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초 록 

본 학위 논문에서는 저차 솔리드 및 쉘 유한요소의 성능을 대폭 향상시키기 위한 새로운 

유한요소법인 변형률완화요소법(strain-smoothed element method)을 제안한다. 변형률완화요소법은 

추가적인 자유도를 도입하지 않으며, 이웃한 요소들의 정보를 완전히 활용하여 해의 정확도를 

크게 향상시킨다. 기존의 변형률완화 기반 기법들에서는 별도로 완화영역(smoothing domain)을 

구성해주어야 하며, 요소가 아닌 완화영역을 기준으로 변형률장(strain field)이 형성된다는 문제가 

있었다. 하지만 본 기법에서는 기존 유한요소법에서와 마찬가지로 요소에 대해서 변형률장이 

형성되며, 기존 저차요소를 사용했을 때보다 더 연속적이며 정확한 결과를 제공한다. 일정 

변형률장을 가지는 선형 유한요소들(삼각형 및 사면체 솔리드요소)에 최초로 적용되었으며, 이후 

기법을 확장하여 변형률완화요소법 기반 사각형 솔리드요소를 개발하였다. 본 기법을 활용하여 

기존 쉘요소보다 뛰어난 막(membrane)거동을 보이는 변형률완화요소법 기반 MITC3+ 쉘요소를 

개발하였으며, 토탈 라그랑지안(total Lagrangian) 수식을 이용하여 기하비선형해석(geometric nonlinear 

analysis)으로 확장하였다. 제안된 기법을 수학적으로 검증하기 위해 변분원리(variational principle)를 

정립하였으며, 이를 이용하여 제안된 기법의 수렴이론을 규명하였다.  

 

핵심낱말 유한요소법, 변형률완화요소법, 솔리드 유한요소, 쉘 유한요소, 구조해석, 기하비선형해석 

 

Abstract 

A new strain smoothing method called the strain-smoothed element (SSE) method has been proposed. The SSE 

method does not require additional degrees of freedom, and provides highly accurate solutions by fully utilizing 

the strains of neighboring finite elements. Unlike with previous strain smoothing methods, special smoothing 

domains are not created, and more continuous and accurate strain fields are constructed within elements. The SSE 

method was first applied to linear solid elements (also called constant strain elements), i.e., 3-node triangular 2D 

and 4-node tetrahedral 3D solid elements. A further study has been conducted to extend the method to general 

low-order finite elements, and as a result, a strain-smoothed 4-node quadrilateral 2D solid element was developed. 

Using the SSE method, a strain-smoothed MITC3 + shell finite element was developed that exhibits much 

improved membrane behavior compared with the original MITC3+ shell finite element. Then, we present the total 

Lagrangian formulation of the strain-smoothed MITC3+ shell element for geometric nonlinear analysis. A 

variational principle for the SSE method was constructed and convergence and stability analyses were performed 

based on the defined variational principle. 

 
Keywords Finite element method, Strain-smoothed element method, Solid elements, Shell elements, Structural 

analysis, Geometric nonlinear analysis 
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Chapter 1.  Introduction 

 

The finite element method (FEM) has been widely used for solving problems in various engineering fields over 

the past several decades. There are various types of finite elements for analysis of solid mechanics problems, 

among which low-order finite elements such as 3-node triangular elements and 4-node tetrahedral elements are 

very attractive due to their simplicity and efficiency. The low-order elements have high modeling capabilities and 

are particularly preferred for large deformation analysis requiring automatic remeshing. Also, they often provide 

a relatively easy way to solve complicated engineering problems such as contact analysis. However, in general, 

the predictive capability of low-order elements is not good enough to be used in engineering practice. Further 

development of low-order finite elements with improved accuracy is still required while maintaining its 

advantages [1-3]. 

 

Recently, the smoothed finite element method (S-FEM) was developed and successfully applied to various 

mechanics problems. In S-FEM, the strain smoothing technique is applied to smooth the strain field of standard 

FEM. Piecewise constant strain fields are constructed in newly established smoothing domains. The smoothing 

domains can be constructed on the basis of a cell, node, edge, or face; thus, cell-based, node-based, edge-based, 

and face-based S-FEM methods were devised. There are differences in characteristics and performance among 

the methods, and edge-based S-FEM is generally known to be most effective. Compared to standard FEM, S-

FEM achieves significantly improved accuracy, especially for 3-node triangular and 4-node tetrahedral solid finite 

elements. The important advantage of S-FEM is that no additional degrees of freedom (DOFs) are required [4-

21]. 

 

In this study, a new strain smoothing method called the strain-smoothed element method (SSE method) is first 

proposed for linear solid elements (also called constant strain elements), i.e. 3-node 2D triangular and 4-node 3D 

tetrahedral solid elements. The distinct feature of the SSE method is that special smoothing domains are not 

created, and that linear strain fields are constructed within elements. The linear strain field of an element is 

synthesized utilizing the constant strains of neighboring finite elements through simple strain smoothing. In this 

way, we obtain the full advantages of strain smoothing, and have a smoothed strain field integrated within the 

element. The SSE method is simple and provided more accurate solutions in a variety of numerical examples than 

with the standard FEM, and with the face-based and edge-based S-FEM methods [22]. 

