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초 록 

파괴 해석을 위한 다양한 수치적 방법들이 제안됐지만, 여러 문제점들로 인해 한계에 직면하였고, 

최근 페이즈 필드 모델이 새롭게 제시되었다. 그러나, 균열 선단 근처의 미세 격자로 인한 급격한 

자유도 증가와 뉴턴-랩슨 방법과 같은 반복적 해법으로 인해 높은 전산 비용을 요구한다. 다양한 

적응적 격자 세분화 기법들이 페이즈 필드 모델에 적용되었지만 전산 효율성 개선은 여전히 

해결해야 할 문제점으로 남아있다. 

 

본 학위 논문에서는 취성 파괴를 위한 페이즈 필드 모델의 전산 효율성을 향상시키기 위한 새로운 

수치적 방법을 제안한다. 먼저, 계산 시간을 줄이기 위해, 적응적 업데이트 기법을 제안한다. 

전체 영역은 균열 선단 주위의 영역과 나머지 영역으로 나눠진다. 균열 선단 주위의 영역의 

구조적 특성을 자주 업데이트하고 나머지 영역의 구조적 특성을 간간히 업데이트함으로써, 전산 

효율성을 개선시킨다. 추가적인 효율성 향상을 위해 변절점 유한 요소를 사용한 적응적 격자 

세분화가 적용된다. 제안된 방법은 다양한 수치 예제들을 통해 계산 비용이 크게 절감됨을 

보여준다. 

 

또한, 유령 절점 방법을 사용한 격자 조대화도 제안된다. 균열 선단이 이미 지나간 영역의 미세 

격자는 유령 절점 방법이 적용된 성긴 격자로 대체 되며, 이로 인해 자유도가 급격히 감소된다. 

여러 수치 예제들을 통하여 제안된 방법의 성능이 검증된다. 제안된 방법들은 페이즈 필드 모델을 

사용한 파괴 해석에 효과적으로 활용 될 것으로 기대한다. 

 

핵 심 낱 말  페이즈 필드 모델, 유한요소법, 취성 파괴, 균열 진전, 적응적 업데이트, 적응적 

격자 세분화, 변절점 유한 요소, 유령 절점 방법, 격자 조대화 

 

Abstract 

Various numerical methods for fracture analysis have been proposed, but they faced limitations due to several 

problems, and a new phase field model was recently proposed. However, it requires a high computational cost 

due to the rapid increase in degrees of freedom caused by the fine mesh near the crack tip and due to iterative 

solution procedure such as the Newton-Raphson method. Although various adaptive mesh refinement schemes 

have been applied to the phase field model, improvement of the computational efficiency still remains a problem 
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to be solved. 

 

In this dissertation, new numerical methods to improve the computational efficiency of the phase field model for 

brittle fracture are proposed. First, in order to reduce the computation time, an adaptive update scheme is 

proposed. The whole domain is divided into the domain around the crack tip and the rest domain. By frequently 

updating the structural properties of the domain around the crack tip and occasionally updating the structural 

properties of the remaining domain, the computational efficiency is improved. For further efficiency 

improvement, the adaptive mesh refinement scheme using variable-node finite elements is applied. The proposed 

method shows that the computational cost is greatly reduced through various numerical examples. 

 

In addition, mesh coarsening using the phantom-node method is also proposed. The fine mesh in the domain 

where the crack tip has already passed is replaced by the coarse mesh to which the phantom-node method is 

applied, which drastically reduces the degrees of freedom. The performance of the proposed method is verified 

through several numerical examples. It is expected that the proposed methods will be effectively utilized for 

fracture analysis using the phase field model. 

 

Keywords Phase field model, Finite element method, Brittle fracture, Crack propagation, Adaptive update, 

Adaptive mesh refinement, Variable-node finite element, Phantom-node method, Adaptive mesh coarsening 
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Chapter 1. Introduction 

 

1.1. Research background 

 

Fracture is one of the most important phenomena in solid and structural mechanics because it can lead to 

catastrophic failures. Understanding and analyzing fracture behaviors are fundamental to avoiding such failures. 

Griffith [1] and Irwin [2] played a leading role in understanding the fracture behavior of materials from an 

engineering point of view. They introduced a term called “energy release rate” to represent the fracture behavior 

in thermodynamic aspects; thus, Linear Elastic Fracture Mechanics (LEFM), the foundation of fracture mechanics, 

was born. 

 

In addition to the theoretical development of fracture mechanics, many researchers have tried to simulate fracture 

behaviors through numerical analysis. The main tool used for fracture analysis has been the finite element method 

(FEM) [3-13]. The finite element analysis of crack propagations requires re-meshing near the crack tip for the 

modeling of moving crack tips. This is a very tedious process with high computational cost. Alternative methods 

were developed to deal with discontinuities caused by cracks without re-meshing: the element free Galerkin 

method (EFGM) [14-16], the extended finite element method (XFEM) [17-19], the phantom node method [20, 

21], and various other methods [22, 23]. However, since explicitly tracking the crack surface is a very difficult 

task, there are still challenges in dealing with complex and arbitrary crack paths. 

 

The phase field model (PFM) based on the variational approach has been proposed [24-28]. Recently, it has been 

applied on problems of ductile fracture, [29] dynamic fracture [30] and so on [31, 32]. It is capable of handling 

complex fracture behaviors such as crack initiation and branching. Using a damage parameter as a nodal degree 

of freedom allows the model to easily handle complex crack behaviors without crack tracking algorithms. This is 

indeed the most advantageous feature of the phase field model. However, it requires an iterative procedure to 

solve nonlinear equations such as Newton-Raphson method, and mesh refinement to deal with high gradient 

values in the phase field transition zone, which largely increase the computational cost. 

 

To resolve this problem, various adaptive mesh refinement schemes have been successfully employed in the phase 

field model [33-47]. In the refinement schemes, displacement compatibility from coarse mesh to fine mesh should 

be satisfied. At non-matching mesh interface between coarse and fine meshes, the compatibility is enforced using 
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Nitsche's method [44, 46], the hybridizable discontinuous Galerkin method [45] and the global-local approach 

[47]. Also, mesh transitions can be implemented adopting layers of triangular and quadrilateral elements [36, 41-

43]. A multiscale approach could be useful [38-39]. 

 

 

1.2. Research objective 

 

In this dissertation, we focus on further improving the computational efficiency of the phase field model for brittle 

fracture. We propose the adaptive update scheme. The computational efficiency can be greatly improved without 

mesh refinement, and can be further improved when used in conjunction with the adaptive mesh refinement 

schemes. In this numerical scheme, the entire domain is divided into two domains: one near the crack tip and one 

far from the crack tip. Since structural properties such as stiffness, strain energy, and damage rarely vary in the 

domain far from the crack tip, those properties are occasionally updated in the iterative solution procedure. 

 

To maximize the computational efficiency, the local and adaptive mesh refinement schemes can be adopted 

together. The adaptive update scheme reduces computation time by 40% to 50% while maintaining the desired 

solution accuracy. To implement the adaptive mesh refinement scheme in this study, the use of variable-node 

elements [48, 49] is adopted for the mesh transition [50-55]. A fine mesh near the crack tip is directly connected 

to the coarse mesh far from the crack tip through only one layer of variable-node elements. The use of variable-

node elements is effective compared to other adaptive mesh refinement schemes in crack tip modeling [33-47]. 

We also introduce a methodology for the adaptive mesh refinement when the crack tip encounters a hole. 

 

In the following sections, the formulation of the phase field model is reviewed in brief. Then, the adaptive mesh 

refinement scheme using variable-node elements and the adaptive update scheme are presented. The effectiveness 

of the proposed numerical schemes is demonstrated through several numerical examples. Finally, conclusions are 

drawn. 

 

The paper including the works in Chapter 2, 3, 4 and 5 is accepted and will be appear in Ref. [48]. In this 

dissertation, the contents contained in Ref. [48] have been written with minor modifications. 
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Chapter 2. Phase field model 

 

In this section, we briefly review the formulation of the phase field model proposed by Miehe et al. [27] from the 

variational approach to numerical implementation. In the following sections, t  is a variable representing the 

incremental load step instead of the actual time generally used in dynamic analysis [4] because quasi-static 

analysis is considered in this study. 

 

2.1. Phase field approximation 

 

A linear elastic body of volume V  including a sharp crack surface Γ  is considered as shown in Fig. 2.1(a). In 

Fig. 2.1, dS  and 
fS  indicate the displacement and force boundaries, respectively. 

 

 

Fig. 2.1. Schematics of a linear elastic body Ω  including (a) a sharp crack surface , and (b) a diffusive crack 

surface 
0
( )l . 

 

The potential energy functional considering the fracture surface energy based on the Griffith’s theory [1] is given 

as 

( ,Γ) ( )
f

e c b s
V V S

dV G d dV dSu ε f u f u , (2.1) 

where u  is the displacement vector, e  denotes the elastic strain energy density, ( )ε ε u  is the small strain 

tensor and cG   denotes the critical energy release rate, bf   and sf   denote the externally applied body and 

surface force vectors, respectively. 

 

In Eq. (2.1), the elastic strain energy density function is expressed as 

(a) (b)

fS

dS

1

0

0l
Ω Ω

0
( )l

dS

fS
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2 21
( ) ( ) ( )

2
e tr trε ε ε ,  (2.2) 

in which  and  are Lamé constants. 

 

From the idea presented by Ambrosio and Tortorelli [57-58], the fracture surface energy term on the right-hand 

side in Eq. (2.1) is approximated by 

( , )c c
V

G d G dV . (2.3) 

 

In Eq. (2.3),  denotes the crack surface density function per unit volume 

2

0

0

1
( , )

2 2
l

l
,  (2.4) 

with 

x y z
x y z

e e e , 

where 0l   denotes the regularization parameter to control the width of crack diffusion with a diffusive crack 

surface 
0
( )l   and   is a damage parameter or phase field variable: a normalized value ranging from 0 

(undamaged) to 1 (fully cracked), see Fig. 2.1(b).  denotes the gradient of , and xe , 
ye  and ze  are 

the basis vectors of the Cartesian coordinate system. Fig. 2.2 shows the crack topologies with the distance from a 

crack surface ( x ) in the sharp crack model and the diffusive crack model. 

 

 

Fig. 2.2. Crack topologies in (a) the sharp crack model and (b) the diffusive crack model. 

 

The spectral decomposition of the strain tensor is performed [27] 

ε ε ε ,  (2.5) 

with 

(a) (b)

x x
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p p pε n n  and 
1

2
x x x , 

in which ε  and ε  denote the negative and positive components of the strain tensor, respectively, 
pn  and 

p
 denote the eigenvectors and eigenvalues of the strain tensor, respectively, and  denotes the Macaulay 

bracket operator. 

 

In addition to the decomposition of the strain tensor, the strain energy density function is also separated as 

( ) ( ) ( )e e eε ε ε ,  (2.6) 

with 

2 21
( ) tr( ) tr( )

2
e ε ε ε , 

where 
e

 and 
e

 are the negative and positive parts of the strain energy density function, respectively. 

 

Using Eqs. (2.3) and (2.4) in Eq. (2.1), the following equation is obtained 

2
2

0

0

1
( , ) [(1 ) ] ( )

2 2

( , )
f

e c
V V

b s
V S

k dV G l dV
l

dV dS

ε

f f uu

u

u

,  (2.7) 

in which 2(1 ) k  denotes the quadratic function to control the strain energy degradation and k  is a very 

small parameter to prevent numerical singularities (
710k  is used in this study). 

