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초 록 

본 논문에서는 enhanced automated multilevel substructuring method (EAMLS)의 새로운 수식을 

제시한다. 전산 효율성을 개선시키기위해 많은 전산 시간과 컴퓨터 메모리를 요구하는 문제들을 

확인하고 효과적인 조치를 취했다. 새로운 수식에서는 축소된 상위 레벨 부구조들(Higher level 

substructure)를 조립(Assemble)해 확장된 루트 부구조(Extended root substructure)를 정의하고, 

이를 이용해 유도된 정제된 부분공간(Refined subspace)위로 축소 모델을 사영(Projection)시킨다. 

그런 다음, 하부 레벨 부구조(Bottom level substructure)의 잔류 유연도 행렬(Residual flexibility 

matrix)로 계산된 잔류 부구조 모드 보정(Residual substructural modes correction)은 질량 행렬에 

대해서만 수행되는데, 이는 계산 비용 및 필요 메모리의 감소효과를 가져온다. 또한 축소된 질량 

및 강성 행렬은 전역 행렬(Global matrix)이 아닌 부분 행렬(Submatrix) 단위에서 계산된다. 새로운 

수식의 정확도와 전산 효율성은 여러가지 대형 유한요소 모델을 통해 입증하였다.  

 

핵 심 낱 말  구조 동역학, 유한요소법, 모델 축소, 부분 구조 합성법, AMLS 기법, 고유치 문제 

 

Abstract 

In this thesis, a new formulation of the enhanced automated multilevel substructuring method (EAMLS) is 

presented. To improve the computational efficiency, the major problems which required large computation time 

and computer memory are inspected and dealt with effectively. In the new formulations, an extended root 

substructure is defined by assembling the reduced higher level substructures, and reduced model is projected on 

a new refined subspace derived by extended root substructure. Then, the residual substructural modes correction 

computed by residual flexibility matrices of bottom substructures is performed only for the mass matrix, which 

gives rise to reduction of computational cost and required memory. In addition, the reduced mass and stiffness 

matrices are computed by submatrix level instead of global matrix. The solution accuracy and computational 

efficiency of the new formulation are demonstrated through several large FE models. 

 

Keywords Structural dynamics, Finite element method, Model reduction, Component mode synthesis, Automated 

multilevel substructuring method, Eigenvalue problem 
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Chapter 1. Introduction 

 

1.1 Background 

 

In recent years, there has been an increasing demand of using the finite element method (FEM) [1] for 

dynamic response analysis of large and complex structures such as automobiles, airplanes and ships. In spite of 

enormous improvement of computer performance, considerable computation time is required for dynamic analysis 

of large finite element (FE) model since the FE model of these structures has more than several million degrees 

of freedom (DOFs). In order to alleviate this inconvenience, simplified FE model is essential for computational 

efficiency and thus the model reduction methods have been emerged from many engineering fields [2-36]. In the 

field of structural dynamics, the model reduction methods can distinguish two major category: physical coordinate 

reduction referred to condensation and generalized coordinate reduction. 

 

In condensation method, DOFs of the global FE model are divided into master DOFs and slave DOFs, and 

the inertial effect and stiffness of the slave DOFs are condensed in the master DOFs. Condensation methods can 

be categorized as static and dynamic condensation depending on handling inertial effect. Static condensation, first 

proposed by Guyan [2] and Irons [3] in 1965, ignore the inertial effect completely. Thus, the solution accuracy is 

guaranteed for only static or low frequency modes. To resolve this limitation, dynamic condensation an improved 

method of static condensation by considering the inertial effect properly was proposed [4–10]. These methods 

have been widely used due to its simple implementation and solution accuracy. 

 

Typically, coordinates which are not physical coordinates indicate the generalized coordinates including but 

not limited to modal coordinates. Modal coordinate reduction, referred to modal superposition or mode 

superposition, is one of the representative methods of the generalized coordinate reduction. Mode superposition 

method is the method of projecting the response of the system to finite number of normal modes such as mode 

displacement, mode acceleration. When it is difficult to solve the eigenvalue problem due to the large size of the 

FE model, a reduced mass and stiffness matrices which are made by component mode synthesis (CMS) can be 

used. The CMS, first proposed by Hurty [11], is related to domain decomposition method that divides structure 

into many substructures. A global (original) FE model is decomposed into several substructures, eigenvalue 

problems for each substructure are solved, and a reduced model is constructed by using dominant substructural 

modes. Craig and Bampton simplify the Hurty’s method, which is the most popular method in CMS called Craig-

Bampton (CB) method [12] and has been widely used. Over the decades, various studies on CMS have been 

carried out [13–29].  

 

1.2 Motivation and objective 

 

The automated multilevel substructuring (AMLS) method [15–17] is an efficient model reduction method to 

solve the frequency response of large and complex FE models through automated partitioning and recursive 
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transformation procedure. This method has practical applications in fields of automobile engineering [30] and 

electromagnetics [31,32], and related studies [20–24,26,28] have been carried out. The AMLS method constructs 

a reduced model using the transformation matrix defined by only dominant substructural modes, the contribution 

of residual substructural modes is not taken into account. Since the goal of the model reduction method is to 

reduce the computation time with minimal loss of accuracy, the enhanced AMLS (EAMLS) method was 

developed [26]. The EAMLS improves the accuracy of the AMLS method considering the effect of the residual 

substructural modes. 

 

The EAMLS method has created a reduced model with extremely well in terms of accuracy. However, the 

compensation of residual substructural modes effect for the mass and stiffness matrix, the core of EAMLS method, 

requires tremendous computer memory and huge computation time because it performs the Rayleigh-Ritz 

procedure including global matrix operation. For this reason, EAMLS method has limitations in reducing large 

FE models involving hundreds of thousands of DOFs. As DOFs of the FE models continues to increase, this 

limitations need to be resolved. 

 

In this thesis, a new formulation of EAMLS method is presented for efficiently resolving the aforementioned 

limitations as follows. First, insignificant terms which are higher order terms and higher level substructure 

flexibility matrices are neglected. In order to reduce the large size of the substructure subspace inevitably increased, 

an extended root substructure is defined by assemblage of higher level substructures. Then, projection on a new 

refined subspace by derived the extended root substructure is employed. In the new formulation, the reduced mass 

and stiffness matrices are computed by submatrix (component) level instead of global matrix, and residual 

substructural modes correction applied only to the reduced mass matrix. 

 

1.3 Outline 

 

 The following summarizes the thesis organization. In chapter 2, the model reduction methods related to 

proposed method is reviewed, including static/dynamic condensation, mode superposition method, and CMS are 

reviewed. In chapter 3, the AMLS and EAMLS transformation process are explained using a rectangular plate 

problem. To introduce the multilevel substructuring method, CMS on single level substructuring is described on 

multilevel context. Then, substructuring a FE model is discussed in preparation for the CMS on multilevel 

substructuring method. Finally, the reduced models by the AMLS and EAMLS method are defined. In chapter 4, 

the new formulation of EAMLS method is presented at the submatrix level. The computation bottlenecks of the 

EAMLS are investigated and resolved. In chapter 5, the performance of proposed method is described in 

comparison with AMLS and previous EAMLS methods through various numerical examples. In chapter 6, the 

conclusion summarizes key points of this thesis and discusses future work. 
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Chapter 2. Model reduction method 

 

 The finite element method (FEM) has been huge improved due to tremendous growth in computer technology, 

but the engineering problems beyond modern computer capacity still exist and lead to extremely time-consuming 

calculation. In order to transform a global model to reduced model for efficient computations with minimal loss 

of accuracy, model reduction method has emerged and proposed until recently [2-36]. This chapter provides 

briefly introduction to the condensation method, mode superposition, and component mode synthesis (CMS). See 

the references [1,2,4,12] for detailed descriptions of these methods. 

 

2.1 Condensation method 

 

 In 1960s, Guyan [2] and Iron [3] first developed the condensation method that condenses minor degrees of 

freedom (DOFs) to major DOFs and simply ignores the inertia effect. The static condensation has an exact result 

for the static analysis, and this method is usually called Guyan reduction method. However, the accuracy of the 

reduced model is generally less accurate for the dynamic analysis due to simply neglecting the inertia effect. To 

alleviate this disadvantage, various extended methods called dynamic condensation method [4–10,33] have been 

proposed in consideration of inertia effect. 

