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초 록 

확장유한요소법/일반유한요소법은 균열을 해석하기 위해 가장 많이 쓰이는 방법 중 하나이다. 이 

방법은, 단위분할법을 이용하여 변위장을 풍부하게 하여 균열진전시에, 격자 재구성을 할 필요 

없는 방법이다. 그러나, 만족하는 해를 얻기 위해서는 균열 선단 근처의 메쉬 세분화 과정은 

여전히 필요하다. 최근에, 2차원 사각 요소에서 선형 종속 문제를 해결하고 다항식 강화 기법을 

통해 해를 개선시키는 연구가 제시되었다. 본 학위논문에서는 기존의 2차원 사각 요소를 이용해 

확장유한요소법에 선형 종속 문제를 해결한 다항식 강화 기법이 적용되었다. 이로 인해, 메쉬 

세분화 과정이 필요하지 않는 방법이 제안되었다. 또한, Zienkiewicz-Zhu 오차 추정기를 통해 

자유도 측면에서 효율적인 적응적 국부 강화 기법이 제안되었다. 제안된 방법의 검증은 여러 

파괴역학적 수치 예제를 통해 수행되었다. 

핵 심 낱 말  확장유한요소법, 일반유한요소법, 균열해석, 파괴역학, 단위분할법 

 

Abstract 

Extended Finite Element Method / General Finite Element Method is one of the most commonly used methods 

for crack analysis. This method does not require re-meshing as the crack propagates by enriching the 

displacement field by the partition of unity method. However, the mesh refinement process near the crack tip is 

still necessary to obtain a satisfactory solution. Recently, research was proposed to solve the linear dependence 

problem using the 2-D 4-node quadrilateral elements and to improve the solution through polynomial enrichment 

technique. In this thesis, a polynomial enrichment technique that resolves the linear dependence problem is 

applied to the Extended Finite Element Method using the 2-D 4-node quadrilateral elements. As a result, a 

method that does not require a mesh refinement process is proposed. In addition, an efficient adaptive local 

enrichment technique is proposed through the Zienkiewicz-Zhu error estimator in terms of degrees of freedom. 

Verification of the proposed method is performed through several fracture mechanics numerical examples. 

Keywords XFEM, GFEM, crack analysis, fracture mechanics, partition of unity 
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Chapter 1. Introduction 

 

1.1 Research Background 

 

 The finite element method (FEM) has been applied to aerospace and aerospace engineering, automotive 

industry, mechanical engineering, civil engineering, biomechanics, geomorphology, and materials science since 

it is more powerful and effective in solving problems than other methods [1]. FEM has also been widely applied 

in linear elastic fracture mechanics. However, the mesh is dependent on the geometry of the crack, and in order 

to obtain an accurate solution with FEM re-meshing is necessary when the crack progresses and is time-consuming. 

In addition, if you use standard elements, you need mesh refinement around the crack tip. 

The partition of unity method was first introduced by Melenk, J. M., and Babuška [2], and various 

partition of unity based methods have been proposed [3-6] and the extended finite element method or general 

finite element method (XFEM / GFEM) has been proposed [7-10]. The basic concept of XFEM / GFEM is to 

enrich the finite element analysis space by using the partition of unity. XFEM and GFEM are essentially the same 

method, and in this paper two words are used in combination. XFEM was first introduced by Belytschko and 

Black [7] and further developed by Moës et al. [11]. This method is a method of modeling cracks by enriching 

the finite element analysis space using the Heaviside step function and the asymptotic crack tip function as the 

enrichment function in the element including the displacement discontinuity. This makes it possible to construct 

the mesh geometry independently of the geometry of the crack, so that re-meshing becomes unnecessary. 

It has been found that even though XFEM presents a very accurate solution in fracture mechanics 

analysis, the convergence rate is not optimized for the element size and the solution is not improved as the 

polynomial order of interpolation increases [12]. This shows that the singularity of the crack tip defined by the 

asymptotic field is not well captured. 

Laborde et al. [13] and Béchet et al. [14] proposed the use of enrichment in specific areas around the 

crack tip, independent of element size. This method is called geometrical enrichment. This method greatly 

improves the convergence with respect to the element size, but increases the condition number of the global 

stiffness matrix to make the global matrix into an ill-condition matrix. Thus, there is a need for a method of 

obtaining a high-accuracy solution with minimal enrichment.  
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1.2 Research Purpose 

 

In this paper, we aim to apply a polynomial enrichment technique to standard XFEM to improve the 

solution without mesh refinement around the crack tips using 2D 4-node quadrilateral elements. In addition, in 

order to obtain a solution with a high accuracy by applying a minimum enrichment, the goal is to obtain an 

adaptive local enrichment strategy and a better solution than XFEM with geometrical enrichment. 
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Chapter 2. Fracture Mechanics 

 

2.1 Linear Elastic Fracture Mechanics 

 

Fracture mechanics was originally focused on the behavior of elastic materials applied to Hooke's law. 

By Orowan (1948), Irwin (1957) and Barenblatt (1962), numerous experiments and theories have been presented 

to represent the behavior of crack regions in linear elastic materials. The concept of LEFM for nonlinear behavior 

such as plastic behavior was extended by Irwin (1960) and Shih and Hutchinson (1976). The fractured domain 

leads to a singularity at the stress field in the crack tip region for the elastic material. However, in the case of 

plastic materials, a plastic zone is generated at the crack tip and the stress reaches a finite value equal to the yield 

stress of the material. 

To investigate the fracture behavior of the material, the researchers performed many microscopic and 

macroscopic studies. From a microscopic point of view, crack propagation can occur if the potential energy of an 

atom is greater than the bound energy present between two adjacent atoms. 

However, from the macroscopic point of view of continuum mechanics, the modeling of cracks and the 

growth of cracks can be explained by fracture mechanics. In the following, the basics of LEFM are introduced, 

such as energy release rate, evaluation of the stress distribution around the crack tip, and the stress intensity factors 

in different load modes. 

 

2.1.1 Stress distribution in the vicinity of a crack tip 

 

When a load is applied to a cracked mechanical part, it can be seen that the stress concentration due to 

the area reduction with respect to the nominal area occurs. The crack geometry leads to high stress concentration 

around the crack tip. This phenomenon is described in detail in Figure 2.1. The plastic zone appears because of 

the high tension visible at the crack edges. In the case of the majority of brittle materials, the size of the plastic 

zone is small and the LEFM theory can be applied. According to the LFEM theory, the crack behavior is assumed 

to be an ideal crack following a linear elastic model without considering the plastic behavior. [15]. 



- 4 - 

YS

yy

r

pr

yr

Elastic

Elasto-Plastic

 

Figure 2.1 Elastic and Elasto-Plastic crack behavior 
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Figure 2.2 Stress componenets around the crack tip and poloar coordinates 
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Taking into account the polar coordinate system, ),( r , with the origin of the crack at the origin as 

shown in Figure 2.2, the stress field around the crack of any linear elastic body can be given by 

)()()(

0

)(2  






m

m
ij

m

mijij grAf
r

k
, (2.1) 

where ij   is the stress tensor, k   is a constant, )(ijf   is a dimensionless function and function of  . 

Considering the higher order term, mA   is a constant corresponding to the mth   term and ijg   is a 

dimensionless function corresponding to the mth  term. The above equation is a general stress field around the 

crack, and we should note that this equation has a leading term proportional to r1 . As r approaches zero, the 

leading term is close to infinity. However, because of the other higher-order terms approach or near certain finite 

values, the stress field is dominated by the leading term. Therefore, the stress near the crack tip varies of r1  

independently of the geometry and loading. 

 

2.1.2 The Griffith energy balance 

 

When the system changes from non-equilibrium to equilibrium, the net energy of the system decreases 

according to the first thermodynamic law. Griffith applied this concept to the mechanism of crack formation in 

1920 [15, 16]. 

Only when certain processes reduce the total energy or remain constant, cracks can be formed or existing 

cracks can grow. Therefore, we can define the critical condition for fracture as the point at which the crack grows 

in the equilibrium state without changing net energy in the total energy. 

Consider a wide plate with crack length a2  under a constant stress   shown in Figure 2.3. 

