate the stiffness matrix through numerical integration. Numerous studies pertaining to the numerical 

integration of polygonal elements have been conducted [4,16-20]. Instead, piecewise linear shape functions can 

be introduced such that numerical integration can be performed easily for each sub-triangle of the polygonal 

element [4,20]. 

 

Various strain smoothing techniques have been successfully developed for the FEM [21-33]. A distinct feature is 

that no additional degrees of freedom are required for the solution improvement. In well-known smoothed finite 

element methods (S-FEMs), special smoothing domains are constructed based on a cell, node, edge, or face [22-

30]. In these methods, the neighboring strains for performing the smoothing technique are determined according 

to the smoothing domains, and constant strain fields are constructed in the domains. 

 

The recently proposed strain-smoothed element (SSE) method provides further improved solutions without 

requiring the construction of specific smoothing domains, unlike existing strain smoothing techniques. The linear 

strain field within an element is formed from the constant strain fields of neighboring elements obtained from 

simple strain smoothing. The SSE method has been successfully applied to 3-node triangular and 4-node 

quadrilateral 2D solid elements, and a 3-node MITC3+ shell element [31-33]. Recently, a variational framework 

for the SSE method has been studied [34].  
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In this study, the SSE method is applied to polygonal finite elements to generate strain-smoothed polygonal 

elements. Piecewise linear shape functions are employed and strain smoothing is performed via the triangulation 

of polygonal elements. The polygonal elements have a smoothed strain field within the element, which is 

constructed by assigning smoothed strain values to the vertices of the sub-triangles. The proposed elements show 

further improved convergence behaviors compared with the existing polygonal elements in various numerical 

examples. 

 

In addition, volumetric locking is a phenomenon that occurs in most elements depending on the material properties. 

As the Poisson’s ratio approaches 0.5, the bulk modulus becomes significantly larger, resulting in a stiffening of 

the elements. To address this issue, numerous studies have been conducted. For example, research has explored 

methods to soften the elements through reduced integration or has introduced additional degrees of freedom 

related to pressure to resolve the problem [40-43]. Reduced integration allowed for an easier way to soften 

elements without increasing degrees of freedom, but this led to the occurrence of spurious zero-energy modes (or 

hourglass modes). Later, a method called ‘selective reduced integration’ was proposed, which assumed strain 

related to volumetric changes and performed reduced integration only for the volumetric terms. This approach 

can be easily applied to many elements. 

 

Smoothing elements have significantly improved the performance of elements but still suffer from the same issue 

of volumetric locking. To alleviate the locking, the node-based smoothing can be applied, which has the feature 

of being overly-soft compared to other elements, thus avoiding volumetric locking [44]. However, there is a slight 

issue with the performance of the element. For the 4-node rectangular element with the SSE method, the assuming 

constant smoothed volumetric strain field is applied to address volumetric locking [33]. Like the selective reduced 

integration, assuming constant volumetric strain can be applied to various elements, including smoothed elements. 

However, it cannot be directly applied to 3-node triangular elements, where the strain field of the element is 

already constant.  

 

In this study, the new volumetric strain is defined using the smoothed strains assigned to the integration points 

through strain-smoothed element method. Similar to the application of selective reduced integration, the 

volumetric and deviatoric strains are assumed using the smoothed strains. The deviatoric terms are integrated 

within the element similar to the process in SSE, and new volumetric strain is obtained by performing node-wise 

smoothing process using the smoothed strains from the integration points near the node. The proposed element, 

the strain-smoothed 3-node triangular finite element with nodal volumetric smoothed strains, provides improved 

convergence performance in situations far from volumetric locking, and the element exhibits convergence 

behavior with alleviated volumetric locking, even in situations where volumetric locking occurs in various 

numerical examples.   
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Chapter 2. Strain-smoothed polygonal finite elements 

 

In this chapter, the SSE method is applied to polygonal finite elements and improved performance of the strain-

smoothed polygonal finite elements is demonstrated through numerical examples. For strain smoothing between 

neighboring elements and numerical integration of polygonal elements, polygonal elements are divided into 

several sub-triangles based on the center point, and the piecewise linear shape functions are utilized. The proposed 

elements are constructed of piecewise linear strain field within the elements through Gauss integration points in 

the sub-triangles.  

 

we briefly introduce the strain-smoothed element method and polygonal elements, and present the formulation of 

the strain-smoothed polygonal finite elements, including the interpolations of geometry and displacement, strain 

smoothing, strain-displacement relation, and stiffness matrix. 

 

 

2.1 Strain-smoothed element method for 2D solid elements 

 

The strain-smoothed element (SSE) method has been applied to 3-node and 4-node elements for 2D solid elements. 

To apply the SSE method, neighboring strains based on the all edges of an element are used. For the standard 3-

node triangular 2D solid element, the geometry is described by 

1 1 2 2 3 3h h h  x x x x  with  Ti i ix yx , (2.1) 

where ix  is the position vector of node i  in the global Cartesian coordinate system, and ( , )ih r s  correspond 

to the shape functions of the standard isoparametric procedure given by 

1h r , 2h s , 3 1h r s   . (2.2) 

 

The displacement of the standard 3-node triangular 2D solid element is expressed by 

1 1 2 2 3 3h h h  u u u u  with  Tk k ku vu , (2.3) 

where iu  is the displacement vector of node i  in the global Cartesian coordinate system. 

Through the standard isoparametric finite element procedure [1], the strain field within the 3-node triangular 

element m  is defined as 

( ) ( ) ( )
11 22 12[ 2 ]m T m m   ε B u  with ( )

1 2 3
m    B B B B , ( )

1 2 3[ ]m Tu u u u , (2.4) 
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in which ( )mB  is the strain-displacement matrix of the element m , iB  is the strain-displacement matrix 

corresponding to node i , and ( )mu  is the nodal displacement vector of the element m . 

 

In the standard 3-node triangular element, a constant strain field is constructed within an element as shown in Fig. 

2.1(a). In the edge-based S-FEM, two neighboring strain fields based on the edge are used for smoothing process. 

The smoothed strain based on the edge is given by 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )i e e i i

e i
A A

A A
 


ε ε ε  (2.5) 

where ( )eA  and ( )iA  are the areas of the target element e  and neighboring element i , and ( )eε  and (1)ε  are 

the strains of the target element e  and neighboring element i . In the edge-based S-FEM, the smoothed strains 

are assigned into smoothing domains between two adjacent elements, as shown in Fig. 2.1(b). The smoothing 

domains are obtained by dividing each element based on the center point of the element [22]. 

 

In the SSE method, the strains of all neighboring elements are used for constructing strain fields within an element 

[31]. In a 3-node triangular element, there are three Gauss integration points, as shown in Fig. 2.1(c). In order to 

construct a strain field within the element, smoothed strain values are assigned to Gauss integration points using 

strains obtained based on the edges using the following equations, as shown in Fig. 2.1(c) 

(1) (3)
1

1
ˆ ˆ( )

2
 ε ε ε , (1) (2)

2

1
ˆ ˆ( )

2
 ε ε ε , (2) (3)

3

1
ˆ ˆ( )

2
 ε ε ε . (2.6) 

  

 
Fig. 2.1. Strain fields of 3-node triangular elements: (a) The strain fields of standard 3-node triangular elements. 

(b) The strain fields of the edge-based S-FEM within smoothing domains. Based on the edge (red line), the 

smoothing domains between two adjacent elements are formed. (c) The strain field within a 3-node triangular 

element through SSE method. The smoothed strains are assigned to the Gauss integration points. 
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For the standard 4-node quadrilateral 2D solid element, the element is divided into four sub-triangles based on the 

center point to perform the smoothing process [33]. The position vector of the center point, cx , is defined using 

the nodal position vectors ix  ( 1i  , 2, 3, 4) as follows:  

4

1

1

4c i
i

 x x  with  Ti i ix yx . (2.7) 

 

The geometry of the sub-triangle T1 of the 4-node element shown in Fig. 2.2(a) can be represented by 

1 1 2 2 3 ch h h  x x x x , (2.8) 

where ( , )ih r s   correspond to the shape functions of the standard isoparametric procedure for the 3-node 

triangular domain, 

1h r , 2h s , 3 1h r s   . (2.9) 

The geometries of other sub-triangles are also defined by own natural coordinates. 

