TP

Ph.D. Dissertation

Development of efficient numerical methods
for the phase field model

2023

7 7] 3 (£ & M Kim, Gihwan)

3@ 3o o] % 9

Korea Advanced Institute of Science and Technology



TP

2023

2]

7] &=

= 3} g

ks



Floj]= . TdUl& 93l g54<l
TA A "
4 7] g

o) =R ATAE L WA RO
SRR AN Y A Eeg S

20229 09¥ 23Y

AR ol W F (9)
A9 &AB ()
AR BAF ()
AL wFF ()
A9 P % ()



Development of efficient numerical methods
for the phase field model

Gihwan Kim

Advisor: Phill-Seung Lee

A dissertation/thesis submitted to the faculty of
Korea Advanced Institute of Science and Technology in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering

Daejeon, Korea
September 23, 2022

Approved by

Phill-Seung Lee
Professor of Mechanical Engineering

The study was conducted in accordance with Code of Research Ethics?.

1) Declaration of Ethical Conduct in Research: |, as a graduate student of Korea Advanced Institute of Science and
Technology, hereby declare that | have not committed any act that may damage the credibility of my research. This
includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my dissertation contains honest conclusions based on my own careful research under the guidance of my
advisor.



DME 7715, Hlojz du rdS ¢

Gihwan Kim. Development of efficient numerical methods for the
phase field model. Department of Mechanical Engineering. 2023.
81+vii pages. Advisor: Phill-Seung Lee. (Text in English)

Aal Al Askgla,

=
Aol wAl Aztm g 54T

w3, F8 A WS AR AR distE AlRbEn. 7d o] ofn AUzt g9 el A
= 7z

AR fe A el A8 47 AAz oA =M, oz s AfEs FA8 paud.
e A AAES Bokel Aokn el Aol FEHh ALY PHEL dol= WS WS
AR ) Ao EnHew 3 B Aow Y@

Abstract

Various numerical methods for fracture analysis have been proposed, but they faced limitations due to several
problems, and a new phase field model was recently proposed. However, it requires a high computational cost
due to the rapid increase in degrees of freedom caused by the fine mesh near the crack tip and due to iterative
solution procedure such as the Newton-Raphson method. Although various adaptive mesh refinement schemes

have been applied to the phase field model, improvement of the computational efficiency still remains a problem



to be solved.

In this dissertation, new numerical methods to improve the computational efficiency of the phase field model for
brittle fracture are proposed. First, in order to reduce the computation time, an adaptive update scheme is
proposed. The whole domain is divided into the domain around the crack tip and the rest domain. By frequently
updating the structural properties of the domain around the crack tip and occasionally updating the structural
properties of the remaining domain, the computational efficiency is improved. For further efficiency
improvement, the adaptive mesh refinement scheme using variable-node finite elements is applied. The proposed

method shows that the computational cost is greatly reduced through various numerical examples.

In addition, mesh coarsening using the phantom-node method is also proposed. The fine mesh in the domain
where the crack tip has already passed is replaced by the coarse mesh to which the phantom-node method is
applied, which drastically reduces the degrees of freedom. The performance of the proposed method is verified
through several numerical examples. It is expected that the proposed methods will be effectively utilized for

fracture analysis using the phase field model.

Keywords Phase field model, Finite element method, Brittle fracture, Crack propagation, Adaptive update,

Adaptive mesh refinement, Variable-node finite element, Phantom-node method, Adaptive mesh coarsening
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Chapter 1. Introduction

1.1. Research background

Fracture is one of the most important phenomena in solid and structural mechanics because it can lead to
catastrophic failures. Understanding and analyzing fracture behaviors are fundamental to avoiding such failures.
Griffith [1] and Irwin [2] played a leading role in understanding the fracture behavior of materials from an
engineering point of view. They introduced a term called “energy release rate” to represent the fracture behavior
in thermodynamic aspects; thus, Linear Elastic Fracture Mechanics (LEFM), the foundation of fracture mechanics,

was born.

