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Abstract

In this thesis, a new formulation of the enhanced automated multilevel substructuring method (EAMLS) is
presented. To improve the computational efficiency, the major problems which required large computation time
and computer memory are inspected and dealt with effectively. In the new formulations, an extended root
substructure is defined by assembling the reduced higher level substructures, and reduced model is projected on
a new refined subspace derived by extended root substructure. Then, the residual substructural modes correction
computed by residual flexibility matrices of bottom substructures is performed only for the mass matrix, which
gives rise to reduction of computational cost and required memory. In addition, the reduced mass and stiffness
matrices are computed by submatrix level instead of global matrix. The solution accuracy and computational

efficiency of the new formulation are demonstrated through several large FE models.

Keywords Structural dynamics, Finite element method, Model reduction, Component mode synthesis, Automated

multilevel substructuring method, Eigenvalue problem
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Chapter 1. Introduction

1.1 Background

In recent years, there has been an increasing demand of using the finite element method (FEM) [1] for
dynamic response analysis of large and complex structures such as automobiles, airplanes and ships. In spite of
enormous improvement of computer performance, considerable computation time is required for dynamic analysis
of large finite element (FE) model since the FE model of these structures has more than several million degrees
of freedom (DOFs). In order to alleviate this inconvenience, simplified FE model is essential for computational
efficiency and thus the model reduction methods have been emerged from many engineering fields [2-36]. In the
field of structural dynamics, the model reduction methods can distinguish two major category: physical coordinate

reduction referred to condensation and generalized coordinate reduction.

In condensation method, DOFs of the global FE model are divided into master DOFs and slave DOFs, and
the inertial effect and stiffness of the slave DOFs are condensed in the master DOFs. Condensation methods can
be categorized as static and dynamic condensation depending on handling inertial effect. Static condensation, first
proposed by Guyan [2] and Irons [3] in 1965, ignore the inertial effect completely. Thus, the solution accuracy is
guaranteed for only static or low frequency modes. To resolve this limitation, dynamic condensation an improved
method of static condensation by considering the inertial effect properly was proposed [4—10]. These methods

have been widely used due to its simple implementation and solution accuracy.

Typically, coordinates which are not physical coordinates indicate the generalized coordinates including but
not limited to modal coordinates. Modal coordinate reduction, referred to modal superposition or mode
superposition, is one of the representative methods of the generalized coordinate reduction. Mode superposition
method is the method of projecting the response of the system to finite number of normal modes such as mode
displacement, mode acceleration. When it is difficult to solve the eigenvalue problem due to the large size of the
FE model, a reduced mass and stiffness matrices which are made by component mode synthesis (CMS) can be
used. The CMS, first proposed by Hurty [11], is related to domain decomposition method that divides structure
into many substructures. A global (original) FE model is decomposed into several substructures, eigenvalue
problems for each substructure are solved, and a reduced model is constructed by using dominant substructural
modes. Craig and Bampton simplify the Hurty’s method, which is the most popular method in CMS called Craig-
Bampton (CB) method [12] and has been widely used. Over the decades, various studies on CMS have been
carried out [13-29].

1.2 Motivation and objective

The automated multilevel substructuring (AMLS) method [15—17] is an efficient model reduction method to

solve the frequency response of large and complex FE models through automated partitioning and recursive
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transformation procedure. This method has practical applications in fields of automobile engineering [30] and
electromagnetics [31,32], and related studies [20—24,26,28] have been carried out. The AMLS method constructs
a reduced model using the transformation matrix defined by only dominant substructural modes, the contribution
of residual substructural modes is not taken into account. Since the goal of the model reduction method is to
reduce the computation time with minimal loss of accuracy, the enhanced AMLS (EAMLS) method was
developed [26]. The EAMLS improves the accuracy of the AMLS method considering the effect of the residual

substructural modes.

The EAMLS method has created a reduced model with extremely well in terms of accuracy. However, the
compensation of residual substructural modes effect for the mass and stiffness matrix, the core of EAMLS method,
requires tremendous computer memory and huge computation time because it performs the Rayleigh-Ritz
procedure including global matrix operation. For this reason, EAMLS method has limitations in reducing large
FE models involving hundreds of thousands of DOFs. As DOFs of the FE models continues to increase, this

limitations need to be resolved.

In this thesis, a new formulation of EAMLS method is presented for efficiently resolving the aforementioned
limitations as follows. First, insignificant terms which are higher order terms and higher level substructure
flexibility matrices are neglected. In order to reduce the large size of the substructure subspace inevitably increased,
an extended root substructure is defined by assemblage of higher level substructures. Then, projection on a new
refined subspace by derived the extended root substructure is employed. In the new formulation, the reduced mass
and stiffness matrices are computed by submatrix (component) level instead of global matrix, and residual

substructural modes correction applied only to the reduced mass matrix.

1.3 Outline

The following summarizes the thesis organization. In chapter 2, the model reduction methods related to
proposed method is reviewed, including static/dynamic condensation, mode superposition method, and CMS are
reviewed. In chapter 3, the AMLS and EAMLS transformation process are explained using a rectangular plate
problem. To introduce the multilevel substructuring method, CMS on single level substructuring is described on
multilevel context. Then, substructuring a FE model is discussed in preparation for the CMS on multilevel
substructuring method. Finally, the reduced models by the AMLS and EAMLS method are defined. In chapter 4,
the new formulation of EAMLS method is presented at the submatrix level. The computation bottlenecks of the
EAMLS are investigated and resolved. In chapter 5, the performance of proposed method is described in
comparison with AMLS and previous EAMLS methods through various numerical examples. In chapter 6, the

conclusion summarizes key points of this thesis and discusses future work.



Chapter 2. Model reduction method

The finite element method (FEM) has been huge improved due to tremendous growth in computer technology,
but the engineering problems beyond modern computer capacity still exist and lead to extremely time-consuming
calculation. In order to transform a global model to reduced model for efficient computations with minimal loss
of accuracy, model reduction method has emerged and proposed until recently [2-36]. This chapter provides
briefly introduction to the condensation method, mode superposition, and component mode synthesis (CMS). See

the references [1,2,4,12] for detailed descriptions of these methods.
2.1 Condensation method

In 1960s, Guyan [2] and Iron [3] first developed the condensation method that condenses minor degrees of
freedom (DOFs) to major DOFs and simply ignores the inertia effect. The static condensation has an exact result
for the static analysis, and this method is usually called Guyan reduction method. However, the accuracy of the
reduced model is generally less accurate for the dynamic analysis due to simply neglecting the inertia effect. To
alleviate this disadvantage, various extended methods called dynamic condensation method [4-10,33] have been

proposed in consideration of inertia effect.

2.1.1 Static condensation

The dynamic equilibrium equations without damping can be expressed by
M, +Ku, =f,, 2.1)
where M, and K, are the mass and the stiffness matrices of the global model, respectively, and u, and f, are
the displacement response vector and external force vector for the global model, respectively. The subscript g
denotes non-reduced global model quantities. The global DOFs can be partitioned as the master (retained) and

slave (truncated) DOFs. The master and slave DOFs are simply indicate m and s, respectively (see Figure 2.1).

Then Equation (2.1) can be partitioned as
Mm,m Mm,s |:umj|+ Km,m Km,s |:umj|_|:fm:| (2 2)
Ms,m MS,S l"jS Ks,m KS,S uS fS '
Since the Guyan reduction method ignores dynamic effect, the static equation of equilibrium is used as follows

Km,m Km,s um _ fm
KS,m KS,S uS - fS . (2.3)

Assuming that the slave external force f; is to be zeros and expanding of matrix on the left-hand side of

Equation (2.3), the slave displacement vector becomes



e Master node

(a) (b)
Figure 2.1 DOFs selection in a rectangular plate: (a) Global model, (b) Possible DOFs selection (all nodes except

for master nodes are slave nodes)

u,=Yu, win ¥, =-K K, (2.4)

and then the global displacement vector is approximated as

_ ' I
U, U, =TgU, with T, {\P } 2.5)

c

in which the overbar () indicates the reduced (approximated) quantities, T is transformation matrix of Guyan
reduction and I, is identity matrix of same dimension as master DOFs. The subscript G indicates Guyan

reduction method.

Since T is time-independent coordinate transformation matrix, i, can be approximated by

g

e

~U, = Tel,. (2.6)

Substituting Equation (2.5) and (2.6) into Equation (2.1) and premultiplying the transpose of T, gives
MU, +Kgu,, =5 with
2.7)
A 7T v o_TT Fo_0T
Mg =TeM, T, Ko =ToK, T, fo = T2f,.
where M and K are reduced mass and stiffness matrices in Guyan reduction, respectively, and f; is reduced

force vector in Guyan reduction.

The generalized eigenvalue problem for the global model is given by

(Kg _ﬂ’Mg)q)g :O, (2.8)



in which 4 is the eigenvalue (square of natural frequency) corresponding to global eigenvector (mode shape) 9,

Using the reduced mass and stiffness matrices in Equation (2.7), the reduced eigenvalue problem becomes
(Kg=AMg)e,, =0, (2.9)

where 1 is approximated eigenvalue of global model and ¢ is eigenvector corresponding to master DOFs.