 

Then, the author proposes its application for a 4-node quadrilateral finite element and thus a strain-smoothed 4-

node quadrilateral finite element is developed. An important key is to employ the piecewise linear shape functions 

instead of the standard bilinear shape functions. The proposed strain-smoothed element has a bilinear strain field 

where the strains of neighboring elements are integrated within an element formulation through a new strain 

smoothing technique. Consequently, the new finite element provides highly accurate solutions, which are 

illustrated in various benchmark problems [23]. 
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Adopting the mixed interpolation of tensorial components (MITC) method for the continuum mechanics based 3-

node triangular shell finite element, the MITC3+ shell element was recently developed. Its excellent bending 

behavior has been demonstrated through various numerical examples [24]. However, the membrane behavior of 

the MITC3+ shell element is the same as that of the displacement-based 3-node triangular shell elements. The 

author proposes a strain-smoothed MITC3+ shell finite element in which the membrane behavior of the MITC3+ 

shell finite element is improved by employing the SSE method, and thus additional DOFs are unnecessary. The 

covariant strain fields of the MITC3+ shell element are decomposed into membrane, bending and transverse shear 

parts. The SSE method is applied only to the membrane part. Convergence behavior is improved in membrane-

dominated and mixed bending-membrane problems while maintaining good convergence behavior in bending-

dominated problems [25].  

 

Also, the formulation of the strain-smoothed MITC3+ shell finite element for geometric nonlinear analysis is 

presented. The total Lagrangian formulation is used allowing for large displacements and rotations. The MITC 

method is employed for the transverse shear strain fields. The SSE method is adopted for the membrane strain 

fields of the MITC3+ shell element, leading to the tangent stiffness matrix and internal force vector. The nonlinear 

performance of the strain-smoothed MITC3+ shell element is evaluated through various numerical examples. This 

study shows that the SSE method originally proposed for linear analysis can be easily extended for nonlinear 

analysis and produces reliable solutions in nonlinear analysis. 

 

So far, the properties of the SSE method have only been verified by numerical means. We now establish a 

theoretical foundation for the SSE method. The smoothed strains in the SSE method can be obtained by applying 

a sequence of orthogonal projection operators among assumed strain spaces. Invoking this observation, a mixed 

variational principle for the SSE method is established. The SSE method can be derived as a conforming Galerkin 

approximation of the defined variational principle. We perform convergence and stability analyses of the SSE 

method based on the variational principle.  
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Chapter 2.  A new strain smoothing method for linear order 2D and 3D 

solid finite elements 

 

In this chapter, a new strain smoothing method (the strain-smoothed element method) that is useful for finite 

element analysis of problems in two-dimensional (2D) and three-dimensional (3D) solid mechanics is proposed. 

The strain-smoothed element (SSE) method is simple and provides highly accurate solutions. No additional 

degrees of freedom (DOFs) are required, while for other methods such as extended FEM and enriched FEM, 

additional DOFs are required to improve accuracy [26-32]. The SSE method is first developed for linear solid 

finite elements (also called constant strain elements), i.e. 3-node triangular 2D and 4-node tetrahedral 3D solid 

elements.  

 

We briefly review the edge-based strain smoothing method [10,14], and present the formulation of the SSE method, 

for the 3-node triangular and 4-node tetrahedral solid elements for analysis of solid mechanics problems [23].  

 

 

 Strain smoothing method for 3-node triangular 2D solid elements 

 

2.1.1.  The edge-based smoothed triangular element 

 

The geometry of the standard 3-node triangular 2D solid element is described by 

3

1

( , )i i
i

h r s


 x x  with  Ti i ix yx , (2.1)

where ix  is the position vector of node i  in the global Cartesian coordinate system, and ( , )ih r s  is the 2D 

interpolation function of the standard isoparametric procedure corresponding to node i  given by  

1 1h r s   , 2h r , 3h s . (2.2)

 

The displacement of the standard 3-node triangular 2D solid element is interpolated by 

3

1

( , )i i
i

h r s


 u u  with  Ti i iu vu , (2.3)

where iu  is the displacement vector of node i  in the global Cartesian coordinate system. 

 

Employing the standard isoparametric finite element procedure, the strain field within a 3-node triangular element 

is obtained using 

( ) ( ) ( )e e eε B u  with  ( )
1 2 3

e B B B B , ( )
1 2 3[ ]e Tu u u u , (2.4)

in which ( ) [ 2 ]e T
xx yy xy  ε  , ( )eB   is the strain-displacement matrix of an element, ( )eu   is the nodal 

displacement vector of the element, and iB  is the strain-displacement matrix corresponding to node i . 
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In the edge-based strain smoothing method, smoothing domains are formed based on elements in standard FEM 

(shown in Fig. 2.1a). Let us consider two elements adjacent to the target edge painted in red in the figure. Each 

element is divided into three sub-triangles using its nodes and a center point ( 1/ 3r s  ), and each sub-triangle 

is named “cell”, see Fig. 2.1(b). In the red edge considered, the edge-based smoothing domain is defined as an 

assemblage of two neighboring cells belonging to different elements. 

