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Abstract

Extended Finite Element Method / General Finite Element Method is one of the most commonly used methods
for crack analysis. This method does not require re-meshing as the crack propagates by enriching the
displacement field by the partition of unity method. However, the mesh refinement process near the crack tip is
still necessary to obtain a satisfactory solution. Recently, research was proposed to solve the linear dependence
problem using the 2-D 4-node quadrilateral elements and to improve the solution through polynomial enrichment
technique. In this thesis, a polynomial enrichment technique that resolves the linear dependence problem is
applied to the Extended Finite Element Method using the 2-D 4-node quadrilateral elements. As a result, a
method that does not require a mesh refinement process is proposed. In addition, an efficient adaptive local
enrichment technique is proposed through the Zienkiewicz-Zhu error estimator in terms of degrees of freedom.
Verification of the proposed method is performed through several fracture mechanics numerical examples.

Keywords XFEM, GFEM, crack analysis, fracture mechanics, partition of unity






Contents

LO0) 1173 PP PR i
LISE OF TADIES ..cvveeireie st h bbb r R R e E et ns il
LSE OF FIGUIES ...ttt h bbb et Rt bt bt s et nn bbb e e nrens v
Chapter 1. INrOQUCTION .. ....euviiiiriie ittt bbb sr e r bbbt et e e e n e r b b e 1
1.1 Research Back@round ..........coooiiiiiiiiiiieic e 1

1.2 RESCAICH PUIPOSE.....cvtiiieiieeiiee sttt et e e r e r e r e e sn e reenreenneenis 2
Chapter 2. Fracture MECHAMICS .........oiriiiiieiiiiesiesee ettt r e n e sn e e e eneenn e neeneennennne s 3
2.1 Linear Elastic Fracture MeChaniCs ..........ccooviiiiiiiiiiiiiii i s 3
2.1.1 Stress distribution in the vicinity of @ crack tip.......cccccvevieiiiriinieiiere e 3

2.1.2 The Griffith €nergy Dalance .........c.cooveiiiiiiiiic e 5

2.2.3 ENCTEY TRIEASE TALC ....veiuviiueiieeistiestieteete st st st e steeste et e e sse e sb e e sb e b e et e et e s seesheesreesreenneeneenneennennee e 7

2.2.4 Three 10ading MOGES ......c.viiiiiieitieieei et b e bt e s e sre e sre e sreenneenneenrennee e 8

2.2.5 Sress INTENSIEY TACTOT . ..viiviiueiitieitieiie ettt r bt e e sre e sneenneenneennennee e 8

2.2.6 Relation between energy release rate and stress intensity factor ..........cccoceevveeeiiiniencnieenennens 11

2.2 Elasto Plastic Fracture MEChanICs ........c.ccuiviiiiiiiiiiiiiiieie s 11
B B L V11 (< 2 | TSP TSP UP PR PSPPI 12

2.2.2 INtEraCtioN INEEEIAL.....eiuviiuiitieiieiieie ettt b bt e e sr e e nneenn e en e nn e e sr e nreenreenne s 13

2.2.3 Domain integral form of interaction iNteGral .............ccovvveiieiiriiniie it 14

Chapter 3. Extended Finite Element Method..........c.ccviiiiiiiiiiiiiicc e s 16
3.1 Governing equations of cracked DOAY .........cciiriiiiiiiiii e 16

3.2 Partition Of UNIEY COMOEPL.....eviiriitiiriiieiiieieet ettt r bbb et e e nr e resrenreane s 17

3.3 Enrichment functions for 2D crack modeling..........ccccveiviiiiiiiiniiiiisecee e 20
3.3.1 HeaviSide fUNCLION ...ecuviuiiiiie ittt sr bbbt n e nn b ene s 21

3.3.2 Asymptotic crack tip fUNCHION .......vviiiiiiiie e 22

3.3.3 XFEM aPPIOXIMATION ....cuvivtitiitisieetieieeeete sttt e seesme st et nn e ab et e b e e n e neanennesne s 22

3.4 FOTMULALION ...ttt e R bbbt s e et Rt e bt bkt st e e e e nenr e b abe s 23

3.5 NUMETICAL INEEZIALION .....viieiiieeiieeii et r e r et nt e nr e e nreenre e e nne e 28

3.6 Topological enrichment and geometrical enrichment ..........cccooveevieiiiiiencs e 28
Chapter 4. Polynomial nTiChMENT ........c.oiviiiiiiiieiie e 30
4.1 Basic concept of polynomial enrichment using interpolation COVETS ..........covvevriuiriiieeniiieeneesnieeenee e 30
4.1.1 Resolving linear dependence (LD) Problem ...........ccvviviieiieeiienieieceseseseee e 33



4.2 XFEM with polynomial enrichment .............cccoiiiiiiiiiiiii e 34

4.2.1 FOTMUIALION. .. .cviiiiciie ittt b bt e e nr e er e ene s 34

4.2.2 NUmerical INEEZTALION ....vvviiviiieiiieieit sttt bbb sr e r e sr e ene s 36

Chapter 5. Adaptive 10cal @nriCRMENL. ..ot s 37
5.1 EITOT @STIMAION ...ttt r et b e sr e E bt b e e sr e n e nr e r e 37

5.2 A POSEETIOTT ITOT ESTIMALOT . ..c.virititieieeiteie sttt r et sr e bbbt et esa e nr e r bt r e 38
5.2.1 ZienKieWicz-Zhu erTOr €StIMALOT .. ...cvevirriiriiiiiriseeieie et 38

5.3 Superconevergent Patch RECOVETY ......c.coiiiiiiiiiiiiici e 41

5.4 Criteria fOr eNTICHIMENT .......ocviiiiiiiiieiet e e r e 42

5.6 CONVETZENCE STUAY . ...evieiveriiteitieriste sttt r bbbttt e et s bt Rt bt eb e e et e e e nn e nenneer e 46
5.6.1 A single edge cracked plate under uniaxial teNSION ........cecververieriieriiese e 46

5.6.2 A single edge cracked plate under bending 10ading ...........ccoceviriiiriiiniiiiicec e 49

5.6.3 A single edge cracked plate under ending shearing ............c.cccoovrieiiieniiie e 52

Chapter 6. CONCIUSION .....viiuiiieiiitietieti ettt b e bt e bt e s b e s b e e s be e s b e e ab e e s e eae e eh e e eb e e bt e b e e snensnenreenreenneenis 56
L2 10) 1o ea =1 )4 | TP PRPT PRSP 57



List of Tables

Table 5.1 Results for the single edge cracked plate under uniaxial tension
Table 5.2 Results for the single edge cracked plate under bending loading

Table 5.3 Results for the single edge cracked plate under ending shearing



List of Figures

Figure 2.1 Elastic and Elasto-Plastic crack behavior..........cccveiiiiiiiiie e 4
Figure 2.2 Stress componenets around the crack tip and poloar coordinates ...........cccueververeereeienieniee e 4
Figure 2.3 Central crack in an infinite plate with thickness under tensile Stress ............coccvvvriiriiiiiniininnneneens 6
Figure 2.4 Loading modes ( Mode I, Mode I and Mode IT1 ) .......coooviiiiiiiiiniiiiiecee e 8
Figure 2.5 J-integral contour around the Crack tip .........ccoviiiiiiiiiiiiie e 12
Figure 2.6 Closed domain for interaction integral ............cceceriiiiiiiiiiiii e 15
Figure 3.1 Body With @ CTaCK.......cciuiiiiiiiiii e 16
Figure 3.2 Open cover on the domain QP defined by clouds @ ....cccovriiiiiii 18
Figure 3.3 Signed distance fUnCtion  @(X) ....cuocevieiiieiieiieiieie sttt sttt et 21
Figure 3.4 Asymptotic crack tip fUNCLIONS ........oiviiieiiieiiiierie et r e 22
Figure 3.5 Description of enrichment strategy in XFEM .........cccooiiiiiiiiiiieeee e 23
Figure 3.6 Global coordiate system and Local coordinate system at the crack tip .........coccvvvviriviiiiieninienincnen 27
Figure 3.7 Numerical integraion for cut by crack element and crack tip element ............ccocovvrviiiienniiincnee, 28
Figure 3.8 Two enrichment strategy: (a) topological enrichment, (b) geometrical enrichment..............cc.ccoenee. 29

Figure 4.1 Descrition of cover enriched by interpolations: (a) usual bilinear interpolation function, (b) cover region
Ci WIR TI0AE 7. 1. 32

Figure 4.2 Nodal local coordiante systems (&,7;) and global coordiante systems (X, ¥) ..o.ococeivererirriieencnnn, 32

Figure 4.3 Description of the sub-domains: (a), (b) The 4-node quadrilateral elements divided into 4 triangular
subdomains, (c) is the interpolation functions by piecewise linear shape functions. ..........cccoceeveeierieiieiieeneenne. 34

Figure 4.4 Descriptions of XFEM with polynomial enrichment: (a) XFEM without polynomial enrichment, (b)

XFEM with linear polynomial enrichment, (c) XFEM with quadratic polynomial enrichment...............ccccce.e. 35
Figure 4.5 Integration schemes: (a) Integration of an element including crack tip used in XFEM, (b) Integration
applied to polynomial enrichment technique, (c) Integration both techniques simultaneously ...........c.cccccevueenne. 36
Figure 5.1 4-node elements belonging to the element patch €2 ..ot 41
Figure 5.2 Local domain around the crack tip: (a) Local domain in crack geometry, (b) Local domian in mesh
FELT0) 00T o PP 43
Figure 5.3 Examples for adaptive local enrichment: (a) with coarse mesh, (b) with medium mesh, (c¢) with fine
L1 TST] | DO TP U PP U PR PTRUPRPR 44
Figure 5.4 Finite element procedure for adaptive local enrichment ............c.ccooveviiiiininii 45
Figure 5.5 Geometry of a single edge cracked plate under uniaxial tensSion ...........cccoeviiiininiinicienn e, 47