Sufficient potential energy that exceeds the surface energy s  of the material is required to increase the length 

of the crack. In an equilibrium state, the Griffith energy balance is given by 

0



dA

d

dA

dW

dA

dE s , (2.3) 

Or 

dA

dW

dA

d s


, (2.4) 

where A  is the crack area, E  is the total energy,   is the potential energy supplied by the internal strain 

energy and external forces and sW  is the work needed to generate new surfaces. 
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Figure 2.3 Central crack in an infinite plate with thickness under tensile stress 

 

For the plate with the crack shown in Figure 2.3, Griffith proposed the following equation using the 

stress analysis of Inglis [17]. 

E

Ba 22

0


 , (2.5) 

where 0  is the potential energy of a plate without cracks, B  is the thickness of the plate. For the formation 

of the crack, it is necessary to create two surfaces, sW  is as follows 

aBW ss 4 , (2.6) 

in which s  is the surface energy of the material. 

Thus, by Equation (2.4) and Equation (2.5), following equation is obtained 

E

a

dA

d 2



 . (2.7) 

And, substituting sW  in Equation (2.6) into Equation (2.4), the following equation is obtained 

s
s

dA

dW
2 . (2.8) 

Using the above equations to obtain the fracture stress, the following equation is obtained 

a

E s
f






2
 . (2.9) 

The difference between the crack area and the surface area should be clearly understood. In Figure 2.3, 
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the surface area is A2 . However, the crack area defined as the projected area of the crack is aB2 . 

 

2.2.3 Energy release rate 

  

An energy approach essentially equivalent to Griffith's model was proposed by Irwin [18] in 1956. 

Irwin's method is more convenient for dealing with engineering problems. An energy release rate G  defined by 

Irwin is a measure of the energy available for an increment of crack extension and defined as [15] 

dA

d
G


 . (2.10) 

 In the previous context, at the energy release rate, the term rate is not mean a derivative with respect to 

time. The energy release rate G  is the rate of change in potential energy   with the crack area A . G is called 

crack driving force or crack extension force since it is obtained from the derivative of the potential with respect 

to crack area. By substituting Equation (2.10) into the right-hand side of Equation (2.7), the energy release rate 

for the wide plate with crack length a2  in the plane stress (Figure 2.3) is given by 

E

a
G

2
 . (2.11) 

In the previous section, when G reaches a critical value, crack extension occurs, i.e., 

f
s

c w
dA

dW
G 2 , (2.12) 

where cG  is a critical value of an energy release rate and a measure of the fracture toughness of the material. 
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2.2.4 Three loading modes 

 

In fracture mechanics, there are basically three types of fracture, Mode I, Mode II and Mode III. The 

three modes are schematically shown in Figure 2.4. 

 

Mode I Mode I I Mode I II  

Figure 2.4 Loading modes ( Mode I, Mode II and Mode III ) 

 

Mode I is called the opening mode and refers to the failure mode in which the tensile load is applied 

perpendicular to the crack plane (a traction mode). 

Mode II is called in-plane shear / sliding mode and refers to a failure mode in which the shear stress is 

parallel to the crack plane and acting perpendicular to the crack front (a shear mode). 

Mode III, called the out-of-plane tear mode, refers to a failure mode in which shear stress acts parallel 

to cracks and crack fronts (a torsion mode). 

 

2.2.5 Stress intensity factor 

 

Under the assumption of linear elastic behavior (LEFM), the stress intensity factors can be used as a 

measure to quantify the severity of cracks relative to other cracks and can be employed to determine the stress, 

strain and displacement around the crack tip. They are related not only to the mechanism of crack initiation but 

also to the propagation of cracks, which is a very important measure in studying cracks. When the stress intensity 

factor reaches the extreme value, it causes component failure. The extreme value at this point is called fracture 

toughness cK . 

When the above three load modes are applied, the crack tip will have a singularity of r1 , and the 

proportional constants k  and ijf  vary depending on the mode. At this point, it is recommended to replace k in 
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Equation (2.1) with a stress intensity factor K  where 2kK  . The stress intensity factor is generally 

expressed as IK , IIK  or IIIK  depending on the load mode. Furthermore, under the assumption that the 

material is isotropic and linear elastic, the stress fields around the crack tip can be written as 

)(
2

lim )()(
0 


 I

ij
II

ijr f
r

K


, (2.13) 

)(
2

lim )()(
0 


 II

ij
IIII

ijr f
r

K


, (2.14) 

)(
2

lim )()(
0 


 III

ij
IIIIII

ijr f
r

K


, (2.15) 

for mode I, mode II and mode III.  

 If there is no body force and traction-free boundary conditions at the crack faces are applied and higher 

order terms are ignored, the stress around the crack tip for mode I loading can be obtained as 



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

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2

3
sin

2
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2
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2
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K I
xx , (2.16) 











2

3
sin

2
sin1

2
cos

2






r

K I
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2
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2
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2
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2
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

r

KI
xy  , (2.18) 



 


stressplanefor

strainplaneforyyxx
zz

0

)( 
 , (2.19) 

0yz , 0zx , (2.20) 

and the displacement fields as 



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where   is the Poisson ratio, E  is the elastic modulus,  43  for plane strain and 










1

3
 for plane 

stress. 

 In mode II loading, the stress fields around the crack tip are obtained as 











2

3
cos

2
cos2

2
sin

2






r

KII
xx , (2.24) 

2

3
cos

2
cos

2
sin

2






r

KII
yy  , (2.25) 
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









2

3
sin

2
sin1

2
cos

2






r

K II
xy , (2.26) 

)( yyxxzz   , (2.27) 

0yz , 0zx , (2.28) 

and the displacement fields as 














2
cos21

2
sin

2

)1( 2 




 r

E

K
u II

x , (2.29) 














2
sin21

2
cos

2

)1( 2 




 r

E

K
u II

y , (2.30) 

0zu , (2.31) 

in which   is the Poisson ratio, E  is Young’s modulus,  43  for plane strain and 










1

3
 for plane 

stress. 

 In mode III loading, the stress fields around the crack tip are obtained as 

2
cos

2






r

KIII
yz  , (2.32) 

2
sin

2






r

KIII
zx  , (2.33) 

0xx , 0yy , 0zz , 0xy , (2.34) 

and the displacement fields as 

2
sin

2

)1( 



 r

E

K
u III

z


 , (2.35) 

0xu , 0yu , (2.36) 

where   is the Poisson ratio, E  is Young’s modulus. 

 In a mixed-mode problem, the total stress and displacement fields from the principle of linear 

superposition can be obtained as 

)()()()( III
ij

II
ij

I
ij

Total
ij   , (2.37) 

)()()()( III
i

II
i

I
i

Total
i uuuu  . (2.38) 
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2.2.6 Relation between energy release rate and stress intensity factor 

 

The energy release rate G  of the energy approach and the stress intensity factor K  of the stress 

concentration approach, which are the main parameters of the linear elastic fracture mechanics, may have been 

independently developed. Many engineers prefer the stress intensity factor approach, but in some cases the energy 

release rate approach is useful. The relationship between the stress intensity factor K  and the release rate G  

is given by 

effE

K
G

2

 , (2.39) 

















strainplane
v

E

stressplaneE

Eeff

21

, (2.40) 

in which  is the Poisson’s ratio and E  is the elastic modulus. 

 

2.2 Elasto Plastic Fracture Mechanics 

 

Although the linear elastic fracture mechanics (LEFM) has been able to effectively represent stress fields 

and displacements near the crack tip, the LEFM theories are applicable only to materials with a linear elastic 

behavior such as brittle materials. However, there are also ductile materials that do not behave like linear elastic 

behavior such as steel. In the case of such a ductile material, the plastic zone becomes larger and can no longer be 

ignored. Therefore, when evaluating the fracture toughness of materials, this plasticity effect must be considered. 
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2.2.1 J-integral 

 

A method of calculating the energy release rate, the so-called J-integral, was proposed by Rice in the 

late 1960s [19]. The J-integral represents a method of calculating the energy release rate of nonlinear materials 

and is also called J-contour integral or conservation integral. This method is a very innovative way to idealize 

elasto-plastic deformation as nonlinear elastic, which can expand the limit of the linear elastic fracture mechanics. 

Also, since the J-integral is path-independent, evaluating the J integral in a far field near a crack tip can be related 

to deformation near the tip. 