Note that static condensation has an exact solution for static problem in reduced subspace provided that f; is zero.
2.1.2 Dynamic condensation

The dynamic condensation [4—10,33] is a model reduction method extending the static condensation for
dynamic analysis. To achieve a more accurate solution than static condensation, the inertia effects should be
partially or fully considered. This section briefly reviews the improved reduced system (IRS) method proposed

O’Callahan [4] among several dynamic condensation.

Partitioning DOFs of the global FE model into master and slave DOFs as that in Section 2.1.1, the generalized

eigenvalue problem for the global model in Equation (2.8) is given by

Km,m Km,s _ Mm,m Mm,s On| {0} (2.10)
Ks,m Ks,s Ms,m Ms,s 0, 0]
and expanding the second row on the left-hand side of Equation (2.10), ¢  can be expressed by
-1
0 = (Koo =AM ) (K, o =AM 1), (2.11)

Since @ givenin Equation (2.11) is a nonlinear function about the unknown 4, it cannot calculated directly.

Using Taylor expansion, it can be detoured and then ¢ is represented by

0, = [_K;lsKs,m + J’Kgls(Msm - MS,SK;,lsKs,m) + O(ﬂ’z) + 0(13) +-- ](pm . (2.12)

Neglecting the terms 4 above the second order in Equation (2.12), @, is approximated as

— -1 -1 -1
O, 0 = [_Ks,sKs,m + /1Ks,s (Ms,m - I\/Is,sKs,sKs,m)](Pm7 (2.13)
and then the global eigenvector ¢, can be expressed by
_ |, : 0
(pg ~ (Pg = — = (TG + //i‘Ta)(Pm Wlth Ta = K—l (M _ M K—l K ) ! (214)

where T is transformation matrix of Guyan reduction in Equation (2.5) and T, is an additional transformation

matrix considering the inertial effects of the slave DOFs.

Using Equation (2.9), the following equation is obtained

29, =Hg, with Hg =M K. (2.15)



Substituting Equation (2.15) into Equation (2.14), o, can be expressed without unknown value as

P z69 :TIRS(Pm with Tigs = Tg + T,Hg, (2.16)

where Tjpg is the transformation matrix of IRS method that is more accurate than the Guyan transformation
matrix, and the reduced mass and stiffness matrices in the IRS method can be obtained as
V1 T _A T TT TT
Migs = TrsMTirs =M + ToM T, He + H T, M To + H T, M T, H
(2.17)
w T W T T4T TT
Kirs = TirsK g Tigs =Ko + To K T,Hg + H T, K T + He T, K T, H,

The IRS method is superior to Guyan reduction due to containing inertia effect. However, the reduced mass
and stiffness matrices in both Guyan reduction and IRS method are highly populated, the computational cost for

the solution of large system may be much expensive than the original sparse one.
2.2 Mode superposition

In the field of FEM, dynamic analysis can be performed in two groups. The first is direct integration method
that solves equilibrium equations using numerical step-by-step integration. The meaning of direct in direct
integration is that coordinate transformation is not employed. The second is mode superposition that changes the
physical coordinate to generalized coordinate using global eigensolution. Although the two methods seem

extraneous, in fact, they are closely related.

The computational cost of direct integration is proportional to the number of time steps and half bandwidth
of system determined by the FE mesh topology and the nodal point numbering. Thus, to reduce the bandwidth,
the FE mesh topology or nodal point numbering should be changed, but it is limit to obtain the minimum
bandwidth in this way. On the other hand, mode superposition method can decouple the mass and stiffness

matrices using orthogonality property of eigensoultion, and as a result, matrices are diagonalized.

The generalized eigenvalue problem in Equation (2.8) yields the N, eigenpairs in which N, is the number

of DOFs in the global model. The eigenvectors are mass- and stiffness-orthogonal:
T T . .
((|)g)i |\/|g((|)g)j 25”-, (([)g)i Kg((pg)j :ijé‘ij for iandj =1, 2, -+, Ng, (2.18)

where J;; is the Kronecker delta (6; =1 for i =j,and J; = 0 for i #j).

Global displacement vector can be expressed based on eigenvector expansion theorem as
Uy =@.q, with @ =[(,); (95), - (05)y ], (2.19)
where ®, is the time-independent global eigenvector matrix consisting of eigenvectors 9, q, is the

generalized coordinate vector. Then, substituting Equation (2.19) into (2.1) and premultiplying by ®?, dynamic

equilibrium equations become



T = T T
oM@ [, +® KD q,=®f . (2.20)

Using orthogonality properties in Equation (2.18) and (2.20) is decoupled and can be rewritten as

A, +Aq, = Of 2.21)

9'9’
in which A is diagonal eigenvalue matrix. The generalized displacement vector in Equation (2.21) can be

numerically calculated by Duhamel integral or direct integration.

If using a full eigensolution, the solution is mathematically exact by eigenvector expansion theorem. In
practice, only a few modes are retained in the eigensolution provided by a shift invert Lanczos algorithm, which
reduces both the dimension of system. This method is usually called mode displacement method. The
computational bottleneck of the mode superposition is that the eigenvalue problem of the large system must be

solved.
2.3 Component mode synthesis

The CMS, originally proposed by Hurty [11], has been widely used to resolve the computational bottleneck
of the mode superposition via component-wise approach like divide-and-conquer. The procedure of the CMS is
broken down into following four major steps. First, the global structure is divided into several substructures
(components) composed of interior and interface boundary DOFs. Next, the generalized coordinates
corresponding to dominant substructural modes are defined by eigenvalue analysis of each substructure, and
consequently dimension of each substructure is reduced in this step. After that, a reduced FE model is assembled
or synthesized to form the global model. Finally, the response in reduced generalized coordinate transform into
response in physical coordinate. The advantages of the CMS is that computational cost and required computer
memory can be tremendously reduced by virtue of the analysis of smaller substructures, instead of the much larger

global structure.

In accordance with the interface handling, CMS can be classified in three groups: fixed interface method
[11,12,15—17], free interface method [13,18,19], and hybrid method [34]. Because the free and hybrid interface
method are beyond the scope of this thesis, only the Craig-Bampton (CB) method which is a representative of
fixed interface based CMS will be discussed. The CB method is still the most popular method and many extended
studies [19,25,27,35,36].

For convenience to present this section, a rectangular plate model as shown in Figure 2.2(a) is taken with
two substructures Q;, Q, that share the interface boundary I' as shown in Figure 2.2(b). The dynamic equation

of motion of substructure €; can be written as



(a) (b)
Figure 2.2 A rectangular plate with two components: (a) Global FE model, (b) Possible division of global model

into two substructures with interface boundary

MPu® + KOu® =£® with

@) 1) (1) (1)
@ _ M M KO = Kii  Kip 4O = u® uo = u® FO _ 0 (2.22)
VY R P I Y R I R P

b

where the superscript (1) denotes substructure 1, and the subscripts i and b refer to interior and interface
boundary DOFs, respectively. Note that interior DOFs are not subjected to external loads, because external loads

are assumed to be applied to the interface boundary DOF in the CB method.

®

i

@ @ QT @ @
u® 0 I u® u®

in which T is the transformation matrix consisting of fixed interface normal modes matrix @ and

)

In order to reduce the dimension of substructure 1, the displacement u;’ and “1(;1 can be expressed as

constraint modes matrix ‘I’E.]), and q( is the generalized coordinate vector corresponding to @1 Note that I

is the identity matrix. The constraint modes can be defined as
1 Dy\-1pe (@
W= (KE) K @21

where the constraint modes matrix ‘I‘gl) represents static deformation of the substructures by imposing unit
displacement on interface boundary and is same as ¥, of the Guyan reduction in Equation (2.4). The fixed

interface normal modes can be calculated as follows
DD — paO@dHD A @
Kii®" =M@ A", (2.25)

in which ® is the substructural eigenvector matrix corresponding to substructural eigenvalue matrix AW,

-8-



@ canbe decomposed into dominant and residual substructural modes as
oY = [q)fjl) q)(rl)]’ (2.26)

where superscript d and » denote the dominant and residual quantities, respectively. Substituting Equation (2.26)
into Equation (2.23) gives
@

dq

@ @) @ (Y]

u; _ D @ ¥ @ :T(l)q(l) (2.27)
u® o 0 1|

u®

in which q(dl) and qil) represent the generalized coordinates vector of substructure 1 corresponding to dominant

and residual substructural modes, respectively. Neglecting ®'" in Equation (2.27), the displacement u" can

be approximated by

@) 7@ @ ()] @
{“i } ~ {ui } - Tgl{qd } with T® = [q)d ¥e } . (2.28)
u® u® ul 0 I
The mass and stiffness matrices, and force vector of substructure €, are transformed as follows
M(l) — (Tél))T M(l)T(l), K(l) — (Td(l) )T K(l)T(l) ’ f @ — (Tél) )Tf(l) , (2.29)
where the submatrix of the reduced mass and stiffness matrices and force vector are given by
ONT (A D Oyp@)
ma) _ I (q)d ) (Mi,b +Mi,i Tc )
- 1 D\T p @ H\T gr(d NEVIONT(ORE
sym. MG} + () M+ (M) Y + (P0) M
(2.30)
ko _ Ay 0 o | PORO
= O (kOO | T L |
0 Ky +(Kip) ¥ f,
After transformation of substructure €, in the similar fashion, reduced model are assembled as
I 0 (@) (MR +MP¥E)
M= | (@) (MY +MP¥?) ’
2
sym. > MEB+(FD) MY+ (M) + (F) MDD
L =1 i
_ _ (2.31)
D@L
AD 0 0 Yor
Ve F_ (2)£(2)
K= 0 A® 0 , = P,
2 @ (2
0 0 Ykpewpywe| [hh
L n=1 m

The approximated global displacement vector can be computed by



u oo " oY 0 ¥
u? |~ T? |=Te|q? | with Tg=| 0 @ P& | (232)

C

uy, uy, Uy, 0 0 I

In the CB method, the reduced eigenvalue problem is given by
(K=AM)Xg =0, (2.33)

where @ is eigenvector of the reduced model corresponding to the approximated eigenvalue of global model .

