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Abstract

A new strain smoothing method called the strain-smoothed element (SSE) method has been proposed. The SSE
method does not require additional degrees of freedom, and provides highly accurate solutions by fully utilizing
the strains of neighboring finite elements. Unlike with previous strain smoothing methods, special smoothing
domains are not created, and more continuous and accurate strain fields are constructed within elements. The SSE
method was first applied to linear solid elements (also called constant strain elements), i.e., 3-node triangular 2D
and 4-node tetrahedral 3D solid elements. A further study has been conducted to extend the method to general
low-order finite elements, and as a result, a strain-smoothed 4-node quadrilateral 2D solid element was developed.
Using the SSE method, a strain-smoothed MITC3 + shell finite element was developed that exhibits much
improved membrane behavior compared with the original MITC3+ shell finite element. Then, we present the total
Lagrangian formulation of the strain-smoothed MITC3+ shell element for geometric nonlinear analysis. A
variational principle for the SSE method was constructed and convergence and stability analyses were performed

based on the defined variational principle.

Keywords Finite element method, Strain-smoothed element method, Solid elements, Shell elements, Structural

analysis, Geometric nonlinear analysis
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Chapter 1. Introduction

The finite element method (FEM) has been widely used for solving problems in various engineering fields over
the past several decades. There are various types of finite elements for analysis of solid mechanics problems,
among which low-order finite elements such as 3-node triangular elements and 4-node tetrahedral elements are
very attractive due to their simplicity and efficiency. The low-order elements have high modeling capabilities and
are particularly preferred for large deformation analysis requiring automatic remeshing. Also, they often provide
a relatively easy way to solve complicated engineering problems such as contact analysis. However, in general,
the predictive capability of low-order elements is not good enough to be used in engineering practice. Further
development of low-order finite elements with improved accuracy is still required while maintaining its

advantages [1-3].

Recently, the smoothed finite element method (S-FEM) was developed and successfully applied to various
mechanics problems. In S-FEM, the strain smoothing technique is applied to smooth the strain field of standard
FEM. Piecewise constant strain fields are constructed in newly established smoothing domains. The smoothing
domains can be constructed on the basis of a cell, node, edge, or face; thus, cell-based, node-based, edge-based,
and face-based S-FEM methods were devised. There are differences in characteristics and performance among
the methods, and edge-based S-FEM is generally known to be most effective. Compared to standard FEM, S-
FEM achieves significantly improved accuracy, especially for 3-node triangular and 4-node tetrahedral solid finite
elements. The important advantage of S-FEM is that no additional degrees of freedom (DOFs) are required [4-
21].

In this study, a new strain smoothing method called the strain-smoothed element method (SSE method) is first
proposed for linear solid elements (also called constant strain elements), i.e. 3-node 2D triangular and 4-node 3D
tetrahedral solid elements. The distinct feature of the SSE method is that special smoothing domains are not
created, and that linear strain fields are constructed within elements. The linear strain field of an element is
synthesized utilizing the constant strains of neighboring finite elements through simple strain smoothing. In this
way, we obtain the full advantages of strain smoothing, and have a smoothed strain field integrated within the
element. The SSE method is simple and provided more accurate solutions in a variety of numerical examples than

with the standard FEM, and with the face-based and edge-based S-FEM methods [22].

Then, the author proposes its application for a 4-node quadrilateral finite element and thus a strain-smoothed 4-
node quadrilateral finite element is developed. An important key is to employ the piecewise linear shape functions
instead of the standard bilinear shape functions. The proposed strain-smoothed element has a bilinear strain field
where the strains of neighboring elements are integrated within an element formulation through a new strain
smoothing technique. Consequently, the new finite element provides highly accurate solutions, which are

illustrated in various benchmark problems [23].



Adopting the mixed interpolation of tensorial components (MITC) method for the continuum mechanics based 3-
node triangular shell finite element, the MITC3+ shell element was recently developed. Its excellent bending
behavior has been demonstrated through various numerical examples [24]. However, the membrane behavior of
the MITC3+ shell element is the same as that of the displacement-based 3-node triangular shell elements. The
author proposes a strain-smoothed MITC3+ shell finite element in which the membrane behavior of the MITC3+
shell finite element is improved by employing the SSE method, and thus additional DOFs are unnecessary. The
covariant strain fields of the MITC3+ shell element are decomposed into membrane, bending and transverse shear
parts. The SSE method is applied only to the membrane part. Convergence behavior is improved in membrane-
dominated and mixed bending-membrane problems while maintaining good convergence behavior in bending-

dominated problems [25].

Also, the formulation of the strain-smoothed MITC3+ shell finite element for geometric nonlinear analysis is
presented. The total Lagrangian formulation is used allowing for large displacements and rotations. The MITC
method is employed for the transverse shear strain fields. The SSE method is adopted for the membrane strain
fields of the MITC3+ shell element, leading to the tangent stiffness matrix and internal force vector. The nonlinear
performance of the strain-smoothed MITC3+ shell element is evaluated through various numerical examples. This
study shows that the SSE method originally proposed for linear analysis can be easily extended for nonlinear

analysis and produces reliable solutions in nonlinear analysis.

So far, the properties of the SSE method have only been verified by numerical means. We now establish a
theoretical foundation for the SSE method. The smoothed strains in the SSE method can be obtained by applying
a sequence of orthogonal projection operators among assumed strain spaces. Invoking this observation, a mixed
variational principle for the SSE method is established. The SSE method can be derived as a conforming Galerkin
approximation of the defined variational principle. We perform convergence and stability analyses of the SSE

method based on the variational principle.



Chapter 2. A new strain smoothing method for linear order 2D and 3D

solid finite elements

In this chapter, a new strain smoothing method (the strain-smoothed element method) that is useful for finite
element analysis of problems in two-dimensional (2D) and three-dimensional (3D) solid mechanics is proposed.
The strain-smoothed element (SSE) method is simple and provides highly accurate solutions. No additional
degrees of freedom (DOFs) are required, while for other methods such as extended FEM and enriched FEM,
additional DOFs are required to improve accuracy [26-32]. The SSE method is first developed for linear solid
finite elements (also called constant strain elements), i.e. 3-node triangular 2D and 4-node tetrahedral 3D solid

elements.

We briefly review the edge-based strain smoothing method [10,14], and present the formulation of the SSE method,

for the 3-node triangular and 4-node tetrahedral solid elements for analysis of solid mechanics problems [23].

2.1. Strain smoothing method for 3-node triangular 2D solid elements

2.1.1. The edge-based smoothed triangular element

The geometry of the standard 3-node triangular 2D solid element is described by

3
x=> h(rs)x, with x, =[x, 3], 2.1)

i=1
where X, is the position vector of node i in the global Cartesian coordinate system, and /#,(r,s) is the 2D
interpolation function of the standard isoparametric procedure corresponding to node i given by

h=1-r-s, hy=r, hy=s. (2.2)

The displacement of the standard 3-node triangular 2D solid element is interpolated by

3
u:Zh,.(r,s)u,. with ui:[ui vi]T, (2.3)

i=1

where u, is the displacement vector of node i in the global Cartesian coordinate system.

Employing the standard isoparametric finite element procedure, the strain field within a 3-node triangular element

is obtained using

e e e . e (e) _ T
£ =B“u“ with B =[B, B, B,], u’=[u u, ul, (2.4)
in which €“=[¢_ ¢,  2¢ 1, B“ is the strain-displacement matrix of an element, u' is the nodal

xx W xy
displacement vector of the element, and B, is the strain-displacement matrix corresponding to node i .
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In the edge-based strain smoothing method, smoothing domains are formed based on elements in standard FEM
(shown in Fig. 2.1a). Let us consider two elements adjacent to the target edge painted in red in the figure. Each
element is divided into three sub-triangles using its nodes and a center point (# =s=1/3), and each sub-triangle
is named “cell”, see Fig. 2.1(b). In the red edge considered, the edge-based smoothing domain is defined as an

assemblage of two neighboring cells belonging to different elements.

The smoothed strain for the edge-based smoothing domain is given by

= 1 W), 4262
€ ZW(AL €+ AC € ) (25)
where A" and A® are the areas of the first and second cells neighboring the target edge, and &” and &

are the strains of the neighboring finite elements. While Fig. 2.1(a) shows a typical domain discretization in the

standard FEM, smoothing domains are shown in Fig. 2.1(c).

® Nodes o Center points ,jfg Cells

(a) (b)

1
+ (1) o(1) (2) ((2)
€= (A £+ A4 ¢ )
(2) e c
+ 4.

Fig. 2.1. Construction of edge-based smoothed strain fields: (a) Elements of the standard FEM. The red line
corresponds to a target edge. (b) The elements are divided into three cells. (¢) Smoothing domains and smoothed
strains of the edge-based S-FEM. Piecewise constant strain fields are constructed for elements in (a) and for

smoothing domains in (c).



The edge-based strain smoothing method also has a constant strain field in the smoothing domain. It is known
that the 3-node triangular elements subject to the edge-based strain smoothing method pass all the basic tests
(patch, isotropy, and zero energy mode tests), and that the edge-based strain smoothing method shows the best
performance among various S-FEM methods. Thus, the edge-based smoothing method has been extended for

polyhedral 3D solid elements (see Ref. [15] for its formulation).

2.1.2. The proposed strain-smoothed triangular element

With the proposed method, the strains of all neighboring elements are fully utilized in the strain smoothing process.

For 3-node triangular elements, the strains of up to three surrounding elements can be used through element edges

(e)

(see Fig. 2.2a) where ¢'° isthe strain of a target element and €' is the strain of the & th neighboring element.

Let us define smoothed strains between the target element and neighboring elements

. 1 )
g<k>:W(A@g@m(“s(“) with k =1,2,3, (2.6)

where A4 and A® are the areas of the target element and the & th neighboring element, respectively, see Fig.
2.2(b). Note that if the k th edge of the target element corresponds to a boundary, there is no neighboring element

for the edge and thus &% =&'“ is used.

Smoothed strains in Eq. (2.7) can also be expressed in a matrix and vector form as

A o A . o\ o\ a\ - - A (k T
&9 =B®® with BY=[B, B, B, B..|. @=[w u, uw u,T. 2.7)

where B® and @ are the strain-displacement matrix and the corresponding displacement vector of the

element for the smoothed strains £’ . The subscript i in ]§[ and u, denotes the neighboring node number

as shown in Fig. 2.2(a).

In a 3-node triangular element, three point Gauss integration is used to calculate the stiffness matrix. The smoothed
strain values in Eq. (2.7) are directly assigned to the Gauss points (a, b, and ¢ in Fig. 2.2¢) of the target element

using the following equations, as shown in Fig. 2.2(d)

A

g :%(é“’ +8Y), & =%(é“) +87), & =%(é”’ +8Y). (2.8)

Therefore, in the computation of the stiffness matrix and stress, the strains assigned in Eq. (2.9) are used directly
at the Gauss integration points. The strain field within the element can be explicitly expressed in a form of assumed

strain

gw{l_ 1 (m_zp)}«+_r‘Pgb+—S‘Psc, (2.9)
qg—p q—p



where p=1/6 and g=4/6 are the constants indicating the positions of the Gauss points. Note that the use

of this equation is not necessary in actual computations.

When the element has three neighboring elements with common element edges, the strain-displacement relation

for the strain field can be expressed in a vector and matrix form as

T =BYa”, (2.10)
with
B© — [El B, B, B, B, ]_36], (2.11)
i =[u, uw, u, u, u uJ, (2.12)

where B is the strain-displacement matrix of the strain-smoothed element, and ' is the corresponding
displacement vector of the element. Note that the components of the strain-displacement matrix and the

displacement vector vary depending on the configurations of neighboring elements.

As in other strain smoothing methods, exterior (boundary) elements have relatively fewer neighboring elements
than interior elements and thus the strain smoothing effect in the exterior region could be less than that in the

interior region.

1
a0k (© (o), 4(K) oK)
g =5 (49 4 )

(@) (b)

o _Loam, a0

g =—(8"+¢"
2( )

g = l(é“)+ &)
2

¢ 1 A2, a03)
& =—(&€7+€

(c) (d)

Fig. 2.2. Strain-smoothed element method for the 3-node triangular element: (a) Strains of a target element and

its neighboring elements. Node numbers are used for explaining the formulation. (b) Strain smoothing between

the target and each neighboring element. (¢) Three Gauss integration points in the natural coordinate system (7,s) .

(d) Construction of the smoothed strain field through Gauss points.
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2.2. The strain-smoothed 4-node tetrahedral 3D solid finite element

The geometry of the standard 4-node tetrahedral 3D solid element is described by

4
x=> h(rs0x, with x, =[x, »y, z]. (2.13)

i=1
where X, is the position vector of node i in the global Cartesian coordinate system, and 4,(r,s,t) is the 3D
interpolation function of the standard isoparametric procedure corresponding to node i given by

h=1-r—-s—t, hy=r, hy=s, h,=t. (2.14)

The displacement of the standard 4-node tetrahedral 3D solid element is given by
4
u=>h(rs,0u, with w=[u, v, w], (2.15)
i=1

where u, is the displacement vector of node i in the global Cartesian coordinate system.

The strain-displacement relation of the standard tetrahedral element is

£ =By, (2.16)
with
B¢ = [Bl B, B, B4] , u =[w w, uw uJ, (2.17)

where £ =[¢_ £, €. 2, 2¢, 2¢, 1", B is the strain-displacement matrix of an element, and

u'® s the displacement vector of the element.

In a tetrahedral element, configurations of neighboring elements through six element edges can differ. Smoothed
strains between the target element and neighboring elements through the edges are calculated using the following

equations

?:("):;(V“)s““rzkﬁ/f“s;")) with &k =1,2,3,4,5,6,

ny
(e) (k) i=1
8

i=1

(2.18)

where 7, is the number of elements neighboring the & th edge of the target element, £’ and ka) are the
strains of the target element and the i th element neighboring the & th edge of the target element, respectively.

Here, V' and V" are the volumes of the target element and the i th element neighboring the & th edge,

1

respectively, see Fig. 2.3(a). Note that if the & th edge of the target element is located alone along a boundary

without neighboring elements, 7, =0 and thus " =¢'.



The stiffness matrix of the tetrahedral element is calculated using the four point Gauss integration, see the positions
of the Gauss points a, b, ¢, and d in Fig. 2.3(b). The strains at the Gauss points are directly assigned using the

following equations, as shown in Fig. 2.3(c)

Loy, A, &
& =g(8<1)+8(2> ©)

+8 g

R 1. R .
+&8+¢“), £b=§(8(1)+8 +89 1849,

1. N « N , 1 . N « N I 2.19
s”=§(8(2)+£(4)+s(5)+£+8(‘)), s”’:g(s“)+s(5’+s("’)+£+s(e)) with anga“‘). 2.19)
k=1

Target element

1 n,
- (V(6)8(9)+ZV:(1()£§/¢))

i
V(e) +ZV;U{) i=1

i=1

2 _

(a)

i p=(5-+5)/20
g=(5+3v5)/20

1 . » AG) A
g = 3 (804 8P+8V1 8+

1 A6

g = g(§.“)+ £§9+89+84¢9)

a®

1 . « A
s“=g(s(2)+s(‘”+s +&+£)

1 . « N N .
gl = g(s‘”+ 89480184

. . IS,
7 with 82728(“
N 65

(b) (c)

Fig. 2.3. Strain-smoothed element method for the 4-node tetrahedral element: (a) Strain smoothing between the

target and neighboring elements for the £ th edge of the target element marked with the red dotted line. There are
three neighboring elements through the edge (#, =3). (b) Four Gauss integration points in the natural coordinate
system (r,s,¢) . (c) Construction of the smoothed strain field through Gauss points. Edge numbers are colored in

red.



The strain field can be represented by

z("’{l— ! (r+s+t—3p)}€a+r_p8b+s_p£"+t_psd, (2.20)
qg-p qg-p qg-p qg-p

with p=(5—\/§)/20 and q=(5+3\/§)/20 . Note that this assumed strain field is not used in actual

computations.

Strain smoothing methods do not require additional DOFs, but some additional processes are necessary to perform
strain smoothing. Several studies have validated the efficiency of the strain smoothing methods by evaluating
their computational cost and accuracy. It has been reported that the edge-based strain smoothing method is the
most efficient strain smoothing method so far [10,15]. The strain-smoothed element method proposed in this study

shows computational cost similar to that of the edge-based strain smoothing method.

2.3. Basic numerical tests

For the proposed triangular and tetrahedral elements, three basic numerical tests: the isotropy, patch and zero

energy mode tests are performed [1-3].

The isotropy test is to check whether the finite elements give the same results regardless of the node numbering

sequences used. The proposed triangular and tetrahedral elements pass the isotropy test.

In the patch tests, the minimum number of degrees of freedom is constrained to prevent rigid body motions, and
proper loadings are applied to produce a constant stress field. To satisfy the patch tests, a constant stress value
should be obtained at every point on elements. Normal and shear patch tests are performed using the meshes
shown in Fig. 2.4. Stress values calculated (using 16 significant decimal digits of precision) are extracted from all
Gauss integration points and compared with the analytical solutions. In the proposed triangular and tetrahedral
elements, the maximum relative error in the normal and shear patch tests are on the order of 10™* to 107".

Therefore, the proposed elements pass the patch tests with sufficient accuracy.

In the zero energy mode test, the number of zero eigenvalues of the stiffness matrix of unsupported smoothed
elements is counted. The 2D and 3D solid elements should have three and six zero eigenvalues, respectively,

corresponding to the physical rigid body modes. The proposed elements pass the zero energy mode test.