 



jn

x

y

 

Figure 2.5 J-integral contour around the crack tip 

 

The original form of the integral proposed by Rice is as follows 

 











 ds

x

u
TWdyJ i

i , (2.41) 

where iu  is the displacement vector and   is a path around the crack tip is the length increment along the 

contour  . The J-integral is evaluated by the path   from the lower crack surface to the upper crack surface in 

a counterclockwise direction. W  is the strain energy density given by 


ij

ijijdW



0

, (2.42) 

where ij  is the stress tensor and ij  is the strain tensor. iT  is the traction vector given by 

jiji nT  , (2.43) 

in which ij  is the stress tensor and jn  is the unit vector normal to  . 

Using the Kronecker Delta property, Equation (2.41) can also be written as 
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













  dn

x

u
WJ j

i
ijj

1
1  , (2.44) 

where j1  is the Kronecker delta. 

J  is the general form of the energy release rate. Therefore, for nonlinear elastic materials, J  is equal 

to the energy release rate G . we can rewrite Equation (2.39) in terms of mixed-mode fracture as 

eff

II

eff

I

E

K

E

K
JG

22

 , (2.45) 

















strainplane
v

E

stressplaneE

Eeff

21

. (2.46) 

 

2.2.2 Interaction integral 

 

In the mixed-mode loading condition, the stress fields and displacements around the crack tip are 

separated into values corresponding to the respective modes, as in Equation (2.37) and Equation (2.38). When the 

stress intensity factors IK  and IIK  are obtained, the stress field and the displacement around the crack tip can 

be known. To obtain IK  and IIK , the auxiliary field method is commonly used [20, 21]. By using this method, 

the mixed-mode stress intensity factor can be obtained by superimposing the auxiliary stress and displacement 

state on the FEM stress and displacement solution considering the two states of the crack body. The state (1) given 

as )1(
ij , )1(

ij  and )1(
iju  represents the actual state, which is obtained by Finite Element Method. The state (2) 

denoted by )2(
ij , )2(

ij  and )2(
iju  means a state in the asymptotic field for Mode I or Mode II, respectively. By 

using superposition of state (1) and state (2), Equation (2.44) can be written as follows 



















 

 dn
x

uu
J j

j

ii
ijijjijijijij

)(
)())((

2

1 )2()1(
)2()1(

1
)2()1()2()1()21(  . (2.47) 

By rearranging the terms state (1) and state (2) and the interaction terms, Equation (2.47) can be written 

as  

)21()2()1()21(   MJJJ , (2.48) 

where  )21( M  is called the interaction integral and expressed as 
























 

 dn
x

u

x

u
WM j

j

i
ij

j

i
ijj

)1(
)2(

)2(
)1(

1
)2,1()21(  , (2.49) 

in which 
)2,1(W  is the interaction strain energy given by 

)2()1()1()2()2,1(
ijijijijW   . (2.50) 
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 Using Equation (2.45), Equation (2.48) is rewritten as  

)(
2 )2()1()2()1()2()1()21(

IIIIII
eff

KKKK
E

JJJ  . (2.51) 

 Comparing relation Equation (2.48) with Equation (2.51), the following equation is obtained 

 )(
2 )2()1()2()1()21(

IIIIII
eff

KKKK
E

M  , (2.52) 

where )21( M  is the interaction integral. 

 It should be noted that the stress intensity factors IK  and IIK  can easily be obtained using the above 

equation if only the interaction integral is obtained. Assuming that state (2) is in pure loading mode I to obtain the 

stress intensity factor, 1
)2(
IK , 0)2( IIK , and Equation (2.52) is rewritten as 

 (1)
mode

)1(

2
I

eff
I M

E
K  , (2.53) 

where (1)
mode IM  is the interaction integral for the case of 1

)2(
IK , 0)2( IIK . 

And, assuming that state (2) is in pure loading mode II to obtain the stress intensity factor, 0
)1(
IK , 

1
)2(
IIK , and Equation (2.52) is rewritten as 

 (1)
mode

)1(

2
II

eff
II M

E
K  , (2.54) 

where (1)
mode IIM  is the interaction integral for the case of 0

)1(
IK , 1

)2(
IIK . 

 

2.2.3 Domain integral form of interaction integral 

 

Equation (2.47) and (2.49) mentioned above have the form of contour integration, which is not the most 

suitable form for application to the finite element method. For convenience of calculation, a process of converting 

the equation into a more suitable method was required, and a domain integration approach was proposed by Moran 

and Shih in 1987 [22]. Using divergence theorem, the J contour integral is transformed into the domain integral 

form and the weight function q  was introduced by Combescure et al [23, 24]. 

As shown in Figure 2.6 the weight function is 0 in the inner contour  , 1 in the outer contour 0 , and 

is that linearly changes between 0 and 1 inside the domain surrounded by  , 0 , C  and C . The interaction 

integral in Equation (2.49) is expressed as 

 dCqm
x

u

x

u
WM j

C j

i
ij

j

i
ijj 
























)1(
)2(

)2(
)1(

1
)2,1()21(  , (2.55) 

where   CCC  0  and m  is the outward unit normal vector to closed path C . Note that nm   

in the inner contour   and nm  in the outer contour C , C , and  . 
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Figure 2.6 Closed domain for interaction integral 

 

By taking the limit as   goes to the crack tip and assuming that crack surfaces are considered to be 

traction free, the interaction integrals are ready to be replaced by the domain integral form. Using divergence 

theorem, the interaction integrals can be written in the domain integral form as 

 dA
x

q

x

u

x

u
WM

jA

i
ij

i
ijj



























 



1

)1(
)2(

1

)2(
)1(

1
)2,1()21(  . (2.56) 
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Chapter 3. Extended Finite Element Method 

 

Several methods have been investigated as methods for evaluating crack propagation. Among them, 

dealing with the crack propagation problem using the traditional finite element method is a very cumbersome 

work because it requires a remesing process to meet the geometrical discontinuity. In order to improve these 

problems, the Extended Finite Element Method (XFEM), which was first introduced by Belytschko and Black [7] 

and Moës et al. [11], does not require the reconstruction of the mesh due to the propagation of the crack, and also 

has high accuracy. Because of these advantages, XFEM has been used in many studies to deal with cracking 

problems. In this chapter, we will study the basic theories about the Extended Finite Element Method.  

 

3.1 Governing equations of cracked body 

 

A body with outer boundary   and domain denoted by 
2

R  is considered. At the boundary t , 

the traction forces are applied. At the boundary surface u , the displacement boundary conditions are applied. 

Uniform body forces b are applied to the body. The outer boundary can be considered as tu   . In addition, 

the crack surface boundary denoted by d  is contained in the body inside domain   as shown Figure 3.1. We 

consider that the crack boundary consists of two coincident boundaries d  and d  and that there is no traction 

at crack boundary.  

 

Figure 3.1 Body with a crack 

 

 

d



u

t

y

x
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The strong form of the equilibrium equation can be given by 

 0 bσ , (3.1) 

The boundary conditions for the body B can be express as 

 tnσ  on t , (3.2) 

 0nσ  on d , (3.3) 

 0nσ  on d , (3.4) 

 uu   on u , (3.5) 

in which σ  is the Cauchy stress tensor and n  is the unit outward normal. 

 Considering the case of small displacements and small strains, strain displacement relationship can be 

expressed as 

 uε s , (3.6) 

in which s  is the symmetric components of the displacement gradient and ε  is the strain tensor. 

When the material is considered as a linear elastic material, the constitutive equations are given by 

Hook's law as 

 Cεεσσ  )( , (3.7) 

in which C  is the elastic material stiffness tensor. 

 

3.2 Partition of unity concept 

 

Melenk and Babuška [2] have shown that traditional finite element approximations can be enriched to 

represent specific functions in a given domain. This is possible by using partition of unity. Because of the notion 

of partition of unity, all functions typically non-polynomial can be merged into the approximation of FEM. Their 

method can be described as follows. 

The main idea is to define the sum of up to one on the domain 
POU . The partition of unity functions 

are given by 

 




Ii

i 1 . 
(3.8) 

By multiplying any function by Equation 3.8, the following relation is obtained as 
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 




Ii

i xgxg )()( . 
(3.9) 

This means that any function can be reproduced when multiplied by the partition of unity functions. It also means 

to inherit the smoothness of the partitions of unity functions. 

As shown Figure 3.2, we consider }{ i , which is the system of the union of patches or clouds covering 

the domain 
POU  centered at nodes iI. A set of functions i  associated with node i of patch i  can be 

defined to have the following property. 