Using the transformation matrix in Equation (2.32), global eigenvectors is given by back transformation

0, = TepXcs- (2.34)

In this section, CMS on single level substructuring is presented. CMS can be also classified depending on

substructuring method, and this classification will be discussed in Chapter 3.
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Chapter 3. Component mode synthesis on multilevel substructuring

Traditional component mode synthesis (CMS) is the popular and effective way to reduce finite element (FE)
models. However, it is difficult to apply large FE models since relatively few substructures due to the difficulty
of manual partitioning have quite large DOFs. In order to resolve this limitation, the automated multilevel
substructuring (AMLS) method was proposed by Bennighof et al. [15-17]. The AMLS method which extends
single level to multilevel CMS decomposes global FE model to many small substructures in a purely algebraic

manner without considering the physical domain.

Section 3.1 discusses the generalization of traditional CMS using the single level substructuring in multilevel
context. Since then, Section 3.2 and 3.3 review the formulations of the AMLS and enhanced AMLS (EAMLS)

method, respectively. See the references [15-17,26] for detailed descriptions of these methods.

3.1 Preliminary to multilevel substructuring

For the implementation of multilevel substructuring, a substructure consists only of interior DOFs without
interface boundary DOFs, and interface boundary DOF's belong to interior DOFs of other substructures. In other

words, the interface boundary DOFs shared with adjacent substructures is also substructure.

In this section, a rectangular plate model is taken with five substructures as shown in Figure 3.1, but the
formulation can be generalized to arbitrary partitions. Figure 3.1(a) shows a possible substructuring where the
areas inside the dotted line refer to areas of substructures and Figure 3.1(b) shows a graph describing to a
relationships among substructures. This graph as shown in Figure 3.1(b) is called a substructure tree diagram.
Substructures 1, 2, 3, and 4 are referred to as bottom level substructure that have no substructures below them on
substructure tree. Substructure 5 is called the highest level substructure that have no substructures above it on

substructure tree. Substructure tree diagram will be discussed in detail in the Section 3.2.1.

After partitioning the global FE model like Figure 3.1, the global stiffness matrix and displacement vector

can be expressed by

Kl,l I<1,5 ul
K2,2 I<2,5 u2
K, = K, Kss |, Uy =|Ug |, (3.1
K4,4 K4,5 u4
i Csymo K U |

in which diagonal entries are the stiffness matrix of the each substructure and off-diagonal entries are the stiffness
matrices of the each substructure coupled with highest substructure. For the consistent mass matrix, the reordered

mass matrix possesses exactly the same pattern of the stiffness matrix in Equation (3.1).
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(a) (b)

Figure 3.1 Single level substructure tree diagram for a rectangular plate: (a) Possible substructuring into five

substructures, (b) Substructure tree

Starting at substructure 1, fixed interface eigenproblem of substructure 1 is

_ o P = (I)d (I)I' Af 0
K@ =M @A, with ® =[®; 1 A= , (3.2)

r
0 A
in which the superscript d indicates eigensolution extracted lower than a given cutoff frequency value (i.e.

dominant terms) and the superscript » indicates residual terms to be truncated according to the cutoff frequency

value. Using ®9, the transformation of substructure 1 can be expressed by

u| [@f v lal]  [a]
u, I, 5 u, u,
Uy |= I, u, =T u, | with W, =-K K, (3.3)
u, I, u, u,
[Us | | Is || Us | | Us |

where W5 is the constraint modes matrix of substructure 1 and qf is the generalized coordinate vector

corresponding to ®9. 1, is the identity matrix of same dimension as the i substructure.

The transformation of substructure 2 can be also expressed by

M d ] [Myd ! I Ad ] [ d ]
q; I q, a;
d ' d d
u, (I)z ! lI'2,5 d, d,
: . -1

u, |= I U, |=T2 u, | with W5 =—K;5K,, (3.4)
4 |4 L u4 u4
Us | | I | U5 | Us |

in which I¢ is the identity matrix with dimension equal to the number of dominant modes of substructure 1.

Repeating with the transformation of substructure 3 and 4, global displacement vector can be represented by

S12-



_ S - -
U a (I)l Tl,s
d d
u, 4, @, Yo
Uy [=Ty| g5 | with Ty =T@PTETITE = ®; W (3.5)
d d
U, q, (1)4 ! ‘P4,5
| Us | Us | L Dl
Using T, in Equation (3.5), reduced mass and stiffness matrices can be represented by
M=T/M_T,, K=T{K T, with
1 M| [Af ]
d V1 d
> M2,5 A; (3.6)
M= Ig Mg |, K= Ag
sym. 15 M, A
L Ms,s_ L Ks,s_

where the overbar () means the approximated (reduced) quantity.

If i is a bottom level substructure and the j is the highest level substructure, the submatrices of reduced mass

and stiffness matrices can be computed as

Ki,i(I)i = Mi,i(I)iAiv (3.7a)
¥, =-KiK, (3.7b)
w(i) i T

Kii = KiK. (3.7¢)
MU =M+ ¥ M+ MY+ MY (3.7d)
V1 d\T

M, =(@;) (M;¥;;+M, ), (3.7¢)

where the superscript (i) denotes a matrix updated by the transformation of i substructure. In case that

superscript is zero, then (I_((O)

j s Mﬁ?)) isequal to (K;;, M;;). Note that the order of transformation of substructure

has no requirement in single level substructuring method.
3.2 Automated multilevel substructuring (AMLS) method

In this section, the formulation of AMLS method is presented in the following two procedures: automated
substructuring and model transformation. For convenience, a rectangular plate model is taken with two-level

binary partition of seven substructures (N,=7) in Figure 3.2.
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(a) (b)
Figure 3.2 Multilevel substructure tree diagram for a rectangular plate: (a) Possible substructuring into seven

substructures, (b) Substructure tree

3.2.1 Automated substructuring

For substructuring performed with manual partitioning, it is difficult to divide global FE model to a number
of substructures, which leads to quite large DOFs of each substructure and induces large computational cost.
Hence, the necessity of automated substructuring method in a purely algebraic manner had emerged. The nested
dissection, introduced by George [37], is an algorithm for solving sparse symmetric system of linear equations
based on graph partitioning and is suitable for creating substructures of a global structure. The reordering and
partitioning of a matrix can be accomplished by using a graph partition program such as METIS [38] which
implements the nested dissection. The METIS is used to reorder a matrix for load balancing, construct fill-

reducing ordering, and so on.

Figure 3.3 describes the detailed substructuring procedure for the matrix. Figure 3.3(a) and Figure 3.3(b)
show the sparsity patterns of original and reordered matrix in two-level partition as shown in Figure 3.2(b),
respectively. Figure 3.3(c) shows the idealization of the sparsity pattern in Figure 3.3(b) where the each block
denotes the nonzero submatrix and the diagonal entries represent the each substructure. If there is no coupled entry
above the diagonal entry, this column is referred to the bottom level substructure. On the other hand, if there are
any coupled entries above the diagonal entry, this column is referred to the higher level substructure. In this case,

blocks 1, 2, 4, 5 represent the bottom level substructures and blocks 3, 6, 7 represent the higher level substructures.