 

Strong form governing equations are given by 

0bσ f ,  (2.8) 

2 ( )
[(1 ) ] ek

ε
σ

ε
,  (2.9) 

0

0

2 2c

e c e

G
G l

l
,  (2.10) 

du u  on dS ,  (2.11) 

sσ n f  on S f
,  (2.12) 

0n  on S ,  (2.13) 

in which σ   is the stress tensor, n   is the unit normal vector outward from the body, du   is the prescribed 

displacement, and 
d fS S S . 
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To consider the irreversibility of crack growth [59], the positive part of the strain energy density function 
e

 in 

Eq. (2.10) is replaced as 

[0, ]
( , ) max ( ( , ))e

s t
H t sx ε x ,  (2.14) 

in which t  denotes time, s is time ranging from 0 to t , and ( , )H tx  denotes the local history field. 

 

In Eqs. (2.9), (2.10) and (2.14) ,the hybrid formulation proposed by Ambati et al. [60] is adopted in this study (see 

Appendix A). Various formulations exist [27, 28, 61], and more advanced formulations have been recently 

proposed [62-69]. Note that the numerical schemes presented in the following sections can be used for other phase 

field formulations. 

 

 

2.2. Finite element discretization 

 

The first variation of Eq. (2.5) with Eqs. (2.8), (2.10) and (2.14) results in the following weak form governing 

equations 

: 0
f

b s
V V S

dV dV dSσ ε f u f u ,  (2.15) 

0

0

2(1 ) 0c

c
V V

G
H dV G l dV

l
.  (2.16) 

 

The displacement field of a 2D q-node finite element m is interpolated by 

( ) ( ) ˆm m

uu H u ,  (2.17) 

with 

1( )

1

qm

u

q

h h

h h

0
H

0
 and 

T

1 1
ˆ

q qu u v vu , 

where ih  is the shape function at node i , û  denotes the element nodal displacement vector, and iu  and iv  

denote displacements in the x- and y-directions at node i , respectively. 

 

The damage field of the finite element m is also interpolated by 
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( ) ( ) ˆm m
H Φ ,  (2.18) 

with 

( )

1

m

qh hH  and 
T

1
ˆ

qΦ , 

in which Φ̂  is the nodal damage parameter vector and i  is the nodal damage parameter at node i . 

 

The interpolation of the local history field is given by 

( ) ( ) ˆm m

hH H Η ,  (2.19) 

with 

( )

1

m

h qh hH  and 
T

1
ˆ

qH HΗ , 

where Ĥ  is the nodal local history vector and iH  denotes the local history at node i . 

 

Applying the strain-displacement relation to Eq. (2.17), the strain vector for the element m  is written as 

( ) ( ) ˆm m

uε B u ,  (2.20) 

with 

( )

( ) ( )

( )2

m

xx

m m

yy

m

xy

ε ,  

1

( ) 1

1 1

q

qm

u

q q

hh

x x

hh

y y

h hh h

y y x x

0

B 0 .  (2.21) 

Note that 
( )m
ε  is small deformation strain tensor and linear elastic material is considered in this study. 

 

The damage gradient field of the element m  is obtained as 

( ) ( ) ˆm m
B Φ ,  (2.22) 

with 

1

( )

1

q

m

q

hh

x x

hh

y y

B .  (2.23) 

The damage gradient field of the element m  ( ( )m ) denotes the gradient of the damage field of the element 

m  ( ( )m ) in x-, and y-directions. 
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Substituting Eqs. (2.17), (2.18) and (2.20) into Eq. (2.15), the following incremental equilibrium equation is 

obtained for the displacement field at time t  

( ) ( ) ( )t n n t t n

u uK U R F ,  (2.24) 

with 

( ) ( )( )

1

t n e t m n

u m uK KA , ( )

1

t e t m

mR RA  and ( ) ( )( )

1

t n e t m n

u m uF FA , 

( )

( )( ) ( ) 2 ( ) T ( ) ( ) ( )[(1 ) ]( )
m

t m n t m m m m m

u u u
V

k dVK B C B , 

( ) ( )

( ) ( ) T ( ) ( ) ( ) T ( ) ( )( ) ( )
m m

f

t m m t m m m t m m

u b u s
V S

dV dSR H f H f , 

( )

( )( ) ( ) 2 ( ) T ( )( ) ( )[(1 ) ]( )
m

t m n t m m t m n m

u u
V

k dVF B σ , 

T
( )( ) ( )( ) ( )( ) ( )( )t m n t m n t m n t m n

xx yy xyσ , 

in which 
1

e

mA   is the FE assembly operator, e   denotes the number of finite elements, n   denotes the 

iteration number, 
( )n

U  is the incremental displacement vector, ( )t n

uK  denotes the tangential stiffness matrix, 

t
R   is the external force vector, ( )t n

uF   denotes the internal force vector, ( )( )t m n

uK   is the tangential stiffness 

matrix of the element m , 
( )m

C  is the material law matrix for the element m , ( )t m
R  is the external force vector 

for the element m , ( )t m

bf  and ( )t m

sf  are the externally applied body and surface force vectors for the element 

m , respectively, ( )( )t m n

uF  is the internal force vector for the element m , and 
( )( )t m n
σ  denotes the stress vector 

for the element m . 

 

Using Eqs. (2.18), (2.19) and (2.22) in Eq. (2.16), the incremental equilibrium equation for the phase field at time 

t  is obtained as  

( ) ( ) ( )t n n t n
K Φ F ,  (2.25) 

with 

( ) ( )( )

1

t n e t m n

mK KA  and ( ) ( )( )

1

t n e t m n

mF FA , 

( )

( )( ) ( ) T ( ) ( ) ( ) T ( ) ( )

0

0

( ) 2 ( )
m

t m n m m t m m m mc

c
V

G
G l H dV

l
K B B H H , 

( )

( )

( )( ) ( ) ( ) T ( )

( ) T ( )( ) ( ) ( ) T ( )( ) ( )

0

0

2 ( )

( ) 2 ( )

m

m

t m n t m m m

V

m t m n t m m t m n mc

c
V

H dV

G
G l H dV

l

F H

B H

, 

where ( )n
Φ  is the incremental damage vector, ( )t n

K  denotes the tangential stiffness matrix for the phase field, 
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( )t n
F  denotes the internal force vector for the phase field, ( )( )t m n

K  denotes the tangential stiffness matrix of the 

element m  for the phase field, ( )( )t m n
F  denotes the internal force vector for the element m  for the phase field, 

( )t mH  is the local history field of the element m , and ( )( )t m n  is the damage field of the element m . 

 

To solve the incremental equilibrium equations in Eqs. (2.24) and (2.25), the standard full Newton-Raphson 

method is employed. The iteration continues until the following convergence criteria are satisfied 

( )

2

( )

1 2

n

un
k

k

U

U

 and 

( )

2

( )

1 2

n

n
k

k

Φ

Φ

,  (2.26) 

in which u  and  are the error tolerances for the displacement and phase fields, respectively. 

 

The whole numerical procedure employed in this study for the phase field model is presented in Fig. 2.3. The 

incremental load step t  is 0t , 1, 2,  with 1t  in the load incremental loop. Force control is applied 

by 

0( )t tR R ,  (2.27) 

in which ( )t  denotes the load parameter function for force control, and 0
R  is the external force vector at the 

final load step. 

 

Imposing the prescribed displacement at each load step, displacement control is applied by 

0( )t tU U ,  (2.28) 

where 
t
U   is the prescribed displacement vector at load step t  , ( )t   is the load parameter function for 

displacement control and 
0
U   is the prescribed displacement vector at the final load step. Note that only 

displacement control is considered in this study. 
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Fig. 2.3. Numerical procedure for the phase field model. 
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Chapter 3. Domain decomposition 

 

To apply the adaptive update and adaptive mesh refinement schemes, the entire domain should be decomposed 

into several domains. The domain decomposition method is presented in this section. 

 

Let us consider the domain of the crack propagation path (Ωt

cpp
) at time t , the crack tip domain (Ωt

ct
) at time t , 

and the near-tip domain (Ωt

nt
) at time t  as shown in Fig. 3.1(a). When the three domains at time t  are given, 

we search the three domains at time t t . The searching procedure is presented in this section. 

 

3.1. Crack tip domain 

 

The crack tip domain Ωt t

ct
 is defined as a region belonging to Ωt

nt
 and consisting of elements whose one or 

more nodal damage parameters are less than c  at time t  and greater than c  at time t t , see Figs. 3.1(a) 

and (b). The condition to define Ωt t

ct
 is expressed as 

Ω { | Ω ,  , }t t t t t t

ct i i nt i c i cx x ,  (3.1) 

in which ix  denotes the position vector of node i , t

i
 and t t

i
 are the damage parameters of node i  at 

time t  and t t , respectively, and c  denotes the critical value of the damage parameter. 

 

 

3.2. Domain of crack propagation path 

 

The domain of crack propagation path Ωt t

cpp  is a region where the crack tip has already passed. This domain is 

defined as a region not belonging to Ωt t

ct
  and consisting of elements whose one or more nodal damage 

parameters are greater than c  at time t t , see Fig. 3.1(b). The condition to define Ωt t

cpp  is expressed as 

Ω { | Ω , }t t t t t t

cpp i i ct i cx x .  (3.2) 
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3.3. Near-tip domain 

 

The near-tip domain Ωt t

nt
 is defined as a region consisting of elements within a shorter distance than cR  from 

all the nodal positions belonging to Ωt t

ct
, see Fig. 3.1(b). The condition to define Ωt t

nt
 is expressed as 

Ω { | , Ω }t t t t

nt i i c c c ctRx x x x ,  (3.3) 

where cx  is the position vector of a node belonging to Ωt t

ct
. 

 

 

Fig. 3.1. Identification of the mesh refinement domains (a) at time t and (b) at time t t . The crack tip domain 

is colored yellow, the domain of the crack propagation path is colored red, and the near-tip domain is colored 

green. 

 

When the crack does not propagate, we use Ω Ωt t t

ct ct
. The identification of the mesh refinement domains is 

performed at each load step. The coarse meshes in Ωt t

ct
, Ωt t

cpp  and Ωt t

nt
 are adaptively converted into fine 

meshes. 

Ωt t

cpp

Ωt

cpp

cR

Ωt

nt

Ωt

ct Ωt t

ct
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Ωt t
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nt

cx

(a)

(b)



- 13 - 

Chapter 4. Adaptive mesh refinement 

 

Recently, several adaptive mesh refinement schemes were proposed to improve the computational efficiency of 

the phase field model [33-47]. We also employ an adaptive mesh refinement scheme using variable-node elements, 

which is different from the schemes previously proposed. In this section, we explain the adaptive mesh refinement 

scheme utilized in this study. 

 

4.1. Variable-node elements 

 

In order to implement the adaptive mesh refinement scheme, variable-node elements are employed in transient 

regions where mesh density varies. Their shape functions are obtained using the moving least square (MLS) (see 

Refs. [51-56] for detailed derivations). To examine the performance of variable-node elements, the patch test is 

performed (see Appendix B). It is shown that variable-node elements passes the patch test. A 4-node element in a 

coarse mesh can be connected to eight 4-node elements in a fine mesh through element edges. For this connection, 

three variable-node elements are employed in this study: 11-node elements with 8 sub-domains, 18-node elements 

with 64 sub-domains, and 25-node elements with 64 sub-domains as described in Fig. 4.1. To perform numerical 

integration, the 2 2 Gauss quadrature is adopted in each sub-domain. The mesh connection between the coarse 

and fine meshes is illustrated in Fig. 4.2. 

 

 

Fig. 4.1. Examples of variable-node elements: (a) 11-node element, (b) 18-node element, and (c) 25-node element. 

 

r

s

r

s

r

s

(a) (b) (c)
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Fig. 4.2. Use of variable-node elements to connect the coarse and fine meshes. 