 

For the piecewise linear shape functions in the 4-node element, piecewise constant strain fields are constructed 

based on the sub-triangles. The strain field in the k th sub-triangle of the element m  is defined as 

( ) ( ) ( )k m k m mε B u  with ( )
1 2 3 4

k m k k k k   B B B B B , ( )
1 2 3 4[ ]m Tu u u u u , (2.10) 

in which ( )k mB  is the strain-displacement matrix of k th sub-triangle of the element m , k
iB  is the strain-

displacement matrix corresponding to node i , and ( )mu  is the nodal displacement vector of the element m . 

 

Similar to the process in the triangular element, the smoothed strain based on the edge (as shown in Fig. 2.2(b)) 

is given by 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )k m k m k k

km k
k

A A
A A

 


ε ε ε  (2.11) 

where ( )k mε  and ( )m
kA  are the strain and area of the k th sub-triangle of the target element m , and ( )kε  and 

( )kA  are the strain and area of its neighboring sub-triangle, respectively. 

 

As shown in Fig. 2.2(c), smoothed strains iε  are assigned to Gauss integration points using smoothed strains 

( )ˆ iε  using the following equations,  

( ) ( 1) ( ) ( )
1( ) ( )

1

1
ˆ ˆ( )m k m k

k k km m
k k

A A
A A






 


ε ε ε  with 1k  , 2, 3, 4, (2.12) 
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in which (0) (4)ˆ ˆε ε  and ( ) ( )
0 4

m mA A . 

 
Fig. 2.2. Procedure of the SSE method in a 4-node quadrilateral element: (a) Four sub-triangles of a 4-node 

quadrilateral element. (b) The smoothed strains ( )ˆ iε . The smoothed strains are obtained through smoothing of 

neighboring strain fields based on the edge. (c) The smoothed strains iε  are assigned to the Gauss integration 

points of the quadrilateral element. 

 

 

2.2 Formulation of the strain-smoothed polygonal finite element 

 

2.2.1 Integration of polygonal elements 

 

The polygonal elements can have five or more edges; thus, it is very difficult to extend the Gauss quadrature rules 

from the triangular and quadrilateral elements to polygonal elements. In order to apply the standard Gauss 

quadrature rules, methods for dividing polygons have been proposed [4,19]. As a representative method among 

these, a polygonal element is divided into several sub-triangles based on the center point of the polygon, and 

integration is performed using standard Gauss integration points for a triangular element as shown in Fig. 2.3. 
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Fig. 2.3. Triangulation of a polygonal element and all integration points in sub-triangles. 

 

 

2.2.2 Geometry and displacement interpolations  

 

An n-sided polygonal element can be segmented into n sub-triangles based on its nodes and center point, as shown 

in Fig. 2.4(a). The position vector of the center point, cx , is defined using the nodal position vectors ix  ( 1i  , 

2,  , n ) as follows:  

1

1 n

c i
in 

 x x  with  Ti i ix yx . (2.13) 

 

The geometry of the k th sub-triangle of the polygonal element shown in Fig. 2.4 can be represented by 

1 1 2 3k k ch h h  x x x x , (2.14) 

where 1kx   and kx   refer to the set of position vectors of two neighboring nodes with 0 nx x  ; ( , )ih r s  

correspond to the shape functions of the standard isoparametric procedure for the 3-node triangular domain, 

1h r , 2h s , 3 1h r s   . (2.15) 

 

Based on Eq. (2.14), the displacement interpolation of the k th sub-triangle of the n-sided polygonal element can 

be expressed as 

1 1 2 3k k ch h h  u u u u  with  Tk k ku vu , (2.16) 

1

1 n

c i
in 

 u u , (2.17) 
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where ku  is the displacement vector of node k , and cu  is the displacement vector of the center point of the 

polygonal element. 

 

 

Fig. 2.4. (a) A polygonal element and its sub-triangles. (b) Natural coordinate system for a sub-triangle. 

 

 

2.2.3 Strain smoothing 

 

We consider the n-sided polygonal element m  in a finite element mesh, as shown in Fig. 2.5. By adopting the 

standard isoparametric finite element procedure [1], the strain field within the k  th sub-triangle of the target 

element m  is defined as 

( ) ( ) ( )
11 22 12[ 2 ]k m T k m m   ε B u  with 1k  , 2,   , n , (2.18) 

( )
1 2

k m k k k
n   B B B B , (2.19) 

1, ( 1) 2, 3, 1, ( 1) 2, 3,

1, ( 1) 2, 3, 1, ( 1) 2, 3,

1 1
0

1 1
0

T

ik x i k x x ik y i k y y
k

i

ik y i k y y ik x i k x x

h h h h h h
n n

h h h h h h
n n

   

   

 

 

     
  
      

B , (2.20) 

 ( )
1 2

Tm
n u u u u with  Ti i iu vu , (2.21) 

where ( )k mB  is the strain-displacement matrix of the k th sub-triangle, k
iB  is the strain-displacement matrix 

corresponding to node i , ik  is the Kronecker delta, and ( )mu  is the nodal displacement vector of the target 

element m , see Fig. 2.5(b) and Fig. 2.6. 
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Fig. 2.5. A mesh of polygonal elements: (a) Target element m and its neighboring elements. (b) The strains of the 

kth sub-triangle of the target element and its adjacent sub-triangle in the neighboring element. 

 

 

Fig. 2.6. Sub-triangles and nodes of an element. 

 

The n-sided polygonal element can have a maximum of n adjacent elements through its n  element edges, as 

shown in Fig. 2.5. The smoothed strain between the k th sub-triangle of the target element m  and its adjacent 

sub-triangle of the neighboring element is calculated as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )k m k m k k

km k
k

A A
A A

 


ε ε ε  with 1k  , 2,  , n , (2.22) 
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where ( )k mε   and ( )m
kA   are the (constant) strain and area of the k  th sub-triangle of the target element m  , 

respectively; ( )kε  and ( )kA  are the strain and area of its neighboring sub-triangle, respectively. If no element is 

adjacent to the k th sub-triangle, then ( ) ( )ˆ k k mε ε  is adopted [31]. 

 

It is noteworthy that ( )ˆ kε  in Eq. (2.22) is the smoothed strain representing the k th sub-triangle as shown in Fig. 

2.7(a). Additionally, we can partition the polygonal element into n sub-quadrilaterals by combining the halves of 

two neighboring sub-triangles as shown in Fig. 2.7(b). Subsequently, the smoothed strain corresponding to the k

th sub-quadrilateral of the target element m  is defined as 

( ) ( ) ( ) ( 1)
1( ) ( )

1

1
ˆ ˆ( )m k m k

k k km m
k k

A A
A A






 


ε ε ε  with 1k  , 2,  , n , (2.23) 

in which ( 1) (1)ˆ ˆn ε ε  and ( ) ( )
1 1

m m
nA A  . The smoothed strain kε  is assigned to the center point of the k th sub-

quadrilateral. 

 

The smoothed strains for all the sub-quadrilaterals in Eq. (2.23) are utilized to calculate the strain at the center 

point of the polygonal element, as shown in Fig. 2.7(b), 

( )

1

( )

1

n
m

k k
k

c n
m

k
k

A

A










ε
ε . (2.24) 

 

Subsequently, we calculate the nodal strains for the sub-triangles by assigning the strains in Eq. (2.23) to the center 

point of each sub-quadrilateral, and the strain in Eq. (2.24) to the center point of the polygonal element, as shown 

in Fig. 2.7(c). For nodal strains ( )
1
k

nε  and ( )
2
k

nε  in the k th sub-triangle, the components of the nodal strains, 

( )
1
k

n  and ( )
2
k

n , are obtained as follows:  

1( )
1 1 11 11

( )
2 22 22

(1 )

(1 )

k
k cn

k
k cn

r sr s

r sr s

 
 


       

           
, (2.25) 

where 1 1( , )r s  and 2 2( , )r s  are the natural coordinates of the allocated points of the smoothed strains 1k ε  and 

kε , respectively (see Fig. 2.7(c)).  

