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Abstract 

 

The objectives of this thesis were to develop a new 4-node quadrilateral solid (2D-MITC4) and shell (MITC4+) 

finite elements to improve the predictive capabilities, especially in distorted meshes. The proposed elements 

consist of two key concepts including the new assumed membrane strain field and the geometry dependent Gauss 

integration scheme. More specifically, the complicated assumed strain field of the previous 2D-MITC4 solid and 

MITC4+ shell elements are simplified and become more intuitive by directly using the strain coefficients. In 

addition, the geometry dependent Gauss integration is introduced to improve the membrane performance of the 

proposed elements. The geometry dependent Gauss integration with the new assumed strain field provides 

smoother solutions and good convergence, and thus the proposed elements can be used with relatively coarse 

meshes. In addition, it needs no additional degrees of freedom and does not reveal any numerical instability that 

is shown in the incompatible modes element. The new 2D-MITC4 solid and MITC4+ shell elements pass the three 

basic numerical tests: including zero energy mode, isotropy, and corresponding patch tests. It has been also 

thoroughly demonstrated that the proposed elements are very effective and reliable both in linear and nonlinear 

problems. 
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Chapter 1.  Introduction 

 

 

1.1.  Research background 

 

For the past several decades, the finite element method (FEM) has been widely used for solving various 

engineering problems [1-3]. FEM can easily handle complex geometries using element meshes. Among various 

finite elements, low-order finite elements such as 4-node quadrilateral and 3-node triangular elements are often 

preferred due to simple implementation and computational efficiency compared with higher-order finite elements. 

However, low-order finite elements show insufficient predictive capability, especially in distorted meshes [4-9]. 

For this reason, many researchers still devote to developing finite elements that give more accurate and reliable 

solutions in a computationally efficient way [10-13]. 

 

There are major considerations when developing finite elements. For general use, ideal finite elements should 

pass the basic tests (patch, zero energy mode, and isotropy tests) and show optimal convergence behavior that 

provides a more accurate solution as more elements are used. However, under certain conditions including element 

geometries and material properties, the performance of finite elements substantially deteriorates and it is hard to 

obtain the optimally converged solution [4-7]. In general, finite elements reveal undesirable overly stiff behavior 

when they are distorted and this stiffening effect of the distorted element becomes more severe especially in low-

order elements such as 4-node quadrilateral and 3-node triangular elements [4-7,14-16]. 

 

There have been various approaches used to improve the performance of finite elements, including reduced 

integration [17-20], assumed strain method, and use of incompatible modes [21,22]. The reduced integration 

method employs a single Gauss quadrature point at the element center instead of the standard 2×2 Gauss 

quadrature when constructing the stiffness matrix. The 4-node quadrilateral element with the reduced integration 

method shows excellent performance by alleviating in-plane shear locking. Moreover, the reduced integration 

method is also used in plate and shell finite elements to improve membrane behavior and reduce membrane 

locking. While the reduced integration method decreases the computational cost and improves the performance 

of finite elements, it reveals spurious zero energy modes that finite elements should not show. 

 

The method of incompatible modes has been successfully used for low-order finite elements [23-27]; in this 

method, incompatible modes are adopted to enrich the displacement field of a finite element and corresponding 

degrees of freedom (DOFs) are added. The use of incompatible modes could be generalized into the enhanced 

assumed strains (EAS) method. Regardless of the further computational expense needed to handle the additional 

DOFs, the incompatible modes element has been widely employed in commercial software due to its excellent 

accuracy improvement in bending problems. While the incompatible modes element provides improved bending 

behavior and also alleviates the volumetric locking, it reveals spurious instabilities in the nonlinear analysis 

[12,28]. 
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The mixed interpolation of tensorial components (MITC) method has been extensively employed to develop 

various solid and structural elements since it was first proposed to reduce transverse shear locking for a 4-node 

quadrilateral shell element (MITC4) [29]. Finite elements based on the MITC method effectively alleviate various 

types of locking without using additional degrees of freedom and do not show spurious instabilities in the both 

linear and nonlinear analysis [30-40]. In addition, the extension of the formulation to the nonlinear analysis could 

be accomplished once a linear formulation has been successfully developed.  

 

Recently, Ko et al. developed the MITC4+ shell element, in which membrane locking is also reduced using the 

MITC method. The 2D and 3D MITC solid elements were also developed. Subsequently, the improved MITC4+ 

shell element was developed by adopting the assumed strain field of the 2D MITC solid elements. Their excellent 

performance has been demonstrated in both linear and nonlinear analysis.  

 

In spite of the excellent performance of finite elements based on the MITC method, there is still room to improve 

the accuracy of the low order elements. The 4-node quadrilateral MITC element also suffers from performance 

deterioration due to the element distortion as other elements. For example, although the low order solid (2D-

MITC4) and shell (MITC4+) elements show almost optimal performance in the uniform meshes [30,36], the 

performance substantially deteriorates when they are used in distorted meshes like other elements. 

 

We focus on improving the convergence behavior of the 2D-MITC4 solid and MITC4+ shell elements in distorted 

meshes while preserving the promising properties of the MITC method aforementioned. To make the elements 

insensitive to distortion, the geometry dependent Gauss integration scheme is introduced in which the geometry 

distortion of an element is measured and used to adjust the position of Gauss integration points. In addition, the 

new assumed strain field that makes the original formulation simplified is proposed and collaborated with the 

geometry dependent Gauss integration scheme. Since the MITC4+ shell element is identical to the standard 4-

node quadrilateral solid element when it is used for in-plane problems [36], the simplified assumed strain field 

and the geometry dependent Gauss integration scheme are extended to the MITC4+ shell element to improve its 

membrane performance.  

 

 

1.2.  Research objectives and scope 

 

The objectives of this thesis are to make the low order quadrilateral MITC elements robust to the element 

distortion and also simplify the formulation of the elements. The 2D-MITC4 solid and MITC4+ shell finite 

elements are considered here. The formulation of the new 2D-MITC4 solid and MITC4+ shell elements are 

presented in detail and thoroughly studied in both geometrically linear and nonlinear analysis problems. In 

addition, the new 2D-MITC4/1 solid element is presented which employs the assumption of the constant 

volumetric strain and it shows improved behaviors in both plane stress and strain problems. 
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In the case of the previous 2D-MITC4 solid element, the formulation is complicated because of using the strain 

coefficients to express the assumed strain field. For the new 2D-MITC4 solid element, the formulation is rewritten 

with characteristic vectors directly and it becomes intuitive and simple. The simplified formulation provides 

results identical to the previous 2D-MITC4 solid element. To improve its performance further, the geometry 

dependent Gauss integration scheme is introduced. The positions of Gauss integration points are moved into the 

element center in accordance with the skew angle of the element distortion.  

 

In order to investigate whether the modification of integration points can actually improve the bending 

performance, eigenvalues of a stiffness matrix of a single element are calculated. Through the numerical 

experiment, it is confirmed that geometry dependent Gauss integration scheme can selectively reduce the bending 

stiffness without affecting the constant strain modes. To adjust the bending stiffness depending on the geometry 

of the element, an adjusting parameter is introduced and practical requirements are summarized. We here present 

a function that satisfies the requiremenets and provides improved performance in the range of the overall distortion.  

 

When the geometry dependent Gauss integration scheme is employed to analyse the geometrically nonlinear 

problems, the element distortion is measured in initial geometry because the total Lagrangian formulation is 

adopted. If the updated Lagrangian formulation is used, then the element distortion could be measured based on 

the current geometry. The stress field could be calculated by using the same adjusting parameter. In other words, 

the stress at the specific point is obtained at the point by scaling the adjusting parameter. The geometry dependent 

Gauss integration could be interpreted as the use of the MITC method twice. 

 

In the case of the MITC4+ shell element, the formulation is simplified by introducing a new assumed membrane 

strain field. First, the generalized assumed strain field is defined by using a variable ‘k’ which determines the 

distance between tying points and the element center, and then the new assumed membrane strain field is obtained 

by taking zero to the distance. The resultant strain field does not include the bilinear strain coefficient and thus 

the formulation becomes much simpler than the previous MITC4+ shell element. The MITC4+ shell element 

shows excellent bending performance in both regular and distorted meshes but it reveals overly stiff in-plane 

bending behavior when the element is distorted. 

 

To further improve the membrane performance of the MITC4+ shell element, the geometry dependent Gauss 

integration scheme is extended. When calculating the stiffness matrix of the MITC4+ shell element, the integration 

points in the r-s plane are modified in accordance with the element distortion to reduce the in-plane bending 

stiffness. Along the thickness direction, the standard Gauss quadrature is employed. The performance of the new 

MITC4+ shell element is demonstrated through selected problem sets including both geometrically linear and 

nonlinear analysis. While the bending performance of the new MITC4+ shell element is identical to the original 

MITC4+ and improved MITC4+ shell elements, the membrane performance of the proposed element is prior to 

the others. 

 

In chapter 2, the new 2D-MITC4 solid finite element is proposed. The previous 2D-MITC4 element is briefly 
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reviewed and then, the simplified assumed strain field for the new 2D-MITC4 element is presented. Also, for the 

improvement of the performance in distorted element, the geometry dependent Gauss integration scheme is 

introduced. Since there are various ways to adjust Gauss integration points, the practical requirements to design 

an adjusting parameter are proposed. In this thesis, the position of Gauss integration points is adjusted using the 

skewness of the element. The proposed element could be used for 2D plane stress and strain problems with the 

treatment of volumetric locking.  

 

In the following section, the three basic tests including zero energy modes test, patch tests, and isotropy are 

conducted. Then, the performance of the proposed element is compared with other elements. The convergence 

behavior is studied for the linear problems including the cantilever beam, Cook’s skew beam, the curved beam, 

and the block under a body force. For the nonlinear analysis, the displacements at specific points and numerical 

instabilities are studied in the block under a compression force and the column under an eccentric load. 

 

In chapter 3, the new MITC4+ shell finite element is proposed. Since there is various version of the MITC4 

element, the features are summarized first. we briefly review the formulation of the improved MITC4+ shell 

element including the treatment of the transverse shear and membrane locking. Then, the formulation of the new 

MITC4+ shell element is presented by extending the simplified assumed strain field and the geometry dependent 

Gauss integration into the previous MITC4+ shell element. 

 

In the following section, the performance of the proposed shell elemenet is investigated in both linear and 

nonlinear problems. For the linear problems, the well-known behavior-encompassing shell benchmark problems 

are considered including square plate, cylindrical shell, hyperboloid shell, Scordelis-Lo roof, and hyperbolic 

cylinder shell. For the nonlinear problems, thin curved beam, slit annular plate, and hemispherical shell problems 

are solved.  

 

In chapter 4, the conclusions and further studies are discussed. 
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Chapter 2.  New 4-node quadrilateral solid finite element 

 

Using the mixed interpolation of tensorial components (MITC) method, the 2D-MITC4 element has been recently 

developed for two-dimensional analysis of solids [30]. The element based on MITC method does not require 

additional DOFs, and no numerical instability is observed in nonlinear analysis [30-40]. Through various 

benchmark problems, the good convergence behavior of the 2D-MITC4 element in regular meshes is shown. 

However, its performance deteriorates when distorted meshes are used. 

 

In this chapter, the convergence behavior of the 2D-MITC4 element in distorted meshes is improved. The two key 

points are the simplified formulation and the modified integration rule. The complicated assumed strain field of 

the original 2D-MITC4 element is simplified and thus its formulation becomes simpler and more straightforward. 

Also, a geometry dependent Gauss integration scheme is presented in which integration positions are adjusted 

according to element geometry, leading to an element insensitive to geometry distortion.  

 

More specifically, the skewness of the element geometry is measured and integration positions are changed 

according to the degree of skewness. The larger the skewness, the more the integration positions move toward the 

center of the element, by use of an adjusting parameter. The practical requirements for the adjusting parameter are 

proposed with observations in the eigen analysis of the stiffness matrix depending on the different adjusting 

parameters. An adjusting parameter function to satisfy certain practical requirements is proposed using the degree 

of skewness.  

 

The geometry dependent Gauss integration scheme is not only very easy to implement but also effective in the 

accuracy improvement of the original 2D-MITC4 element and can be directly extended to the nonlinear analysis 

without any modification in the formulation. Consequently, we develop the new 2D-MITC4 element for plane 

stress analysis and the new 2D-MITC4/1 element referring to the new 2D-MITC4 element in which volumetric 

locking is alleviated for plane stress and plane strain analysis. 

 

In section 2.1, the basic formulations of the standard 4-node quadrilateral solid element [1-3] are briefly reviewed 

and the important expressions that are repeatably used throughout this paper are introduced including 

interpolations [1, 12], characteristic vectors [36], and physical strain coefficients [30]. In Section 2.2, the original 

2D-MITC4 element is reviewed and the assumed strain field of the original 2D-MITC4 element is given [30]. 

Section 2.3 presents the key concepts of the proposed element and its formulation in detail. In the following 

section, the performance of the new 2D-MITC4 element is demonstrated through basic numerical tests, and 

several linear and nonlinear problems considering both regular and distorted meshes. 
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2.1.  Geometry and displacement interpolations 

 

As shown in Fig. 2.1, the geometry and displacement of the standard 4-node quadrilateral 2D solid element are 

interpolated by using the natural coordinates r  and s  as [1-3,12] 

 
4

1

, ( , )i i
i

r s h r s


 x x   with  Ti i ix yx , (2.1) 

 
4

1

, ( , )i i
i

r s h r s


 u u   with  Ti i iu vu , (2.2) 

where ix  is the position vector of node i , iu  is the displacement vector of node i , and ( , )ih r s  is the two-

dimensional shape function of the standard isoparametric procedure corresponding to node i  which is given by  

  1
1 1

4i i ih r s      with 1,2,3,4i  , (2.3) 

   1 2 3 4 1 1 1 1       , (2.4) 

   1 2 3 4 1 1 1 1       . (2.5) 

 

 

Fig. 2.1. A 4-node quadrilateral element in (a) the global Cartesian coordinate system and (b) the natural 

coordinate system. 

 

The position and the displacement could be rewritten as  

 , a r s dr s r s rs   x x x x x , (2.6) 

 , a r s dr s r s rs   u u u u u , (2.7) 

with characteristic geometry and displacement vectors as follows [30,36]: 

4

1

1

4a i
i

 x x ,  
4

1

1

4r i i
i




 x x ,  
4

1

1

4s i i
i




 x x ,  
4

1

1

4d i i i
i




 x x , (2.8) 
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4

1

1

4a i
i

 u u ,  
4

1

1

4r i i
i




 u u ,  
4

1

1

4s i i
i




 u u ,  
4

1

1

4d i i i
i

 


 u u , (2.9) 

where the vectors in Eq. (2.8) are determined from the nodal positions. 