A column coupled to the right the diagonal entry is called an ancestor of the row, and a row coupled to the
above the diagonal entry is called a descendant of the column. Let C; be defined as the set of a descendant of
substructure i in which the descendant refers to the substructures below it on the substructure tree. Likewise, P;
be defined as the set of an ancestor of substructure i in which the ancestor refers to the substructures above it on
substructure tree. For example, P; and C; are {3, 7} and {1, 2, 3, 4, 5, 6}, respectively. If there is no ancestor

of i substructure (i.e. P; = @), this substructure is called the highest level substructure.
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Figure 3.3 Sparsity patterns of matrix: (a) Original matrix, (b) Reordered matrix, (c) Idealization of sparsity pattern

In the AMLS method, two tree traversal algorithm [39] are used: preorder and postorder traversal of the tree
data structure. When partitioning the matrix using the METIS, preorder traversal referred to visiting each tree
node before its descendant is performed. On the other hand, when transforming the matrix, postorder traversal
referred to visiting each tree node after its descendant is performed. For instance in Figure 3.2(b), the preorder

and postorder traversal follow the sequences (7, 3, 1, 2, 6,4, 5) and (1, 2, 3, 4, 5, 6, 7), respectively.
3.2.2 Model transformation

After the two level binary partition as shown in Figure 3.3(c), the global stiffness matrix K, and global

displacement vector u, are represented by

Kl,l Kl,3 Kl,7 ul
K2,2 K2.3 I‘(2,7 u2
K3,3 K3,7 u3
K, = Kis Kis Koz |, Ug=|u, (3.8)
K5,5 K5,6 K5,7 u5
sym. Kes Ko U
| K7,7_ _u7_

For the consistent mass matrix, the reordered mass matrix possesses exactly the same pattern of the stiffness

matrix as Equation (3.8).

Starting at substructure 1, fixed interface eigenproblem of substructure 1 is
— . — T r Al 0
K@ =M @A, with @ =[O D] A =" ° | (3.9)
0 A
in which the superscript d denotes dominant eigensolution extracted lower than a given cutoff frequency value

and the superscript » denotes residual quantities that is eigensolution to be truncated according to the cutoff

frequency value. Using ®¢, transformation matrix of substructure 1 can be written by
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1 . - R
TV = l, Wﬂlqaj:—KﬁK“,VJea, (3.10)

where the constraint modes matrix ¥, ; are computed by solving the linear equations, and P, = {3,7}.

Applying TS) to substructure 1 with the Rayleigh-Ritz procedure, the mass and stiffness matrices become

1] ni n) |
M,, M, M,
ME) M)
M® = (chl))T MgTd(l) = M4,4 M4,6 M4,7 >
Mss Mgg Mg,
sym Mss Mg,
i M, |
_ 3.11)
A K1) K7
Koo Kis K,;
KS) KS)
K® = (Td(l))T KgTél) = Kya Kie Kizl
Kss Kse Ksy
sym. Kes Ko
S,

Notice that only the ancestor of substructure 1 are affected and all other substructures are left untouched by

this transformation. The submatrices of the mass and stiffness matrices can be computed by

k) =0 VijePR, (3.12a)

K =K+ ¥ K vileR (3.120)
il il Lt , ) .

I\A/I(Jl)l = Mj,l +‘I’IjM1,| + MI,j‘Pl,I +‘PIjM1,1lP1,| VijleR, (3.12¢)
1 T .

=@ (M, ¥, + M, ) VjeR. (3.12d)

In the similar way, the transformation of substructure 2 is

M@ = (TO) MOT®. (3.13)
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K® = (TOY KOTO

After the transformation of substructure 2, substructure 3, the ancestor of substructure 1 and 2, is transformed

I‘lj ml,S llis?)
Ig mz 3 u(23)7
15 ns
M® = (Tés))T M(Z)Tf) = M, . M,s M, |
M5,5 M;e M 5,7
sym Mes Mg,
i M |
- _ (3.14)
Aj
A,
A;
K® = (TP KOTP = K. Kio Kis
K5,5 K5,6 K5,7
sym. Kes Ko
i K |
where TS') is given by
_|f -
¥
(Dg ¥,
Td(3) — I, ) (3.15)
Is
I
L |7 ,
@4, Agj, and ¥;; in Equation (3.14) and (3.15) satisfy
ROD, =NED,A, with Oy=[0¢ @] A, - {Aé’ 0 } | 16
0 Al
and
¥, =—(K@)'KY. (3.17)
The changed submatrices of mass and stiffness matrices are given by
KE =K@ +w, K2, (3.182)
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“n (3 “n (2 T aa(2 “n(2)\T T a2
M) = M? + ¥ MP) + (M), , + ¥, ,MAY, (3.18b)

ne) = (@3)" (MDY, +MPD), (3.18¢)
H(JS)7 = l‘(j{glP3,7 +H(JJ% vjeC, (3-18d)
M, =plo; VijeC,. (3.18¢)

MI,S and MZ,S in Equation (3.14) represent completely transformed terms and they will not changed by
transformation of remainder substructures. When all substructures are transformed except for the highest level

substructure, transformation matrix of substructure 7 is defined by

d
Il

T = 1 , (3.19)

@,

where a full eigensolution is computed for the highest level substructure in the AMLS method [16]

KE®, = MOD,A, with ®,=@], A, =A7, (3.20)

Then the completely transformed (reduced) mass and stiffness matrices are represented by

d _ —
I, M1,3 I\/|1,7
J— _
I, My, M2,7
q _
I3 M3,7
M = (TN NMOTO — d A A
M _(Td ) M Td - |4 M4,e M4,7 5 (321)
d w7 V1 .
Is M5,6 M5,7
d —
sym. I Mg,
L |7 _
i T 1 (6)T(7 ; d d d d d d
K=(T")KOT =diag (A} A; A3 A} Af Af A,).
in which diag(-) in Equation (3.21) denotes a block diagonal matrix and Mjﬂ can be computed by
M, = u(jj,;(I)Y V]eC,. (3.22)
The reduced mass and stiffness matrices can be also expressed
V1 T
M=T]M,T,, (3.23)
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w_TT
K=T,K,Ty.
where T, is the dominant transformation matrix (i.e. transformation matrix of AMLS method). M and K are

N x N matrices in which N is the number of dominant modes. T, is given by

_(I)f ‘i'l,3q)g ‘i’117(I)7 |
(I)g TZ,Sq)g lI‘2'7(1)7
LA (I)g ¥, P,
Ta= HT‘}I) - @, T4,6(I)g ¥, ®; | (3.24)
o ¥,.00 ¥, 0
(I)g ¥, 0,
L @, i
and may be shown that
O fori=j
Ti% = ‘Pi'jq)(jj fori ECJ- . (325)
0 otherwise

in which Tf/- denotes a submatrix in the i/ row and ;" column of the T,. Multilevel extended constraint

modes matrix, ¥ , can be expressed by

=Y+ D WY VieC,;. (3.26)

ke{Pinc;

Substituting multilevel extended constraint modes in Equation (3.26) into the dominant transformation
matrix in Equation (3.25), the dominant transformation matrix is obtained
d _ d d .
T =Y T+ 2 ¥ T VieC.. (3.27)
keP, ﬂCj ]

For efficient calculation of the transformation matrix, the order of operation begins T¢

by and moves above the

column.

After all substructures have been transformed completely, reduced eigenvalue problem is defined by

KX, =4 MX, (3:28)
where 7 is an approximation to a global eigenvalue A in Equation (2.8). An approximated eigenvector can be
obtained by

0, ~ 0 =TX, (3.29)

in which 9, is a global eigenvector in Equation (2.8) and ¢ is an approximated eigenvector.
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3.3 Enhanced AMLS method

In the AMLS method, a reduced model is constructed using a transformation matrix defined dominant
substructural modes only, which simply ignores the contribution of residual substructural modes. However,
considering the effect of residuals substructural modes, the solution accuracy of the reduced model can be
improved. Based on this fact, the enhanced AMLS (EAMLS) method [26] has been developed, which uses a
residual flexibility matrix to compensate for the effect of the residual substructural mode. In this section, the

formulation of EAMLS method is briefly reviewed by using the rectangular plate model in Figure 3.2.

The non-truncated transformation matrix T can be expressed in dominant and residual parts

T=[Ty T.] with T,=P®,, T, =Y®,, (3.30)
where @, and ®, are dominant and residual eigenvector matrix, respectively, and they are defined by

®, =diag (P! @) ®] O D D D), (3.31a)

®, =diag (®; @, ®; O, O, ®; 0). (3.31b)

Applying the non-truncated transformation matrix T to the global FE model with the Rayleigh-Ritz

procedure, the generalized eigenvalue problem in Equation (2.8) can be written as

Ay —AM, —AM, Xgq | 0 -
—AML A, =AM, | x, | o] (3.322)
Ad :TJKgT > Ar :T:KgTr’ (3.32b)
M, =TyM_T,, M, =TqM_ T, M, =T/M_T,, (3.32¢)
and the global eigenvector can be written by
Xd
¢, =Tx=[T, T, o | (3.33)

Expanding of the matrix on the left-hand side of Equation (3.32a), x, can be written as
X =AA, —AM,)M] X, (3.34)
and substituting Equation (3.34) into Equation (3.33), the global eigenvector 9, is rewritten as
@, =[Ty +AT, (A, =AM, )" MG Ix,. (3.35)
Using T = ‘i’(I)r in Equation (3.30), the global eigenvector 9, becomes
¢, =[T, + APF,¥Y"M T,Ix, with F.=® (A, -iM,) @], (3.36)

in which F, is the residual flexibility of the substructures. F, can be approximated by the first two terms of the
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Taylor expansion:
1T
Fr :(I)r(Ar _/IMr) (I)r (3.37)
-1 -1 N T ’ :
~ (I)r (Ar _iAr MrAr )‘Dr = I:rs + ﬁ“Frm
where F,, isthe static partand F,,, isthe dynamic part of the residual flexibility F,. Substituting Equation (3.37)

into Equation (3.36) and neglecting the second order A, the global eigenvector 9, can be approximated by

@, ~9=Tx, with T, =T, +AT,. T, =¥YF¥Y'MT, (3.38)
in which T, is the enhanced transformation matrix and T, is the additional transformation matrix containing
residual substructural modes effect by means of F,.. Note that F,; is indirectly computed without residual
substructural eigenpair as

Fo=®A '@ =diag(F* F° F° F° F° F° 0)

~ (3.39)
with F* =K - (A (@) for i=1,2,- N, -1,

FUPN -1 T . - .
where (K{7")" and ®{(A¢) (®{)" are the full and dominant flexibility matrices for i” substructure,
respectively. The approximation through residual flexibility in Equation (3.38) is conceptually analogous to the

static correction method [40].