 

Using the nodal strains and the strain at the center point in Eq. (2.24), the smoothed strain field within the element 

is determined via the linear interpolation for each sub-triangle. Similar to Eq. (2.2), the smoothed strain field 

within the k th sub-triangle of the element m  is expressed as  
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( ) ( ) ( )
1 1 2 2 3

k m k k
n n ch h h  ε ε ε ε . (2.26) 

 

 

Fig. 2.7. Strain smoothing procedure in the strain-smoothed polygonal elements: (a) Triangulation of the 

polygonal element. The smoothed strain ( )ˆ kε  corresponding to the kth sub-triangle. (b) Quadrangulation of the 

polygonal element. The smoothed strain kε   assigned to the center point of the kth sub-quadrilateral. (c) 

Calculation of the nodal strains ( )
1
k

nε  and ( )
2
k

nε  for the k th sub-triangle. 
 

The process for obtaining the natural coordinates ( , )i ir s  in Eq. (2.25) proceeds like linear extrapolation. The 

position vector of a point kx   in the triangular domain shown in Fig. 2.8 can be expressed using the shape 

functions of the standard isoparametric procedure as follows: 

1 2 3(1 )k k k k kr s r s    x x x x , (2.27) 

where 1x , 2x , and 3x  are the position vectors of the vertices of the triangular domain; kr  and ks  are the 

natural coordinates of kx  to be determined. 

 

The natural coordinates kr  and ks  are unknown values, and the positions of vertices ( , )i i ix yx  and point kx  

are specified. Eq. (2.27) can be expressed using the following matrix equation: 

1 3 2 3 3

1 3 2 3 3

k k

k k

x x x x r x x

y y y y s y y

       
            

, (2.28) 

where ( , )i ix y  is the coordinates of ix  in the Cartesian coordinate system.  

 

Finally, the natural coordinates kr  and ks  are calculated as follows: 
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1

1 3 2 3 3

1 3 2 3 3

k k

k k

r x x x x x x

s y y y y y y

       
            

. (2.29) 

 

In general, natural coordinates in the triangular domain are defined between 0 and 1; however, if the position kx  

is located outside the domain, the natural coordinates kr  and ks  can be negative values. Using the nodal strains 

and the strain at the center point in Eq. (2.24), the smoothed strain field within the element is determined via the 

linear interpolation for each sub-triangle. 

 

 

Fig. 2.8. Position vector of an arbitrary point kx  in the triangular domain. 

 

 

2.2.4 Strain-displacement relation and stiffness matrix 

 

Let us consider the n-sided polygonal finite element m with n neighboring elements through its edges, as shown 

in Fig. 2.5. In the k th sub-triangle of the element m , the relation between the smoothed strain field and the 

nodal displacement vector is given by 

( ) ( ) ( )k m k m mε Β u  (2.30) 

with 

( )
1 2

k m
l    B B B B , (2.31) 

where ( )k mε  is the smoothed strain field of the target element m , ( )k mB  is the strain-displacement matrix of 

the k th sub-triangle, and ( )mu  is the corresponding displacement vector. 
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In Eq. (2.31), iB   ( 1i   , 2,     , l  ) denotes the strain-displacement matrices corresponding to the node i  

located on the target element or neighboring elements, see Fig. 2.5(a). It is noteworthy that the number of 

components in the strain-displacement matrix and displacement vector is determined by the number of 

neighboring elements. 

 

Finally, the stiffness matrix of the strain-smoothed polygonal finite element is obtained as follows: 

( ) ( )

1

n
m k m

k

 K K , (2.32) 

with 

( )

( ) ( ) ( ) ( ) ( )
k m

k m k m T m k m k m

V
d V K B C B , (2.33) 

where ( )k mV  is the volume of the k th sub-triangle of the element m  and ( )mC  is the material law matrix for 

the element m  . To calculate the stiffness matrix, three-point Gauss integration is used for each sub-triangle 

domain. 

 

The proposed polygonal elements are suitable for convex and weakly concave polygonal meshes satisfying the 

following condition; 

( )
1 1 1 1

1
( ) 0

2
m

k c k k c k k k k k c c kA x y x y x y x y x y x y          ,  (2.34) 

where ( )m
kA   is the signed area [35] of the k  th sub-triangle of the target element m  , and ( , )i ix y   are the 

coordinates of the three nodal positions of the k th sub-triangle ( ,i c 1,k   k ), as shown in Fig. 2.9. If the 

center point is located within the element and the sub-triangles of the element do not overlap each other, the 

condition is satisfied. 

 

 

Fig. 2.9. Signed area of a sub-triangle when (a) ( ) 0m
kA  , (b) ( ) 0m

kA  , and (c) ( ) 0m
kA  . 
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2.3 Basic numerical tests 

 

We conduct basic numerical tests (isotropic element, zero-energy mode, and patch tests) on the strain-smoothed 

polygonal elements [1]. 

 

To pass the isotropy test [38-40], the same response must be obtained for all identical elements with different node 

numbering sequences, as shown in Fig. 2.10. The proposed elements yield the same results regardless of the 

element node numbering sequences; hence, they pass the isotropic element test. 

 

If no constraint exists on a single 2D solid element, then the stiffness matrix of the element must contain only 

three zero-energy modes corresponding to the rigid body modes. The zero-energy mode tests are performed using 

the polygons from triangle to hexagon, as shown in Fig. 2.11. The proposed elements pass the zero-energy mode 

tests.  

 

For the patch tests, the minimum number of DOFs is constrained to prevent rigid body motions, and appropriate 

loadings are applied to obtain a constant stress field. The same stress value should be obtained at all points on the 

elements to pass the patch tests. The mesh shown in Fig. 2.12 is used to perform the normal and shear stress patch 

tests, and the stress values are obtained from all Gauss integration points. The proposed polygonal elements 

practically pass the patch tests as shown in Table 2.1. 

 

 

 

Fig. 2.10. Different node numbering sequences for a polygonal element. 
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Table 2.1. Minimum and maximum stress values for all Gauss integration points in the patch tests (minimum 

stress/maximum stress). 

  xx  yy  xy  

Normal stress  
(in x-direction)  

Wachspress 0.99987/1.00010 -0.00004/0.00004 -0.00004/0.00009 

Mean value 0.99973/1.00030 -0.00011/0.00010 -0.00023/0.00009 

CS-FEM 1.00000/1.00000 -0.00000/0.00000 -0.00000/0.00000 

ES-FEM 1.00000/1.00000 -0.00000/0.00000 -0.00000/0.00000 

SSE 
(proposed) 

0.99241/1.00370 -0.00183/0.00114 -0.00155/0.00190 

Reference 1.00000 0.00000 0.00000 

Shear stress 

Wachspress -0.00170/0.00211 -0.00044/0.00056 0.99947/1.00050 

Mean value -0.00425/0.00322 -0.00115/0.00092 0.99881/1.00100 

CS-FEM -0.00000/0.00000 -0.00000/0.00000 1.00000/1.00000 

ES-FEM -0.00000/0.00000 -0.00000/0.00000 1.00000/1.00000 

SSE 
(proposed) 

-0.01404/0.00945 -0.00819/0.00496 0.99488/1.01180 

Reference 0.00000 0.00000 1.00000 
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Fig. 2.11. Polygonal meshes used for the zero-energy mode test. 

 

 

 

Fig. 2.12. A polygonal mesh used for the patch tests 
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2.4 Numerical examples 

 

We investigate the performance of the strain-smoothed polygonal finite elements by solving the four numerical 

examples: an infinite plate with a circular hole, Cook’s skew beam, a dam problem, and a ring problem. The unit 

thickness is considered for all the 2D solid problems. 