Figure 5.6 Convergence curves of the relative energy error for the single edge cracked plate under uniaxial tension
With the TEZUIAT MESNES . ..cvviviiiiiei e 48

Figure 5.7 Convergence curves of the relative stress intensity factor error for the single edge cracked plate under

iv



uniaxial tension with the regular MESNES ...........ccciiiiiiiiii s 48
Figure 5.8 Geometry of a single edge cracked plate under bending 10ading ............cccooevirininiiiicnennice, 49

Figure 5.9 Convergence curves of the relative energy error for the single edge cracked plate under bending loading
With the re@UIAT MESHES .....veieeiiii e 51

Figure 5.10 Convergence curves of the relative stress intensity factor error for the single edge cracked plate under
bending loading with the regular MESHES ..........coiviiiiiiii e 51

Figure 5.11 Geometry of a single edge cracked plate under ending shearing............cccccocvviirinieinieniene s 52

Figure 5.12 Convergence curves of the relative energy error for the single edge cracked plate under ending
shearing with the regular MESNES .........c.cciiiiiiii s 54

Figure 5.13 Convergence curves of the relative mode-1 stress intensity factor error for the single edge cracked
plate under ending shearing with the regular Meshes ...........ccocviiiiiiiii 54

Figure 5.14 Convergence curves of the relative mode-2 stress intensity factor error for the single edge cracked
plate under ending shearing with the regular MeShes ..........cociiiiiiiiieie e 55



Chapter 1. Introduction

1.1 Research Background

The finite element method (FEM) has been applied to aerospace and aerospace engineering, automotive
industry, mechanical engineering, civil engineering, biomechanics, geomorphology, and materials science since
it is more powerful and effective in solving problems than other methods [1]. FEM has also been widely applied
in linear elastic fracture mechanics. However, the mesh is dependent on the geometry of the crack, and in order
to obtain an accurate solution with FEM re-meshing is necessary when the crack progresses and is time-consuming.

In addition, if you use standard elements, you need mesh refinement around the crack tip.

The partition of unity method was first introduced by Melenk, J. M., and Babuska [2], and various
partition of unity based methods have been proposed [3-6] and the extended finite element method or general
finite element method (XFEM / GFEM) has been proposed [7-10]. The basic concept of XFEM / GFEM is to
enrich the finite element analysis space by using the partition of unity. XFEM and GFEM are essentially the same
method, and in this paper two words are used in combination. XFEM was first introduced by Belytschko and
Black [7] and further developed by Moés et al. [11]. This method is a method of modeling cracks by enriching
the finite element analysis space using the Heaviside step function and the asymptotic crack tip function as the
enrichment function in the element including the displacement discontinuity. This makes it possible to construct

the mesh geometry independently of the geometry of the crack, so that re-meshing becomes unnecessary.

It has been found that even though XFEM presents a very accurate solution in fracture mechanics
analysis, the convergence rate is not optimized for the element size and the solution is not improved as the
polynomial order of interpolation increases [12]. This shows that the singularity of the crack tip defined by the

asymptotic field is not well captured.

Laborde et al. [13] and Béchet et al. [14] proposed the use of enrichment in specific areas around the
crack tip, independent of element size. This method is called geometrical enrichment. This method greatly
improves the convergence with respect to the element size, but increases the condition number of the global
stiffness matrix to make the global matrix into an ill-condition matrix. Thus, there is a need for a method of

obtaining a high-accuracy solution with minimal enrichment.



1.2 Research Purpose

In this paper, we aim to apply a polynomial enrichment technique to standard XFEM to improve the
solution without mesh refinement around the crack tips using 2D 4-node quadrilateral elements. In addition, in
order to obtain a solution with a high accuracy by applying a minimum enrichment, the goal is to obtain an

adaptive local enrichment strategy and a better solution than XFEM with geometrical enrichment.



Chapter 2. Fracture Mechanics

2.1 Linear Elastic Fracture Mechanics

Fracture mechanics was originally focused on the behavior of elastic materials applied to Hooke's law.
By Orowan (1948), Irwin (1957) and Barenblatt (1962), numerous experiments and theories have been presented
to represent the behavior of crack regions in linear elastic materials. The concept of LEFM for nonlinear behavior
such as plastic behavior was extended by Irwin (1960) and Shih and Hutchinson (1976). The fractured domain
leads to a singularity at the stress field in the crack tip region for the elastic material. However, in the case of
plastic materials, a plastic zone is generated at the crack tip and the stress reaches a finite value equal to the yield
stress of the material.

To investigate the fracture behavior of the material, the researchers performed many microscopic and
macroscopic studies. From a microscopic point of view, crack propagation can occur if the potential energy of an
atom is greater than the bound energy present between two adjacent atoms.

However, from the macroscopic point of view of continuum mechanics, the modeling of cracks and the
growth of cracks can be explained by fracture mechanics. In the following, the basics of LEFM are introduced,
such as energy release rate, evaluation of the stress distribution around the crack tip, and the stress intensity factors

in different load modes.

2.1.1 Stress distribution in the vicinity of a crack tip

When a load is applied to a cracked mechanical part, it can be seen that the stress concentration due to
the area reduction with respect to the nominal area occurs. The crack geometry leads to high stress concentration
around the crack tip. This phenomenon is described in detail in Figure 2.1. The plastic zone appears because of
the high tension visible at the crack edges. In the case of the majority of brittle materials, the size of the plastic
zone is small and the LEFM theory can be applied. According to the LFEM theory, the crack behavior is assumed

to be an ideal crack following a linear elastic model without considering the plastic behavior. [15].



Elastic

Elasto-Plastic

Figure 2.1 Elastic and Elasto-Plastic crack behavior

X
Figure 2.2 Stress componenets around the crack tip and poloar coordinates



Taking into account the polar coordinate system, (r,d), with the origin of the crack at the origin as
shown in Figure 2.2, the stress field around the crack of any linear elastic body can be given by

ojj = (%) f0)+ Y Awr2g™ @), 2.1)
m=0

where o is the stress tensor, K is a constant, f;(6) is a dimensionless function and function of 6.

Considering the higher order term, A, is a constant corresponding to the mMth term and g is a

dimensionless function corresponding to the Mth term. The above equation is a general stress field around the

crack, and we should note that this equation has a leading term proportional to l/ Jr.Asr approaches zero, the

leading term is close to infinity. However, because of the other higher-order terms approach or near certain finite

values, the stress field is dominated by the leading term. Therefore, the stress near the crack tip varies of 1/ Jr

independently of the geometry and loading.

2.1.2 The Griffith energy balance

When the system changes from non-equilibrium to equilibrium, the net energy of the system decreases
according to the first thermodynamic law. Griffith applied this concept to the mechanism of crack formation in
1920 [15, 16].

Only when certain processes reduce the total energy or remain constant, cracks can be formed or existing
cracks can grow. Therefore, we can define the critical condition for fracture as the point at which the crack grows
in the equilibrium state without changing net energy in the total energy.

Consider a wide plate with crack length 2a under a constant stress o shown in Figure 2.3.

Sufficient potential energy that exceeds the surface energy y, of the material is required to increase the length

of the crack. In an equilibrium state, the Griffith energy balance is given by

dE dw, drT
dE _ 2o, .
dA_ dA  dA 23)
Or
drm dw,
L 24
dA dA 24)

where A s the crack area, E is the total energy, Il is the potential energy supplied by the internal strain

energy and external forces and W; is the work needed to generate new surfaces.



e bbb

Figure 2.3 Central crack in an infinite plate with thickness under tensile stress

For the plate with the crack shown in Figure 2.3, Griffith proposed the following equation using the
stress analysis of Inglis [17].

2 2
HﬂTo-%: (2.5)

where TI, is the potential energy of a plate without cracks, B is the thickness of the plate. For the formation
of the crack, it is necessary to create two surfaces, W, is as follows

W, =4y.aB, (2.6)
in which y. is the surface energy of the material.

Thus, by Equation (2.4) and Equation (2.5), following equation is obtained

2

And, substituting W, in Equation (2.6) into Equation (2.4), the following equation is obtained

dWw,
e 2.8
G = 2 (2.8)

Using the above equations to obtain the fracture stress, the following equation is obtained

The difference between the crack area and the surface area should be clearly understood. In Figure 2.3,

-6 -



the surface areais 2A. However, the crack area defined as the projected area of the crack is 2aB.

2.2.3 Energy release rate

An energy approach essentially equivalent to Griffith's model was proposed by Irwin [18] in 1956.
Irwin's method is more convenient for dealing with engineering problems. An energy release rate G defined by
Irwin is a measure of the energy available for an increment of crack extension and defined as [15]

_d
dA

(2.10)

In the previous context, at the energy release rate, the term rate is not mean a derivative with respect to
time. The energy release rate G is the rate of change in potential energy II withthe crack area A .G is called
crack driving force or crack extension force since it is obtained from the derivative of the potential with respect
to crack area. By substituting Equation (2.10) into the right-hand side of Equation (2.7), the energy release rate
for the wide plate with crack length 2a in the plane stress (Figure 2.3) is given by

2
c="2% (2.11)
E

In the previous section, when G reaches a critical value, crack extension occurs, i.e.,

dw,
G, =—==2w;, 2.12
c dA f ( )

where G, is a critical value of an energy release rate and a measure of the fracture toughness of the material.