 




Ii

i 1 . 
(3.10) 

Now consider ig  as the space of functions where the field 
i

hu


 on the patch or cloud i  can be 

 

 

Figure 3.2 Open cover on the domain 
POU  defined by clouds i  

 

well represented. Then, we can approximate the global space 


hU  with 
hG  as follows. 

  ii gG  . (3.11) 

In the above discussion, the first key point about node is that the above equation has reproducibility. Second, the 

smoothness of the partition of unity function is inherited to the global space G. Third, the local property is inherited 

to the global space. This generally represents the advantage that any functions that are not polynomials can be 

accurately reproduced. This reproduced function has the smoothness of the partition of unity function.  

From the viewpoint of the finite element method (FEM), it is interesting that the FE standard shape 

POU i

i
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functions can be used as partition of functions due to have the property of partition of unity. For example, the 

shape functions of a 4-node quadrilateral finite element are given by 

 )1)(1(
4

1
1 srN  . (3.12) 

 )1)(1(
4

1
2 srN  . (3.13) 

 )1)(1(
4

1
3 srN  . (3.14) 

 )1)(1(
4

1
4 srN  . (3.15) 

in which where r  and s  are the coordinates in a natural coordinate system. Next, in order to define the cloud 

or patch, it is necessary to group all the elements that share the same node i. Now we can consider the union of 

all those elements as the cloud or patch i  and node i lies at the center of the cloud or patch i . By grouping 

the shape functions of these elements, a partition of unity function having a boundary at zero and a unit value at 

node i is formed, which is called the subordinate of partition of unity to the cover i .  

 Next, Duarte and Oden [14] and Melenk and Babuska [2] observed the reproducibility of the partition 

of unity functions as described above (Equation 3.8 and Equation 3.9). To obtain an enriched basis function, any 

function usually non-polynomial is multiplied with the basis function. The enriched basis functions inherit the 

smoothness of the partition of unity function and the property of local approximation. This relation can be express 

as 

 )()( xxi   , (3.16) 

where i  is the partition of unity shape function and )(x  is the enrichment function. 

 Now it is necessary to define the space of enrichment functions ig . As mentioned earlier, ig  is the 

space of a function where 
i

hu


 can be locally approximated on i . Because of the basic properties of partition 

of unity, described above, we can add any functions to local approximate space. The main idea is that the local 

approximation space is enriched using the property of partition of unity. the enriched functional space can be 

defined mathematically as )}(,),(),({ 21 xxx i   . An a priori knowledge of the properties of the expected 

solution (polynomial or non-polynomial functions, singular functions, trigonometric functions, Heaviside 

functions) can be used as local approximation function to effectively obtain a solution. 

 

 

 



- 20 - 

3.3 Enrichment functions for 2D crack modeling 

 

In XFEM, by enhancing the nodal point of cut by crack elements using the enrichment function )(x , 

we can model the discontinuity of crack interface. In order to enhance node points, it is required to add DOF based 

on the discontinuity position on the domain. The displacement approximation of an enriched element can 

represented as 

  
 



Ni Nj

jjii
ENR

NN
ˆ ˆ

)()()()( pxxuxxu  , 
(3.17) 

in which )(xN  is the FE standard shape function and )(x  denotes the enrichment function. iu  is the FE 

standard nodal DOF, N̂  is the set of nodal points on the whole domain. jp  is the additional nodal DOF, 
ENRN̂  

is the set of nodal points on the domain enriched by function )(x . From Equation (3.17), the enhanced shape 

functions consisting of the standard terms and an enhanced terms can be expressed as 

   )()()( xxNxNN ENH . (3.18) 

 Taking into account the enhanced approximation of the displacement approximation in Equation (3.17), 

the displacement field can be obtained as 

 kkkk pxuxu )()(  , (3.19) 

where k is a enriched node in the set 
ENRN̂ . This displacement approximation does not correspond to the actual 

nodal value ku  since )( kx  is not always zero. Therefore, the concentrated displacement approximation can 

be modified as 

 j

Ni Nj

jjii
ENR

NN pxxxuxxu  
 


ˆ ˆ

))()()(()()(  , 
(3.20) 

in which )( jx  is the nodal value enriched by function )(x  corresponding to thj  enriched node. Due to 

Equation (3.20), kk uxu )(  is obtained. Thus, we can obtain the enriched shape functions as  

  ))()()(()( i
ENH

xxxNxNN   . (3.21) 

Different enrichment functions are chosen depending on the discontinuity position on the domain. In 

LEFM and an isotropic problem, the enrichment functions used in the cracked body generally consist of two 

functions, which are Heaviside function and asymptotic crack tip function. 
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3.3.1 Heaviside function 

 

 By using Heaviside function, it is possible to model the discontinuity, which is caused by different 

displacement fields on both sides of the crack. The Heaviside function is given by 

 








0)(1

0)(1
)(

x

x
x




H

, 
(3.22) 

in which )(x  is the signed distance function. This function )(x  is defined using the level set function. The 

level set function is expressed as  

 
))((signmin)( **

d
 nxxxxx

, 
(3.23) 

where 
*

x  is a point on the discontinuous field having the minimum distance from the point x . 
d

n  is the 

normal vector defined on the crack interface at the point 
*

x . The Heaviside function is suitable for the modeling 

of cracked body due to independent displacement approximation on either sides of the crack. 

 

 

Figure 3.3 Signed distance function )(x  

 

By applying the Heaviside function defined in Equation (3.20), we can rewrite the enriched 

displacement approximation for the cut by crack element in Equation (3.22) as 

  
 



Ni Nj

jjjii
DIS

HHNN
ˆ ˆ

))()()(()()( axxxuxxu , 
(3.24) 

in which ja  is the additional nodal DOF enriched by the Heaviside enrichment function, N̂  is the set of nodal 

points on the whole domain and 
DISN̂  is the set of nodes belong to the cut by crack element. 

d
n

d


0)( x

0)( x
x

*
x0)( x

d
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3.3.2 Asymptotic crack tip function 

 

By using asymptotic functions, it is possible to model the displacement field at the region around the 

crack tip, which are chosen from the analytical solution given in Equation (2.21), (2.22), (2.29), (2.30), and (2.35) 

as 

              },,,{),( 4321 FFFFrF   

                 








 





sin
2

cos,sin
2

sin,
2

cos,
2

sin rrrr , 
(3.25) 

where ),( rF   is the set of the asymptotic crack tip functions as shown in Figure 3.4. The first asymptotic 

function is used to represent the discontinuity near the crack tip on both sides of the crack. On the other hand, 

three other functions are used to improve the accuracy of the approximation. Therefore, the displacement 

approximation in Equation (3.20) enriched by the asymptotic functions in Equation (3.25) the element containing 

the crack tip can be rewritten as  

  
  



Ni Nk

kkkii
CT

FFNN
ˆ ˆ

4

1

))()(()()()(




 bxxxuxxu , (3.26) 

in which 
kb  is the additional nodal DOF enriched by the asymptotic enrichment functions, N̂  is the set of 

nodal points on the whole domain and 
CTN̂  is the set of nodes including the crack tip. 

 

Figure 3.4 Asymptotic crack tip functions 

 

3.3.3 XFEM approximation 

 

 Using Equation (3.24) and (3.26), the displacement field can be obtained as 

 
 


CTDIS Nk

kkk
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jjj

Ni

ii FFNHHNN
ˆ

4

1ˆˆ

))()(()())()()(()()(




 bxxxaxxxuxxu , (3.27) 

where iu  is the FE standard nodal DOF, ja  is the additional nodal DOF enriched by the Heaviside enrichment 
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functions, 
kb  is the additional nodal DOF enriched by the asymptotic enrichment functions, N̂  is the set of 

nodal points on the whole domain, 
DISN̂  is the set of nodes belong to the cut by crack element, 

CTN̂  is the set 

of nodes including the crack tip. The above is detailed in Figure 3.5. 