 

 

4.2. Mesh connection 

 

To apply the adaptive mesh refinement, it is necessary to identify the mesh refinement domains. The domain of 

the whole body Ωt  at time t  is divided into the coarse mesh domain (Ωt

cm
), the fine mesh domain (Ω t

fm
) and 

the transient mesh domain (Ωt

tm
) between them as shown in Fig. 4.3. 

 

 

Fig. 4.3. Mesh geometry and domain Ωt  divided into Ωt

cm
, Ω t

fm  and Ωt

tm
. 
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fm t

Ω  : Transient mesh domain at time t

tm t
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4.3. Adaptive mesh refinement during crack propagation 

 

The coarse meshes in Ωt t

ct
, Ωt t

cpp
 and Ωt t

nt
 are adaptively converted into fine meshes, as shown in Fig. 4.4. 

Note that the fine meshes away from Ωt t

ct
, Ωt t

cpp
 and Ωt t

nt
 are also adaptively recovered into coarse meshes. 

When the coarse mesh is converted into the transient or fine mesh, the displacement, damage parameter and local 

history fields of additional nodes are mapped utilizing nodal displacements, damage parameters and local history 

fields of the coarse mesh. 

 

 

Fig. 4.4. Mesh geometry of adaptive mesh refinement (a) at time t and (b) at time t t . The crack tip domain 

is colored yellow, the domain of the crack propagation path is colored red, and the near-tip domain is colored 

green. 
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4.4. Hole boundary handling procedure 

 

When the crack tip encounters a hole or void during the simulation, it is not easy to predict crack propagation. 

Thus, we introduce a methodology for the adaptive mesh refinement in case that the crack tip encounters a hole. 

If there is a hole boundary h  in the body as shown in Fig. 4.5(a), the domain of elements adjacent to h  are 

defined as Ωh  described in Fig. 4.5(b). When the near-tip domain Ωt

nt
 penetrates into the hole domain Ωh  as 

depicted in Fig. 4.5(b), Ωh   is added into Ωt

nt
  to consider Ωh   as a region where the crack propagation is 

expected. The coarse meshes on Ωh  are converted into fine meshes, as shown in Fig. 4.5(c). When the near-tip 

domain Ωt t

nt
 leaves the domain Ωh , the meshes on Ωh  are recovered into the coarse meshes for improving 

the computational efficiency, as illustrated in Fig. 4.5(d). 

 

Fig. 4.5. Schematics of the hole boundary handling procedure: (a) a domain Ω  with a hole boundary h , (b) 

mesh geometry when Ωt

nt
 penetrates into Ωh , (c) mesh geometry at time t , and (d) mesh geometry at time 

t t . 
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Chapter 5. Adaptive update 

 

5.1. Motivation 

 

To obtain the solution of the phase field model, the incremental equilibrium equations for the displacement and 

phase fields in Eqs. (2.24) and (2.25) are iteratively solved, where the tangential stiffness matrices, displacement 

vector, phase field vector, internal force vectors, local history field and so on are updated. 

 

During the simulation, the structural properties used in the computation such as stiffness, strain energy and damage 

change rapidly only in the near-tip domain Ωt

nt
, shown in Fig. 5.1. However, such properties rarely vary in the 

domain far from the crack tip (Ω t

ft
), as seen in Fig. 5.1. The key idea of this study is that the computational 

efficiency of the phase field model can be improved by avoiding computations related with the structural 

properties in Ω t

ft . We call this the adaptive update scheme. 

 

 

Fig. 5.1. Near-tip domain Ωt

nt
 and domain far from the crack tip Ω t

ft . While the structural properties in Ωt

nt
 

change rapidly during the simulation, those in Ω t

ft  rarely vary. 

 

 

5.2. Key idea 

 

To apply the adaptive update scheme in the displacement and phase fields equilibrium procedures, the global 

tangential stiffness matrices for the displacement and phase fields in Eqs. (2.24) and (2.25) are divided as 

Ωt

nt

Ωt

ftΩt

ft

Ωt

nt
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( ) ( ) ( )t n t nt n t ft n

u u uK K K  and ( ) ( ) ( )t n t nt n t ft n
K K K ,  (5.1) 

with 

( ) ( )( )

1

ntt nt n e t m n

u m uK KA ,  
( ) ( )( )

1

ftt ft n e t m n

u m uK KA , 

( ) ( )( )

1

ntt nt n e t m n

mK KA ,  ( ) ( )( )

1

ftt ft n e t m n

mK KA , 

in which nte   and fte   are the number of elements within Ωnt   and Ω ft
 , respectively, ( )t nt n

uK   and ( )t ft n

uK  

denote the tangential stiffness matrices for the displacement field of elements in Ωnt  and Ω ft
, respectively, and 

( )t nt n
K   and ( )t ft n

K   are the tangential stiffness matrices for the phase field of elements in Ωnt   and Ω ft
 , 

respectively. Note that in actual computations all matrices in Eq. (5.1) are stored in sparse matrix form to save 

memory space. 

 

In the standard numerical procedure for the phase field model as shown in Fig. 2.3, ( )t n

uK  and ( )t n
K  are updated 

at every load step ( 0t  , 1, 2,  ). However, in the adaptive update scheme, ( )t ft n

uK   and ( )t ft n
K   are 

occasionally updated, while ( )t nt n

uK  and ( )t nt n
K  are updated at every load step ( 0t , 1, 2, ). ( )t ft n

uK  and 

( )t ft n
K  are adaptively updated at specific load steps satisfying the following criteria 

Ω

Ω

max( )

max( )

k k
i ct

u

t t
i ct

t
k

i

k t

t

i

,  (5.2) 

in which ut  denotes the initial update load step and  is the update parameter. After the criteria in Eq. (5.2) is 

satisfied, ut  is set to the next load step. Note that 10  was used in this study (see Appendix C). The stiffness 

update is additionally performed when the crack propagates (Ω Ωt t t

ct ct
). 

 

For the history update procedure in Eq. (2.14), the adaptive update scheme is also considered in the same manner. 

The local history ( )t mH  of elements in Ω ft
 is adaptively updated when the criteria in Eq. (5.2) is satisfied, and 

also when the crack propagates (Ω Ωt t t

ct ct
). However, ( )t mH  of the elements in Ωnt  is updated at every load 

step ( 0t , 1, 2, ). 
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5.3. Numerical examples 

 

In this section, we investigate the performance of the adaptive update scheme through various numerical examples: 

the single-edge notched tension problem, the single-edge notched shear problem, the symmetric three-point 

bending problem, the notched plate with three holes, the single-edge notched shear plate with diamond-shaped 

holes, the L-shaped panel, and the single-edged notched branching problem. 

 

In the local mesh refinement scheme, a fine mesh is employed in the domain where crack propagation is expected, 

and a coarse mesh is used in the remaining domain. Also, re-meshing is not performed during simulation. In the 

adaptive mesh refinement scheme, a coarse mesh is used in the entire domain at the beginning of the simulation. 

During the simulation, the coarse mesh in the domain where a crack propagates is adaptively converted into a fine 

mesh using variable-node elements. 

 

To show the performance of the adaptive update scheme combined with the local and adaptive mesh refinement 

schemes, four cases are considered: the local mesh refinement scheme by itself and, with the adaptive update 

scheme, and the adaptive mesh refinement scheme by itself, and with the adaptive update scheme. 

 

In all the numerical examples, the dimensions shown in the figures are in mm. We use 4-node quadrilateral element 

with unit thickness. The plane strain condition is considered. The convergence criterions u  and  are 
510 . 

The critical damage parameter is taken as 0.5c . 

 

The phase field model do not require additional criteria for when/where cracks initiate, grow, and how much and 

in what direction they propagate. Therefore, the phase field model is basically capable of analyzing even when 

pre-crack does not exist. In that case, in order to catch crack initiation early and define the domain of crack 

initiation as a refinement domain, the critical damage parameter is considered as 0.1c   until the crack 

propagates (see Appendix D). After identifying the domain of crack initiation, the critical damage parameter is 

taken as 0.5c . 
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To ensure the solution accuracy, it is necessary to satisfy the condition of the element characteristic length 

( e el A   with an element area eA  ) that is smaller than half of the regularization parameter in the crack 

propagation domain, which is, 00.5el l   [28]. For the adaptive mesh refinement scheme, the element 

characteristic length of the initial mesh geometry is taken as 04el l . The numerical procedure was implemented 

in MATLAB 2017a and the computation was performed on a PC with an Intel(R) Core(TM) i7-7700 CPU @ 

3.60GHz and 64GB RAM. 

 

5.3.1. Single-edge notched tension problem 

 

Let us consider a square plate including a single-edge crack as described in Fig. 5.2(a) [27, 39, 43, 48]. The plate 

is subjected to a prescribed vertical displacement along the top edge, and the bottom edge of the plate is fixed. 

Young’s modulus, Poisson’s ratio, and the critical energy release rate are given by 210E GPa, 0.3v , and 

32.7 10cG  kN/mm, respectively. The regularization parameter is 0 0.0075l  mm. The radius cR   to 

determine the near-tip domain is 0.04 mm. 

 

We use the mesh geometry ( 21791  elements) in Fig. 5.2(b) for the local mesh refinement scheme, and the regular 

mesh of 50 50   elements in Fig. 5.2(c) is used for the adaptive mesh refinement scheme. The prescribed 

displacement  increases up to 0.0063 mm for displacement control. The number of the total incremental load 

step is 1800 and ( )t  is given in Fig. 5.2(d). 
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Fig. 5.2. Single-edge notched tension problem: (a) geometry and boundary conditions, (b) mesh used for the local 

mesh refinement scheme, (c) initial mesh used for the adaptive mesh refinement scheme, and (d) load history 

curve. 

 

When the adaptive mesh refinement scheme is applied, the changes in mesh geometry and crack pattern during 

crack propagation are illustrated in Fig. 5.2. For the four analysis cases, the load-displacement curves are plotted 

in Fig 5.3(a). In the curves, the load is the total reaction force in the y-direction along the top edge. The curves are 

also compared with those of Miehe et al. [27], Patil et al. [39], and Tian et al. [43], see Fig. 5.4(b). Table 5.1 and 

Table 5.2 show the specific computation times corresponding to the four cases. It is observed that the adaptive 

update scheme significantly reduces the solution time with almost no change in solutions. As expected, the 

adaptive mesh refinement scheme is much more computationally effective than the local mesh refinement scheme. 

Load steps

(a)

(c)

x

y

0.5mm 0.5mm

0.5mm

0.5mm

(b)
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Fig. 5.3. Mesh geometries and crack patterns for the single-edge notched tension problem when (a) 0.005399

mm (3452 nodes and 3256 elements), (b) 0.005549 mm (4103 nodes and 3886 elements), and (c) 

0.005859 mm (5699 nodes and 5398 elements). 

 

(a) (b) (c)
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Fig. 5.4. Load-displacement curves on the single-edge notched tension problem: (a) when the adaptive update 

scheme is used and when it is not used, and (b) when compared with previous results. 

  

(b)

(a)
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Table 5.1. Specific computation times required for the single-edge notched tension problem in Fig. 5.2 for the 

local mesh refinement scheme. 

Numerical schemes applied Items 
Computation time 

[sec] Ratio [%] 

Local mesh refinement History field update 6863.18 21.36 

 Stiffness construction 22250.76 69.23 

 Equation solving 2928.56 9.11 

 Etc 97.00 0.30 

 Total 32139.50 100.00 

Local mesh refinement History field update 2132.38 6.01 

+ Adaptive update Stiffness construction 16034.04 45.12 

 Equation solving 4535.24 12.76 

 Etc 364.32 1.02 

 Total 23065.98 64.91 

 

 

Table 5.2. Specific computation times required for the single-edge notched tension problem in Fig. 5.2 for the 

adaptive mesh refinement scheme. 