 

The performance of the strain-smoothed polygonal finite elements (SSE) is compared with those of the polygonal 

finite elements based on Wachspress coordinates (Wachspress) [14] and mean value coordinates (Mean value) 

[15]. In addition, the edge-based smoothed polygonal finite elements (ES-FEM) [28] and the cell-based smoothed 

polygonal finite elements (CS-FEM) are considered for comparison. The CS-FEMs are segmented into triangular 

cells for strain smoothing; however, if the polygonal element is a quadrilateral, then this element is segmented 

into four quadrilateral cells [22,23]. 

 

The convergence of the elements is evaluated through their displacements at specific locations and stress 

distributions. Reference solutions are obtained using sufficiently fine meshes of 9-node quadrilateral finite 

elements. 

 

The relative error in strain energy rE  is measured as follows: 

ref

ref

h
r

E E
E

E


 ,  (2.35) 

where refE  is the reference strain energy and hE  is the strain energy calculated from the finite element solutions. 

The optimal convergence behavior for linear elements is expressed as 

2
rE ch ,  (2.36) 

where c  is a constant and h  is the element size [1]. 

 

 

2.4.1 Infinite plate with a circular hole 

 

We solve the problem of infinite plate with a circular hole shown in Fig. 2.13 [22,31]. The radius of the circular 

hole is 1a  , and the infinite plate is subjected to a far-field traction 1p   in the x -direction. The plane strain 

condition is considered with Young’s modulus 73 10E    and Poisson’s ratio 0.3  . Owing to symmetry, 

one-quarter of the plate is modeled as shown in Fig. 2.13, and the corresponding boundary conditions are imposed 

as follows: 0u   along BC  and 0v   along AE . Fig. 2.14 shows meshes used with the total numbers of 
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elements eN  13, 42, 148, and 552 (or the numbers of elements along the upper edge N  2, 4, 8, and 16, 

respectively). The element size h  is defined as 1h N . 

 

The traction boundary conditions are imposed along CD  and DE  using the following analytical solutions [35]: 

2 4

2 4

3 3
( , ) 1 cos 2 cos 4 cos 4

2 2xx

a a
r p

r r
    

       
  

, (2.37) 

2 4

2 4

1 3
( , ) cos 2 cos 4 cos 4

2 2yy

a a
r p

r r
    

       
  

, (2.38) 

2 4

2 4

1 3
( , ) sin 2 sin 4 sin 4

2 2xy

a a
r p

r r
    

       
  

, (2.39) 

where r  and   are the distance from the origin ( 0x y  ) and counterclockwise angle from the positive x -

axis, respectively. 

 

The convergence curves obtained using rE  in Eq. (2.35) are shown in Fig. 2.15. The relative errors in the 

horizontal displacement at point A  and the vertical displacement at point B  are listed in Tables 2.2 and 2.3, 

respectively. The distributions of the calculated stress component xy  for the 2.5 2.5  area around the hole are 

shown in Fig. 2.16. The reference solutions are obtained using an 8,192 element mesh of 9-node quadrilateral 

elements. The proposed elements provide improved convergence behaviors compared with the elements based on 

Wachspress coordinates and mean value coordinates, the cell-based smoothed elements, and the edge-based 

smoothed elements. 

 

 

2.4.2 Cook’s skew beam 

 

The well-known Cook’s skew beam problem is solved, as shown in Fig. 2.17 [3]. The left side of the structure is 

clamped, and a distributed shearing force of total magnitude 1P   is exerted on the right edge. The plane stress 

condition is assumed with Young’s modulus 73 10E    and Poisson’s ratio 0.3  . Solutions are obtained for 

meshes with the total numbers of elements eN  7, 22, 76, and 280 (or the numbers of elements along the upper 

edge N  2, 4, 8, and 16, respectively), as shown in Fig. 2.18. The element size h  is defined by 1h N . 
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The convergence curves for rE  in Eq. (2.35) are depicted in Fig. 2.19. The convergences in the normalized 

horizontal displacement at point A  are shown in Fig. 2.20. The relative errors in the horizontal displacement at 

point A   are listed in Table 2.4. The reference solutions are obtained using a 64 64   mesh of 9-node 

quadrilateral elements. Among the polygonal elements considered, the proposed elements provide the best 

solution accuracy. 

 

The computational efficiency of the considered elements is compared in Fig. 2.21. We plot the relations between 

computation times versus the errors in strain energy. The solutions are obtained using the meshes where the 

numbers of elements along the upper edge N  8, 16, 32, 64, and 128. In addition, a standard 3-node triangular 

element (named T3) is employed with meshes obtained by triangulation of polygons as shown in Fig. 2.22, and 

the computational efficiency of the T3 element is presented in Fig. 2.21. Computations are conducted using a 

personal computer with Intel Core i7-4790, 3.60GHz CPU, and 8 GB RAM. The skyline solver is used to solve a 

linear system of equations. As shown in Fig. 2.21, the proposed elements give more accurate solutions compared 

with other elements at similar computation time levels. In other words, the proposed elements exhibit the best 

computational efficiency among the elements considered in this problem. 

 

 

2.4.3 Dam problem 

 

A 2D dam structure is subjected to the following surface force on its left edge, as shown in Fig. 2.23 [39]: 

1/5

5 0 5

( 5) 5 10S

y y
f

y y

  
    

. (2.40) 

 

The clamped boundary condition is applied along the bottom edge. The plane strain condition is employed with 

Young’s modulus 103 10E    and Poisson’s ratio 0.2  . We use meshes with the total numbers of elements 

eN  13, 42, 148, and 552, as shown in Fig. 2.24. The element size h  is 1h N , where N  is the number of 

elements along the left edge. 

 

The convergence curves are obtained using rE  in Eq. (2.35), as shown in Fig. 2.25. The reference solutions are 

obtained using a 64 128   mesh of 9-node quadrilateral elements. The proposed elements demonstrate 

significantly improved convergence behaviors compared with the elements based on Wachspress coordinates and 

mean value coordinates, the cell-based smoothed elements, and the edge-based smoothed elements. 
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In addition, we evaluate the performance of the proposed elements for meshes constructed using the paving and 

cutting algorithm. Using the meshing algorithm, the interior of the problem domain is uniformly meshed for 

quadrilateral elements, but the boundary is meshed for polygonal elements [5-8]. Fig. 2.26 shows the resulting 

meshes obtained by using the meshing algorithm for this problem. The uniform grid sizes used are gridh  2, 0.8, 

0.4, and 0.2. For convergence studies, the element size h  is defined as 1h N , with an equivalent number of 

elements e gridN L h  (characteristic length e 10L   in this problem). Fig. 2.27 shows the convergence curves 

obtained using rE  in Eq. (2.35). The proposed elements provide improved solution accuracy, even when used 

with the paving and cutting algorithm. 

 

 

2.4.4 Ring problem 

 

A 2D ring structure is subjected to a surface force in the direction normal to the surface as shown in Fig. 2.28. For 

this symmetric problem, one quarter of the ring is considered with the following boundary conditions: 0u   

along AB , and 0v   along CD , as shown in Fig. 2.28. The plane stress condition is assumed with Young’s 

modulus 33 10E    and Poisson’s ratio 0.3  . 

 

As shown in Fig. 2.29, meshes with the total numbers of elements eN  16, 56, and 205 are obtained by using 

the paving and cutting algorithm. Here, the uniform grid sizes are gridh  1/2, 1/4, and 1/8 of the ring width eL = 

2. The element size h  is defined as 1h N , with an equivalent number of elements e gridN L h . 

 

The convergence curves for rE  in Eq. (2.35) are shown in Fig. 2.30. The von Mises stress distributions are 

shown in Fig. 2.31. The convergences in the normalized vertical displacement at point A  are shown in Fig. 2.32. 

The relative errors in the vertical displacement at point A  are listed in Table 2.5. The reference solutions are 

obtained using a 64 64   mesh of 9-node quadrilateral elements. The proposed elements demonstrate 

significantly better convergence behaviors than the other elements considered. 