(a) (b)
Fig. 2.4. Finite element meshes used for the patch tests: (a) 2D patch test. Each quadrilateral element is divided
into two triangular elements. (b) 3D patch test. Each hexahedral element is divided into six tetrahedral elements.

Only the splits in the hexahedral element located at the bottom are depicted.

2.4. Convergence studies

In this section, we present the performance of the strain-smoothed elements using three 2D numerical examples
(a block problem, Cook’s skew beam problem, and an infinite plate with a central hole problem), and two 3D

numerical examples (a cubic cantilever problem and Lame problem).

The performance of the proposed 3-node triangular element is compared with those of the standard linear
triangular finite element and edge-based smoothed finite element [10]. The performance of the proposed 4-node
tetrahedral element is compared with those of the standard linear tetrahedral finite element, edge-based, and face-
based smoothed finite elements [15,17]. The edge-based and face-based smoothed elements are denoted by ES-
FEM and FS-FEM, respectively.

In some examples, we compare the performance of the proposed triangular and tetrahedral elements with those of
the standard quadratic 6-node triangular and 10-node tetrahedral elements, respectively. On the convergence
curves, the element size is defined as #=1/ N for linear elements and ~=1/2N for quadratic elements. This

allows comparison of linear and quadratic elements with the same DOFs.

We compare the displacements and stresses at a specific location. We also use energy norm. The relative error in

the energy norm is given by

2 2
il

2

u.
) "| ref

e

with [ul} = [ &'ed@, 2.21)

u ref

where the subscripts “ref” and “h”" denote the reference and finite element solutions, respectively.
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For the relative error in the energy norm, the optimal convergence behavior for the linear elements is estimated to

be
EX=ch’, (2.22)

in which ¢ isaconstant and % denotes the element size [1].

2.4.1. Block problem

Here, we solve the 2D block problem shown in Fig. 2.5(a). The block is subjected to a distributed compression
force of total magnitude P =1 at the right half of the top edge, and the bottom edge of the block is clamped.
Plane stress conditions are assumed with E =3x10" and v =0.3, and density is given as ,0=1><107 . We use
structured meshes of N x N elements with N =2, 4, 8 and 16 (shown in Fig. 2.5b), and unstructured meshes
with the total number of elements N, =6, 32, 128, 500 (Fig. 2.5¢). The unstructured meshes are acquired through
the commercial software ANSYS. The equivalent values of N in the unstructured meshes are calculated by

N=\N,/2.

Table 2.1 gives the predicted vertical displacement at point 4 for the structured mesh. Fig. 2.6 gives the
convergence curves obtained using the energy norm for both structured and unstructured meshes. The reference
solutions are obtained using a 32x32 structured mesh of 9-node quadrilateral solid elements. The use of the
proposed element gives much more accurate solutions than when using the standard and edge-based smoothed

elements.

In addition, free vibration analysis is performed to compare the performance of the finite elements considered.
The generalized eigenvalue problem is defined as

Ko, =AMe, with i =1,2, .., n, (2.23)
where K and M are the global stiffness and consistent mass matrices, respectively, 4, and ¢, are the
eigenvalue and eigenvector corresponding to the i ™ mode, respectively, and n denotes the number of DOFs in

the finite element model. Table 2.2 presents the obtained eigenvalues corresponding to the 1% — 5" modes for the

structured mesh with N =4 . The proposed element performs very well.

2.4.2. Cook’s skew beam problem

We next consider Cook’s skew beam problem [3], as shown in Fig. 2.7. The structure is subjected to distributed

shearing force of total magnitude P =1 at the right edge, and the left edge of the structure is clamped. The plane

stress conditions with E =3x10" and v =0.3 are considered. The solutions are obtained with N x N

11



element meshes (N = 2, 4, 8, and 16).

Fig. 2.8 shows the distribution of the calculated strain component 2£W. The proposed triangular element shows

the strain field most similar to the reference distribution. Table 2.3 gives the von Mises stress at point A, shown
in Fig. 2.7. The stress values are obtained by averaging stresses in the domains (elements in the proposed method)
to which the point belongs. Fig. 2.9 shows the convergence curves obtained using the energy norm. A 32x32
element mesh of 9-node 2D solid elements is used for the reference solutions. The proposed element shows much
better convergence behavior than do the standard linear element and edge-based smoothed element. Interestingly,
the convergence performance of the proposed (linear) element is comparable to that of the standard quadratic

element.

2.4.3. Infinite plate with a central hole problem

The last 2D example is the problem of an infinite plate with a central hole [4]. The plate is subjected to a far field

traction p =1 in the x -direction as shown in Fig. 2.10(a). The plane strain conditions are considered with
E=3x10" and v=0.3. Due to its symmetry, only one-quarter of the plate is modeled. Symmetric boundary
conditions are imposed: u, =0 along AC and u,= 0 along BD, and the traction boundary conditions are

imposed along CE and DE based on the following analytical solutions [33]:

2 4
o, (r,0)=p— p‘i {Ecos29+cos40}+ 3pcj cos4d , (2.24)
r- 2 2r
pa’[1 3pa’
0, (r,0)=—"— 500529—00540 S cos4d , (2.25)
r r

4

3pa

4
7

sin46 (2.26)

2

2
o, (r,H)z—pa lsin2¢9+sin49 +
2 r- 12

where 7 is the distance from the origin and 6 is the angle from the positive x -axis to the counterclockwise
direction. The geometry is divided into two parts and meshed for each part using N x N elements with N =2,

4, 8 and 16, see Fig. 2.10(b).

Table 2.4 and Fig. 2.11 show the horizontal displacement at point B and the convergence curves obtained using
the energy norm, respectively. To obtain the reference solution, a mesh of 9-node 2D solid elements is used with
N = 32. Compared with standard and edge-based smoothed elements, the proposed element shows significantly

improved accuracy.

12



2.4.4. Cubic cantilever problem

Here, we solve the 3D cubic cantilever problem [34] shown in Fig. 2.12(a). The cubic cantilever is subjected to a

uniform pressure p =1 on its upper surface, and the outer surface on the xz -plane is clamped. The material
properties are E=1, v=0.25,and p=1. We use two types of meshes: structured meshes of NxNx N

elements with N =2, 4, and 8 (see Fig. 2.12b), and unstructured meshes of N, =63, 352, and 2973 (see Fig.

2.12c). The equivalent values of N in the unstructured meshes are obtained using N =3/N,/6 .

Table 2.5 gives the calculated eigenvalues corresponding to the 13— 5" modes for the structured mesh with N =4.
Fig. 2.13 shows the convergence curves obtained using the energy norm for the structured and unstructured
meshes. A structured 16x16x16 mesh of 27-node hexahedral solid finite elements is used for the reference
solutions. The use of the proposed tetrahedral element gives better solutions than when using the standard linear
elements and when using either face-based smoothed or edge-based smoothed elements. It is also observed that

the performance of the proposed (linear) element is comparable to that of the standard quadratic element.

2.4.5. Lame problem

We last consider the 3D Lame problem [33] shown in Fig. 2.14(a). A hollow sphere is subjected to internal pressure
p =100, and the given material properties are E =1x10’ and v =0.3. Utilizing the symmetry condition, only
one-eighth of the structure is considered. It is divided into three parts, each of which is meshed using N x N x N

elements with N =2, 4, and 8 (see Fig. 2.14b). The symmetric boundary conditions imposed are u#_=0 along

ACFE, u,=0 along BDFE,and u =0 along CABD .

Table 2.6 shows the von-Mises stress at point G , obtained by averaging stresses in the domains (elements in the
proposed method) to which the point belongs. Fig. 2.15 presents the convergence curves obtained using the energy
norm. A mesh of 27-node hexahedral solid finite elements with N =16 is used for the reference solution. It is
again observed that the proposed element shows significantly improved convergence behavior compared to the

standard linear, face-based smoothed, and edge-based smoothed elements.

13



Table 2.1. Vertical displacement (x10™*) at point A in the block problem. The values in parentheses indicate

relative errors obtained by

Upo —uh|/um,. x100 .

N Standard FEM ES-FEM SSE (proposed)
2 -5.7442 (26.71) -7.3025 (6.82) -8.1969 (4.59)
4 -6.9824 (10.91) -7.7441 (1.19) -7.8770 (0.51)
8 -7.5945 (3.10) -7.8176 (0.25) -7.8431 (0.07)

Reference solution: -7.8372

Table 2.2. Eigenvalues corresponding to the 1% — 5" modes for the 2D block problem when the structured mesh

with N =4 is adopted.

Mode Reference Standard FEM ES-FEM SSE (proposed)
1 0.3249 0.3828 0.3465 0.3327
2 1.8713 1.9249 1.8934 1.8759
3 2.3552 2.8456 2.4728 2.3634
4 5.9470 7.8848 6.4520 5.7638
5 6.9164 8.5072 7.5547 7.0044

Table 2.3. von-Mises stress at point 4 in Cook’s skew beam problem. The values in parentheses indicate relative

errors obtained by

O —O'h|/0re/ x100.

N Standard FEM ES-FEM SSE (proposed)
2 0.0740 (68.77) 0.1009 (57.43) 0.1209 (48.99)
4 0.1123 (52.63) 0.1889 (20.33) 0.2105 (11.19)
8 0.1685 (28.90) 0.2228 (6.03) 0.2290 (3.40)

Reference solution: 0.2371

Table 2.4. Horizontal displacement (x107*) at point B in the infinite plate with central hole problem. The values

in parentheses indicate relative errors obtained by

U, —uh|/ur€f x100 .

N Standard FEM ES-FEM SSE (proposed)
2 6.0622 (33.38) 7.5364 (17.18) 8.3902 (7.80)
4 7.3026 (19.75) 8.2955 (8.84) 8.7312 (4.05)
8 8.2250 (9.62) 8.7763 (3.56) 8.9807 (1.31)

Analytical solution: 9.1000
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Table 2.5. Eigenvalues corresponding to the 1% — 5 modes for the 3D cubic cantilever problem when the

structured mesh with N =4 is adopted.

Mode Reference Standard FEM FS-FEM ES-FEM SSE (proposed)
1 0.4484 0.5137 0.4946 0.4633 0.4509
2 0.4484 0.5471 0.5211 0.4791 0.4668
3 0.8563 1.1884 1.0718 0.9147 0.8791
4 2.5216 2.6204 2.5970 2.5527 2.5328
5 3.1823 3.7323 3.5445 3.2582 3.1645

Table 2.6. von-Mises stress at point G in Lame problem. The values in parentheses indicate relative errors

obtained by |0, — 0, | /o,,%100.

N Standard FEM FS-FEM ES-FEM SSE (proposed)
2 106.2858 (38.00) 125.3865 (26.86) 150.2877 (12.33) 166.7563 (2.73)
4 132.7286 (22.58) 143.6493 (16.20) 157.3288 (8.22) 166.3370 (2.97)
8 149.4181 (12.84) 155.2355 (9.45) 162.2212 (5.37) 166.6823 (2.77)
16 159.4205 (7.00) 162.5707 (5.17) 167.5228 (2.28) 169.5621 (1.09)

Analytical solution: 171.4286
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Fig. 2.5. 2D block problem: (a) Problem description (£ =3x107 and v =0.3). (b) Structured mesh used with

N =4. (c) Unstructured mesh used with N, =32.
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Fig. 2.6. Convergence curves for the 2D block problem. The bold line represents the optimal convergence rate.
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Fig. 2.7. Cook's skew beam problem (4x4 mesh, E=3x10" and v=0.3).
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Fig. 2.8. Strain distributions ( ZEW) calculated for Cook’s skew beam problem: (a) Standard 3-node triangular

element ( N =4 ), (b) Edge-based smoothed element ( N = 4 ), (c) Strain-smoothed triangular element (N = 4), (d)
Standard 9-node quadrilateral element ( N =32 ).
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Fig. 2.9. Convergence curves for Cook’s skew beam problem: The bold line represents the optimal convergence

rate for the linear elements. The element sizeis #=1/N for the linear elements and ~#=1/2N for the quadratic

element.
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Fig. 2.10. Infinite plate with central hole problem: (a) Problem description (E =3x10" and v =0.3). (b) Mesh
used with N =4 for the shaded domain in (a).
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Fig. 2.11. Convergence curves for the infinite plate with central hole problem. The bold line represents the optimal

convergence rate.
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(a) (b) (c)
Fig. 2.12. Cubic cantilever problem: (a) Problem description (£ =1 and v =0.25). (b) Structured mesh with
N =4. (c) Unstructured mesh with N, =352.

Structured mesh Unstructured mesh
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Fig. 2.13. Convergence curves for the cubic cantilever problem: The bold line represents the optimal convergence
rate for the linear elements. The element sizeis A=1/ N for the linear elements and 2=1/2N for the quadratic

element.
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(a) (b)
Fig. 2.14. Lame problem: (a) Problem description (E =1x10° and v =0.3). (b) Mesh used with N =4.
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Fig. 2.15. Convergence curves for Lame problem: The bold line represents the optimal convergence rate for the

linear elements. The element size is A=1/ N for the linear elements and ~=1/2N for the quadratic element.
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Chapter 3. The strain-smoothed 4-node quadrilateral 2D solid finite

elements

In this chapter, the SSE method is extended to a 4-node quadrilateral finite element and thus a strain-smoothed 4-
node quadrilateral finite element is developed. The piecewise linear shape functions are adopted instead of the
standard bilinear shape functions. The proposed strain-smoothed element has a bilinear strain field where the

strains of neighboring elements are integrated within an element formulation.

We present the formulation of the strain-smoothed 4-node quadrilateral element including geometry and

displacement interpolations, strain smoothing, strain-displacement relation and stiffness matrix.

3.1. Formulation of the strain-smoothed quadrilateral element

3.1.1. Geometry and displacement interpolations

Unlike the standard 4-node quadrilateral element, the element domain is subdivided into four non-overlapping

triangular domains (from T1 to T4) based on its nodes and center point (» = s = 0 ) as shown in Fig. 3.1(a).

The piecewise linear shape functions /.(r,s) are defined for each sub-triangle [31]

h=(0-2r-s)/4, hy=(1+2r—s)/4, h,=(+s)/4, h,=(1+s)/4 onTl, 3.1
h=(1-r)/4, hy=(1+r-2s)/4, hy=(+r+25)/4, h,=(1-r)/4 onT2, (3.2)
h=(-s)/4, h=(1-5)/4, hy=(1+2r+s)/4, h,=(1-2r+s)/4 onT3, (3.3)
h=(-r=2s)/4, hy=(+r)/4, h,=(1+r)/4, h,=(1-r+25)/4 onT4. (3.4)

Employing the shape functions in Egs. (3.1)-(3.4), the geometry of the 4-node element is interpolated by
4
x=>h(rs)x, with x, =[x, »], (3.5)
i=1

where x; is the position vector of node i in the global Cartesian coordinate system as shown in Fig. 3.1(b).

The corresponding displacement interpolation is given by
4
u=>Yh(r,s)u, with w,=[u, v], (3.6)
i=1

in which w, is the displacement vector of node i .

22



Fig. 3.2 illustrates the piecewise linear shape function 4, in Eqgs. (3.1)-(3.4) compared with the standard bilinear

shape function, /i, =(1+7)(1+s)/4 [31,32].

s 4 T: Sub-triangles

v

T4 T2

4 Tl %

(a) (b)

Fig. 3.1. A 4-node quadrilateral element in (a) the natural coordinate system and (b) the global Cartesian coordinate

system. A triangular subdivision of the quadrilateral element is depicted in (a).

by (and hy)
] Y

0.8,
0.6,
0.4

02,

— Piecewise linear shape function /i,

— Standard bilinear shape function

Fig. 3.2. Comparison of the standard bilinear and piecewise linear shape functions corresponding to node 3 along

element edges and a diagonal » =s . The two shape functions show different variations along the diagonal.
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3.1.2. Strain smoothing

Let us consider a 4-node quadrilateral element m in a finite element mesh as shown in Fig. 3.3. The strain field
within the target element m can be calculated by employing the standard isoparametric finite element procedure
as follows [1]

£ =vu™, 3.7

where £" =[¢, £, 2¢, I", v is the gradient operator and u is the nodal displacement vector of the

element.

Substituting Egs. (3.1)-(3.6) into Eq. (3.7), the strain field in the £ th sub-triangle of the target element m is
defined by

€ = B with k=1,2,3,4, (3.8)
FgUm — |:kB1 sz kB3 kB4:| , (3.9)
u” =[u, u, u, w7, (3.10)

where ‘B s the strain-displacement relation matrix of the k th sub-triangle and kB,. is the strain-

displacement matrix corresponding to node i .

In the strain-smoothed element method, strains of neighboring elements are utilized to construct the strain field
of the target element. The 4-node quadrilateral element can have up to four neighboring elements through its four
edges as shown in Fig. 3.3. The smoothed strain between the k th sub-triangle of the target element m and its

neighboring sub-triangle (belonging to the neighboring element) is defined by

go = m(A,E”’) kg 4 4We®) with k=1,2,3,4, (3.11)
k

where A,ﬁm) and A" are the areas of the k th sub-triangle of the target element and its neighboring sub-

triangle, respectively, seen in Fig. 3.4. If the k th sub-triangle is located on boundary, &% =*&™ isused [22].