Numerical schemes applied Items 
Computation time 

[sec] Ratio [%] 

Adaptive mesh refinement Mesh refinement 25.99 0.54 

 History field update 1025.52 21.24 

 Stiffness construction 3504.25 72.59 

 Equation solving 252.97 5.24 

 Etc 18.68 0.39 

 Total 4827.41 100.00 

Adaptive mesh refinement Mesh refinement 19.68 0.41 

+ Adaptive update History field update 154.94 3.21 

 Stiffness construction 1886.50 39.08 

 Equation solving 343.08 7.11 

 Etc 15.83 0.32 

 Total 2420.03 50.13 
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5.3.2. Single-edge notched shear problem 

 

Here, a square plate with a single-edge crack is considered as illustrated in Fig. 5.5(a) [27, 30, 39, 42, 43, 48]. A 

horizontal displacement is uniformly applied along the top edge of the plate, and the bottom edge of the plate is 

fixed. Young’s modulus, Poisson’s ratio, and the critical energy release rate are given by 210E GPa, 0.3v , 

and 32.7 10cG  kN/mm, respectively. The regularization parameter is 0 0.0075l  mm. The radius to 

determine the near-tip domain ( cR ) is 0.04 mm. 

 

The mesh geometry ( 22413  elements) shown in Fig. 5.5(b) is used for the local mesh refinement scheme, and 

the regular mesh of 50 50  elements used for the adaptive mesh refinement scheme is shown in Fig. 5.5(c). The 

prescribed displacement  is applied until 0.015mm, the number of the total incremental load step is 1500, and 

( )t  increases uniformly. 

 

 

Fig. 5.5. Single-edge notched shear problem: (a) geometry and boundary conditions, (b) mesh used for the local 

mesh refinement scheme, and (c) initial mesh used for the adaptive mesh refinement scheme. 

 

When the adaptive mesh refinement scheme is adopted, the mesh geometries and crack patterns formed during 

crack propagation are described in Fig. 5.6. Fig. 5.7(a) shows the load-displacement curves obtained for the four 

analysis cases, in which the load is the total reaction force in the x-direction along the top edge. Fig. 5.7(b) shows 

the curves by Miehe et al. [27], Patil et al. [39] and Borden et al. [30]. The computation times for the four analysis 

cases are listed in Table 5.3. When the adaptive update scheme is employed, the computation time is reduced by 

about 40% to 50% but there is almost no change in solutions. 

 

0.5mm

0.5mm
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y
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Fig. 5.6. Mesh geometries and crack patterns for the single-edge notched shear problem when (a) 0.00869

mm (3578 nodes and 3382 elements), (b) 0.01129  mm (4838 nodes and 4579 elements) and (c) 

0.01299 mm (7225 nodes and 6847 elements). 

 

(a) (b) (c)
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Fig. 5.7. Load-displacement curves on the single-edge notched shear problem: (a) when the adaptive update 

scheme is used and when it is not used, and (b) when compared with previous results. 

  

(a)

(b)(b)
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Table 5.3. Computation times required for the single-edge notched shear problem in Fig. 5.5. 

Numerical schemes applied 
Computation time 

[sec] Ratio [%] 

Local mesh refinement 25661.54 100.00 

Local mesh refinement + Adaptive update 17699.75 68.97 

Adaptive mesh refinement 3572.66 100.00 

Adaptive mesh refinement + Adaptive update 2037.74 57.04 

 

We additionally compare the computational efficiency of the proposed schemes with previous numerical results 

presented in Refs. [39, 42, 43]. Two analysis cases are considered using uniform N N meshes: when no adaptive 

scheme is employed and when adaptive schemes are adopted. Computation time ratios between both cases are 

shown in Table 5.4 and Fig. 5.8. The computation times measured without adaptive scheme are considered 100%. 

Note that initial meshes are provided in the table when adaptive schemes are used. 

 

Table 5.4. Computation time ratios for the single-edge notched shear problem in Fig. 5.5. 

 No adaptive scheme used  
Adaptive schemes 

used 
 

 Number of elements (N)  Number of elements  
Computation time 

ratio [%] 

Patil et al. [39] 62500 (250)  2450 73.38 

Hirshikesh et al. [42] 20164 (142)  1060 35.83 

Tian et al. [43] 78400 (280)  1225 6.02 

Adaptive mesh refinement 

10000 (100)  2500 31.28 

40000 (200)  2500 7.77 

90000 (300)  2500 3.37 

Adaptive mesh refinement 

+ Adaptive udpate 

10000 (100)  2500 17.84 

40000 (200)  2500 4.43 

90000 (300)  2500 1.92 
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Fig. 5.8. Computational efficiency curves for the single-edge notched shear problem in Fig. 5.5. 

 

5.3.3. Symmetric three-point bending problem 

 

The third problem is a symmetric three-point bending test on a notched specimen [27, 41, 48, 60]. The geometry 

and boundary conditions are depicted in Fig. 5.9(a). The prescribed displacement  is applied at point A. Lamé’s 

constants are 12.0 GPa and 8.0 GPa, and the critical energy release rate is 30.5 10cG kN/mm. The 

regularization parameter is 0 0.03l mm, and the radius of the near-tip domain cR  is 0.2 mm. 

 

We consider a mesh of 9127  elements in Fig. 5.9(b) for the local mesh refinement scheme, and a mesh of 1560  

elements in Fig. 5.9(c) for the adaptive mesh refinement scheme. For displacement control,  increases up to 

0.065mm. We use 2900 incremental load steps with the load parameter function ( )t  shown in Fig. 5.9(d). 
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Fig. 5.9. Symmetric three-point bending problem: (a) geometry and boundary conditions, (b) mesh geometry for 

the local mesh refinement scheme, (c) initial geometry for the adaptive mesh refinement scheme, and (d) load 

history curve. 

 

Fig. 5.10 illustrates the mesh geometries and crack patterns created by the adaptive mesh refinement scheme 

during crack propagation. Fig. 5.11(a) presents the load-displacement curves for the four analysis cases. In the 

curves, the load is the reaction force in the y-direction at point A. Fig. 5.11(b) displays the load-displacement 

curves calculated by Miehe et al. [27], Goswarni et al. [41] and Ambati et al. [60]. Table 5.5 gives the computation 

times with and without the adaptive update scheme together with the local and adaptive mesh refinement schemes. 

The proposed adaptive update scheme provides improved computational efficiency as observed in the previous 

numerical examples. 

 

 

Fig. 5.10. Mesh geometries and crack patterns for the symmetric three-point bending problem when (a) 

0.04699 mm (2615 nodes and 2442 elements), (b) 0.04799 mm (3133 nodes and 2946 elements) and (c) 

0.05439 mm (3798 nodes and 3576 elements). 

Load steps
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Fig. 5.11. Load-displacement curves on the symmetric three-point bending problem: (a) when the adaptive update 

scheme is used and when it is not used, and (b) when compared with previous results. 

  

(a)

(b)
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Table 5.5. Computation times required for the symmetric three-point bending problem in Fig. 5.9. 

Numerical schemes applied 
Computation time 

[sec] Ratio [%] 

Local mesh refinement 21770.49 100.00 

Local mesh refinement + Adaptive update 13861.82 63.67 

Adaptive mesh refinement 5496.56 100.00 

Adaptive mesh refinement + Adaptive update 2959.41 53.84 

 

5.3.4. Notched plate with three holes 

 

In this section, we consider a notched plate with three holes, whose geometry and boundary conditions are shown 

in Fig. 5.12 [39, 43, 44, 48, 60]. There are three holes: top, middle and bottom. A vertical displacement is 

prescribed along the perimeter of the top hole, and the perimeter of the bottom hole is fixed. Material properties 

are given as Lamé’s constants 1.94  GPa and 2.45  GPa, and the critical energy release rate 

32.28 10cG kN/mm. The regularization parameter is 0 0.5l mm. The near-tip domain radius cR  is 4

mm. 

 

For the local mesh refinement scheme, the mesh geometry ( 7512  elements) used is shown in Fig. 5.12(b). For 

the adaptive mesh refinement scheme, the initial mesh geometry ( 2223  elements) shown in Fig. 5.12(c) is used. 

For displacement control, the prescribed displacement  is increased up to 1.10 mm. The number of the total 

incremental load step is 1100 and ( )t  increases uniformly. 
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Fig. 5.12. Notched plate with three holes: (a) geometry and boundary conditions, (b) mesh geometry for the local 

mesh refinement scheme, and (c) initial mesh geometry for the adaptive mesh refinement scheme. 

 

When the adaptive mesh refinement scheme is adopted, the mesh geometries and crack patterns vary during crack 

propagation, as depicted in Fig. 5.13. The load-displacement curves are shown in Fig. 5.14 for the four analysis 

cases. In the curves, the load is the total reaction force in the y-direction along the perimeter of the top hole. Fig. 

5.15 gives the load-displacement curves compared with results in previous studies [39, 43, 44, 60]. It is observed 

that the curves obtained using the proposed scheme are similar with the most recent result [44] but different from 

the others. Fig. 5.16 shows the calculated crack path compared with the numerical and experimental results by 

Ambati et al. [60]. Note that the other studies also show very similar crack paths. Table 5.6 presents the 

computation times for the analysis cases. The improved computational efficiency by the adaptive update scheme 

is consistently observed. 

20mm 28.5mm
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Fig. 5.13. Mesh geometries and crack patterns for the notched plate with three holes when (a) 0.379 mm 

(4794 nodes and 4554 elements), (b) 0.599 mm (7699 nodes and 7200 elements), and (c) 1.039 mm 

(6985 nodes and 6633 elements). 

  

(a) (b) (c)



- 35 - 

 

Fig. 5.14. Load-displacement curves on the notched plate with three holes when the adaptive update scheme is 

used and when it is not used. 

 

 

Fig. 5.15. Load-displacement curves on the notched plate with three holes when compared with results in previous 

studies. 

 

Muix  et al., 2020 [44]í
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Fig. 5.16. Calculated crack path compared with the numerical and experimental results by Ambati et al. [60]. The 

numerical solution is obtained by using the adaptive update scheme with the adaptive mesh refinement scheme. 

 

Table 5.6. Computation times required for the notched plate with three holes in Fig. 5.12. 

Numerical schemes applied 
Computation time 

[sec] Ratio [%] 

Local mesh refinement 6917.37 100.00 

Local mesh refinement + Adaptive update 4565.42 66.00 

Adaptive mesh refinement 4146.08 100.00 

Adaptive mesh refinement + Adaptive update 2359.78 56.92 

 

5.3.5. Single-edge notched shear plate with diamond-shaped holes 

 

Let us consider a square plate including a single-edge crack with diamond-shaped holes as described in Fig. 5.17(a) 

[48]. The plate is subjected to a prescribed horizontal displacement along the top edge, and its bottom edge is 

fixed. Young’s modulus, Poisson’s ratio, and the critical energy release rate are 210E  GPa, 0.3v  , and 

32.7 10cG  kN/mm, respectively. The regularization parameter is 0 0.0075l  mm. The near-tip domain 

radius cR  is 0.04 mm. 

 

The mesh geometry (10922  elements) used for the local mesh refinement scheme is shown in Fig. 5.17(b), and 

the initial mesh geometry ( 3231  elements) used for the adaptive mesh refinement scheme is shown in Fig. 5.17(c). 

The prescribed displacement  increases up to 0.015mm. The number of the total incremental load step is 1500 

and ( )t  uniformly increases. 

  

Numerical result Experimental result by Ambati et al.Numerical result Experimental result by Ambati et al.Numerical result Numerical result
 by Ambati et al.

Experimental result
   by Ambati et al.
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Fig. 5.17. Single-edge notched shear plate with diamond-shaped holes: (a) geometry and boundary conditions, (b) 

mesh geometry for the local mesh refinement scheme, and (c) initial geometry for the adaptive mesh refinement 

scheme. 