 

The smoothed strain for the edge-based smoothing domain is given by 

(1) (1) (2) (2)
(1) (2)

1
( )c c

c c

A A
A A

 


ε ε ε  (2.5)

where (1)
cA  and (2)

cA  are the areas of the first and second cells neighboring the target edge, and (1)ε  and ( 2 )ε  

are the strains of the neighboring finite elements. While Fig. 2.1(a) shows a typical domain discretization in the 

standard FEM, smoothing domains are shown in Fig. 2.1(c). 

 

 

 

 

Fig. 2.1. Construction of edge-based smoothed strain fields: (a) Elements of the standard FEM. The red line 

corresponds to a target edge. (b) The elements are divided into three cells. (c) Smoothing domains and smoothed 

strains of the edge-based S-FEM. Piecewise constant strain fields are constructed for elements in (a) and for 

smoothing domains in (c).  

 

(1) (1) (2) (2)
(1) (2)

1
( )c c

c c

A A
A A

 


ε

(a) (b)

Nodes

(c)

Center points Cells

(1)ε

(2)ε

(1)
cA

(2)
cA

ε
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The edge-based strain smoothing method also has a constant strain field in the smoothing domain. It is known 

that the 3-node triangular elements subject to the edge-based strain smoothing method pass all the basic tests 

(patch, isotropy, and zero energy mode tests), and that the edge-based strain smoothing method shows the best 

performance among various S-FEM methods. Thus, the edge-based smoothing method has been extended for 

polyhedral 3D solid elements (see Ref. [15] for its formulation). 

 

 

2.1.2.  The proposed strain-smoothed triangular element 

 

With the proposed method, the strains of all neighboring elements are fully utilized in the strain smoothing process. 

For 3-node triangular elements, the strains of up to three surrounding elements can be used through element edges 

(see Fig. 2.2a) where ( )eε  is the strain of a target element and ( )kε  is the strain of the k th neighboring element. 

 

Let us define smoothed strains between the target element and neighboring elements 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )k e e k k

e k
A A

A A
 


ε ε ε  with k  1, 2, 3, (2.6)

where ( )eA  and ( )kA  are the areas of the target element and the k th neighboring element, respectively, see Fig. 

2.2(b). Note that if the k th edge of the target element corresponds to a boundary, there is no neighboring element 

for the edge and thus ( ) ( )ˆ k eε ε  is used. 

 

Smoothed strains in Eq. (2.7) can also be expressed in a matrix and vector form as 

( ) ( ) ( )ˆˆ ˆk k kε B u  with ( )
1 2 3 3

ˆ ˆ ˆ ˆ ˆk
k

   B B B B B , ( )
1 2 3 3ˆ [ ]k T

ku u u u u . (2.7)

where ( )ˆ kB   and ( )ˆ ku   are the strain-displacement matrix and the corresponding displacement vector of the 

element for the smoothed strains ( )ˆ kε . The subscript i  in ˆ
iB  and iu  denotes the neighboring node number 

as shown in Fig. 2.2(a). 

 

In a 3-node triangular element, three point Gauss integration is used to calculate the stiffness matrix. The smoothed 

strain values in Eq. (2.7) are directly assigned to the Gauss points (a, b, and c in Fig. 2.2c) of the target element 

using the following equations, as shown in Fig. 2.2(d) 

(1) (3)1
ˆ ˆ( )

2
a  ε ε ε ,  (1) (2)1

ˆ ˆ( )
2

b  ε ε ε ,  (2) (3)1
ˆ ˆ( )

2
c  ε ε ε .  (2.8)

 

Therefore, in the computation of the stiffness matrix and stress, the strains assigned in Eq. (2.9) are used directly 

at the Gauss integration points. The strain field within the element can be explicitly expressed in a form of assumed 

strain 

( ) 1
1 ( 2 )e a b cr p s p

r s p
q p q p q p

   
         

ε ε ε ε , (2.9)
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where 1 / 6p   and 4 / 6q   are the constants indicating the positions of the Gauss points. Note that the use 

of this equation is not necessary in actual computations. 

 

When the element has three neighboring elements with common element edges, the strain-displacement relation 

for the strain field can be expressed in a vector and matrix form as 

( ) ( ) ( )e e eε Β u ,  (2.10)

with 

( )
1 2 3 4 5 6

e    B B B B B B B , (2.11)

 ( )
1 2 3 4 5 6

Te u u u u u u u , (2.12)

where ( )eB   is the strain-displacement matrix of the strain-smoothed element, and ( )eu   is the corresponding 

displacement vector of the element. Note that the components of the strain-displacement matrix and the 

displacement vector vary depending on the configurations of neighboring elements. 

 

As in other strain smoothing methods, exterior (boundary) elements have relatively fewer neighboring elements 

than interior elements and thus the strain smoothing effect in the exterior region could be less than that in the 

interior region. 

 

 

Fig. 2.2. Strain-smoothed element method for the 3-node triangular element: (a) Strains of a target element and 

its neighboring elements. Node numbers are used for explaining the formulation. (b) Strain smoothing between 

the target and each neighboring element. (c) Three Gauss integration points in the natural coordinate system ( , )r s . 