2.2.4 Three loading modes

In fracture mechanics, there are basically three types of fracture, Mode I, Mode 11 and Mode Ill. The

three modes are schematically shown in Figure 2.4.

=)

Model Model | Model Il

Figure 2.4 Loading modes ( Mode I, Mode Il and Mode 111)

Mode | is called the opening mode and refers to the failure mode in which the tensile load is applied
perpendicular to the crack plane (a traction mode).

Mode 11 is called in-plane shear / sliding mode and refers to a failure mode in which the shear stress is
parallel to the crack plane and acting perpendicular to the crack front (a shear mode).

Mode 111, called the out-of-plane tear mode, refers to a failure mode in which shear stress acts parallel

to cracks and crack fronts (a torsion mode).

2.2.5 Stress intensity factor

Under the assumption of linear elastic behavior (LEFM), the stress intensity factors can be used as a
measure to quantify the severity of cracks relative to other cracks and can be employed to determine the stress,
strain and displacement around the crack tip. They are related not only to the mechanism of crack initiation but
also to the propagation of cracks, which is a very important measure in studying cracks. When the stress intensity
factor reaches the extreme value, it causes component failure. The extreme value at this point is called fracture

toughness K. .
When the above three load modes are applied, the crack tip will have a singularity of 1/r, and the
proportional constants k and f;; vary depending on the mode. At this point, it is recommended to replace k in

-8-



Equation (2.1) with a stress intensity factor K where K =k+/27z . The stress intensity factor is generally
expressed as K, , K, or K,, depending on the load mode. Furthermore, under the assumption that the

material is isotropic and linear elastic, the stress fields around the crack tip can be written as

; K

iMoo’ = T fi (O) (2.13)

lim,_o o™ = 00 gy 2.14
r—0 *ij /_2721' ij ’ ( )

li (nn _ K £00 g

Irnr—)OO—I] _ﬂ ij ()1 (215)

for mode 1, mode Il and mode I11.
If there is no body force and traction-free boundary conditions at the crack faces are applied and higher

order terms are ignored, the stress around the crack tip for mode I loading can be obtained as

Oy = Ky cosg 1—singsin3—9 216
XX ﬂ 2 2 2 1 ( . )
o —Lcosg 1+singsin% (2.17)
oo 2 2 2) '
Ty = K, singcosgcosﬁ, (2.18)
\2ar 2 2 2
_|v(ot+oy) for plane strain
o _{ 0 for plane stress’ (2.19)
Ty, =0, 7, =0, (2.20)
and the displacement fields as
UXZMJLCOSQ x—1+2sin? 2 , (2.21)
E 2r 2 2
K, .
uyzmdLsmg x—1-2c082 2 , (2.22)
E 2r 2 2
u, =0, (2.23)
where v isthe Poisson ratio, E is the elastic modulus, x=3—4v for plane strain and K:l_v for plane
+v
stress.
In mode Il loading, the stress fields around the crack tip are obtained as
o - Ku sin§[2+cos§cos%] (2.24)
o2 2 2) ‘
Oy = K singcosgcoss—g, (2.25)
N2nar 2 2 2



Ki o .0 . 30
=——C0S—|1-sin—sin— |,
2 2 2

T
i N 2ar

0, = V(0 +O'yy) )

and the displacement fields as

UXZM /Lsing K+l+2C0$2g ,
E 2 2 2

uy:_M /Lcosg K—l—ZSin‘?Q ,
E 27 2 2

u, =0,

z

inwhich v isthe Poissonratio, E is Young’s modulus, x=3—-4v forplanestrainand « = i’_
+v

stress.

In mode 111 loading, the stress fields around the crack tip are obtained as

T =&cosg,
 Jomr 2
=m0
ZX /27Zf 2
ox=0, o, =0, 0,,=0, 7,,=0,
and the displacement fields as
U, = K @+v) /Lsing
’ E 27 2
u, =0, u, =0,

where v is the Poisson ratio, E is Young’s modulus.
In a mixed-mode problem, the total stress and displacement fields from the principle
superposition can be obtained as

O__(_Total) —

. o+ + oM,

ij ij

ufTetah (1 (1 |y
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(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

for plane

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

of linear

(2.37)

(2.38)



2.2.6 Relation between energy release rate and stress intensity factor

The energy release rate G of the energy approach and the stress intensity factor K of the stress

concentration approach, which are the main parameters of the linear elastic fracture mechanics, may have been

independently developed. Many engineers prefer the stress intensity factor approach, but in some cases the energy

release rate approach is useful. The relationship between the stress intensity factor K and the release rate G

is given by
2
G = K 1

Eeff

E planestress
Eeit = )
E planestrain
1-v2

in which v is the Poisson’s ratio and E is the elastic modulus.

2.2 Elasto Plastic Fracture Mechanics

(2.39)

(2.40)

Although the linear elastic fracture mechanics (LEFM) has been able to effectively represent stress fields

and displacements near the crack tip, the LEFM theories are applicable only to materials with a linear elastic

behavior such as brittle materials. However, there are also ductile materials that do not behave like linear elastic

behavior such as steel. In the case of such a ductile material, the plastic zone becomes larger and can no longer be

ignored. Therefore, when evaluating the fracture toughness of materials, this plasticity effect must be considered.

-11 -



2.2.1 J-integral

A method of calculating the energy release rate, the so-called J-integral, was proposed by Rice in the
late 1960s [19]. The J-integral represents a method of calculating the energy release rate of nonlinear materials
and is also called J-contour integral or conservation integral. This method is a very innovative way to idealize
elasto-plastic deformation as nonlinear elastic, which can expand the limit of the linear elastic fracture mechanics.
Also, since the J-integral is path-independent, evaluating the J integral in a far field near a crack tip can be related

to deformation near the tip.

n
y
r
X
Figure 2.5 J-integral contour around the crack tip
The original form of the integral proposed by Rice is as follows
J =j wdy —T, i gs | (2.41)
r " ox

where u; is the displacement vector and T' is a path around the crack tip is the length increment along the
contour T . The J-integral is evaluated by the path T from the lower crack surface to the upper crack surface in

a counterclockwise direction. W is the strain energy density given by
£ij
W =J‘ O-ijd(‘:ij , (242)
0
where oj; is the stress tensor and &;; is the strain tensor. T; is the traction vector given by
Ti :O'ijnj ’ (243)
inwhich oj; isthe stress tensor and n; is the unit vector normal to .

Using the Kronecker Delta property, Equation (2.41) can also be written as
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ou
1=] [walj o a_le" dr, (2.44)

where &;; is the Kronecker delta.

J is the general form of the energy release rate. Therefore, for nonlinear elastic materials, J isequal

to the energy release rate G. we can rewrite Equation (2.39) in terms of mixed-mode fracture as

2 2

K K
G=J=—L 21, (2.45)
Eeff Eeff
E planestress
Eerr = : (2.46)
E planestrain
1-v?

2.2.2 Interaction integral

In the mixed-mode loading condition, the stress fields and displacements around the crack tip are
separated into values corresponding to the respective modes, as in Equation (2.37) and Equation (2.38). When the
stress intensity factors K, and K, are obtained, the stress field and the displacement around the crack tip can
be known. To obtain K, and K, , the auxiliary field method is commonly used [20, 21]. By using this method,
the mixed-mode stress intensity factor can be obtained by superimposing the auxiliary stress and displacement
state on the FEM stress and displacement solution considering the two states of the crack body. The state (1) given

as 5,(11), D and ui(jl) represents the actual state, which is obtained by Finite Element Method. The state (2)

denoted by 6‘,(]2) , i(jz) and ui(jz) means a state in the asymptotic field for Mode I or Mode II, respectively. By

using superposition of state (1) and state (2), Equation (2.44) can be written as follows

1 o(u® +y@
J@+2) :J'F[E( (O 2))( +5(2))511 (O. (@)M n.dr (2.47)

j
8xj

By rearranging the terms state (1) and state (2) and the interaction terms, Equation (2.47) can be written

as
JE2 = g® 4 3@ 4 &2 (2.48)

where M @2 s called the interaction integral and expressed as

ou® ou®
M +2) = I WA~ ol -l —_n.dr 2.49
r 1j ij aXJ- ij axj ] ) ( )
inwhich W®? s the interaction strain energy given by
w2 = 0',(12)8,(11) = O'I(Jl)gl(f). (2.50)
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Using Equation (2.45), Equation (2.48) is rewritten as

J@2) _ 30 4 3@ +EL(K,<1>K,<2> +KPKP). (2.51)
eff

Comparing relation Equation (2.48) with Equation (2.51), the following equation is obtained

2
M 2 — (KOKP +KPK Py, (2.52)
off

where M @2 s the interaction integral.
It should be noted that the stress intensity factors K, and K, can easily be obtained using the above
equation if only the interaction integral is obtained. Assuming that state (2) is in pure loading mode | to obtain the

stress intensity factor, K{® =1, K{? =0, and Equation (2.52) is rewritten as

E
eff M @)

1
KI(): 2 mode |

(2.53)

where M® s the interaction integral for the case of K{® =1, K =0.

And, assuming that state (2) is in pure loading mode Il to obtain the stress intensity factor, Kl(l) =0,

K(? =1, and Equation (2.52) is rewritten as

KO - Eerr M@

2 mode Il ? (2'54)

where M® - is the interaction integral for the case of K =0, K@ =1.