As in the standard 4-node quadrilateral element, the 2x2 Gauss quadrature is adopted to calculate the stiffness
matrix. As shown in Fig. 3.5, the smoothed strain values in Eq. (3.11) are simply assigned to the four integration

points of the target element as follows

g = W(Aj’")é(‘” +A4"™&")  for Gauss point 1, (3.12)
4 1

T = m(Af”’)é(” +A4"&?)  for Gauss point 2, (3.13)
1 2

= W(Az(”’)é(z) +Am&?)  for Gauss point 3, (3.14)
2 3
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— 1

_ (maB) | (m)a4) :
84_A3(’”)+Aj’”) (A4eY) + 4,€™)  for Gauss point 4, (3.15)

in which €, is the strain value assigned to the Gauss point ;.

It is interesting to note that the bilinear strain field of the target element m is represented in a form of assumed

strain as follows

T = iﬂ,-(r,s)a with 7(r.s) :%E%—W)E%—QJ , (3.16)
and

7m0 ny n]=[1 -1 -1 1], (3.17)
& & & &=t 1 -1 -1]. (3.18)

Note that Eq. (3.16) is not utilized in the actual computation of the stiffness matrix and the assigned strains in Eqs.
(3.12)-(3.15) are directly used in the 2x2 Gauss integration. The Jacobian determinant is constant for each sub-
triangle and the value at a Gauss point is obtained by averaging the values of two adjacent sub-triangles. For

example, the average of the determinants in sub-triangles 1 and 4 is assigned to Gauss point 1, see Fig. 3.5.

Neighboring Target Neighboring

element 4 element m element 2

Fig. 3.3. Target element in a mesh and its four neighboring elements connected through element edges.
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A0kY _
A;”I)-FA(“

(Aém) ka(m)+ A(’()E(/ﬁ))

with k=1,2,3,4

Fig. 3.4. Strain smoothing through the edges of the target element. Four colored sub-triangles belong to four

neighboring elements, respectively.

s T: Sub-triangles, G: Gauss points
G4 G3 1 ,
¥ L8 4 g = (A 89 4 &Yy forGl
. 7 4 |
. . . _ 1 i "
T4 PN T2 ’: &€ = ﬁ(AIUM 8(1)+A§m 8(-)) for G2
AT+ 4,
% "% , 1 oy e s
6 Tl ) g = W(Ag”” £+ A &Y for G3
Pl S 2 3

_ 1

g =—— (A" P+ A MY for G4
4 A;m)+/4im) 3 4

fid Ly
Gl|-1/\3 -1/\3
G2| /43 -1/\3
G3| /43 U3
G4l -1/43 1/

Fig. 3.5. Smoothed strains assigned to four Gauss points.
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3.1.3. Strain-displacement relation and stiffness matrix

In vector and matrix forms, for the target element m, the relation between the nodal displacement vector and the

smoothed strain field is expressed as

£ — Bgm (3.19)
with
Bm — |:]_31 B, B, B, B, - ]?,12] , (3.20)
T = [u1 u, u, u, u, - “12] , (3.21)

where B is the smoothed strain-displacement matrix and u”’ is the corresponding displacement vector of
the element. The number of components in the strain-displacement relation matrix and the nodal displacement
vector is determined by the total number of nodes in neighboring elements through element edges as shown in

Fig. 3.4.

Finally, the stiffness matrix of the strain-smoothed 4-node quadrilateral finite element is obtained as

K™ = jy(m B"TC By ™ (3.22)

in which 7™ is the element volume and C“ is the material law matrix for the element m.

3.2. Basic numerical tests

Three basic numerical tests (the isotropic element, zero energy mode and patch tests) [1] are performed for the

proposed strain-smoothed 4-node quadrilateral element.

The finite elements are required to be spatially isotropic, which means that the same response is obtained

regardless of the element node numbering sequences. The proposed element satisfies this requirement.

A single 2D solid finite element with no support should have only three zero energy modes corresponding to the
rigid body modes. Through the zero energy mode test, it is verified that the proposed element correctly possesses

three zero energy modes.
The normal and shear patch tests are conducted using the mesh shown in Fig. 3.6. We can say that the patch tests

are passed if a constant stress field is correctly formed within the elements under the minimum number of

constraints in nodal DOFs to prevent rigid body motions. The proposed element passes the patch tests.
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Fig. 3.6. Mesh used for the patch tests.

3.3. Numerical examples

In this section, we demonstrate the performance of the strain-smoothed 4-node quadrilateral element by solving
various numerical problems: Cook’s skew beam, a block under complex forces, an infinite plate with a central

hole, an L-shaped structure, and a dam problem.

The standard 4-node quadrilateral element (Q4), the edge-based smoothed 4-node quadrilateral element (ES-Q4)
[12] and the incompatible modes 4-node quadrilateral element (ICM-Q4) [35-37] are considered for the
performance comparison with the proposed 4-node element (SSE-Q4). It is well known that the edge-based S-

FEM performs better than cell and node-based S-FEMs.

For the convergence studies, we evaluate displacements at specific locations, von Mises stress distributions and

. . 2 . . oqe
energy norms. The following relative error £, in an energy norm "“|L is utilized

2
u’é’f e _"uh e

E: = ‘"T with "u"z = ‘[QSTGdQ , (323)

2

e

where the reference and finite element solutions are denoted by the subscripts ‘ref’ and ‘%’, respectively.

The optimal convergence behavior of linear elements for the relative error is expected to be
EX=ch’, (3.24)

in which ¢ isaconstantand % represents the element size [1].
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To create distorted meshes for finite element models, we construct them for a square by repositioning the interior
nodes of regular meshes randomly as follows:

X'=x—-ah,, (3.25)
y'=y+prh,, (3.26)
where (x,y) and (x',)") are the nodal coordinates in the regular and distorted meshes, respectively, A, and
hy are the regular element sizes in the x - and y -directions, respectively, and «,f €[0.3,0.4] and »

(having a random value of 1 or -1) are random constants, see Fig. 3.7. The distorted meshes in the square domain

in Fig. 3.7 are linearly mapped to obtain distorted meshes in domains of different shapes.

The reference solutions are either analytical solutions or well-converged numerical solutions calculated using 9-

node quadrilateral finite elements.

Regular mesh Distorted mesh

&
» o)

oy

Fig. 3.7. Regular and distorted meshes when N =4.
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3.3.1. Cook’s skew beam

We solve the well-known Cook’s skew beam problem as shown in Fig. 3.8 [3]. The left edge of the beam structure

is clamped, and a distributed shearing force f; =1/16 (force per length) is acting on the right edge. The plane

stress condition is considered with Young’s modulus £ =3x10’ and Poisson’s ratio v =0.3. The solutions are
obtained for both regular and distorted N x N meshes (N = 2, 4, 8 and 16). The distorted meshes used for the

problem are depicted in Fig. 3.9.

Convergences in the normalized horizontal and vertical displacements at point 4 are depicted in Figs. 3.10 and
3.11, respectively. The relative errors in the horizontal and vertical displacements are given in Tables 3.1 and 3.2,
respectively. The convergence curves obtained using the energy norm in Eq. (3.23) are presented in Fig. 3.12. A
256 x 256 mesh of 9-node quadrilateral elements is used to calculate the reference solutions. The proposed strain-
smoothed element shows the best convergence behavior among the compared elements in both regular and

distorted meshes.

In addition, we compare the computational efficiency of the considered elements by plotting the relations between
computation times versus solution accuracies (relative errors in the energy norm) as shown in Fig. 3.13. The
regular meshes with N = 32, 64 and 128 are used for the assessment. Computations are performed in a personal
computer (PC) with Intel Core 17-6700, 3.40GHz CPU and 64GB RAM. The compressed sparse row format is
used for storing matrices and Intel MKL PARDISO is used for solving a linear system of equations [38].
Computation times taken from obtaining the stiffness matrices to solving the linear equations are measured. At
similar accuracy levels, the proposed element gives less computation times compared with other elements. That

is, the proposed element provides the best computational efficiency among the elements considered.

3.3.2. Block under complex forces

A square block is subjected to a compressive body force f; :(y-i—l)2 (force per area) and an eccentric tensile
traction f; =3.2 (force per length) in the y -direction as shown in Fig. 3.14. The block is supported along its
bottom, and the plane stress condition is employed with Young’s modulus E =3x10" and Poisson’s ratio

v =0.25. We use both regular and distorted meshes of N x N elements (N = 2, 4, 8 and 16) to obtain solutions.

The configurations of the distorted meshes used for the problem are given in Fig. 3.15.

The von Mises stress distributions calculated for the entire model and along the line x=-1 (left edge) are
depicted in Figs. 3.16 and 3.17, respectively, for the regular meshes. The proposed strain-smoothed element
provides the most converged stress fields to the reference for all the meshes considered. In Fig. 3.18, the

convergence curves obtained using the energy norm in Eq. (3.23) are presented. The reference solutions are
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obtained using a 64x64 mesh of 9-node quadrilateral elements. The proposed element gives much better
convergence behaviors compared with the standard, edge-based smoothed and incompatible modes 4-node

elements, especially for the distorted meshes.

3.3.3. Infinite plate with a central hole

The problem of an infinite plate with a central hole of radius a =1 shown in Fig. 3.19(a) is solved [4,22]. A far

field traction p =1 acts only inthe x -direction on the infinite plate. The plane strain condition is adopted with

E=3x10" and v =0.3.Only one-quarter of the plate is modeled due to symmetry as shown in Fig. 3.19(b), and

the corresponding boundary conditions are imposed as: u =0 along AC and v=0 along BD.

The traction boundary conditions are given along CE and DE using the following analytical solutions [33]:

2 4
o (r,0)=p- a f{300529+cos46}+3a—fcos40, (3.27)
r r
a’pl1 3a*p
o, (r0)=- > ECOS 260 —cos40 |- i cos4d , (3.28)
2 4
o (r0)= _QBsm 26 +sin 40} ; 3;’ 2 5indg, (3.29)
i r r

where » and & are the distance from the origin (x = y =0 ) and the counterclockwise angle from the positive

X -axis, respectively.

The modeled region of dimensions 5x 5 is divided into two areas, and each area is meshed with N x N finite

elements (N = 2, 4, 8 and 16) as shown in Fig. 3.19(b).

Table 3.3 and Fig. 3.20 show relative errors in the horizontal displacement at point B and the convergence
curves obtained using the energy norm in Eq. (3.23), respectively. A 64x64 mesh of 9-node quadrilateral
elements is used to obtain the reference solutions. Compared with the standard, edge-based smoothed and
incompatible modes quadrilateral elements, the proposed element shows a significantly improved solution

accuracy.

3.3.4. L-shaped structure

An L-shaped structure under a distributed load f; =1 (force per length) is considered as shown in Fig. 3.21 [39].

The plane stress condition is used with material properties £ =1 and v =0.22, and the boundary conditions

are imposed as: v=0 along 4B and u =0 along CD . The structure is divided into three square parts, and
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each part is modeled with N x N element meshes ( N = 2, 4, 8 and 16) to obtain the solutions.

Table 3.4 and Fig. 3.22 give relative errors in the horizontal displacement at point B and convergence curves
calculated using the energy norm in Eq. (3.23), respectively. The reference solutions are calculated using a
64x 64 mesh of 9-node quadrilateral elements. The strain-smoothed quadrilateral element produces much more

accurate solutions than using the standard, edge-based smoothed and incompatible modes quadrilateral elements.

3.3.5. Dam problem

Finally, we consider the dam problem as shown in Fig. 3.23. The structure is subjected to a varying surface force

along its left edge given by

f = 5-y 0<y<s 330
=1 —5)" s<y<i0” (3.30)

The bottom of the structure is clamped. The plane strain condition is employed and the material properties are
given as E=3x10" and v =0.2 . The finite element models are constructed using meshes of Nx2N

elements with N =2,4, 8 and 16.

Figs. 3.24 and 3.25 present distributions of the strain component &_ and the convergence curves obtained using

the energy norm in Eq. (3.23), respectively. A mesh of 9-node quadrilateral elements with N = 64 is used for
calculating the reference solutions. It is again observed that the strain-smoothed 4-node element gives highly

accurate solutions compared with the other elements considered.

Table 3.1. Relative errors in the horizontal displacement (

Uy — U, | /u,, =100 )atpoint 4 in Cook’s skew beam.

N Q4 ES-Q4 ICM-Q4 SSE-Q4
2 61.421 49.332 48.012 24.177
Regular 4 25.730 11.832 11.242 1.210
mesh 8 8.058 2.941 3.150 0.042
16 2378 1.018 0.901 0.076

50.316 47323 44.635 23.230
Distorted 4 23.050 12.964 6.079 1.845
mesh 8 7.833 3.694 4.680 0.173
16 1.866 1.114 0.776 0.223

Reference solution: u,,, =—1.535x107
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Table 3.2. Relative errors in the vertical displacement (

Vir =V | / Vi X 100 ) at point 4 in Cook’s skew beam.

N Q4 ES-Q4 ICM-Q4 SSE-Q4
2 50.095 42.784 13.102 16.987
Regular 4 22.986 10.724 3.612 0.627
mesh 8 7.705 2.233 1.225 0.012
16 2.337 0.709 0.447 0.114
2 52.121 50.214 28.423 30.899
Distorted 4 31.221 19.855 8.983 4.957
mesh 8 9.784 4.083 2228 0.603
16 2.992 1.205 0.754 0.385

Reference solution: v, =7.721x 107

Table 3.3. Relative errors in the horizontal displacement (

Uy — U, | /u,, =100 ) at point B in the infinite plate

with a central hole.

N Q4 ES-Q4 ICM-Q4 SSE-Q4
2 18.965 25.120 11.922 9.334
4 10.568 11.485 7.176 3.240
8 4313 3.892 3.170 0.413
16 1.339 0.859 1.009 0.371

Analytical solution: u,,, =9.100x 107

Table 3.4. Relative errors in the horizontal displacement (

Uy _uh|/ure§f x100 ) at point B in the L-shaped

structure.
N Q4 ES-Q4 ICM-Q4 SSE-Q4
2 15.816 15.668 9.465 0.872
4 5517 4.287 3.358 1.485
8 1.874 1.251 1.206 0.530
16 0.657 0.415 0.448 0.165

Reference solution: u,,, =—4.539x10

€]
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Fig. 3.10. Normalized horizontal displacements (u, / u,,)atpoint 4 in Cook’s skew beam.
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Fig. 3.11. Normalized vertical displacements (v, / V) atpoint 4 in Cook’s skew beam.
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Fig. 3.12. Convergence curves for Cook’s skew beam. The bold line represents the optimal convergence rate.
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Fig. 3.13. Computational efficiency curves for Cook’s skew beam. The computation times are measured in

seconds.
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Fig. 3.16. von Mises stress distributions of the block under complex forces when using regular meshes. The

reference stress distribution is obtained using a 32x32 mesh of 9-node quadrilateral elements.
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Fig. 3.18. Convergence curves for the block under complex forces. The bold line represents the optimal

convergence rate.
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convergence rate.
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Fig. 3.22. Convergence curves for the L-shaped structure. The bold line represents the optimal convergence rate.
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Chapter 4. The strain-smoothed MITC3+ shell element

Shell structures have been widely used for manufacturing automobiles, airplanes and ships due to their excellent
strength to weight ratio. Finite element method is the main tool for such analysis of shell structures, in which it is
important to develop ideal shell finite elements. Among various shell finite elements, 3-node triangular shell

elements have the obvious advantages of being simple and efficient.

Shell finite elements inherently have locking problems which happen when the finite element discretization cannot
accurately represent pure bending displacement fields. Locking seriously deteriorates solution accuracy as the
shell thickness decreases in bending-dominated shell problems. There are various methods to alleviate locking
such as reduced integration and assumed strain methods [40-62]. Among those methods, the mixed interpolation

of tensorial components (MITC) method was significantly successful [50-62].

Recently, the 3-node MITC3+ triangular shell element was developed based on the MITC method to reduce shear
locking for out of plane bending behaviors. The shell element shows almost optimal convergence behavior in
bending-dominated shell problems. However, shear locking for in-plane bending behaviors was not treated and

thus its membrane performance is the same as that of displacement-based 3-node triangular shell element.

In this chapter, a strain-smoothed MITC3+ shell element is proposed by adopting the strain-smoothed element
(SSE) method to the MITC3+ shell element. After reviewing the formulations of the displacement-based 3-node
triangular shell elements and the MITC3+ shell finite element, the formulation of the strain-smoothed MITC3+

shell finite element is presented [25].

4.1. The displacement-based 3-node triangular shell finite element

The geometry of the 3-node triangular displacement-based shell finite element is interpolated by [54]
3 3 N
X(r,5,0)= Y h(r,9)F, +%Za,.h,.(r,s)V,; with b =1-r-s, hy=r, h=s,
i=1 i=1

where £, is the 2D interpolation function of the standard isoparametric procedure corresponding tonode i, X,

is the position vector at node i in the global Cartesian coordinate system, and «a;, and 17”' denote the shell

thickness and the director vector at the node i, respectively, see Fig 4.1. Note that the vector 17’1’ does not have

to be normal to the shell midsurface in this description.
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The corresponding displacement interpolation of the element is given by
3 3
ii(rs,0) = 3 (r,9)ii +%Za,.hi (r,)(~a7i + BV).
i=1 i=1

where u, is the nodal displacement vector in the global Cartesian coordinate system, I71i and 172’ are unit
vectors orthogonal to ¥/ and to each other, and o, and B are the rotations of the director vector 17”’ about

n

V' and V, atnode i.