 

 

Figure 3.5 Description of enrichment strategy in XFEM 

 

3.4 Formulation 

 

 In order to obtain the weak form of Equation (3.1), using the Galerkin method, the equilibrium equation 

is multiplied by the test function applicable to the domain and integrated. The test function )(xu   can be 

approximated the same as the displacement field )(xu  and defined as 

bxNaxNuxNxu  )()()()( CTHSTD 
. (3.28) 

Using the Galerkin method, the equilibrium equation in Equation (3.1) can be obtained in the form of a 

weak form as 

0))((  dbσxu . (3.29) 

Being applied divergence theorem, imposed the natural boundary conditions and satisfied the traction 

free boundary condition on the surface of discontinuity, Equation (3.29) can be rewritten as 

 



 dddd

td
d

butunσuσu  : , (3.30) 

in which the symbol  represents the jump across the discontinuity due to the crack. More specifically it is the 

difference between the corresponding value at one crack face and the corresponding value at the other opposite 

crack face expressed as   . In Equation (3.30), the second integral term on the left hand side defined 

: Crack : Nodes in DISN̂ : Nodes in CTN̂
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on the domain d  can be removed from integral equation which imposes the traction free boundary condition 

( 0 d
nσ  on d ) and assigns the positive side and the negative side to d . As a result, Equation (3.30) can 

be written as 

    





  


d
d

d
d

dd nσunσu 
 

                  

0)(   







d
d

d
d

dd nσunσuu 
, 

(3.31) 

where 
d

n  is the unit normal vector to 
 , 

d

n  is the unity normal vector to 
  descried in Figure 3.3. 

The superscripts – above d  denotes one side of the discontinuity, the superscripts + above d  denotes the 

other side of the discontinuity, in which 
d

n  is represented as   
ddd

nnn . 

 Hence, Equation (3.30) can be obtained as 

 
 ddd

t

butuσu  : . (3.32) 

 Using the test function )(xu  in Equation (3.28) and the FE discretization, the following equation is 

obtained from Equation (3.32) 

 
 ddd

t

bNtNσB
TTT , (3.33) 

in which N is defined as ][ CTHSTD
NNNN   and B  is defined as ][ CTHSTD

BBBB  . We can 

obtain the system of linear equations 0FUK  from Equation (3.33), where U  is the vector of nodal DOFs 

defined as ][ TTT
bauU  , F  is the vector of external force and K  is the global stiffness matrix. Finally, 

the system of linear equations can be written as 
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(3.34) 

in which K  is the global stiffness matrix defined as 
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and F  is the vector of external force defined as 
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where STD
iN  is defined as IN i

STD
i N , H

iN  is defined as IxxN ))()(( ii
H
i HHN   and CT

iN  is defined  

as IxxN ))()(( ii
CT
i FFN    , in which I   is a square 22   identity matrix. We can define the matrices 

STD
B , 

H
B , and 
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B  for node i  using the displacement field for enrichment as 
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where the partial derivative of Heaviside functions in Equation (3.38) can be performed as 
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and the partial derivative of crack tip asymptotic functions in Equation (3.39) can be obtained as 
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where using a transformation between Cartesian coordinate defined in a local coordinate system ),( 21 xx  and the 
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polar coordinate xx  )(F  can be represented as 
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(3.42) 

in which 1xr    is defined as cos1  xr  , 2xr    is defined as sin2  xr  , 1x   is defined as 

 sin
1

1
r

x   and 2x  is defined as  cos
1

2
r

x  . Using the Equations (3.42), the local partial 

derivatives of ),( rF  in Equation (3.25) can be represented as 
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(3.43) 

The partial derivatives of crack tip asymptotic functions with respect to the Cartesian coordinate defined 

in a global coordinate system ),( yx  can be given by 
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(3.44) 

where   denotes the angle at crack tip with respect to the Cartesian coordinate defined in a global coordinate 

system described in Figure 3.6. 
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Figure 3.6 Global coordiate system and Local coordinate system at the crack tip 
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3.5 Numerical integration 

 

 

Figure 3.7 Numerical integraion for cut by crack element and crack tip element 

 

The elements cut by crack and the elements containing a crack tip must perform a special integral. 

Because the field of the element cut by crack can not be accurately integrated by Gauss quadrature, the element 

must be partitioned so that the discontinuous field is properly integrated into both fields. As shown in Figure 3.7, 

the element is divided into sub-triangles that depend on the crack path, and each triangle domain is subjected to 

integration using Gauss quadrature. 

 

3.6 Topological enrichment and geometrical enrichment 

 

The enrichment schemes commonly used in XFEM are classified into topological enrichment and 

geometrical enrichment. As shown in Figure 3.8 (a), the way topology enforcement is applied to elements with 

crack tips is called topological enrichment. A method called fixed enrichment area or geometrical enrichment, 

which improves the convergence of topological enrichment, was proposed by Laborde et al. in 2005 [13]. The 

method is to apply a crack tip enticement to nodes within a specific radius that is independent of the element mesh 

size around the crack tip as shown in Figure 3.8 (b). Using the geometric enrichment, the convergence rate with 

respect to the mesh refinement is considerably improved, but the condition number of global stiffness matrix is 

rapidly increased to make the global stiffness matrix an ill-conditioned matrix. 
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Figure 3.8 Two enrichment strategy: (a) topological enrichment, (b) geometrical enrichment 

 

 

  

: Heaviside enriched node

: Crack tip enriched node

(a) (b)
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Chapter 4. Polynomial enrichment 

 

In order to numerically analyze some objects with complex shapes, the finite element method can be 

effectively solved by using the concept of finite element. Because of these advantages as well as its broad 

applicability, the finite element method is one of the numerical method widely used in structural mechanics, fluid 

mechanics, electricity, nano-structures and multi-physics problems. However, mesh refinement is indispensable 

to obtain the desired solution accuracy when the object being analyzed has discontinuities, high gradients, or 

singularity. This mesh refinement requires considerable effort and in some cases requires a huge computational 

cost. 

To solve these problems, Babuška and Melenk [2] proposed a method of enriching the solution by 

adding a specific enrichment function to the standard finite element method. Belytschko and Black [7] and Moës 

et al. [11] included enrichment functions to represent crack discontinuity. In addition, a study on improving the 

FE solution by applying the interpolation cover function to the standard finite element method is presented by 

Kim and Bathe [25], Jeon et al. [26] and Kim et al. [27]. The enriched finite element method presented by Kim 

and Bathe [25] and Kim et al. [27] is reviewed below. Moreover, a approach of resolving linear dependency, which 

was a major problem in applying the finite element methods enriched by interpolation covers to 2D solid elements, 

was introduced briefly [27]. 

 

4.1 Basic concept of polynomial enrichment using interpolation covers 

 

The displacement interpolation of the 2D finite element enriched by the interpolation cover function on 

the cover region iC  (the union of elements sharing the node i shown in Figure 4.1) can be expressed as 

 )(~)( xuxu iiN , (4.1) 

in which iN  is the interpolation function and )(*
xui  is given by 

T]~~[~
iii vuu , (4.2) 

where iu~  and iv~  is the interpolation covers.  

The interpolation cover functions iu~  defined on the cover region iC  is written as 

iii uxpu ˆ)(ˆ~  , (4.3) 

where )(ˆ xpi  and iû  are a polynomial basis vector and the degree of freedom vectors for node i given by 
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in which u
iû  and v

iû  are the DOF vectors, which correspond to each basis for node i. ),( ii   is the coordinate 

variables calculated from node i (shown in Figure 4.2) represented by 

i
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in which p is the polynomial bases degree and i  is the characteristic element length, which is the largest length 

among lengths of elements sharing node i. 

 By separating the standard FE DOF term and the additional DOF term, the displacement interpolation 

in Equation (5.1) can be expressed as  

cuu   

               iiiiN cNu
~

, 
(4.10) 

where u  and c  are the standard nodal DOF vector and the additional nodal DOF vector given by 











i

i
i

n

n
N ~0

0~
~

, (4.11) 














v
i

u
i

i
c

c
c , (4.12) 

in which iN
~

 is the interpolation matrix, in~  is the components of the interpolation matrix u
ic  is the additional 

nodal DOF vector corresponding to displacement u and v
ic  is the additional nodal DOF vector corresponding to 

displacement v. 
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Figure 4.1 Descrition of cover enriched by interpolations: (a) usual bilinear interpolation function, 

(b) cover region iC  with node i. 