1
2.2.3 Domain integral form of interaction integral

Equation (2.47) and (2.49) mentioned above have the form of contour integration, which is not the most
suitable form for application to the finite element method. For convenience of calculation, a process of converting
the equation into a more suitable method was required, and a domain integration approach was proposed by Moran
and Shih in 1987 [22]. Using divergence theorem, the J contour integral is transformed into the domain integral

form and the weight function (0 was introduced by Combescure et al [23, 24].

As shown in Figure 2.6 the weight function is 0 in the inner contour T, 1 in the outer contour Iy, and

is that linearly changes between 0 and 1 inside the domain surrounded by T, I';, C_ and C, . The interaction

integral in Equation (2.49) is expressed as

oul® oul
M ©2) L[w(l’z)fsl,-—ai‘,-” 0, am;dC, (2.55)

j j
where C=TUC_UTI,UC, and m is the outward unit normal vector to closed path C. Note that m=-n

in the inner contour T and m=n inthe outer contour C_, C, ,and T.
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Figure 2.6 Closed domain for interaction integral

By taking the limit as T' goes to the crack tip and assuming that crack surfaces are considered to be
traction free, the interaction integrals are ready to be replaced by the domain integral form. Using divergence

theorem, the interaction integrals can be written in the domain integral form as

()] &)
(—W (12)51]_ +o® i +5@ au_'}a_q dA (2.56)

"o ! oX;

M @2 J‘
Xy 0%,

A
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Chapter 3. Extended Finite Element Method

Several methods have been investigated as methods for evaluating crack propagation. Among them,
dealing with the crack propagation problem using the traditional finite element method is a very cumbersome
work because it requires a remesing process to meet the geometrical discontinuity. In order to improve these
problems, the Extended Finite Element Method (XFEM), which was first introduced by Belytschko and Black [7]
and Moés et al. [11], does not require the reconstruction of the mesh due to the propagation of the crack, and also
has high accuracy. Because of these advantages, XFEM has been used in many studies to deal with cracking

problems. In this chapter, we will study the basic theories about the Extended Finite Element Method.

3.1 Governing equations of cracked body

A body with outer boundary T' and domain denoted by Q c R? is considered. At the boundary T;,
the traction forces are applied. At the boundary surface T, , the displacement boundary conditions are applied.
Uniform body forces b are applied to the body. The outer boundary can be considered as I =T, UT; . In addition,
the crack surface boundary denoted by I’y is contained in the body inside domain € as shown Figure 3.1. We

consider that the crack boundary consists of two coincident boundaries Ty and Ty and that there is no traction

at crack boundary.

yA

Figure 3.1 Body with a crack
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The strong form of the equilibrium equation can be given by

V-6+b=0, (3.1)
The boundary conditions for the body B can be express as

o-n=t on T, (3.2)
¢-:n=0 on Iy, (3.3)
¢:n=0 on I, (3.4)
u=u on I, (3.5)

in which ¢ is the Cauchy stress tensor and n is the unit outward normal.

Considering the case of small displacements and small strains, strain displacement relationship can be

expressed as

=V, (3.6)

in which Vj is the symmetric components of the displacement gradient and & is the strain tensor.

When the material is considered as a linear elastic material, the constitutive equations are given by

Hook's law as

o =0(g) =Ce, 3.7

in which C is the elastic material stiffness tensor.

3.2 Partition of unity concept

Melenk and Babuska [2] have shown that traditional finite element approximations can be enriched to
represent specific functions in a given domain. This is possible by using partition of unity. Because of the notion
of partition of unity, all functions typically non-polynomial can be merged into the approximation of FEM. Their

method can be described as follows.

The main idea is to define the sum of up to one on the domain Q%Y The partition of unity functions

are given by

24 =1 (39)

iel

By multiplying any function by Equation 3.8, the following relation is obtained as
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D 490 =9(x). (3.9)

il
This means that any function can be reproduced when multiplied by the partition of unity functions. It also means

to inherit the smoothness of the partitions of unity functions.

As shown Figure 3.2, we consider {@;}, which is the system of the union of patches or clouds covering

the domain QF°Y centered at nodes il A set of functions ¢, associated with node i of patch ®; can be

defined to have the following property.

> 4=1. (3.10)

iel

Now consider §; as the space of functions where the field u"|  on the patch or cloud ®; can be

;i

Figure 3.2 Open cover on the domain QPY" defined by clouds o;

well represented. Then, we can approximate the global space U h‘Q with G" as follows.

G=>¢0;. (3.12)
In the above discussion, the first key point about node is that the above equation has reproducibility. Second, the
smoothness of the partition of unity function is inherited to the global space G. Third, the local property is inherited
to the global space. This generally represents the advantage that any functions that are not polynomials can be

accurately reproduced. This reproduced function has the smoothness of the partition of unity function.

From the viewpoint of the finite element method (FEM), it is interesting that the FE standard shape
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functions can be used as partition of functions due to have the property of partition of unity. For example, the

shape functions of a 4-node quadrilateral finite element are given by

N, = %(1— f)(L-s) . (3.12)
N, = %(1+ fA-s). (3.13)
N, = %(1+ (+s). (3.14)
N, =%(l—r)(l+ s). (3.15)

in which where r and s are the coordinates in a natural coordinate system. Next, in order to define the cloud

or patch, it is necessary to group all the elements that share the same node i. Now we can consider the union of
all those elements as the cloud or patch ®; and node i lies at the center of the cloud or patch @;. By grouping
the shape functions of these elements, a partition of unity function having a boundary at zero and a unit value at

node i is formed, which is called the subordinate of partition of unity to the cover @;.

Next, Duarte and Oden [14] and Melenk and Babuska [2] observed the reproducibility of the partition
of unity functions as described above (Equation 3.8 and Equation 3.9). To obtain an enriched basis function, any
function usually non-polynomial is multiplied with the basis function. The enriched basis functions inherit the
smoothness of the partition of unity function and the property of local approximation. This relation can be express

as

D #hs)=¢(), (3.16)

where ¢ is the partition of unity shape function and ¢(X) is the enrichment function.

Now it is necessary to define the space of enrichment functions J;. As mentioned earlier, §; is the

space of a function where u"|  can be locally approximated on ®; . Because of the basic properties of partition
;

of unity, described above, we can add any functions to local approximate space. The main idea is that the local
approximation space is enriched using the property of partition of unity. the enriched functional space can be
defined mathematically as {¢;(X),<5(X),...,¢;(X)}. An a priori knowledge of the properties of the expected
solution (polynomial or non-polynomial functions, singular functions, trigonometric functions, Heaviside

functions) can be used as local approximation function to effectively obtain a solution.
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3.3 Enrichment functions for 2D crack modeling

In XFEM, by enhancing the nodal point of cut by crack elements using the enrichment function ¢(X),

we can model the discontinuity of crack interface. In order to enhance node points, it is required to add DOF based
on the discontinuity position on the domain. The displacement approximation of an enriched element can

represented as

u(x) = Z N;OOT; + D N; (S0P (3.17)

ieN jel\]ENR

in which N(X) is the FE standard shape function and ¢(X) denotes the enrichment function. U; is the FE
standard nodal DOF, N is the set of nodal points on the whole domain. B j isthe additional nodal DOF, N ENR

is the set of nodal points on the domain enriched by function ¢(X) . From Equation (3.17), the enhanced shape

functions consisting of the standard terms and an enhanced terms can be expressed as

NEM =[N NEIS (9] (3.18)
Taking into account the enhanced approximation of the displacement approximation in Equation (3.17),

the displacement field can be obtained as

u(xy) = Uy +<& (X )Py (3.19)

N ENR

where £ is a enriched node in the set . This displacement approximation does not correspond to the actual

nodal value U, since ¢(X,) is not always zero. Therefore, the concentrated displacement approximation can

be modified as

u(x) = Z:Ni(x)ﬁi + D NGO = < (x))P; (3:20)

ieN jeNENR
in which £(x;) is the nodal value enriched by function ¢(x) corresponding to j" enriched node. Due to

Equation (3.20), u(x,)=U, is obtained. Thus, we can obtain the enriched shape functions as

NF™ = [NG) N9~ xi)]. (3.21)
Different enrichment functions are chosen depending on the discontinuity position on the domain. In
LEFM and an isotropic problem, the enrichment functions used in the cracked body generally consist of two

functions, which are Heaviside function and asymptotic crack tip function.
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3.3.1 Heaviside function

By using Heaviside function, it is possible to model the discontinuity, which is caused by different

displacement fields on both sides of the crack. The Heaviside function is given by

+1 @(x)=0

“1 (x)<0 (322)

H(x)={

in which ¢(x) is the signed distance function. This function ¢(X) is defined using the level set function. The

level set function is expressed as

p(x) = min [x—x[sign((x~x")-nr, ) (3.23)

where X isa point on the discontinuous field having the minimum distance from the point x. nr  is the

normal vector defined on the crack interface at the point X" . The Heaviside function is suitable for the modeling

of cracked body due to independent displacement approximation on either sides of the crack.