 

In all the numerical examples presented, the proposed elements consistently yield better convergence behaviors 

compared with the elements using Wachspress shape functions, the cell-based smoothed elements, and the edge-

based smoothed elements. Additionally, the proposed elements are effective when used with the paving and cutting 

algorithm. 
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Table 2.2. Relative errors in the horizontal displacement ( ref ref/ 100hu u u  ) at point A  in the infinite plate 

with a circular hole. 

eN  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

13 12.831 13.566 19.302 16.419 6.324 

42 8.666 9.023 11.862 7.517 2.898 

148 5.694 5.913 7.442 2.604 0.729 

552 3.317 3.479 4.459 0.631 0.022 

Reference solution: 8
ref 9.1 001 1u    

 

 

 

Table 2.3. Relative errors in the vertical displacement ( ref ref/ 100hv v v  ) at point B  in the infinite plate with 

a circular hole. 

eN  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

13 19.143 19.304 21.998 16.798 14.139 

42 16.809 17.156 19.225 10.158 8.187 

148 13.117 13.530 15.748 4.200 2.641 

552 8.387 8.785 10.896 1.029 0.428 

Reference solution: 8
ref -3.034 10v    

 

 

 

Table 2.4. Relative errors in the horizontal displacement ( ref ref/ 100hu u u  ) at point A  in Cook’s skew beam 

problem. 

eN  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

7 61.270 62.422 68.968 44.119 25.828 

22 33.579 34.823 42.504 12.452 6.089 

76 14.478 15.140 19.537 4.681 2.710 

280 5.879 6.136 7.879 2.127 1.301 

Reference solution: 7
ref -6.301 10u    
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Table 2.5. Relative errors in the vertical displacement ( ref ref/ 100hv v v  ) at point A  in the ring problem. 

eN  Wachspress Mean value CS-FEM ES-FEM SSE (proposed) 

16 99.953 101.652 74.198 79.101 8.186 

56 31.261 32.001 22.724 23.946 2.754 

205 8.337 8.549 5.687 5.568 0.447 

Reference solution: 4
ref 5.9 096 1v    
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Fig. 2.13. Infinite plate with a circular hole ( 73 10E    and 0.3  ). Only shaded domain is meshed due to 

symmetry. 

 

 

 

 

Fig. 2.14. Polygonal meshes used for the infinite plate with a circular hole. 
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Fig. 2.15. Convergence curves for the infinite plate with a circular hole. The bold line represents the optimal 

convergence rate. 
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Fig. 2.16. Stress distributions ( xy ) for the infinite plate with a circular hole. Only 2.5 2.5  area around the hole 

is plotted. The reference stress distribution is obtained using an 8,192  element mesh of 9-node quadrilateral 

elements.  
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Fig. 2.17. Cook’s skew beam ( 73 10E    and 0.3  ). 

 

 

 

 

Fig. 2.18. Polygonal meshes used for Cook’s skew beam. 
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Fig. 2.19. Convergence curves for Cook’s skew beam. The bold line represents the optimal convergence rate. 

 

 

 

 

Fig. 2.20. Normalized horizontal displacements ref( )hu u  at point A in Cook’s skew beam. 
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Fig. 2.21. Computational efficiency curves for Cook’s skew beam. The computation times are measured in seconds. 

 

 

 

Fig. 2.22. Mesh obtained by triangulation of polygons ( 4N  ): (a) Polygonal mesh (92 DOFs). (b) Triangular 

mesh (136 DOFs). 
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Fig. 2.23. Dam problem ( 103 10E    and 0.2  ). 

 

 

 

Fig. 2.24. Polygonal meshes used for the dam problem. 
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Fig. 2.25. Convergence curves for the dam problem. The bold line represents the optimal convergence rate. 
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Fig. 2.26. Polygonal meshes constructed using the paving and cutting algorithm for the dam problem. 

 

 

 

 

Fig. 2.27. Convergence curves for the dam problem when the meshes with the paving and cutting algorithm are 

utilized. The bold line represents the optimal convergence rate. 
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Fig. 2.28. Ring problem ( 33 10E    and 0.3  ). Only shaded domain is considered for analysis owing to 

symmetry. 

  

 

 

 

Fig. 2.29. Polygonal meshes constructed using the paving and cutting algorithm for the ring problem. 
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Fig. 2.30. Convergence curves for the ring problem. The bold line represents the optimal convergence rate. 
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Fig. 2.31. von Mises stress distributions for the ring problem. The reference stress distribution is obtained using a 

64 64  mesh of 9-node quadrilateral elements. 
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Fig. 2.32. Normalized vertical displacements ref( )hv v  at point A in the ring problem. 
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Chapter 3. Volumetric locking alleviation in the strain-smoothed 3-node 

triangular finite element 

 

Volumetric locking is a phenomenon that occurs when an object approaches incompressibility. In this situation, 

the bulk modulus takes an exceedingly large value, and the volume change of the object has an extremely small 

value. In situations of volumetric locking, the volume tends to appear almost uniformly at all integration points, 

often leading to computations that seem to involve an excessive number of integration points compared to the 

variables in the problem. To address this, volumetric locking is often resolved by reducing the number of 

integration points or increasing the variables by adding degrees of freedom [1-3,40-42,45]. 

 

The 3-node triangular finite element is one of the most traditional elements and is still widely used today. However, 

the 3-node element has a problem where the strain field within the element is constant, making it impossible to 

alleviate volumetric locking with reduced integration. Various mixed formulations have been proposed to address 

volumetric locking; however, applying them to 3-node elements has been challenging due to the lower order of 

interpolation functions of a 3-node triangular element or often involves an increase in degrees of freedom.  

 

Strain smoothing techniques have been developed to improve elements without increasing degrees of freedom, 

and these techniques have been extensively applied in solid elements. Despite their benefits, these techniques 

confront issues associated with volumetric locking. Node-based smoothed finite element method is known for 

being immune to volumetric locking [25]; However, it tends to produce somewhat softened solutions, impacting 

the competitiveness of element performance. The strain-smoothed element method establishes a smoothed strain 

field within the element without creating a distinct smoothing domain, demonstrating improved performance 

compared to other strain smoothing techniques. While volumetric locking has been effectively addressed in 4-

node quadrilateral strain-smoothed element [33], the challenge persists in the 3-node triangular strain-smoothed 

element due to the lower order of interpolation functions, making it impossible to address locking in the same 

manner. 

 

In this chapter, volumetric locking alleviation techniques are introduced and the new techniques are proposed for 

the strain-smoothed 3-node triangular element. To alleviate the volumetric locking, deviatoric strain and 

volumetric strain are calculated separately. The deviatoric strain field is formed within the element through 

integration points in the element using the SSE method. The smoothed volumetric strain is calculated for each 

node by utilizing the strains assigned at integration points positioned in close to the node. Eventually, a linear 

strain field is established based on the smoothed volumetric strains in the nodes. 
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We briefly introduce volumetric locking and present the formulation of the strain-smoothed 3-node triangular 

finite elements to alleviate volumetric locking. 

 

3.1 Volumetric locking in 2D solid elements 

 

Volumetric locking is commonly observed in the analysis of nearly incompressible materials, where the 

unphysically stiff analysis results are obtained as the Poisson’s ratio approaches 0.5 (incompressible condition). 

To examine the physical and numerical meanings of volumetric locking, let’s consider the definition of the bulk 

modulus. In the situation depicted in Fig. 3.1, the relationship between pressure and volume change is as follows; 

V
P

V
 

   , (3.1) 

or 

volp    , (3.2) 

where   is bulk modulus, P is hydrostatic pressure, p  is hydrostatic stress, V  is initial volume, V  is 

volume change and vol   is volumetric strain.  

 

 

Fig. 3.1. Hydrostatic pressure and volume change. 

 

Volumetric locking occurs in situations where there is nearly incompressible behavior, meaning the bulk modulus 

is extremely large. Simultaneously, as the volume undergoes almost no change, the volumetric strain should have 

a very small value. This situation can generate significant errors in stress and displacement even with small errors 
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in volumetric strain. When the interpolation functions fail to adequately describe such extremely small volumetric 

strains, errors can occur in the estimation of volumetric strain. 