The linear part of the displacement-based covariant strains is calculated by
. . . .
ei,' = E(gl ‘Z/ij +gj u;) 5
where
. _O0x _ _ou

gi_@ , u’i:(?_ with nn=r, =5, 1,=t.
T hi

The 3-node triangular displacement-based shell finite element passes all basic numerical tests: zero energy mode
test, isotropic test and patch tests. However, this shell finite element strongly has the shear locking problem and

therefore, it exhibits extremely stiff behaviors in bending-dominated problems.

4.2. The MITC3+ shell finite element

In the geometry and displacement interpolations, the MITC3+ shell finite element has an internal bubble node at
element center (7 =5 =1/3) that only has two rotational degrees of freedom with a cubic bubble function.
The geometry of the MITC3+ shell finite element, shown in Fig. 4.1, is interpolated by [24]

3 4
x(r,5,0) = 3 (7, 5)x, +%Za, f(rs)V- (4.1)
i=1 i=1

. 1
with by =1-r-s, hy=r, h =5, a4V: = E(alV; -i—ann2 + a3Vj> , (4.2)
where £,(r,s) is the 2D interpolation function of the standard isoparametric procedure corresponding to node

i, X, is the position vector of node i in the global Cartesian coordinate system, a, and V! are the shell
thickness and the director vector at node i, respectively, and f,(r,s) is the 2D interpolation function with the

cubic bubble function f, corresponding to internal node 4:

fi=h=3fee fi=hfi fi=h=3fes fi=2Trs(1=r=5). @3
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The displacement interpolation of the element is given by
3 t 4 . .
u(r,s,t) =Y h(r,s)u, +EZ al.f,.(r,s)(—a,.Vz’ + BV, ) , (4.4)
i=1 i=1

in which wu, is the nodal displacement vector in the global Cartesian coordinate system, Vl’ and V; are unit
vectors orthogonal to V. and to each other, and @, and S, are the rotations of the director vector V! about

Vli and sz" respectively, at node i . Note that the displacement interpolation has a linear variation along its

edges.

The linear part of the displacement-based covariant strain components is obtained by

1
¢ =E(g,. u;+g; u), (4.5)
. ox ou .
with ¢ =—, u.=— with r=r, r,=s5, r,=t,
g o i o 1 2 3 (4.6)

i i

where g, and u; are the covariant base vectors and the displacement derivatives, respectively.

To alleviate transverse shear locking, the following assumed covariant transverse shear strain fields with six tying

points are employed for the MITC3+ shell element [24]

. 2 1 1 1.,

eMme = E(e{f) —Eeéf)j+§(e]‘f) + eg))+§c(3s -1, 4.7)
ae 2 w0 1 o) 1 1,

s =§(e§§) _Eef§>j+§(ef;) + eggﬂ)+§c(1—3r) , (4.8)

(F) _ (D) _ (F) | (E)

where ¢=¢; —e; —ey; +e€, and the tying points (4)-(F) are given in Fig. 4.2 and Table 4.1.

In order to calculate the stiffness matrix, in principle, the 7-point Gauss integration should be used in the »—s
plane, but the 3-point Gauss integration also gives similar results. For this study, the 3-point Gauss integration is

adopted. Note that in the MITC3+ shell element, membrane locking is not treated due to its flat geometry.

The MITC3+ shell finite element passes all the basic tests; zero energy mode, isotropy and patch tests, and shows

excellent convergence behaviors in both linear and nonlinear analyses of various shell problems [24,57].

48



Table 4.1. Tying points (A)-(F) for the assumed transverse shear strain fields of the MITC3+ shell element. The
distance d is defined in Fig. 4.2, and d = 1/10000 is recommended [24].

Tying points r N

(4) 1/6 1/6
Fig. 4.2(a) (B) 2/3 1/6

(C) 1/6 2/3

(D) 1/3+d 1/3 -2d
Fig. 4.2(b) (E) 1/3 -2d 1/3+d

(F) 1/3+d 1/3+d

Bubble node s

X

Fig. 4.1. Geometry of the MITC3+ shell finite element.

1 O Center point 1 X Tying points

(a) (b)
Fig. 4.2. Tying points (A)-(F) for the assumed transverse shear strain fields of the MITC3+ shell element. The

points (A)-(C) also correspond to Gauss integration points.

49



4.3. The strain-smoothed MITC3+ shell finite element

The covariant in-plane strain components in Eq. (4.5) can be decomposed as follows

e; = '”eé./ +tb'e!./. +1 bze,.j with i,j=1,2, (4.9)

Mo — | m, — m “Tm T m 4.1
o o o J (4.10)

b 1| ox, ou, Ox, Ou, Ox, Ou, Ox, Ou,
le”:— D — -—_— _._+_. 5 (4.11)
2\ o, or, or, on or or, Or, o
1| ox, ou, 0x, Ou
b — 2| 22 27 P T 4.12
2\ o, or o J’ (4.12)
with
3 1 4 )
X, (r,8) = 2R ()X X,(r9) =23 a i (rs)V, (4.13)
i=1 i=1
3 1 4 ) )
u, (r,s)= Zh,.(r,s)ui , w,(r,s)= EZaif,. (r,8)(—a,V,+ BV,), (4.14)
=1 i=1

m

. . . . . b by . . .
in which "e; is the covariant membrane strain, and "e; and “e; are the covariant bending strains [60,61].

g

A triangular element can have up to three neighboring elements through its edges. In order to employ the strain-
smoothed element (SSE) method, a target element and its three neighboring elements as shown in Fig. 4.3(a) are
considered. In shell finite element models, the target and neighboring elements are not placed in the same plane
in general. For additive operations in the strain smoothing procedure, the base coordinate systems of strains of the

target and neighboring elements must be matched.

The covariant membrane strains of the target element ("€ ) and of the k ™ neighboring element ("¢’ ) are

calculated at element centers (#=s=1/3 and ¢=0) using Eq. (4.10). The covariant membrane strain of the
neighboring element is then transformed into the convected coordinates defined at the center of the target element
using the following relation:

el ="e (g, Vg (g, - Vg with i,j,lLn=1,2, (4.15)
where g and (k)gl are the covariant base vectors of the target element and the contravariant base vectors of
the k " neighboring element, respectively, as seen in Fig. 4.3(b). In Eq. (4.15), the contravariant base vectors are

calculated using the covariant base vectors in Eq. (4.6) and (k)g,. 0 g/ =5:-j . Note that, in this strain

transformation, the effect of out-of-plane strains is simply neglected.
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The smoothed membrane strain between the target element and the & " neighboring element is calculated by [22]

R 1 — ) .
me;.k) =W(Wl€;€)z‘l(€) + me;k)A(k)) with i,j= 1,2, (416)

_k k k e e
A():(n(c’)‘n( ))A(), n():()g3/

‘”)g3||, n® = Mg /||““>g3|| , 4.17)

where A4 and A" are the mid-surface areas (=0 ) of the target and the k ™ neighboring elements,

(e)

respectively, n‘® and n') are the unit normal vectors defined at the centers of the target and neighboring

elements, respectively, and A" is the area obtained by projecting 4% into the mid-surface plane of the target

mAt) _

element, see Fig. 4.3(c). Note that we use "¢; '”efj") if the k™ edge of the target element is located along

boundary.

Then, the membrane strains obtained through Eq. (4.16) are assigned at three Gauss points using the following
equations, shown in Fig. 4.3(d)
m 1 m”nz mA m 1 mn mn m 1 mA mn

" =3 ), e =) "0 =) 19
with 7,j=1,2.

(e): Target element (k): k" neighboring element

o : Element center

(e) k
&34 (0) (’gz 4

(e) (k)

A 1 A(3 Al
el =_(m€’; )+m€;j' })

2
= l(”’é(”+"’é(2!)
) if if

(c) (d)
Fig. 4.3. Application of the strain-smoothed element method to the MITC3+ shell element: (a) Finite element

discretization of a shell. A target element and its neighboring elements are colored. (b) Coordinate systems for
strain smoothing in shell elements. (c) Strain smoothing between the target element and each neighboring element.

(d) Construction of the smoothed strain field through three Gauss points.
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It is very interesting that the covariant membrane strain field within the element can be explicitly expressed in a

form of assumed strain

m smoothed 1 m r - m S - m M . .
gmoothed :{l— (r+s—2p)} ey LTl mgey  STP ei(l.c) with i,j=1,2, (4.19)

’ q-p " gq-p " q-p

where p=1/6 and g =2/3 are constants indicating the positions of the Gauss points. Note that Eq. (4.19) is
not utilized in actual computation of the stiffness matrix. The assigned strains in Eq. (4.18) are used directly in
the 3-point Gauss integration.

m _smoothed

The smoothed covariant membrane strain "¢}/ in Eq. (4.19) replaces the covariant membrane strain "e, in

g

Eq. (4.10). The originally defined * e; and bzeij in Egs. (4.11) and (4.12) are used for the covariant bending

strains. For the covariant transverse shear strains, the assumed strains of the MITC3+ shell element, el.];ﬂm+ in

Egs. (4.7) and (4.8) are adopted.

In Eqgs. (4.16) and (4.17), the projected element areas are used and thus the effect of membrane strain smoothing
depends on the angle between the target and neighboring elements (marked with 6 in Fig. 4.3b). As the angle

approached 90 degrees, the smoothing effect gradually vanishes. This is a desirable feature.

When the angle is smaller than 90 degrees or more than two shell elements are connected through shared edges,
the use of strain smoothing is not recommended. The strain smoothing is also not suitable along the boundary
where material properties changes rapidly. In other words, the strain smoothing is effective, when shell geometry

or material properties vary smoothly. These are also the limitations of most strain smoothing techniques.
Note that there is an alternative approach to obtain smoothed membrane strains between the target and neighboring

shell elements, see Ref. [63]. It is also valuable to note that there is an interesting approach to improving stress

solutions with the help of adjacent elements, see Ref. [64].
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4.4. Convergence studies

In the following sections, we investigate the performance of the proposed strain-smoothed MITC3+ shell element
using several appropriate benchmark problems: Cook’s skew beam, partially clamped hyperbolic paraboloid shell,
Scordelis-Lo roof shell, and clamped/free hyperboloid shell problems. The proposed element passes all the basic
tests: patch, isotropy and zero energy mode tests [1]. A list of previously developed shell elements used for

comparison is given in Table 4.2 with brief descriptions.

Table 4.2. List of the shell elements used for comparison.

Element Description

Allman A flat shell element that combines a triangular membrane element with Allman’s drilling
DOFs and the discrete Kirchhoff-Mindlin triangular (DKMT) plate element. It requires 18
DOFs for an element [63,65,66].

ANDES (OPT)  Aflat shell element that combines the assumed natural deviatoric strain (ANDES) triangular
membrane element with 3 drilling DOFs and optimal parameters and the DKMT plate
element. It has 18 DOFs for an element [63,66-68].

Shin and As a flat shell element, the edge-based strain smoothing method is applied to the ANDES

Lee formulation-based membrane element with 3 drilling DOFs, and the DKMT plate element
is combined. New values of the free parameters in the ANDES formulation are introduced.
It requires 18 DOFs for an element [63].

MITC3+ A continuum mechanics based 3-node shell element with a bubble node. The bubble node
has 2 rotational DOFs which can be condensed out on the element level. It has 15 DOFs for
an element [24,59].

Enriched The MITC3+ shell element enriched in membrane displacements by interpolation covers. 4
MITC3+ DOFs per node are added and thus the element has 27 DOFs for an element in total [58].
MITC4+ The continuum mechanics based 4-node MITC shell element with membrane locking

treatment. It has 20 DOFs for an element [59,61].

For convergence studies, we use displacement or stress values at a specific location. We also use the s-norm

defined by [52,55]
||u,,ef —uh”j = jQ A" AtdQ with Ae =g, ¢, &i=1,,-7T,, (4.20)

where u,. is the reference solution, u, is the solution of the finite element discretization, & is the strain

vector and T 1is the stress vector.
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To consider various shell thicknesses, we use the relative error E,

2
:u 4.21)

h

ref

N

The optimal convergence behavior of the 3-node triangular shell finite elements with linear interpolation is given
by
E,=ch’, (4.22)

where /4 is the element size, and ¢ is a constant [1].

In this study, the MITC9 shell element is used to obtain reference solutions. The MITC9 shell element satisfies

the consistency and ellipticity conditions, and gives well-converged solutions [51].

4.4.1. Cook’s skew beam problem

Let us consider the Cook’s skew beam problem [3] shown in Fig. 4.4. The skew cantilever beam with unit
thickness is subjected to a distributed shearing force p =1/16 per unit length at its right end, and the clamped
boundary condition is given at the left end. Plane stress condition is assumed, Young’s modulus is £ =1, and
Poisson’s ratiois v=1/3. Weuse N x N meshes with N =2, 4,8, 16 and 32. Two patterns of meshes (Mesh

I and Mesh II) are used as shown in Fig. 4.4.

Normalized vertical displacements at point A are given in Table 4.3 and Fig. 4.5 for both mesh patterns. The s-
norm convergence curves of the MITC3+ shell element, the enriched MITC3+ shell element and the strain-
smoothed MITC3+ shell element for Mesh II are given in Fig. 4.6. The reference solutions used for s-norm are
obtained using a 64 x64 mesh of MITC9 shell finite elements, and the element size is #=1/ N . This example
is purely for comparing membrane performance, and the strain-smoothed MITC3+ shell element offers very

accurate solutions comparable to the enriched MITC3+ shell element.

4.4.2. Partially clamped hyperbolic paraboloid shell problem

The hyperbolic paraboloid shell problem [50] shown in Fig. 4.7 is also considered. The mid-surface of the shell
is given by

z=y'—-x"; x,ye[-1/2,1/2]. (4.23)

It has a uniform thickness ¢=1/1000, and a self-weight loading f, =8 per unit area is acting on the shell.
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Material properties givenare E=2x10" and v =0.3.One end of the shell is clamped, and due to its symmetry,

we model only one-half of the structure with the following boundary conditions: u = /=0 along CD and

u,=u,=u,=a==0 along AC. Weuse Nx2N mesheswith N =2,4,8,16and 24.

y

Table 4.4 and Fig. 4.8 show normalized vertical displacements at point D. The reference solutions are obtained
usinga 32x64 mesh of MITC9 shell finite elements. Among the various shell elements considered, the proposed

element shows the best solution accuracy.

4.4.3. Scordelis-Lo roof shell problem

The third example is the Scordelis-Lo roof shell problem [53,56] shown in Fig. 4.9. The shell is a part of a cylinder
with length L =25, radius R =25, and uniform thickness ¢. It is subjected to a self-weight loading f, =90

per unit area. Young’s modulus is E =4.32x10* and Poisson ratiois v =0.

The shell structure is supported by rigid diaphragms at both ends. Due to symmetry, one-quarter of the structure

is considered with the following boundary conditions: u, =u, =0 along AC, u,=a=0 along BD and

u = =0 along CD. Under these conditions, a mixed bending-membrane behavior occurs in the structure. Two

mesh patterns (Mesh I and Mesh II) are used, as shown in Fig. 4.9. The solutions are obtained with N x N
element meshes (N =4, 8, 16 and 32).

Table 4.5 gives relative errors in von-Mises stress at point B (for both mesh patterns with ¢/ L =1/100), and Fig.
4.10 shows the von-Mises stress distributions (for Mesh I with ¢#/L =1/100). Table 4.6 and Fig. 4.11 show
convergences in the vertical displacement at point B (for both mesh patterns with ¢/ L =1/100). Fig. 4.12 shows
the s-norm convergence curves of the MITC3+ shell element, the enriched MITC3+ shell element and the strain-
smoothed MITC3+ shell element (for Mesh II with three different thickness to length ratios: ¢/ L = 1/100, 1/1000
and 1/10000). The reference solutions are obtained using a 64x 64 mesh of MITC9 shell finite elements. The
element size is A=1/N . The strain-smoothed MITC3+ shell finite element gives significantly improved

solutions comparable to the enriched MITC3+ shell element.

Fig. 4.13 shows how the total number of DOFs increases when increasing the number of element layers N. Table
4.7 shows the measured computation time for the MITC3+, enriched MITC3+ and smoothed MITC3+ shell
elements. It includes all the time from constructing stiffness matrices to solving linear equations. We use a
symmetric skyline solver, and the computations are performed using a PC with Intel Core 17-6700, 3.40GHz CPU
and 64GB RAM. The strain-smoothed MITC3+ shell element requires less computation time than the enriched

MITC3+ shell element, providing similarly accurate solutions.
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4.4.4. Hyperboloid shell problems

We lastly consider the hyperboloid shell problems [24] shown in Fig. 4.14. The mid-surface geometry of the shell

structure with uniform thickness ¢ is given by

¥ +z2=1+)y", ye[-11]. (4.24)

The structure is subjected to a varying pressure p(6) = cos(26) . Material properties given are E =3x107 and

v=0.3.

The shell structure shows different asymptotic behaviors depending on the boundary conditions. It shows a
membrane-dominated behavior when both ends are clamped, and shows a bending-dominated behavior when both

ends are free. Due to symmetry, only one-eighth of the shell structure is modeled. The clamped boundary condition

is given as u, = =0 along BD, u,=f=0 along AC, u,=a=0 along AB and u =u,=u =a=[=0
along CD. The free boundary condition is givenas u, = /=0 alongBD, u =/=0 along4ACand u,=a= 0

along AB. Finite element solutions are obtained using N x N element meshes (N = 4, 8, 16 and 32).