 

2.1.1 Static condensation 

 

  The dynamic equilibrium equations without damping can be expressed by 

ggggg fuKuM  , (2.1) 

where Mg and Kg are the mass and the stiffness matrices of the global model, respectively, and ug and fg are 

the displacement response vector and external force vector for the global model, respectively. The subscript g 

denotes non-reduced global model quantities. The global DOFs can be partitioned as the master (retained) and 

slave (truncated) DOFs. The master and slave DOFs are simply indicate m and s, respectively (see Figure 2.1). 

Then Equation (2.1) can be partitioned as 


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
. (2.2) 

Since the Guyan reduction method ignores dynamic effect, the static equation of equilibrium is used as follows 









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








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s

m

ssms

smmm
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 Assuming that the slave external force fs is to be zeros and expanding of matrix on the left-hand side of 

Equation (2.3), the slave displacement vector becomes 
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Figure 2.1 DOFs selection in a rectangular plate: (a) Global model, (b) Possible DOFs selection (all nodes except 

for master nodes are slave nodes) 

 

mcs uΨu   with msssc ,

1

, KKΨ
  (2.4) 

and then the global displacement vector is approximated as 

mGgg uTuu   with 









c

m

G
Ψ

I
T , (2.5) 

in which the overbar (⋅) indicates the reduced (approximated) quantities, TG is transformation matrix of Guyan 

reduction and Im  is identity matrix of same dimension as master DOFs. The subscript G indicates Guyan 

reduction method.  

 

 Since TG is time-independent coordinate transformation matrix, üg can be approximated by 

mGgg uTuu   . (2.6) 

  

 Substituting Equation (2.5) and (2.6) into Equation (2.1) and premultiplying the transpose of TG gives 

GmGmG fuKuM   with 

Gg

T

GG TMTM  , Gg

T

GG TKTK  , g

T

GG fTf  , 

(2.7) 

where MG and KG are reduced mass and stiffness matrices in Guyan reduction, respectively, and fG is reduced 

force vector in Guyan reduction.  

 

 The generalized eigenvalue problem for the global model is given by 

0φMK  ggg )(  , (2.8) 

(b)(a)
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in which λ is the eigenvalue (square of natural frequency) corresponding to global eigenvector (mode shape) φ
g
. 

Using the reduced mass and stiffness matrices in Equation (2.7), the reduced eigenvalue problem becomes 

0φMK  mGG )(  , (2.9) 

where λ  is approximated eigenvalue of global model and φ
m
  is eigenvector corresponding to master DOFs. 

Note that static condensation has an exact solution for static problem in reduced subspace provided that fs is zero. 

 

2.1.2 Dynamic condensation 

 

 The dynamic condensation [4–10,33] is a model reduction method extending the static condensation for 

dynamic analysis. To achieve a more accurate solution than static condensation, the inertia effects should be 

partially or fully considered. This section briefly reviews the improved reduced system (IRS) method proposed 

O’Callahan [4] among several dynamic condensation. 

 

 Partitioning DOFs of the global FE model into master and slave DOFs as that in Section 2.1.1, the generalized 

eigenvalue problem for the global model in Equation (2.8) is given by 
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
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,,

,,

,,

,,
 , (2.10) 

and expanding the second row on the left-hand side of Equation (2.10), φ
s
 can be expressed by 

mmsmssssss φMKMKφ )()( ,,

1

,,   
. (2.11) 

  

 Since φ
s
 given in Equation (2.11) is a nonlinear function about the unknown λ, it cannot calculated directly. 

Using Taylor expansion, it can be detoured and then φ
s
 is represented by 

mmsssssmsssmssss OO φKKMMKKKφ ])()()([ 32

,

1

,,,

1

,,

1

,    . (2.12) 

  

 Neglecting the terms λ above the second order in Equation (2.12), φ
s
 is approximated as 

mmsssssmsssmsssss φKKMMKKKφφ )]([ ,

1

,,,

1

,,

1

,

   , (2.13) 

and then the global eigenvector φ
g
 can be expressed by 

maG

s

m

gg φTT
φ

φ
φφ )( 








  with 










  )( ,

1

,,,

1

, msssssmsss

a
KKMMK

0
T , (2.14) 

where TG is transformation matrix of Guyan reduction in Equation (2.5) and Ta  is an additional transformation 

matrix considering the inertial effects of the slave DOFs. 

  

 Using Equation (2.9), the following equation is obtained 

mGm φHφ   with GGG KMH
1 . (2.15) 
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 Substituting Equation (2.15) into Equation (2.14), φ
g
 can be expressed without unknown value as 

mIRSgg φTφφ   with GaGIRS HTTT  , (2.16) 

where TIRS is the transformation matrix of IRS method that is more accurate than the Guyan transformation 

matrix, and the reduced mass and stiffness matrices in the IRS method can be obtained as 

Gag

T

a

T

GGg

T

a

T

GGag

T

GGIRSg

T

IRSIRS HTMTHTMTHHTMTMTMTM  , 

Gag

T

a

T

GGg

T

a

T

GGag

T

GGIRSg

T

IRSIRS HTKTHTKTHHTKTKTKTK  . 

(2.17) 

 

 The IRS method is superior to Guyan reduction due to containing inertia effect. However, the reduced mass 

and stiffness matrices in both Guyan reduction and IRS method are highly populated, the computational cost for 

the solution of large system may be much expensive than the original sparse one. 

 

2.2 Mode superposition 

 

 In the field of FEM, dynamic analysis can be performed in two groups. The first is direct integration method 

that solves equilibrium equations using numerical step-by-step integration. The meaning of direct in direct 

integration is that coordinate transformation is not employed. The second is mode superposition that changes the 

physical coordinate to generalized coordinate using global eigensolution. Although the two methods seem 

extraneous, in fact, they are closely related. 

 

 The computational cost of direct integration is proportional to the number of time steps and half bandwidth 

of system determined by the FE mesh topology and the nodal point numbering. Thus, to reduce the bandwidth, 

the FE mesh topology or nodal point numbering should be changed, but it is limit to obtain the minimum 

bandwidth in this way. On the other hand, mode superposition method can decouple the mass and stiffness 

matrices using orthogonality property of eigensoultion, and as a result, matrices are diagonalized. 

 

 The generalized eigenvalue problem in Equation (2.8) yields the Ng eigenpairs in which Ng is the number 

of DOFs in the global model. The eigenvectors are mass- and stiffness-orthogonal: 

ijjgg

T

ig )()( φMφ , ijjjgg

T

ig )()( φKφ  for i and j = 1, 2, ⋯, Ng, (2.18) 

where δij is the Kronecker delta (δij = 1 for i = j, and δij = 0 for i ≠ j). 

 

 Global displacement vector can be expressed based on eigenvector expansion theorem as 

ggg qΦu   with ])()()([ 21 gNgggg φφφΦ  , (2.19) 

where Φg  is the time-independent global eigenvector matrix consisting of eigenvectors φ
g

, q
g

 is the 

generalized coordinate vector. Then, substituting Equation (2.19) into (2.1) and premultiplying by Φg
T, dynamic 

equilibrium equations become 
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g

T

gggg

T

ggg

T

g fΦqΦKΦqΦMΦ  . (2.20) 

 

 Using orthogonality properties in Equation (2.18) and (2.20) is decoupled and can be rewritten as 

g

T

ggg fΦΛqq  , (2.21) 

in which Λ is diagonal eigenvalue matrix. The generalized displacement vector in Equation (2.21) can be 

numerically calculated by Duhamel integral or direct integration. 

 

 If using a full eigensolution, the solution is mathematically exact by eigenvector expansion theorem. In 

practice, only a few modes are retained in the eigensolution provided by a shift invert Lanczos algorithm, which 

reduces both the dimension of system. This method is usually called mode displacement method. The 

computational bottleneck of the mode superposition is that the eigenvalue problem of the large system must be 

solved. 