(d) Construction of the smoothed strain field through Gauss points. 

(a) (b)

)(eε
)1(ε )2(ε

)3(ε
(1)ε̂ (2)ε̂ (3)ε̂

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )k e e k k

e k
A A

A A
 


ε

c(p,q)

(1) (3)1
( )

2
a  ε

(1) (2)1
( )

2
b  ε

aε

(2) (3)1
( )

2
c  ε

cε

r

s

x

y
bε

a(p,p)

(c) (d)

b(q,p)

p=1/6

q=4/6

2

31

4 5

6

1
3

2

ε̂ε̂

ε̂ ε̂

ε̂ε̂
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 The strain-smoothed 4-node tetrahedral 3D solid finite element 

 

The geometry of the standard 4-node tetrahedral 3D solid element is described by 

4

1

( , , )i i
i

h r s t


 x x  with  Ti i i ix y zx , (2.13)

where ix  is the position vector of node i  in the global Cartesian coordinate system, and ( , , )ih r s t  is the 3D 

interpolation function of the standard isoparametric procedure corresponding to node i  given by 

1 1h r s t    , 2h r , 3h s , 4h t . (2.14)

 

The displacement of the standard 4-node tetrahedral 3D solid element is given by  

4

1

( , , )i i
i

h r s t


 u u  with  Ti i i iu v wu ,  (2.15)

where iu  is the displacement vector of node i  in the global Cartesian coordinate system. 

 

The strain-displacement relation of the standard tetrahedral element is 

( ) ( ) ( )e e eε Β u , (2.16)

with 

 ( )
1 2 3 4

e Β B B B B , ( )
1 2 3 4[ ]e Tu u u u u ,   (2.17)

where ( ) [ 2 2 2 ]e T
xx yy zz xy yz zx     ε  , ( )eΒ   is the strain-displacement matrix of an element, and 

( )eu  is the displacement vector of the element. 

 

In a tetrahedral element, configurations of neighboring elements through six element edges can differ. Smoothed 

strains between the target element and neighboring elements through the edges are calculated using the following 

equations 

( ) ( ) ( ) ( ) ( )

( ) ( ) 1

1

1
ˆ ( )

k

k

n
k e e k k

i in
e k i

i
i

V V

V V 



 





ε ε ε  with k  1, 2, 3, 4, 5, 6,  
(2.18)

where kn  is the number of elements neighboring the k th edge of the target element, ( )eε  and ( )k
iε  are the 

strains of the target element and the i th element neighboring the k th edge of the target element, respectively. 

Here, ( )eV  and ( )k
iV  are the volumes of the target element and the i th element neighboring the k th edge, 

respectively, see Fig. 2.3(a). Note that if the k th edge of the target element is located alone along a boundary 

without neighboring elements, 0kn   and thus ( ) ( )ˆ k eε ε . 
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The stiffness matrix of the tetrahedral element is calculated using the four point Gauss integration, see the positions 

of the Gauss points a, b, c, and d in Fig. 2.3(b). The strains at the Gauss points are directly assigned using the 

following equations, as shown in Fig. 2.3(c) 

(1) (2) (3) ( )1
ˆ ˆ ˆ ˆ( )

5
a e    ε ε ε ε ε ε , (1) (4) (6) ( )1

ˆ ˆ ˆ ˆ( )
5

b e    ε ε ε ε ε ε , 

(2) (4) (5) ( )1
ˆ ˆ ˆ ˆ( )

5
c e    ε ε ε ε ε ε , (3) (5) (6) ( )1

ˆ ˆ ˆ ˆ( )
5

d e    ε ε ε ε ε ε  with 
6

( )

1

1
ˆ ˆ

6
k

k

 ε ε . 

 

(2.19)

 

 

 

Fig. 2.3. Strain-smoothed element method for the 4-node tetrahedral element: (a) Strain smoothing between the 

target and neighboring elements for the k th edge of the target element marked with the red dotted line. There are 

three neighboring elements through the edge ( 3kn  ). (b) Four Gauss integration points in the natural coordinate 

system ( , , )r s t . (c) Construction of the smoothed strain field through Gauss points. Edge numbers are colored in 

red. 
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The strain field can be represented by 

( ) 1
1 ( 3 )e a b c dr p s p t p

r s t p
q p q p q p q p

    
            

ε ε ε ε ε ,  (2.20)

with (5 5) / 20p     and (5 3 5) / 20q    . Note that this assumed strain field is not used in actual 

computations. 

 

Strain smoothing methods do not require additional DOFs, but some additional processes are necessary to perform 

strain smoothing. Several studies have validated the efficiency of the strain smoothing methods by evaluating 

their computational cost and accuracy. It has been reported that the edge-based strain smoothing method is the 

most efficient strain smoothing method so far [10,15]. The strain-smoothed element method proposed in this study 

shows computational cost similar to that of the edge-based strain smoothing method. 

 

 

 Basic numerical tests 

 

For the proposed triangular and tetrahedral elements, three basic numerical tests: the isotropy, patch and zero 

energy mode tests are performed [1-3]. 