 

Note that the characteristic geometry vectors in Eq. (2.8) could be representative the geometry of the element as 

shown in Fig. 2.2. The vector ax   represents the center of the element and the two vectors rx   and sx  

correspond with the covariant basis vectors. The vector dx  denotes the element distortion. The characteristic 

geometry and displacement vectors will be used to define physical strain patterns in the following section. 

 

 

Fig. 2.2. Characteristic geometry vectors. (a) Two vectors rx  and sx  correspond to covariant base vectors at 

the element center. (b) The vector dx  denotes in-plane distortion. 

 

The covariant base vectors and the derivatives of the displacements are obtained by [1, 30] 

r r ds
r


  

x

g x x , s s dr
s


  

x

g x x , (2.10) 

,r r ds
r


  

u

u u u , ,s s dr
s


  

u

u u u . (2.11) 

Note that the covariant base vectors in Eq. (2.10) become the characteristic vectors in Eq. (2.8) at the element 

center ( 0)r s  , 

(0,0)r r r g x g


 and (0,0)s s s g x g


. (2.12) 

 

The covariant strain components are defined by [33, 35] 

 i j
ije e g g  with  , ,

1

2ij i j j ie    g u g u , , 1, 2i j   (2.13) 

where the vector ig  is the contravariant base vector calculated by 

i i
j j g g  with 1 rg g , 2 sg g , 1 rg g , 2 sg g . (2.14) 
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Substituting Eqs. (2.10) and (2.11) into Eq. (2.13), the covariant strain components could be represented by using 

the characteristic vectors in Eqs. (2.8) and (2.9) as follows [36]:  

  2,rr rr rr rscon lin bil
e r s e s e s e     , (2.15) 

  2,ss ss ss rscon lin bil
e r s e r e r e     , (2.16) 

 ,rs rs rr ss rscon lin lin bil
e r s e r e s e rs e        (2.17) 

with 

rr r rcon
e  x u , rr r d d rlin

e    x u x u , (2.18) 

ss s scon
e  x u , ss s d d slin

e    x u x u , (2.19) 

 1

2rs r s s rcon
e    x u x u , rs d dbil

e  x u , (2.20) 

in which the subscripts ‘con’, ‘lin’, and ‘bil’ denote constant, linear, and bilinear terms of the strain components, 

respectively. The strain coefficients in Eqs. (2.18)-(2.20) are refered as ‘physical strain coefficients’ and they will 

be used to construct the assumed strain field. The physical strain coefficients in Eqs. (2.18)-(2.20) consist of 

physical strain patterns, see Appendix A for the details. 

 

In vector and matrix forms, the displacement-based strain field in Eqs. (2.15)-(2.17) is transformed into the global 

Cartesian coordinates [1], 

( )( )k l
ij kl i je   i g i g  with 1 xi i  and 2 yi i ,  (2.21) 

where ii  denotes the global Cartesian base vectors. Note that 11 xx  , 22 yy   and 12 xy  . The relation 

between the strain components in Eq. (2.21) and the nodal displacement vector is expressed as 

e BU  with 
T

2xx yy xy     e  and 
TT T T T

1 2 3 4   U u u u u , (2.22) 

where B  is the strain-displacement matrix, and U  is the nodal displacement vector. 

 

The stiffness matrix of the 2D-MITC4 element is obtained as 

T

e
eV

dV K B CB , (2.23) 

where eV  is the element volume and C  is the material law matrix [1], which is given by  

2

1 0

1 0
1

0 0 (1 ) 2

E







 
   
  

C  for plane stress problems, (2.24) 

and 

1 0

1 0
(1 )(1 2 )

0 0 1 2

E
 

 
 



 
    
  

C  for plane strain problems,  (2.25) 

where E  and   are Young’s modulus and Poisson’s ratio, respectively. 
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2.2.  Original 2D-MITC4 solid element 

 

In this section, the assumed strain field for the original 2D-MITC4 element is reviewed [30] and then, the assumed 

strain field is rewritten with the physical strain coefficients in order to reduce computational cost. 

 

 

2.2.1.  Assumed strain field 

 

In the original 2D-MITC4 elements, the assumed strain field is constructed for the following strain components 

k l
ij kl i je e g g ,  i i

j jg g g
 , (2.26) 

where the vector ig


 is the constant base vector in Eq. (2.12). 

 

 

Fig. 2.3. Five tying points used to construct the assumed strain field of the original 2D-MITC4 element. 

 

The original assumed strain fields employ the five tying points (A)-(E) as shown in Fig. 2.3. The center point E  

is used to represent the constant fields and the others are used to construct the linear fields as follows [30]: 

      3
( , ) ( , )

2
E A BAS

rr rr rr rre r s e r s s e e      , (2.27) 

      3
( , ) ( , )

2
E C DAS

ss ss ss sse r s e r s r e e      , (2.28) 

 ( , ) EAS
rs rse r s e  ,  (2.29) 

with 
det( (0,0))

( , )
det( ( , ))

r s
r s

 
J

J
, (2.30) 

where J  is the Jacobian matrix, and   is the ratio of the determinants of the Jacobian matrices. 

 

The strain components obtained at the center point are used to represent the constant strain behaviors and the 

strain components obtained at the others are used to construct the linear terms in Eqs. (2.18)-(2.19) for represent 

the bending behaviors. While the assumed strain fields in Eqs. (2.27)-(2.29) are closely related to the fields of the 
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QMITC element developed by Dvorkin and Vassolo [41], the assumed strain fields are differently constructed. 

Also, the 2D-MITC4 element uses only the 4 corner nodes to interpolate the geometry and displacement. 

 

 

2.2.2.  Formulation of the original 2D-MITC4 element 

 

The assumed strain fields in Eqs. (2.27)-(2.29) could be computed at each Gauss integration points and thus it 

needs undesirable computational cost. In this section, the assumed strain fields are represented by the physical 

strain coefficients to reduce the computational cost because the physical strain coefficients could be pre-calculated 

at the element level [30]. 

 

To effectively calculate the strain field in Eqs. (2.27)-(2.29), the physical strain coefficients in Eqs. (2.18)-(2.20) 

are employed and then, the final formulation of the original 2D-MITC4 element is obtained as 

ˆ( , ) ( , )AS lin
rr rr rrcon

e r s e r s s e  , (2.30) 

ˆ( , ) ( , )AS lin
ss ss sscon

e r s e r s r e  , (2.31) 

( , )AS
rs rs con

e r s e , (2.32) 

with 

1
1 2 3 4 5ˆ 3 3 2 3

3
lin
rr rs rr ss rr ss rsbil con con lin lin con

n
e e n e n e n e n e n e      , (2.33) 

1
1 2 3 4 5ˆ 3 3 2 3

3
lin
ss rs ss rr ss rr rsbil con con lin lin con

m
e e m e m e m e m e m e      , (2.34) 

     2 2

1

1

2
r r
r rA B

n g g
 

  
 

,
     2 2

2

1

2
s s
r rA B

n g g
 

  
 

,
     2 2

3

1

2
r r
r rA B

n g g
 

  
 

, (2.35) 

       4

1

2
r s r s
r r r rA A B B

n g g g g      
,

       5

1

2
r s r s
r r r rA A B B

n g g g g      
,  (2.36) 

     2 2

1

1

2
s s
s sC D

m g g
 

  
 

,
     2 2

2

1

2
r r
s sC D

m g g
 

  
 

,
     2 2

3

1

2
s s
s sC D

m g g
 

  
 

, (2.37) 

       4

1

2
r s r s
s s s sC C D D

m g g g g      
,

       5

1

2
r s r s
s s s sC C D D

m g g g g      
,  (2.38) 

in which 
 

j
ig


 is j

ig  evaluated at a tying point ( ) . Note that the original assumed strain fields consist of the 

complicated combination of the strain coefficients.  

 

Note that the linear terms in Eqs. (2.31)-(2.31) consist of six physical strain coefficients and ten additional 

coefficients. The physical strain coefficients and additional coefficients could be calculated by using the 

characteristic vectors at the element level before evaluating the stiffness matrix. 
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2.2.3.  Treatment of the volumetric locking 

 

To alleviate volumetric locking in the plane strain analysis of structures with nearly incompressible materials, it 

is effective to use the constant volumetric strain [1, 12], which also could enhance the performance of the element 

in plane stress analysis [30]. 

 

The assumed strain fields in Eqs. (2.30)-(2.32) are decomposed into volumetric and deviatoric parts as follows: 

   0,0 0,0vol AS AS vol
xx yye e e   BU , (2.39) 

1

2
dev AS vol dev

ij ij ij ije e e    B U  with  1 2 3 4

TU u u u u , (2.40) 

where the overbar indicates that the value is in the global Cartesian coordinates, B  is the strain-displacement 

matrix, and U  is the nodal displacement vector. The constant volumetric strain in Eq. (2.39) is obtained from 

strain components at the element center. 

 

Then, the element stiffness matrix of the improved 2D-MITC4 element could be obtained as 

3e e

vol T vol dev T dev dev
e ij ij ij eV V

G dV C dV
    

  K B B B B  (2.41) 

where   
  
1 1 4

1 1 2

 
   

    for the plane stress analysis, 1    for the plane strain analysis, t  ,   , G  , and    are 

the thickness, bulk modulus, shear modulus, and Poisson’s ratio, respectively, and dev
ijC   denotes the material 

tensor for the deviatoric strain and stress ( 11 22 2dev devC C G   and 12
devC G ). 
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2.3.  New 2D-MITC4 solid element 

 

In this section, the formulation of the new 4-node quadrilateral solid finite element (improved 2D-MITC4 element) 

is presented in detail. We derive a new assumed strain field for the element and present a numerical scheme to 

adjust Gauss integration points to enhance its bending behavior when the element is distorted. We also present the 

well-known scheme to alleviate volumetric locking that can be incorporated with the improved 2D-MITC4 

elements. 

 

 

2.3.1.  Simplified assumed strain field 

 

The strain components at each tying point are represented using the characteristic geometry and displacement 

vectors in Eqs. (2.8)-(2.9), and the resulting equations are substituted into Eqs. (2.30)-(2.32); the assumed strain 

field can be rewritten as 

 2

3 ( , )
( , )

3
AS

rr r r r r r s r d

r s
e r s s

  


        


x u x u x u x u


, (2.42) 

 2

3 ( , )
( , )

3
AS

ss s s s s s r s d

r s
e r s r

  


        


x u x u x u x u
 , (2.43) 

 1
( , )

2
AS

rs r s s re r s    x u x u


, (2.44) 

with r
d  x g


 and s
d  x g


, (2.45) 

where the vectors rg


  and sg


  are the contravariant base vectors evaluated at the element center with 

(0,0)r rg g


 and (0,0)s sg g


 as in Eq. (2.12). 

 

The simplified assumed strain field in Eqs. (2.42)-(2.44) directly consists of the characteristic vectors. This 

assumed strain field has a much simpler form than that of the original assumed strain field, which consists of the 

strain coefficients in Eqs. (2.18)-(2.20). 

 

 

2.3.2.  Classification of distortion 

 

The geometry distortion of a 4-node quadrilateral element can be expressed by the aspect ratio, skewness, and 

taper [4, 42]. It is interesting to note that the geometry distortion due to skewness and taper can be represented 

using three characteristic vectors, rx , sx , and dx  as shown in Fig. 2.4(a). 
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Fig. 2.4. Classification of distortion for 4-node quadrilateral element. (a) Characteristic vectors, (b) skewness, 

(c) taper in r-direction, and (d) taper in s-direction. 

 

 

Using the two vectors rx  and sx , a parallelogram with blue dashed line can be constructed as shown in Fig. 2.4 

(b). The skewness can be measured by angle   and the skew angle is calculated as 

1 1
cos

| || | | || |r s
r s

  
g g g g
    . (2.46) 

 

In addition, the characteristic vector dx  representing the taper can be measured by   and   in Eq. (2.45). 

d r s  x x x , (2.47) 

where   and   denote the tapers in the r - and s - directions, respectively; see Fig. 2.4(c) and (d). 
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2.3.3.  Geometry dependent Gauss integration 

 

It is well known that the performance of finite elements can be improved by modifying the integration rule [17-

20, 43-45]. In most previous studies, a fixed integration rule was adopted without concern for element geometry. 

We here introduce a numerical scheme to adaptively adjust Gauss integration points according to the degree of 

element distortion to make the element performance less sensitive to its geometry distortion. 

 

When evaluating the stiffness matrix, the standard 2 2  Gauss integration in Fig. 2.5(a) is employed in general 

 
2 2

1 1

,i j i j
i j

t w w  
 

 K F  with 1 1 3  , 2 1 3   , 1 2 1w w  ,  (2.48) 

in which t   is the element thickness, and i   and iw   denote the integration positions and the corresponding 

weight factors for the two-point Gauss integration, respectively. 

 

 

Fig. 2.5. Integration points for (a) standard Gauss integration and (b) geometry dependent Gauss integration. 

 

In Eq. (2.48),  

T( , ) det( )r s F B CB J  for the 2D-MITC4 element,  (2.49) 

and 

T T( , ) det( )
3

vol vol dev dev dev
ij ij ijr s G C

        
F B B B B J for the 2D-MITC4/1 element. (2.50) 

 

With this standard integration rule, the original 2D-MITC4 and MITC4/1 elements reveal overly stiff bending 

behavior when the element is distorted. There are many ways to modify the position of Gauss integration points, 

see Appendix B.This stiffening effect arising with geometry distortion can be alleviated by moving the integration 

points toward the element center as 

 
2 2

1 1

ˆ ˆ,i j i j
i i

t w w  
 

 K F  with î i  , (2.51) 

where   is an adjusting parameter smaller than 1.0, as shown in Fig. 2.5(b). 
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Fig. 2.6. Distorted element for eigenvalue analysis. 

 

To show that adjusted integration points can alleviate overly stiff bending behavior of the distorted element, the 

eigen analysis of the stiffness matrix of a single 2D-MITC4 element shown in Fig. 2.6 is carried out. The plane 

stress condition is considered with Poisson’s ratio 0.3  . 

 

Table 2.1 shows eigenvalues normalized by Young’s modulus according to the adjusting parameter   . The 

standard 2x2 Gauss integration is applied with the parameter 1   . The case of 0    corresponds to the 

reduced integration, for which the eigenvalues for the two bending modes become zero and thus spurious zero 

energy modes occur. 