In addition to the theoretical development of fracture mechanics, many researchers have tried to simulate fracture
behaviors through numerical analysis. The main tool used for fracture analysis has been the finite element method
(FEM) [3-13]. The finite element analysis of crack propagations requires re-meshing near the crack tip for the
modeling of moving crack tips. This is a very tedious process with high computational cost. Alternative methods
were developed to deal with discontinuities caused by cracks without re-meshing: the element free Galerkin
method (EFGM) [14-16], the extended finite element method (XFEM) [17-19], the phantom node method [20,
21], and various other methods [22, 23]. However, since explicitly tracking the crack surface is a very difficult

task, there are still challenges in dealing with complex and arbitrary crack paths.

The phase field model (PFM) based on the variational approach has been proposed [24-28]. Recently, it has been
applied on problems of ductile fracture, [29] dynamic fracture [30] and so on [31, 32]. It is capable of handling
complex fracture behaviors such as crack initiation and branching. Using a damage parameter as a nodal degree
of freedom allows the model to easily handle complex crack behaviors without crack tracking algorithms. This is
indeed the most advantageous feature of the phase field model. However, it requires an iterative procedure to
solve nonlinear equations such as Newton-Raphson method, and mesh refinement to deal with high gradient

values in the phase field transition zone, which largely increase the computational cost.

To resolve this problem, various adaptive mesh refinement schemes have been successfully employed in the phase
field model [33-47]. In the refinement schemes, displacement compatibility from coarse mesh to fine mesh should

be satisfied. At non-matching mesh interface between coarse and fine meshes, the compatibility is enforced using
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Nitsche's method [44, 46], the hybridizable discontinuous Galerkin method [45] and the global-local approach
[47]. Also, mesh transitions can be implemented adopting layers of triangular and quadrilateral elements [36, 41-

43]. A multiscale approach could be useful [38-39].

1.2. Research objective

In this dissertation, we focus on further improving the computational efficiency of the phase field model for brittle
fracture. We propose the adaptive update scheme. The computational efficiency can be greatly improved without
mesh refinement, and can be further improved when used in conjunction with the adaptive mesh refinement
schemes. In this numerical scheme, the entire domain is divided into two domains: one near the crack tip and one
far from the crack tip. Since structural properties such as stiffness, strain energy, and damage rarely vary in the

domain far from the crack tip, those properties are occasionally updated in the iterative solution procedure.

To maximize the computational efficiency, the local and adaptive mesh refinement schemes can be adopted
together. The adaptive update scheme reduces computation time by 40% to 50% while maintaining the desired
solution accuracy. To implement the adaptive mesh refinement scheme in this study, the use of variable-node
elements [48, 49] is adopted for the mesh transition [50-55]. A fine mesh near the crack tip is directly connected
to the coarse mesh far from the crack tip through only one layer of variable-node elements. The use of variable-
node elements is effective compared to other adaptive mesh refinement schemes in crack tip modeling [33-47].

We also introduce a methodology for the adaptive mesh refinement when the crack tip encounters a hole.

In the following sections, the formulation of the phase field model is reviewed in brief. Then, the adaptive mesh
refinement scheme using variable-node elements and the adaptive update scheme are presented. The effectiveness
of the proposed numerical schemes is demonstrated through several numerical examples. Finally, conclusions are

drawn.

The paper including the works in Chapter 2, 3, 4 and 5 is accepted and will be appear in Ref. [48]. In this

dissertation, the contents contained in Ref. [48] have been written with minor modifications.



Chapter 2. Phase field model

In this section, we briefly review the formulation of the phase field model proposed by Miehe et al. [27] from the
variational approach to numerical implementation. In the following sections, t is a variable representing the

incremental load step instead of the actual time generally used in dynamic analysis [4] because quasi-static

analysis is considered in this study.

2.1. Phase field approximation

A linear elastic body of volume V including a sharp crack surface I' is considered as shown in Fig. 2.1(a). In

Fig.2.1, S, and S, indicate the displacement and force boundaries, respectively.