 

2.3 Component mode synthesis 

 

 The CMS, originally proposed by Hurty [11], has been widely used to resolve the computational bottleneck 

of the mode superposition via component-wise approach like divide-and-conquer. The procedure of the CMS is 

broken down into following four major steps. First, the global structure is divided into several substructures 

(components) composed of interior and interface boundary DOFs. Next, the generalized coordinates 

corresponding to dominant substructural modes are defined by eigenvalue analysis of each substructure, and 

consequently dimension of each substructure is reduced in this step. After that, a reduced FE model is assembled 

or synthesized to form the global model. Finally, the response in reduced generalized coordinate transform into 

response in physical coordinate. The advantages of the CMS is that computational cost and required computer 

memory can be tremendously reduced by virtue of the analysis of smaller substructures, instead of the much larger 

global structure. 

 

 In accordance with the interface handling, CMS can be classified in three groups: fixed interface method 

[11,12,15–17], free interface method [13,18,19], and hybrid method [34]. Because the free and hybrid interface 

method are beyond the scope of this thesis, only the Craig-Bampton (CB) method which is a representative of 

fixed interface based CMS will be discussed. The CB method is still the most popular method and many extended 

studies [19,25,27,35,36]. 

 

 For convenience to present this section, a rectangular plate model as shown in Figure 2.2(a) is taken with 

two substructures Ω1, Ω2 that share the interface boundary Γ as shown in Figure 2.2(b). The dynamic equation 

of motion of substructure Ω1 can be written as 
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Figure 2.2 A rectangular plate with two components: (a) Global FE model, (b) Possible division of global model 

into two substructures with interface boundary 

 

)1()1()1()1()1(
fuKuM   with 











)1(

,

)1(

,

)1(

,

)1(

,)1(

bbib

biii

MM

MM
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i

u

u
u




 , 










)1(

)1(

)1(

b

i

u

u
u , 










)1(

)1(

bf

0
f , 

(2.22) 

where the superscript (1) denotes substructure 1, and the subscripts i  and b  refer to interior and interface 

boundary DOFs, respectively. Note that interior DOFs are not subjected to external loads, because external loads 

are assumed to be applied to the interface boundary DOF in the CB method. 

 

 In order to reduce the dimension of substructure 1, the displacement ui

(1)
 and ub

(1)
 can be expressed as 



































)1(

)1(

)1(

)1(

)1()1()1(

)1(

)1(

bb

c

b

i

u

q
T

u

q

I0

ΨΦ

u

u
, (2.23) 

in which T
(1)
  is the transformation matrix consisting of fixed interface normal modes matrix Φ

(1)
  and 

constraint modes matrix Ψc
(1)
, and q(1) is the generalized coordinate vector corresponding to Φ

(1)
. Note that I 

is the identity matrix. The constraint modes can be defined as 

)1(

,

1)1(

,

)1( )( biiic KKΨ
 , (2.24) 

where the constraint modes matrix Ψc
(1)
  represents static deformation of the substructures by imposing unit 

displacement on interface boundary and is same as Ψc  of the Guyan reduction in Equation (2.4). The fixed 

interface normal modes can be calculated as follows 

)1()1()1(

,

)1()1(

, ΛΦMΦK iiii  , (2.25) 

in which Φ
(1)
 is the substructural eigenvector matrix corresponding to substructural eigenvalue matrix Λ

(1)
. 
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 Φ
(1)
 can be decomposed into dominant and residual substructural modes as 

][ )1()1()1(

rd ΦΦΦ  , (2.26) 

where superscript d and r denote the dominant and residual quantities, respectively. Substituting Equation (2.26) 

into Equation (2.23) gives 

)1()1(

)1(

)1(

)1(

)1()1()1(

)1(

)1(

qT

u

q

q

I00

ΨΦΦ

u

u













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







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



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

b

r

d

crd

b

i
, (2.27) 

in which q
d

(1)
 and q

r
(1) represent the generalized coordinates vector of substructure 1 corresponding to dominant 

and residual substructural modes, respectively. Neglecting Φr
(1) in Equation (2.27), the displacement u(1) can 

be approximated by 
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d
. (2.28) 

  

 The mass and stiffness matrices, and force vector of substructure Ω1 are transformed as follows 

)1()1()1()1( )( d

T

d TMTM  , 
)1()1()1()1( )( d

T

d TKTK  , 
)1()1()1( )( fTf

T

d , (2.29) 

where the submatrix of the reduced mass and stiffness matrices and force vector are given by 


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b
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(2.30) 

 

 After transformation of substructure Ω2 in the similar fashion, reduced model are assembled as 
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(2.31) 

  

 The approximated global displacement vector can be computed by 
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CB . (2.32) 

 

 In the CB method, the reduced eigenvalue problem is given by 

0xMK  CB)(  , (2.33) 

where φ̅ is eigenvector of the reduced model corresponding to the approximated eigenvalue of global model λ.   

 Using the transformation matrix in Equation (2.32), global eigenvectors is given by back transformation 

CBCBg xTφ  . (2.34) 

 

 In this section, CMS on single level substructuring is presented. CMS can be also classified depending on 

substructuring method, and this classification will be discussed in Chapter 3. 
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Chapter 3. Component mode synthesis on multilevel substructuring 

 

 Traditional component mode synthesis (CMS) is the popular and effective way to reduce finite element (FE) 

models. However, it is difficult to apply large FE models since relatively few substructures due to the difficulty 

of manual partitioning have quite large DOFs. In order to resolve this limitation, the automated multilevel 

substructuring (AMLS) method was proposed by Bennighof et al. [15–17]. The AMLS method which extends 

single level to multilevel CMS decomposes global FE model to many small substructures in a purely algebraic 

manner without considering the physical domain. 

 

 Section 3.1 discusses the generalization of traditional CMS using the single level substructuring in multilevel 

context. Since then, Section 3.2 and 3.3 review the formulations of the AMLS and enhanced AMLS (EAMLS) 

method, respectively. See the references [15–17,26] for detailed descriptions of these methods. 

 

3.1 Preliminary to multilevel substructuring 

 

 For the implementation of multilevel substructuring, a substructure consists only of interior DOFs without 

interface boundary DOFs, and interface boundary DOFs belong to interior DOFs of other substructures. In other 

words, the interface boundary DOFs shared with adjacent substructures is also substructure. 

  

 In this section, a rectangular plate model is taken with five substructures as shown in Figure 3.1, but the 

formulation can be generalized to arbitrary partitions. Figure 3.1(a) shows a possible substructuring where the 

areas inside the dotted line refer to areas of substructures and Figure 3.1(b) shows a graph describing to a 

relationships among substructures. This graph as shown in Figure 3.1(b) is called a substructure tree diagram. 

Substructures 1, 2, 3, and 4 are referred to as bottom level substructure that have no substructures below them on 

substructure tree. Substructure 5 is called the highest level substructure that have no substructures above it on 

substructure tree. Substructure tree diagram will be discussed in detail in the Section 3.2.1. 

 

 After partitioning the global FE model like Figure 3.1, the global stiffness matrix and displacement vector 

can be expressed by 
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ug , (3.1) 

in which diagonal entries are the stiffness matrix of the each substructure and off-diagonal entries are the stiffness 

matrices of the each substructure coupled with highest substructure. For the consistent mass matrix, the reordered 

mass matrix possesses exactly the same pattern of the stiffness matrix in Equation (3.1). 
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Figure 3.1 Single level substructure tree diagram for a rectangular plate: (a) Possible substructuring into five 

substructures, (b) Substructure tree 

 

 Starting at substructure 1, fixed interface eigenproblem of substructure 1 is 

111,111,1 ΛΦMΦK   with ][ 111
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in which the superscript d indicates eigensolution extracted lower than a given cutoff frequency value (i.e. 

dominant terms) and the superscript r indicates residual terms to be truncated according to the cutoff frequency 

value. Using Φ1
d, the transformation of substructure 1 can be expressed by 
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where Ψ1,5  is the constraint modes matrix of substructure 1 and q
1
d  is the generalized coordinate vector 

corresponding to Φ1
d. Ii is the identity matrix of same dimension as the ith substructure.  

 

 The transformation of substructure 2 can be also expressed by 
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in which I1
d is the identity matrix with dimension equal to the number of dominant modes of substructure 1. 

Repeating with the transformation of substructure 3 and 4, global displacement vector can be represented by 
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 Using Td in Equation (3.5), reduced mass and stiffness matrices can be represented by 
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(3.6) 

where the overbar (⋅) means the approximated (reduced) quantity.  