Fig. 4.15 and Fig. 4.16 show the s-norm convergence curves of the MITC3+ shell element, the enriched MITC3+
shell element and the strain-smoothed MITC3+ shell element for the clamped and free boundary conditions,
respectively. A 64x 64 mesh of MITC9 shell finite elements is used to obtain the reference solutions. The
thickness to length ratios (#/L ) considered are 1/100, 1/1000 and 1/10000 with L=1. The element size is
h=1/ N . In the membrane-dominated case (with the clamped boundary condition), the strain-smoothed MITC3+
shell finite element shows improved solution accuracy comparable to the enriched MITC3+ shell finite element.
The three shell finite elements give good convergence behaviors in the bending-dominated case (with the free

boundary condition).
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Table 4.3. Normalized vertical displacements ( v/ V) at point A in the Cook’s skew beam problem.

DOFs Mesh
Element per
element 2x2 4x4 8x8 16x16
Allman 18 0.8212 0.9358 0.9792 0.9939
ANDES (OPT) 18 0.8584 0.9373 0.9782 0.9937
Mesh Shin and Lee 18 0.7945 0.9640 0.9946 0.9992
I MITC3+ 15 0.5007 0.7634 0.9195 0.9775
Enriched MITC3+ 27 0.9531 0.9871 0.9962 -
Smoothed MITC3+ 15 0.8828 1.0048 1.0057 1.0021
MITC3+ 15 0.2815 0.4698 0.7236 0.9016
MﬁSh Enriched MITC3+ 27 0.8393 0.9611 0.9916 -
Smoothed MITC3+ 15 0.5154 0.8873 0.9830 0.9968
MITC4+ 20 0.7271 0.9106 0.9744 0.9933

Reference solution: v, =23.95 [3]

Table 4.4. Normalized vertical displacements ( W/ W, ) at point D in the partially clamped hyperbolic paraboloid

shell problem.

DOFs Mesh
Element per

element 2x4 4x8 8x16 16x32 24x48
Allman 18 0.1364 0.0656 0.2866 0.7729 0.8899
ANDES (OPT) 18 0.0067 0.0598 0.4150 0.8521 0.9111
Shin and Lee 18 1.1512 1.0093 0.9457 0.9310 0.9315
MITC3+ 15 1.0552 0.9541 0.9597 0.9736 0.9823
Smoothed MITC3+ 15 1.0581 0.9856 0.9858 0.9909 0.9943

Reference solution: W, = —6.3905x10"

Table 4.5. Relative errors (%) in von Mises stress obtained by |0',_qf -0, | /o,,x100 at point B in the Scordelis-

Lo roof shell problem when /L =1/100.

DOFs Mesh
Element per
element 8x8 16x16 32x32
MITC3+ 15 45.56 22.52 10.66
Mesh I
Smoothed MITC3+ 15 24.76 13.30 6.99
MITC3+ 15 13.94 3.51 0.96
Mesh II
Smoothed MITC3+ 15 0.96 1.16 0.85

Reference solution: ©,,, = 3.0306x10°
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Table 4.6. Normalized vertical displacements ( W/ W, ) at point B in the Scordelis-Lo roof shell problem when

t/L=1/100.
DOFs Mesh
Element per
element 4x4 8x8 16x16
Allman 18 1.0046 0.9874 —
ANDES (OPT) 18 1.0830 1.0139 -
Shin and Lee 18 1.0231 1.0043 -
Mesh I
MITC3+ 15 0.7409 0.8793 0.9618
Enriched MITC3+ 27 0.9610 0.9931 0.9983
Smoothed MITC3+ 15 1.1017 1.0323 1.0075
MITC3+ 15 0.6744 0.8606 0.9566
Mesh II  Enriched MITC3+ 27 0.8922 0.9762 0.9950
Smoothed MITC3+ 15 0.9649 0.9986 0.9998
MITC4+ 20 1.0476 1.0053 0.9977

Reference solution: w,,, = -0.3024 [53,56]

Table 4.7. Computation time (in seconds) for the Scordelis-Lo roof shell problem.

Computation time (s)

Mesh Element Cons.tructing stiffness Solvipg linear Total
matrices equations
MITC3+ 0.022 0.003 0.025
16x16 Enriched MITC3+ 0.060 0.013 0.073
Smoothed MITC3+ 0.024 0.007 0.031
MITC3+ 0.087 0.033 0.120
32x32 Enriched MITC3+ 0.244 0.174 0.418
Smoothed MITC3+ 0.103 0.105 0.207
MITC3+ 0.369 0.449 0.818
64%x64 Enriched MITC3+ 1.005 2.244 3.249
Smoothed MITC3+ 0.437 1.333 1.770
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Fig. 4.4. Cook’s skew beam problem and two 4x4 mesh patterns.
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Fig. 4.5. Normalized vertical displacements at point 4 in the Cook’s skew beam problem: (a) and (b) are the results

for Mesh I and Mesh 11, respectively.
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Fig. 4.6. Convergence curves for the Cook’s skew beam problem when Mesh II is used. The bold line represents

the optimal convergence rate.
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Fig. 4.7. Partially clamped hyperbolic paraboloid shell problem (4 x8 mesh).
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Fig. 4.8. Normalized vertical displacements at point D in the partially clamped hyperbolic paraboloid shell

problem.
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Rigid diaphragm

Fig. 4.9. Scordelis-Lo roof shell problem and two 4x4 mesh patterns.
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Fig. 4.10. von-Mises stress distributions for the Scordelis-Lo roof shell problem when ¢/L =1/100 and Mesh I
is used for the MITC3+ shell element and the strain-smoothed MITC3+ shell element.
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Fig. 4.11. Convergence curves for the Scordelis-Lo roof shell problem when Mesh II is used. The bold line

represents the optimal convergence rate.
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Fig. 4.12. Normalized vertical displacements at point B in the Scordelis-Lo roof shell problem when ¢/L =1/100:

(a) and (b) are the results for Mesh I and Mesh 11, respectively.
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Fig. 4.13. Hyperboloid shell problem (4 x4 mesh).
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Fig. 4.14. Convergence curves for the clamped hyperboloid shell problem. The bold line represents the optimal

convergence rate.

66



MITC3+ g Enriched MITC3+ 5 Smoothed MITC3+

-0.3¢ 1 -0.3F 1 -0.3F 1
-0.61 . -0.61 1 0.6+ T
0.9} 0.9} ] 0.9} ]
e 1! B! ] il ]
E= = =
En-ls- %-15- 1 Lgn-ls- E
-1.8F -1.8¢ 1 -1.8F 1
2.1t 2.1} ] 2.1} ]
241 ! 2.4 ] 2.4 ]
—8—t/L=1/100
2.7k | 2.7+ ] DTk —A—+t/L=1/1000
—S—t/L=1/10000
|

-1.5 -1.2 -09 -0.6 -1.5 -1.2 -09 -0.6 -1.5 -1.2 -09 -0.6
logh logh logh

Fig. 4.15. Convergence curves for the free hyperboloid shell problem. The bold line represents the optimal

convergence rate.
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Chapter 5. Geometric nonlinear formulation of the strain-smoothed

MITC3+ shell element

Linear and nonlinear analyses are essential for the strength evaluation of structures. In particular, nonlinear
analysis is becoming more and more popular. In this chapter, the total Lagrangian formulation is employed to
represent large displacements and rotations for geometric nonlinear extension of the strain-smoothed MITC3+

shell element.

The geometric nonlinear formulation of the MITC3+ shell finite element is reviewed, and then the geometric
nonlinear formulation of the strain-smoothed MITC3+ shell element is presented. In the total Lagrangian
formulation, the left superscript ¢, which usually denotes time for general analysis, represents load step for static

analysis [1,57].

5.1. Formulation

5.1.1. Geometry and displacement interpolations

The geometry interpolation of the MITC3+ shell finite element in the configuration at time ¢, seen in Fig. 5.1, is

given by [24,57]

3 4
’X(r,s,f)zfxm—i-ffxb with ’xm:Zhl.(r,s)’xi, ’xb:%Zaifi(r,s)’V;, (5.1)
i=1

i=1
where ‘X, is the position vector of node i in the configuration at time ¢, @, is the shell thickness at node i,
tV,i is the director vector at node i in the configuration at time ¢,and 4,(r,s) are the standard finite element
shape functions and f;(r,s) are the shape functions involving the cubic bubble function f, corresponding to

the internal node 4:

h=1-r-s, hy=r, h=s, (5.2)

fimh=3for fomh=sfor fi=h=3fo fi=2Trs(=r=s). (5.3)

In Eq. (5.1), the director vector of the internal node is obtained by

n n

a,'V* =%(al'v,j +a,'V; +a,'V}). (5.4)
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® Nodes
O Bubble node

Fig. 5.1. Geometry of the MITC3+ shell finite element.

The incremental displacement vector u from the configuration at time ¢ to the configuration at time ¢+ A¢ is

u(r,s,8)=""x(r,5,8) - 'x(r,5,) , (5.5)
and thus
u(r,s,§>=ih,-(r,s>ui +§ia,-ﬁ(r,s>(”mv,i -'V,), (5.6)

in which wu, is the vector of incremental nodal displacements at node i .

The difference between two director vectors in successive times in Eq. (5.6) is defined as follows by considering

up to quadratic order [57]
, . 1 i . i i
AV TV =9, x V! +§0i x(@,x'V)) with 0, =a,'V[+4'V,, (5.7)
and it can be rewritten as

V=V =ma Vit BV -2 @+ 'Y (5.8)

where 'V, and 'V, are the unit vectors orthogonal to 'V, and to each other, and @, and S are the

incremental rotations of the director vector ’V,i about ’Vli and ’Vé,respectively, atnode i .

Substituting Eq. (5.8) into Eq. (5.6), the incremental displacement vector can be expressed as
u(r,S,é:) =um +§(ubl +ub2) B (593)

with
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3
u, = h(r,su,, (5.9b)
i=1

wy =1 afr) (o Vit V). (5.90)
13 . 2 2\ tysi
u,, =_Z;aifi(r’s)|:(ai +:Bi ) Vn:|' (59(1)

The incremental displacement vector in Eq. (5.9a) could be grouped as
u=u,+du,, u, =3u,, (5.10)

in which u, and u, are the linear and quadratic parts of the incremental displacement vector u , respectively.

5.1.2. Green-Lagrange strain

The covariant base vectors at time ¢ is given by

, o' .
gizé_rx with n=r, n=s, n=¢, (5.11)

i

and the covariant base vectors at time ¢ and time 0 has the following relation:

g[zog,+tu7i with ’u,[=a—u, n="x-"x. (5.12)
T

t

The covariant Green-Lagrange strain components in the configuration at time ¢ with respect to the reference

configuration at time 0 are given by

(;g”:%(fg[,,gj_og’__og‘/) with i,/=1,2,3, (5.13)

and its in-plane strain components (i , j = 1, 2) are expressed as [62]

t t t bl 2t b2 : . .
o€ =o€y 08 +& 087 with i, j=1,2, (5.14a)
in which

t_m _l t t 0 0 5 14b

Ogij - B X, Xm,j - X, Xm,j P ( . )
1

t bl ¢ ' ' ' 0 0 0 0

0&; _E[( X, X, X, xb’,.)—< X, X, X, xb,i):|, (5.14¢)
1 o'x o0'x

‘b2 t ' 0 0 . ' _ ' _ b

o€y _E( Xy, Xy, Xy xb’j) with 'x, ;= ar[’” ;X =T (5.144d)
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The incremental covariant Green-Lagrange strain components are defined by

A ' _8u
o= "e — le =

1 ; ; .
. o€y ij:E(u,i' g, +'g u,+u,-u,) with u,

(5.15)

or.

i

By retaining the strain terms up to the second order of unknowns, the incremental covariant strain components

are approximated as

085 =o€ T olly; with i,7=1,2,3, (5.16a)
and
e = L(@urg (1g O
0% T or, ™ farj ’ (5.16b)
_1fow ou | 1fow,, -, O (5.16¢)
) or. or, | 2\ or & gi@rj. ’ e

in which (e, and ,77; are the linear and nonlinear parts of the incremental strain, respectively [57].

The in-plane components (i, j = 1, 2) of the incremental covariant strain in Eq. (5.16a) can be decomposed as

follows. For the linear part,

08 =08 +§Oe;’.1 +§20e;’.2 with i,j=1,2, (5.17a)
with

m 1 t t

0 :E( X, W, + xm’j-um’i), (5.17b)
bl _ 1 t t t t

0% _E( Xy Wy X Uy + X0, Xb,j'um,i)a (5.17¢)
b2_1 t t 1 d

0€; _E( X, Uy, + xb,j-ubl,i), (5.17d)

and, for the nonlinear part,

oty = ol + & +E 7 with i, j=1,2, (5.18a)
with

m 1

ol ZEum’i ‘u, s, (5.18b)
bl 1 t t

ol :E(um,i Wy, W, WX W, X '“bz,f) > (5.18¢)
b2 1 t t

oty = E(ubl,i Wyt Xy Uy Xy 'ubz,i) . (5.18d)
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The in-plane components (i , j = 1, 2) of the incremental covariant Green-Lagrange strain in Eqgs. (5.17a)-( 5.18d)

can be grouped as

o€y =og;+§o‘951+§20552 (5.19a)
and

&5 =o€ +olly 5 (5.19b)

0E; = o€+ oTly (5.19¢)

0&)0 =08+ o1l (5.19d)

. . . bl b2 :
where &' denotes the incremental covariant membrane strain, and ,&; and ,&;” denote the incremental

covariant bending strains.

5.1.3. Assumed transverse shear strain

The assumed transverse shear strain fields of the MITC3+ shell element are employed to alleviate shear locking

[24,57]. The transverse shear strain components in Eq. (5.16a) are substituted by

MITC3+ MITC3+ MITC3+

0éi3 = 083 * ol with i, j=1,2, (5.20a)
and
. 2 1 1 I .
£k :_(0512__Ogg)+—(051§+ 05;3)+—0c(3s—1), (5.20b)
3 2 3 3
. 2 1 1 1 .
£hes :E(Ogg—gogg +§(05f§+ Ogg)+goc(l—3r), (5.20c)

where (6= .65 — 061 — y&h + o€k, and the tying points (4)-(F) are given in Fig. 5.2 and Table 5.1.

For the MITC3+ shell element, the two rotational DOFs of the internal node can be statically condensed out in
the element level [24]. We use the 3-point Gauss integration in the » —s plane and the 2-point Gauss integration

in the & -direction to evaluate the stiffness matrix and internal force vector.
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Table 5.1. Tying points for the assumed transverse shear strain fields of the MITC3+ shell finite element, seen in

Fig. 5.2.

Tying points r s
4 1/6 1/6
(B) 2/3 1/6
©) 1/6 2/3
(D) 1/3 +1/10000 1/3 —1/5000
(E) 1/3 - 1/5000 1/3 + 1/10000
(F) 1/3 + 1/10000 1/3 + 1/10000

l X Tying points
2/3t
1/6
0 o s 1
(a) (1)

Fig. 5.2. Tying points for the assumed transverse shear strain fields of the MITC3+ shell finite element. The points

(A)-(C) are also Gauss integration points.
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5.1.4. Smoothed membrane strain

For triangular elements, there can be up to three adjacent elements through its edges. The strains of all adjacent

elements are fully used for the SSE method [22,23,25]. Fig. 5.3 depicts a target element e and its three adjacent

elements k (k=1,2,3). Considering that the shell elements do not lie on the same plane in general, we match

the base coordinate systems of strains of the target and neighboring elements before strain smoothing.

The incremental covariant membrane strains of the target element & and of the k th adjacent element
g™ atelement centers (r=s5=1/3 and & =0) are obtained using Eq. (5.19b). Then, we transform the strains

1

of the adjacent elements into the convected coordinates of the target element as follows
g”‘“‘) =, erh(9g . ® 1)((e)g, ®©g"y with i, j,l,n=1,2, (5.21)
where g, and g’ are the covariant base vectors of the target element and the contravariant base vectors of

the k th adjacent element, respectively, in the configuration at time ¢, as shown in Fig. 5.4. The contravariant
base vectors are obtained using the covariant base vectors and the relation “'g, " g/ = 5/ . Note that we neglect

the influence of out-of-plane strains in the transformation [25].

Then, we calculate the smoothed incremental membrane strains (i, j = 1, 2) between the target element e and the

adjacent elements k& (k =1, 2, 3) as follows

Am 1 me e —m 1 . - c
oo = = g0 0 OO 4 EPOLD) with A = (0@ .n®)4® (5.22)

where n =g,/

(")g3|| and n* =®g, /||(k)g3|| are the unit normal vectors of the target and the & th

adjacent elements calculated at element centers, respectively, A and A™ are the mid-surface areas ( £=0)

of the target and the & th adjacent elements, respectively, and 4% is the area obtained by projecting 4* onto
the mid-surface plane of the target element, as shown in Fig. 5.5(a). Note that, if there is no adjacent element to

amy(k) _ m(e)

the k th edge of the target element, we use &, =&, instead.

Then, the smoothed incremental membrane strains in Eq. (5.22) are assigned at three Gauss integration points as

follows, as shown in Fig. 5.5(b),

1
m (A) "m ,(3) "m (l) m (B) "m (1) "m (2)
=508 08) 5 oF (0 +y

1. .
87O =S GE T 4 &) with ij=1,2

E

(5.23)

Note that the smoothed strains in Eq. (5.23) are used directly at the Gauss integration points to compute the tangent

stiffness matrix and internal force vector.