 

The isotropy test is to check whether the finite elements give the same results regardless of the node numbering 

sequences used. The proposed triangular and tetrahedral elements pass the isotropy test. 

 

In the patch tests, the minimum number of degrees of freedom is constrained to prevent rigid body motions, and 

proper loadings are applied to produce a constant stress field. To satisfy the patch tests, a constant stress value 

should be obtained at every point on elements. Normal and shear patch tests are performed using the meshes 

shown in Fig. 2.4. Stress values calculated (using 16 significant decimal digits of precision) are extracted from all 

Gauss integration points and compared with the analytical solutions. In the proposed triangular and tetrahedral 

elements, the maximum relative error in the normal and shear patch tests are on the order of 1410  to 1510 . 

Therefore, the proposed elements pass the patch tests with sufficient accuracy. 

 

In the zero energy mode test, the number of zero eigenvalues of the stiffness matrix of unsupported smoothed 

elements is counted. The 2D and 3D solid elements should have three and six zero eigenvalues, respectively, 

corresponding to the physical rigid body modes. The proposed elements pass the zero energy mode test. 
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Fig. 2.4. Finite element meshes used for the patch tests: (a) 2D patch test. Each quadrilateral element is divided 

into two triangular elements. (b) 3D patch test. Each hexahedral element is divided into six tetrahedral elements. 

Only the splits in the hexahedral element located at the bottom are depicted. 

 

 

 Convergence studies 

 

In this section, we present the performance of the strain-smoothed elements using three 2D numerical examples 

(a block problem, Cook’s skew beam problem, and an infinite plate with a central hole problem), and two 3D 

numerical examples (a cubic cantilever problem and Lame problem). 

 

The performance of the proposed 3-node triangular element is compared with those of the standard linear 

triangular finite element and edge-based smoothed finite element [10]. The performance of the proposed 4-node 

tetrahedral element is compared with those of the standard linear tetrahedral finite element, edge-based, and face-

based smoothed finite elements [15,17]. The edge-based and face-based smoothed elements are denoted by ES-

FEM and FS-FEM, respectively.  

 

In some examples, we compare the performance of the proposed triangular and tetrahedral elements with those of 

the standard quadratic 6-node triangular and 10-node tetrahedral elements, respectively. On the convergence 

curves, the element size is defined as 1/h N  for linear elements and 1/ 2h N  for quadratic elements. This 

allows comparison of linear and quadratic elements with the same DOFs. 

 

We compare the displacements and stresses at a specific location. We also use energy norm. The relative error in 

the energy norm is given by 

2 2

2
2

ref h ee

e

ref e

E



u u

u
 with 

2 T

e Ω
dΩ u ε σ ,  (2.21)

where the subscripts “ref” and “h” denote the reference and finite element solutions, respectively. 

(a) (b)
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For the relative error in the energy norm, the optimal convergence behavior for the linear elements is estimated to 

be 

2 2
eE ch ,  (2.22)

in which c  is a constant and h  denotes the element size [1]. 

 

 

2.4.1.  Block problem 

 

Here, we solve the 2D block problem shown in Fig. 2.5(a). The block is subjected to a distributed compression 

force of total magnitude 1P   at the right half of the top edge, and the bottom edge of the block is clamped. 

Plane stress conditions are assumed with 73 10E    and 0.3  , and density is given as 71 10   . We use 

structured meshes of N N  elements with N  2, 4, 8 and 16 (shown in Fig. 2.5b), and unstructured meshes 

with the total number of elements eN  6, 32, 128, 500 (Fig. 2.5c). The unstructured meshes are acquired through 

the commercial software ANSYS. The equivalent values of N   in the unstructured meshes are calculated by 

/ 2eN N .  

 

Table 2.1 gives the predicted vertical displacement at point A   for the structured mesh. Fig. 2.6 gives the 

convergence curves obtained using the energy norm for both structured and unstructured meshes. The reference 

solutions are obtained using a 32 32  structured mesh of 9-node quadrilateral solid elements. The use of the 

proposed element gives much more accurate solutions than when using the standard and edge-based smoothed 

elements. 

 

In addition, free vibration analysis is performed to compare the performance of the finite elements considered. 

The generalized eigenvalue problem is defined as 

i i iKφ Mφ  with i  1, 2, ... , n ,  (2.23)

where K   and M   are the global stiffness and consistent mass matrices, respectively, i   and iφ   are the 

eigenvalue and eigenvector corresponding to the i th mode, respectively, and n  denotes the number of DOFs in 

the finite element model. Table 2.2 presents the obtained eigenvalues corresponding to the 1st – 5th modes for the 

structured mesh with 4N  . The proposed element performs very well. 

 

 

2.4.2.  Cook’s skew beam problem  

 

We next consider Cook’s skew beam problem [3], as shown in Fig. 2.7. The structure is subjected to distributed 

shearing force of total magnitude 1P   at the right edge, and the left edge of the structure is clamped. The plane 

stress conditions with 73 10E     and 0.3    are considered. The solutions are obtained with N N  
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element meshes ( N  2, 4, 8, and 16). 