 

 If i is a bottom level substructure and the j is the highest level substructure, the submatrices of reduced mass 

and stiffness matrices can be computed as 

iiiiiii ΛΦMΦK ,,  , (3.7a) 
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where the superscript (i)  denotes a matrix updated by the transformation of ith  substructure. In case that 

superscript is zero, then (K̅j,j

(0)
, M̅j,j

(0)
) is equal to (Kj,j, Mj,j). Note that the order of transformation of substructure 

has no requirement in single level substructuring method. 

 

3.2 Automated multilevel substructuring (AMLS) method 

 

 In this section, the formulation of AMLS method is presented in the following two procedures: automated 

substructuring and model transformation. For convenience, a rectangular plate model is taken with two-level 

binary partition of seven substructures (Ns=7) in Figure 3.2. 
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Figure 3.2 Multilevel substructure tree diagram for a rectangular plate: (a) Possible substructuring into seven 

substructures, (b) Substructure tree 

 

3.2.1 Automated substructuring 

 

 For substructuring performed with manual partitioning, it is difficult to divide global FE model to a number 

of substructures, which leads to quite large DOFs of each substructure and induces large computational cost. 

Hence, the necessity of automated substructuring method in a purely algebraic manner had emerged. The nested 

dissection, introduced by George [37], is an algorithm for solving sparse symmetric system of linear equations 

based on graph partitioning and is suitable for creating substructures of a global structure. The reordering and 

partitioning of a matrix can be accomplished by using a graph partition program such as METIS [38] which 

implements the nested dissection. The METIS is used to reorder a matrix for load balancing, construct fill-

reducing ordering, and so on. 

 

 Figure 3.3 describes the detailed substructuring procedure for the matrix. Figure 3.3(a) and Figure 3.3(b) 

show the sparsity patterns of original and reordered matrix in two-level partition as shown in Figure 3.2(b), 

respectively. Figure 3.3(c) shows the idealization of the sparsity pattern in Figure 3.3(b) where the each block 

denotes the nonzero submatrix and the diagonal entries represent the each substructure. If there is no coupled entry 

above the diagonal entry, this column is referred to the bottom level substructure. On the other hand, if there are 

any coupled entries above the diagonal entry, this column is referred to the higher level substructure. In this case, 

blocks 1, 2, 4, 5 represent the bottom level substructures and blocks 3, 6, 7 represent the higher level substructures.  

 

 A column coupled to the right the diagonal entry is called an ancestor of the row, and a row coupled to the 

above the diagonal entry is called a descendant of the column. Let Ci be defined as the set of a descendant of 

substructure i in which the descendant refers to the substructures below it on the substructure tree. Likewise, Pi 

be defined as the set of an ancestor of substructure i in which the ancestor refers to the substructures above it on 

substructure tree. For example, P1 and C7 are {3, 7} and {1, 2, 3, 4, 5, 6}, respectively. If there is no ancestor 

of ith substructure (i.e. Pi = ∅), this substructure is called the highest level substructure. 
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Figure 3.3 Sparsity patterns of matrix: (a) Original matrix, (b) Reordered matrix, (c) Idealization of sparsity pattern 

 

 In the AMLS method, two tree traversal algorithm [39] are used: preorder and postorder traversal of the tree 

data structure. When partitioning the matrix using the METIS, preorder traversal referred to visiting each tree 

node before its descendant is performed. On the other hand, when transforming the matrix, postorder traversal 

referred to visiting each tree node after its descendant is performed. For instance in Figure 3.2(b), the preorder 

and postorder traversal follow the sequences (7, 3, 1, 2, 6, 4, 5) and (1, 2, 3, 4, 5, 6, 7), respectively. 

 

3.2.2 Model transformation 

 

 After the two level binary partition as shown in Figure 3.3(c), the global stiffness matrix Kg and global 

displacement vector ug are represented by 
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For the consistent mass matrix, the reordered mass matrix possesses exactly the same pattern of the stiffness 

matrix as Equation (3.8).  

 

 Starting at substructure 1, fixed interface eigenproblem of substructure 1 is 

111,111,1 ΛΦMΦK   with ][ 111

rd
ΦΦΦ  , 








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r

d

1

1

1
Λ0

0Λ
Λ , (3.9) 

in which the superscript d denotes dominant eigensolution extracted lower than a given cutoff frequency value 

and the superscript r denotes residual quantities that is eigensolution to be truncated according to the cutoff 

frequency value. Using Φ1
d, transformation matrix of substructure 1 can be written by 
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where the constraint modes matrix Ψ1,j are computed by solving the linear equations, and P1 = {3,7}. 

 

 Applying Td

(1)
 to substructure 1 with the Rayleigh-Ritz procedure, the mass and stiffness matrices become 
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(3.11) 

 

 Notice that only the ancestor of substructure 1 are affected and all other substructures are left untouched by 

this transformation. The submatrices of the mass and stiffness matrices can be computed by 

0κ )1(

,1 j  1Pj , (3.12a) 

l

T

jljlj ,1,1,

)1(

,
ˆ KΨKK   1, Plj  , (3.12b) 
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 In the similar way, the transformation of substructure 2 is 

)2()1()2()2( )( d

T

d TMTM  , (3.13) 
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)2()1()2()2( )( d

T

d TKTK  . 

  

 After the transformation of substructure 2, substructure 3, the ancestor of substructure 1 and 2, is transformed 
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where Td

(3)
 is given by 































7

6

5

4

7,33

2

1

)3(

I

I

I

I

ΨΦ

I

I

T

d

d

d

d . (3.15) 

 

 Φ3
d, Λ3

d, and Ψ3,7 in Equation (3.14) and (3.15) satisfy 

33
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and 

)2(

7,3

1)2(

3,37,3
ˆ)ˆ( KKΨ

 . (3.17) 

 The changed submatrices of mass and stiffness matrices are given by 
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 M1,3 and M2,3 in Equation (3.14) represent completely transformed terms and they will not changed by 

transformation of remainder substructures. When all substructures are transformed except for the highest level 

substructure, transformation matrix of substructure 7 is defined by 
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where a full eigensolution is computed for the highest level substructure in the AMLS method [16] 
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 Then the completely transformed (reduced) mass and stiffness matrices are represented by 
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(3.21) 

in which diag(·) in Equation (3.21) denotes a block diagonal matrix and Mj,7 can be computed by 

7

)(

7,7, ΦμM
j

jj   7Cj . (3.22) 

 

 The reduced mass and stiffness matrices can be also expressed 

dg

T

d TMTM  , (3.23) 
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dg

T

d TKTK  , 

where Td is the dominant transformation matrix (i.e. transformation matrix of AMLS method). M and K are 

N × N matrices in which N is the number of dominant modes. Td is given by 
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and may be shown that 
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in which Ti,j
d   denotes a submatrix in the ith  row and jth  column of the Td . Multilevel extended constraint 

modes matrix, Ψ̂ , can be expressed by 
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 Substituting multilevel extended constraint modes in Equation (3.26) into the dominant transformation 

matrix in Equation (3.25), the dominant transformation matrix is obtained 
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ji CPk

d

jkki

d

jjji

d

ji


,,,,, TΨTΨT , 

jCi . (3.27) 

For efficient calculation of the transformation matrix, the order of operation begins Tj,j
d  and moves above the 

column. 

  

 After all substructures have been transformed completely, reduced eigenvalue problem is defined by 

dd xMxK   (3.28) 

where λ is an approximation to a global eigenvalue λ in Equation (2.8). An approximated eigenvector can be 

obtained by 

ddg xTφφ   (3.29) 

in which φ
g
 is a global eigenvector in Equation (2.8) and φ is an approximated eigenvector.  
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3.3 Enhanced AMLS method 

 

 In the AMLS method, a reduced model is constructed using a transformation matrix defined dominant 

substructural modes only, which simply ignores the contribution of residual substructural modes. However, 

considering the effect of residuals substructural modes, the solution accuracy of the reduced model can be 

improved. Based on this fact, the enhanced AMLS (EAMLS) method [26] has been developed, which uses a 

residual flexibility matrix to compensate for the effect of the residual substructural mode. In this section, the 

formulation of EAMLS method is briefly reviewed by using the rectangular plate model in Figure 3.2. 