 

 

Figure 4.2 Nodal local coordiante systems ),( ii   and global coordiante systems ),( yx  
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][~
iiii N n . (4.13) 

 

In the case of 2p , in~  is obtained as 

][~ 22
iiiiiiii N n . (4.14) 

 

4.1.1 Resolving linear dependence (LD) problem 

 

When both the partition of unity function and the interpolation cover function are composed of 

polynomials, the linear dependence (LD) problem occurs in which the rank of the global stiffness matrix becomes 

insufficient even when the essential boundary conditions are appropriately applied and the solution can not be 

obtained. The LD problem was first observed by Babuška and Melenk in analyzing 1D problem [2]. Many 

researchers have made various attempts to solve the LD problem [8, 28-31]. Recently, research has been proposed 

to solve the LD problem and obtain a good solution by applying the piecewise linear function to the 2D 4-node 

quadrilateral element [27]. The polynomial enrichment technique proposed by Kim et al. [27] is applied in this 

paper. In this chapter, the method is reviewed. 

The new shape functions were proposed to resolve the LD problem of 4-node quadrilateral elements. 

The 4-node quadrilateral element is divided into four triangular sub-domains, and different shape functions are 

applied to each sub-domain as shown Figure 4.3 (a) and (b).  

For sub-domain 1, the new shape functions are obtained as 
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For sub-domain 2, the new shape functions are obtained as 
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For sub-domain 3, the new shape functions are obtained as 
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For sub-domain 4, the new shape functions are obtained as 
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Figure 4.3 Description of the sub-domains: (a), (b) The 4-node quadrilateral elements divided into 4 

triangular subdomains, (c) is the interpolation functions by piecewise linear shape functions. 

 

The LD problem can be resolved by substituting Equations (4.15), (4.16), (4.17) and (4.18) into the bilinear 

shape function in Equation (4.1). 

 

4.2 XFEM with polynomial enrichment 

 

In chapter 4.2, the proposed polynomial enhancement technique is applied to the XFEM to improve the 

XFEM solution. 

 

4.2.1 Formulation 

 

In order to apply the polynomial enhancement technique to XFEM, Equation (3.2) is modified as 
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where N̂  is the set of all nodal points, 
DISN̂  is the set of enriched nodes whose support is bisected by the crack, 

and 
CTN̂  is the set of nodes which include the crack tip in the support of their shape functions enriched by the 

asymptotic functions and 
POLN̂ is the set of nodes enriched by polynomial functions. In this relation, iu  are the 

unknown standard nodal DOF at 
thi  node, ja   are the unknown enriched nodal DOF associated with the 
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Heaviside enrichment function at node j , and 
kb  are the additional enriched nodal DOF associated with the 

asymptotic functions at node k , and lc  are the additional enriched nodal DOF associated with the polynomial 

enrichment functions at node l. lN
~

 is the interpolation matrix. lN
~

 and lc  are given by 


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(4.21) 

where ln~   is the components of the interpolation matrix and u
ic   are the additional enriched nodal DOF 

associated with the polynomial enrichment functions at node l corresponding to displacement u and v
ic  are the 

additional enriched nodal DOF associated with the polynomial enrichment functions at node l corresponding to 

displacement v. All shape functions are replaced by the shape functions given in Equation (4.15), (4.16), (4.17) 

and (4.18). except for the shape function corresponding to the standard DOF term. An example of applying 

polynomial enrichment to XFEM is depicted in Figure 4.4. (a) shows XFEM without polynomial enrichment, (b) 

shows XFEM with linear polynomial enrichment, and (c) shows XFEM with quadratic polynomial enrichment. 

As the order of polynomial enrichment increases, the number of DOF increases, but you can see that the stress 

jump is alleviated and the approximation is better. 

 

Figure 4.4 Descriptions of XFEM with polynomial enrichment: (a) XFEM without polynomial 

enrichment, (b) XFEM with linear polynomial enrichment, (c) XFEM with quadratic polynomial 

enrichment 

 

 

 

 

XFEM without P.E.

DOF : 577

XFEM with P.E. (p=1)

DOF : 1625

XFEM with P.E. (p=2)

DOF : 3197

(a) (b) (c)
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4.2.2 Numerical integration 

 

 

Figure 4.5 Integration schemes: (a) Integration of an element including crack tip used in XFEM, (b) 

Integration applied to polynomial enrichment technique, (c) Integration both techniques simultaneously 

 

In section 3.5, the elements with discontinuous fields explained that special integration must be 

performed. In order to apply the polynomial enrichment technique, it is necessary to divide the sub-domains and 

perform the integration of the respective sub-domains. Both integration strategies must be considered 

simultaneously. Figure 4.5 (a) shows the integration of the elements including the crack tip from the viewpoint of 

the standard XFEM, and (b) shows the integration of the elements in terms of the polynomial strengthening 

technique. In order to simultaneously consider these two integrals, four triangular subdomains are constructed 

based on the center of the element as shown in (c), and then the subdomains including the crack path are 

reconstructed in the subdomain dependent on the crack path. Finally, integration for each subdomain is performed. 

  

(a) (b) (c)
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Chapter 5. Adaptive local enrichment 

 

The adaptive mesh refinement technique improves the J-integrals to obtain the stress intensity factor 

numerically, but it may not be the most optimal refined mesh. Because the integration path is generally far from 

the crack tip, such a mesh refinement strategy may have little effect on the J-integral value. As a result, using the 

adaptive finite element method is strongly recommended to control the error of the J-integrals, i.e. the difference 

between the exact value and its approximation, and thus to obtain the optimal finite element mesh. 

However, we want to improve the quality of the finite element by local enrichment strategy without 

using a mesh refinement strategy to obtain a better solution. Therefore, the method used in the adaptive mesh 

refinement strategy can be applied similarly to the adaptive enrichment strategy. In this chapter, we will study a 

posteriori error estimator which is used for adaptive mesh refinement strategy and propose criteria for enrichment 

to obtain optimal solution. 

 

5.1 Error estimation 

 

The solution obtained with XFEM is affected by the discretization errors associated with the size of the 

elements, as in FEM. Since XFEM actually tends to use discretization with coarse meshes, a tool is necessary to 

quantitatively evaluate the quality of these meshes. As a result, technique to estimate errors is needed in the XFEM 

environment. 

 Estimating errors in numerical computation is as important and old as numerical computation. The first 

paper on error estimation was first presented by Richardson [32] and reported on practical computations using 

finite differences. An error estimation technique considering local residuals of the numerical solution in the 

environment of finite element analysis was first proposed by Babuška and Rheinboldt [33]. In order to locally 

predict errors that occur in the energy norm, residuals that occur in the element patches or residuals that occur in 

a single element are investigated. There are generally two objectives in the process of error estimation. The first 

is to determine the error of the mesh used in the finite element, and the second is to reduce the error to an acceptable 

value using adaptive mesh refinement strategy. 

The error estimation procedure can be generally classified into two categories: residue-based approach 

and recovery-based approach. Babuška and Rheinboldt [33] first proposed a residual-based method that takes into 

account the local residuals of the numerical solution. In order to estimate the error, the residuals in the patch of 

the element are calculated in terms of the energy norm. This approach has continued to be developed by other 

researchers. Among them, research by Ainsworth and Oden [34] was the most remarkable result. These residual-

based approaches had been considered as a reliable approach among researchers for many years. 
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A more effective alternative to this residual-based approach is presented by Zienkiewicz and Zhu [35]. 

This approach uses a recovery process for more accurate error estimation. Several recovery procedures have been 

developed, starting with the simplest form of averaging over the nodes. These recovery-based approaches have 

been continually evolved by other researchers, and several recovery procedures have been proposed and attracted 

much attention among researchers. The basic concept of this technology is that the approximation of the error is 

defined by the difference between the numerical solution and the solution restored by the restoration procedure. 

Therefore, this approach is simple and easily applicable. Zhu and Zhang showed that there is a corresponding 

recovery-based process for each residual-based estimator [36], as the estimator was found to be asymptotically 

exact if the recovery process itself is superconvergent [37]. However, because the residual-based estimator for the 

recovery-based process is not always present, the error estimate with the optimal performance is more likely to be 

provided by the recovery method. 

 

5.2 A posteriori error estimator 

 

A lot of error estimators have been represented in [38], and they can be divided into two categories 

according to the error estimation timing. A priori error estimation provides qualitative information on convergence 

rate according to degrees of freedom and is based on a priori knowledge of the characteristics of solutions. A 

posteriori error estimation is an approach to estimate errors using a solution obtained from numerical analysis, in 

addition to a priori knowledge of the solution. In this approach, a quantitatively accurate measurement of the error 

can be provided, but a priori estimation methods can not be applied. In this paper, we use the posteriori error 

estimator developed by Zienkiewicz and Zhu [35] in consideration of the adaptive h-refinement procedure. This 

error estimator is commonly used because it is reasonably accurate despite its simplicity. 