 

Table 2.1. Normalized eigenvalues of stiffness matrix of single 2D-MITC4 element according to adjusting parameter 

 . The original 2D-MITC4 element corresponds to 1  . The eigenvalues are normalized by Young’s modulus. 

Mode   1   0.5   0.1   0   
1 

Rigid body 
modes 

0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 Bending 

modes 
0.3094 0.0773 0.0031 0 

5 0.4740 0.1198 0.0048 0 
6 

Constant 
strain modes 

0.7205 0.7173 0.7169 0.7168 
7 0.7976 0.7886 0.7875 0.7874 
8 1.5374 1.5339 1.5330 1.5330 
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Fig. 2.7. Change in normalized eigenvalues of each deformation mode according to adjusting parameter  . 

 

Fig. 2.7 show the normalized eigenvalues of each deformation mode according to the adjusting parameter. The 

eigenvalues for the constant strain modes (modes 6, 7 and 8) are almost unaffected, but the eigenvalues 

corresponding to the bending modes (modes 4 and 5) rapidly decrease as the adjusting parameter become smaller. 

Therefore, it is possible to adaptively reduce the element bending stiffness by changing the integration points. 

 

With this observation, we propose the following practical requirements to design a function 1 2 3 4( , , , )f  x x x x  

for the adjusting parameter. 

 1   for undistorted element geometries (Standard Gauss integration is used.) 

 1   when element geometry is distorted 

 No spurious zero energy mode: 0   

 Ideally optimal convergence for bending problems 

 Same value for quadrilaterals in similarity: ABCD EFGH    when ABCD EFGH   

 

A number of functions for the adjusting parameter satisfying the above requirements can be devised, and we here 

propose the following function 

2
2 2 2 2

1 1
cos ( )

| | | | | | | |r s
r s

   
g g g g
    , (2.52) 

in which   denotes the skew angle defined in Eq. (2.46). Fig. 2.8 shows the relationship between the adjusting 

parameter   and the skew angle   as shown in Fig. 2.9. For the details, see Appendix C. 

 

The same adjusting parameter is also employed to calculate strain and stress. Strain at ( , )r s   is calculated by 

entering ( , )r s    into Eqs. (2.22), (2.39) and (2.40) instead of ( , )r s  , and the corresponding stress is obtained 

through the material law. 
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Fig. 2.8. Adjusting parameter and skew angle. (a) Adjusting parameter according to the skew angle. (b) Element 

geometries with skew angles 0  , / 8 , / 4 , and 3 / 8 . 

 

In this study, the total Lagrangian formulation is employed for geometric nonlinear analysis and thus the adjusting 

parameter is obtained from the initial element geometry. If the updated Lagrangian formulation is adopted, the 

adjusting parameter could be updated. 

 

 

Fig. 2.9. The distortion angle   corresponding to the angle between covariant and contravaiant base vectors at 

the element center. The distortion angle satisfies the above proposed requirements. 

 

In the following section, it was confirmed that the improved 2D-MITC4 element passed all basic numerical tests 

including patch, isotrophy, and zero energy mode tests. Throughout various numerical examples, the improved 

2D-MITC4 element shows better predictive capabilities especially in distorted meshes. The convergences in the 

strain energy and the displacements at specific node are studied and the improved 2D-MITC4 element shows 

almost optimal convergences in both regular and distorted meshes. The improved 2D-MITC4 element also 

provides more accurate results without showing any spurious instabilities in geomatrically nonlinear analayses. 
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2.4.  Basic numerical tests 

 

In this section, we perform three basic numerical tests (patch, zero energy mode, and isotropy tests) for the 

improved 2D-MITC4 element. 

 

In order to check the consistency of the element, the normal and shear patch tests are carried out using the mesh 

shown in Fig. 2.10 [1,12]. The minimum number of fixed boundary conditions are given to suppress the rigid 

body motions. For both normal and shear patch tests using the improved 2D-MITC4 element, the constant stress 

fields are obtained which are identical to the analytical solutions. 

 

 

Fig. 2.10. Mesh pattern used for the patch tests. 

 

In the zero energy mode test, a single 2D element without support should have only three zero energy modes 

corresponding to the rigid body modes which consist of two translations and one rotation [1-3]. The improved 

2D-MITC4 element passes the zero energy mode test considering the geometry in Fig. 2.11. 

 

 

Fig. 2.11. Geometries for zero energy mode and isotropy tests. 

 

All the elements in FEM should be spatially isotropic since the performance of an element should not be affected 

by the node numbering sequence [1,33]. Considering geometry in Fig. 2.11, The improved 2D-MITC4 element 

passes the isotropy test. 
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2.5.  Numerical examples for linear analysis 

 

In this section, to demonstrate the performance of the improved 2D-MITC4 element, we solve several numerical 

examples: a cantilever problem, a cantilever beam with distortion parameter, Cook’s skew beam, a thick curved 

beam, and a block subjected to complex forces. The first two problems are considered to compare the diaplacement 

and stress with analytic solutions. The next two problems are considered to study convergences in strain energy 

and displacements. The stress contours are given in the problems. The last problems are considered with plane 

strain assumption to check the alleviation of the volumetric locking. The standard 4-node quadrilateral element 

(Q4), the original 2D-MITC4 element (2D-MITC4), the incompatible modes element (ICM-Q4) are considered 

for comparison with the improved 2D-MITC4 element (improved) [27,30]. 

 

To show the enhanced predictive capability of the improved 2D-MITC4 element in detail, we check the 

displacements and stresses at specific locations [1,12,30]. In addition, the convergence of the relative error in 

strain energy rE  is employed, 

ref h

r
ref

E E
E

E


 ,  (2.52) 

where refE  and hE  are the strain energies stored in the whole structure calculated from the reference and finite 

element solutions, respectively. The optimal convergence of the 4-node element for the relative error in strain 

energy is obtained as 2
rE ch , where c  is a constant and h  denotes the element size. The reference solutions 

are either analytical solutions or sufficiently converged solutions obtained using 9-node quadrilateral solid element. 

 

 

Fig. 2.12. Mesh patterns used to numerical problems. (a) Regular and (b) distorted mesh patterns when 4N  . 

 

To generate the N N  regular and distorted meshes for the finite element models, the mesh patterns are first 

constructed in a square domain shown in Fig. 2.12 and then, linearly mapped to a problem domain under 

consideration [1,12]. In the distorted mesh pattern, each edge has been divided into the following ratio: 

1 2 3: : : 1: 2 : 3 :NL L L L N   for the N N  mesh. 
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2.5.1.  Cantilever problem 

 

We solve the cantilever beam subjected to a shearing force 40P   at its end tip as shown in Fig. 2.13 [46-48]. 

The plane stress condition is considered with Young’s modulus 43 10E     and Poisson’s ratio 0   . The 

cantilever beam is modeled using four elements in regular and distorted meshes. 

 

 

Fig. 2.13. Cantilever problem ( 43 10E    and 0v  ). (a) regular mesh. (b) distorted mesh. 

 

 

 

Table 2.2. Relative errors in the tip displacement ( / 100ref h refv v v  ) at point A  in the cantilever problem. 

Elements Regular mesh Distorted mesh 
Q4 32.26% 41.36% 

ICM-Q4 0% 1.51% 
2D-MITC4 0% 13.14% 
Improved 0% 1.42% 

Reference solution: 0.34781refv   
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Table 2.3. Relative errors in the xx-component of stress ( / / 100ref xx h ref    ) at the support point B  in the 

cantilever problem. 

Elements Regular mesh Distorted mesh 
Q4 33.33% 49.80% 

ICM-Q4 0% 12.07% 
2D-MITC4 0% 17.03% 
Improved 0% 12.04% 

Reference solution: 70ref   
 

The relative errors in the vertical displacement at point A  and the xx -component of stress at point B  for both 

regular and distorted meshes are listed in Table 2.2 and Table 2.3, respectively. For regular mesh, the ICM-Q4 and 

both the original and improved 2D-MITC4 elements give the exact solution. For the distorted mesh, the improved 

2D-MITC4 element gives the most accurate solution. 

 

 

2.5.2.  Cantilever beam with distortion parameter 

 

 

Fig. 2.14. Cantilever beam (E=1500 and v=0.25) modeled using two elements with distortion parameter (e). 

 

To further test the sensitivity to the mesh distortion, the cantilever beam modeled by using two elements with a 

distortion parameter is considered as shown in Fig. 2.14 [5,49]. The plane stress condition is considered with 

Young’s modulus 1500E    and Poisson’s ratio 0.25   . The left end is fixed and a bending moment 

2000M   is applied at the right end. 

 

The shapes of the elements are symmetrically changed with respect to the distortion parameter, e  , which 

indicates the degree of element distortion. As the distortion parameter e  changes from 0 to 4.9, the element 

distortion becomes more severe. The normalized vertical displacement at point A  is shown in Fig. 2.15. The 

result shows that the improved 2D-MITC4 element is least affected by element distortion. 
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Fig. 2.15. Normalized vertical displacements ( h refv v ) at point A according to the distortion parameter ( e ). 

 

 

2.5.3.  Cook’s skew beam 

 

The well-known Cook’s skew beam problem is considered as shown in Fig. 2.16 [12,21]. The left end of the 

structure is fixed, and a distributed shearing force 1 16sf   (force per length) is applied at the right end. We use 

the plane stress condition with Young’s modulus 1E    and Poisson’s ratio 1 3   . The solutions for both 

regular and distorted meshes are obtained with N N  meshes ( N  2, 4, 8, and 16). The distorted mesh patterns 

used for the problem are depicted in Fig. 2.16(b).  

 

 

Fig. 2.16. Cook’s skew beam ( 1E   and 1 3v  ). (a) Regular mesh when 4N  . (b) Distorted mesh when 

4N  . 
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Fig. 2.17. Convergence curves for Cook’s skew beam. The bold line represents the optimal convergence rate. 

 

The convergences of the normalized vertical and horizontal displacements at point A  are shown in Fig. 2.18 and 

Fig. 2.19, respectively. The convergence curves of the relative error according to the element size 1h N  are 

shown in Fig. 2.17. The reference solutions for displacements and strain energy are obtained by using a 64 64  

mesh of 9-node quadrilateral element. The improved 2D-MITC4 element gives much more accurate results than 

the original 2D-MITC4 element and gives not much less accurate results than the ICM-Q4 element. 

 

The relative errors in the vertical and horizontal dilaplacement at point A  are given in Table 2.4 and Table 2.5, 

repectivley. The shear stress ( xy ) distributions calculated in Cook’s skew beam are also illustrated in Fig. 2.20 

considering distorted meshes with 8N  . The reference shear stress distribution is obtained using a 64 64  

mesh of 9-node quadrilateral elements. The results show the improved 2D-MITC4 element provides more accurate 

solutions in both regular and distorted meshes. 
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Fig. 2.18. Normalized vertical displacements ( h refv v ) at point A in Cook’s skew beam. 

 

 

 

Table 2.4 Relative errors in the vertical displacement ( / 100ref h refv v v  ) at point A  in Cook’s skew beam. 

 

 

  

mesh N Q4 2D-MITC4 ICM-Q4 Improved 

Regular 

2 50.05517 27.68639 13.0034 6.999521 

4 23.10617 8.787242 3.552471 1.868016 

8 7.746865 2.547952 1.169934 0.74256 

16 2.311595 0.774109 0.384576 0.255881 

Distorted 

2 67.99257 53.31366 19.29182 12.16736 

4 56.77213 37.04392 5.68947 3.130528 

8 39.40818 19.82833 1.284105 0.481765 

16 20.05244 8.22445 0.578696 0.341865 

Reference solution: 23.2022refv      
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Fig. 2.19. Normalized horizontal displacements ( h refu u ) at point A in Cook’s skew beam. 

 

 

 

Table 2.5 Relative errors in the horizontal displacement ( / 100ref h refu u u  ) at point A  in Cook’s skew 

beam. 

mesh N Q4 2D-MITC4 ICM-Q4 Improved 

Regular 

2 61.78692 52.71882 47.97745 45.54151 

4 26.18252 16.54475 11.30688 9.486452 

8 8.279696 4.95076 3.173436 2.560279 

16 2.450948 1.445494 0.901428 0.710326 

Distorted 

2 82.9852 75.53294 64.39452 62.65732 

4 64.92443 49.04938 33.49812 32.12622 

8 42.23079 24.85272 8.046069 7.06453 

16 20.6159 9.969728 2.638708 2.281475 

Reference solution: 4.6373refu       
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Fig. 2.20. Shear stress ( xy ) distributions calculated in Cook’s skew beam using distorted meshes with 8N  . 

The reference stress distribution is obtained using a 64 64  mesh of 9-node quadrilateral elements. 

 

 

2.5.4.  Curved beam 

 

 

 

Fig. 2.21. Curved beam ( 31 10E    and 0v  ). (a) 4 4  regular mesh, (b) 4 4  distorted mesh. 
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Fig. 2.22. Convergence curves for the curved beam. The bold line denotes the optimal convergence rate. 

 

 

 

Fig. 2.23. Normalized vertical displacements ( h refv v ) at point A in the curved beam. 

 

 

We consider the curved beam problem as shown in Fig. 2.21. The curved beam is clamped at the bottom and 

subjected to a distributed shearing force 120sf    (force per length) at the free tip [30,46]. The plane stress 

condition with 31 10E    and Poisson’s ratio 0   is used. The convergence behavior is studied by using both 

regular and distorted meshes of N N  elements ( N  2, 4, 8, and 16). The configuration of the distorted meshes 

used for the problem is given in Fig. 2.21(b). 
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Fig. 2.24. von Mises stress ( vM ) distributions of the curved beam problem obtained by using 16 16  distorted 

meshes. The reference stress distribution is obtained using a 64 64  mesh of 9-node quadrilateral elements. 

 

 

Fig. 2.23 gives the normalized vertical displacements at point A . The convergence of the relative error in strain 

energy is depicted in Fig. 2.22. The reference solutions are obtained by using a 16 64   mesh of 9-node 

quadrilateral element. When the regular meshes are used, all elements except the Q4 element show similar 

performance, but when considering the mesh distortion, the performances of the original and simplified 2D-

MITC4 elements deteriorate. However, the improved 2D-MITC4 and ICM-Q4 elements show much better 

predictive capability and give the almost same results. 