 

Fig. 5.18 describes the mesh geometries and crack patterns formed by the adaptive mesh refinement scheme. For 

the four analysis cases, the load-displacement curves are drawn in Fig. 5.19. The load is the total reaction force 

along the top edge in the x-direction. The computation times required for the four cases are presented in Table 5.7. 

It is clearly shown that the adaptive update scheme reduces the computation time by about 40% to 50% with 

almost no change in the solutions. 
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Fig. 5.18. Mesh geometries and crack patterns for the single-edge notched shear plate with diamond-shaped holes 

when (a) 0.01139 mm (6933 nodes and 6457 elements), (b) 0.01249 mm (7941 nodes and 7465 

elements) and (c) 0.01449 mm (12771 nodes and 12064 elements). 

 

 

 

Fig. 5.19. Load-displacement curves on the single-edge notched shear plate with diamond-shaped holes when the 

adaptive update scheme is used and when it is not used. 

  

(a) (b) (c)
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Table 5.7. Computation times required for the single-edge notched shear with diamond-shaped holes in Fig. 5.17. 

Numerical schemes applied 
Computation time 

[sec] Ratio [%] 

Local mesh refinement 14624.72 100.00 

Local mesh refinement + Adaptive update 8907.93 60.91 

Adaptive mesh refinement 5043.26 100.00 

Adaptive mesh refinement + Adaptive update 2928.41 58.07 

 

5.3.6. L-shaped panel 

 

An L-shaped panel is considered as illustrated in Fig. 5.20(a) [40, 42, 48, 71]. The prescribed displacement  is 

applied at point B. Young’s modulus, Poisson’s ratio, and the critical energy release rate are given by 25.85E

GPa, 0.18v  , and 95cG  N/m, respectively. The regularization parameter is 0 2l  mm. The radius to 

determine the near-tip domain ( cR  ) is 15mm. 

 

For the local mesh refinement scheme, the mesh geometry (19501 elements) used is shown in Fig. 5.20(b). For 

the adaptive mesh refinement scheme, the initial mesh geometry (3718 elements) shown in Fig. 5.20(c) is used. 

The prescribed displacement 0  is applied until 1mm, the number of the total incremental load step is 2000, and   

increases uniformly. 
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Fig. 5.20. L-shaped panel: (a) geometry and boundary conditions, (b) mesh geometry for the local mesh refinement 

scheme and (c) initial mesh geometry for the adaptive mesh refinement scheme. 

 

Fig. 5.21 illustrates the mesh geometries and crack patterns created by the adaptive mesh refinement scheme 

during crack propagation. Fig. 5.22(a) presents the load-displacement curves for the four analysis cases. In the 

curves, the load is the reaction force in the y-direction at point B. Fig. 5.22(b) displays the load-displacement 

curves calculated by Patil et al. [40] and Hirshikesh et al. [42]. Fig. 5.23 shows the calculated crack path compared 

with the experimental result by Winkler [71]. Table 5.8 gives the computation times with and without the adaptive 

update scheme together with the local and adaptive mesh refinement schemes. The proposed adaptive update 

scheme provides improved computational efficiency as observed in the previous numerical examples. 
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Fig. 5.21. Mesh geometries and crack patterns for the L-shaped panel when (a) 0.0995 mm (3847 nodes and 

3718 elements), (b) 0.3245 mm (5982 nodes and 5734 elements), and (c) 0.4495 mm (10224 nodes and 

9830 elements). 

 

(a) (b) (c)
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Fig. 5.22. Load-displacement curves on the L-shaped panel: (a) when the adaptive update scheme is used and 

when it is not used, and (b) when compared with previous results. 

 

(a)

(b)
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Fig. 5.23. Calculated crack path compared with the experimental result [71]. The numerical solution is obtained 

by using the adaptive update scheme with the adaptive mesh refinement scheme. 

 

Table 5.8. Computation times required for the L-shaped panel in Fig. 5.20. 

Numerical schemes applied 
Computation time 

[sec] Ratio [%] 

Local mesh refinement 33347.53 100.00 

Local mesh refinement + Adaptive update 21775.64 65.30 

Adaptive mesh refinement 9719.60 100.00 

Adaptive mesh refinement + Adaptive update 5733.24 58.99 

 

5.3.7. Single-edged notched branching problem 

 

Finally, the single-edged notched branching problem proposed by Muixí et al. [44-46, 48] is solved. Consider a 

square plate with a single-edge crack of 0.1mm as shown in Fig. 5.24(a). The prescribed displacement 

2

0 ( 1)

8

x
 is applied along the top and bottom edges of the plate, and the right edge of the plate is fixed. Due 

to symmetry, we model only one-half of the plate with symmetric boundary conditions along point CD as depicted 

in Fig. 5.24 (a). Young’s modulus, Poisson’s ratio, and the critical energy release rate are 20E GPa, 0.3v , 

and 58.9 10cG kN/mm, respectively. The regularization parameter is 0 0.005l mm. The near-tip domain 

radius cR  is 0.04mm. 

 

The mesh geometry (54625 elements) in Fig. 5.24(b) is used for the local mesh refinement scheme, and the regular 

Numerical result Experimental reuslt by Winkler
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mesh of 50 100  elements in Fig. 5.24(c) is used for the adaptive mesh refinement scheme. The prescribed 

displacement 0  increases up to 0.1mm for displacement control. The number of the total incremental load step 

is 1000 and ( )t  uniformly increases. 

 

 

Fig. 5.24. Single-edge notched branching problem: (a) geometry and boundary conditions, (b) mesh geometry for 

the local mesh refinement scheme and (c) initial mesh geometry for the adaptive mesh refinement scheme. 

 

Fig. 5.25 describes the mesh geometries and crack patterns formed by the adaptive mesh refinement scheme. Fig. 

5.26 shows the crack paths calculated by the full and half models compared with the path of the full model solution 

in Refs. [44, 46]. Note that the half and full model solutions calculated using the proposed scheme are identical 

and similar with the recent result in Ref. [46]. The load-displacement curves for the four analysis cases are drawn 

in Fig. 5.27. The only previously published load-displacement curve in Ref. [44] is plotted together although it 

does not well match with our results. The load is the total reaction force along the top edge in the y-direction and 
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the displacement is considered as . The computation times required for the four cases are presented in Table 

5.9. It is clearly shown that the adaptive update scheme reduces the computation time by about 40% to 50% with 

almost no change in the solutions. 

 

 

Fig. 5.25. Mesh geometries and crack patterns for the single-edge notched branching problem when (a) 

0 0.0099 mm (5634 nodes and 5441 elements), (b) 0 0.0299 mm (12830 nodes and 12245 elements), and 

(c) 0 0.0849 mm (22679 nodes and 21632 elements). 

 

(a) (b) (c)
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Fig. 5.26. Crack paths calculated by (a) the full model and, (b) the half model with symmetric boundary conditions 

compared with those by the full models by Muixí et al. in (c) Ref. [44] and (d) Ref. [46]. The crack paths with the 

proposed method are obtained by using the adaptive update scheme with the adaptive mesh refinement scheme. 
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Fig. 5.27. Load-displacement curves on the single-edge notched branching problem when the adaptive update 

scheme is used and when it is not used. 

 

Table 5.9. Computation times required for the single-edge notched branching problem in Fig. 5.24. 

Numerical schemes applied 
Computation time 

[sec] Ratio [%] 

Local mesh refinement 31231.21 100.00 

Local mesh refinement + Adaptive update 21358.76 68.39 

Adaptive mesh refinement 10910.54 100.00 

Adaptive mesh refinement + Adaptive update 6454.63 59.16 

 

  

Muix  et al., 2020 [44]í
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Chapter 6. Mesh coarsening using the phantom-node method in the phase 

field model 

 

In this section, we briefly review the phantom-node method. We then present a method to adaptively coarsen mesh 

in the domain where a crack already propagated by applying the phantom-node method to the phase field model. 

 

6.1. Review of the phantom-node method 

 

The phantom-node method is proposed by Hansbo and Hansbo [75], which is widely used and has successfully 

expanding to smoothed FEM [76], shell problem [77] and so on [20, 21]. The main advantage is that cracks can 

be modeled without re-meshing and additional nodes. 

 

As illustrated in Fig. 6.1, a fully cracked element ( E0Ω ) is decomposed into two superimposed elements (E1 and 

E2) having two real domains ( E1

RΩ  and E2

RΩ ) and two virtual domains ( E1

VΩ  and E2

VΩ ), respectively. Doing so, 

the displacement field of the cracked element can be expressed as 

E1 E1

( ) R R

E2 E2

R R

in Ω

in Ω

m

cr

u
u

u
,  (6.1) 

where E1

Ru  and E2

Ru  are the displacement field of the two superimposed elements (E1 and E2) in E1

RΩ  and 

E2

RΩ , respectively. 
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Fig. 6.1. Two superimposed elements having (E1 and E2) two real domains ( E1

RΩ  and E2

RΩ ) and two virtual 

domains ( E1

VΩ  and E2

VΩ ), respectively. 

 

In case that the cracked element is divided two quadrilateral domains as shown in Fig. 6.1(a), 1 {1, 2,3,4}N  is 

the node set of E1 and 2 {1,2, 3, 4}N  is the node set of E2. Note that bar over number (e.g. 1, 2, 3, 4 ) denotes 

the phantom nodes additionally introduced to represent the displacement fields separated by two superimposed 

elements. Fig. 6.1(b) illustrates a case in which the element is divided into one pentagonal domain and one 

triangular domain. 

 

The phase field of the cracked element is also expressed as in the same manner 

E1

R

1( )

E2

R

2

in Ω

in Ω

i i

i Nm

cr

i i

i N

h

h
,  (6.2) 
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6.2. Mesh coarsening using the phantom-node method 

 

In this section, mesh coarsening using the phantom-node method is presented to coarsen the fine mesh into the 

coarse mesh in the domain where a crack has already passed. As shown in Fig. 6.2, 4-node quadrilateral and 3-

node triangular elements are used for mesh transition where cracks passed, while variable-node elements are used 

for mesh transition where cracks did not pass. The fine mesh in the near-tip domain and the coarse mesh in the 

domain are connected through a mesh transition composed of 4-node quadrilateral and 3-node triangular elements 

as shown in Fig. 6.2(b).  

 

 

Fig. 6.2. Mesh geometries: (a) before and (b) after mesh coarsening. 

A crack is modeled by the phase field model in the near-tip domain and the crack is modeled by the phantom-

node method in the domain where a crack has already passed. Fig. 6.3 shows the schematics of mesh connection 

modeled by the phantom-node method and phase field model, respectively. There are a coarse mesh with the crack 

modeled using the phantom-node method and a fine mesh with the crack modeled using the phase field model. 

Both meshes are connected through a mesh transition modeled by the 4-node and 3-node finite elements. 

 

To use the phantom-node method, the crack surface is identified and we search fully cracked target elements not 

having nodes belonging to Ωnt  as shown in Fig. 6.3. We then introduce phantom nodes in the target elements, 

which are converted into two superimposed elements with two separated domains as illustrated in Fig. 6.4. Note 

that, for numerical stability, the nodal damage DOFs of the phantom-nodes are fixed during simulation. 

 

(a) (b)

Coarsened mesh using the phantom-node method

Mesh transition using 3- and 4-node elements

Mesh transition using variable-node elements

Crack surface Crack surface
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Fig. 6.3. Schematics of mesh connection modeled by the phantom-node method and phase field model, 

respectively. 

 

 

Fig. 6.4. Schematics of superimposed elements model by phantom-nodes. 