Figure 3.3 Signed distance function ¢(x)

By applying the Heaviside function defined in Equation (3.20), we can rewrite the enriched

displacement approximation for the cut by crack element in Equation (3.22) as

ue) = D N; (T + D N;ONH ) - H(x;)a; (3.24)

ieN jeNDS

in which &j is the additional nodal DOF enriched by the Heaviside enrichment function, N is the set of nodal

points on the whole domain and NP s the set of nodes belong to the cut by crack element.
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3.3.2 Asymptotic crack tip function

By using asymptotic functions, it is possible to model the displacement field at the region around the
crack tip, which are chosen from the analytical solution given in Equation (2.21), (2.22), (2.29), (2.30), and (2.35)

as

F(r,0)={F,F,,F3,F}

(3.25)
2{\/Fsing ﬁcosg,ﬁsingsine,ﬁcosgsin 9},

2 )
where F(r,0) is the set of the asymptotic crack tip functions as shown in Figure 3.4. The first asymptotic

function is used to represent the discontinuity near the crack tip on both sides of the crack. On the other hand,
three other functions are used to improve the accuracy of the approximation. Therefore, the displacement
approximation in Equation (3.20) enriched by the asymptotic functions in Equation (3.25) the element containing

the crack tip can be rewritten as

4
ue) =3 NG+ D N () (F, () ~F, (x )by . (3.26)

ieN keNCT y=1
in which 5{ is the additional nodal DOF enriched by the asymptotic enrichment functions, N is the set of

nodal points on the whole domain and NCT s the set of nodes including the crack tip.

\/Fsing \/?cosg \/?singsin 6, \/?cosgsine

Figure 3.4 Asymptotic crack tip functions

3.3.3 XFEM approximation

Using Equation (3.24) and (3.26), the displacement field can be obtained as
4 —_—
u() =Y N;COT + D N;OOHE)-HX)E + D N (0 (F,00-F, (x,))b{ , (3.27)
ieN jeN D' keNCT 7=l
where U is the FE standard nodal DOF, a; is the additional nodal DOF enriched by the Heaviside enrichment
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functions, 5{ is the additional nodal DOF enriched by the asymptotic enrichment functions, N is the set of

nodal points on the whole domain, NP s the set of nodes belong to the cut by crack element, NCT s the set

of nodes including the crack tip. The above is detailed in Figure 3.5.

— :Crack 4 :Nodesin NP  m :Nodesin N7

Figure 3.5 Description of enrichment strategy in XFEM

3.4 Formulation

In order to obtain the weak form of Equation (3.1), using the Galerkin method, the equilibrium equation

is multiplied by the test function applicable to the domain and integrated. The test function SU(X) can be

approximated the same as the displacement field u(X) and defined as

Su(x) = N3P (x)st + N (x)sa+ N (x)sb _ (3.28)

Using the Galerkin method, the equilibrium equation in Equation (3.1) can be obtained in the form of a

weak form as

jQ&J(X)(V-c+b)dQ:O. (3.29)

Being applied divergence theorem, imposed the natural boundary conditions and satisfied the traction

free boundary condition on the surface of discontinuity, Equation (3.29) can be rewritten as

[vau:eta+ Ld (U)o -np, dr = .[rfi’ A0+ [ du-bacy, (3.30)
in which the symbol < > represents the jump across the discontinuity due to the crack. More specifically it is the

difference between the corresponding value at one crack face and the corresponding value at the other opposite

crack face expressed as <CD> =®" —®" . In Equation (3.30), the second integral term on the left hand side defined
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on the domain Iy can be removed from integral equation which imposes the traction free boundary condition
(o-np, =0 on IYy) and assigns the positive side and the negative side to Iy . As a result, Equation (3.30) can

be written as

_.[rg c'iJ(c N )ﬂ“—J.rd ‘ij(c'nrg )ﬂ"

=Ld (u” —du")e-np dr :-[rd (du)o-np dl' =0

(3.31)

where N is the unit normal vector to Q~, N.- is the unity normal vector to Q" descried in Figure 3.3.
d d

The superscripts — above I’y denotes one side of the discontinuity, the superscripts + above I'y denotes the

other side of the discontinuity, in which nr.  is represented as Nr, = Npe =N
Hence, Equation (3.30) can be obtained as

j Vool = Lé‘u tdr+ IQ&J-bdQ. (3.32)

Using the test function Su(x) in Equation (3.28) and the FE discretization, the following equation is

obtained from Equation (3.32)
IETGdQ = INdeF + INdeQ : (3.33)
/o) L /o)

in which N is defined as N=[NS™® N" NC'] and B is defined as B =[BS™ B" BC"]. We can

obtain the system of linear equations KU-F=0 from Equation (3.33), where U is the vector of nodal DOFs
definedas U=[a' a' b'], F isthe vector of external forceand K is the global stiffness matrix. Finally,

the system of linear equations can be written as

Kuu Kua Kub u I:u
Ka Kaa Kap § =1Fa (3.34)
Kou Kpa Kop (0] [Fo

in which K is the global stiffness matrix defined as

J' (BSTD)T CBS™P40 J' (BSTD )T cBHdo J‘ (BSTD)T B 40
Q I o
K = L (") cBs™da IQ (B") cB"do L (") ceda |, (3.35)
I (BCT )T CBS™d0 J’ (BCT )TCB Ho J‘ (BCT )T CBSTdO
Q o .
and F is the vector of external force defined as
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L (NRE T [ (NS bde

F- J.FI(NH)deFnLJ-Q(NH)deQ , (3.36)

[ (neTJrar+ [ (N[ bdo

I

where NP isdefinedas N7™ =N;l, NI isdefinedas N = N;(H(x)—H(x;))I and N is defined

as NCT = N;(F,(x)=F,(x;)I, in which | is a square 2x2 identity matrix. We can define the matrices

BS™, B" and BT fornode i using the displacement field for enrichment as

T
OX
B =| 0 % , (3.37)
Ny Ny
Ly o]
AN (H0) ~ H(x,)) . ]
OX
B - 0 O(N,(H (Xa)y ~HOG) | (339
ONi(H) —H(xi))  a(Ni(H(x) ~H (x,))
i o ox |
AN (R (90~ R (x,)) 0
OX
BCT — 0 ON; (R(¥) - R (X))
' oy
(N (R —Fi(x)))  a(Ni(F(x) ~ Fy(x,)
: o ox - (3.39)
O(N; (F () — Fy (%)) 0 | '
OX
0 O(N; (Fa(X) = Fa (%))
o
O(Ni(Fa () = Fa(x)))  O(Ni (Fa(x) — Fa(x:)))
o o |

where the partial derivative of Heaviside functions in Equation (3.38) can be performed as

9N CHx))) = N “H(x. OH(X)
o (Ni(HO)=HO) == (HO)=H ) + Ny — =, (3.40)

and the partial derivative of crack tip asymptotic functions in Equation (3.39) can be obtained as

2 _oN; L )
o (Ni(F, () =F, 06)) = —=(F, () = F, (i) + Ni — — (3:41)

where using a transformation between Cartesian coordinate defined in a local coordinate system (X, X,) and the
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polar coordinate JF, (X) / OX can be represented as

oF, oF, or OF, 00
—_—
OX ~ oOr 0% 00 0x

(3.42)
oF, _OF, or  OF, o6

OX, Or 0OX, %&

in which 0r/dx, is defined as Or/dx =c0s@, ar/ox, is defined as Or/ox, =sin@, 06/dx, is defined as

00/ox, = —%sinH and 00/0x, is defined as 00/dx, =%cos6’. Using the Equations (3.42), the local partial

derivatives of F(r,d) in Equation (3.25) can be represented as

(3.43)
s _

30 oFy, 1 0 . 30
SII’I—SII’I@ — sm—+sm—cos€
o, 2\/' o, 2Jr 2

oF, 30 oF, 1 o 30
—=——cos sing —= cos—+cos—cos€
N x,  24Jr 2 _

The partial derivatives of crack tip asymptotic functions with respect to the Cartesian coordinate defined

in a global coordinate system (X,y) can be given by

oF oF oF
—r =Y cosa——ZLsina
OX  0OX; X
(3.44)
oF oF oF
— ——Tsina+—Lcose
oy 00X Xy

where « denotes the angle at crack tip with respect to the Cartesian coordinate defined in a global coordinate

system described in Figure 3.6.
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Figure 3.6 Global coordiate system and Local coordinate system at the crack tip
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3.5 Numerical integration

Figure 3.7 Numerical integraion for cut by crack element and crack tip element

The elements cut by crack and the elements containing a crack tip must perform a special integral.
Because the field of the element cut by crack can not be accurately integrated by Gauss quadrature, the element
must be partitioned so that the discontinuous field is properly integrated into both fields. As shown in Figure 3.7,
the element is divided into sub-triangles that depend on the crack path, and each triangle domain is subjected to

integration using Gauss quadrature.

3.6 Topological enrichment and geometrical enrichment

The enrichment schemes commonly used in XFEM are classified into topological enrichment and
geometrical enrichment. As shown in Figure 3.8 (a), the way topology enforcement is applied to elements with
crack tips is called topological enrichment. A method called fixed enrichment area or geometrical enrichment,
which improves the convergence of topological enrichment, was proposed by Laborde et al. in 2005 [13]. The
method is to apply a crack tip enticement to nodes within a specific radius that is independent of the element mesh
size around the crack tip as shown in Figure 3.8 (b). Using the geometric enrichment, the convergence rate with
respect to the mesh refinement is considerably improved, but the condition number of global stiffness matrix is

rapidly increased to make the global stiffness matrix an ill-conditioned matrix.
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(@) (b)

A : Heaviside enriched node
m : Crack tip enriched node

Figure 3.8 Two enrichment strategy: (a) topological enrichment, (b) geometrical enrichment
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Chapter 4. Polynomial enrichment

In order to numerically analyze some objects with complex shapes, the finite element method can be
effectively solved by using the concept of finite element. Because of these advantages as well as its broad
applicability, the finite element method is one of the numerical method widely used in structural mechanics, fluid
mechanics, electricity, nano-structures and multi-physics problems. However, mesh refinement is indispensable
to obtain the desired solution accuracy when the object being analyzed has discontinuities, high gradients, or
singularity. This mesh refinement requires considerable effort and in some cases requires a huge computational

cost.