 

Fig. 2.8 shows the distribution of the calculated strain component 2 xy . The proposed triangular element shows 

the strain field most similar to the reference distribution. Table 2.3 gives the von Mises stress at point A, shown 

in Fig. 2.7. The stress values are obtained by averaging stresses in the domains (elements in the proposed method) 

to which the point belongs. Fig. 2.9 shows the convergence curves obtained using the energy norm. A 32 32  

element mesh of 9-node 2D solid elements is used for the reference solutions. The proposed element shows much 

better convergence behavior than do the standard linear element and edge-based smoothed element. Interestingly, 

the convergence performance of the proposed (linear) element is comparable to that of the standard quadratic 

element. 

 

 

2.4.3.  Infinite plate with a central hole problem 

 

The last 2D example is the problem of an infinite plate with a central hole [4]. The plate is subjected to a far field 

traction 1p   in the x -direction as shown in Fig. 2.10(a). The plane strain conditions are considered with 

73 10E    and 0.3  . Due to its symmetry, only one-quarter of the plate is modeled. Symmetric boundary 

conditions are imposed: 0xu   along AC  and 0yu   along BD , and the traction boundary conditions are 

imposed along CE  and DE  based on the following analytical solutions [33]: 

2 4

11 2 4

3 3
( , ) cos2 cos4 cos4

2 2

pa pa
r p

r r
          

,   (2.24)

2 4

22 2 4

1 3
( , ) cos2 cos4 cos4

2 2

pa pa
r

r r
          

,  (2.25)

2 4

12 2 4

1 3
( , ) sin 2 sin 4 sin 4

2 2

pa pa
r

r r
          

,  (2.26)

where r  is the distance from the origin and   is the angle from the positive x -axis to the counterclockwise 

direction. The geometry is divided into two parts and meshed for each part using N N  elements with N  2, 

4, 8 and 16, see Fig. 2.10(b). 

 

Table 2.4 and Fig. 2.11 show the horizontal displacement at point B  and the convergence curves obtained using 

the energy norm, respectively. To obtain the reference solution, a mesh of 9-node 2D solid elements is used with 

N  32. Compared with standard and edge-based smoothed elements, the proposed element shows significantly 

improved accuracy. 
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2.4.4.  Cubic cantilever problem 

 

Here, we solve the 3D cubic cantilever problem [34] shown in Fig. 2.12(a). The cubic cantilever is subjected to a 

uniform pressure 1p   on its upper surface, and the outer surface on the xz -plane is clamped. The material 

properties are 1E   , 0.25   , and 1   . We use two types of meshes: structured meshes of N N N   

elements with N  2, 4, and 8 (see Fig. 2.12b), and unstructured meshes of eN  63, 352, and 2973 (see Fig. 

2.12c). The equivalent values of N  in the unstructured meshes are obtained using 3 / 6eN N . 

 

Table 2.5 gives the calculated eigenvalues corresponding to the 1st – 5th modes for the structured mesh with 4N  . 

Fig. 2.13 shows the convergence curves obtained using the energy norm for the structured and unstructured 

meshes. A structured 16 16 16    mesh of 27-node hexahedral solid finite elements is used for the reference 

solutions. The use of the proposed tetrahedral element gives better solutions than when using the standard linear 

elements and when using either face-based smoothed or edge-based smoothed elements. It is also observed that 

the performance of the proposed (linear) element is comparable to that of the standard quadratic element. 

 

 

2.4.5.  Lame problem 

 

We last consider the 3D Lame problem [33] shown in Fig. 2.14(a). A hollow sphere is subjected to internal pressure 

100p  , and the given material properties are 31 10E    and 0.3  . Utilizing the symmetry condition, only 

one-eighth of the structure is considered. It is divided into three parts, each of which is meshed using N N N   

elements with N  2, 4, and 8 (see Fig. 2.14b). The symmetric boundary conditions imposed are 0xu   along 

ACFE , 0yu   along BDFE , and 0zu   along CABD . 

 

Table 2.6 shows the von-Mises stress at point G , obtained by averaging stresses in the domains (elements in the 

proposed method) to which the point belongs. Fig. 2.15 presents the convergence curves obtained using the energy 

norm. A mesh of 27-node hexahedral solid finite elements with 16N   is used for the reference solution. It is 

again observed that the proposed element shows significantly improved convergence behavior compared to the 

standard linear, face-based smoothed, and edge-based smoothed elements. 
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Table 2.1. Vertical displacement ( 810 ) at point A  in the block problem. The values in parentheses indicate 

relative errors obtained by / 100ref h refu u u  . 

N Standard FEM ES-FEM SSE (proposed) 

2 -5.7442 (26.71) -7.3025 (6.82) -8.1969 (4.59) 

4 -6.9824 (10.91) -7.7441 (1.19) -7.8770 (0.51) 

8 -7.5945 (3.10) -7.8176 (0.25) -7.8431 (0.07) 

  Reference solution: -7.8372   

 

 

Table 2.2. Eigenvalues corresponding to the 1st – 5th modes for the 2D block problem when the structured mesh 

with 4N   is adopted. 