 

Additionally, due to the extremely small changes in volume, the volume remains nearly constant across all 

integration points. This situation results in analyses that seem to use an excessive number of integration points in 

comparison to the variables involved in the problem. To address such over-constraint situation, it is commonly 

practiced to reduce the number of integration points or increase the number of variables to augment degrees of 

freedom.  

 

In order to address volumetric locking, the formulation is described by separating into independent volumetric 

and deviatoric terms. Most mixed formulations are applied to the separated volumetric term [2,40]. 

 

In the case of 2D solid elements, the volumetric strain vol   induced by volume change is defined as follows: 

vol vol
xx yy

V

V
  
    Bu , (3.3) 

and the deviatoric strain dev
ij  is obtained as follows: 

1

2
dev vol dev

ij ij ij ij      B u , (3.4) 

where vol B  and dev
ijB  are the strain-displacement matrices (component) for the volumetric strain vol   and 

deviatoric strain dev
ij , respectively, ik  is the Kronecker delta, and u  is the nodal displacement vector. 

Then, the stiffness matrix K  is calculated using the strain-displacement matrices vol B  and dev B  as  

   Tvol dev vol dev

V
dV  K B B C B B , (3.5) 

where C is the material law matrix. 

Due to the independence of vol B  and dev B , Eq. (3.5) is expressed as 

3
vol T vol dev dev dev vol dev

ij ij ijV V
G dV B C B dV

      
  K B B K K , (3.6) 

where 
  
  
1 1 4

1 1 2

 


 
 


 

  for the plane stress condition, 1    for the plane strain condition,    is bulk 

modulus, G  is shear modulus, and dev
ijC  represents the material law tensor for deviatoric strain and stress, as 

expressed follows: 11 22 2dev devC C G   and 12
devC G . 

 

In the plane strain condition, the material properties   and G  can be expressed as a function of the Poisson’s 

ratio as follows: 
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3(1 2 )

E





 and 
 2 1

E
G





, (3.7) 

where and E  is Young’s modulus. As the Poisson’s ratio approaches 0.5, the bulk modulus increases 

significantly. When errors arise in the description of strain-displacement matrix due to interpolation functions, 

this leads to the creation of an excessively stiff volumetric stiffness matrix volK . Accordingly, reduced 

integration over the volumetric term or assuming a constant strain field can be employed to alleviate volumetric 

locking. 

 

For the 4-node quadrilateral finite element, reduced integration to address volumetric locking is performed as 

shown in Fig. 3.2. The strains and stiffness matrices are defined as bilinear functions within the field, and to 

alleviate the volumetric locking, the number of integration points in the volumetric term is reduced for 

computation. By reducing the number of integration points, the volumetric strain field is assumed to be constant. 

However, in the case of 3-node triangular element, where strain remains constant within the element, reduced 

integration cannot be applied. 

 

 

 

Fig. 3.2. Integration points for the deviatoric and volumetric term in the 4-node quadrilateral finite element. 

 

 

3.1.1 Treatment of volumetric locking in the strain-smoothed elements 

 

The strain-smoothed element method has been applied to various 2D solid elements, including 3-node triangular, 

4-node quadrilateral, even polygonal elements, improving the performance of elements. The strain-smoothed 

elements may also encounter volumetric locking. To address this, for the 4-node quadrilateral element, a treatment 

has been proposed that assumes a constant strain field for the volumetric strain [33]. 

 

As shown in Fig. 3.3, smoothed strains based on the edge and smoothed strains in the Gauss integration points 

are defined from Eq. 2.11 and 2.12. Based on these smoothed strains, the constant volumetric strain is assumed as 

follows: 
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 
4

( ) ( ) ( ) ( ) ( ) ( )
11 22( )

1

1
ˆ ˆvol m m k k vol m m

km
k

A
A

  


   B u , (3.8) 

and the deviatoric strain is defined as 

( ) ( ) ( ) ( ) ( )1

2
dev m m vol m dev m m

ij ij ij ij      B u . (3.9) 

 

As shown in Fig. 3.3 (b) and (c), the deviatoric strain is allocated at integration points, forming a linear strain field 

within the element, and volumetric strain is applied uniformly within the element. 

 

 

Fig. 3.3. The 4-node strain-smoothed element: (a) smoothed strain through the edges, (b) a deviatoric strain 

field, (c) a constant volumetric strain field. 
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The definition of volumetric strain can be similarly applied not only to 4-node quadrilateral element but also to 

polygonal elements as shown in Fig. 3.4. For n-sided polygonal element m, the constant volumetric strain ( )vol m  

is defined as follows: 

 ( ) ( ) ( ) ( )
11 22( )

1

1
ˆ ˆ

n
vol m m k k

km
k

A
A

  


  , (3.10) 

where ( )ˆ k  is the smoothed strain between the k th sub-triangle of the target element m  and its adjacent sub-

triangle of the neighboring element. 

 

 

 

Fig. 3.4. The assumed volumetric strain in the strain-smoothed polygonal finite element. 

 

Even though the 3-node triangular strain-smoothed element forms a linear strain field similarly to the 4-node 

quadrilateral strain-smoothed element, applying constant volumetric strain in the same way as mentioned before 

does not alleviate volumetric locking. 
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3.2 Formulation of the strain-smoothed 3-node triangular finite element to 

alleviate volumetric locking 

 

As introduced in Chapter 3.1, the strain and stiffness matrix are separately computed into deviatoric and 

volumetric terms, and constant strain field is assumed to the volumetric term. However, in the case of 3-node 

triangular element, it features a constant strain field and stiffness matrix, which means that softened results cannot 

be achieved through the reduced integration (or assumed constant volumetric strain). While the SSE method can 

establish a linear strain field within the element, applying constant volumetric strain cannot effectively mitigate 

volumetric locking. In this part, we introduce the separation of deviatoric and volumetric terms of the smoothed 

strain and present approaches for alleviating volumetric locking by addressing the volumetric term. 

 

 

3.2.1 Strain-smoothed element method for deviatoric strain 

 

It has been introduced in Chapter 2.1 regarding the formulation of the strain-smoothed 3-node triangular element. 

From Eq. (2.6) and Fig. 2.1, the smoothed strains kε  are assigned to integration points in the element. Similar 

to Eq. (3.1) and (3.2), the smoothed strain kε  is separated into volumetric and deviatoric terms as follows: 

    ( )

11 22

vol vol m
k k k k     B u , (3.10) 

      ( )1

2

devdev vol m
k k k ij kij ij ij
      B u  with 1,2,3k  , (3.11) 

where vol
kB  and  dev

k ij
B  are strain-displacement matrices (component) relating the volumetric and deviatoric 

strains of the smoothed strain kε  to the displacement vector ( )mu  for the target element m . Note that the length 

of the displacement vector varies according to the number of neighboring elements. 

 

Subsequently, devK , i.e., the stiffness matrix for deviatoric strain is computed through three integration points 

within the triangular element. Note that the smoothed strain field obtained through the SSE method is linearly 

represented within the 3-node triangular element, but volumetric locking cannot be alleviated by simply applying 

constant volumetric stiffness matrix volK . As shown in Fig. 3.5, The field of smoothed strain within the triangular 

element can be expressed as 

    1 2 3

1
, 1 2

r p s p
r s r s p

q p q p q p

   
         

ε ε ε ε , (3.12) 

where 
1

6
p   and 

4

6
q   are constant values that indicate the locations of the integration points [31]. 
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The deviatoric strain of 3-node strain-smoothed element is also defined from the smoothed strains allocated at 

integration points, as in Eq. 3.12, and forms a linear field within the element, as follows: 

    1 2 3

1
, 1 2dev dev dev devr p s p

r s r s p
q p q p q p

   
         

ε ε ε ε . (3.13) 

 

Fig. 3.5. The linear strain field within a 3-node triangular element through SSE method. 

 

 

3.2.2 Smoothed volumetric strain by strain-smoothed element method  

 

To alleviate the volumetric locking, a new volumetric strain is defined using the previously calculated smoothed 

strains. A nodal smoothed strain value is obtained using the smoothed strains at the integration points near the 

node, as shown colored nodes and its neighboring integration points in Fig. 3.6.  