 

  The non-truncated transformation matrix T can be expressed in dominant and residual parts 

][ rd TTT   with dd ΦΨT ˆ , rr ΦΨT ˆ , (3.30) 

where Φd and Φr are dominant and residual eigenvector matrix, respectively, and they are defined by 

)( 7654321 ΦΦΦΦΦΦΦΦ
dddddd

d diag , (3.31a) 

)( 654321 0ΦΦΦΦΦΦΦ
rrrrrr

r diag . (3.31b) 

  

 Applying the non-truncated transformation matrix T  to the global FE model with the Rayleigh-Ritz 

procedure, the generalized eigenvalue problem in Equation (2.8) can be written as 
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and the global eigenvector can be written by 
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 Expanding of the matrix on the left-hand side of Equation (3.32a), xr can be written as 

d

T

drrrr xMMΛx
1)(   , (3.34) 

and substituting Equation (3.34) into Equation (3.33), the global eigenvector φ
g
 is rewritten as 

d

T

drrrrdg xMMΛTTφ ])([ 1  . (3.35) 

 

 Using 
rr ΦΨT ˆ  in Equation (3.30), the global eigenvector φ

g
 becomes 

ddg

T

rdg xTMΨFΨTφ ]ˆˆ[   with 
T

rrrrr ΦMΛΦF
1)(   , (3.36) 

in which Fr is the residual flexibility of the substructures. Fr can be approximated by the first two terms of the 
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Taylor expansion: 
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where Frs is the static part and Frm is the dynamic part of the residual flexibility Fr. Substituting Equation (3.37) 

into Equation (3.36) and neglecting the second order λ, the global eigenvector φ
g
 can be approximated by 

deg xTφφ   with ade TTT  , dg

T

rsa TMΨFΨT ˆˆ  (3.38) 

in which Te is the enhanced transformation matrix and Ta is the additional transformation matrix containing 

residual substructural modes effect by means of Frs . Note that Frs  is indirectly computed without residual 

substructural eigenpair as 
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(3.39) 

where (K̂i,i
(i-1)

)
-1

  and Φi
d(Λi

d)
-1

(Φi
d)

T
  are the full and dominant flexibility matrices for ith  substructure, 

respectively. The approximation through residual flexibility in Equation (3.38) is conceptually analogous to the 

static correction method [40]. 

 

 By employing O’Callahan’s approach in the framework of the improved reduced system (IRS) method [4] 

to handle the unknown λ in Equation (3.41), following relation is obtained from Equation (3.28) 

dd Hxx   with KMH
1 . (3.40) 

 

 Substituting Equation (3.40) into (3.38), the enhanced transformation matrix Te is rewritten as 

HTTT ade   with dg

T

rsa TMΨFΨT ˆˆ , KMH
1 , (3.41) 

and using Equation (3.41), reduced mass and stiffness matrices in the EAMLS method are defined by 
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(3.42) 

in which Me and Ke are N × N matrices, namely same size of reduced model in the AMLS method. 

  

 The reduced mass and stiffness matrices in the EAMLS method are more accurate than in the AMLS method 

by virtue of the residual substructural modes compensation, which is well expressed in Reference [26]. However, 

the EAMLS method has limitations to reduce large FE models containing over hundreds of thousands of DOFs 

since global matrix operation is required in constructing the enhanced transformation matrix and reduced matrices. 
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Chapter 4. New formulation of the enhanced AMLS method 

 

 The enhanced AMLS (EAMLS) compensates the residual substructural modes effect using the residual 

flexibility matrix, which can significantly improve the solution accuracy compared to the same size of reduced 

model obtained from the AMLS method. As the finite element (FE) model has many more degrees of freedom 

(DOFs), however, computational cost for explicitly employing the Rayleigh-Ritz procedure in the enhanced 

AMLS method can grow rapidly. DOFs of the FE models are getting bigger, and with this trend, an efficient and 

accurate model reduction method is needed to reduce large FE models with several millions of DOFs. Therefore, 

a new formulation of EAMLS method is presented through the following three sections: algebraic substructuring 

with reverse level order traversal, projection on a refined subspace, and the residual substructural modes correction. 

For convenience, a rectangular plate model is taken with two-level binary partition of seven substructures (Ns=7) 

in Figure 4.1 

 

4.1 Algebraic substructuring with reverse level order traversal 

 

  In the present method, assigning substructure numbering uses the reverse level order traversal [39] referred 

to visiting every tree node before moving to nodes on a higher level as shown in Figure 4.1(b). On the other hand, 

transformation of the matrices is performed in postorder traversal or ascending numerical order. In case of Figure 

4.1, the postorder traversal and ascending numerical order follow the sequences (1, 2, 5, 3, 4, 6, 7) and (1, 2, 3, 4, 

5, 6, 7), respectively. 

 

 After the two level binary partition in Figure 4.1(b), the global stiffness matrix Kg and global displacement 

vector ug is rearranged as 
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The rearranged mass matrix possesses exactly the same pattern of the stiffness matrix as Equation (4.1) in the 

consistent mass matrix. 

  

 Let 
dT̂ be the transformation matrix in AMLS procedure. Then, preliminary transformation on Mg and 

Kg for the new formulation results in 
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Figure 4.1 Substructure tree for the present method: (a) Possible substructuring into seven substructures (b) 

Substructure tree 

 































d

d

d

d

d

d

d

dg

T

d

sym

7

7,66

7,55

7,46,44

7,36,33

7,25.22

7,15,11

ˆ.

ˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆˆ

I

μI

μI

μμI

μμI

μμI

μμI

TMTμ , 

)(ˆˆˆ
7654321

ddddddd

dg

T

d diag ΛΛΛΛΛΛΛTKTκ  , 

(4.2) 

in which diag(·) in Equation (4.2) denotes a block diagonal matrix.  

  

 Let Pi be defined by the set of an ancestor of substructure i and Ci be defined by the set of a descendant 

of substructure i. Then, performing the recursive transformation with postorder traversal of substructure tree, the 

submatrices of μ̂  and κ̂  in Equation (4.2) can be computed as follows 

If an ith substructure is bottom level substructure: 
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If an ith substructure is higher level substructure: 
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ˆˆ   iCj , (4.4g) 

in which Equation (4.3a) and (4.4a) are the substructural eigenvalue problems, and the superscript d  and r 

indicate dominant and residual quantities. If the highest excitation frequency is ωc , eigensolutions of each 

substructure are extracted lower than a given cutoff frequency: 

2

cBB k   , (4.5a) 

2

cHH k   . (4.5b) 

in which λB and λH are substructural eigenvalue for bottom and higher level substructures, respectively. In the 

AMLS and EAMLS method, the cutoff factor kB and kH are equal to each other, whereas in present method, kH 

typically has larger value than kB . Extracting the more eigensolutions for higher level substructures is 

advantageous on constructing an accurate reduced model for the same size of the reduced model due to the residual 

substructural mode correction for bottom level substructures. In addition, the highest level substructure 

eigenvalues are truncated unlike previous methods. Hence, μ̂  and κ̂  are N × N matrices in which N is the 

number of dominant modes. Using the cutoff frequency, the substructural modes can be decomposed into 

dominant and residual substructural modes as Equation (4.3a) and (4.4a). 

 

4.2 Projection on a refined subspace 

 

  Even in case that the cutoff factor kB and kH in Equation (4.5) are equal to each other, it is likely that more 

eigensolutions will be retained for the higher level substructures [16]. This may intuitively explained by the fact 

that higher level substructures are generally defined over larger domains and therefore more likely to have lower 

eigensolutions than bottom level substructures. Exploiting the entire subspace of reduced higher level 

substructures leads to expensive computational cost. Based on this fact, a new refined subspace is defined by 

selecting the eigenvector of reduced higher level substructures without losing much accuracy. 

 

 For tree data structure, the root refers to the top of the tree which is substructure 7 in Figure 4.2(a). Let an 
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Figure 4.2 Extended root assemblage process: (a) Original substructure tree (b) Substructure tree after assembling 

the extended root 

 

extended root be defined by the assemblage of higher level substructures shown in Figure 4.2. Then, B is defined 

as a tuple of bottom level substructures, and X is defined as a tuple of extended root substructures (higher level 

substructures). For example in Figure 4.2, B = (1, 2, 3, 4), and X = (5, 6, 7). 