 

Real nodes

Real and phantom nodes

Crack surface

Target elements

Nodes in the near-tip domain (Ω )nt

Real node

Phantom node
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6.3. Numerical examples 

 

In this section, we investigate the performance of the proposed method through various numerical examples: the 

single-edge notched tension problem, the L-shaped panel, the notched cruciform plate, and the double-edged 

notched tension problem. 

 

Ref. [48] reports that the use of both adaptive update and adaptive mesh refinement schemes maximizes the 

computational efficiency in the phase field model. We here investigate additional improvement in computational 

efficiency when the mesh coarsening method is adopted with the both adaptive schemes. Doing so, we consider 

two analysis cases: 

- (Case 1) Both adaptive update and adaptive mesh refinement schemes are adopted without the mesh 

coarsening method. The adaptively refined mesh still remains where cracks already passed. 

- (Case 2) Both adaptive update and adaptive mesh refinement schemes are adopted with the mesh 

coarsening method. Therefore, the fine mesh where cracks passed is restored to the coarse mesh. 

 

We consider the plane strain condition in the numerical examples. The error tolerances for the displacement and 

phase fields ( u  and ) are adjusted to 
510 . We use the critical damage parameter 0.5c . To detect crack 

initiation timely and to refine the mesh in the domain of crack initiation, the critical damage parameter 0.1c  

is used until the crack propagates, see Ref. [48]. The critical damage parameter 0.5c  is after identification 

of the crack initiation domain. 

 

In the phase field model, the element size should be determined to guarantee the solution accuracy. The following 

conditions are adopted as recommended in Ref. [28]:  

04.0el l    for initial coarse mesh, (6.3) 

00.5el l    for adaptive mesh refinement, (6.4) 

where el  represents the element size ( e el A  with an element area eA ). 

 

The numerical procedure was implemented in MATLAB 2017a and the computation was performed on a PC with 

an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and 64GB RAM. 
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6.3.1. Single-edged notched tension problem 

 

Let us consider a square plate with a single-edge crack as described in Fig. 6.5(a) [27, 39, 43, 48]. The plate is 

subjected to a prescribed vertical displacement along the top edge, and the bottom edge of the plate is fixed. 

Young’s modulus, Poisson’s ratio, and the critical energy release rate are given by 210E GPa, 0.3v , and 

32.7 10cG  kN/mm, respectively. The regularization parameter is 0 0.0075l  mm. The radius cR   to 

determine the near-tip domain is 0.04 mm. 

 

 

Fig. 6.5. Single-edge notched tension problem: (a) geometry and boundary conditions, (b) initial mesh geometry, 

and (c) load history curve. 

 

We use the regular mesh of 50 50  elements in Fig. 6.5(b). The prescribed displacement  increases up to 

0.0063 mm for displacement control. The number of the total incremental load step is 1800 and the load parameter 

function ( )t  is given in Fig. 6.5(c). 

 

When the mesh coarsening method is adopted (Case 2), changes in mesh geometry and crack pattern during crack 

propagation are illustrated in Fig. 6.6. Fig. 13 shows the mesh geometries without and with adopting the mesh 

Load steps

(a)

(b)

x

y

0.5mm 0.5mm

0.5mm

0.5mm

(c)

( )t
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coarsening method. Unlike Fig. 6.7(a), Fig. 6.7(b) presents that the fine mesh where cracks passed is restored to 

the coarse mesh. For the two analysis cases, the load-displacement curves are plotted in Fig 6.8. In the curves, the 

load is the total reaction force in the y-direction along the top edge. The previous results of Miehe et al. [27], Patil 

et al. [39], and Tian et al. [43] are plotted together. 

 

 

Fig. 6.6. Mesh geometries and crack patterns for the single-edge notched tension problem when (a) 0.00555

mm, (b) 0.0057 mm, and (c) 0.0059 mm. 

 

(a) (b) (c)
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Fig. 6.7. Mesh geometries: (a) without and (b) with mesh coarsening. 

 

 

Fig. 6.8. Load-displacement curves on the single-edge notched tension problem. 

 

Table 6.1 shows the normalized computation times comparing Case 1 with Case 2. After crack propagation, 

reduction in computational time is more noticeable. In particular, computation time required to solve Eqs. (2.24) 

and (2.25) are significantly reduced. 

 

 

 

(a) (b)
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Table 6.1. Normalized computation times required for the single-edge notched tension problem in Fig. 6.5. (Case 

1) Adaptive mesh refinement + Adaptive update, (Case 2) Adaptive mesh refinement+ Adaptive update+ Mesh 

coarsening. 

Cases 
Whole time step After crack propagation 

Total Equation solving Total Equation solving 

Case 1 100 % 100 % 100 % 100 % 

Case 2 88.78 % 69.37 % 83.55 % 63.36 % 

 

6.3.2. L-shaped panel 

 

An L-shaped panel is considered as illustrated in Fig. 6.9(a) [40, 42, 48, 71]. The prescribed displacement  is 

applied at point B. Young’s modulus 25.85E GPa, Poisson’s ratio 0.18v , and the critical energy release 

rate 95cG N/m. The regularization parameter is 0 2l mm. The radius to determine the near-tip domain ( cR ) 

is 15 mm. 

 

 

Fig. 6.9. L-shaped panel: (a) geometry and boundary conditions and (b) initial mesh geometry. 

 

The initial mesh geometry (3718 elements) used is shown in Fig. 6.9(b). The prescribed displacement   is 

applied until 1mm, the number of the total incremental load step is 2000, and ( )t  increases uniformly. 

 

Fig. 6.10 illustrates the mesh geometries and crack patterns during crack propagation when the mesh coarsening 

x

y

500mm

250mm
30mm

250mm

250mm 250mm

point B

(a) (b)
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method is applied. Fig. 6.11 presents the load-displacement curves for the two analysis cases compared with those 

by Patil et al. [40] and Hirshikesh et al. [42]. The load is the reaction force in the y-direction at point B. Fig. 6.12 

shows the calculated crack path compared with the experimental result by Winkler [71]. 

 

 

Fig. 6.10. Mesh geometries and crack patterns for the L-shaped panel when (a) 0.35 mm, (b) 0.4 mm, 

and (c) 0.95 mm. 

 

(a) (b) (c)
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Fig. 6.11. Load-displacement curves on the L-shaped panel. 

 

 

Fig. 6.12. Calculated crack path compared with the experimental result [71]. The numerical solution is obtained 

by mesh coarsening with the adaptive update and mesh refinement schemes. 

 

Table 6.2 gives the normalized computation times without and with adopting the mesh coarsening method. As 

expected, the mesh coarsening method improves computational efficiency in the phase field model. In addition, 

Fig. 6.13 shows the total number of degrees of freedom required during simulation for the two cases. After a crack 

initiates, the required number of DOFs significantly decreases. 

 

 

Experimental result by Winkler Numerical result
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Table 6.2. Normalized computation times required for the L-shaped panel in Fig. 6.9. (Case 1) Adaptive mesh 

refinement + Adaptive update, (Case 2) Adaptive mesh refinement+ Adaptive update+ Mesh coarsening. 

Cases 
Whole time step After crack propagation 

Total Equation solving Total Equation solving 

Case 1 100 % 100 % 100 % 100 % 

Case 2 77.54 % 54.66 % 69.25 % 48.23 % 

 

 

Fig. 6.13. Histories of the total number of degrees of freedom for the L-shaped panel. 

 

6.3.3. Notched cruciform plate 

 

A notched cruciform plate is considered as shown in Fig. 6.14(a) [48, 78, 79, 80]. A vertical displacement is 

uniformly applied along the top edge of the plate. The bottom edge of the plate is fixed in the y-direction. The left 

and right edges of the plate are fixed in the x-direction. Young’s modulus, Poisson’s ratio, and the critical energy 

release rate are given: 0.2184E MPa, 0.2v , and 102.0 10cG kN/mm. The regularization parameter 

is 0 0.625l mm. The radius to determine the near-tip domain ( cR ) is 5mm. 

 

Crack initiation

Mesh coarsening
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Fig. 6.14. Notched cruciform plate: (a) geometry and boundary conditions, (b) initial mesh geometry, and (c) load 

history curve. 

 

The initial mesh geometry (2527 elements) shown in Fig. 6.14(b) is used. The prescribed displacement  is 

applied until 0.0278 mm, the number of the total incremental load step is 600, and ( )t  is given in Fig. 6.14(c). 

 

Adopting mesh coarsening, the mesh geometries and crack patterns formed during crack propagation are presented 

in Fig. 6.15. Fig. 6.16 shows the load-displacement curves obtained for the two analysis cases, in which the load 

is the total reaction force in the x-direction along the top edge. Fig. 6.17 shows the calculated crack path compared 

with the numerical results obtained by Hirshikesh et al. [79] and Mandal et al. [80]. The normalized computation 

times for the two analysis cases (Case 1 and Case 2) are listed in Table 6.3. The histories of the total number of 

50mm

50mm 50mm

50mm

50mm 50mm50mm

50mm

50mm

50mm 50mm
50mm

45

Load steps

( )t
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degrees of freedom required for two analysis cases are shown in Fig. 6.18. When mesh coarsening is employed, 

the computation time is reduced but there is almost no change in solutions. 

 

 

Fig. 6.15. Mesh geometries and crack patterns for the notched cruciform plate when (a) 0.02625 mm, (b) 

0.02645 mm, and (c) 0.02685 mm. 

 

 

Fig. 6.16. Load-displacement curves on the notched cruciform plate. 

(a) (b) (c)
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Fig. 6.17. Calculated crack path compared with the numerical results by Hirshikesh et al. [79] and Mandal et al. 

[80]. The numerical solution is obtained by mesh coarsening with the adaptive update and mesh refinement 

schemes. 

 

Table 6.3. Normalized computation times required for the notched cruciform plate in Fig. 6.12. (Case 1) Adaptive 

mesh refinement + Adaptive update, (Case 2) Adaptive mesh refinement+ Adaptive update+ Mesh coarsening. 

Cases 
Whole time step After crack propagation 

Total Equation solving Total Equation solving 

Case 1 100 % 100 % 100 % 100 % 

Case 2 77.86 % 65.83 % 69.62 % 56.13 % 

 

 

Fig. 6.18. Histories of the total number of degrees of freedom for the notched cruciform plate. 

Numerical result   Numerical result
by Hirshikesh et al.

Numerical result
 by Mandal et al.

Mesh coarsening
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6.3.4. Double-edged notched tension problem 

 

Finally, we consider a rectangular plate including two cracks as shown in Fig. 6.19(a). The bottom edge of the 

plate is fixed, and a vertical displacement is prescribed along the top edge of the plate. Young’s modulus 210E

GPa, Poisson’s ratio 0.3v  , and the critical energy release rate 32.7 10cG  kN/mm. The regularization 

parameter and the radius to determine the near-tip domain are 0 0.025l mm and 0.25cR mm, respectively. 

 

 

Fig. 6.19. Double-edged notched tension problem: (a) geometry and boundary conditions, (b) initial mesh 

geometry, and (c) load history curve. 

 

The initial mesh geometry of 2392 elements used is shown in Fig. 6.19(b). For displacement control,  increases 

up to 0.013725mm. We use 1200 incremental load steps with the load parameter function ( )t , see Fig. 6.19(c). 

 

When mesh coarsening is employed, the mesh geometries and crack patterns are formed during crack propagation 

as shown in Fig. 6.20. Fig. 6.21 shows the load-displacement curves obtained for the two analysis cases, in which 

the load is the total reaction force in the y-direction along the top edge. Fig. 6.22 shows the calculated crack paths 

calculated for Case 1 and Case 2. The curves and crack paths are almost the same regardless of mesh coarsening. 
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Fig. 6.20. Mesh geometries and crack patterns for the double-edged notched tension problem when (a) 

0.0121975 mm, (b) 0.0125225 mm, and (c) 0.0134725 mm. 