 

The von Mises stress ( vM  ) distributions of the curved beam problem calculated by using 16 16   distorted 

meshes are given in Fig. 2.24. The reference von Mises stress ( vM ) distribution is obtained using a 64 64  mesh 

of 9-node quadrilateral elements. Also, Fig. 2.25 gives the von Mises stress distributions along the curved edge 

AB considering distorted meshes with 8N  ,16 , and 32 . Note that the improved 2D-MITC4 element gives 

more accurate solutions and closely follows the reference stress distributions along the curved edge in spite of 

highly distorted meshes. 
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Fig. 2.25. von Mises stress distributions along the arc AB  of the curved beam problem for (a) 8 8 , (b) 

16 16  and (c) 32 32  distorted meshes. 
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2.5.5.  Block under complex body force 

 

 

Fig. 2.26. Clamped box under complex body force problem ( 72 10E    and plane strain conditions with 

0.47v  , 0.49  or 0.499  for nearly incompressible materials). (a) Regular mesh when 4N  . (b) Distorted 

mesh I when 4N  . 

 

A square box is clamped along its bottom and subjected to a body force  2 34 1sf y x    (force per area), as 

shown in Fig. 2.26 [12]. The plane strain condition is employed with Young’s modulus 72.0 10E     and 

Poisson’s ratio 0.3  . Solutions are obtained with N N  regular and distorted meshes ( N  2, 4, 8, and 16), 

see Fig. 2.26.  

 

Fig. 2.27. Convergence curves for the clamped box under complex body force problem with regular meshes. 

Nearly incompressible material properties are considered. The bold line denotes the optimal convergence rate. 
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Fig. 2.28. Convergence curves for the clamped box under complex body force problem with distorted meshes I. 

Nearly incompressible material properties are considered. The bold line denotes the optimal convergence rate. 

 

The plane strain analysis of nearly incompressible materials using the 2D-MITC4 element is performed first. 

Three Poisson’s ratio 0.47  , 0.49 , and 0.499  are used. The convergences of relative errors in strain energy 

for regular and distorted meshes are given in Fig. 2.27 and Fig. 2.28 repectively. The improved 2D-MITC4 element 

performs well considering the nearly incompressible materials with plane strain assumption. 

 

Then, the plane stress analysis is performed. One regular mesh and two distorted mesh patterns are considered: 

distorted mesh I in Fig. 2.26(b) and distorted mesh II in Fig. 2.29. The convergence curves of the relative error in 

strain energy are given in Fig. 2.30. The convergences of the normalized horizontal and vertical displacements at 

point A  are shown in Fig. 2.31-Fig. 2.33 for each mesh patterns. The references for displacements and strain 

energy are calculated by using a 64 64  mesh of 9-node quadrilateral element. For the distorted mesh case, the 

improved 2D-MITC4 element gives much more accurate solutions than the original 2D-MITC4 element and also 

shows insensitivity to the mesh distortion similar to the ICM-Q4 element. 
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Fig. 2.29. Distorted mesh II when (a) 2N  , (b) 2N  , (c) 8N   and (d) 16N  . 

 

 

Fig. 2.30. Convergence curves for block under body force. The bold line denotes the optimal convergence rate. 



33 

 

 

Fig. 2.31. Normalized (a) horizontal ( h refu u ) and (b) vertical ( h refv v ) displacements at point A  in block 

under body force considering regular meshes. 

 

 

Fig. 2.32. Normalized (a) horizontal ( h refu u ) and (b) vertical ( h refv v ) displacements at point A  in block 

under body force considering distorted meshes I. 

 

 

Fig. 2.33. Normalized (a) horizontal ( h refu u ) and (b) vertical ( h refv v ) displacements at point A  in block 

under body force considering distorted meshes II. 
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2.6.  Numerical examples for nonlinear analysis 

 

In this section, nonlinear analysis using the improved 2D-MITC4 element is conducted including block sujected 

to a compression force, column under eccentric load, and cantilever beam subjected to a tip moment. The first 

example is considered to check wheather or not the element reveals spurious instabilities in nonlinear analysis. 

The next problem is conducted to show that the improved 2D-MITC4 element provides reliable solutions in both 

regular and distorted meshes. 

 

 

2.6.1.  Block subjected to a compression force 

 

 

Fig. 2.34. Block subjected to a compression force with 12 30  mesh ( 31 10E   , 0.3v   and max 98p   ). 

 

We solve the geometric nonlinear problem to investigate whether the improved 2D-MITC4 element shows 

spurious instabilities that appeared in the ICM-Q4 element. A block under a distributed compression force 

max 98P    (force per length) is considered as shown in Fig. 2.34 [12,28,30]. The plane stress condition with 

Young’s modulus 31 10E    and Poisson’s ratio 0.3   is adopted and a 12 30  mesh is used.  

 

The deformed configurations of each element at the load step max 0.5125P P    are given in Fig. 2.36. The 

12 30  mesh of 9-node quadrilateral element is used to obtain the reference solutions. Fig. 2.35 shows the load-

displacement curves representing the vertical displacement at point A  according to a compression force. The 

original and improved 2D-MITC4 elements closely follow the reference path over the entire load steps without 

any spurious instability. However, the ICM-Q4 element reveals the instabilities showing a spurious hourglass 

mode as the load increases.  
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Fig. 2.35. Load-displacement curves at the point A  in the block subjected to a compression force. The deformed 

shapes at the load step max 0.5125p p   are given in Fig. 2.36. 

 

Fig. 2.36. The deformed configurations of the block subjected to a compression force at the load step 

max 0.5125p p   with magnifying the displacements two times: (a) Standard 9-node element, (b) Incompatible 

modes element, (c) Improved 2D-MITC4 element. 
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2.6.2.  Column under an eccentric load 

 

 

Fig. 2.37. Column under an eccentric load ( 610E   , 0v    and 3
max 4.5 10P    ) modeled with (a) 2 10  

regular mesh and (b) 2 10  distorted mesh. 

 

The geometric nonlinear problem to investigate the performance of the improved 2D-MITC4 element considering 

both the regular and distorted meshes [40]. A column under an eccentric load 3
max 4.5 10P    is applied at the 

point A  as shown in Fig. 2.37. The plane stress condition with Young’s modulus 610E   and Poisson’s ratio 

0v   is adopted and a 2 10  mesh is used for both regular and distorted meshes.  

 

 

 

Fig. 2.38. Load-displacement curves ( Av ) for the column under an eccentric load for regular and distorted meshes. 
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Fig. 2.39. Load-displacement curves ( Au ) of the column under an eccentric load for regular and distorted meshes. 

 

 

Fig. 2.40. Deformed configurations of the column under an eccentric load at the initial, middle and final load steps 

obtained by 2 10  distorted meshes. The reference solutions obtained by 20 100  mesh of standard 9-node element. 

 

The deformed configurations of each element at the initia, middle, and final load steps ( max 0,0.5,1P P  ) are 

given in Fig. 2.40. The 20 100  mesh of 9-node quadrilateral element is used to obtain the reference solutions. 

Fig. 2.38 and Fig. 2.39 shows the load-displacement curves representing the vertical ( Av ) and horizontal ( Au ) 

displacement at point A  according to a compression force, respectively. The original and improved 2D-MITC4 

elements closely follow the reference path over the entire load steps when the regular mesh is used. However, the 

improved 2D-MITC4 element provides substantially improved results when considering the distorted mesh which 

is generally preferred in engineering practice. 
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Chapter 3.  New 4-node quadrilateral shell finite element 

 

Shell structures have been widely used in various engineering fields based on their efficient load-carrying 

capabilities [1,31]. For several decades, the finite element method (FEM) has been dominantly used to analyze 

shell structures [50]. Among various shell elements, 4-node quadrilateral shell elements are preferred due to their 

simplicity and efficiency [38,39], but most of them are not good enough to be used in engineering practice [36]. 

 

Shell finite elements suffer from the transverse shear and membrane locking problems which occur when the finite 

element discretization cannot accurately represent pure bending displacement fields [51,52]. The locking 

deteriorates the solution accuracy in bending-dominated problems and this deterioration becomes more serious as 

the shell thickness diminishes. Although there are a number of methods to reduce locking including assumed strain 

methods and reduced integration [17-19,53-65], it is well known that the mixed interpolation of tensorial 

components (MITC) method was successful [66-69]. 

 

Adopting the MITC method for the continuum mechanics based 4-node quadrilateral shell finite element [29], the 

MITC4+ shell element was recently developed by Ko et al [36]. Through a number of numerical examples, its 

excellent performance in both linear and nonlinear analysis has been demonstrated. The membrane behavior of 

the MITC4+ shell element is identical to the standard 4-node plane stress element. For this reason, the 2D-MITC4 

solid element was embedded into the membrane strain field of the MITC4+ shell element, and consequently, the 

improved MITC4+ shell element was developed [30]. While the element shows great membrane performance in 

uniform meshes, the performance substantially deteriorates when the distorted meshes are used. 

 

It is confirmed that the geometry dependent Gauss integration scheme is very effective at reducing the overly stiff 

in-plane bending behavior of 2D plane stress and strain problems. The major advantage of geometry dependent 

Gauss integration is that the solution accuracy is improved very efficiently. More specifically, the scheme doesn’t 

need additional degrees of freedom, the computational cost for adjusting the integration points is merely increased, 

and it could be directly extended into the nonlinear analysis. As an interesting feature, the scheme is dependent 

only on the element geometry, not the formulation itself and thus, the scheme can be smoothly combined with the 

previous finite elements. 

 

In this chapter, the new MITC4+ shell element is presented in detail. The covariant strain components are 

decomposed into the following three parts: membrane, bending, and transverse shear. To alleviate the transverse 

shear and membrane locking, the assumed strain field in the MITC4+ shell is adopted. The new assume membrane 

strain field is proposed to make the formulation more compact and straightforward compared with the improved 

MITC4+ shell element. Also, the geometry dependent Gauss integration scheme is extended to improve the 

membrane performance. Through various linear and nonlinear benchmark problems, the performance of the 

proposed element is demonstrated.  
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3.1.  Geometry and displacement interpolations 

 

 

Fig. 3.1. Geometry of a 4-node quadrilateral shell element. 

 

Using the natural coordinates r, s, and t, the geometry interpolation of the continuum mechanics based 4-node 

quadrilateral shell finite element is given by [66,67] 

4 4

1 1

( , , ) ( , ) ( , )
2

i
i i i i n

i i

t
r s t h r s a h r s

 

  x x V , (3.1) 

with 
1

( , ) (1 )(1 )
2i i ih r s r s    , (3.2) 

1 2 3 4[ ] [1 1 1 1]       , (3.3) 

1 2 3 4[ ] [1 1 1 1]        (3.4) 

where ia  , ix   and i
nV   are shell thickness, position vectors, and director vectors corresponding to node i, 

respectively, and ih  is the two-dimensional shape function for the standard isoparametric procedure. 

 

In the similar way, the displacement interpolation is obtained as 

4 4

2 1
1 1

( , , ) ( , ) ( , )( )
2

i i
i i i i i i

i i

t
r s t h r s a h r s  

 

    u u V V  (3.5) 

in which iu  is the translational displacement vector in the global Cartesian coordinate system, 1
iV  and 2

iV  are 

unit vectors orthogonal to director vector i
nV   and to each other, and i   and i   are the rotational 

displacements of the director vectors about 1
iV  and 2

iV , respectively, at node i. 

 

The displacement-based infinitesimal covariant strain components are given by [68,69] 

, ,

1
( )

2ij i j j ie    g u g u   with , 1, 2,3i j   (3.6) 



40 

 

in which i
ir





x
g  and ,i

ir




u

u  with 1r r , sr s , 3r t  (3.7) 

where ig  is the covariant base vector and ,iu  is the displacement derivatives. The covariant strain components 

could be divided into in-layer strains ( rre  , sse   and rse  ) and transverse shear strains ( rte   and ste  ). Note that 

0tte   because the shell thickness is assumed to be constant. 

 

The in-layer strain components could be divided further into membrane and bending strains as 

1 2 2m b b
ij ij ij ije e te t e    with , 1, 2i j  , (3.8) 

1

2
m m m m m
ij

i j j i

e
r r r r

    
         

x u x u
, (3.9) 

1 1

2
b m b m b b m b m
ij

i j j i i j j i

e
r r r r r r r r

        
                 

x u x u x u x u
, (3.10) 

2 1

2
b b b b b
ij

i j j i

e
r r r r

    
         

x u x u
 (3.11) 

in which 

4

1

( , )m i i
i

h r s


 x x , 
4

1

1
( , )

2
i

b i i n
i

a h r s


 x V , (3.12) 

4

1

( , )m i i
i

h r s


 u u , 
4

2 1
1

1
( , )( )

2
i i

b i i i i
i

a h r s  


  u V V . (3.13) 

 

The strain term m
ije  in Eq.(3.9) is the covariant membrane strain, and the remaining term including 1b

ije  and 2b
ije  

is the covariant bending strain.  

 

The membrane strain that is obtained at the mid surface of the element ( 0t  ) in Eq. (3.8) is rewritten as [36] 

2m con lin bil
rr rr rr rse e se s e    (3.14) 

2m con lin bil
ss ss ss rse e re r e    (3.15) 

1 1

2 2
m con lin lin bil
rs rs rr ss rse e re se rse     (3.16) 

with strain coefficients, 

con
rr r re  x u , con

ss s se  x u , 
1

( )
2

con
rs r s s re    x u x u ,  (3.17) 

lin
rr r d d re    x u x u , lin

ss s d d se    x u x u , bil
rs d de  x u  (3.18) 

where the superscripts ‘con’, ‘lin’ and ‘bil’ denote constant, linear and bilinear terms, repectively.  
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Fig. 3.2. Charateristic geometry vectors for a 4-node quadrilateral shell element. (a) Two vectors rx  and sx  in 

the plane P with normal vector n . (b) Distortion vector dx . 

 

The vectors in Eqs. (3.17) and (3.18) are characteristic geometry and displacement vectors as follows [30,36]: 

4

1

1

4r i i
i




 x x , 
4

1

1

4s i i
i




 x x , 
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1

4d i i i
i




 x x , (3.19) 

4

1

1

4r i i
i




 u u , 
4

1

1

4s i i
i




 u u , 
4

1

1

4d i i i
i

 


 u u  (3.20) 

in which the vectors rx , sx  and dx  are the characteristic vectors as shown in Fig. 3.2, and the corresponding 

displacement vectors are ru  , su   and du  , respectively. Note that the vector dx   can stand for the warped 

distortion. The two vectors rx  and sx  construct the plane P with the normal vector n , 

r s

r s





x x

n
x x

. (3.21) 

 

Generally the displacement-based 4-node quadrilateral shell finite element suffers from the transverse shear 

locking and membrane locking. The transverse shear locking arises from the transverse shear strains rte  and ste  

and the membrane locking results from the covariant membrane strain component m
ije .  