74



The incremental covariant membrane strain in Eq. (5.19b) is substituted by the smoothed membrane strain in Eq.
(23) obtained using the SSE method. The incremental covariant transverse shear strain in Eq. (16a) is replaced

with the assumed transverse shear strain in Eq. (5.20a) obtained using the MITC method.

Due to the strain transformation in Eq. (5.21) and area projection in Eq. (5.22), the effect of strain smoothing is
affected by the angle between the target and adjacent elements (& in Fig. 5.5a). The smoothing effect is designed

to gradually vanish as the angle approaches 90 degrees.

Fig. 5.3. Finite element discretization of a shell structure. A target element and its neighboring elements are colored.

o : Element centers

“ “g,

()

£,

Fig. 5.4. Coordinate systems for strain smoothing in shell elements.
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Fig. 5.5. Strain smoothing in shell elements: (a) Strain smoothing between the target element and each neighboring
element. (b) Strain smoothing within elements and construction of the smoothed strain field through three Gauss

points.

5.2. Numerical examples

In this section, we evaluate the performance of the strain-smoothed MITC3+ shell element using several proper
numerical examples in geometric nonlinear range. The Newton-Raphson method is used to solve the nonlinear

equations in every load step with a convergence tolerance of 0.1 percent of the relative incremental energy [1].

Through our previous work in geometric linear range, we verified that the strain-smoothed MITC3+ shell element
has superior performance compared with other competitive elements [25]. In this study, we demonstrate that the
strain-smoothed element originally proposed for linear analysis also exhibits high performance in nonlinear

analysis. The results of the linear analysis are also introduced briefly in the first problem.

The performance of the proposed strain-smoothed MITC3+ shell element (15 element DOFs) is compared with
those of the MITC3+ shell element (15 element DOFs) and the enriched MITC3+ shell element (27 element
DOFs). The MITC3+ shell element shows excellent bending behaviors by alleviating the locking [24,57], but
shows insufficient membrane behaviors. The enriched MITC3+ shell element shows successful membrane
performance by enriching the membrane displacement field with interpolation covers, but it requires 12 additional

DOFs for an element [58].
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For comparison purposes, displacements at specific locations, von Mises distributions and deformed
configurations are measured at several load steps for various mesh patterns. We also use the s-norm defined below

for the study in geometric linear range [52,55]

u, | =[ @, -2 (1, -7,4Q, (5.24)

and its relative error is given by

2
u, -
ref h
E, =—— (5.25)
u"ef s
where u,, is the reference solution, u, is the solution of the finite element discretization, ¢ is the strain vector

and t 1is the stress vector.

The reference solutions are obtained using the MITC9 shell element, which satisfies the consistency and ellipticity

conditions and gives well-converged solutions in both linear and nonlinear analyses [51].

5.2.1. Scordelis-Lo roof

We consider the Scordelis-Lo roof shell problem [53,58] shown in Fig. 5.6. The shell is an arc of length L =25,

radius R =25, and uniform thickness ¢ . It is subjected to a self-weight loading f . Young’s modulus is

E =4.32x10* and Poisson’s ratio is v = 0 . Both ends of the structure are supported by rigid diaphragms, and
due to the symmetry of the problem, we only consider one-quarter of the model. Detailed boundary conditions are

as follows: u=w=0 along BD, v=a=0 along AC and u==0 along AB. In this problem, the shell

shows a mixed bending-membrane behavior.

The geometric linear analysis is performed first with a loading f =90 per unit area. The solutions are obtained

with N x N element meshes (N =8, 16 and 32) for three different thickness to length ratios (¢/ L = 1/100,
1/1000 and 1/10000). The s-norm convergence curves of the MITC3+, enriched MITC3+ and smoothed MITC3+
shell elements are depicted in Fig. 5.7. The reference solutions are obtained usinga 64 x 64 mesh of MITC9 shell
finite elements. The element size is £#=1/ N . The strain-smoothed MITC3+ shell element (15 element DOFs)

provides very accurate solutions, which is even better than those of the enriched MITC3+ shell element (27

element DOFs) [25].

Then, the computational efficiency of the considered elements are compared for the case when ¢/ L = 1/1000.
Fig. 5.8 shows the relations between computation times versus solution accuracies (relative errors in the s-norm).
The computation times involve all the time from constructing stiffness matrices to solving linear equations. We
use a symmetric skyline solver, and the computations are performed using a PC with Intel Core 17-6700, 3.40GHz

CPU and 64GB RAM. The strain-smoothed MITC3+ shell element gives the best computational efficiency among
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the elements considered.

Now, we perform the geometric nonlinear analysis with an increased loading f,  =50x90 per unit area. The
solutions are obtained with a 14x14 mesh of the MITC3+, enriched MITC3+ and strain-smoothed MITC3+
shell elements. The reference solutions are calculated using a 32x32 mesh of the MITC9 shell elements. Fig.
5.9 shows the load—displacement curves measured at points C and D. Tables 5.2 and 5.3 present the relative
errors in the displacements at point C and D, respectively, for each load step. Fig. 5.10 depicts the final

deformed configurations (at load level f = f, ) obtained using the strain-smoothed MITC3+ shell element. The

strain-smoothed MITC3+ shell element gives the best solution among the shell elements considered.

5.2.2. Cantilever beam subjected to a tip moment

We consider a cantilever beam subjected to a tip moment M __ =10z as shown in Fig. 5.11 [58]. The cantilever

beam has unit thickness, and the Young’s modulus and Poisson’s ratio are given as E=1.2x10’> and v =0.2,
respectively. The conditions are given so that the beam is sufficiently rolled up into a circular ring. The beam is
modeled using regular and distorted 20x2 meshes of the MITC3+, enriched MITC3+ and strain-smoothed
MITC3+ shell elements as shown in Fig. 5.11. The reference solutions are obtained using a regular 40x4 mesh

of the MITC9 shell elements.

Figs. 5.12 and 5.13 present the resulting load—displacement curves measured at point 4 for the regular and

distorted mesh, respectively. The deformed shapes of the beam at load levels M =0.25M 0.5M

max max *

0.75M .. and M for the regular mesh are depicted in Fig. 5.14. The strain-smoothed MITC3+ shell element
provides the solutions closest to the reference. Also, in Table 5.4 and Fig. 5.15, we compare the number of
iterations that the Newton-Raphson method to converge for each load step. The number of iterations for the strain-

smoothed MITC3+ element is almost the same as that of the reference.

5.2.3. Cantilever plate subjected to an end shear force

A cantilever plate is subjected to a distributed shearing force p . =4 atits free end as shown in Fig. 5.16 [57].

The plate has a uniform thickness /#=0.1, and material properties are given as Young’s modulus E =1.2x10°
and Poisson’s ratio v =0 . The plate is modeled using 16x1 meshes of the MITC3+ and strain-smoothed
MITC3+ shell elements. The reference solutions are calculated usinga 32x2 element mesh of the MITC9 shell

elements.

The load—displacement curves evaluated at the loaded point A are given in Fig. 5.17, and the deformed
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configurations obtained using the strain-smoothed MITC3+ shell element at load steps p=0.25p_. , 0.5p,..,
0.75p,.. and p._ . are depicted in Fig. 5.18. The cumulative number of iterations that the Newton-Raphson

method to converge for each load step are given in Fig. 5.19. The strain-smoothed MITC3+ shell element retains
the excellent bending behavior of the MIT3+ shell element, and there is no increase in the iteration number in this

example.

5.2.4. Slit annular plate subjected to a lifting line force

We solve a slit annular plate problem as shown in Fig. 5.20 [58,69]. The shell thickness is /# =0.03, and material
properties are £ =2.1x10" and v = 0. A shearing force p,, =0.8 per unit length is incrementally acting on

one end of the plate while the other end is clamped. The plate is modeled using a 6x30 mesh of the MITC3+,
enriched MITC3+ and strain-smoothed MITC3+ shell elements. We obtain the reference solutions using a 12 x 60

mesh of the MITC9 shell elements.

The load—displacement curves evaluated at two distinct points B and C are presented in Fig. 5.21. The final
deformed shapes obtained using the MITC3+ and strain-smoothed MITC3+ shell elements are compared with the
reference in Fig. 5.22. The strain-smoothed MITC3+ shell element gives much better response prediction than the

MITC3+ and enriched MITC3+ shell elements.

5.2.5. Column under a compressive load

A compressive load P, =4.5x10’ is incrementally acting on point A of the column as shown in Fig. 5.23

[58]. The column has unit thickness, and material properties are taken as E =10° and v = 0. The column is
modeled with N x5N meshes ( N = 2,4, 8 and 16) of the MITC3+ and strain-smoothed MITC3+ shell elements,

anda 20x100 mesh of the MITC9 shell elements to obtain the reference solutions.

In Figs. 5.24 and 5.25, we depict the load-displacement curves measured at point 4 with increasing the number

of element layers N (N =2, 4, 8 and 16). In Fig. 5.26, we compare the final displacements at point 4 for the

various N . The deformed configurations at load levels P=0.5P,

nax

and P__ obtained using the MITC3+,
strain-smoothed MITC3+ and MITC9 shell elements are shown in Fig. 5.27. The von-Mises distributions for the
element considered are depicted in Fig. 5.28. The solutions calculated using the strain-smoothed MITC3+ shell
element agree very well with the reference solutions. In Fig. 5.29, we compare the total number of iterations to
obtain the converged solutions for the MITC3+ and strain-smoothed MITC3+ shell elements for the various N .

Both shell elements have similar iteration numbers.
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5.2.6. Pull out of a free cylindrical shell

We last consider a free cylindrical shell pulled out by a pair of point loads P, =4x10" at its center points as

shown in Fig. 5.30 [62,70]. The shell has a thickness of % =0.094, and the Young’s modulus and Poisson’s ratio
are taken as £ =1.05x10" and v =0.3125, respectively. We only model one-eighth of the shell considering its
symmetry, and the corresponding boundary conditions are given as: w= /=0 along 4B, v=a =0 along
AC and u= =0 along CD . The solutions are obtained using a 12x12 mesh of the MITC3+ and strain-

smoothed MITC3+ shell elements. The reference solutions are obtained using a 32x32 mesh of the MITC9 shell

elements.

The load—displacement curves of the shell evaluated at points C and D are given in Fig. 5.31, and the deformed

configurations at load levels P=P__ /3 and P__ obtained using the strain-smoothed MITC3+ shell element

are shown in Fig. 5.32. The strain-smoothed MITC3+ gives much accurate solutions compared with the MITC3+

shell element.

80



Table 5.2. Relative errors in the displacement (

W, —wh|/ w,, x100) at point C for each load step for the

Scordelis-Lo roof problem.

Relative error (%) Reference
Load step ;
MITC3+ Smoothed MITC3+ solution
1 3.647 1.414 -0.845
2 2.974 1.233 -1.292
3 2.401 1.009 -1.657
4 10.183 0.615 -2.464
5 9.461 1.679 -3.393
6 9.657 1.655 -4.223
7 9.233 1.216 -4.910
8 8.646 0.763 -5.440
9 8.225 0.454 -5.846
10 7.774 0.290 -6.169

Table 5.3. Relative errors in the displacement (

Vyor —vh|/ Yy x100 ) at point D for each load step for the

Scordelis-Lo roof problem.

Relative error (%) Reference
Load step .
MITC3+ Smoothed MITC3+ solution
1 5.534 2.743 -0.845
2 4.625 5.172 -1.292
3 6.098 9.000 -1.657
4 47.175 2.587 -2.464
5 27.392 5.398 -3.393
6 25.779 4.829 -4.223
7 25.078 3.484 -4.910
8 23.257 2.341 -5.440
9 21.874 1.542 -5.846
10 21.190 1.081 -6.169
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Table 5.4. The number of iterations that the Newton-Raphson method to converge for each load step for the

cantilever beam subjected to a tip moment.

I;?;d MITC3+ Sﬁ‘}oégid MITC9 I;?;d MITC3+ Sﬁ‘}oégid MITC9
1 3 4 4 11 4 7 7
2 3 5 5 12 4 7 7
3 3 5 5 13 4 7 7
4 3 6 6 14 4 7 7
5 3 6 6 15 4 7 7
6 3 6 6 16 4 7 7
7 3 6 6 17 4 7 7
8 4 6 6 18 4 7 6
9 4 7 7 19 4 7 6
10 4 7 7 20 4 7 7

Total iteration number 73 128 126

Table 5.5. Relative errors in the final displacement ( |V, —vh‘/ Vs x100) at point A for the column under a

compressive load.

N MITC3+ Smoothed MITC3+

2 96.607 6.077

4 34.498 0.829

8 8.649 0.105

16 2.202 0.033
Reference solution: v . =-10.773

ref
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Fig. 5.6. Scordelis-Lo roof problem.
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Fig. 5.7. Convergence curves for the Scordelis-Lo roof problem. The bold line represents the optimal convergence

rate.
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Fig. 5.8. Computational efficiency curves for the Scordelis-Lo roof problem. The computation times are measured

in seconds.
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Fig. 5.10. Final deformed configuration of the Scordelis-Lo roof obtained using the strain-smoothed MITC3+

shell element.

¥y
1 M
Th—> %)
k 3
20
v
T
k|

1

Regular mesh

Distorted mesh

SESIS=ESESRSSSessSa e

Fig. 5.11. Cantilever beam subjected to a tip moment, and regular and distorted 20x2 meshes.
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Fig. 5.13. Load-displacement curves (-« , and —v,) for the cantilever beam subjected to a tip moment when the

distorted mesh is used.
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Fig. 5.14. Deformed configurations of the cantilever beam subjected to a tip moment at several load levels

obtained using (a) regular 20x2 mesh of the MITC3+ elements, (b) regular 20xX2 mesh of the strain-

smoothed MITC3+ elements and (c) regular 40x4 mesh of the MITC9 shell elements (reference).
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Fig. 5.15. The cumulative number of iterations that the Newton-Raphson method to converge for the cantilever

beam subjected to a tip moment.

Fig. 5.16. Cantilever plate subjected to an end shear force.
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Fig. 5.17. Load-displacement curves ( w, ) for the cantilever plate subjected to an end shear force.

Fig. 5.18. Deformed configurations of the cantilever plate subjected to an end shear force at several load levels

obtained using the strain-smoothed MITC3+ shell element.
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Fig. 5.19. The cumulative number of iterations that the Newton-Raphson method to converge for the cantilever

plate subjected to an end shear force.

Fig. 5.20. Slit annular plate subjected to a lifting line force.
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Fig. 5.21. Load-displacement curves (w, and w, ) for the slit annular plate subjected to a lifting line force.
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Fig. 5.22. Final deformed configurations of the slit annular plate subjected to a lifting line force obtained using (a)
6x30 mesh of the MITC3+ elements, (b) 6x30 mesh of the strain-smoothed MITC3+ elements and (c)
12x60 mesh of the MITC9 shell elements (reference).

94



|
1
l NU
+——
b

2

10

T

Fig. 5.23. Column under a compressive load.

95



max

PP

——MITC3+
—— Reference
0t
0 1.2 2.4 3.6 4.8 6 7.2
Hy

] L
0.8+
& 0.6F
o
ga
N
£ 0.4}
0.2
—&— Smoothed MITC3+
Reference
0o
0 1.2 2.4 3.6 4.8 6 72
Hy

Fig. 5.24. Load-displacement curves (u , ) for the column under a compressive load with increasing the number

of element layers N (N = 2,4, 8 and 16).
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Fig. 5.25. Load-displacement curves (—v, ) for the column under a compressive load with increasing the number

of element layers N (N = 2,4, 8 and 16).
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Fig. 5.26. Normalized final displacements (v, / V. ) at point 4 for the column under a compressive load for the

various number of element layers N (N =2, 4, 8 and 16).
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Fig. 5.27. Deformed configurations of the column under a compressive load at several load levels obtained using

(a) 2x10 mesh of the MITC3+ elements, (b) 2x10 mesh of the strain-smoothed MITC3+ elements and (c)

20x100 mesh of the MITC9 elements (reference).
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Fig. 5.28. von Mises stress distributions of the column under a compressive load at the final load level obtained
using Nx5N meshes (N =4, 8 and 16) of the MITC3+ and strain-smoothed MITC3+ shell elements. The

reference distribution is obtained using a 20x100 mesh of the MITC9 elements.
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Fig. 5.29. The total number of iterations to obtain converged solutions for the column under a compressive load

for the various number of element layers N (N = 2,4, 8 and 16).

Fig. 5.30. Pull-out of a free cylindrical shell.
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Fig. 5.31. Load-displacement curves (w, and wj, ) for the pull-out of a free cylindrical shell.
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Fig. 5.32. Deformed configurations of the pull-out of a free cylindrical shell at several load levels obtained using

the strain-smoothed MITC3+ shell element.
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Chapter 6. A variational framework for the strain-smoothed element

method

6.1. Introduction

For several decades, substantial efforts have been made to the development of low-order finite elements which
exhibit high accuracy in coarse meshes. One major attempt is the assumed strain methods in which the standard
discrete gradient operator is replaced with an assumed form [42,44,48]. The assumed strain methods effectively
alleviate locking in finite elements and can be formulated within the framework of the Hu-Washizu variational
principle [45]. The smoothed finite element methods (S-FEMs) are also good examples. The S-FEMs construct
smoothing domains based on edges, nodes, or cells, and piecewise constant strain fields are constructed for the
smoothing domains. They improve the performance of finite elements without using additional DOFs through
strain smoothing. Theoretical studies on the S-FEMs were conducted, and a variational framework was established

based on the Hellinger-Reissner principle [71,72].