 

 

Fig. 6.21. Load-displacement curves on the double-edged notched tension problem. 

 

 

Fig. 6.22. Calculated crack paths in Case 1 (Adaptive mesh refinement + Adaptive update) and Case 2 (Adaptive 

mesh refinement + Adaptive update + Mesh coarsening). 

(a) (b) (c)

Adaptive mesh refinementAdaptive mesh refinement

+ Mesh coarsening

+ Adaptive update+ Adaptive update

(Case 1)
(Case 2)
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The normalized computation times for the two analysis cases (Case 1 and Case 2) are listed in Table 6.4. The 

computation time is the most reduced among the numerical examples considered in this study. Table 6.5 shows 

computational times for five analysis cases: Case 1, Case 2 and three additional cases. The five cases are composed 

of combinations of 4 numerical schemes: local mesh refinement, adaptive mesh refinement, adaptive update, and 

mesh coarsening. The mesh geometries used for the local and adaptive mesh refinements are as shown in Fig. 

6.23. The combination of the mesh coarsening, the adaptive mesh refinement scheme and the adaptive update 

scheme is the most effective. 

 

Table 6.4. Normalized computation times required for the double notched tension problem in Fig. 6.19. (Case 1) 

Adaptive mesh refinement + Adaptive update, (Case 2) Adaptive mesh refinement+ Adaptive update+ Mesh 

coarsening. 

Cases 
Whole time step After crack propagation 

Total Equation solving Total Equation solving 

Case 1 100 % 100 % 100 % 100 % 

Case 2 69.35 % 47.47 % 62.00 % 38.61 % 

 

Table 6.5. Relative computation times for five analysis cases in the double-edged notched tension problem. 

Combinations of numerical schemes applied Ratio [%] 

Local mesh refinement 100 % 

Local mesh refinement + Adaptive update 73.54 % 

Adaptive mesh refinement 21.10 % 

Adaptive mesh refinement + Adaptive update (Case 1) 11.47 % 

Adaptive mesh refinement + Adaptive update + Mesh coarsening (Case 2) 7.95 % 
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Fig. 6.23. Mesh geometries used for five analysis cases in Table 6.5: (a) the local mesh refinement and (b) the 

adaptive mesh refinement. 

 

 

  

(a) (b)
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Chapter 7. Conclusions 

 

In this dissertation, new numerical methods to improve the computational efficiency of the phase field model were 

proposed. Using a damage parameter as a nodal degree of freedom allows the model to easily handle complex 

crack behaviors without crack tracking algorithms. This is indeed the most advantageous feature of the phase field 

model. However, it requires an iterative procedure to solve nonlinear equations such as Newton-Raphson method, 

and mesh refinement to deal with high gradient values in the phase field transition zone, which largely increase 

the computational cost. 

 

We firstly proposed the adaptive update scheme. The computational efficiency can be greatly improved without 

mesh refinement, and can be further improved when used in conjunction with the adaptive mesh refinement 

schemes. In this numerical scheme, the entire domain is divided into two domains: one near the crack tip and one 

far from the crack tip. Since structural properties such as stiffness, strain energy, and damage rarely vary in the 

domain far from the crack tip, those properties are occasionally updated in the iterative solution procedure. To 

maximize the computational efficiency, the local and adaptive mesh refinement schemes can be adopted together. 

The adaptive update scheme reduced computation time by 40% to 50% while maintaining the desired solution 

accuracy. 

 

Secondly, the phantom-node method was applied to the phase field model to convert the fine mesh into the coarse 

mesh in the domain where a crack has already propagated. The mesh in the domain where a crack has already 

passed is still fine. To convert the fine mesh into the coarse mesh in that domain, we apply the phantom-node 

method, which is widely used [21- 22, 75-77]. In doing so, the total number of degrees of freedom is significantly 

reduced. Using the phantom-node method, it is possible to extend to 3D and shell problems. The adaptive mesh 

refinement scheme based on variable-node elements [48] is adopted in this study. To additionally improve the 

computational efficiency, the adaptive update scheme [48] is also employed. 

 

In the future, implementation of the phase field model incorporated with the strain smoothing method [72] and 

enriched finite element method [73]. In addition, it is important to extend the 3D or shell problems [74]. 

  



- 68 - 

Bibliography 

 

[1] A.A. Griffith, The phenomena of rapture and flow in soilds, Philos. Trans. R. Soc. London. 221 (1920) 163–

198. 

 

[2] G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Trans. ASME, Ser. E, J, 

Appl. Mech. 24 (1957) 361–364. 

 

[3] O.C. Zienkiewicz, R.L Taylor, The Finite Element Method: Basic Formulation and Linear Problems, McGraw-

Hill, New York, NY (1989). 

 

[4] K.J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, NJ (2006). 

 

[5] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover 

Publications, Mineola, NY (2000). 

 

[6] S.K. Chan, I.S. Tuba, W.K. Wilson, On the finite element method in linear fracture mechanics, Eng. Fract. 

Mech. 2 (1970) 1–17. 

 

[7] N. Levy, P. V. Marcal, W.J. Ostergren, J.R. Rice, Small scale yielding near a crack in plane strain: A finite 

element analysis, Int. J. Fract. Mech. 7 (1971) 143–156. 

 

[8] D.M. Tracey, Finite elements for determination of crack tip elastic stress intensity factors, Eng. Fract. Mech. 

3 (1971) 255–265. 

 

[9] T. Pin, T.H.H. Pian, On the convergence of the finite element method for problems with singularity, Int. J. 

Solids Struct. 9 (1973) 313–321. 

 

[10] R.D. Henshell, K.G. Shaw, Crack tip finite elements are unnecessary, Int. J. Numer. Methods Eng. 9 (1975) 

495–507. 

 

[11] R.S. Barsoum, On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. 

Methods Eng. 10 (1976) 25–37. 

 



- 69 - 

[12] C.F. Shih, H.G. de Lorenzi, M.D. German, Crack extension modeling with singular quadratic isoparametric 

elements, Int. J. Fract. 12 (1976) 647–651. 

 

[13] R.S. Barsoum, Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements, Int. J. 

Numer. Methods Eng. 11 (1977) 85–98. 

 

[14] T. Belytschko, L. Gu, Y.Y. Lu, Fracture and crack growth by element free Galerkin methods, Model. Simul. 

Mater. Sci. Eng. 2 (1994) 519–534. 

 

[15] T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37 (1994) 229–

256. 

 

[16] Y.Y. Lu, T. Belytschko, L. Gu, A new implementation of the element free Galerkin method, Comput. Methods 

Appl. Mech. Engrg. 113 (1994) 397–414. 

 

[17] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. 

Methods Eng. 45 (1999) 601–620. 

 

[18] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. 

Numer. Methods Eng. 46 (1999) 131–150. 

 

[19] N. Sukumar, N. Moës, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack 

modelling, Int. J. Numer. Methods Eng. 48 (2000) 1549–1570. 

 

[20] J.H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with 

phantom nodes, Int. J. Numer. Methods Eng. 67 (2006) 868–893. 

 

[21] T. Rabczuk, G. Zi, A. Gerstenberger, W.A. Wall, A new crack tip element for the phantom‐node method with 

arbitrary cohesive cracks, Int. J. Numer. Methods Eng. 75 (2008) 577–599.  

 

[22] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. 

Solids. 48 (2000) 175–209. 

 

[23] T. Rabczuk, T. Belytschko, Cracking particles: A simplified meshfree method for arbitrary evolving cracks, 

Int. J. Numer. Methods Eng. 61 (2004) 2316–2343. 



- 70 - 

 

[24] G.A. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. 

Solids. 46 (1998) 1319–1342. 

 

[25] B. Bourdin, G.A. Francfort, J.J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. 

Solids. 48 (2000) 797–826. 

 

[26] C. Kuhn, R. Müller, A phase field model for fracture, Proc. Appl. Math. Mech. 8 (2008) 10223–10224. 

 

[27] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust 

algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng. 199 (2010) 2765–

2778. 

 

[28] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: 

Variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng. 83 (2010) 1273–

1311. 

 

[29] M. Ambati, T. Gerasimov, L. De Lorenzis, Phase-field modeling of ductile fracture, Comput. Mech. 55 (2015) 

1017–1040. 

 

[30] M.J. Borden, C. V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic 

brittle fracture, Comput. Methods Appl. Mech. Eng. 217–220 (2012) 77–95. 

 

[31] T. Nguyen, D. Waldmann, T.Q. Bui, Computational chemo-thermo-mechanical coupling phase-field model 

for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials, Comput. 

Methods Appl. Mech. Eng. 348 (2019) 1–28. 

 

[32] T.Q. Bui, X. Hu, A review of phase-field models, fundamentals and their applications to composite laminates, 

Eng. Fract. Mech. 248 (2021) 107705. 

 

[33] D.H. Doan, T.Q. Bui, N.D. Duc, K. Fushinobu, Hybrid phase field simulation of dynamic crack propagation 

in functionally graded glass-filled epoxy, Compos. Part B Eng. 99 (2016) 266–276. 

 

[34] D.H. Doan, T.Q. Bui, T. Van Do, N.D. Duc, A rate-dependent hybrid phase field model for dynamic crack 

propagation, J. Appl. Phys. 122 (2017). 



- 71 - 

 

[35] H. Badnava, M.A. Msekh, E. Etemadi, T. Rabczuk, An h-adaptive thermo-mechanical phase field model for 

fracture, Finite Elem. Anal. Des. 138 (2018) 31–47. 

 

[36] S. Nagaraja, M. Elhaddad, M. Ambati, S. Kollmannsberger, L. De Lorenzis, E. Rank, Phase-field modeling 

of brittle fracture with multi-level hp-FEM and the finite cell method, Comput. Mech. 63 (2019) 1283–1300. 

 

[37] Hirshikesh, A.L.N. Pramod, R.K. Annabattula, E.T. Ooi, C. Song, S. Natarajan, Adaptive phase-field 

modeling of brittle fracture using the scaled boundary finite element method, Comput. Methods Appl. Mech. 

Eng. 355 (2019) 284–307. 

 

[38] R.U. Patil, B.K. Mishra, I. V. Singh, T.Q. Bui, A new multiscale phase field method to simulate failure in 

composites, Adv. Eng. Softw. 126 (2018) 9–33. 

 

[39] R.U. Patil, B.K. Mishra, I. V. Singh, An adaptive multiscale phase field method for brittle fracture, Comput. 

Methods Appl. Mech. Eng. 329 (2018) 254–288. 

 

[40] R.U. Patil, B.K. Mishra, I. V. Singh, A local moving extended phase field method (LMXPFM) for failure 

analysis of brittle materials, Comput. Methods Appl. Mech. Eng. 342 (2018) 674–709. 

 

[41] S. Goswami, C. Anitescu, T. Rabczuk, Adaptive phase field analysis with dual hierarchical meshes for brittle 

fracture, Eng. Fract. Mech. 218 (2019) 106608. 

 

[42] Hirshikesh, C. Jansari, K. Kannan, R.K. Annabattula, S. Natarajan, Adaptive phase field method for quasi-

static brittle fracture using a recovery based error indicator and quadtree decomposition, Eng. Fract. Mech. 

220 (2019) 106599. 

 

[43] F. Tian, X. Tang, T. Xu, J. Yang, L. Li, A hybrid adaptive finite element phase‐field method for quasi‐static 

and dynamic brittle fracture, Int. J. Numer. Methods Eng. 120 (2019) 1108–1125. 

 

[44] A. Muixí, S. Fernández-Méndez, A. Rodríguez-Ferran, Adaptive refinement for phase-field models of brittle 

fracture based on Nitsche’s method, Comput. Mech. 66 (2020) 69–85. 