Mode Reference Standard FEM ES-FEM SSE (proposed) 

1 0.3249 0.3828 0.3465 0.3327 

2 1.8713 1.9249 1.8934 1.8759 

3 2.3552 2.8456 2.4728 2.3634 

4 5.9470 7.8848 6.4520 5.7638 

5 6.9164 8.5072 7.5547 7.0044 

 

 

Table 2.3. von-Mises stress at point A  in Cook’s skew beam problem. The values in parentheses indicate relative 

errors obtained by / 100ref h ref    . 

N Standard FEM ES-FEM SSE (proposed) 

2 0.0740 (68.77) 0.1009 (57.43) 0.1209 (48.99) 

4 0.1123 (52.63) 0.1889 (20.33) 0.2105 (11.19) 

8 0.1685 (28.90) 0.2228 (6.03) 0.2290 (3.40) 

  Reference solution: 0.2371   

 

 

Table 2.4. Horizontal displacement ( 810 ) at point B  in the infinite plate with central hole problem. The values 

in parentheses indicate relative errors obtained by / 100ref h refu u u  . 

N Standard FEM ES-FEM SSE (proposed) 

2 6.0622 (33.38) 7.5364 (17.18) 8.3902 (7.80) 

4 7.3026 (19.75) 8.2955 (8.84) 8.7312 (4.05) 

8 8.2250 (9.62) 8.7763 (3.56) 8.9807 (1.31) 

  Analytical solution: 9.1000   
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Table 2.5. Eigenvalues corresponding to the 1st – 5th modes for the 3D cubic cantilever problem when the 

structured mesh with 4N   is adopted. 

Mode Reference Standard FEM FS-FEM ES-FEM SSE (proposed) 

1 0.4484 0.5137 0.4946 0.4633 0.4509 

2 0.4484 0.5471 0.5211 0.4791 0.4668 

3 0.8563 1.1884 1.0718 0.9147 0.8791 

4 2.5216 2.6204 2.5970 2.5527 2.5328 

5 3.1823 3.7323 3.5445 3.2582 3.1645 

 

 

Table 2.6. von-Mises stress at point G  in Lame problem. The values in parentheses indicate relative errors 

obtained by / 100ref h ref    . 

N Standard FEM FS-FEM ES-FEM SSE (proposed) 

2 106.2858 (38.00) 125.3865 (26.86) 150.2877 (12.33) 166.7563 (2.73) 

4 132.7286 (22.58) 143.6493 (16.20) 157.3288 (8.22) 166.3370 (2.97) 

8 149.4181 (12.84) 155.2355 (9.45) 162.2212 (5.37) 166.6823 (2.77) 

16 159.4205 (7.00) 162.5707 (5.17) 167.5228 (2.28) 169.5621 (1.09) 

  Analytical solution: 171.4286 
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Fig. 2.5. 2D block problem: (a) Problem description ( 73 10E    and 0.3  ). (b) Structured mesh used with 

4N  . (c) Unstructured mesh used with 32eN  . 

 

 

 

 

 

Fig. 2.6. Convergence curves for the 2D block problem. The bold line represents the optimal convergence rate. 
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Fig. 2.7. Cook's skew beam problem ( 4 4  mesh, 73 10E    and 0.3  ). 

 

 

 

Fig. 2.8. Strain distributions ( 2 xy ) calculated for Cook’s skew beam problem: (a) Standard 3-node triangular 

element ( 4N  ), (b) Edge-based smoothed element ( 4N  ), (c) Strain-smoothed triangular element ( 4N  ), (d) 

Standard 9-node quadrilateral element ( 32N  ).    

x
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16
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Fig. 2.9. Convergence curves for Cook’s skew beam problem: The bold line represents the optimal convergence 

rate for the linear elements. The element size is 1/h N  for the linear elements and 1/ 2h N  for the quadratic 

element. 
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Fig. 2.10. Infinite plate with central hole problem: (a) Problem description ( 73 10E    and 0.3  ). (b) Mesh 

used with 4N   for the shaded domain in (a). 

 

 

 

 

 

Fig. 2.11. Convergence curves for the infinite plate with central hole problem. The bold line represents the optimal 

convergence rate. 
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Fig. 2.12. Cubic cantilever problem: (a) Problem description ( 1E   and 0.25  ). (b) Structured mesh with 

4N  . (c) Unstructured mesh with 352eN  . 

 

 

 

 

 

Fig. 2.13. Convergence curves for the cubic cantilever problem: The bold line represents the optimal convergence 

rate for the linear elements. The element size is 1/h N  for the linear elements and 1/ 2h N  for the quadratic 

element. 
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Fig. 2.14. Lame problem: (a) Problem description ( 31 10E    and 0.3  ). (b) Mesh used with 4N  .  

 

 

 

 

 

Fig. 2.15. Convergence curves for Lame problem: The bold line represents the optimal convergence rate for the 

linear elements. The element size is 1/h N  for the linear elements and 1/ 2h N  for the quadratic element. 
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Chapter 3.  The strain-smoothed 4-node quadrilateral 2D solid finite 

elements 

 

In this chapter, the SSE method is extended to a 4-node quadrilateral finite element and thus a strain-smoothed 4-

node quadrilateral finite element is developed. The piecewise linear shape functions are adopted instead of the 

standard bilinear shape functions. The proposed strain-smoothed element has a bilinear strain field where the 

strains of neighboring elements are integrated within an element formulation. 