 

While there are various locking alleviation methods such as assumed strain method, enhanced strain method, and 

the reduced integration, the MITC method has been successfully used to develop the effective plate and shell 

elements, because the MITC method dosen’t need the additional degrees of freedom. In the following section, the 

treatment of both transverse shear and membrane locking in the MITC4+ is reviewed. 

 

  



42 

 

3.2.  Original MITC4+ shell element 

 

After the MITC method was first proposed to alleviate the transverse shear locking at the 4-node quadrilateral 

shell element (MITC4), various MITC family elements have been developed including high-order elements and 

quadrilateral and triangular elements [30-40,66-69]. There are many versions in the MITC4 shell element: MITC4 

shell element with treatment of transverse shear locking [29], MITC4+ shell element with treatment of membrane 

locking [36], and improved MITC4+ shell element with improvement of the membrane performance [30]. Table 

3.1 shows the features of the MITC based 4-node shell elements. In this chapter, the locking treamtments only for 

the 4-node quadrilateral shell element are reviewed. 

 

Table 3.1. 4-node quadrilateral shell elements based on MITC method and descriptions. 

Element Descriptions 

MITC4 
(1984, Dvorkin  
and Bathe, [29]) 

 A continuum mechanics based 4-node shell element 

 The transverse shear locking is alleviated by constructing the assumed 

transverse shear strain field based on MITC approach. 

MITC4+ 
(2019,Ko et al., [36]) 

 The MITC4 shell element with alleviation of membrane locking 

 The membrane locking is alleviated by assuming the locking-causing term 

as the linear combination of strain coefficients. 

Improved MITC4+ 
(2019, Ko et al, [30]) 

 The MITC4+ shell element with improvement of membrane behavior 

 The membrane performance is improved by embeding the original 2D-

MITC4 solid element. 

New MITC4+ 
(Proposed) 

 The MITC4+ shell element with improvement of membrane behavior 

 The membrane performance is improved by embeding the new 2D-MITC4 

solid element and adopting geometry dependent Gauss integration. 

 

3.2.1.  Treatment of transverse shear locking 

 

Fig. 3.3. Tying points (A)-(D) for the assumed transverse shear strain field of the MITC4 element and the 

corresponding strain components. 
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To reduce the transverse shear locking in the MITC4+ shell element, the following assumed covariant transverse 

shear strain fields are employed with four tying points (A)-(D) as shown in Fig. 3.3 [29,70]. 

( ) ( )1 1
(1 ) (1 )

2 2
A B

rt rt rte s e s e    , (3.22) 

( ) ( )1 1
(1 ) (1 )

2 2
C D

st st ste r e r e    . (3.23) 

The above assumed transverse shear strain field is identical to the MITC4 shell element which was developed by 

Dvorkin and Bathe [29] and widely used in both research and industrial fields. It deosn’t need an additional 

degrees of freedom and could be extended inro the nonlinear formulation in the same procedure. 

 

The assumed strain field in Eqs. (3.22) and (3.23) is derived as follows: 

rte a br cs drs     (3.24) 

Let assume the strain is constant along the top and bottom edges of the element by the given tying points (A) and 

(B) as shown in Fig. 3.4(a). Then, the following conditions should be satisfied 

( )(1,1) A
rt rte e  and ( )( 1,1) A

rt rte e   for the top edge, (3.25) 

( )(1, 1) B
rt rte e   and ( )( 1, 1) B

rt rte e    for the bottom edge. (3.26) 

 

 

Fig. 3.4. Constant transverse shear strain is assumed along its edges. (a) Strain component rte  is assumed 

constant in r direction. (b) Strain component ste  is assumed constant in s direction. 

 

By substituting Eqs. (3.25) and (3.26) into Eq. (3.24), we can obtain the following linear equations 

( )A
rta b c d e    , ( )A

rta b c d e     (3.27) 

( )B
rta b c d e    , ( )B

rta b c d e    . (3.28) 

 

Thus, the coefficients are obtained as 
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( ) ( )1
( )

2
A B

rt rta e e  , ( ) ( )1
( )

2
A B

rt rtc e e  , and 0b d  . (3.29) 

The assumed transverse strain rte  becomes constant in the r  direction. In the same way, the assumed transverse 

shear strain ste  could be obtained, and it becomes constant in the s  direction. Note that there is no modification 

in the covariant membrane strain field at Eq. (3.8) for the MITC4 element and it makes the MITC4 suffer 

membrane locking when they are distorted [70]. For this reason, the MITC4+ shell element was developed to 

reduce the membrane locking. 

 

 

3.2.2.  Treatment of membrane locking 

 

 

Fig. 3.5. Warped distortion in a 4-node quadrilateral shell element. 

 

Unlike transverse shear locking, membrane locking occurs when the element geometry is warped as shown in Fig. 

3.5 [36,70]. Since the geometry of the 3-node triangular shell element is always on a plane, it is free from 

membrane locking, but the 4-node quadrilateral shell element reveals membrane locking when the element 

geometry is distorted in the curved surface. Therefore, membrane locking should be treated appropriately in the 

4-node quadrilateral element. First, the strain term that cause membrane locking is investigated and then, assumed 

strain field of the locking causing term is constructed by adopting MITC method. 

 

Note that the treatment of the membrane locking is not to improve the membrane performance but to improve the 

bending performance of the shell element. Therefore, the membrane performance of the MITC4+ shell element is 

still identical the standard 4-node quadrilateral plane stress element and thus, it reveals some over stiff behavior 

under the in-plane bending deformation. Thus, the improved MITC4 shell element has been developed to enhance 

the membrane behavior of the shell element. However, the membrane performance still deteriorates when the 

element geometry is distorted. This issue will be handled at the new MITC4+ shell element by introducing the 

new membrane strain field and geometry dependent Gauss integration scheme. More specifically, the performance 

of the MITC4 and MITC4+ shell elements are identical when the geometry is flat, the performance of the improved 

MITC4+ and the new MITC4+ shell element are identical when there is no element distortion. 
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Fig. 3.6. Tying points (A)-(E) for the assumed membrane strain field of the MITC4+ element and the 

corresponding strain components. 

 

Using tying points (A)-(E) as shown in Fig. 3.6, the assumed membrane strain field is constructed as follows [36]: 

( ) ( ) ( ) ( )1 1
ˆ ( ) ( )

2 2
m m A m B m A m B
rr rr rr rr rre e e e e s     (3.30) 

( ) ( ) ( ) ( )1 1
ˆ ( ) ( )

2 2
m m C m D m C m D
ss ss ss ss sse e e e e r     (3.31) 

( )ˆm m E
rr rre e . (3.32) 

 

By comparing the assumed strain field in Eqs. (3.30)-(3.32) with the displacement-based strain field in Eqs. (3.14)-

(3.16), we can identify the following relations, 

2ˆ ( 1)m m bil
rr rr rse e s e   , (3.33) 

2ˆ ( 1)m m bil
ss ss rse e r e   , (3.34) 

ˆm m bil
rs rs rse e rse  . (3.35) 

Note that all the difference between the assumed strain field and the displacement-based strain contains the 

bilinear strain term, bil
rs d de  x u  in Eq. (3.18). The bilinear term is known to cause membrane locking [59].  

 

In order to modify bil
rse  to alleviate the membrane locking, the idea of Kulikov and Plotnikova is adopted. The 

assumed bilinear strain is established by the linear combination of the five strain coefficients in Eq. (3.17) 

1 2 3 4 5( ) ( )bil con bil con bil con lin lin
rs rr rs ss rs rs rr sse C e e C e e C e C e C e        (3.36) 

whre the coefficients ( 1C , 2C , 3C , 4C  and 5C ) should be determined considering the membrane patch tests.  

 

In other words, the assumed bilinear strain should be identical to the displacement-based bilinear strain when the 

element geometry is flat 

bil bil
rs rse e  when 0d  x n . (3.37) 
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For a flat geometry ( 0d  x n ), the distortion vector dx  in Eq. (3.19) is in the plane P and thus, become  

d r r s sc c x x x  with r
r dc  x g


 and s

s dc  x g


 (3.38) 

where the two vectors rg


 and sg


 are contravariant base vectors evaluated at the element center ( 0r s t   ) 

in r and s direction, respectively. 

 

The five coefficients in Eq. (3.36) could be determined by solving Eq. (3.37) for arbitrary in-plane deformation 

modes. Here, the following two deformation modes are considered [36] 

r ru a , s su a , d u 0  for in-plane stretching and shearing modes, (3.39) 

r u 0 , s u 0 , d du x  for in-plane bending modes, (3.40) 

whre the two vectors ra  and sa  are arbitrary vectors in the plane P. 

 

Considering the deformation mode Eq. (3.39), the six strain coefficients in Eq. (3.17) and (3.18) are calculated as 

con
rr r re  x a , con

ss s se  x a , 
1

( )
2

con
rs r s s re    x a x a , (3.41) 

lin
rr d re  x a , lin

ss d se  x a , 0bil
rse   (3.42) 

and the assumed bilinear strain should be zero from the relation in Eq. (3.37), 

0bil
rse  . (3.43) 

 

Substituting Eqs. (3.41)-(3.42) into Eq. (3.37), the following equation is obtained 

3 3
1 4 2 5 0

2 2r s d r s r d s

C C
C C C C
             
   

x x x a x x x a . (3.44) 

 

Considering the deformation mode Eq. (3.40), the six strain coefficients in Eq. (3.17) are calculated as 

0con
rre  , 0con

sse  , 0con
rse  ,  (3.45) 

lin
rr r de  x x , lin

ss s de  x x , bil
rs d de  x x  (3.46) 

and from the relation in Eq. (3.37), the assumed bilinear strain should be 

bil
rs d de  x x . (3.47) 

 

Substituting Eqs. (3.45)-(3.46) into Eq. (3.37), the following equation is obtained 

1 2 4 5d d d d r d s d d dC C C C        x x x x x x x x x x . (3.48) 

 

Finally, the coefficients are determined by solving the linear equations in Eqs. (3.44) and (3.48) 

2

1
rc

C
d

 , 
2

2
sc

C
d

 , 3

2 r sc c
C

d
 , 4

rc
C

d
  , 5

sc
C

d
   with 2 2 1r sd c c    (3.49) 

and then, the assumed bilinear strain is written with the covariant membrane strains evaluated at five tying points 

(A)-(E), 
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( ) ( ) ( ) ( ) ( )bil m A m B m C m D m E
rs rr A rr B ss C ss D rs Ee e a e a e a e a e a      (3.50) 

with 
( 1)

2
r r

A

c c
a

d


 , 

( 1)

2
r r

B

c c
a

d


 , 

( 1)

2
s s

C

c c
a

d


 , 

( 1)

2
s s

D

c c
a

d


 ,  and 

2 r s
E

c c
a

d
 . (3.51) 

 

Considering the assumed membrane strain field in Eqs.(3.33)-(3.35) and the assumed bilinear strain all together, 

the following assumed membrane strain field is obtained 

2ˆ ( 1)m m bil
rr rr rse e s e     (3.52) 

2ˆ ( 1)m m bil
ss ss rse e r e     (3.53) 

ˆm m bil
rr rs rse e rse    (3.54) 

and using Eqs. (3.30)-(3.32) and Eq. (3.50), the assumed strain field is represented by employing tying points (A)-

(E) 

2 ( ) 2 ( )

2 ( ) 2 ( ) 2 ( )

1 1
(1 2( 1) ) (1 2( 1) )

2 2

( 1) ( 1) ( 1)

m m A m B
rr A rr B rr

m C m D m E
C ss D ss E rs

e s s a e s s a e

s a e s a e s a e

       

     


, (3.55) 

2 ( ) 2 ( ) 2 ( )

2 ( ) 2 ( )

1
( 1) ( 1) (1 2( 1) )

2
1

(1 2( 1) ) ( 1)
2

m m A m B m C
ss rr rr C ss

m D m E
D ss E rs

e r e r e r r a e

r r a e r a e

       

     


, (3.56) 

( ) ( ) ( )

( ) ( )

1 1 1
( 4 ) ( 4 ) ( 4 )

4 4 4
1

( 4 ) (1 )
4

m m A m B m C
rs A rr B rr C ss

m D m E
D ss E rs

e r rsa e r rsa e s rsa e

s rsa e rsa e

      

    


. (3.57) 

 

Using the assumed membrane strain field, the assumed in-layer covariant strain is finally constructed as  

1 2 2m b b
ij ij ij ije e te t e    . (3.58) 

Note that only the membrane strain field is modified and the other terms for bending are not modified. The 

assumed membrane strain m
ije   is identical to the displacement-based membrane strain m

ije   when the element 

geometry is flat. 

 

The treatment of the membrane locking is only to improve the bending behavior of the shell structures in the 

curved geometry with distorted elements [39,70]. The membrane performance of the shell is equal to the standard 

4-node quadrilateral plane stress element, and thus it needs to be enhanced to improve the in-plane bending 

behavior. For this reason, the improved MITC4+ shell element was developed by embedding the original 2D-

MITC4 solid element into its membrane strain field [30]. The membrane performance is almost opimal by 

reducing the in-plane shear lockin in the uniform meshes without any numerical instabilities which is shown in 

the element with incompatible modes. However, the membrane performance of the improved MITC4+ shell 

element still deteriorates when the element mesh is distorted.  
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3.3.  New MITC4+ shell element 

 

The formulation of the new MITC4+ shell element is presented in detail. The new assumed membrane strain field 

is proposed to improve the membrane performance of the original MITC4+ shell element. The simplified assumed 

strain field in Eqs. (2.42)-(2.45) could be included as a specific case of the new assumed membrane strain field in 

this section. In addition, the geometry dependent Gauss integration scheme is extended into the new MITC4+ 

shell element. For the treatments of transverse shear locking, the same assumed transverse strain field of the 

MITC4 element is used and for the treatment of the membrane locking, the same assumed bilinear strain 

coefficient is adopted and collaborated with the new membrane strain field.  

 

 

3.3.1.  New assumed strain field 

 

The new assumed strain field is constructed using temporal tying points that only exist during the derivation 

procedure and disappear in the final formulation. The new assumed strain field is almost identical in the simplified 

assumed strain field in Eqs. (2.42)-(2.45), but it is more simple and straightforward. Most of the performance 

improvement comes from the geometry dependent Gauss integration scheme. However, note that the geometry 

dependent Gauss integration gives the best results when it works together with the assumed strain field. For this 

reason, the membrane performance of the new MITC4+ shell elemnt is almost identical to the improved MITC4+ 

shell element when the element geometry is not distorted. 