 

 Applying the extended root, μ̂  and κ̂ can be partitioned as 
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(4.6) 

 

 Using the dominant and residual substructural modes in Equation (4.3a) and (4.4a), the dominant and residual 

substructural eigenvector matrix can be defined by 
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and dominant and residual transformation matrices are defined by 

]ˆˆ[ˆ
rd TTT   with dd ΦΨT ˆˆˆ  , rr ΦΨT ˆˆˆ  , (4.8) 

where 
dT̂  can be expressed by 
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where )(ˆ i
T  is the substructural transformation matrix and d

ji ,T̂  can be calculated at the submatrix level 
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jjji
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jCi . (4.10) 

The order of operation begins d

ii ,T̂  and moves above the column. The residual transformation matrix possesses 

exactly the same pattern of dominant transformation matrix as Equation (4.9). Note that the only extended root 

substructure matrices 
XX ,μ̂  and 

XX ,κ̂  are explicitly assembled, while remainders are not assembled in this 

step. 

 

 After reordering the column of transformation matrix T̂  in Equation (4.8) into bottom and extended root 

substructures terms, the global eigenvector φ
g
 can be transformed into the projected eigenvector y 
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where the projected eigenvector y satisfies 

yMyK ˆˆ   with TKTK ˆˆˆ
g

T , TMTM ˆˆˆ
g

T . (4.12) 

 

  The eigenvalue problem for extended root substructure is defined by 

ΞΘμΞκ XXXX ,,
ˆˆ  , with ][ rd ΞΞΞ  , 










r

d

Θ0

0Θ
Θ  (4.13) 

where Ξ and Θ are the eigenvector and eigenvalue matrices consisting of dominant (Ξd and Θd) and residual 

(Ξr and Θr) quantities for extended root substructure. The submatrices of Ξd can be described as 
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in which subscript Xi  is the ith  element of tuple X, ΞXi

d   is the eigenvector of extended root substructure 

corresponding to Xi
th reduced substructure, and NH indicates the number of higher level substructures. 

 

  Using Ξ in Equation (4.13), projected eigenvector y for extended root substructure can be written by 
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where ζ
d
  and ζ

r
  are denotes the generalized coordinate vectors corresponding to Ξd  and Ξr , respectively. 

Using Equation (4.15), the projected eigenvector y can be expressed by 
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 Substituting Equation (4.16) into Equation (4.11), the global eigenvector φ
g
 is rewritten by 
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 After reordering the column of transformation matrix T̃ in Equation (4.17) into dominant and residual terms, 

the global eigenvector φ
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 can be transformed 
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and T̃d and T̃r may be shown that 
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- 28 - 

where T̃d is the refined subspace transformation matrix. 

 Using T̃d in Equation (4.19) instead of 
dT̂ , mass and stiffness matrices in refined subspace are expressed 
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in which d

XI
~   is the identity matrix with dimension equal to the number of column of Ξd . XB ,

~
M   can be 

computed at the submatrix level as 

 
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where the subscript Bi  is ith  element of tuple B. 1

jX   is an index of j  in tuple X . In other words, 1

jX   is 

defined such that jX
jX
1 . NB indicates the number of bottom level substructures. 

 

 Applying Equation (4.20), the eigenvalue problem in refined subspace is given by 

dd ζMζK ˆ~ˆ~
  (4.22) 

 

4.3 Residual substructural modes correction 

 

  Using T̃ in Equation (4.18), the eigenvalue problem in Equation (4.12) can be partitioned as 
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 Expanding of the matrix on the left-hand side of Equation (4.23a), 
rζ̂  can be written 

d

T
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(ˆ 1  , (4.24) 

and substituting Equation (4.24) into Equation (4.18), the global eigenvector φ
g
 is rewritten as 
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 The global eigenvector φ
g
 can be expressed in dominant terms by using 

rr ΦΨT
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  in Equation (4.19)  
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in which Fr is the residual flexibility of the substructures. Fr can be approximated by the Taylor expansion 
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Figure 4.3 Sparsity patterns for substructure: (a) Residual flexibility matrix (b) Stiffness matrix 
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where F̂rs is the static part of the residual flexibility Fr, and can be approximated by using the only residual 

flexibility matrices for bottom level substructures 
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(4.28) 

Note that unlike the previous EAMLS method, the fully populated matrix Ki,i
-1  in Equation (4.28) is never 

explicitly computed (see Figure 4.3). Instead, when used in computation, these matrices are calculated by solving 

the linear equations. 

 

 F̃rs and λ are substituted for Fr and λ, respectively, the global eigenvector φ
g
 can be approximated by 
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 Performing the Rayleigh-Ritz procedure by using Equation (4.28), the reduced mass and stiffness matrices 

are obtained by 
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and reduced eigenvalue problem is given by 
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 Since FB
rs  and Φb

d  are orthogonal with respect to both MB,B  and KB,B , the additional transformation 

matrix T̃a in Equation (4.29) becomes 
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 Substituting Equation (4.32) into Equation (4.30), the following relations are obtained 
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in which E1 can be efficiently computed at the submatrix level as 
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 Substituting Equation (4.33) into (4.31), the reduced eigenvalue problem in Equation (4.31) becomes 
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and employing O’Callahan’s approach as shown in Equation (2.15) and (3.40), and neglecting the second order 

λ term 
ag

T

a TMT
~~2 , a new reduced eigenproblem can be obtained 

dag

T

dd ζHTMTMζK ˆ]
~~~~

[ˆ~
   with 
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Notice that H̃ in Equation (4.36) is non-symmetric matrix and therefore H̃X,B

*
 does not equal to H̃B,X

T
. 

 



- 31 - 

 The submatrix for of 
dζ̂  can be described as 





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y

ζ


1

ˆ  for BNi ,,1 , (4.37) 

where y
Bi

d  and ζ
d
 are the reduced eigenvector corresponding to Bi

th reduced substructure and extended root 

substructure, respectively. 

 

 Using Equation (4.33a) and (4.36), HTMT
~~~

ag

T

d
 in Equation (4.35) becomes 

C

HEHE

00
HTMT













XXBX

ag

T

d

,1

*

,1

~~
~~~

 (4.38) 

in which C is the residual substructural modes correction matrix.  

  

 Applying Equation (4.38), the enhanced reduced mass and stiffness matrices are given 

KK
~~

e , 

CMM 
~~

e  

(4.39) 

 

 Using H̃ in Equation (4.36), the enhanced transformation matrix T̃e is rewritten by 

HTTT
~~~~

ade  , (4.40) 

and then, global eigenvector can be obtained using back transformation procedure 













X

B

deg

φ

φ

ζTφφ ˆ~

 (4.41) 

in which φ̅
B
 and φ̅

X
 are calculated by 
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j
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jXX ζΞTφ 












  ,

ˆ  (4.42b) 

where F̃B

rs
Q

B
 in Equation (4.42a) is already computed in Equation (4.34). 

 

 Table 4.1 describes the algorithm of the present EAMLS method.  
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Table 4.1 Algorithm of the present enhanced AMLS method 

Step 1. Algebraic substructuring with reverse level order traversal 

Step 2. Preliminary transformation on Mg and Kg 

<For bottom level substructures> 

a. Solve the substructural eigenproblem in Equation (4.3a) 

b. Calculate the constraint modes in Equation (4.3b) 

c. Update the ancestors of substructure in Equation (4.3c), (4.3d), and (4.3e) 

<For bottom level substructures> 

a. Solve the substructural eigenproblem in Equation (4.4a) 

b. Calculate the constraint modes in Equation (4.4b) 

c. Update the ancestors of substructure in Equation (4.4c), (4.4d), and (4.4e) 

d. Update the descendant of substructure in Equation (4.4f) 

e. Calculate the completely transformed descendant of substructure in Equation (4.4g) 

Step 3. Projection on the refined subspace 

a. Assemble the extended root substructure 
XX ,μ̂  and 

XX ,κ̂  

b. Solve the eigenproblem for extended root substructure in Equation (4.13) 

c. Projection on the refined subspace in Equation (4.20) and (4.21) 

Step 4. Residual substructural modes correction 

a. Calculate E1 and H̃ in Equation (4.34) and (4.36) 

b. Calculate the residual substructural modes correction matrix C in Equation (4.38) 

c. Construct the reduced mass and stiffness matrices in Equation (4.39) 

Step 5. Reduced eigenproblem 

Solve the reduced eigenproblem in Equation (4.36) 

Step 6. Back transformation procedure 

Calculate the global eigenvector by back transformation procedure in Equation (4.42) 
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Chapter 5. Numerical examples 

 

 In this chapter, four numerical examples including a rectangular plate, a centrifugal impeller, a femur bone, 

and an airplane fuselage in free vibration condition are presented to verify the overall performance of the proposed 

method. The reduced model is constructed by using the AMLS, previous and present EAMLS method, respectively, 

and the performance are judged primarily on the accuracy of solution and elapsed time. The solution accuracy of 

reduced model be evaluated on the following relative eigenvalue error 

i

ii
i







 , (5.1) 

where 𝛾i is the relative eigenvalue error, and 𝜆i and 𝜆i are the approximated and reference (global) eigenvalue 

corresponding to the ith mode. 