By employing O’Callahan’s approach in the framework of the improved reduced system (IRS) method [4]

to handle the unknown A in Equation (3.41), following relation is obtained from Equation (3.28)

Xy =Hx, with H=M"K. (3.40)

Substituting Equation (3.40) into (3.38), the enhanced transformation matrix T, is rewritten as
T,=T,+TH win T,=YF¥'"M T,, H=M"'K, (3.41)
and using Equation (3.41), reduced mass and stiffness matrices in the EAMLS method are defined by
Vi T LT TT TT
M =T M T,=M+T M TH+H T, M T, +H T,M TH,

- o (3.42)
K, = TeTKgTe =K +TdTKgTaH + HTT;KQTd + HTT;KgTaH ,

in which M, and K, are N X N matrices, namely same size of reduced model in the AMLS method.
The reduced mass and stiffness matrices in the EAMLS method are more accurate than in the AMLS method
by virtue of the residual substructural modes compensation, which is well expressed in Reference [26]. However,

the EAMLS method has limitations to reduce large FE models containing over hundreds of thousands of DOFs

since global matrix operation is required in constructing the enhanced transformation matrix and reduced matrices.
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Chapter 4. New formulation of the enhanced AMLS method

The enhanced AMLS (EAMLS) compensates the residual substructural modes effect using the residual
flexibility matrix, which can significantly improve the solution accuracy compared to the same size of reduced
model obtained from the AMLS method. As the finite element (FE) model has many more degrees of freedom
(DOFs), however, computational cost for explicitly employing the Rayleigh-Ritz procedure in the enhanced
AMLS method can grow rapidly. DOFs of the FE models are getting bigger, and with this trend, an efficient and
accurate model reduction method is needed to reduce large FE models with several millions of DOFs. Therefore,
a new formulation of EAMLS method is presented through the following three sections: algebraic substructuring
with reverse level order traversal, projection on a refined subspace, and the residual substructural modes correction.
For convenience, a rectangular plate model is taken with two-level binary partition of seven substructures (N,=7)

in Figure 4.1
4.1 Algebraic substructuring with reverse level order traversal

In the present method, assigning substructure numbering uses the reverse level order traversal [39] referred
to visiting every tree node before moving to nodes on a higher level as shown in Figure 4.1(b). On the other hand,
transformation of the matrices is performed in postorder traversal or ascending numerical order. In case of Figure
4.1, the postorder traversal and ascending numerical order follow the sequences (1, 2, 5, 3,4, 6, 7) and (1, 2, 3, 4,

5, 6, 7), respectively.

After the two level binary partition in Figure 4.1(b), the global stiffness matrix K, and global displacement

vector u, is rearranged as

Ky Kis K- U,
K> Kys K, u,
Kis Kis Kz Us
K, = Kaa Kie Ki7], u, =u, (4.1)
Kss Ks, Us
sym. Kes Ko Us
| K7 ] U7

The rearranged mass matrix possesses exactly the same pattern of the stiffness matrix as Equation (4.1) in the

consistent mass matrix.

Let "i'd be the transformation matrix in AMLS procedure. Then, preliminary transformation on M, and

Kg for the new formulation results in
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Figure 4.1 Substructure tree for the present method: (a) Possible substructuring into seven substructures (b)

A;’)’

in which diag(*) in Equation (4.2) denotes a block diagonal matrix.

Level 1

Level 2

(4.2)

Let P; be defined by the set of an ancestor of substructure i and C; be defined by the set of a descendant

of substructure i. Then, performing the recursive transformation with postorder traversal of substructure tree, the

submatrices of |i and K in Equation (4.2) can be computed as follows

Ifan i" substructure is bottom level substructure:
; Al 0
K, ® =M, ®A, with ®, =[®] @], A;= R (4.32)
* ' 0 Al
¥, =-KiK,; VjeP, (4.3b)
ﬁ(J'>| :fqgiﬁ +‘I’iT,,-Ki,| VileP, (4.3¢)
mi =miP + ¥/ .M, + M ¥, + ¥ M, ¥, VjleP, (4.3d)
mu(li = ((D? )T (Mi,iTi,j + Mi,j) v J € P. , (4.3¢)
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Ifan i substructure is higher level substructure:

e . Al 0
®, =MD A, wih @ =[®! @], A, = : (4.4a)

0 A
Y =- (A<'-1))—1A<"1) VjeP, (4.4b)
TSN TR N VjleP, (4.40)
m‘l"’, m(I 2 +W m{}? +(mi("j’1))T‘I’i’I +‘I’iT’jmi‘fi’1)‘I'i,I VjleP, (4.4d)
m) = (@) (m{ V¥, +m{?) VijeP, (4.4¢)
mi) =P, +mh{P VjeC, leP,  @an
ﬁj,i = rﬁ(ji,i_l)(l)id Vije Ci , (4.4g)

in which Equation (4.3a) and (4.4a) are the substructural eigenvalue problems, and the superscript d and r
indicate dominant and residual quantities. If the highest excitation frequency is ®,, eigensolutions of each

substructure are extracted lower than a given cutoff frequency:
2
Ay <kg;, (4.52)
2
Ay <k . (4.5b)

in which Az and Ay are substructural eigenvalue for bottom and higher level substructures, respectively. In the
AMLS and EAMLS method, the cutoff factor k3 and k; are equal to each other, whereas in present method, ky
typically has larger value than kp. Extracting the more eigensolutions for higher level substructures is
advantageous on constructing an accurate reduced model for the same size of the reduced model due to the residual

substructural mode correction for bottom level substructures. In addition, the highest level substructure
eigenvalues are truncated unlike previous methods. Hence, ji and K are N X N matrices in which N is the

number of dominant modes. Using the cutoff frequency, the substructural modes can be decomposed into

dominant and residual substructural modes as Equation (4.3a) and (4.4a).

4.2 Projection on a refined subspace

Even in case that the cutoff factor kz and ky in Equation (4.5) are equal to each other, it is likely that more
eigensolutions will be retained for the higher level substructures [16]. This may intuitively explained by the fact
that higher level substructures are generally defined over larger domains and therefore more likely to have lower
eigensolutions than bottom level substructures. Exploiting the entire subspace of reduced higher level
substructures leads to expensive computational cost. Based on this fact, a new refined subspace is defined by

selecting the eigenvector of reduced higher level substructures without losing much accuracy.
For tree data structure, the root refers to the top of the tree which is substructure 7 in Figure 4.2(a). Let an
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Figure 4.2 Extended root assemblage process: (a) Original substructure tree (b) Substructure tree after assembling

the extended root

extended root be defined by the assemblage of higher level substructures shown in Figure 4.2. Then, B is defined
as a tuple of bottom level substructures, and X is defined as a tuple of extended root substructures (higher level

substructures). For example in Figure 4.2, B=(1, 2, 3, 4), and X=(5, 6, 7).

Applying the extended root, ji and K can be partitioned as

K s n .
E s
Ig E ﬁ'3,6 l’i3,7
e N 1 SR UL 7%
; Ig ﬁ5,7 >
sym. T (4.6)
I | 17 ]
[ Bes _!1__3_,_x_1
_ﬁTB,x LRy x

R =diag(A? A! A ATIAL A A9
:diag(ﬁB,B l%x,x) ’

Using the dominant and residual substructural modes in Equation (4.3a) and (4.4a), the dominant and residual

substructural eigenvector matrix can be defined by
b, -diag@! ®f ®! @ 0! o @f)

. , (4.7a)
- diag(®} | %)

®, =diag(®] @, P @, P D @)

r ) , (4.7b)
= diag (@} : ®Y)
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and dominant and residual transformation matrices are defined by

T=[T, T] win T,=%d, T =V 4.8)

where , can be expressed by

“Tsd,}' . (4.9)

where T% is the substructural transformation matrix and 'i'idj can be calculated at the submatrix level

~d ~d d -
T =Y, T+ > ¥, T, VieC.. (4.10)
ke{RNC, i

The order of operation begins 'T'idi and moves above the column. The residual transformation matrix possesses

exactly the same pattern of dominant transformation matrix as Equation (4.9). Note that the only extended root

substructure matrices i, , and K, , are explicitly assembled, while remainders are not assembled in this

step.