Sd
(@) (b)

Fig. 2.1. Schematics of a linear elastic body Q including (a) a sharp crack surface I', and (b) a diffusive crack

surface I (¢).

The potential energy functional considering the fracture surface energy based on the Griffith’s theory [1] is given

as

H(u,r):fvwe(a)dv+Gcfrd1‘fj:/fb~udvffs f.-uds, @2.1)

where U is the displacement vector, ¥, denotes the elastic strain energy density, € =g(u) is the small strain
tensor and G, denotes the critical energy release rate, f, and f, denote the externally applied body and

surface force vectors, respectively.

In Eq. (2.1), the elastic strain energy density function is expressed as

-3-



0, () = %Atr(e)z L utr(e?), 2.2)

in which A\ and g are Lamé constants.
From the idea presented by Ambrosio and Tortorelli [57-58], the fracture surface energy term on the right-hand

side in Eq. (2.1) is approximated by

G, fr dl ~ G, fv (B, VB)dV . 2.3)

In Eq. (2.3), ~ denotes the crack surface density function per unit volume

(6. V) = %Iow-ij"—l, 2.4)
with
vp=20, (00, L 00,

X oy Ve Y
where |, denotes the regularization parameter to control the width of crack diffusion with a diffusive crack

surface I' (¢) and ¢ is a damage parameter or phase field variable: a normalized value ranging from 0

(undamaged) to 1 (fully cracked), see Fig. 2.1(b). V¢ denotes the gradient of ¢, and €,, e, and €, are

y
the basis vectors of the Cartesian coordinate system. Fig. 2.2 shows the crack topologies with the distance from a

crack surface ( X; ) in the sharp crack model and the diffusive crack model.
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Fig. 2.2. Crack topologies in (a) the sharp crack model and (b) the diffusive crack model.

The spectral decomposition of the strain tensor is performed [27]

e=¢_+e, (2.5)

with



5= 3(e,) n,n, and (X)) =2 xfx|

in which & and g, denote the negative and positive components of the strain tensor, respectively, n, and
g, denote the eigenvectors and eigenvalues of the strain tensor, respectively, and <>i denotes the Macaulay

bracket operator.

In addition to the decomposition of the strain tensor, the strain energy density function is also separated as
U, () =, (&) +4, (8) (2.6)

with
U (e) = %A(tr(s))i +putr(e?),

where ), and 1), are the negative and positive parts of the strain energy density function, respectively.

Using Eqs. (2.3) and (2.4) in Eq. (2.1), the following equation is obtained

Q/)Z
21,

TI(u, $) = fv [(L—0)? + k], (€)dV + fv G, %I0V¢~V¢+ ‘dv

—j:/fb'udV—fS f,-udS

in which (1—¢)? +k denotes the quadratic function to control the strain energy degradation and k is a very

2.7)

small parameter to prevent numerical singularities (K =10"" is used in this study).

Strong form governing equations are given by

V.e+f, =0, 2.8)
5]
o =[1—¢)’ +k]w8;(£), (2.9)
£
G, + +
I—+2¢e ¢»—G,Vo-Vo =29, (2.10)
0
u=u, on S,, (2.11)
en=f on S, (2.12)
Vé-n=0 on S, (2.13)

in which ¢ is the stress tensor, n is the unit normal vector outward from the body, U, is the prescribed

displacement, and S =S, US,.



To consider the irreversibility of crack growth [59], the positive part of the strain energy density function 1/, in
Eq. (2.10) is replaced as

H (x.t) = max ¥, (8(x,3)), (2.14)

in which t denotes time, s is time ranging from 0 to t,and H(X,t) denotes the local history field.

In Egs. (2.9), (2.10) and (2.14) ,the hybrid formulation proposed by Ambati et al. [60] is adopted in this study (see
Appendix A). Various formulations exist [27, 28, 61], and more advanced formulations have been recently
proposed [62-69]. Note that the numerical schemes presented in the following sections can be used for other phase

field formulations.

2.2. Finite element discretization

The first variation of Eq. (2.5) with Egs. (2.8), (2.10) and (2.14) results in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>