In the previous chapters, the properties of the strain-smoothed element (SSE) method have been verified by
numerical means. In this chapter, a theoretical framework for the SSE method is established. A variational
principle for the SSE method is constructed and convergence and stability analyses are performed based on the

defined variational principle.

The displacement variational formulation for linear elasticity is reviewed in Sect. 6.2. In Sect. 6.3, we introduce
the SSE method and show that the method can be interpreted using projection operators. The variational
framework for the SSE method is established in Sect. 6.4. In Sect. 6.5, the convergence theory for the SSE method

based on the variational principle established in Sect. 6.4 is presented.

6.1.1. Contribution

Research to establish a variational framework for the strain-smoothed method has been conducted with Dr. Jongho

Park, a postdoctoral researcher at the Department of Mathematical Sciences, KAIST.

6.2. Linear elasticity

Let QcR’® be a bounded and polygonal domain representing a two-dimensional linear elastic solid. The

boundary 0Q of Q consists of two parts ', #& and I', =0Q\ I',. The displacement field u and the

stress field o satisfy the Dirichlet boundary condition
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u=u. on I', (6.2.1)
and the Neumann boundary condition

Ao=t on I'y (6.2.2)

for some prescribed displacement u, and traction t, respectively. In (6.2.2), the matrix A is given by
A n 0 n,

0 n, n ’
where n=[n, n,]' is the unit outward normal to T, .

In the following, we summarize three governing equations for linear elasticity. Let & denote the strain field. The

compatibility relation between the displacement u and the strain ¢ reads as

€¢=Bu in Q, (6.2.3)

Where B is a matrix of differential operators given by

2

Ox
B=|o 2|

y
o 9
| Oy Ox |

The stress-strain constitutive equation is written as follows:
c=Ds in Q, (6.2.4)
where D is a 3x3 symmetric and positive definite matrix which relies on a material composing the elastic

solid. We assume that the material is uniform, i.e., D is constantin Q.

The equilibrium equation is stated as
dive+b=0 in Q, (6.2.5)

where b is a body force.

Combining (6.2.3), (6.2.4), and (6.2.5) with the boundary conditions (6.2.1) and (6.2.2), we have the following
displacement formulation for linear elasticity:

—div(DBu)=b in Q,
(6.2.6)

u=u. on I'y, Aoc=t on I',.

D

In what follows, we set u. =0 in (6.2.6) for the sake of convenience.

Next, we consider the weak formulation of (6.2.6), i.e., the displacement variational formulation for linear

elasticity. Let V' be a space of kinematically admissible displacement fields defined as
V={ue(H' Q) :u=00nT,}.
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Aspace W of strain and stress fields is given by

W =(*(Q)).

Abilinear form a(-,-) on V is defined by
a(u,v) = jQDs[u] g[v]dQ, wvel, (6.2.7)

where €[u]=Bu and the symbol : denotes the Euclidean inner product in R*. Note that for uel , we have

glu]e W . Clearly, a(,-) is symmetric, continuous, and coercive.

Let f denote a continuous linear functional on V' given by

f(u):jgb-udgqnt-udr, uel .

It is well-known that (see, e.g., [73]) a solution of (6.2.6) is characterized by the following variational problem:

find ueV such that

a(u,v)=f(v), Vvel . (6.2.8)

By the Lax-Milgram theorem (see, e.g., [73, Theorem 2.7.7]), the problem (6.2.8) has a unique solution and it

solves the following quadratic optimization problem:

I}lleigl {%a(u,u) - f(u)} . (6.2.9)

6.3. The strain-smoothed element method

This section is devoted to a brief introduction to the SSE method for solving (6.2.8). We closely follow the
explanation presented in [22] for the method. In addition, we present an alternative view to the SSE method that
the method can be described in terms of orthogonal projection operators defined on particular meshes. We note

that similar discussions were made in [72] for the S-FEMs.

Forasubregion K of Q andanonnegative integer n,let P (K) denote the collection of all polynomials of
degree less than or equalto n on K .Let 7, be a triangulation of Q with the maximum element diameter

h>0.

We set the discrete displacement space V, V' as the collection of the continuous and piecewise linear functions
on 7, satisfying the homogeneous Dirichlet boundary conditionon I',,i.e.,

V,={ueV:u| e(R (1)) VT eT,}.
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We define the discrete strain/stress space W, associated to the subdivision 7, by
W,={ecW g, e(B (T} VT eT,}.

It is clear that gflu]=Bu and o[u]=DBu belongto W, when uel,.

The standard FEM for linear elasticity in (6.2.8) solves the Galerkin approximation of (6.2.8) defined on V, : find
u, €V, such that

a(u,,v)=f(v), VveVl,,

where the bilinear form a(-,-): V, xV, - R was given in (6.2.7). In the strain-smoothing approach [22], we use
an alternative bilinear form a(-,-): ¥, xV, > R made by replacing €[u] in (6.2.7) by an appropriate smoothed

strain field 2[u], i.e.,

a(u,v)= IQDE[u] E[v]dQ, w,veV,. (6.3.1)

In the following, we present how to construct the SSE smoothing operator S, : W, — W, which maps a given
strain field €, to the corresponding smoothed strain field € e W, , where

W,={zeW %, e(R (I VT T,}.

That is, the resulting € =S,e shall be piecewise linear. Take any element 7 € 7, . We assume for simplicity that
T isaninterior element, i.e., there exist three elements 7, 7,,and 7, in 7, adjacentto 7T asshown in Fig.

6.1(a); for the case of exterior elements, see [22].

Intermediate smoothed strains &” e R*, i=1,2, 3, are defined by

1
80 =mjm’_sdg. (6.3.2)

Using the intermediate smoothed strains in (6.3.2), we assign the pointwise values of € at three Gauss

integration points (Gl, G2 and G3 in Fig. 6.2) of 7 in the following manner:
E(Gi)=%(§,”) +&9), (6.3.3)

where i=1, 2, 3 and {i,j,k}={,2,3} . From (6.3.3), the smoothed strain field € in (6.3.1) is uniquely

determined on 7 by linear interpolation.

105



Finally, we have
a(u,v)= jQDShs[u] :S,g[v]dQ, u,vel, (6.3.4)
and solve the following problem: find u, €V, such that

a(u,,v)=f(v), Vvel,. (6.3.5)

6.3.1. An alternative view: twice-projected strain

We present an alternative derivation of the SSE method which will be useful in the convergence analysis of the
method. An alternative smoothed strain field € defined in the following is different from the one explained above,

but eventually give an equivalent formulation to (6.3.5).

We construct two subdivisions 7;, and 7,, of Q other than 7, as follows. For two neighboring elements
T and T,,let e be the edge shared by them. Then we consider the quadrilateral whose vertices are the endpoints
of e and the centroids of 7;, 7,. We define 7|, as the collection of such quadrilaterals. In order to construct
T,, , we partition each element of 7, into three pieces by joining the centroid and the midpoints of element
edges. Then 7,, is defined as the collection of such pieces. Fig. 6.3 displays 7,, 7,,,and 7,,.For k=1,2,

let W, cW be the collection of piecewise constant functions on 7,, , ie,

W, :{aeW:s|T e(P, (1))’ VTG'TM}.

The piecewise smoothing operator B, ,: W — W, , is defined by

1
(F;{,hs)(x):m.l;sdQ, eeW, Tel,, xeT. (6.3.6)

It was observed in [72] that piecewise smoothing operators of the form (6.3.6) are in fact orthogonal projectors;

rigorous statements are given in the following lemmas.

Lemma3.1. Let A bea 3x3 matrix. For k=1, 2, the piecewise smoothing operator P, commutes with A,

ie.,

b ,(Ae)=AP &, el .

Proof. 1t is elementary.
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Lemma 3.2. For k=1, 2, the piecewise smoothing operator F,, is the (L’ (Q))’ -orthogonal projection onto
W, ie, th =k, and
[ P&:8dQ=] &:P,3dQ, edeW .

Proof. See [72, Remarks 2 and 4].

Now, we set €=PF,,F ¢ in(6.3.1). That is, we have

a(u,v)=[ DP,,R,&u]: P, R,evdQ, uvel,. (6.3.7)

We note that €=P, ,F, ,eeW,, in(6.3.7) while its counterpart €=S5,¢ belongs to W, . Even though (6.3.4) and

(6.3.7) use different smoothed strain fields to each other, one can prove that they result the same bilinear form

a(,?).

Theorem 3.3. Two bilinear forms in (6.3.4) and (6.3.7) are identical, i.e., it satisfies that

[ DS,elul: S,elv1dQ =[ DR, elu]: B, P, ev1dQ, uveV,.

Proof. Thanks to the polarization identity [74, Theorem 0.19], it suffices to show that

[ DS,elu]: S,euldQ=[ DP, P, eu]: B, euldQ,

for ueV, and T €7,. We take any ueV, and write €=¢[u]. Assume that 7 is an interior element; the

i

exterior case can be treated in similarly. Let 7;, i =1, 2, 3 be neighboring elements of 7 in 7, ; see Fig. 6.1(a).
We denote the values of & on the elements 7" and 7; by &, and g, respectively.

Since three-point Gaussian integration is exact for linear functions, we have
7] . .
JTDS,IS :S,edQ)= ?ZD(Shs)(Gz) 1(S,8)(Gi),
i=1

where Gaussian points G1, G2 and G3 are given in Fig. 6.2. By (6.3.2) and (6.3.3), (S,¢£)(Gi) is computed

as follows:

($,8)(Gi) =3 @7 +E%)

1 1 1
:E[—|TUT,|ITU@SdQ+—|TUTk|LUTkSdQ]

bl

2\ ERE T FRE

where {i,j,k}=1{1,2,3}.
On the other hand, let 7;; and 7,,, i=1,2,3 be the subregionsin 7,, and 7,, thatoverlap with T ;see Fig.
6.1(b).
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Since P, B, & is piecewise constanton 7, , we have

3
_[T DP,,F e P,,F,edQ = z L Dp,,F e P, R ,edQ,
i=1

TS
= QZD([JZJRJ;S)TZJ : (f)Z,hR,ha)TzJ )
i=1
where (P,,F &), denotes the value of P, ,e on T,,. Noting that A, and P,, are piecewise averaging
operators, it follows that
1
(Pl =5 (Pu@)y + (Be)y,), C[1, 0T =R n T,

B o O A
2 |T|+|Tj| 7|+,

. T, nag =T ]:n)

where {i,j,k}=1{,2,3} and (F,e); isthevalueof A,e on T ,.This completes the proof.

As a direct consequence of Theorem 3.3, two bilinear forms (6.3.4) and (6.3.7) provide the same displacement

solution u, €¥, when they are adopted for (6.3.5). On the other hand, they have different distributions for

smoothed strain fields; (6.3.7) has piecewise constant fields within an element while (6.3.4) has linear field. We

close this section by presenting the uniqueness theorem for the solution of the SSE method.

Proposition 3.4. The SSE method (6.3.5) has a unique solution.

Proof. The coercivity of the bilinear form a(-,-) in (6.3.7) can be proven by the same argument as [75, Sect. 3.9].

Then the uniqueness of a solution of (6.3.5) is straightforward by Theorem 3.3 and the Lax-Milgram theorem [73,
Theorem 2.7.7].

6.4. A variational principle for the strain-smoothed element method

In this section, we construct a variational principle for linear elasticity with respect to a single displacement field,
two stress fields, and two strain fields. Then we show that the SSE method interpreted by the bilinear form in
(6.3.7) is a Galerkin approximation of the constructed variational principle. It resembles the fact that S-FEM
satisfies a modified Hellinger-Reissner variational principle [72, Sect. 4]. Throughout this section, let the index

k denote either 1 or 2.

The starting point is the minimization problem (6.2.9). We set W, =W . Consider two independent strain fields

g €W, and g, eW,.Itis obvious that (6.2.9) is equivalent to the following constrained minimization problem:

. 1 .
min {EIQDazzsde—f(u)} subjectto & =Bu and ¢ =¢,. (6.4.1)

uel g €W, g €W,
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In (6.4.1), we use the method of Lagrange multipliers in order to deal with the constraints ¢ =Bu and g =¢,.

Then we obtain the following saddle point problem:

min max {%J.QDSZ :sde—f(u)+IQ G, :(Bu—sl)dQ-kJ‘Qts2 (g —sz)dQ}, (6.4.2)

uel g €W, g, e, 6,eW; 6,

where o, €W, and o, € W, are the Lagrange multipliers corresponding to the constraints ¢ =Bu and g, =¢,,

respectively.

Equivalently, we have the following variational problem: find (u,¢,,€,,6,,6,) €V xW, xW, xW, xW, such that
[ 0/:BvdQ+[ (0,+6,):8,dQ+[ (D&, ~0,):5,dQ=f(v), VeV, 8, e, 8, €W,

J.Q‘l'] :(Bu—sl)dQ+J.Q‘r2 ((g,-¢,)dQ=0, Vt, eW,, 1,eW,. (6:4.3)

The existence and the uniqueness of a solution of the variational principle (6.4.3) is summarized in Proposition
4.1. We postpone the proof of Proposition 4.1 until Sect. 6.5; a more general statement will be given in Proposition

5.1.

Proposition 4.1. The variational problem (6.4.3) has a unique solution (u,g,,€,,6,,6,) €V xW, xW, xW, xW,.
Moreover, u solves (6.2.8) and the following relations hold:

g =¢,=Bu, 6,=0,=DBu.

Remark 4.2. From Proposition 4.1, we observe that the Lagrange multipliers 6, and ¢, introduced in (6.4.2) in

fact play a role of the strain field.

Remark 4.3. Elimination of two variables €, and ¢, in (6.4.2) yields
. 1

“ErVr’lgllrelwl rﬁrlléaygf {EIQDS] 1£,dQ— f(u)+ IQ o, :(Bu—g, )dQ} ,

which is the Hu-Washizu variational principle. In this sense, we can say that (6.4.3) generalizes the Hu—Washizu

variational principle.

6.4.1. Galerkin approximation

Now, we consider a Galerkin approximation of (6.4.3) made by replacing the spaces V' and W, by their finite-
dimensional subspaces V, €V and W, , €W, respectively (see Sect. 6.3 for the definitions of V, and W, ):

find (0,.8,,.¢,,.6,,,6,,) €V}, xW,, xW, , xW,, xW,, such that
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[ 6., :BvdQ+] (-0,,+6,,):8,dQ+[ (Ds,,~0,,):8,dQ=f(v),
(6.4.42)
vvel,, 8, eW,, d,eW,,,

[ 7 :(BU,—&,)dQ+[ ,:(e,~5,)dQ=0, Vr eW,,, 1,eWW,,. (6.4.4b)

We take v=0 and 8, =0 in (6.4.4a). Then we have
[ (01, +0,,):8,d2=0, V8 eW,,,
which implies that o, is the (L’ (Q))’ -orthogonal projection of 6,, onto W, .Itfollows by Lemma 3.2 that

G, = Pl,ho-z,h .

Similarly, it is straightforward to verify that

Cyp= D£2,h

from (6.4.4a) and that
&= Pl,h (Bl—lh) > &y = P2,h81,h

from (6.4.4b).

Using the above relations and Lemmas 3.1 and 3.2, we readily get

¢ ,=H,DP A, (Bu,)= BB, (DPZ,hPl,h (Bu,)) .

Substituting 6, =0 and 8, =0 in (6.4.4a) yields
[.DB,R,(BU,):P,,R,(BV)dQ=f(v), VVEV,,

which is equivalent to (6.3.5) with the bilinear form a(-,-) given in (6.3.7). Therefore, the SSE method can be

derived from the variational principle (6.4.3).

We summarize the above discussion in the following theorem. Note that the uniqueness of the solution of the SSE

method was presented in Proposition 3.4.

Theorem 4.3. The variational problem (6.44) has a wunique solution (W, ,,€,,6,,0,,)
eV, xW, , xW, , xW, , xW,, which satisfies that
&= Pl,h (Bl—lh) > &, = 1)2,11])1,}1 (Bﬁh) 5 O = Pl,hpz,h (DPZ,hPl,h (Bﬁh ), G,,= DPz,hE,h (Bl—lh)’

and that W, is a unique solution of (6.3.5) with the bilinear form a(-,-) given in (6.3.7).
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6.5. Convergence analysis

In this section, we present a convergence theory for the SSE method based on the variational formulation (6.4.3).
For the sake of presenting a unified convergence analysis for the standard FEM, S-FEM, and SSE method, the

convergence theory established in this section is built upon an abstract mixed problem which generalizes (6.4.3).

Let X, Y be two Hilbert spaces equipped with inner products <-, > (-,-)Y and their induced norms ||| . ||

X x°

||||||Y, respectively. We set [T=XxYxY and A=YxY . Let D:Y »Y be a continuous and symmetric

positive definite linear operator so that

1/2

Jell, = (De.c)y®, e,

becomes anormon Y.

In this case, the dual norm || . "y of || . "y is given as follows:

<G,§>Y 12
I,

=(o,D'c ceY.
{o.070),"

Y

"0"y* = ()‘ESYu\I?O} ”5

We additionally assume that there is a continuous linear operator B: X — Y such that

A L

y?

becomes anormon X .

The following norms on the spaces I1 and A are defined:
[, =l +lesls + el » U = Geéien) e,
1P =leils +lleall > P=(ai2) €4,

of: =loil}- +le[5- » @=(eno)ea.

We also define a seminorm | . |n on II as follows:

0], =l

ve U=(u,¢,¢,)ell.