To solve these problems, Babuska and Melenk [2] proposed a method of enriching the solution by
adding a specific enrichment function to the standard finite element method. Belytschko and Black [7] and Moés
et al. [11] included enrichment functions to represent crack discontinuity. In addition, a study on improving the
FE solution by applying the interpolation cover function to the standard finite element method is presented by
Kim and Bathe [25], Jeon et al. [26] and Kim et al. [27]. The enriched finite element method presented by Kim
and Bathe [25] and Kim et al. [27] is reviewed below. Moreover, a approach of resolving linear dependency, which
was a major problem in applying the finite element methods enriched by interpolation covers to 2D solid elements,

was introduced briefly [27].

4.1 Basic concept of polynomial enrichment using interpolation covers

The displacement interpolation of the 2D finite element enriched by the interpolation cover function on

the cover region C; (the union of elements sharing the node i shown in Figure 4.1) can be expressed as

u() = > NG (x), (4.1)

in which N; is the interpolation function and u;(x) is given by
Ui =[0I, (4.2)
where U; and V; is the interpolation covers.
The interpolation cover functions U; defined on the cover region C; is written as
ui =p; ()0, (4.3)

where P;(x) and 0; are a polynomial basis vector and the degree of freedom vectors for node i given by
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0 =[af o (4.4)

' =[ul uf u’ ui‘f2 us” ui”2 u{’p]Tl (4.5)
o=t Ve v ovE v v v”p]Tl (4.6)
i) =[L & m & &m on® ... nPl” , (4.7)

inwhich 0f' and 0] are the DOF vectors, which correspond to each basis fornode i. (&,7;) 1is the coordinate

variables calculated from node i (shown in Figure 4.2) represented by

_ (x=x)
P
Ui:%' (4.9

in which p is the polynomial bases degree and 4; is the characteristic element length, which is the largest length

Si (4.8)

among lengths of elements sharing node .

By separating the standard FE DOF term and the additional DOF term, the displacement interpolation

in Equation (5.1) can be expressed as

u=u+cC
— ~ _ (4.10)
where U and T are the standard nodal DOF vector and the additional nodal DOF vector given by

oo™ O 4.11
i 0 ﬁi ! ( . )

gu
G=_ 1 (4.12)

Ci

in which f\]i is the interpolation matrix, N; isthe components of the interpolation matrix C;' is the additional

nodal DOF vector corresponding to displacement # and €, is the additional nodal DOF vector corresponding to

displacement v.

- 31 -



() (b)

Figure 4.1 Descrition of cover enriched by interpolations: (a) usual bilinear interpolation function,

(b) cover region C; with node i.

73

T]4 &

72

Uil

1 1

Figure 4.2 Nodal local coordiante systems (&,7) and global coordiante systems (X, Y)

For example, in the case of p=1, N, is obtained as
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ﬁi =Ni[& m]. (4.13)

In the case of P=2, n; is obtained as

m=Nil& w0 & Emo nfl. (4.14)

4.1.1 Resolving linear dependence (LD) problem

When both the partition of unity function and the interpolation cover function are composed of
polynomials, the linear dependence (LD) problem occurs in which the rank of the global stiffness matrix becomes
insufficient even when the essential boundary conditions are appropriately applied and the solution can not be
obtained. The LD problem was first observed by Babuska and Melenk in analyzing 1D problem [2]. Many
researchers have made various attempts to solve the LD problem [8, 28-31]. Recently, research has been proposed
to solve the LD problem and obtain a good solution by applying the piecewise linear function to the 2D 4-node
quadrilateral element [27]. The polynomial enrichment technique proposed by Kim et al. [27] is applied in this

paper. In this chapter, the method is reviewed.

The new shape functions were proposed to resolve the LD problem of 4-node quadrilateral elements.
The 4-node quadrilateral element is divided into four triangular sub-domains, and different shape functions are

applied to each sub-domain as shown Figure 4.3 (a) and (b).

For sub-domain 1, the new shape functions are obtained as

Ny=f@s2r+s) N,=Z@-2r+s) Ny=t-s) KN,=I@-s) (4.15)
4 , 4 , 4 7 4 ]
For sub-domain 2, the new shape functions are obtained as
N 1 N 1 ~ 1 ~ 1
N;==@+r), Ny==(1-r+2s), Nyg=—(1-r-2s), Ny==(1+r). (4.16)
4 4 4 4
For sub-domain 3, the new shape functions are obtained as
~ 1 ~ 1 A1 o1
N;==(@+s), N,==(1+s), Ng==(1-2r-s), N,==(@1+2r-s). (4.18)
4 4 4 4
For sub-domain 4, the new shape functions are obtained as
~ 1 ~ 1 ~ 1 ~ 1
N, :Z(1+r+25) , N, :Z(l—r) , Nj :Z(l—r) , Ny :Z(1+r—25) . (4.19)
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Figure 4.3 Description of the sub-domains: (a), (b) The 4-node quadrilateral elements divided into 4

triangular subdomains, (c) is the interpolation functions by piecewise linear shape functions.

The LD problem can be resolved by substituting Equations (4.15), (4.16), (4.17) and (4.18) into the bilinear

shape function in Equation (4.1).

4.2 XFEM with polynomial enrichment

In chapter 4.2, the proposed polynomial enhancement technique is applied to the XFEM to improve the
XFEM solution.

4.2.1 Formulation

In order to apply the polynomial enhancement technique to XFEM, Equation (3.2) is modified as

ue) =2 Ni(T+ > Nj(H(X)-H(x))3,

ieN jeNDIS
A (4.20)
+ T NGO (R (0-F, ()b + D NG,

keNCT y=1 1eN POt

,\]DIS

where N is the set of all nodal points, is the set of enriched nodes whose support is bisected by the crack,

and N7 is the set of nodes which include the crack tip in the support of their shape functions enriched by the

asymptotic functions and N POl is the set of nodes enriched by polynomial functions. In this relation, U; are the

unknown standard nodal DOF at i node, a; are the unknown enriched nodal DOF associated with the

i
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Heaviside enrichment function at node |, and Bky are the additional enriched nodal DOF associated with the
asymptotic functions at node K, and €, are the additional enriched nodal DOF associated with the polynomial

enrichment functions at node /. N, is the interpolation matrix. KI, and C; are given by

i

(4.21)

where N, is the components of the interpolation matrix and T are the additional enriched nodal DOF

associated with the polynomial enrichment functions at node / corresponding to displacement u and T, are the

additional enriched nodal DOF associated with the polynomial enrichment functions at node / corresponding to
displacement v. All shape functions are replaced by the shape functions given in Equation (4.15), (4.16), (4.17)
and (4.18). except for the shape function corresponding to the standard DOF term. An example of applying
polynomial enrichment to XFEM is depicted in Figure 4.4. (a) shows XFEM without polynomial enrichment, (b)
shows XFEM with linear polynomial enrichment, and (c) shows XFEM with quadratic polynomial enrichment.
As the order of polynomial enrichment increases, the number of DOF increases, but you can see that the stress

jump is alleviated and the approximation is better.

XFEM without P.E. XFEM with P.E. (p=1) XFEM with P.E. (p=2)
DOF : 577 DOF : 1625 DOF : 3197

Figure 4.4 Descriptions of XFEM with polynomial enrichment: (a) XFEM without polynomial
enrichment, (b) XFEM with linear polynomial enrichment, (¢) XFEM with quadratic polynomial

enrichment
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4.2.2 Numerical integration

(@) (b)

Figure 4.5 Integration schemes: (a) Integration of an element including crack tip used in XFEM, (b)

Integration applied to polynomial enrichment technique, (c) Integration both techniques simultaneously

In section 3.5, the elements with discontinuous fields explained that special integration must be
performed. In order to apply the polynomial enrichment technique, it is necessary to divide the sub-domains and
perform the integration of the respective sub-domains. Both integration strategies must be considered
simultaneously. Figure 4.5 (a) shows the integration of the elements including the crack tip from the viewpoint of
the standard XFEM, and (b) shows the integration of the elements in terms of the polynomial strengthening
technique. In order to simultaneously consider these two integrals, four triangular subdomains are constructed
based on the center of the element as shown in (c), and then the subdomains including the crack path are

reconstructed in the subdomain dependent on the crack path. Finally, integration for each subdomain is performed.
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Chapter 5. Adaptive local enrichment

The adaptive mesh refinement technique improves the J-integrals to obtain the stress intensity factor
numerically, but it may not be the most optimal refined mesh. Because the integration path is generally far from
the crack tip, such a mesh refinement strategy may have little effect on the J-integral value. As a result, using the
adaptive finite element method is strongly recommended to control the error of the J-integrals, i.e. the difference

between the exact value and its approximation, and thus to obtain the optimal finite element mesh.

However, we want to improve the quality of the finite element by local enrichment strategy without
using a mesh refinement strategy to obtain a better solution. Therefore, the method used in the adaptive mesh
refinement strategy can be applied similarly to the adaptive enrichment strategy. In this chapter, we will study a
posteriori error estimator which is used for adaptive mesh refinement strategy and propose criteria for enrichment

to obtain optimal solution.

5.1 Error estimation

The solution obtained with XFEM is affected by the discretization errors associated with the size of the
elements, as in FEM. Since XFEM actually tends to use discretization with coarse meshes, a tool is necessary to
quantitatively evaluate the quality of these meshes. As a result, technique to estimate errors is needed in the XFEM

environment.