 

The new assumed membrane strain field for improving the membrane performance is constructed using the 

following strain components [30] 

m m k l
ij kl i je e g g  with i j

j ig g g
  (3.59) 

where the vector ig


 is the covariant base vector evaluated at the element center ( 0r s t   ). 

 

 

Fig. 3.7. Temporal tying points for the new assumed membrane strain field to improve the membrane 

performance of the MITC4+ element. The tying points are merged into the element center. 
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In order to figure out how the position of the tying points affect the performance of the element, we first generalize 

the formulation of the 2D-MITC4 element with a variable k, which determine the positions of points A, B, C and 

D in the range [0, 1] , as shown in Fig. 3.7. 

 
   0, 0,

0,0( , ) ( , )
2

k k
AS rr rr

rr rr

e e
e r s e r s s

k



 

  
, (3.60) 

 
   ,0 ,0

0,0( , ) ( , )
2

k k
AS ss ss

ss ss

e e
e r s e r s r

k



 

  
, (3.61) 

 0,0( , )AS
rs rse r s e   with 

det( (0,0))
( , )

det( ( , ))
r s

r s
 

J

J
, (3.62) 

The simplified assumed strain field in Eqs. (2.42)-(2.45) can be obtained by setting k  to 1 3 .  

 

By calculating the strain components at each tying point and substituting them into Eqs. (3.60)-(3.62), the assumed 

strain field could be rewritten using the characteristic geometry and displacement vectors as 

 2 2

1
( , ) ( , )

1
AS

rr r r r r r s r de r s r s s
k

  


          
x u x u x u x u


, (3.63) 

 2 2

1
( , ) ( , )

1
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ss s s s s s r s de r s r s r
k

  


          
x u x u x u x u

 , (3.64) 

 1
( , )

2
AS

rs r s s re r s    x u x u


, (3.65) 

with r
d  x g


 and s
d  x g


, (3.66) 

where the vectors rg


  and sg


  are the contravariant base vectors at the element center. Note that the tying 

position affects the second terms in Eqs. (3.63) and (3.64) which represent the bending behavior. 

 

As the tying points move away from the element center, the bending stiffness becomes larger. To minimize the 

bending stiffness, a new assumed strain field is obtained by setting k = 0,  

 ( , ) ( , )AS
rr r r r r r s r de r s r s s          x u x u x u x u
 , (3.67) 

 ( , ) ( , )AS
ss s s s s s r s de r s r s r          x u x u x u x u
 , (3.68) 

 1
( , )

2
AS

rs r s s re r s    x u x u


.  (3.69) 

The new assumed strain field in Eqs. (3.67)-(3.69) consists of the characteristic vectors in a direct way and thus, 

the element formulation becomes much simpler than that of the original 2D-MITC4 element. In addition, the 

performance is merely better than the assumed strain field in Eqs. (2.42)-(2.45). 

 

The new assumed strain field is then rewritten with strain coefficients in Eqs. (3.17)-(3.18) 

( , ) ( , )( 2 2 )AS con con con lin
rr rr rr rs rre r s e r s e e e      

, (3.70) 

( , ) ( , )( 2 2 )AS con con con lin
ss ss ss rs sse r s e r s e e e      

, (3.71) 

( , )AS con
rs rse r s e

.  (3.72) 
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3.3.2.  Formulation of the new MITC4+ shell element 

 

In the formulation of the new MITC4+ shell element, the new assumed membrane strain field in Eqs. (3.70)-(3.72) 

is used to improve the membrane performance and the treatment of transverse shear and membrane locking is 

adopting.  

 

For the assumed transverse strain field to alleviate the transverse shear locking, the assumed field in MITC4 

element is adopted [69],  

( ) ( )1 1
(1 ) (1 )

2 2
A B

rt rt rte s e s e    ,  ( ) ( )1 1
(1 ) (1 )

2 2
C D

st st ste r e r e     (3.73) 

where the tying points (A)-(D) are denoted in Fig. 3.3. 

 

In order to improve the membrane performance, the new assumed strain field in Eqs. (3.70)-(3.72) is embeded 

into the membrane strain field of the MITC4+ shell element. For the compact formulation, the assumed strain 

field is represented in matrix form [30], 

T
( , )

AS
rr
AS con con con lin lin

ss rr ss rs rr ss
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e

e r s e e e e e

e

 
      
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M





 (3.74) 

with 

1 2 0 2 0

( , ) 0 1 2 2 0

0 0 1 0 0

s s s

r s r r r

    
    

  
    
  

M  (3.75) 

where the strain coefficients are defined at Eqs. (3.17)-(3.18), and the   and   are given by Eq. (3.66) 

 

The strain coefficient is calculated by using tying points (A)-(E) as follows: 

( ) ( )1
( )

2
con bil m A m B
rr rs rr rre e e e   ( ) ( )1

( )
2

lin m A m B
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( ) ( )1
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2
con bil m C m D
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( )
2

lin m C m D
ss ss sse e e   (3.77) 

( )con m E
rs rse e . (3.78) 

 

By taking into account both the assumed strain field in Eqs. (3.76)-(3.77) and the treamtment of membrane locking 

in Eqs. (3.55)-(3.57), the following formulation is defined as 

T T( ) ( ) ( ) ( ) ( )con con con lin lin m A m B m C m D m E
rr ss rs rr ss rr rr ss ss rse e e e e e e e e e      C   (3.79) 

with 
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C . (3.80) 
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To couple the new assumed membrane strain field in Eqs.(3. 74) with the bending and transverse shear strain in 

MITC4+ shell element, the strain field should be transformed into covariant strain field consistently, 

m AS
rr rr
m AS
ss ss
m AS
rs rs

e e

e e

e e

   
      
      

Q





 (3.81) 

in which the matrix Q   is the transformation matrix of strain components Eq.(3.59) into covariant strain 

components.  

 

Finally, the new assumed membrane field is expressed using tying points (A)-(E) in Fig. 3.6 as 
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m
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
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 (3.82) 

and the in-layer strain components are given by 

1 2 2m b b
ij ij ij ije e te t e    . (3.83) 

 

The assumed field in Eq. (3.82) is closely related to the field of the improved MITC4+ shell element [30]. However, 

there is no bilinear strain coefficients and thus the formulation become much simpler than that of the improved 

MITC4+ shell element. Of course, if there is no distorted element, the resultant strain field is identical to each 

other, but for the distorted element case, the proposed assumed strain field performs merely better. The difference 

between the new MITC4+ and improved MITC4+ shell elements is compared in Table 3.2. 

 

Table 3.2. Comparison of the formulation between the improved MITC4+ and new MITC4+ shell elements 

 Original MITC4+ (2019, Ko. et al., [30]) New MITC4+ (proposed) 
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Fig. 3.8. Skewness of the 4-node quadrilateral shell element. (a) In-plane vectors rx  and sx  in the 3D space. 

(b) Skewness   in the r-s space. 

 

For the 4-node quadrilateral shell elements, the stiffness matrix is obtained generally unsing standard 2 2  

Gauss integration in the r-s plane and also, standard 2  points Gauss integration in the thickness direction as 

follows: 

2 2 2

1 1 1

( , , )i j k i j k
k j i

w w w   
  

 K f  with 1

1

3
  , 2

1

3
   , 1 2 1w w   (3.84) 

and T( , , ) ( , , ) ( , , ) det( ( , , ))r s t r s t r s t r s s   f B DB J  (3.85) 

where i  and iw are Gauss quadrature point and the corresponding weight, and B  is the strain-displacement 

relation matrix, and J  is the Jacobian matrix, and D  is the material law matrix for the shell element. 

 

For the continuum mechanics based shell elements, the material law matrix in Eq. (3.86) is given by [1] 
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where E  and   are the Young’s modulus and Poisson’s ratio, respectively. 

 

In addition to the new assumed strain field, the geometry dependent Gauss integration in chapter 2 is adopted to 

improve the membrane performance. Note that the most of the performance improvement comes form the 

geometry dependent Gauss integration scheme. 
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For the shell element, the skewness   of the element geometry and the corresponding adjusting parameter should 

be appropriately defined. Here, the skew anle of the element geometry is determinded using the characteristic 

geometry vectors rx  and sx  in the plane P in Fig. 3.8 and thus, the adjusting parameter  is obtained as  

2cos ( )   with 
1 1

cos( )
| || | | || |r s

r s

  
g g g g
    . (3.87) 

 

For the nonlinear analysis of the new MITC4+ shell element, the adjusting parameter is obtained from the initial 

element geometry since the total Lagrangian formulation is adopted in this thesis. Of cause, the adjusting 

parameter could be updated, if the updated Lagrangian formulation is adopted. 

 

For the new MITC4+ shell element, the stiffness matrix is obtained by using modified 2 2  Gauss integration 

in the r-s plane and standard 2  points Gauss integration in the thickness direction as follows 

2 2 2
' '

1 1 1

( , , )i j k i j k
k j i

w w w   
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 K f  with '
1

1

3
  , '

1

1

3
   , 1 2 1w w  . (3.89) 

Note that there is no modification at the weights. While the standard Gauss integration is employed at integration 

in thickness direction, the geometry dependent Gauss integration is adopted only at integration in the r-s plane. 

 

For a plane stress problem, the new MITC4+ shell element become identical to the new 2D-MITC4 solid element 

because the assumed membrane strain field become identical to each other when the element geometry is in a 

plane and the geometry dependent Gauss integration gives the same quadrature points [30,36]. 

 

Once the integration points in r-s plane are modified from Eq.(3,84) to Eq.(3.89) to improve the membrane 

performance, the bending and transverse shear stiffnesses are also affected together. However, there is no problem 

to pass the basic tests, see the following section. In addition, the affection is not critical to decrease the bending 

and transverse shear performance of the element. This issues will be treated in the sections for linear analysis 

problems to study the convergence of the element. 
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3.4.  Basic numerical tests 

 

For the basic tests of the new MITC4+ shell element, the following tree tests are conducted: isotropy, zero energy 

mode, and patch tests [1,50-54]. The proposed element passes all the tests considered. For the isotropy, the element 

doesn’t show any dependency in the sequence of node numbering. In zero energy mode test, the number of the 

rigid body modes should be six and this is confirmed by the numver of zeros eigenvalues of the elemental stiffness 

matrix. In the case of the patch tests, the geometry in Fig. 3.9 is considered. The in-plane stretching and bending 

are tested in the membrane patch test I and II. In addition, the bending and shearing tests are conducted. The 

proposed element passes all the cases for the patch tests. 

 

 

Fig. 3.9. The geometry for the patch tests and the boundary conditions for each test. 

 

 

3.5.  Numerical examples for linear analysis 

 

In order to assess the performance of the proposed MITC4+ shell element, some selected benchmark problems in 

Table 3.3 are solved. The chosen problems are behavior-encompassing problems in membrane-dominant, 

bending-dominant, and mixed behavior of them [1].  

 

Table 3.3. List of six benchmark problems considered for the convergence studies. 

Problems Boundary conditions Descriptions Results 

Square plate   Clamped Fig. 3.12 Fig. 3.13 

Cylindrical shell  
 Clamped 
 Free 

Fig. 3.14, Fig. 3.15 Fig. 3.16, Fig. 3.17 

Hyperboloid shell 
 Clamped 
 Free 

Fig. 3.18, Fig. 3.19 Fig. 3.20, Fig. 3.21 

Scordelis-Lo roof  Diaphragm Fig. 3.22, Fig. 3.23 Fig. 3.24, Fig. 3.25, Fig. 3.26

Hyperbolic cylinder shell  Partly clamped Fig. 3.27 Fig. 3.28 
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Fig. 3.10. N N  regular mesh pattern with 4N  . 

 

The s-norm proposed by Hiller and Bathe [71] is used to measure the convergence of the finite element solutions  

2 T
h S

d


    u u ε τ  with h  ε ε ε , h  τ τ τ , (3.89) 

where u  is the exact solution, hu  is the solution from the finite element discretization, and ε  and τ  are the 

strain and stress vectors, respectively. This is a proper norm for investigating whether the approximated solution 

form the finite element analysis satisfy the consistency and inf-sup conditions [72-75]. 

 

Because it is extremely hard to obtain the exact or analytical solutions in the most of shell problems, the reference 

solution using a high-order element with a fine mesh is used to replace the exact solution. Therefore, the s-norm 

in Eq. (3.89) is modified as [33] 

2 T

ref
ref h refS

d


    u u ε τ  with ref h  ε ε ε , ref h  τ τ τ , (3.90) 

 

To measure the convergence rate of the shell finite element depending on the thickness, the normalized relative 

error  

2

2

ref h S
h

ref S

E



u u

u
. (3.91) 

The theoretical convergence rate can be evaluated as 

2 k
ref h S

ch u u  (3.92) 

where c   is a constant independent to shell thickness, h   is the element size, and k   denotes the order of 

convergence. For the 4-node shell element, the optimal value for k  is 2. 

 

For the convergence studies in this section, well-converged reference solutions are obtained by using the MITC9 

shell element with a fine regular mesh. In the following problems, the results of MITC4, MITC4+, improved 

MITC4+, and new MITC4+ shell elements are compared to each other considering thickness decrease in both 

regular and distorted mesh patterns [29,30,36]. 
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Fig. 3.11. N N  distorted mesh patterns with (a) 4N   and (b) 8N  . 

 

The mesh patterns are constructed in a square and then, linearly mapped to the problem domain considered. Fig. 

3.10 shows a N N  regular mesh pattern when 4N  . Fig. 3.11(a) and Fig. 3.11(b) show the mesh patterns 

when 4N   and 8, respectively. The ratio of each lines in an edge is 1 2 3: : : ... : 1: 2 : 3 : ... :NL L L L N . 

 

For the bending performance of the shell elements, the MITC4, MITC4+, imrpvored MITC4+, and new MITC4+ 

shell elements are identical when the regular meshes are used, but for the distorted mesh cases, the MITC4 shell 

element reveal membrane locking. Therefore, all the MITC based 4-node shell elements except the MITC4 shell 

element would be good enough to used for the bending-domiated problems. 

 

For the membrane performance of the shell elements, the MITC4 and MITC4+ shell elements are identical to each 

other in both regular and distorted meshes. The MITC4 and MITC4+ shell elements is exatly same with the 

standard 4-node quadrilateral plane stress element when they are used for the 2D solid problems. The improved 

MITC4+ and new MITC4+ shell elements become the 2D-MITC4 element when they are employed for the 2D 

solid problems. In addition, when the distorted meshes are considered, while the imporved MITC4+ deteriorates, 

but the new MITC4+ performs well due to the geometry dependent Gauss integration scheme. 