 

 

Fig. 3.6. A node and its neighboring integration points in a triangular mesh. 
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The volumetric strain at the node i , i.e.,  vol

nodei
  is defined using the strains at the integration points near 

the node i  from n  neighboring element as follows: 

  1

1

n
vol

k k
vol k

nnodei

k
k

A

A


 







, (3.14) 

where kA  is area of neighboring element k , and vol
k  is the smoothed strain at the integration point near the 

node i  in neighboring element k , as shown in Fig. 3.7. 

 

 

 

Fig. 3.7. The nodal smoothed volumetric strain obtained from the neighboring smoothed strains. 

 

The strain field within an element is defined from the smoothed volumetric strains at the nodes. As shown in Fig. 

3.8, the strain field is obtained using the shape functions of the standard isoparametric procedure for the 3-node 

triangular domain as follows: 

 
3

1

( , )vol vol
i i

k

r s h 


  with 1h r , 2h s , 3 1h r s   . (3.15) 
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Fig. 3.8. Nodal smoothed volumetric strains and a volumetric strain field within an element. 

 

The strain being defined based on the node is similar to the node-based smoothed finite element (NS-FEM). 

However, the smoothed strains for NS-FEM are determined according to the smoothing domains, whereas the 

proposed method defines smoothed strains at nodes using the strain calculated through the SSE method and the 

strain field is formed within an element, see Fig. 3.9.  
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Fig. 3.9. (a) Smoothing domains for the node-based smoothed finite element. (b) A strain field within an 

element for the strain-smoothed element.  

 

 

  

(a) (b) 
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3.3 Basic numerical tests 

 

We conduct basic numerical tests on the strain-smoothed 3-node triangular element with alleviated volumetric 

locking, including tests for isotropic element, zero-energy modes, and patch tests [1]. 

 

The suggested elements produce consistent results regardless of the node numbering sequences, demonstrating 

their success in passing the isotropic element test. 

 

If no constraint exists on a single 2D solid element, then the stiffness matrix of the element must contain only 

three zero-energy modes corresponding to the rigid body modes. The zero-energy mode tests are performed using 

the single triangular element, and the proposed elements pass the zero-energy mode tests.  

 

For the patch tests, the minimum number of DOFs is constrained to prevent rigid body motions, and appropriate 

loadings are applied to obtain a constant stress field. The same stress value should be obtained at all points on the 

elements to pass the patch tests. The mesh shown in Fig. 3.10 is used to perform the normal and shear stress patch 

tests, and the boundary conditions to obtain the constant stress field are depicted in Fig. 3.11. The stress values 

are obtained from all Gauss integration points. The relative errors in the stress obtained from the proposed 

triangular element are on the order of 1410  to 1510 . These are similar to numerical errors that occur in 

computations with 16 significant digits. Therefore, the proposed element successfully passes the test with 

acceptable accuracy. 

 

 
Fig. 3.10. A 2D triangular finite mesh used for the patch test. 
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Fig. 3.11. The uniform stress conditions for the patch test. 

 

3.4 Numerical examples 

 

We investigate the performance of the strain-smoothed 3-node triangular finite element by solving the four 

numerical examples: a square block problem, an infinite plate with a circular hole, Cook’s skew beam, and a dam 

problem. The unit thickness is considered for all the 2D solid problems. 

 

The performance of the proposed strain-smoothed 3-node triangular finite element with treatment of volumetric 

locking is compared with the edge-based smoothed finite elements (ES-FEM) [28] and the node-based smoothed 

finite elements (NS-FEM) for 3-node triangular elements. Additionally, the performance of the proposed element 

is compared with the strain-smoothed finite element that has no treatment for volumetric locking (SSE). The 

accuracy of elements and the alleviation of volumetric locking is assessed using convergence curves. 

 

Reference solutions are obtained using sufficiently fine meshes of 9-node quadrilateral finite elements with 

selective reduced integration for the volumetric term. 

 

To measure the convergence of the finite elements, the s-norm proposed by Hiller and Bathe is measured, and it 

is defined as follows [46]: 

2

ref

T
ref h refS

d


    u u ε τ  with ref h  ε ε ε , ref h  τ τ τ ,  (3.16) 

where refu  is the reference solution, hu  is the solution of the finite element discretization, and ε  and τ  

are the strain and stress vectors, respectively.  

To observe the convergence behavior, the normalized relative error hE  is measured as follows: 

2

2

ref h S
h

ref S

E



u u

u
.  (3.17) 
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The optimal convergence behavior for linear elements is expressed as 

2
rE ch ,  (3.18) 

where c  is a constant and h  is the element size [1]. 

 

 

3.4.1 Square block problem 

 

A 2D square block is subjected to a compression pressure of total magnitude 1P   at the right half top of the 

structure, and the bottom of the structure is clamped as shown in Fig. 3.12(a). The plane strain condition is 

assumed with Young’s modulus 73 10E   . Poisson’s ratio is considered for the values 0.3  , 0.49, 0.499 and 

0.4999. 

The regular and distorted meshes of N N  elements with 4N  , 8, 16 and 32 are used to obtain the solutions, 

and the mesh examples for 4N   is shown in Fig. 3.12(b) and (c). To create the distorted meshes, the nodes 

within the elements are shifted according to the following rule [33]: 

xx x h   ,  (3.19) 

yy y h   ,  (3.20) 

where  ,x y  and  ,x y   are the position vector of nodes in the regular and distorted meshes, respectively, xh  

and yh  are the size of elements in x  and y  directions for the regular meshes, the constants are applied as 

0.3  , 0.4  , and   is defined to a random real number between -1 and 1. The distorted meshes formed 

through the previously mentioned process are as shown in Fig. 3.13. 

 

The convergence curves for rE  in Eq. (3.17) with regular meshes and distorted meshes are shown in Fig. 3.14 

and Fig. 3.15, respectively. The reference solutions are obtained using a 128 128  mesh of 9-node quadrilateral 

elements with selective reduced integration for the volumetric term. When the Poisson’s ratio is 0.3, the SSE 

demonstrates significantly better convergence behaviors compared to other elements. However, in cases where 

volumetric locking may occur, noticeable performance degradation is observed, and this is also the case for the 

ES-FEM. On the other side, NS-FEM exhibits slightly lower performance but is relatively free from volumetric 

locking, and it shows better convergence performance in cases where volumetric locking may occur due to the 

Poisson’s ratio. The proposed element demonstrates improved performance even in situations where volumetric 

locking does not occur. Additionally, as the Poisson’s ratio approaches 0.5, improved convergence behavior is 

observed as volumetric locking is significantly alleviated. 
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Fig. 3.12. (a) The square block problem ( 73 10E    and 0.3  , 0.49, 0.499 and 0.4999). (b) A regular mesh 

and (c) a distorted mesh at 4N  used for the square block problem. 

 

 

 

Fig. 3.13. Distorted meshes used for the square block problem. 
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Fig. 3.14. Convergence curves for the square block problem with regular meshes. The bold line represents the 

optimal convergence rate. 

 

 

 

Fig. 3.15. Convergence curves for the square block problem with distorted meshes. The bold line represents the 

optimal convergence rate. 
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3.4.2 Infinite plate with a circular hole 

 

We solve the problem of infinite plate with a circular hole shown in Fig. 3.16(a) [22,31]. The radius of the circular 

hole is 1a  , and the infinite plate is subjected to a far-field traction 1p   in the x -direction. The plane strain 

condition is considered with Young’s modulus 73 10E    and several Poisson’s ratio 0.3  , 0.49, 0.499 and 

0.4999. Due to symmetry, a quarter of the plate is modeled as shown in Fig. 3.16(a), and the corresponding 

boundary conditions are imposed as follows: 0u    along BC   and 0v    along AE  . The model is 

comprised of two sets of N N  elements meshes (with 4N  , 8, 16 and 32) that are symmetric about the 

diagonal, and the mesh example for 8N   is shown in Fig. 3.16(b). 