Estimating errors in numerical computation is as important and old as numerical computation. The first
paper on error estimation was first presented by Richardson [32] and reported on practical computations using
finite differences. An error estimation technique considering local residuals of the numerical solution in the
environment of finite element analysis was first proposed by Babuska and Rheinboldt [33]. In order to locally
predict errors that occur in the energy norm, residuals that occur in the element patches or residuals that occur in
a single element are investigated. There are generally two objectives in the process of error estimation. The first
is to determine the error of the mesh used in the finite element, and the second is to reduce the error to an acceptable

value using adaptive mesh refinement strategy.

The error estimation procedure can be generally classified into two categories: residue-based approach
and recovery-based approach. Babuska and Rheinboldt [33] first proposed a residual-based method that takes into
account the local residuals of the numerical solution. In order to estimate the error, the residuals in the patch of
the element are calculated in terms of the energy norm. This approach has continued to be developed by other
researchers. Among them, research by Ainsworth and Oden [34] was the most remarkable result. These residual-

based approaches had been considered as a reliable approach among researchers for many years.
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A more effective alternative to this residual-based approach is presented by Zienkiewicz and Zhu [35].
This approach uses a recovery process for more accurate error estimation. Several recovery procedures have been
developed, starting with the simplest form of averaging over the nodes. These recovery-based approaches have
been continually evolved by other researchers, and several recovery procedures have been proposed and attracted
much attention among researchers. The basic concept of this technology is that the approximation of the error is
defined by the difference between the numerical solution and the solution restored by the restoration procedure.
Therefore, this approach is simple and easily applicable. Zhu and Zhang showed that there is a corresponding
recovery-based process for each residual-based estimator [36], as the estimator was found to be asymptotically
exact if the recovery process itself is superconvergent [37]. However, because the residual-based estimator for the
recovery-based process is not always present, the error estimate with the optimal performance is more likely to be

provided by the recovery method.

5.2 A posteriori error estimator

A lot of error estimators have been represented in [38], and they can be divided into two categories
according to the error estimation timing. A priori error estimation provides qualitative information on convergence
rate according to degrees of freedom and is based on a priori knowledge of the characteristics of solutions. A
posteriori error estimation is an approach to estimate errors using a solution obtained from numerical analysis, in
addition to a priori knowledge of the solution. In this approach, a quantitatively accurate measurement of the error
can be provided, but a priori estimation methods can not be applied. In this paper, we use the posteriori error
estimator developed by Zienkiewicz and Zhu [35] in consideration of the adaptive h-refinement procedure. This

error estimator is commonly used because it is reasonably accurate despite its simplicity.

5.2.1 Zienkiewicz-Zhu error estimator

The superconvergent patch recovery (SPR) based approach is one of the most effective technique and
introduced by Zienkiewicz and Zhu [37, 39]. Superconvergent patch recovery (SPR) is a method for generating
very accurate recovery values, which generally has a higher convergence speed than the original solution and
provides the basis for error estimation. In order to obtain the accurate and continuous stress over the entire domain
with the SPR method, the nodal stresses are recovered and those nodal values are interpolated using standard FE
shape functions. Using a polynomial expansion for a patch of elements which are sharing the node and fitting the
raw results obtained by FE procedure at sampling points from the patch with least square technique, the nodal

stress is obtained.

- 38 -



Before continuing, we need to define what we mean by error. This is considered to be the difference
between the approximate solution and the exact solution. In the viewpoint of displacement u, this idea can be

applied and is represented as

e=u-—u,, (5.1)
where u is the exact solution and U, is the solution obtained by FE procedure. Focusing on the strain & or

the stress o in a similar way, the error can be given as

eg =& —&p
(5.2)
eo_ =0 —0y.

For the problems of a linear elastic material, the error of energy norm is defined as

E [ IQ(Be)TC(Be)dQ}; (5.3)

in which e is the error in Equation (5.1) and B is the operator, which defines the strains as

c=B¢
(5.4)
Ep = th s

where C denotes the elasticity matrix. And, the stresses is represented by

c=C¢
(5.5)
Oy = Cgh ,

in which an initial stress and strain are ignored to simplify the problems.

Using Equation (5.4) and (5.5), the error of energy norm in Equation (5.3) can be obtained as

N~

=] [ (-0 Cle - )]

- 1
= _L)(&—gh)T(a—gh)dQ}z . (5.6)

- 1
- JQ (a—ah)Tc*l(a—ah)dQ}z

We replace o with an improved or smoothed value that is better than the value calculated by FE

procedure because the exact solution is unknown. Hence, using Equation (5.6) the following equation can be

L
=l [ [ (6 owTc 6 -anaalf 67

in which & is the improved stress value, oy, is the stress value obtained by FE procedure and |é] denotes the

estimated error of energy norm. We can obtain the improved values using the stress smoothing techniques, e.g.,
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nodal averaging approach [40], global smoothing technique [35, 41] and SPR technique [39]. How to improve

stress values using SPR technology is explained in the next section.

And, the energy norm obtained by finite element method is given by

1
HE [ Lgthgth}z

= UQ ghTath]; (5.8)

1
T~ 2
= C de|“.
U-Q h h :l

The above norm is defined in the whole domain. However, in terms of the contribution of each element,

the norm is written as

n
)
2

i=1

n
2 2
nlly = Z"Uh"i ,
i=1

N A2
€ ei

(5.9)

. . . . 2 .

where i is an element on the domain Q and # is the total number of elements on the domain Q . ||U h || o isthe
. 2 . all2 . .

energy norm on the domain Q , ||U h ||I is the energy norm of element 7, ||e|| o theestimated error on the domain

Q, "é"|2 is the estimated error of element i.
Using Equation (5.7), (5.8) and (5.9), the estimated relative error is defined as

2
= ———. (5.10)

||Uh||§2+ égz-z

A
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5.3 Superconevergent Patch Recovery

@ : Patch assembly point

O : Nodal value defined from the patch

¢ : Sampling points for superconvergence

1 Element patch

Figure 5.1 4-node elements belonging to the element patch Q

A patch assembled around an internal vertex node is described in Figure 5.1. The figure shows rectangular

elements with well defined superconvergent points.

If we take the superconvergence of ¢~ at particular points k of each element, it is not difficult to calculate
the & that is superconvergent at every point in the element. This procedure is described in two dimensions as
shown Figure 5.1, in which we must consider the internal patches (assembling all the elements at the internal

node).

The values of ¢ are accurate with order p+1 at each superconvergent point. However, an approximation

o can be easily obtained by a polynomial of degree p with the same order as that occurring in the shape function
for displacement. When we make this polynomial fits superconvergent points using the least squares method, the

accuracy of polynomial is superconvergent everywhere.

o =p(x,y)a;, (5.11)

where

p(x,y)=L X y - yPI
(5.12)
a=[a, a, - a,]"

in which X=X-X,, Yy=Yy—-Y. where (X, Y.) is the coordinates of the interior vertex node explaining the

patch.
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Using the least square method, a functional with » sampling points is minimized for each element patch,

1 n
HzEZ[o-i*(Xk'yk)_pkai]Z, (5.13)
k=1
in which
Pr =P(X, yk)' (5.14)

(X, Yx) is the coordinates of the sampling superconvergent point &, the coefficient a; is obtained by

a= A, (5.15)

in which

AZZpka

k=:
(5.16)

n
b; :zplai*(xk’yk)-

k=1
Using o , it is possible to determine the superconvergent values of & at all nodes. For instance,

components of the solution recovered at node a of the element patch are represented by

(Gi)a = 0i(Xa: Ya) = P(Xa, Ya)ay - (5.17)
Hence, on the assumption that the stresses recovered over the element are calculated by the same
interpolation method as displacement interpolation, for recovery the nodal gradient value and the sampled stress,

it is obtained as

6=No, (5.18)
where o0 is the recovered stress at the node, N is interpolation function and & is the recovered stress

interpolated by .

5.4 Criteria for enrichment

The Zienkiewicz-Zhu error estimator can be used to estimate the error of each element. However, when
calculating the stress intensity factor using J-integral, only the elements within a certain domain around the crack
tip directly affect the stress intensity factor. The enrichment of elements on the notch or fillet with a large stress
gradient except around the crack tip does not directly affect the calculation of the stress intensity factor but

increases the computational cost. Therefore, the error of only the elements belonging to the local domain around
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the crack tip should be estimated. Equation (5.10) is rewritten as

é
N = 77—, (5.19)

2 A2
"Uh”QL e Q

2
i

in which 7; is the relative error corresponding to element i, €, is the local domain around the crack tip as

. . . 2. . 2
shown Figure 5.2, i is an element on the domain Q, , |Uh|| o Is the energy norm on the domain Q, , ||U h ||I
L

. JTINTY . . A2 . .
is the energy norm of element i, ||e|| o the estimated error on the domain Q, , ||e||| is the estimated error of
L

element ;.

(a) (b)

e)
e

[}

=

Figure 5.2 Local domain around the crack tip: (a) Local domain in crack geometry, (b) Local domian

in mesh geometry

In addition, if the domain of the asymptotic crack tip enticement is larger than the domain of the J-
integral, the solution becomes significantly unstable. Therefore, the size of the error estimation domain should be

smaller than the J-integral domain, and only the elements on the domain €, around the crack tip should be

applied locally when the enriched node is adaptively selected. The order of polynomial enrichment was only linear
(» = 1) and quadratic (p = 2) because the computational cost from cubic (p = 3) was too huge. Since Heaviside
enrichment is excluded from adaptive enrichment because it chooses according to the crack segments, only the
polynomial enrichment with linear order and quadratic order and the asymptotic crack tip enrichment are

considered as adaptive enrichment. Through several tests, the following criteria for enrichment are obtained as
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1° order polynomialenrichedelement ~ for 7, >=177,
2" order polynomialenrichedelement  for 7, >=7, /3, (5.20)
Crack tip enriched element for 7i>=7n.

in which 77, is given by
1 n
M=, (5.21)
)
where n is the total number of elements on the domain Q, , 7; is the relative error corresponding to element i.