After reordering the column of transformation matrix T in Equation (4.8) into bottom and extended root

substructures terms, the global eigenvector ¢, can be transformed into the projected eigenvector y

d
. . . ) Ys
- - | Tes Toe Tox T '
(sz{(l’s}:-ry with T=| 88 'BE Alz,x A?,x Ly = y:j?, , @11
Py 0 0 Tyx Txx Y x
Yx
where the projected eigenvector y satisfies
Ky=AMy wih K=T'K, T, M=T'M_T. (4.12)
The eigenvalue problem for extended root substructure is defined by
¢S =i 0, vin 2[5, 5], @=| ¢ )
K, 2= 20O, with E=[&, Z |, = (4.13)
x . x== Wx x = 0 o,

where E and O are the eigenvector and eigenvalue matrices consisting of dominant (£, and ©,) and residual

(B, and 0,) quantities for extended root substructure. The submatrices of =, can be described as
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[t

g=| i | for i=1-- N, (4.14)

in which subscript X; is the i element of tuple X, Ef(i is the eigenvector of extended root substructure

corresponding to X, reduced substructure, and Nj; indicates the number of higher level substructures.

Using = in Equation (4.13), projected eigenvector y for extended root substructure can be written by

-
11 [z, & 0
Bf}{o" A J & |, (4.15)
X yl’

X

where {, and { are denotes the generalized coordinate vectors corresponding to E; and E,, respectively.

Using Equation (4.15), the projected eigenvector y can be expressed by

-
] s Ye
Ye Il 0 0 0 O v
r r A B
y= ydB = X¢ with X = 0 . 0 00 =1, | (4.16)
X 0 0 & & O ¢
’ 0O 0 0 0 I '
Ve

L o~ ~ . T TE OT4E T
@, =Ty=T¢ with T=TX=| 28 B8 BX7d Bx7r BX (4.17)
0 0 Tx,xc‘d Ty xE, X, X

After reordering the column of transformation matrix T in Equation (4.17) into dominant and residual terms,

the global eigenvector ¢, can be transformed

(pg ::I;&:[:I;d :I;r] Ed 5

r

4.18
T¢ o o= froofeo= F . Ye (419
. f _| 'BB B, X ™d f-_ B,B B, X ™r B,X A Ys s
with = 0 _fl\_d = |’ r— 0 Td = Tr s C.’d = > gr_ gr s
X, X=d X, x=r  Ixx S r
Yx
and T, and T, may be shown that
T,=¥®, T =Y0,
4.19
with&):q)g 0 &);q)g 0 0 @
10 @iE, "0 @'E @
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where T, is the refined subspace transformation matrix.

Using T, in Equation (4.19) instead of ‘i‘d , mass and stiffness matrices in refined subspace are expressed

YIRS IVE LY - = = [AL 0
M=TIMT, =| ~2--+ 2B | R=TIK T, =| 20— (4.20)
H s g d ' 5

in which T¢ is the identity matrix with dimension equal to the number of column of E,. M gy can be
computed at the submatrix level as

~ - ) ]

Mg, x, =2 g By for i=1---,Ng, VI€Py (4.21)

j

where the subscript B; is i element of tuple B. X' is an index of j in tuple X. In other words, X7
p p i J p i

is

defined such that XX_1 = j. Ny indicates the number of bottom level substructures.
i

Applying Equation (4.20), the eigenvalue problem in refined subspace is given by

~ A

K&, = AME, (4.22)
4.3 Residual substructural modes correction

Using T in Equation (4.18), the eigenvalue problem in Equation (4.12) can be partitioned as

Ad _iMd _/,"Mdr Cd 0
~ ~ ~ ~ |= , (4.23a)
_ZMrd Ar_ﬂ“Mr C.’r 0
Ag=TiK, T, A, =T/K,T, (4.23b)
W, =TIM T, M, =TIM,T,. W, =T'm, T 4230
d d Vg d> dr d™¥ig ro r rtgr )
Expanding of the matrix on the left-hand side of Equation (4.23a), ar can be written
g =AA, —AM,) M E, (4.24)
and substituting Equation (4.24) into Equation (4.18), the global eigenvector 9, is rewritten as
~ ~ ~ ~ L~
0y =[Ty + AT (A, =AM, ) "M, ]G, . (4.25)

The global eigenvector ¢, can be expressed in dominant terms by using :i:r = ‘i’&)r in Equation (4.19)
Py = Taby + l‘i!Fr‘i’T M g‘i’q)dc.;d with Fr = (I)r (Ar _ZMr)_l(D: ) (4.26)

in which F, is the residual flexibility of the substructures. F, can be approximated by the Taylor expansion
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Figure 4.3 Sparsity patterns for substructure: (a) Residual flexibility matrix (b) Stiffness matrix

F. =® A DT +0(1) +O(%) +-- (427
= A-IFT _p ’ '
~ QI’AI' (DI’ = FI'S
where ﬁ‘m is the static part of the residual flexibility F,, and can be approximated by using the only residual

flexibility matrices for bottom level substructures

£ Fe 0
rs 0 O
_E (4.28)

with F® =diag(F® - F7), F* =K' =@’ (A") }(@¢)"  for i =1,2,---N,.

Note that unlike the previous EAMLS method, the fully populated matrix K;yli in Equation (4.28) is never
explicitly computed (see Figure 4.3). Instead, when used in computation, these matrices are calculated by solving

the linear equations.

F, and A are substituted for F, and A, respectively, the global eigenvector ¢, can be approximated by

~ A

0, ~ (T, +1T,)E,

=rs d rCrs Td = 4.29
FB MB,B(DB FB MB,XTX,X_d ( )

with T, = ‘I’Frs‘I’Mg‘I’Td = 0 0

Performing the Rayleigh-Ritz procedure by using Equation (4.28), the reduced mass and stiffness matrices

are obtained by
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M, =M+ 2TIM, T, + 7TTM, T, + 2T7M, T,

- - - - _ (4.30)
K,=K+AT,K T, +1T.K T, + *TIK,T,,

and reduced eigenvalue problem is given by
[K+ZTdTKgTa+/TT;KgTd +?T;KgTa]§d 431)

=2[M +)T‘T'dTMg'T'a +/T:I";Mg:l:d +/TZ'T';M9'T'a]éd

Since Fj and <I)Z are orthogonal with respect to both My and Kpp, the additional transformation

matrix T, in Equation (4.29) becomes

~rs Ad p—
-~ 0 FBMB,XTX,X:‘d

T = (4.32)
“ |0 0
Substituting Equation (4.32) into Equation (4.30), the following relations are obtained
~r _ ~r ~ 0 0 . 2d = \T =rs A
TiM T, =T.MT, = 0 E with El:(MB,XTX,X:‘d) Fe (MB,XTX,X:‘d)’ (4.33a)
1
~T ~ 0 O . 2d e \T =TS =rs 2d
TaMgTa: 0 E with E, :(MB,XTX,X:‘d) Fe MB,BFB (MB,xTx,x:d), (4.33b)
2
TK,T,=T.K,T, =0, (4.33¢)
T.K,T,=T.M,T,, (4.33d)
in which E; can be efficiently computed at the submatrix level as
T Crs
E, = ZQBi Fe,Qs,
i
(4.34)

with QB ZZMB J-|-Jdk:d 1 VJ (S ({B|}U PBi) and VK (S Pj'

Substituting Equation (4.33) into (4.31), the reduced eigenvalue problem in Equation (4.31) becomes
KE =2M+ AT, M T, + *TIM, T, KK, (4.35)
and employing O’Callahan’s approach as shown in Equation (2.15) and (3.40), and neglecting the second order

A term Zz:I:aT M gi:a , anew reduced eigenproblem can be obtained

Kz;d_&[MJrTTM T.HE, wih H=M"K = Heo  Hex . (4.36)
HXB HX,X

. = . . . . . o T
Notice that H in Equation (4.36) is non-symmetric matrix and therefore Hyp does not equal to Hp y.
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The submatrix for of ad can be described as
d
Y,
Co=| | for 1=1---,Ng, (4.37)

S

where yg and ¢, are the reduced eigenvector corresponding to B;™ reduced substructure and extended root

substructure, respectively.