 

5.2.1 Zienkiewicz-Zhu error estimator 

 

The superconvergent patch recovery (SPR) based approach is one of the most effective technique and 

introduced by Zienkiewicz and Zhu [37, 39]. Superconvergent patch recovery (SPR) is a method for generating 

very accurate recovery values, which generally has a higher convergence speed than the original solution and 

provides the basis for error estimation. In order to obtain the accurate and continuous stress over the entire domain 

with the SPR method, the nodal stresses are recovered and those nodal values are interpolated using standard FE 

shape functions. Using a polynomial expansion for a patch of elements which are sharing the node and fitting the 

raw results obtained by FE procedure at sampling points from the patch with least square technique, the nodal 

stress is obtained.  
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Before continuing, we need to define what we mean by error. This is considered to be the difference 

between the approximate solution and the exact solution. In the viewpoint of displacement u , this idea can be 

applied and is represented as 

huue  , (5.1) 

where u  is the exact solution and hu  is the solution obtained by FE procedure. Focusing on the strain   or 

the stress   in a similar way, the error can be given as 

h e  

h e . 
(5.2) 

 For the problems of a linear elastic material, the error of energy norm is defined as  
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(5.3) 

in which e  is the error in Equation (5.1) and B  is the operator, which defines the strains as  

 B  

hh  B , 
(5.4) 

where C  denotes the elasticity matrix. And, the stresses is represented by 

 C  

hh  C , 
(5.5) 

in which an initial stress and strain are ignored to simplify the problems. 

 Using Equation (5.4) and (5.5), the error of energy norm in Equation (5.3) can be obtained as 
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 We replace    with an improved or smoothed value that is better than the value calculated by FE 

procedure because the exact solution is unknown. Hence, using Equation (5.6) the following equation can be 

2
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1T )ˆ()ˆ(ˆ
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 dΩee h
Ω

h  C , (5.7) 

in which ̂  is the improved stress value, h  is the stress value obtained by FE procedure and ê  denotes the 

estimated error of energy norm. We can obtain the improved values using the stress smoothing techniques, e.g., 
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nodal averaging approach [40], global smoothing technique [35, 41] and SPR technique [39]. How to improve 

stress values using SPR technology is explained in the next section. 

 And, the energy norm obtained by finite element method is given by 
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(5.8) 

The above norm is defined in the whole domain. However, in terms of the contribution of each element, 

the norm is written as 
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(5.9) 

where i is an element on the domain   and n is the total number of elements on the domain  . 
2

hU  is the 

energy norm on the domain  , 
2

ihU  is the energy norm of element i, 
2

ˆ


e  the estimated error on the domain 

 , 
2

ˆ
i

e  is the estimated error of element i. 

Using Equation (5.7), (5.8) and (5.9), the estimated relative error is defined as 
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5.3 Superconevergent Patch Recovery 

 

 

 

Figure 5.1 4-node elements belonging to the element patch   

 

A patch assembled around an internal vertex node is described in Figure 5.1. The figure shows rectangular 

elements with well defined superconvergent points.  

If we take the superconvergence of 
  at particular points k of each element, it is not difficult to calculate 

the ̂  that is superconvergent at every point in the element. This procedure is described in two dimensions as 

shown Figure 5.1, in which we must consider the internal patches (assembling all the elements at the internal 

node). 

The values of 
  are accurate with order p+1 at each superconvergent point. However, an approximation 

~  can be easily obtained by a polynomial of degree p with the same order as that occurring in the shape function 

for displacement. When we make this polynomial fits superconvergent points using the least squares method, the 

accuracy of polynomial is superconvergent everywhere. 

ii yx ap ),(~  , (5.11) 

where 

]1[),( pyyxyx p  

T
21 ][ mi aaa a

, 

(5.12) 

in which cxxx  , cyyy   where ),( cc yx  is the coordinates of the interior vertex node explaining the 

patch. 

: Nodal value defined from the patch

: Patch assembly point

: Sampling points for superconvergence

Element patch
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 Using the least square method, a functional with n sampling points is minimized for each element patch, 
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in which 
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),( kk yx  is the coordinates of the sampling superconvergent point k, the coefficient ia  is obtained by 

ii bAa
1

, (5.15) 

in which 






n

k

kk

1

T
ppA

 






n

k

kkiki yx

1

T ),(pb . 

(5.16) 

 Using ~  , it is possible to determine the superconvergent values of    at all nodes. For instance, 

components of the solution recovered at node a of the element patch are represented by 

iaaaaiai yxyx ap ),(),(~)(   . (5.17) 

Hence, on the assumption that the stresses recovered over the element are calculated by the same 

interpolation method as displacement interpolation, for recovery the nodal gradient value and the sampled stress, 

it is obtained as  

 Nˆ , (5.18) 

where    is the recovered stress at the node, N   is interpolation function and ̂   is the recovered stress 

interpolated by  . 

 

5.4 Criteria for enrichment 

 

 The Zienkiewicz-Zhu error estimator can be used to estimate the error of each element. However, when 

calculating the stress intensity factor using J-integral, only the elements within a certain domain around the crack 

tip directly affect the stress intensity factor. The enrichment of elements on the notch or fillet with a large stress 

gradient except around the crack tip does not directly affect the calculation of the stress intensity factor but 

increases the computational cost. Therefore, the error of only the elements belonging to the local domain around 
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the crack tip should be estimated. Equation (5.10) is rewritten as 
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in which i̂  is the relative error corresponding to element i, L  is the local domain around the crack tip as 

shown Figure 5.2, i is an element on the domain L , 
2

L
hU


 is the energy norm on the domain L , 

2

ihU  

is the energy norm of element i, 
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ˆ
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e
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 the estimated error on the domain L , 
2

ˆ
i

e  is the estimated error of 

element i. 

 

 

Figure 5.2 Local domain around the crack tip: (a) Local domain in crack geometry, (b) Local domian 

in mesh geometry 

 

In addition, if the domain of the asymptotic crack tip enticement is larger than the domain of the J-

integral, the solution becomes significantly unstable. Therefore, the size of the error estimation domain should be 

smaller than the J-integral domain, and only the elements on the domain L  around the crack tip should be 

applied locally when the enriched node is adaptively selected. The order of polynomial enrichment was only linear 

(p = 1) and quadratic (p = 2) because the computational cost from cubic (p = 3) was too huge. Since Heaviside 

enrichment is excluded from adaptive enrichment because it chooses according to the crack segments, only the 

polynomial enrichment with linear order and quadratic order and the asymptotic crack tip enrichment are 

considered as adaptive enrichment. Through several tests, the following criteria for enrichment are obtained as 

L L

(a) (b)
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in which L  is given by 
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where n is the total number of elements on the domain L , i̂  is the relative error corresponding to element i. 

 Examples of adaptive local enrichment is shown in Figure 5.3. 

 

 

Figure 5.3 Examples for adaptive local enrichment: (a) with coarse mesh, (b) with medium mesh, (c) 

with fine mesh 

 

: Crack tip enriched node

: 2nd order polynomial enriched node

: Heaviside enriched node

: 1st order polynomial enriched node

JR

CTR

ER

: Radius of J-integral domain

: Radius of crack tip enrichment domain

: Radius of local error estimation domain

(a) (b) (c)
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The finite element procedure with adaptive local enrichment was performed as shown in Figure 5.4. 

 

 

Figure 5.4 Finite element procedure for adaptive local enrichment 

  

Start

Input B.C. and load data

Select the H.E. Node & C.T.E. Node

with topological enrichment

Assemble stiffness matrix

Solve linear equation

Estimate error near the crack-tip region

Select H.E. node & C.T.E. node & P.E. node

Assemble stiffness matrix of additional DOF terms

Solve linear equation

Calculate SIF

End

: Heaviside enriched node

: Crack tip enriched node

: 1st order polynomial enriched node

: 2nd order polynomial enriched node

: Heaviside enriched node

: Crack tip enriched node

: 1st order polynomial enriched node

: 2nd order polynomial enriched node
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5.6 Convergence study 

 

In this chapter, the proposed method is verified by solving various numerical examples by applying the 

above conditions. In each case, the energy relative error and the stress intensity factor relative error with respect 

to DOFs is compared. 