  

 The METIS [38], unstructured graph partition program, is used for algebraic substructuring and the number 

of substructures is equal in the AMLS, previous and present EAMLS method. The frequency cutoff value is adopt 

as the criterion for selecting dominant substructural modes. All numerical computations were performed by 

MATLAB 2016b under Windows 10 operating system with an Intel Core i7 7700 3.60 GHz, 32 GB RAM. 

 

5.1 Rectangular plate problem 

 

  A rectangular plate in Figure 5.1 is considered. Length L is 20 m, width B is 12 m, thickness is 0.01 m, 

Young’s modulus E is 207 GPa, Poisson’s ratio 𝜈 is 0.3, and density 𝜌 is 7850 kg/m3. The plate is modeled by 

30×24 mesh (3875 DOFs) of the MITC4 shell element [41] and the reference eigenvalues are written in Appendix. 

The reduced models obtained from the AMLS, previous and present EAMLS are constructed in the same size.  

 

 In this problem, the relative eigenvalue error in Equation (5.1), modal assurance criterion (MAC), and 

relative eigenvector error 𝜀i, defined using MAC, are used to evaluate the accuracy of the methods as follows  

))((

)(
MAC

2

,

jjii

ji

ji
φφφφ

φφ




 ,  (5.2) 

)MAC(arccos i,ii  . (5.3) 

where φ̅
i
 and φ

i
 are the approximated and reference (global) eigenvector corresponding to the ith eigenvalue. 

The global structure is partitioined into 15 substructures using algebraic substructuring in AMLS, and previous 

and present EAMLS methods and compared two different error tolerance in the AMLS method: 

 ▪  Case A: The relative eigenvalue errors in the AMLS method up to the 20th mode are greater than 0.01. For 

 AMLS and previous EAMLS methods, the number of DOFs of the reduced bottom and higher level 

 substructures are 8 and 141, respectively. For present EAMLS methods, the number of DOFs of the reduced 

 bottom level substurctures and extended root substructure are 60 and 89, respectively. Therefore, the  

 number of DOFs of reduced models are 149. 
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Figure 5.1 A rectangular plate model 

 

 ▪ Case B: The relative eigenvalue errors in the AMLS method up to the 20th mode are less than 0.01. For 

 AMLS and previous EAMLS methods, the number of DFOS of the reduced bottom and higher level 

 substructures are 46 and 163, respectively. For present EAMLS methods, the number of DOFs of the reduced 

 bottom level substructures and extended root substructure on refined subspace are 91 and 118, respectively. 

 Therefore, the number of DOFs of reduced models are 209. 

 

 Figure 5.2 represents the relative eigenvalue errors for each case, and Table 5.1 present the relative eigenvalue 

errors for Case A. Figure 5.3 and 5.4 represent the MAC values and relative eigenvector errors for Case A. The 

results of Case A demonstrate the improved accuracy of the present method compared to the AMLS methods, and 

the tiny loss in accuracy compared to the previous EAMLS method. On the other hand, in Case B, the accuracy 

of the present method has been improved compared to the AMLS method, while slight bigger loss in accuracy 

occurs compared to the previous EAMLS method than Case A. Table 5.2 and 5.3 describe the computational cost 

for each method. Table 5.2 show that the present method only requires 1.04 times more computational cost than 

the AMLS method and 3.44 times faster than previous EAMLS method. Table 5.3 show that the present method 

only requires 1.07 times more computational cost than the AMLS method and 3.54 times faster than previous 

EAMLS method. The efficiency of present method is guaranteed in both cases. 
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Figure 5.2 Relative eigenvalue errors for the rectangular plate problem: (a) Case A, (b) Case B 
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Table 5.1 Relative eigenvalue errors for the rectangular plate problem in Case A 

Mode number AMLS 
EAMLS 

Previous Present 

1 8.54038×10-4 5.31416×10-9 3.43342×10-8 

2 3.64345×10-4 5.43980×10-10 8.43386×10-8 

3 8.52799×10-4 1.55100×10-8 2.50882×10-6 

4 6.81176×10-3 1.65724×10-6 3.64546×10-6 

5 2.86210×10-2 4.47137×10-6 1.85045×10-6 

6 4.30107×10-2 2.68323×10-5 7.40431×10-6 

7 3.41986×10-3 6.34895×10-7 1.33956×10-5 

8 4.24908×10-2 1.13308×10-4 2.83256×10-5 

9 5.29423×10-2 5.50996×10-5 3.48417×10-5 

10 4.67332×10-2 5.37409×10-5 6.38754×10-5 

11 9.62249×10-2 5.90782×10-4 3.92355×10-5 

12 3.94315×10-1 9.04083×10-4 5.33350×10-5 

13 6.43190×10-1 2.26478×10-3 7.42547×10-5 

14 3.63637×10-1 4.72177×10-3 1.95644×10-4 

15 1.95130×10-1 3.27608×10-3 4.13647×10-5 

16 2.95617×10-1 1.23627×10-3 1.80371×10-4 

17 4.64452×10-1 1.03832×10-3 3.09585×10-4 

18 9.18239×10-1 6.41150×10-2 4.04529×10-5 

19 7.00959×10-1 1.84309×10-2 3.28335×10-4 

20 7.62391×10-1 2.42997×10-2 4.79123×10-4 
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Figure 5.3 2-D presentation of MAC values for the rectangular plate problem in Case A: (a) AMLS, (b) previous 

EAMLS, (c) present EAMLS 
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Figure 5.4 Relative eigenvector errors for the rectangular plate problem in Case A 
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Table 5.2 Specific computational cost for the rectangular plate problem in Case A  

Methods Items 
Computation times 

[sec] Ratio [%] 

AMLS 

Calculation of constraint modes 0.11 12.09 

Transformation procedure 0.30 32.97 

Reduced eigenvalue problem 0.15 16.48 

Construction of transformation matrix 0.25 27.47 

Back transformation procedure 0.10 10.99 

Total 0.91 100.00 

Previous 

EAMLS 

Calculation of constraint modes and residual flexibility matrix 0.31 34.07 

AMLS transformation procedure 0.28 30.77 

Construction of extended constraint modes matrix 0.47 51.65 

Construction of the enhanced transformation matrix 2.05 225.27 

Reduced eigenvalue problem 0.15 16.48 

Back transformation procedure 0.01 1.10 

Total 3.27 359.34 

Present 

EAMLS 

Preliminary transformation procedure 0.41 45.06 

Projection on the refined subspace 0.01 1.10 

Residual substructural modes correction 0.09 9.89 

Reduced eigenvalue problem 0.14 15.38 

Construction of the enhanced transformation matrix 0.20 21.98 

Back transformation procedure 0.10 10.99 

Total 0.95 104.40 

 

 

 

Table 5.3 Computational cost for the rectangular plate problem in Case B 

Methods 

Computation times 

[sec] Ratio [%] 

AMLS 0.930 100.00 

Previous EAMLS 3.528 379.35 

Present EAMLS 0.996 107.10 
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5.2 Centrifugal impeller problem 

 

  Here, a centrifugal impeller, a key component of centrifugal compressor, is considered as shown in Figure 

5.5. The impeller is modeled using 66201 four-node tetrahedral elements and the number of total DOFs is 52332. 

Young’s modulus E is 207 GPa, Poisson’s ratio 𝜈 is 0.3, and density 𝜌 is 7850 kg/m3. The reduced models 

obtained from the AMLS, previous and present EAMLS are constructed in the same size. 