Let ®:I1— A be a linear operator given by
DU =(DBu-¢,8-¢,), U=(u,s,¢5,)ell.

In terms of the operator ® , we define a bilinear form B(.,-) :TIxA — R as follows:

B(YV,Q)=(DV.0), =(7,,Bv=5,), +(1,,6,=6,),, V=(»,6,,6,)€ll, O0=(r,,1,) €A.
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It is straightforward to check that the kernel Z of B(-,A) defined by
Z={Vell:B(V,0)=0, QeA}, (6.5.1)

is characterized as follows:

Z={(v,Bv,Bv)ell: ve X}. (6.5.2)
The seminorm ||H is positive definite on Z since

U, =lBul; =30l U=U=GuBuBurez. (653)

In other words, | . |1_I becomes anormon Z .

If we define a bilinear form A(.,-) :IIxIT >R by
AU V)=(Dg,,6,), ., U=(u,6.5), V=00,,5)cll,

then it is continuous and coercive with respect to | . |H since

AUV)=(De,.6,), <le, ], =Vl V1, (6.5.4)
and
AU =||,|; = U] (6.5.5)

forany U =(u,&,¢,), V=(1,0,,0,)ell.

Now, we are ready to state the following abstract variational problem to find U €1 and P A such that
AU N+BV,P)=FV), YVell, (6.5.6a)
BU,0)=0, VOeA, (6.5.6b)
where F eIl” satisfies
EW)=f(), V=(06,0,)¢ell,

for some f e X . The existence and uniqueness of a solution of (6.5.6) can be shown as follows.

Proposition 5.1. The variational problem (6.5.6) has a unique solution (U,P)ellxA. Moreover, the unique
solution (U, P) is characterized by
U =(u,Bu,Bu), P=(DBu,DBu),
where u € X is a unique solution of the variational problem
(DBu,Bv), = f(v), VveX. (6.5.7)

Proof. Note that the existence and uniqueness of a solution of (6.5.7) are direct consequences of the Lax-Milgram
theorem [73, Theorem 2.7.7]. The equation (6.5.6b) implies that U € Z . By (6.5.6a), U can be determined by

the following variational problem: find U € Z such that
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AU+ FWV), VYV eZ. (6.5.8)
Since | . |H isanormon Z (see (6.5.3)), the existence and uniqueness of U are guaranteed by (6.5.4), (6.5.5),

and the Lax-Milgram theorem applied to (6.5.8). By (6.5.2), we have U = (u,Bu,Bu) for some u € X . Writing

V =(v,Bv,Bv) for ve X ,the problem (6.5.8) reduces to (6.5.7). Therefore, u is a unique solution of (6.5.7).

Next, we characterize the dual solution P . We write V =(v,9,,9,) and P=(0,,0,) in (6.5.6a). Substituting
v=0 and 0, =0 in (6.5.6a) yields

<0'1 —0'2,51>Y =0, Vo, €7,

which is equivalent to o, =0, . On the other hand, by substituting U =(u,Bu,Bu), v=0, and 6,=0 in
(6.5.6a), we have

(DBu-o0,,6,),=0, V5,€Y.

That is, we get o, = DBu . Therefore, we conclude that o, =oc, = DBu .

The abstract problem (6.5.6) generalizes several important elliptic partial differential equations. If we set
X={ueH'(Q):u=0onT,}, Y=1'(Q), D=1, B=V

in (6.5.6), then (6.5.7) becomes

[ Vu-vvaQ=f), vex,

which is the weak formulation for the Poisson's equation with a mixed boundary condition. On the other hand, if
we set

X=V,Y=W, D=D, B=B, (6.5.9)
where V', W, D, and B were defined in Sect. 6.2, then (6.5.6) and (6.5.7) reduce to (6.4.3) and (6.2.8),
respectively. Therefore, linear elasticity is an instance of (6.5.6). In this sense, Proposition 5.1 generalizes

Proposition 4.1.

Now, we present a Galerkin approximation of (6.5.6) which generalizes (6.4.4). Let X, c X, ¥, Y, and
Y,,cY.For I, =X, xY,xY,, and A, =Y, xY,,, we consider a variational problem to find U, eIl, and
F, e A, such that

AU, V)+B(V,.B)=FV), VVell,, (6.5.10a)

B(U,,0)=0, VQeA,. (6.5.10b)

Similarly to (6.5.1), we define
Z,={Vell,:B(V,0)=0, QeA,}. (6.5.11)

Note that Z, ¢ Z in general.
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We state an assumption on Z, which is necessary to obtain a bound for the error U -U,, .

Assumption 5.2. The seminorm | . |H is positive definite on ZU Z, , i.e., there exists a positive constant « such
that

|, zea|v|,, UezuUz,.

Thanks to (6.5.3), it is enough to prove the positive definiteness of | . |1_I on Z, inorder to verify Assumption 5.2

in applications. Under Assumption 5.2, the primal solution U, of (6.5.10) is uniquely determined since it solves

AU, V)=F¥V), VvV eZ,. (6.5.12)
Moreover, one can prove the following continuity condition of the bilinear form B(-,-) with respect to | . |H .

Lemma 5.3. Suppose that Assumption 5.2 holds. Then there exist a positive constant C, such that
BV, <G| 0|, Vell, PeA.
Proof. First, we show that the operator ® is bounded. For any U =(u,s,,¢,) €11, it follows that
[oUl; =[18u=z, +le -zl
<2(|Bul; +lall,) + 2l + e )

(6.5.13)
=2l + 4l + 2l
<4lul-

Using (6.5.13), one can obtain the desired result with C, =2/« as follows: for ' €Il and Q €A, we have

B(V,0)=(9V.0),
<|oni,lal,

(5.13)
< 27, el

2
<2 el

where we used Assumption 5.2 in the last inequality.

Motivated by [73, Theorem 12.3.7], we have the following result on a relation between primal solutions of the

variational problem (6.5.6) and its Galerkin approximation (6.5.10).

Theorem 5.4. Suppose that Assumption 5.2 holds. Let (U,P)ellxA be a unique solution of (6.5.6), and let

U, €ll, be a unique primal solution of (6.5.10). Then we have
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-, SZilslzf;|U—V|n +C, inf

[P-9], .

where C, was defined in Lemma 5.3.
Proof. Note that U and U, solve (6.5.8) and (6.5.12), respectively. Thanks to (6.5.4), (6.5.5), and Assumption

5.2, one can apply Theorem Appendix A.1 to obtain

. l[aUu-U,. )|
U-U,l, < 2inf v-v], + WESZ?SWW : (6.5.14)
On the other hand, forany W eZ, and Q€ A,, we have
|4 -U,. ) (5:)|A(U,W) —F(7)
(5.6a)
= [B07.P) (6.5.15)
(5.11) -
= [BO¥.P-0)|

<G, ], [P=0l, .

where the last inequality is due to Lemma 5.3. Combining (6.5.14) and (6.5.15) yields the desired result.

Like that linear elasticity is an instance of the continuous problem (6.5.6), various FEMs such as the standard
FEM, S-FEM, and SSE method for linear elasticity can be written in the form of (6.5.10). We present how the

convergence results of those methods can be obtained in a unified fashion from Theorem 5.4. In what follows, we

assume the setting (6.5.9). Then the norms |||, and |-||,. become the energy norms for strain and stress fields,
respectively, i.e.,

el = [ De:2d, ecw,

and

||c||12/ = fgc:D"ch ,6eW.

6.5.1. Standard finite element method

First, we set X, =V, and Y, =Y,, =W, in (6.5.10), where the spaces V, and W, were defined in Sect. 6.3.
Since the meshes associated to ¥, and W, agree, it satisfies that Bv e W, for all v eV, . Accordingly, the set
Z, defined in (6.5.11) is characterized by

Z,={(v.BV,BV) eV, xW, xW,:veV,}.

In addition, the variational problem (6.5.12) reduces to the standard FEM formulation
LzDs[uh] g[v]dQ=f(v), VveV,, (6.5.16)

where gv]=Bv.
115



For V=(v,Bv,Bv) € Z, , one can easily verify that

IVI5 = 3letv; =3V

2
m°

which implies that Assumption 5.2 holds. Therefore, one can obtain an error estimate for (6.5.16) as a corollary

of Theorem 5.4 as follows.

Corollary 5.5. Let ueV and u, €V, solve (6.2.8) and (6.5.16), respectively. Then we have

||s[u] —3[“;,]"y <2inf

vel;

e[u]- s[v]"y +2C, 21}; "6[11] - 1:||y, ,

where €[v]=Bv, o[v]=DByv for veV, and C, was defined in Assumption 5.2.

6.5.2. Edge-based smoothed finite element method

Next, let X, =V,, Y, =Y,, =W, in (6.5.10), where the spaces W,, was defined in Sect. 6.3.1. By a similar

Jh
argument as Sect. 6.4.1, we get

Z,={(v,B,,(BV),P,,(BV)) €V, xW,, xW,,:veV,}.

In this case, the variational problem (6.5.12) becomes the following: find @, € ¥V, such that
jﬂDé[ﬁh] E[v]dQ = f(v), VveV,, (6.5.17)

where £[v]=F,(Bv). It was shown in [72] that (6.5.17) is a formulation for the edge-based S-FEM [10].

In order to verify Assumption 5.2 for (6.5.17), we first observe that
2 A 2
Vi = [l

for V=(v,h,(Bv),R,(Bv)eZ,.

IVIF, =llervIl; +2[&lv]

2
y?

Since it was shown in [75, Sect. 3.9] that there exists a positive constant C such that
eVl = Clervil, > ve?s,

it is clear that Assumption 5.2 holds.
The following corollary summarizes the convergence property of (6.5.17) (cf. [72, Theorem~1]).

Corollary 5.6. Let ueV and 4, €V,

h

solve (6.2.8) and (6.5.17), respectively. Then we have

|eful -2, ]|, <2inf

vel,

[elul =[], +2C, inf [o[u]-],..
where g[V]=Bv, o[v]=DBv, &v]=F, (Bv) for veV,, and C, was defined in Assumption 5.2.
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6.5.3. Strain-smoothed finite element method

In order to derive the SSE (6.3.5) from the abstract problem (6.5.10), weset X, =V, Y, =W,,,and Y,, =W, ,,
where the space W,, was defined in Sect. 6.3.1. Then the set Z, is characterized by
Z, ={(v.B,,(BY).P,,B,,(BV)) € V,x W, ,xW,,:veV,},
and (6.5.12) is reduced to (6.3.5): find w, €V, such that
jQDE[ﬁh] E[V]dQ=f(v), YveV,, (6.5.18)

where g[v]=PF B, (Bv).

Similarly to the case of S-FEM, we have
2

IVI5 =0l + vl + vl VI = (vl

for V=(v.R,(BV).B,P,(BV)<Z,.

With the same argument as [75, Sect. 3.9], one can show without major difficulty that there exists a positive

constant C such that
[etv], = Clervl, » vev,.

Hence, Assumption 5.2 holds for (6.5.18).
Finally, we have the following convergence theorem for the SSE method.

Corollary 5.8. Let ueV and u, €V, solve (6.2.8) and (6.5.18), respectively. Then we have

|eful—=2[u, ], <2inf

vel),

le[u] [ V]|, + C, inf |o[u]—%,. + C, inf |o[u]-T],.,

ey, Wy
where €v]=Bv, o[v]=DBv, &v]=h,Bv), E[vl=PL R,Bv) for veV,, and C, was defined in

Assumption 5.2.
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Appendix A. Abstract convergence theory of nonconforming finite element methods

In this appendix, we present an abstract convergence theory of nonconforming Galerkin methods. Let H be a

Hilbert space and let V', V, be subspaces of H suchthat V, ¢V . Assume that || , isaseminormon H
such that | ‘ | ., 1s positive definite on VUV, , i.e.,

b, >0, ue@Uy,)\ {0}.

Let a(,-): HxH — R be a bilinear form on A which is continuous and coercive with respect to || o e

there exist two positive constants C and « satisfying

a(u,v)SC|u|H|vH, (A.1)

a(u,u) > alul,, (A2)
for u,ve H.
In Theorem Appendix A.1, we present an error estimate for the variational problem

a(u,v)=f(v), veV (A.3)
with respect to its nonconforming Galerkin approximation

a(u,,v)=f(v), ver,, (A4

where feH’.

Theorem Appendix A.1. Let ueV and u, €V, solve (A.3) and (A.4), respectively. Then we have

|a(u —uh,w)|

|u—uh|H S(l+£jinf u—v|H +l sup

a ) O weV, \ {0} |W|H

Proof. One can easily obtain the desired result by following the argument in [73, Lemma 10.1.1].
Note that Theorem Appendix A.1 is written in terms of seminorm | . | , While the existing standard results (see,

e.g., [73,76]) are written in terms of norm. In this sense, Theorem Appendix A.1 is a generalization of the standard

results.
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For element T,

(a) (b)

Fig. 6.1. (a) Three neighboring elements 7;, 7, and 7, of an interior element T e€7,. (b) 7, and T,

2

i=1,2,3 are the subregionsin 7;, and 7,, thatoverlap with T, respectively.

G: Gauss points
p=1/6, q=4/6

Node 3

Edge 2

X X
‘Gl(p,p) G2(q.p)

Node 1 Edge3 Node 2

Fig. 6.2. Coordinate systems for the reference 3-node triangular element. Three Gauss integration points of the

element are depicted by G1, G2, and G3.

P Py & a8 & a8

(a) (b) (c)

Fig. 6.3. Three subdivisions of the domain Q:(a) 7,,(b) 7,,,and(c) 7,,.
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Chapter 7. Conclusions

The objectives in this work were to develop a new finite element method (FEM) to improve low-order solid and
shell finite elements. The FEM has been widely used for solving problems in various engineering fields over the
past several decades. The low-order finite elements are very attractive due to their simplicity and efficiency. They
have high modeling capabilities and are particularly preferred for large deformation analysis requiring automatic
remeshing. Also, they often provide a relatively easy way to solve complicated engineering problems such as
contact analysis. However, in general, the predictive capability of low-order elements is not good enough to be
used in engineering practice. Further development of low-order finite elements with improved accuracy is still

required while maintaining its advantages.

In Chapter 2, a new strain smoothing method (the strain-smoothed element method) was proposed for 3-node
triangular and 4-node tetrahedral finite elements. To construct a smoothed strain field of a target element, the
strains of neighboring elements were utilized. The smoothed strain values were directly assigned to the Gauss
integration points of the element. Consequently, strain-smoothed triangular and tetrahedral elements were
developed. Unlike with previous S-FEM methods, special smoothing domains are not created in the strain-
smoothed element (SSE) method. That is, the domain discretization is the same as with the standard finite element
method. The strain-smoothed triangular and tetrahedral elements give linear strain fields within elements. The
proposed elements passed patch, isotropy, and zero energy mode tests, and showed improved convergence
behavior, when compared to standard and edge-based smoothed elements in 2D, and the standard, face-based and

edge-based smoothed elements in 3D solid mechanics problems [22].

In Chapter 3, the strain-smoothed 4-node quadrilateral finite element was proposed using the SSE method. The
proposed element has the smoothed strain field within an element by utilizing the strains of neighboring elements.
The piecewise linear shape functions are employed for the quadrilateral element. No special smoothing domains
are created and thus the standard FEM framework is maintained. The proposed strain-smoothed element passed
the basic tests (the isotropic element, zero energy mode and patch tests), and provided highly accurate solutions
compared with the standard, edge-based smoothed and incompatible modes quadrilateral elements in various
numerical examples [23]. It is still necessary to extend the SSE method for improving other finite elements in the

consistent manner presented in this paper.

In Chapter 4, the strain-smoothed MITC3+ shell finite element was developed, in which the membrane behavior
of the MITC3+ shell finite element was significantly improved without additional degrees of freedom (DOFs).
We obtained the covariant membrane strain of the MITC3+ shell element by decomposing its strains, and applied
the SSE method to the membrane strain. With the SSE method, special smoothing domains are not necessary. The
strain-smoothed MITC3+ shell element passed the patch, isotropy and zero energy mode tests. Through the
numerical examples, it was observed that the strain-smoothed MITC3+ shell element retains excellent bending

behavior while showing significantly improved membrane behavior. The strain-smoothed MITC3+ shell element
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showed solution accuracy comparable to other shell elements with more DOFs [25].

In Chapter 5, the formulation of the strain-smoothed MITC3+ shell finite element was extended to geometric
nonlinear analysis. The total Lagrangian formulation was employed to describe large displacements and rotations.
The SSE method was adopted for the membrane strain fields of the shell element, leading to the tangent stiffness
matrix and internal force vector. The strain-smoothed MITC3+ shell element also showed the same superior
performance in geometric nonlinear analysis, and thus we can conclude that the strain-smoothed MITC3+ shell

element can be used very powerfully for the analysis of general shell structures.

In Chapter 6, the theoretical foundation for the SSE method was presented. A variational framework for the SSE
method was established, and the convergence and stability analyses were performed based on the defined
variational principle. The smoothed strains in the SSE method can be obtained by applying a sequence of
orthogonal projection operators among assumed strain spaces. Invoking this observation, the mixed variational
principle for the SSE method was established. The SSE method can be derived as a conforming Galerkin
approximation of the defined variational principle. Then, a unifying convergence analysis of the standard FEM,
the S-FEM, and the SSE method was performed to verify faster convergence of the SSE method compared with
others. Note that, while the argument dealt with the triangular element, it can be generalized straightforwardly to

other elements.
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