 

The traction boundary conditions are imposed along CD  and DE  using the following analytical solutions [35]: 

2 4

2 4

3 3
( , ) 1 cos 2 cos 4 cos 4

2 2xx

a a
r p

r r
    

       
  

, (3.21) 

2 4

2 4

1 3
( , ) cos 2 cos 4 cos 4

2 2yy

a a
r p

r r
    

       
  

, (3.22) 

2 4

2 4

1 3
( , ) sin 2 sin 4 sin 4

2 2xy

a a
r p

r r
    

       
  

, (3.23) 

where r  and   are the distance from the origin ( 0x y  ) and counterclockwise angle from the positive x -

axis, respectively. 

 

The convergence curves obtained using rE  in Eq. (3.17) are shown in Fig. 3.17. The reference solutions are 

obtained using a mesh with 128N   of 9-node quadrilateral elements with selective reduced integration for the 

volumetric term. When the Poisson’s ratio is 0.3, the proposed element exhibits convergence performance 

comparable to SSE, and even when the Poisson’s ratio approaches 0.5, it demonstrates convergence behavior with 

relatively alleviated volumetric locking.  
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Fig. 3.16. (a) Infinite plate with a circular hole ( 73 10E    and 0.3  , 0.49, 0.499 and 0.4999). (b) A mesh 

at 8N  used for the problem. 

 

 

 

Fig. 3.17. Convergence curves for the problem of infinite plate with a circular hole. The bold line represents the 

optimal convergence rate. 
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3.4.3 Cook’s skew beam 

 

To the next, the Cook’s skew beam problem is considered, as shown in Fig. 3.18 [3]. The left side of the structure 

is clamped, and a distributed shearing force of total magnitude 1P   is exerted on the right edge. The plane 

strain condition is assumed with Young’s modulus 73 10E    and Poisson’s ratio is considered for the values 

0.3  , 0.49, 0.499 and 0.4999. Solutions are obtained for the regular and distorted meshes of N N  elements 

with 4N  , 8, 16 and 32, and the mesh examples for 4N   is shown in Fig. 3.18(b) and (c). To create the 

distorted meshes, node remapping process is performed as Eq. (3.19) and (3.20). The distorted meshes example 

formed through the process are as shown in Fig. 3.19. 

 

The convergence curves for rE  in Eq. (3.17) with regular meshes and distorted meshes are shown in Fig. 3.20 

and Fig. 3.21, respectively. The reference solutions are obtained using a 128 128  mesh of 9-node quadrilateral 

elements with selective reduced integration for the volumetric term. As evident form the convergence curves as 

Fig. 3.20 and 3.21, NS-FEM exhibits convergence performance that is free from volumetric locking, but it has 

slightly lower convergence accuracy overall. Furthermore, ES-FEM and SSE show excellent performance in the 

cases not related to volumetric locking. However, their performance deteriorates as the Poisson’s ratio approaches 

0.5. The proposed element provides improved convergence performance at Poisson’s ratios far from volumetric 

locking and maintains its performance even in situations where volumetric locking may occur.  
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Fig. 3.18. (a) The Cook’s skew beam problem ( 73 10E    and 0.3  , 0.49, 0.499 and 0.4999). (b) A regular 

mesh and (c) a distorted mesh at 4N  used for the cook’s beam problem. 
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Fig. 3.19. Examples of distorted meshes used for the Cook’s skew beam problem. 

 

 

 

 

Fig. 3.20. Convergence curves for the Cook’s skew beam problem with regular meshes. The bold line represents 

the optimal convergence rate. 

 

 

 

 



57 

 

 

Fig. 3.21. Convergence curves for the Cook’s skew beam problem with distorted meshes. The bold line represents 

the optimal convergence rate. 

 

 

3.4.4 Dam problem 

 

A 2D dam structure is applied to the surface force described below on its left edge, as shown in Fig. 3.22(a): 

1/5

5 0 5

( 5) 5 10S

y y
f

y y

  
    

. (3.24) 

 

The bottom of the dam structure is clamped, and the plane strain condition is employed with Young’s modulus 

103 10E   , and various Poisson’s ratios such as 0.3  , 0.49, 0.499 and 0.4999 are considered. The meshes 

with 2N N  elements are used to obtain the solution, where 4N  , 8, 16 and 32, and Fig. 3.22(b) is example 

of mesh at 4N  . 

 

The convergence curves are obtained using rE  in Eq. (3.17), as shown in Fig. 3.23. The reference solutions are 

obtained using a 128 256  mesh of 9-node quadrilateral elements with selective reduced integration for the 

volumetric term. In the case of the Poisson’s ratio of 0.3, it is observed that the SSE, without any volumetric 

locking treatment, demonstrates excellent convergence performance. The proposed element also demonstrates 

improved convergence performance nearly similar to SSE in situations where locking does not occur. However, 

as the Poisson’s ratio approaches 0.5, the performance of SSE deteriorates significantly. The performance of SSE 
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is even worse than that of NS-FEM, which is not particularly notable in terms of performance compared to other 

elements. The proposed element exhibits improved convergence behavior with significant alleviation of 

volumetric locking, even within the range where the Poisson’s ratio could induce volumetric locking. 

 

 

 

Fig. 3.22. (a) Dam problem ( 103 10E    and 0.3  , 0.49, 0.499 and 0.4999). (b) A mesh at 4N  used for 

the dam problem. 
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Fig. 3.23. Convergence curves for the dam problem. The bold line represents the optimal convergence rate. 
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Chapter 4. Concluding Remark 

 

In this study, we proposed the strain-smoothed polygonal finite elements. Instead of using complex shape 

functions for polygonal elements, piecewise linear shape functions were employed to triangulate the elements for 

strain smoothing. We first calculated the smoothed strains for the elements using all the strains of all neighboring 

elements. Subsequently, smoothed strains were assigned to the vertices of the sub-triangles of the elements, which 

resulted in a piecewise linear strain field for the strain-smoothed polygonal elements. 

 

The strain-smoothed polygonal elements passed the basic tests (i.e., isotropic element, zero-energy mode, and 

patch tests). In addition, the elements showed improved convergence behaviors compared with previously 

developed elements in various numerical examples. The strain-smoothed polygonal elements can be effectively 

used in various applications, such as contact problems on non-conformal meshes [6,11] and crack analysis with 

minimal remeshing [8,12]. 

 

In addition, we proposed the strain-smoothed 3-node triangular finite element with volumetric locking alleviation. 

While the strain-smoothed 3-node triangular finite element has a linear strain field within the element, there is an 

issue where assuming constant volumetric strain does not alleviate volumetric locking. To address volumetric 

locking, the smoothed strains are separated into their volumetric and deviatoric strains. Similar to the general 

integration process, the deviatoric strain field within the element is formed from the deviatoric strains at the 

integration points. The volumetric strains are utilized to define the newly smoothed volumetric strains on a node-

wise basis. A nodal smoothed volumetric strain is obtained using the smoothed volumetric strains at integration 

points near the node. Based on the smoothed volumetric strains at the nodes, the volumetric strain field within the 

element is established. 

 

The performance of the proposed strain-smoothed 3-node triangular finite element is compared with various 

smoothed elements such as the edge-based smoothed finite elements (ES-FEM), the node-based smoothed finite 

elements (NS-FEM), and the strain-smoothed finite element that has no treatment for volumetric locking (SSE). 

In the cases where volumetric locking does not occur, SSE demonstrates excellent performance. However, as the 

Poisson’s ratio approaches 0.5, its performance deteriorates significantly. On the other hand, NS-FEM, while 

being a volumetric-locking-free smoothing element, exhibits somewhat lower convergence performance 

regardless of the Poisson’s ratio. The proposed element provides improved convergence performance in situations 

far from volumetric locking, and it sustains its performance even in situations where volumetric locking may 

occur. The strain-smoothed triangular element with alleviated volumetric locking can be utilized for the analysis 

of materials that are nearly incompressible, such as rubber [40]. 
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