 

Note that the shell structures under surface pressure loading show not in-plane bending but in-plane stretching in 

most cases for the problems enforcing membrane-dominated behavior. Thus, the all elements considered are good 

enough to used in this cases. However, if the problems have the in-plane bending behavior, the MITC4 and 

MITC4+ could be seriously locked with revealing overly stiff behavior. 

 

It is not easy to pedict of the shell strucutures until the we try to simulate its response using FEM due to their 

inherently complex and sensitive behaviors. Therefore, the shell elements should work well in all situations. In 

short, the proposed element is the best option for general use in shell problems including membrane and bending 

problmes. 
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3.5.1.  Square plate 

 

The square plate problem [70,76,77] shown in Fig. 3.12 is solved. The dimension of the square is 2 2L L  and 

uniform thickness is given by t . An uniform pressure is applied to the square plate. Due to the symmetry of the 

problem, only a one-quarter model is considered. The boundary conditions are 0xu     along BC and  

0yu     along CD and 0x y zu u u         along AB and AD. The convergence behavior is studied 

considering both regular and distorted meshes shown in Fig. 3.11(a) and Fig. 3.11(b), respectively. The thickness 

ratios ( /t L ) are 1/100 , 1/1000  and 1/10000 . 

 

 

Fig. 3.12. Descripstion of the square plate problem. (a) Plate subjected to an uniform pressure ( 1.0p  ). (b) 

Square plate with 71.7472 10E   , 0.3  , and 1.0L  . 
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Fig. 3.13(a) and Fig. 3.13(b) show the convergence curves of the four shell elements for regular and distorted 

mesh patterns, respectively. A 96 96   element mesh of the MITC9 shell element is employed to obtain the 

reference solution. N N  element meshes are used with N  4, 8, 16, 32, and 64 to solve the problem. The 

element size /h L N  is used in the convergence curves. Note that there is no warped element in both regular 

and distorted meshes and thus, the membrane locking is not presented in this problem. Therefore, the performance 

of all elements is uniformly optimal in both regular and distorted meshes. 

 

 

Fig. 3.13. Convergence curves for the square plate problem with fully clamped conditions considering (a) 

regular meshes and (b) distorted meshes. The bold line denotes the optimal convergence rate. 
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3.5.2.  Cylindrical shell 

 

 

Fig. 3.14. Description of the cylindrical shell problem. (a) Cylindrical shell subjected to a smoothly varing 

pressure ( 1.0L R  , 52.0 10E   , 1/ 3  , and 0 1.0p  ). (b) Pressure loading 

 

 

The cylindrical shell problem subjected to a smoothly varing pressure is considered as shown in Fig. 3.14 [36,78]. 

The length, radius, and thickness are 2L , R , and t , repectively. The thickness ratios ( /t L =1/100 , 1/1000  

and 1/10000 ) are considered. Material properties are given by 52.0 10E    and 1/ 3  . As shown in Fig. 

3.14(b), the structure is subjected an internal pressure 0( ) cos(2 )p p  . The convergence behavior is studied 

considering both regular and distorted meshes shown in Fig. 3.15, respectively.  

 

 

Fig. 3.15. N N  element mesh with (a) regular and (b) distorted mesh patterns when 4N  . 
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The cylindrical shell structure shows different asymptotic behaviors depending on the boundary conditions at both 

ends. The membrane-dominated behavior occurs when both ends are clamped and the bending-dominated 

behavior is obtained when both ends are free. Based on the symmetry of the problem, only one-eighth of the 

cylindrical shell structure is modeled. For the clamed boundary conditions, 0yu    along AB, 0zu    

along CD, 0xu     along AD, and 0x y zu u u         along BC. For the free boundary conditions, 

0yu     along AB, 0zu     along CD, and 0xu     along AD. The convergence is studied in both 

regular and distorted meshes about four shell elements. 

 

 

Fig. 3.16. Convergence curves for the cylindrical shell problem with fully clamped conditions considering (a) 

regular meshes and (b) distorted meshes. The bold line denotes the optimal convergence rate. 
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Fig. 3.16 show the convergence curves for the cylindrical shell problem considering clamped and free boundary 

conditions, repectively. A 96 96  element mesh of the MITC9 shell element is employed to obtain the reference 

solution. N N  element meshes are used with N  4, 8, 16, 32, and 64 to solve the problem. The element size 

/h L N  is used in the convergence curves. Note that all elements considered perform well in both clamped and 

free boundary conditions using regular meshes. However, for the free boundary condition with distorted meshes, 

the MITC4 shell element reveal membrane locking and thus its convergence rate become worse. For the MITC4+, 

improved MITC4+, and new MITC4+ shell elements give accurate solutions in similar to each other. 

  

 

Fig. 3.17. Convergence curves for the cylindrical shell problem with free conditions considering (a) regular 

meshes and (b) distorted meshes. The bold line denotes the optimal convergence rate. 
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3.5.3.  Hyperboloid shell 

 

The hyperboloid shell problem under a internal pressure is considered as shown in Fig. 3.18 [78,79]. The mid-

surface of the shell structure is given by  

2 2 21x z y   , [ 1,1]y  . 

 

 

Fig. 3.18. Description of the hyperboloid shell problem. (a) hyperboloid shell ( 1.0L  , 112.0 10E   , and 

1/ 3  ). (b) Smoothly varing pressure loading ( 0 1.0p  ). 

 

The shell structure is subjectied a smoothly varing pressure 0( ) cos(2 )p p  , seen in Fig. 3.18(b), and the 

material properties are given by Young’s moduluss 112.0 10E    and Poisson’s ratio 1/ 3  . Similar to the 

cylindrical shell problem, the hyperboloid shell also shows two different asymptotic behaviors depending on the 

boundary conditions at both end tips. It reveals the membrane-dominated behavior or the bending-dominated 

behavior under the clamped or free boundary conditions, repectively.  

 

Due to the symmetry of the problem, only one-eighth of the shell structure is considered. The clamped boundary 

conditions are given as 0xu     along AD, 0zu     along BC, 0yu     along CD, and 

0x y zu u u         along AB. The free boundardy conditions are given as 0xu     along AD, 

0zu    along BC, and 0yu    along CD.  

 

To investigate the convergence using the s-norm, the regular and distorted mesh patterns is considered in Fig. 

3.19(a) and Fig. 3.19(b), repectively. For the thickness ratios ( /t L  ), three values ( 1/100  , 1/1000   and 

1/10000 ) are used. Finite element solutions are obtained unsing N N  element meshes with N  4, 8, 16, 32 

and 64. The reference solutions are obtained by using a 96 96  element mesh of the MITC9 shell element. The 

element size /h L N  is used in the convergence curves. 
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Fig. 3.19. N N  element mesh with (a) regular and (b) distorted mesh patterns when 8N  . 

 

 

Fig. 3.20. Convergence curves for the hyperboloid shell problem with fully clamped conditions considering (a) 

regular meshes and (b) distorted meshes. The bold line denotes the optimal convergence rate. 
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Fig. 3.21. Convergence curves for the hyperboloid shell problem with free conditions considering (a) regular 

meshes and (b) distorted meshes. The bold line denotes the optimal convergence rate. 

 

 

The convergence curves for the clamped hyperboloid shell with regular and distorted meshes are given in Fig. 

3.20. In addition, the convergence curves for the free hyperboloid shell with regular and distorted meshes are 

given in Fig. 3.21. It is difficult to obtain accurate solutions in this problem because the hyperboloid shell has a 

doubly curved geometry with negative Gauss curvature. In both clamped and free boundary conditions with 

regular meshes, all elements give accurate solutions. However, when the distorted meshes are employed, the 

improved MITC4+ and new MITC4+ shell elements perform slightly better than the others.  
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3.5.4.  Scordelis-Lo roof 

 

 

Fig. 3.22. Description of the Scordelis-Lo roof problem ( 25.0L R  , 84.32 10E   , 0.0  , and self-

weight is 90 per unit area) with 4 4  regular mesh. 

 

The Scordelis-Lo roof problem shown in Fig. 3.22 is considered [80,81]. The structure is a part of a cylinder with 

length 25.0L   , radius 25.0R   , and uniform thickness t  . The roof is subjected to a self-weight loading 

90zf     per unit area. Young’s modulus 84.32 10E     and Poisson’s ratio 0.0    are used. The rigid 

diaphragm boundary conditions are given at both ends of the structure. The convergenc is investigated by 

considering regular and two distorted mesh patterns shown in Fig. 3.23. The Scordelis-Lo roof is known to show 

bending and membrane mixed behavior [83], and thus it behaves very sensitive depending on the element 

thickness. 

 

 

 

Fig. 3.23. N N  distorted mesh patterns with (a) distorted I and (b) distorted II when 4N  . 
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Fig. 3.24. Convergence curves for the Scordelis-Lo roof problem with rigid diaphragm conditions considering 

regular mesh patterns. The bold line denotes the optimal convergence rate. 

 

 

Fig. 3.25. Convergence curves for the Scordelis-Lo roof problem with rigid diaphragm conditions considering 

distorted mesh patterns (distorted I). The bold line denotes the optimal convergence rate. 

 

Due to the symmetry of the problem cosidered, only one-quarter of the structure corresponding the region ABCD 

in Fig. 3.22 is modeled for the analysis. 0xu    along AD, 0yu    along CD, and 0x zu u   along 

AB are considered for the rigid diaphragm boundary conditions. Finite element solutions are obtained considering 

three mesh patterns depending to the thickness ratios ( /t L =1/100 , 1/1000  and 1/10000 ). For the all mesh 

patterns, the N N  element meshes with N  4, 8, 16, 32 and 64 are used. 
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Fig. 3.26. Convergence curves for the Scordelis-Lo roof problem with rigid diaphragm conditions considering 

distorted mesh patterns (distorted II). The bold line denotes the optimal convergence rate. 

 

For the regular mesh case, the improved MITC4+ and new MITC4+ shell elements give more accurate solutions 

than the others. Note that the performance of the two element is almost equal to each other. This is because the 

membrane performance is quite similar when the element is not distorted. However, when considering the 

distorted meshes with distorted mesh pattern I and II, the new MITC4+ shell element give the most accurate 

solutions. The incresement in the accuracy is not that much because the Scordelis-Lo roof undergo the membrane 

and bending mixed behavior. Since the bending performance of the new MITC4+ shell element is nearly same to 

the improved MITC4+ shell element, the performance increament is relatively small. 
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3.5.5.  Hyperbolic cylinder shell 

 

Fig. 3.27. Description of the hyperbolic cylinder shell problem ( 2L  , 112.0 10E   , and 1/ 3  ). (a) 

Problem discriptions with 4 4  regular mesh. (b) 4 4  distorted mesh. 

 

As shown in Fig. 3.27, the hyperbolic cylinder shell problem is considered. The structure is clamped at its one 

side and subjected to a distributed line force xp z   (force per length) at the other side. For the dimension of 

the structure, the length is 2L   and the mid-surface of the structure is given by 

24z y , [0,0.5]y . 

 

The material properties are given with Young’ s modulus 112.0 10E     and Poisson’s ratio 1/ 3   . The 

convergence is studied based on the relative errors in the strain energy by considering thre different thickness to 

length ratios: /t L =1/100 , 1/1000  and 1/10000 . The regular and distorted mesh patterns are employed, as 

shown in Fig. 3.27(a) and Fig. 3.27(b). Based on the symmetry, only half of the problem domain is modeled to 

analysis. The following boundary conditions are considered: 0yu    along BC and x y zu u u  0     

along AB. 
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Fig. 3.28. Convergence curves for the hyperbolic cylinder shell problem with partly clamped conditions 

considering (a) regular meshes and (b) distorted meshes. The bold line denotes the optimal convergence rate. 

 

Fig. 3.28(a) and Fig. 3.28(b) shows the convergence curves of the partly clamped hyperbolic cylinder shell 

problem considering regular and disorted mesh patterns, repectively. N N  element meshes are used with N 

4, 8, 16, 32, and 64 to solve the problem. The reference solutions are obtained by using a 72 72  element mesh 

of the MITC9 shell element. The element size 1/h N  is used in the convergence curves. This problem is the 

membrane-dominated problem. More specifically, the shell element undergo the in-plane bending deformation. 

The improved MITC4+ and new MITC4+ shell elements give more accurate solutions considering regular meshes, 

but for the distorted meshes, the new MITC4+ shell element give the most accurate solutions. 
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3.6.  Numerical examples for nonlinear analysis 

 

Through the results of linear analysis, it has been verified that the new MITC4+ shell element shows higher 

accuracy than other elements especially in the membrane-dominated behavior. To assess the performance of the 

new MITC4+ shell finite element in goemertrically nonlinear analysis including large displacement and large 

rotation, the following shell problems are considered: a thin curved beam [5,47], a slit annular plate [82,84], and 

a hemispherical shell problems [82,85]. Here, the results of the new MITC4+ shell element are compared with the 

results from the MITC4 and MITC4+ shell element, since the improved MITC4+ shell element has not been 

extended to geometrically nonlinear analysis. The features of the elements are briefly organized in Table 3.4.  

 

In each example, the reference solutions are obtained by using a MITC9 shell element with a fine regular mesh. 

The MITC9 shell element is known to satisfy the ellipticity and consistency conditions and to show good 

convergence behavior in both linear and nolinear analysis [32]. The Newtown-Raphson method is used to solve 

the nonlinear equations at evergy load step with a acceptable tolerance of 0.1 percent of the relative incremental 

evergy. For comparison purposes, translational displacement at specific points and deformed configurations are 

obtained at several load steps. In addition, both the regular and distorted mesh patterns are considered to 

investigate whether the performance is improved.  

 

Note that in the problems that the bending behavior is important, all the three elements considered work well when 

regular meshes and the membrane locking is inherently not induced in the problems but the MITC4 shell element 

reveals stiff behavior when distorted meshes are used and then the membrane locking occurs. In the problem that 

membrane behavior is important, the new MITC4+ shell element is more accurate than the MITC4 and MITC4+ 

shell elements since the membrane strain field of the two elements are identical to the standard 4-node 

quadrilateral solid element. 

 

Table 3.4. Considered shell elements and characteristics. 

 Transverse 
shear locking 

Membrane 
locking 

Membrane 
performance 

Linear 
analysis 

Nonlinear 
analysis 

MITC4 O X Standard Q4 O O 

MITC4+ O O Standard Q4 O O 

Improved MITC4+ O O 
Improved 

2D-MITC4 
O X 

New MITC4+ O O 
New 

2D-MITC4 
O O 
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3.6.1.  Thin curved beam 

 

 

Fig. 3.29. Description of the thin curved beam problem ( 1 4.12R  , 2 4.32R  , 0.1t  , 71.0 10E   , 

0.25  , and 1 2 100P P  ) with 1 6  regular mesh. 