 

 The global mass and stiffness matrices for the AMLS, previous and present EAMLS methods are partitioined 

322 substructures using algebraic substructuring. For AMLS and previous EAMLS methods, the number of DOFs 

of the reduced bottom and higher level substructures are 162 and 1415, respectively. For present method to 

construct the same DOFs of reduced model, the number of DOFs of the reduced bottom level substructure and 

extended root substructure are 194 and 1383, respectively. Therefore, the number of DOFs of reduced models are 

1577. 

 

 Figure 5.6, 5.7, and 5.8 illustrate the relative eigenvalue errors, MAC values, and relative eigenvector errors 

computed by the AMLS, previous and present EAMLS methods up to the 60th mode, respectively. Table 5.4 lists 

the required computational costs for each method. As aforementioned in chapter 3 and 4, computation of enhanced 

transformation by global operation is identified as bottleneck in the previous EAMLS method. In addition, explicit 

calculation of substructural residual flexibility matrix Fi
rs, fully populated matrices, is required large computer 

memory and gives rise to additional arithmetic operations.  

 

  



- 41 - 

 

 

Figure 5.5 A centrifugal impeller model 

 

 

 

Figure 5.6 Relative eigenvalue errors for the centrifugal impeller problem 
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Figure 5.7 2-D presentation of MAC values for the centrifugal impeller problem: (a) AMLS, (b) previous EAMLS, 

(c) present EAMLS 
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Figure 5.8 Relative eigenvector errors for the centrifugal impeller problem 
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Table 5.4 Specific computational cost for the centrifugal impeller problem 

Methods Items 
Computation times 

[sec] Ratio [%] 

AMLS 

Calculation of constraint modes 2.95 4.28 

Transformation procedure 55.66 80.80 

Reduced eigenvalue problem 0.87 1.26 

Construction of transformation matrix 9.08 13.18 

Back transformation procedure 0.33 0.48 

Total 68.89 100.00 

Previous 

EAMLS 

Calculation of constraint modes and residual flexibility matrix 4.39 6.37 

AMLS transformation procedure 59.93 86.99 

Construction of extended constraint modes matrix 64.62 93.80 

Construction of the enhanced transformation matrix 3015.17 4376.79 

Reduced eigenvalue problem 1.62 2.35 

Back transformation procedure 0.25 0.36 

Total 3145.98 4566.67 

Present 

EAMLS 

Preliminary transformation procedure 59.27 86.03 

Projection on refined subspace 1.68 2.44 

Residual substructural modes correction 9.65 14.01 

Reduced eigenvalue problem 0.77 1.12 

Construction of the enhanced transformation matrix 2.76 4.01 

Back transformation procedure 1.36 1.97 

Total 75.49 109.58 
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5.3 Femur bone problem 

 

 Over the past few decades, FE analysis has been applied for simulating biomedical engineering systems to 

predict the dynamic properties such as natural frequencies, vibration modes, and fracture load. Here, a femur bone 

is considered as shown in Figure 5.9. The bone material is inherently anisotropic, but is assumed to be isotropic 

material. Young’s modulus E is 18 GPa, Poisson’s ratio 𝜈  is 0.3, and density 𝜌  is 1900 kg/m3  [42]. For 

modeling the femur bone, 425345 four-node tetrahedral element are used, and the number of DOFs is 289431. In 

this problem, the reduced models cannot be obtained from the previous EAMLS method since direct calculation 

of the enhanced transformation matrix is required large computational memory and time. The global mass and 

stiffness matrices are partitioned into 997 substructures for both methods using algebraic substructuring, and the 

reduced model obtained by AMLS and present EAMLS methods are constructed in the same size. 

 

 For the AMLS method, the number of DOFs of the reduced bottom and higher level substructures are 499 

and 1167. For the present method, the number of DOFs of the reduced bottom level substructures and extended 

root substructure are 1466 and 200, respectively. Therefore, the number of DOFs of reduced models are 1666. 

Figure 5.10 represents the relative eigenvalue errors corresponding to 1st  100th  and Table 5.5 shows 

computational cost obtained from AMLS and present method. These results demonstrates the excellent solution 

accuracy and only required slight additional computational cost compared to AMLS method. 

 

 

 

 

 

Figure 5.9 A femur bone model 



- 46 - 

 

Figure 5.10 Relative eigenvalue errors for the femur bone prblem 

 

 

 

Table 5.5 Computational cost for the femur bone problem 

Methods 

Computation times 

[sec] Ratio [%] 

AMLS 627.17 100.00 

Previous EAMLS N/A - 

Present EAMLS 707.92 112.88 
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5.4 Airplane fuselage problem 

 

 Here, an airplane fuselage, modeled by three-node shell element, is considered as shown in Figure 5.11 to 

validate the performance of present method for relatively large FE model. Young’s modulus E is 71 GPa, Poisson’s 

ratio 𝜈 is 0.3, and density 𝜌 is 2770 kg/m3. The number of element and DOFs in global FE model are 675056 

and 2025180, respectively. In this problem, the reduced model cannot be obtained from previous EAMLS method 

like femur bone problem. The global FE model is partitioned into 6112 substructures for both methods using 

algebraic substructuring.  

 

 In order to compare the efficiency between AMLS and present EAMLS methods at similar accuracy, the 

sizes of the reduced model are different. Figure 5.12 illustrates the relative eigenvalue errors up to 300th mode 

from the four different DOFs of reduced models: N̅ = 21802 , N̅ = 26561 , N̅ = 31655 , and Ñ = 3784 . Total 

computational costs are listed in the Table 5.6. From these results, the present method can construct a small size 

reduced model with better efficiency compared to the AMLS method. 

 

 

 

 

 

 

 

 

 

Figure 5.11 An airplane fuselage model 
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Figure 5.12 Relative eigenvalue errors for the airplane fuselage problem 

 

 

 

Table 5.6 Computational cost for the airplane fuselage problem 

Methods 

Computation times 

[sec] Ratio [%] 

 AMLS (N̅ = 21802) 5705.36 95.07 

 AMLS (N̅ = 26561) 5889.58 98.14 

 AMLS (N̅ = 31655) 6001.23 100.00 

 Previous EAMLS  N/A - 

 Present EAMLS (Ñ = 3784) 5600.41 93.32 
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Chapter 6. Conclusions 

 

  In this thesis, the new formulation of EAMLS method for reduction of the large FE models has been presented. 

In order to resolve the factors associated with deteriorating efficiency, three phases for managing the computer 

memory and computational cost were discussed in detailed: algebraic substructuring with reverse level order 

traversal, projection on the refined subspace, and the residual substructural modes correction. The new formulation 

employed these processes represents the extremely increase efficiency compared to the previous EAMLS method 

and has capability to solve the large and complex models over millions DOFs. Unlike the previous EAMLS 

method, residual flexibility matrices is derived from only bottom level substructures and not required explicitly. 

In addition, residual substructural modes correction is applied to only the mass matrix, and this give rise to an 

efficient algorithm. The new formulation is demonstrated its accuracy and efficiency through various numerical 

examples, and identified to enable reduction of large and complex FE models which cannot be solved from the 

previous EAMLS method. 

 

  In the future work, it would be possible to develop a more robust EAMLS method with efficient mode 

selection, which has a significant on both accuracy and computational cost. For this, it should be investigated the 

effect of the selected modes and optimal choice of modes. 
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Appendix 

  

 Table A.1 lists the reference eigenvalues λ for the rectangular plate problem in Section 5.1 up to 30th mode. 

 

Table A.1 The reference eigenvalues for the rectangular plate problem in Section 5.1 

Mode number Reference λ 

1 -9.35828×10-10 

2 1.65559×10-9 

3 4.24917×10-9 

4 4.87676×10-9 

5 5.90795×10-9 

6 6.57825×10-9 

7 0.696479971 

8 0.749201188 

9 3.842803708 

10 5.341551279 

11 5.732317012 

12 9.101727949 

13 12.60505321 

14 18.82903417 

15 22.78273281 

16 33.69775915 

17 40.95263798 

18 45.13653716 

19 50.81684223 

20 62.03892043 

21 74.84707080 

22 80.81029884 

23 81.28972606 

24 118.6988289 

25 141.4146650 

26 149.6863495 

27 168.3535584 

28 176.3333556 

29 188.0154359 

30 190.6058926 
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