The energy is written as 

dΩe
Ω

τε
T

. 
(5.22) 

The relative energy error is presented as 

ref
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e
e

ee
E


 , (5.23) 

where he  is the energy obtained from FE solution, refe  is the enegy obtained from FE solution using fine mesh 

and eE  is the relative energy error. 

 The relative stress intensity factor error is given by 

ref

href

K
K

KK
E


 , (5.24) 

where hK  is the stress intensity factor obtained from FE solution, refK  is the reference solution of the stress 

intensity factor and KE  is the relative stress intensity factor energy error. 

 

5.6.1 A single edge cracked plate under uniaxial tension 

 

A 2D single edge cracked plate under uniaxial tension shown in Figure 5.5 is considered as the first 

example. The height of the plate is 2h  , the width of the plate is 2w   and the length of initial crack is 

2wa  . The applied stress is 10  . This example is under plane strain condition. The Young’s modulus is 

100E , the Poisson ratio is 3.0  and The radius for J-integral is fixed 4.0JR . The proposed example is 

compared with the example applying geometrical enrichment for the three uniform rectangular mesh of 2111 , 

4121   and 8141  . Three examples with geometric enrichment radius 15.0CTR  , 2.0CTR   and 

25.0CTR  and an example applying the proposed method with an error estimation domain radius of 25.0ER  

are used. The reference solution of the stress intensity factor is given by Ewalds et al. [42]. 

 The result is given by Table 5.1 and Figure 5.6 and Figure 5.7. 
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Figure 5.5 Geometry of a single edge cracked plate under uniaxial tension 

 

Table 5.1 Results for the single edge cracked plate under uniaxial tension 

Mesh  DOF 100


ref

href

e

ee
 100



refI

hIrefI

K

KK
 

2111  

15.0CTR  637 3.48 3.98 

2.0CTR  669 3.23 3.70 

 729 2.54 2.96 

25.0ER  1065 1.36 1.65 

4121  

15.0CTR  2133 1.13 1.30 

2.0CTR  2289 0.89 1.05 

 2573 0.72 0.86 

25.0ER
 3357 0.43 0.55 

8141  

15.0CTR  7905 0.28 0.36 

2.0CTR  8601 0.21 0.29 

 9585 0.17 0.24 

25.0ER  11217 0.13 0.19 

x

y
0

a

w

h
R

25.0CTR

25.0CTR

25.0CTR
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Figure 5.6 Convergence curves of the relative energy error for the single edge cracked plate under 

uniaxial tension with the regular meshes 

 

 

Figure 5.7 Convergence curves of the relative stress intensity factor error for the single edge cracked 

plate under uniaxial tension with the regular meshes  
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5.6.2 A single edge cracked plate under bending loading 

 

A 2D single edge cracked plate under bending loading shown in Figure 5.8 is considered as the second 

example. The height of the plate is 12h , the width of the plate is 1w  and the length of initial crack is 

2wa  . The applied stress is 60  . This example is under plane strain condition. The Young’s modulus is 

1000E , the Poisson ratio is 3.0  and The radius for J-integral is fixed 4.0JR . The proposed example 

is compared with the example applying geometrical enrichment for the three uniform rectangular mesh of 

12111 , 14121  and 36131 . Three examples with geometric enrichment radius 15.0CTR , 2.0CTR  

and 25.0CTR   and an example applying the proposed method with an error estimation domain radius of 

25.0ER  are used. The reference solution of the stress intensity factor is given by Fett [43]. 

The result is given by Table 5.2 and Figure 5.9 and Figure 5.10. 

 

 

 

Figure 5.8 Geometry of a single edge cracked plate under bending loading 
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Table 5.2 Results for the single edge cracked plate under bending loading 

Mesh  DOF 100


ref

href

e

ee
 100



refI

hIrefI

K

KK
 

12111  

15.0CTR  3004 4.41 9.06 

2.0CTR  3036 4.15 8.09 

25.0CTR  3096 3.96 7.36 

25.0ER  3476 3.46 5.49 

24121  

15.0CTR  10932 1.17 2.35 

2.0CTR  11088 1.10 2.08 

25.0CTR  11340 1.04 1.89 

25.0ER  11812 0.95 1.55 

36131  

15.0CTR  23720 0.51 1.00 

2.0CTR  24164 0.47 0.86 

25.0CTR  24668 0.44 0.76 

25.0ER  25868 0.41 0.63 
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Figure 5.9 Convergence curves of the relative energy error for the single edge cracked plate under 

bending loading with the regular meshes 

 

 

Figure 5.10 Convergence curves of the relative stress intensity factor error for the single edge 

cracked plate under bending loading with the regular meshes  
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5.6.3 A single edge cracked plate under ending shearing 

 

A 2D single edge cracked plate under ending shearing shown in Figure 5.11 is considered as the third 

example. The height of the plate is 16h , the width of the plate is 7w  and the length of initial crack is 

2wa  . The applied stress is 10  . This example is under plane strain condition. The Young’s modulus is 

1000E , the Poisson ratio is 3.0  and The radius for J-integral is fixed 3JR . The proposed example is 

compared with the example applying geometrical enrichment for the three uniform rectangular mesh of 2311 , 

4723   and 9547  . Three examples with geometric enrichment radius 1CTR  , 5.1CTR   and 2CTR  

and an example applying the proposed method with an error estimation domain radius of 2ER  are used. The 

reference solution of the stress intensity factor is given by Wilson [44]. 

The result is given by Table 5.3 and Figure 5.12, Figure 5.13 and Figure 5.14. 

 

 

 

Figure 5.11 Geometry of a single edge cracked plate under ending shearing 
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Table 5.3 Results for the single edge cracked plate under ending shearing 

Mesh  DOF 100


ref

href

e

ee
 100



refI

hIrefI

K

KK
 100



refII

hIIrefII

K

KK
 

2311  

1CTR  604 4.55 6.56 2.24 

5.1CTR  696 3.17 4.33 1.64 

2CTR  820 2.52 3.34 1.30 

2ER  1246 1.53 1.37 0.64 

4723  

1CTR  2548 0.98 1.26 0.73 

5.1CTR  2828 0.75 0.90 0.58 

2CTR  3236 0.61 0.67 0.51 

2ER  3806 0.47 0.45 0.45 

9547  

1CTR  10180 0.23 0.20 0.40 

5.1CTR  11448 0.17 0.11 0.36 

2CTR  13100 0.14 0.06 0.34 

2ER  15868 0.11 0.01 0.32 
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Figure 5.12 Convergence curves of the relative energy error for the single edge cracked plate under 

ending shearing with the regular meshes 

 

 

Figure 5.13 Convergence curves of the relative mode-1 stress intensity factor error for the single edge 

cracked plate under ending shearing with the regular meshes  
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Figure 5.14 Convergence curves of the relative mode-2 stress intensity factor error for the single edge 

cracked plate under ending shearing with the regular meshes 
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Chapter 6. Conclusion 

 

The purpose of this paper is to apply the polynomial enhancement technique to XFEM to improve the 

solution without mesh refinement around the crack tips. In the case of the 2D quadrilateral element, the polynomial 

enrichment technique was difficult due to the linear dependence problem. Recently, a research that solves the 

linear dependence was proposed and applied to the standard XFEM. 

The proposed method can improve the solution without modifying the mesh information. However, the 

application of polynomial enrichment to nodes on the whole domain improve the solution results in enormous 

computational costs. Therefore, an adaptive enhancement concept is required, which estimates the error of each 

element through the Zienkiewicz-Zhu error estimator. 

However, in the case of J-integral, only the elements around the crack tip are used to obtain the stress 

intensity factor, and enrichment of other elements causes unnecessary cost. Therefore, a concept is introduced to 

determine the local domain around the crack tip and to estimate only the error of the element belonging to the 

local domain. 

In addition, error criteria is required for applying a crack tip enrichment, a first-order polynomial 

enrichment, and a second-order polynomial enrichment. In this study, the criteria of the adaptive local enrichment 

were presented using the average value for easy application in various cases. The proposed method and the XFEM 

were compared through several numerical examples and the efficiency was verified from the viewpoint of DOF. 
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