 

A thin curved beam shown in Fig. 3.29 is considered [5, 47]. The beam is clamped at one end and subjected to 

two forces 1P   and 2P   in the z and -x driections, respectively. The material properties are given by Young’s 

modulus 71.0 10E    and Poisson’s ratio 0.25  .  The thickness of the beam is 0.1t  . The curved beam is 

modeled by using 1 6  regular mesh of the MITC4, MITC4+ and new MITC4+ shell elements. The reference 

solution is obtained by using the MITC9 shell element with 2 12  elements regular mesh.  

 

 

Fig. 3.30. Load-displacement curves of the thin curved beam problem for (a) Au  and (b) Aw . 
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Fig. 3.31. Deformed configurations of the thin curved beam problem at several load steps with (a) MITC4, (b) 

MITC4+ and (c) new MITC4+ elements. (d) The reference solution with MITC9 element. 

 

Fig. 3.30 gives the load-displacement curves at the point A for the thin curved beam. In the z-directional 

displacement, the three element the new MITC4+ shell element work well, but for the verical displacement, the 

MITC4 and MITC4+ shell elements reveal much stiff behavior. In addition, Fig. 3.31 shows the initial 

configurations and the deformed configurations at the load steps max0.25P P  , max0.5P  , max0.75P   and maxP  . 

While both the MITC4 and MITC4+ shell elements show totally differenct final deformed cofigurations compared 

with the reference solution, but the deformed configuration of the new MITC4+ element is very close to the 

reference solution. 
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3.6.2.  Slit annular plate  

 

 

Fig. 3.32. Description of the slit annular plate problem ( 1 6R  , 2 10R  , 0.03t  , 72.1 10E   , 0   and 

0.8p  ) with 3 24  (a) regular and (b) distorted meshes. 

 

As shown in Fig. 3.32, the slit annular plate is clamped at one side and sujected to vertical distributed load 

0.8p    (force per length) at the other free end [82,84]. For the material properties, Young’s modulus 

72.1 10E     and Poisson’s ratio 0    are used. The thickness of the structure is 0.03t   . The results are 

obtained by using the MITC4, MITC4+ and new MITC4+ shell elements considering both 3 24  regular and 

distortred meshes. The distorted mesh pattern is depicted in Fig. 3.32(b). 
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Fig. 3.33. Deformed configurations of the slit annular plate problem considering 3 24  regular mesh of (a) 

MITC4, (b) MITC4+ and (c) new MITC4+ elements. (d) The reference solution with MITC9 element. 

 

Fig. 3.33 and Fig. 3.34 show the final deformed configurations considering the 3 24   regular and distorted 

meshes, respectively. The load-displacment curves at the point A and C are also given in Fig. 3.35 and Fig. 3.36 

for the regular and distorted meshes. While all the elements considered seem to work well when the regular mesh 

is used, amon them, the new MITC4+ shell element is more close to the reference solution. For the disroted mesh 

case, the MITC4 and MITC4+ shell element show overly stiff behavior and thus the results are differenct 

compared to the reference solution. However, the new MITC4+ shell element show excellent performance even 

in when the distorted mesh is employed. 
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Fig. 3.34. Deformed configurations of the slit annular plate problem considering 3 24  distorted mesh of (a) 

MITC4, (b) MITC4+ and (c) new MITC4+ elements. (d) The reference solution with MITC9 element. 
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Fig. 3.35. Load-displacement curves of the slit annular plate problem with 3 24  regular mesh  

at the points (a) C  and (b) A . 

 

 

Fig. 3.36. Load-displacement curves of the slit annular plate problem with 3 24  distorted mesh  

at the points (a) C  and (b) A . 
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3.6.3.  Hemispherical shell  

 

The geometry of the hemispherical shell is given at Fig. 3.37 [82,85]. The hemispherical shell has an 18  hole 

at the top side and is subjected to two pairs of opposite radial concentrated loads 400P  . This problem is widely 

used to investigate whether the element can represent the rigid body roations well and the inextensible bending 

modes. The following material properties are used: Young’s modulus 76.825 10E     and Poisson’s ratio 

0.3  . To assess of the performance of the elements, two mesh patterns are considerd including not only the 

regular mesh but also the distorted mesh seen in Fig. 3.37(b).  

 

 

 

Fig. 3.37. Description of the hemispherical shell problem ( 10R  , 0 18   , 0.04t  , 76.825 10E   , 

0.3  , 400P  ) with 12 12  (a) regular and (b) distorted meshes. 
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Fig. 3.38. Deformed configurations of the hemispherical shell problem using the 12 12  regular mesh of the 

new MITC4+ shell element at the load steps of (a) max0.25P P , (b) max0.5P P , (c) max0.75P P  and (d) 

maxP P . 

 

Based on the symmetry of the problem, only one-quarter model is constructured which is denoted as the region 

ABCD in Fig. 3.37 with 12 12 elements mesh of the MITC4, MITC4+ and new MITC4+ shell elemet. For the 

boundary conditions, 0yu    along AD, 0xu    along BC, and zu =0 at point A is considered. To obtain 

the reference solution, the MITC9 shell element with a 36 36   regular mesh is employed. The deformed 

configurations at several load steps and the load-displacement curves at the points A and B is compared with the 

reference solutions. 
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Fig. 3.39. Load-displacement curves of the hemispherical shell problem at the point A and B with 12 12  (a) 

regular and (b) distorted mesh. 

 

For the new MITC4+ shell element with 12 12  regular mesh case, the deformed configurations at specific load 

steps with max/P P  =0.25, 0.5, 0.75, and 1 are given in Fig. 3.38. The deformed configurations for the other 

elements could be found in refs [38,84]. Even in the regular mesh case, the MITC4 shell element is less deformed. 

While the final deformed configurations from the results of all elements considered are close to each other at the 

final load step, the configuartaions during the load steps are quite different between them. 

 

Fig. 3.39(a) and Fig. 3.39(b) show the load-displacement curves at point A and B in the regular and distorted 

meshes, repectively. Note that the MITC4+ and new MITC4+ shell elements closely follow the reference curves 

but the MITC4 shell element shows some difference even in the regular mesh case. The new MITC4+ shell 

element shows almost similar performance with the MITC4+ shell element, but it is merely better than the 

MITC4+ shell element. 
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Chapter 4.  Conclusions 

 

The objectives of this thesis were to develop a new 4-node quadrilateral solid (2D-MITC4) and shell (MITC4+) 

finite elements to improve the predictive capabilities especially in distorted meshes. The proposed elements 

consist of two key concepts including the new assumed membrane strain field and the geometry dependent Gauss 

integration scheme. More specifically, the complicated assumed strain field of the previous 2D-MITC4 solid and 

MITC4+ shell elements are simplified and become more intuitive by directly using the strain coefficients. In 

addition, the geometry dependent Gauss integration is introduced to improve the membrane performance of the 

proposed elements. 

 

The geometry dependent Gauss integration with the new assumed strain field provides smoother solutions and 

good convergence, and thus the proposed elements can be used with relatively coarse meshes. In addition, it needs 

no additional degrees of freedom and does not reveal any numerical instability that is shown in the incompatible 

modes element. The new 2D-MITC4 solid and MITC4+ shell elements pass the three basic numerical tests: 

including zero energy mode, isotropy, and corresponding patch tests. It has been also thoroughly demonstrated 

that the proposed elements are very effective and reliable both in linear and nonlinear problems. 

 

First, the new 2D-MITC4 solid element was presented in chapter 2. While the simplified assumed strain field is 

identical to the assumed strain field of the original 2D-MITC4 element, the formulation of the proposed element 

is much simpler than that of the original 2D-MITC4 element. In addition, a numerical scheme to modify 

integration points is introduced to make the element insensitive to distortion. The integration points are moved 

into the element center in accordance with the adjusting parameter which defines the degree of the distortion. The 

practical requirements for the adjusting parameter are proposed with observations in the eigen analysis of the 

stiffness matrix depending on the different adjusting parameters. A selected adjusting parameter was proposed as 

a function of the distortion angle. 

 

Secondly, the new MITC4+ shell element was presented in chapter 3. The generalized assumed strain field is 

introduced which includes the simplified assumed strain field as a specific case. Here, the new assumed strain 

field is proposed by merging the tying points into one point at the element center. This new strain field provides 

a more straightforward formulation compared with the previous MITC4+ shell element. The proposed strain field 

is collaborated with the transverse shear and membrane locking treatment of the previous MITC4+ shell elements. 

In addition, the geometry dependent Gauss integration scheme is extended into the shell element to improve its 

performance. Note that the geometry dependent Gauss integration also changes both bending and transverse shear 

strain sampling points, but it rarely affects the corresponding behaviors. 

 

For future works, the concept of the geometry dependent Gauss integration could be extended into the low order 

3D solid elements. It would be also valuable to find optimal integration points which provide accurate solutions 

regardless of the type of element distortions.  
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Appendix A. Physical strain patterns 

 

The physical strain patterns of the physical strain coefficients in Eqs. (2.18)-(2.20) is directly obtained by the 

characteristic geometry and displacement vectors in Eqs. (2.8)-(2.9). The physical strain patterns for an element 

with an arbitrary geometry is shown in.Fig. A.1. 

 

 

Fig. A.1. Physical strain patterns with the characteristic geometry and displacement vectors. (a) stretching strain 

patterns, (b) shearing strain patterns, and (c) bending strain patterns. 
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Appendix B. Modification on Gauss integration point 

 

The various ways to modify Gauss integration are presented and investigated its performance. Although it can be 

modified in infinitely many arbitrary ways, there are only a few cases to be applied to integrate the stiffness matrix 

of the finiete elements because the finite element should pass the patch tests. Some cases satisfying the basic 

properties are shown in Fig. B.1. Of course, there could be another options to modify the position of the Gauss 

integaration points.  

 

 

Fig. B.1. Possible ways to modify Gauss integratin points. (a) Rotation, (b) Scaling, and (c) Rotation and scaling. 

 

For the investigation, the Cook’s skew beam problem is considered as shown in Fig. 2.16. The ration on Gauss 

interation points is considered at first in each element as shown in Fig. B.2. It can be seen that the range between 

minimum and maximum strain energy is small and thus its contribution is not enough to improve the performance. 

Then, the scaling on Gauss integration points is considered as shown in Fig. B.3. We found that the scaling 

modfictaion significantly changes the minimum and maximum ragne, and there is an optimal scaling size. Because 

it is not easy to obtain optimal points analytically, the strain energy from each modification method is calculated 

by numerical experiment. 

 

Table B.1. Strain energy with modified Gauss integration for Cook’s beam with 4x4 elements mesh. 

Element Gauss integration Strain energy Normalization 

Reference Standard(3x3) 12.0169 1.0 

Q4 Standard 5.899 0.491 

ICM-Q4 Standard 10.046 0.836 

2D-MITC4 Standard 8.676 0.722 

2D-MITC4 Rotation (optimal) 8.719 0.726 

2D-MITC4 Scaling (optimal) 11.177 0.930 
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Fig. B.2. Strain energy obtained from rotation modification for each element in Cook’s beam. 

 

 

 

Fig. B.3. Strain energy obtained from scaling modification in Cook’s beam. 
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Fig. B.4. Optimally modified Gauss points based on (a) rotation and (b) scaling. 

 

Table B.1 show the strain energy obtrain from the standard element (Q4), incompatible modes element (ICM-Q4), 

and MITC based element (2D-MITC4). The strain energy is normalized by the reference calculated using 9-node 

quadrilateral element. The ICM-Q4 element works well when the only standard integration cases are considered. 

However, for the all cases, the 2D-MITC4 element with scaling modification gives the most accurate solutions. 

 

There is no way to determind the optimal scaling size until iteratively solve the given problem with changing the 

scaling factor from one to zero. Therefore, a methodology that can appropriately derermind the scaling factor 

without solving the problem is required. While the quadrilateral solid elements perform well in uniform meshes, 

they generally show the stiffening effect when they are distorted. This means that the performance could be 

increased if we modified Gauss integration points based on the element distortion. 

 

For further investigation on the scaling modification, the element distortion is classified and measured by some 

characteristic values. By coupling the distortion measure to the scaling factor, the modification is tested. For the 

details, see Appendix C. 
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Appendix C. Coupling distortion measure with adjusting parameter 

 

In this chapter, it is investigated how to couple the distortion measure with the adjusing parameter that modify 

Gauss integration poins with scaling. The cantilever beam given in Fig. C.1 is considered. Various functions are 

designed and tested whether the distortion measure can represent the element distortion and also, the adjusting 

parameter appropriately modify Gauss integration points. 

 

 

Fig. C.1. Cantilever beam (E = 1500 and v = 0.25) modeled using two elements with distortion parameter (e). 

 

Here, the three distortion measures shown in Fig. C.2 are considred: skewness, tapered, and overall distortion. 

The skew angle at the element center is used for the skewness distortion, and the two coefficients   and   in 

Eq. (2.45) are used for the r and s directional tapered distortion, respectively. In addition, the   is defined to 

assess the overall distortion of the element including skewness, tapered and length ratios.  

 

 

Fig. C.2. Distortion measures. (a) skewness, (b) tapered, and (c) overall distortion. 
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Fig. C.3. Normalized vertical displacement in the cantilever beam with two elements at point A 

 

The adjusting parameter should satisfy the proposed requirements for general use in chatper 2. We checked that 

all the parameters considered here passes the zeros energy modes and patch tests. Therefore, the performance 

depending on the element distortion is the main concern.  

 

Among the various test functions considered in Fig. C.3, the cosine square function give accurate and reliable 

solutions for the whole range in the distortion parameter. For some patial ranges [0, 2]e , cosine or cosine cubic 

give more accurate than the cosine square, but they soon fail to give reliable solutions when the distortion becomes 

large. Therefore, the cosine square function is most pertinent as a adjusting parameter in the group of the functions 

tested in this problem.  

 

Based on this investigation, the cosine square function is adopted to modify Gauss integration points. Note that 

the distortion measure is obtained from the skew angle of the element center which is determinded from the 

element geometry only. Thus, there is no artificial coefficient that the user shoul define. In addition, the 

modification of Gauss integration points hardly increasesthe computational cost, since the distortion measure 

could be naturally calculated when construct the assumed field of the 2D-MITC4 element. 
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