Using Equation (4.33a) and (4.36), "T'dT M g?aﬁ in Equation (4.35) becomes

~r =~ 0 0
M, TH = ~ ~
EHys EHyx (4.38)
=C
in which C is the residual substructural modes correction matrix.
Applying Equation (4.38), the enhanced reduced mass and stiffness matrices are given
K, =K,
- - (4.39)
M,=M+C
Using H in Equation (4.36), the enhanced transformation matrix T, is rewritten by
T,=T,+TH, (4.40)
and then, global eigenvector can be obtained using back transformation procedure
(Pg ~ 6 = egd
| 9 (4.41)
0
in which @, and @, are calculated by
— 2-d d d  e=d - 1 d | 1
?5, =TgsYs + (Z Te = ch + (Z Fe Qs J(H x.8Ys T Hx x8) (4.42a)
j i
— &d =d
Px = [ZTX,,-:,- JCd (4.42b)
i

where F;SQB in Equation (4.42a) is already computed in Equation (4.34).

Table 4.1 describes the algorithm of the present EAMLS method.
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Table 4.1 Algorithm of the present enhanced AMLS method

Step 1. Algebraic substructuring with reverse level order traversal

Step 2. Preliminary transformation on My and K,

<For bottom level substructures>

a. Solve the substructural eigenproblem in Equation (4.3a)

b. Calculate the constraint modes in Equation (4.3b)

c. Update the ancestors of substructure in Equation (4.3c¢), (4.3d), and (4.3¢)
<For bottom level substructures>

a. Solve the substructural eigenproblem in Equation (4.4a)

b. Calculate the constraint modes in Equation (4.4b)

c. Update the ancestors of substructure in Equation (4.4c¢), (4.4d), and (4.4¢)

d. Update the descendant of substructure in Equation (4.4f)

e. Calculate the completely transformed descendant of substructure in Equation (4.4g)
Step 3. Projection on the refined subspace

a. Assemble the extended root substructure fly , and Ky o

b. Solve the eigenproblem for extended root substructure in Equation (4.13)

c. Projection on the refined subspace in Equation (4.20) and (4.21)
Step 4. Residual substructural modes correction

a. Calculate E, and H in Equation (4.34) and (4.36)
b. Calculate the residual substructural modes correction matrix C in Equation (4.38)

c. Construct the reduced mass and stiffness matrices in Equation (4.39)
Step 5. Reduced eigenproblem

Solve the reduced eigenproblem in Equation (4.36)
Step 6. Back transformation procedure

Calculate the global eigenvector by back transformation procedure in Equation (4.42)
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Chapter 5. Numerical examples

In this chapter, four numerical examples including a rectangular plate, a centrifugal impeller, a femur bone,
and an airplane fuselage in free vibration condition are presented to verify the overall performance of the proposed
method. The reduced model is constructed by using the AMLS, previous and present EAMLS method, respectively,
and the performance are judged primarily on the accuracy of solution and elapsed time. The solution accuracy of

reduced model be evaluated on the following relative eigenvalue error

W .
=T (5.1

|
where y; is the relative eigenvalue error, and 4; and A, are the approximated and reference (global) eigenvalue

corresponding to the i mode.

The METIS [38], unstructured graph partition program, is used for algebraic substructuring and the number
of substructures is equal in the AMLS, previous and present EAMLS method. The frequency cutoff value is adopt
as the criterion for selecting dominant substructural modes. All numerical computations were performed by

MATLAB 2016b under Windows 10 operating system with an Intel Core 17 7700 3.60 GHz, 32 GB RAM.
5.1 Rectangular plate problem

A rectangular plate in Figure 5.1 is considered. Length L is 20 m, width B is 12 m, thickness is 0.01 m,
Young’s modulus E is 207 GPa, Poisson’s ratio v is 0.3, and density p is 7850 kg/m>. The plate is modeled by
30x24 mesh (3875 DOFs) of the MITC4 shell element [41] and the reference eigenvalues are written in Appendix.

The reduced models obtained from the AMLS, previous and present EAMLS are constructed in the same size.

In this problem, the relative eigenvalue error in Equation (5.1), modal assurance criterion (MAC), and

relative eigenvector error ¢;, defined using MAC, are used to evaluate the accuracy of the methods as follows

(9 -9))°
MAC, . = -, 52
T 0 0)(@,9) o2
& =arccos (MAC,;). (5.3)

where @, and ¢, are the approximated and reference (global) eigenvector corresponding to the i" eigenvalue.
The global structure is partitioined into 15 substructures using algebraic substructuring in AMLS, and previous
and present EAMLS methods and compared two different error tolerance in the AMLS method:
= Case A: The relative eigenvalue errors in the AMLS method up to the 20™ mode are greater than 0.01. For
AMLS and previous EAMLS methods, the number of DOFs of the reduced bottom and higher level
substructures are 8 and 141, respectively. For present EAMLS methods, the number of DOFs of the reduced
bottom level substurctures and extended root substructure are 60 and 89, respectively. Therefore, the

number of DOFs of reduced models are 149.
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3 < >
L

Figure 5.1 A rectangular plate model

* Case B: The relative eigenvalue errors in the AMLS method up to the 20 mode are less than 0.01. For
AMLS and previous EAMLS methods, the number of DFOS of the reduced bottom and higher level
substructures are 46 and 163, respectively. For present EAMLS methods, the number of DOFs of the reduced
bottom level substructures and extended root substructure on refined subspace are 91 and 118, respectively.

Therefore, the number of DOFs of reduced models are 209.

Figure 5.2 represents the relative eigenvalue errors for each case, and Table 5.1 present the relative eigenvalue
errors for Case A. Figure 5.3 and 5.4 represent the MAC values and relative eigenvector errors for Case A. The
results of Case A demonstrate the improved accuracy of the present method compared to the AMLS methods, and
the tiny loss in accuracy compared to the previous EAMLS method. On the other hand, in Case B, the accuracy
of the present method has been improved compared to the AMLS method, while slight bigger loss in accuracy
occurs compared to the previous EAMLS method than Case A. Table 5.2 and 5.3 describe the computational cost
for each method. Table 5.2 show that the present method only requires 1.04 times more computational cost than
the AMLS method and 3.44 times faster than previous EAMLS method. Table 5.3 show that the present method
only requires 1.07 times more computational cost than the AMLS method and 3.54 times faster than previous

EAMLS method. The efficiency of present method is guaranteed in both cases.
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Figure 5.2 Relative eigenvalue errors for the rectangular plate problem: (a) Case A, (b) Case B
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Table 5.1 Relative eigenvalue errors for the rectangular plate problem in Case A

EAMLS
Mode number AMLS
Previous Present

1 8.54038x10 5.31416x10” 3.43342x10°8
2 3.64345x10 5.43980x107'° 8.43386x107°
3 8.52799x10 1.55100x107 2.50882x10°¢
4 6.81176x1073 1.65724x10°° 3.64546x10°°
5 2.86210x107 4.47137x10° 1.85045x10°¢
6 4.30107x1072 2.68323%107 7.40431x10°°
7 3.41986x1073 6.34895x107 1.33956%107
8 4.24908x107 1.13308%10™* 2.83256%107
9 5.29423x107 5.50996x107 3.48417x107
10 4.67332x107 5.37409x107 6.38754x107
11 0.62249x107 5.90782x10* 3.92355%107
12 3.94315x10"! 0.04083x10™* 5.33350%107
13 6.43190x10" 2.26478%107 7.42547x107
14 3.63637x107! 4.72177x107 1.95644x10™*
15 1.95130%107! 3.27608x107 4.13647x107
16 2.95617x10"! 1.23627x1073 1.80371x10™*
17 4.64452x10"! 1.03832x107° 3.09585%10™*
18 9.18239x10"! 6.41150x107 4.04529x107
19 7.00959x10! 1.84309x107 3.28335x10
20 7.62391x10"! 2.42997x1072 4.79123x10™

-36 -



(@)

20 [ |
[ |
[ |
[ |
15 [ |
[ |
. [ | [ |
2 [ |
§ [
o 10 [ |
3 [ |
= [
5
I!l
1
1 10 15 20
Mode number
(b)
20 [ |
[ |
[ |
|
[ |
15 [ |
|
[ |
2 [ ]
= |
5 10 [ |
3 [ |
= [ |
5
1
1 10 15 20
Mode number
(©
20 [ |
|
[ |
[ |
[ |
15 [ |
|
[ |
2 [ ]
= |
5 10 [ |
3 [ |
= [ |
5
|
1 10 15 20

Figure 5.3 2-D presentation of MAC values for the rectangular plate problem in Case A: (a) AMLS, (b) previous

EAMLS, (c) present EAMLS

Mode number

-37-

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

MAC value

MAC value

MAC value



T T T T T T T T T T

100 £ E
=
=

S 102E E
)
k3]
1)
>
=)
)
50
R

210
=
©
~

— AMLS
1076 E Previous
Present
1 Il Il Il I 1 Il 1 | Il
0 2 4 6 8 10 12 14 16 18 20

Mode number

Figure 5.4 Relative eigenvector errors for the rectangular plate problem in Case A
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Table 5.2 Specific computational cost for the rectangular plate problem in Case A