 

[45] A. Muixí, A. Rodríguez‐Ferran, S. Fernández‐Méndez, A hybridizable discontinuous Galerkin phase‐field 

model for brittle fracture with adaptive refinement, Int. J. Numer. Methods Eng. 121 (2020) 1147–1169. 



- 72 - 

 

[46] A. Muixí, O. Marco, A. Rodríguez-Ferran, S. Fernández-Méndez, A combined XFEM phase-field 

computational model for crack growth without remeshing, Comput. Mech. 67 (2021) 231–249. 

 

[47] N. Noii, F. Aldakheel, T. Wick, P. Wriggers, An adaptive global-local approach for phase-field modeling of 

anisotropic brittle fracture, Comput. Methods Appl. Mech. Eng. 361 (2020) 112744. 

 

[48] G. Kim, P.S. Lee, Towards improving the computational efficiency of the phase field model, Comput. Struct. 

(2023), accepted. 

 

[49] T. Yu, T.Q. Bui, Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on 

XFEM with local mesh refinement, Comput. Struct. 196 (2018) 112–133. 

 

[50] J.H. Lim, D. Sohn, J.H. Lee, S. Im, Variable-node finite elements with smoothed integration techniques and 

their applications for multiscale mechanics problems, Comput. Struct. 88 (2010) 413–425. 

 

[51] Y.S. Cho, S. Jun, S. Im, H.G. Kim, An improved interface element with variable nodes for non-matching 

finite element meshes, Comput. Methods Appl. Mech. Eng. 194 (2005) 3022–3046. 

 

[52] Y.S. Cho, S. Im, MLS-based variable-node elements compatible with quadratic interpolation. Part I: 

formulation and application for non-matching meshes, Int. J. Numer. Methods Eng. 65 (2006) 494–516. 

 

[53] Y.S. Cho, S. Im, MLS-based variable-node elements compatible with quadratic interpolation. Part II: 

application for finite crack element, Int. J. Numer. Methods Eng. 65 (2006) 517–547. 

 

[54] J.H. Lim, S. Im, Y.S. Cho, MLS (moving least square)-based finite elements for three-dimensional 

nonmatching meshes and adaptive mesh refinement, Comput. Methods Appl. Mech. Eng. 196 (2007) 2216–

2228. 

 

[55] J.H. Lim, S. Im, Y.-S. Cho, Variable-node elements for non-matching meshes by means of MLS (moving 

least-square) scheme, Int. J. Numer. Methods Eng. 72 (2007) 835–857. 

 

[56] J.H. Lim, D. Sohn, S. Im, Variable-node element families for mesh connection and adaptive mesh 

computation, Struct. Eng. Mech. 43 (2012) 349–370. 

 



- 73 - 

[57] L. Ambrosio, V.M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t‐

convergence, Commun. Pure Appl. Math. 43 (1990) 999–1036. 

 

[58] L. Ambrosio, V.M. Tortorelli, On the approximation of free discontinuity problems, Boll. Unione Mat. Ital. 

B (7) 6 (1) (1992) 105-123. 

 

[59] T. Linse, P. Hennig, M. Kästner, R. de Borst, A convergence study of phase-field models for brittle fracture, 

Eng. Fract. Mech. 184 (2017) 307–318. 

 

[60] M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast 

hybrid formulation, Comput. Mech. 55 (2014) 383–405. 

 

[61] H. Amor, J.J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral 

contact: Numerical experiments, J. Mech. Phys. Solids. 57 (2009) 1209–1229. 

 

[62] J. Storm, D. Supriatna, M. Kaliske, The concept of representative crack elements for phase-field fracture: 

Anisotropic elasticity and thermo-elasticity, Int. J. Numer. Methods Eng. 121 (2020) 779–805. 

 

[63] B. Yin, J. Storm, M. Kaliske, Viscoelastic phase-field fracture using the framework of representative crack 

elements, Int. J. Fract. (2021). 

 

[64] J. Storm, M. Kaliske, Phase‐field Fracture with Representative Crack Elements for Non‐linear Material 

Behaviour, Pamm. 20 (2021). 

 

[65] J. Storm, B. Yin, M. Kaliske, The concept of Representative Crack Elements (RCE) for phase-field fracture: 

transient thermo-mechanics, Comput. Mech. (2022). 

 

[66] S. May, J. Vignollet, R. De Borst, A numerical assessment of phase-field models for brittle and cohesive 

fracture: Γ-Convergence and stress oscillations, Eur. J. Mech. ASolids. 52 (2015) 72–84. 

 

[67] M. Strobl, T. Seelig, A novel treatment of crack boundary conditions in phase field models of fracture, Pamm. 

15 (2015) 155–156. 

 

[68] A. Schlüter, Phase field modeling of dynamic brittle fracture, Dissertation, Technische Universität 

Kaiserslautern (2018). 



- 74 - 

 

[69] C. Steinke, M. Kaliske, A phase-field crack model based on directional stress decomposition, Comput. Mech. 

63 (2019) 1019–1046. 

 

[70] D. Sohn, J.H. Lim, S. Im, An efficient scheme for coupling dissimilar hexahedral meshes with the aid of 

variable-node transition elements, Adv. Eng. Softw. 65 (2013) 200–215. 

 

[71] B. Winkler, Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage 

eines objektiven Werkstoffgesetzes für Beton, Dissertation, University of Innsbruck (2001). 

 

[72] C. Lee, P.S. Lee, A new strain smoothing method for triangular and tetrahedral finite elements, Comput. 

Methods Appl. Mech. Eng. 341 (2018) 939–955. 

 

[73] S. Kim, P.S. Lee, A new enriched 4-node 2D solid finite element free from the linear dependence problem, 

Comput. Struct. 202 (2018) 25–43. 

 

[74] Y. Ko, P.S. Lee, K.J. Bathe, The MITC4+ shell element and its performance, Comput. Struct. 169 (2016) 57–

68. 

 

[75] A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid 

mechanics, Comput. Methods Appl. Mech. Eng. 193 (2004) 3523–3540. 

 

[76] N. Vu-Bac, H. Nguyen-Xuan, L. Chen, C.K. Lee, G. Zi, X. Zhuang, G.R. Liu, T. Rabczuk, A phantom-node 

method with edge-based strain smoothing for linear elastic fracture mechanics, J. Appl. Math. 2013 (2013). 

 

[77] T. Chau-Dinh, G. Zi, P.S. Lee, T. Rabczuk, J.H. Song, Phantom-node method for shell models with arbitrary 

cracks, Comput. Struct. 92–93 (2012) 242–256. 

 

[78] N.N. V. Prasad, M.H. Aliabadi, D.P. Rooke, Incremental crack growth in thermoelastic problems, Int. J. Fract. 

66 (1994) R45–R50. 

 

[79] Hirshikesh, S. Natarajan, R.K. Annabattula, A FEniCS implementation of the phase field method for quasi-

static brittle fracture, Front. Struct. Civ. Eng. 13 (2019) 380–396. 

 

[80] T.K. Mandal, V.P. Nguyen, J.Y. Wu, C. Nguyen-Thanh, A. de Vaucorbeil, Fracture of thermo-elastic solids: 



- 75 - 

Phase-field modeling and new results with an efficient monolithic solver, Comput. Methods Appl. Mech. 

Eng. 376 (2021) 113648. 

 

 

  



- 76 - 

Appendix A. Phase field formulations 

 

We here briefly review three phase field formulations [60]: Isotropic formulation, anisotropic formulation and 

hybrid formulation. 

 

A.1. Isotropic formulation 

 

The isotropic formulation is given as 
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In this formulation, the entire degradation of the strain energy is adopted. This formulation is simple but has some 

limitation such as overestimated crack driving force, crack surface penetration and crack propagation at 

compression. 

 

 

A.2. Anisotropic formulation 

 

The anisotropic formulation is written as 
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In this formulation, the strain energy term is decomposed and the degradation is only applied on the split strain 

energy. This formulation has an issue of non-physical prediction [66, 67, 69] and additional studies have been 

performed [63, 65, 69]. 

 

 

A.3. Hybrid formulation 

 

The hybrid formulation proposed by Ambati et al. [60] is a combination of splitting in crack evolution equation 

and not decomposing in the degradation function controlling the strain energy. The hybrid formulation is expressed 

as 
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Appendix B. Patch test of variable-node finite elements 

 

To apply adaptive mesh refinement scheme using variable-node finite elements to the phase field model, the 

performance of variable-node finite elements should be examined. For the use of variable-node finite elements, 

patch test of variable-node finite elements is performed. geometry and boundary condition of the patch test is 

given as shown in Fig. B.1(a). In Fig. B.1(a), 4-node quadrilateral finite elements and variable-node finite element 

are used in 1Ω  and 2Ω , respectively. Young’s modulus and Poisson’s ratio are considered as 
6210 10  and 

0.3  , respectively. The mesh geometries for 11-node, 18-node and 25-node variable-node finite elements are 

shown in Fig. B.1(b), (c) and (d), respectively. Fig. B.2 shows the stress distribution ( 11 ) of for 11-node, 18-node, 

25-node variable-node finite elements. It is observed that variable-node finite elements pass the patch test. 

 

 

Fig. B.1. Patch test of variable-node finite elements: (a) geometry and boundary conditions and (b) mesh 

geometries for (b) 11-node, (c) 18-node and (d) 25-node variable-node finite elements. 

 

 

Fig. B.2. Stress distributions of the patch test for (a) 11-node, (b) 18-node and (c) 25-node variable-node finite 

elements. 
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Appendix C. Study on the update parameter 

 

The adaptive update scheme proposed in this study needs the update criteria in Eq. (4.2). The computation time 

required for the adaptive update scheme varies depending on the update parameter . To find the appropriate , 

a parametric study is performed. 

 

Computation times are measured through the numerical example described in Section 5.3.4 with varying . The 

adaptive update scheme is adopted with the adaptive mesh refinement scheme. Table C.1 lists computation times 

required for seven different update parameters from 1.25 to 100. Fig. C.1 shows the load-displacement curves 

according to the update parameter  for the notched plate with three holes. The computation time is the shortest 

when 10  is used. Note that very similar solutions are obtained in all calculation cases. 

 

Table C.1. Computation times required according to the update parameter  for the notched plate with three 

holes. 

Update parameter  Computation time [sec] 

1.25 2438.45 

2.5 2418.36 

5 2391.33 

10 2359.78 

20 2472.99 

50 2589.36 

100 2668.58 
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Fig. C.1. Load-displacement curves according to the update parameter  for the notched plate with three holes. 
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Appendix D. Study on the critical damage parameter in the case of crack 

initiation 

 

The phase field model is based on a variational approach, in which a brittle fracture problem can be solved by 

minimizing the potential energy functional. The phase field model can be simulated without any additional criteria 

for when/where cracks initiate, grow, and how much and in what direction they propagate. 

 

In the case of crack initiation, taking the critical damage parameter as 0.5c  may give inaccurate solutions 

due to late identification of the crack initiation domain. To obtain an accurate solution, it is necessary to identify 

the crack initiation domain early. A parametric study must be performed to obtain appropriate c  in the case of 

crack initiation. 

 

Load-displacement curves are plotted through the numerical example illustrated in Section 5.3.6 with varying c . 

The proposed adaptive update scheme is adopted. Fig D.1 gives load-displacement curves for four different c  

from 0.1 to 0.4 until the crack propagates. When 0.1c   is used, the load-displacement curve is the most 

similar to the curve when fine meshes are preset in the crack initiation domain. Note that after the crack initiation 

domain is identified, the critical damage parameter is taken as 0.5c  again. 

 

 

Fig. D.1. Load-displacement curves for the L-shaped panel for four different c  from 0.1 to 0.4. 

 

 

 