Examples of adaptive local enrichment is shown in Figure 5.3.

(a) (b)

A : Heaviside enriched node m : Crack tip enriched node
@ : 1torder polynomial enriched node @+ : 2" order polynomial enriched node

Figure 5.3 Examples for adaptive local enrichment: (a) with coarse mesh, (b) with medium mesh, (c)

with fine mesh
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The finite element procedure with adaptive local enrichment was performed as shown in Figure 5.4.

)

¥

Input B.C. and load data

v

Select the H.E. Node & C.T.E. Node
with topological enrichment

v

Assemble stiffness matrix
Solve linear equation

v

Estimate error near the crack-tip region
Select H.E. node & C.T.E. node & P.E. node

v

Assemble stiffness matrix of additional DOF terms
Solve linear equation

¥

Calculate SIF

¥

=

A : Heaviside enriched node

m : Crack tip enriched node

e ¢ H )

: Heaviside enriched node

: Crack tip enriched node

: 1st order polynomial enriched node
: 2nd grder polynomial enriched node

Figure 5.4 Finite element procedure for adaptive local enrichment
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5.6 Convergence study

In this chapter, the proposed method is verified by solving various numerical examples by applying the
above conditions. In each case, the energy relative error and the stress intensity factor relative error with respect

to DOFs is compared.

The energy is written as

_ T
e ‘.[5“ TdQ. (5.22)

The relative energy error is presented as

E.= M , (5.23)
eref

where e, isthe energy obtained from FE solution, e, is the enegy obtained from FE solution using fine mesh

ref

and E, is the relative energy error.

The relative stress intensity factor error is given by

e _ |Krif<— K| |

ref

(5.24)

where K, is the stress intensity factor obtained from FE solution, K, is the reference solution of the stress

intensity factor and Ey is the relative stress intensity factor energy error.

5.6.1 A single edge cracked plate under uniaxial tension

A 2D single edge cracked plate under uniaxial tension shown in Figure 5.5 is considered as the first
example. The height of the plate is h=2, the width of the plate is W=2 and the length of initial crack is
a=Ww/2 . The applied stress is oy =1. This example is under plane strain condition. The Young’s modulus is
E =100, the Poisson ratio is v =0.3 and The radius for J-integral is fixed R; =0.4 . The proposed example is

compared with the example applying geometrical enrichment for the three uniform rectangular mesh of 11x21,

21x41 and 41x81 . Three examples with geometric enrichment radius R =0.15, Rer =0.2 and
Rcr =0.25 and an example applying the proposed method with an error estimation domain radius of Rg =0.25
are used. The reference solution of the stress intensity factor is given by Ewalds et al. [42].

The result is given by Table 5.1 and Figure 5.6 and Figure 5.7.
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Figure 5.5 Geometry of a single edge cracked plate under uniaxial tension

Table 5.1 Results for the single edge cracked plate under uniaxial tension

€t —€ K -K
Mesh DOF | ref h| %100 ‘ Iref | h‘ %100
eref I ref
Rer =0.15 637 3.48 3.98
Rep = 0.2 669 3.23 3.70
11x 21
Rer =0.25 729 2.54 2.96
Rg =0.25 1065 1.36 1.65
Rer =0.15 2133 1.13 1.30
Rer =0.2 2289 0.89 1.05
21x41
Rer =0.25 2573 0.72 0.86
Rg =0.25 3357 0.43 0.55
Rer =0.15 7905 0.28 0.36
Rer =0.2 8601 0.21 0.29
41x81
Rer =0.25 9585 0.17 0.24
Rg =0.25 11217 0.13 0.19
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log(Number of DOF)

Figure 5.6 Convergence curves of the relative energy error for the single edge cracked plate under

uniaxial tension with the regular meshes

lo g(EKI)

2.8 3 32 34 36 38 4
log(Number of DOF)

Figure 5.7 Convergence curves of the relative stress intensity factor error for the single edge cracked

plate under uniaxial tension with the regular meshes
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5.6.2 A single edge cracked plate under bending loading

A 2D single edge cracked plate under bending loading shown in Figure 5.8 is considered as the second
example. The height of the plate is h=12, the width of the plate is W=1 and the length of initial crack is

a=Ww/2 . The applied stress is o = 6. This example is under plane strain condition. The Young’s modulus is
E =1000, the Poisson ratio is ¥ =0.3 and The radius for J-integral is fixed R; =0.4. The proposed example

is compared with the example applying geometrical enrichment for the three uniform rectangular mesh of

11x121, 21x141 and 31x361. Three examples with geometric enrichment radius Rgr =0.15, Rep =0.2
and Rgp =0.25 and an example applying the proposed method with an error estimation domain radius of

Rg =0.25 are used. The reference solution of the stress intensity factor is given by Fett [43].

The result is given by Table 5.2 and Figure 5.9 and Figure 5.10.

Y,
(T T o

r' N
A4
A
A4

\ Ve

Figure 5.8 Geometry of a single edge cracked plate under bending loading
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Table 5.2 Results for the single edge cracked plate under bending loading

€t —€ K -K
Mesh DOF | ref h| %100 ‘ I ref | h‘ %100
Eref I ref
Rer =0.15 3004 441 9.06
Rer =0.2 3036 4.15 8.09
11x121
Rer =0.25 3096 3.96 7.36
Re =0.25 3476 3.46 5.49
Rer =0.15 10932 1.17 235
Rer =0.2 11088 1.10 2.08
21x 241
Rer =0.25 11340 1.04 1.89
Rg =0.25 11812 0.95 1.55
Rer =0.15 23720 0.51 1.00
Rer =0.2 24164 0.47 0.86
31x361
Rer =0.25 24668 0.44 0.76
Re =0.25 25868 0.41 0.63
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Figure 5.9 Convergence curves of the relative energy error for the single edge cracked plate under

bending loading with the regular meshes
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Figure 5.10 Convergence curves of the relative stress intensity factor error for the single edge

cracked plate under bending loading with the regular meshes
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5.6.3 A single edge cracked plate under ending shearing

A 2D single edge cracked plate under ending shearing shown in Figure 5.11 is considered as the third
example. The height of the plate is h=16, the width of the plate is W=7 and the length of initial crack is

a=Ww/2 . The applied stress is o, =1. This example is under plane strain condition. The Young’s modulus is
E =1000, the Poisson ratio is v =0.3 and The radius for J-integral is fixed R; = 3. The proposed example is

compared with the example applying geometrical enrichment for the three uniform rectangular mesh of 11x23,

23x47 and 47x95. Three examples with geometric enrichment radius Rey =1, Rer =15 and Rep =2
and an example applying the proposed method with an error estimation domain radius of Rg =2 are used. The

reference solution of the stress intensity factor is given by Wilson [44].

The result is given by Table 5.3 and Figure 5.12, Figure 5.13 and Figure 5.14.

—> = —p|—> —> —

\ 4

w

7777777777777

Figure 5.11 Geometry of a single edge cracked plate under ending shearing
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Table 5.3 Results for the single edge cracked plate under ending shearing

€or —© K. —K Ky — K
Mesh DOF frr —| %100 K =Kur| %100 Ko =K %100
Eref I ref I ref
Rer =1 604 4.55 6.56 2.4
Rer =1.5 696 3.17 433 1.64
11x23
Rer =2 820 2.52 3.34 1.30
Rg =2 1246 1.53 1.37 0.64
Rer =1.5 2828 0.75 0.90 0.58
23x 47
Ror =2 3236 0.61 0.67 0.51
Re =2 3806 0.47 0.45 0.45
Rer =1 10180 0.23 0.20 0.40
Rer =15 11448 0.17 0.1 0.36
47 x 95
Rer =2 13100 0.14 0.06 0.34
Rg =2 15868 0.11 0.01 0.32
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Figure 5.12 Convergence curves of the relative energy error for the single edge cracked plate under

ending shearing with the regular meshes
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Figure 5.13 Convergence curves of the relative mode-1 stress intensity factor error for the single edge

cracked plate under ending shearing with the regular meshes
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Figure 5.14 Convergence curves of the relative mode-2 stress intensity factor error for the single edge

cracked plate under ending shearing with the regular meshes
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Chapter 6. Conclusion

The purpose of this paper is to apply the polynomial enhancement technique to XFEM to improve the
solution without mesh refinement around the crack tips. In the case of the 2D quadrilateral element, the polynomial
enrichment technique was difficult due to the linear dependence problem. Recently, a research that solves the
linear dependence was proposed and applied to the standard XFEM.

The proposed method can improve the solution without modifying the mesh information. However, the
application of polynomial enrichment to nodes on the whole domain improve the solution results in enormous
computational costs. Therefore, an adaptive enhancement concept is required, which estimates the error of each
element through the Zienkiewicz-Zhu error estimator.

However, in the case of J-integral, only the elements around the crack tip are used to obtain the stress
intensity factor, and enrichment of other elements causes unnecessary cost. Therefore, a concept is introduced to
determine the local domain around the crack tip and to estimate only the error of the element belonging to the
local domain.

In addition, error criteria is required for applying a crack tip enrichment, a first-order polynomial
enrichment, and a second-order polynomial enrichment. In this study, the criteria of the adaptive local enrichment
were presented using the average value for easy application in various cases. The proposed method and the XFEM

were compared through several numerical examples and the efficiency was verified from the viewpoint of DOF.
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