Computation times

Methods Items
[sec] Ratio [%]
Calculation of constraint modes 0.11 12.09
Transformation procedure 0.30 32.97
Reduced eigenvalue problem 0.15 16.48
AMLS
Construction of transformation matrix 0.25 27.47
Back transformation procedure 0.10 10.99
Total 0.91 100.00
Calculation of constraint modes and residual flexibility matrix 0.31 34.07
AMLS transformation procedure 0.28 30.77
Construction of extended constraint modes matrix 0.47 51.65
Previous
Construction of the enhanced transformation matrix 2.05 225.27
EAMLS
Reduced eigenvalue problem 0.15 16.48
Back transformation procedure 0.01 1.10
Total 3.27 359.34
Preliminary transformation procedure 0.41 45.06
Projection on the refined subspace 0.01 1.10
Residual substructural modes correction 0.09 9.89
Present -
Reduced eigenvalue problem 0.14 15.38
EAMLS
Construction of the enhanced transformation matrix 0.20 21.98
Back transformation procedure 0.10 10.99
Total 0.95 104.40

Table 5.3 Computational cost for the rectangular plate problem in Case B

Computation times

Methods
[sec] Ratio [%]
AMLS 0.930 100.00
Previous EAMLS 3.528 379.35
Present EAMLS 0.996 107.10
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5.2 Centrifugal impeller problem

Here, a centrifugal impeller, a key component of centrifugal compressor, is considered as shown in Figure
5.5. The impeller is modeled using 66201 four-node tetrahedral elements and the number of total DOFs is 52332.
Young’s modulus E is 207 GPa, Poisson’s ratio v is 0.3, and density p is 7850 kg/m®. The reduced models

obtained from the AMLS, previous and present EAMLS are constructed in the same size.

The global mass and stiffness matrices for the AMLS, previous and present EAMLS methods are partitioined
322 substructures using algebraic substructuring. For AMLS and previous EAMLS methods, the number of DOFs
of the reduced bottom and higher level substructures are 162 and 1415, respectively. For present method to
construct the same DOFs of reduced model, the number of DOFs of the reduced bottom level substructure and
extended root substructure are 194 and 1383, respectively. Therefore, the number of DOF's of reduced models are

1577.

Figure 5.6, 5.7, and 5.8 illustrate the relative eigenvalue errors, MAC values, and relative eigenvector errors
computed by the AMLS, previous and present EAMLS methods up to the 60" mode, respectively. Table 5.4 lists
the required computational costs for each method. As aforementioned in chapter 3 and 4, computation of enhanced
transformation by global operation is identified as bottleneck in the previous EAMLS method. In addition, explicit
calculation of substructural residual flexibility matrix F*, fully populated matrices, is required large computer

memory and gives rise to additional arithmetic operations.
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Figure 5.6 Relative eigenvalue errors for the centrifugal impeller problem
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Figure 5.7 2-D presentation of MAC values for the centrifugal impeller problem: (a) AMLS, (b) previous EAMLS,

(c) present EAMLS
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Figure 5.8 Relative eigenvector errors for the centrifugal impeller problem
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Table 5.4 Specific computational cost for the centrifugal impeller problem

Computation times

Methods Items
[sec] Ratio [%]
Calculation of constraint modes 2.95 4.28
Transformation procedure 55.66 80.80
Reduced eigenvalue problem 0.87 1.26
AMLS
Construction of transformation matrix 9.08 13.18
Back transformation procedure 0.33 0.48
Total 68.89 100.00
Calculation of constraint modes and residual flexibility matrix 4.39 6.37
AMLS transformation procedure 59.93 86.99
Construction of extended constraint modes matrix 64.62 93.80
Previous
Construction of the enhanced transformation matrix 3015.17 4376.79
EAMLS
Reduced eigenvalue problem 1.62 2.35
Back transformation procedure 0.25 0.36
Total 3145.98 4566.67
Preliminary transformation procedure 59.27 86.03
Projection on refined subspace 1.68 244
Residual substructural modes correction 9.65 14.01
Present -
Reduced eigenvalue problem 0.77 1.12
EAMLS
Construction of the enhanced transformation matrix 2.76 4.01
Back transformation procedure 1.36 197
Total 75.49 109.58
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5.3 Femur bone problem

Over the past few decades, FE analysis has been applied for simulating biomedical engineering systems to
predict the dynamic properties such as natural frequencies, vibration modes, and fracture load. Here, a femur bone
is considered as shown in Figure 5.9. The bone material is inherently anisotropic, but is assumed to be isotropic
material. Young’s modulus E is 18 GPa, Poisson’s ratio v is 0.3, and density p is 1900 kg/m* [42]. For
modeling the femur bone, 425345 four-node tetrahedral element are used, and the number of DOFs is 289431. In
this problem, the reduced models cannot be obtained from the previous EAMLS method since direct calculation
of the enhanced transformation matrix is required large computational memory and time. The global mass and
stiffness matrices are partitioned into 997 substructures for both methods using algebraic substructuring, and the

reduced model obtained by AMLS and present EAMLS methods are constructed in the same size.

For the AMLS method, the number of DOFs of the reduced bottom and higher level substructures are 499
and 1167. For the present method, the number of DOFs of the reduced bottom level substructures and extended
root substructure are 1466 and 200, respectively. Therefore, the number of DOFs of reduced models are 1666.
Figure 5.10 represents the relative eigenvalue errors corresponding to 1% ~100" and Table 5.5 shows
computational cost obtained from AMLS and present method. These results demonstrates the excellent solution

accuracy and only required slight additional computational cost compared to AMLS method.

Figure 5.9 A femur bone model
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Figure 5.10 Relative eigenvalue errors for the femur bone prblem

Table 5.5 Computational cost for the femur bone problem

Computation times

Methods
[sec] Ratio [%]
AMLS 627.17 100.00
Previous EAMLS N/A -
Present EAMLS 707.92 112.88
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5.4 Airplane fuselage problem

Here, an airplane fuselage, modeled by three-node shell element, is considered as shown in Figure 5.11 to
validate the performance of present method for relatively large FE model. Young’s modulus £'is 71 GPa, Poisson’s
ratio v is 0.3, and density p is 2770 kg/m*. The number of element and DOFs in global FE model are 675056
and 2025180, respectively. In this problem, the reduced model cannot be obtained from previous EAMLS method
like femur bone problem. The global FE model is partitioned into 6112 substructures for both methods using

algebraic substructuring.

In order to compare the efficiency between AMLS and present EAMLS methods at similar accuracy, the
sizes of the reduced model are different. Figure 5.12 illustrates the relative eigenvalue errors up to 300" mode
from the four different DOFs of reduced models: N = 21802, N = 26561, N = 31655, and N = 3784. Total
computational costs are listed in the Table 5.6. From these results, the present method can construct a small size

reduced model with better efficiency compared to the AMLS method.

VAVAVAVAV,
uvl‘uexaa
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Figure 5.11 An airplane fuselage model
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Figure 5.12 Relative eigenvalue errors for the airplane fuselage problem

Table 5.6 Computational cost for the airplane fuselage problem

300

Computation times

Methods
[sec] Ratio [%]
AMLS (N = 21802) 5705.36 95.07
AMLS (N = 26561) 5889.58 98.14
AMLS (N = 31655) 6001.23 100.00
Previous EAMLS N/A -
Present EAMLS (N = 3784) 5600.41 93.32
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Chapter 6. Conclusions

In this thesis, the new formulation of EAMLS method for reduction of the large FE models has been presented.
In order to resolve the factors associated with deteriorating efficiency, three phases for managing the computer
memory and computational cost were discussed in detailed: algebraic substructuring with reverse level order
traversal, projection on the refined subspace, and the residual substructural modes correction. The new formulation
employed these processes represents the extremely increase efficiency compared to the previous EAMLS method
and has capability to solve the large and complex models over millions DOFs. Unlike the previous EAMLS
method, residual flexibility matrices is derived from only bottom level substructures and not required explicitly.
In addition, residual substructural modes correction is applied to only the mass matrix, and this give rise to an
efficient algorithm. The new formulation is demonstrated its accuracy and efficiency through various numerical
examples, and identified to enable reduction of large and complex FE models which cannot be solved from the

previous EAMLS method.
In the future work, it would be possible to develop a more robust EAMLS method with efficient mode

selection, which has a significant on both accuracy and computational cost. For this, it should be investigated the

effect of the selected modes and optimal choice of modes.
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Appendix

Table A.1 lists the reference eigenvalues A for the rectangular plate problem in Section 5.1 up to 30" mode.

Table A.1 The reference eigenvalues for the rectangular plate problem in Section 5.1

Mode number Reference A
1 -9.35828x1071°
2 1.65559x10
3 4.24917x107
4 4.87676x10”
5 5.90795x10”
6 6.57825x10
7 0.696479971
8 0.749201188
9 3.842803708
10 5.341551279
11 5.732317012
12 9.101727949
13 12.60505321
14 18.82903417
15 22.78273281
16 33.69775915
17 40.95263798
18 45.13653716
19 50.81684223
20 62.03892043
21 74.84707080
22 80.81029884
23 81.28972606
24 118.6988289
25 141.4146650
26 149.6863495
27 168.3535584
28 176.3333556
29 188.0154359
30 190.6058926
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