 

We present the formulation of the strain-smoothed 4-node quadrilateral element including geometry and 

displacement interpolations, strain smoothing, strain-displacement relation and stiffness matrix. 

 

 

 Formulation of the strain-smoothed quadrilateral element 

 

3.1.1.  Geometry and displacement interpolations 

 

Unlike the standard 4-node quadrilateral element, the element domain is subdivided into four non-overlapping 

triangular domains (from T1 to T4) based on its nodes and center point ( 0r s  ) as shown in Fig. 3.1(a). 

 

The piecewise linear shape functions ( , )ih r s  are defined for each sub-triangle [31] 

1 (1 2 ) / 4h r s   , 2 (1 2 ) / 4h r s   , 3 (1 ) / 4h s  , 4 (1 ) / 4h s    on T1, (3.1) 

1 (1 ) / 4h r  , 2 (1 2 ) / 4h r s   , 3 (1 2 ) / 4h r s   , 4 (1 ) / 4h r    on T2, (3.2) 

1 (1 ) / 4h s  , 2 (1 ) / 4h s  , 3 (1 2 ) / 4h r s   , 4 (1 2 ) / 4h r s     on T3, (3.3) 

1 (1 2 ) / 4h r s   , 2 (1 ) / 4h r  , 3 (1 ) / 4h r  , 4 (1 2 ) / 4h r s     on T4. (3.4) 

 

Employing the shape functions in Eqs. (3.1)-(3.4), the geometry of the 4-node element is interpolated by 

4

1

( , )i i
i

h r s


x x  with  Ti i ix yx ,  (3.5) 

where ix  is the position vector of node i  in the global Cartesian coordinate system as shown in Fig. 3.1(b). 

 

The corresponding displacement interpolation is given by 

4

1

( , )i i
i

h r s


 u u  with  Ti i iu vu ,  (3.6) 

in which iu  is the displacement vector of node i . 
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Fig. 3.2 illustrates the piecewise linear shape function 3h  in Eqs. (3.1)-(3.4) compared with the standard bilinear 

shape function, 3
ˆ (1 )(1 ) / 4h r s    [31,32]. 

 

 

 

Fig. 3.1. A 4-node quadrilateral element in (a) the natural coordinate system and (b) the global Cartesian coordinate 

system. A triangular subdivision of the quadrilateral element is depicted in (a). 

 

 

. 

 

Fig. 3.2. Comparison of the standard bilinear and piecewise linear shape functions corresponding to node 3 along 

element edges and a diagonal r s . The two shape functions show different variations along the diagonal. 
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3.1.2.  Strain smoothing 

 

Let us consider a 4-node quadrilateral element m in a finite element mesh as shown in Fig. 3.3. The strain field 

within the target element m can be calculated by employing the standard isoparametric finite element procedure 

as follows [1] 

( ) ( )m m ε u ,  (3.7) 

where ( ) [ 2 ]m T
xx yy xy  ε ,   is the gradient operator and ( )mu  is the nodal displacement vector of the 

element. 

 

Substituting Eqs. (3.1)-(3.6) into Eq. (3.7), the strain field in the k th sub-triangle of the target element m  is 

defined by 

( ) ( ) ( )k m k m mε B u  with k  1, 2, 3, 4,  (3.8) 

( )
1 2 3 4

k m k k k k   B B B B B ,  (3.9) 

( )
1 2 3 4[ ]m Tu u u u u ,  (3.10)

where ( )k mB   is the strain-displacement relation matrix of the k  th sub-triangle and k
iB   is the strain-

displacement matrix corresponding to node i . 

 

In the strain-smoothed element method, strains of neighboring elements are utilized to construct the strain field 

of the target element. The 4-node quadrilateral element can have up to four neighboring elements through its four 

edges as shown in Fig. 3.3. The smoothed strain between the k th sub-triangle of the target element m and its 

neighboring sub-triangle (belonging to the neighboring element) is defined by 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )k m k m k k

km k
k

A A
A A

 


ε ε ε  with k  1, 2, 3, 4,  (3.11)

where ( )m
kA   and ( )kA   are the areas of the k  th sub-triangle of the target element and its neighboring sub-

triangle, respectively, seen in Fig. 3.4. If the k th sub-triangle is located on boundary, ( ) ( )ˆ k k mε ε  is used [22]. 

 

As in the standard 4-node quadrilateral element, the 2 2  Gauss quadrature is adopted to calculate the stiffness 

matrix. As shown in Fig. 3.5, the smoothed strain values in Eq. (3.11) are simply assigned to the four integration 

points of the target element as follows  

( ) (4) ( ) (1)
1 4 1( ) ( )

4 1

1
ˆ ˆ( )m m

m m
A A

A A
 


ε ε ε   for Gauss point 1, (3.12)

( ) (1) ( ) (2)
2 1 2( ) ( )

1 2

1
ˆ ˆ( )m m

m m
A A

A A
 


ε ε ε   for Gauss point 2, (3.13)

( ) (2) ( ) (3)
3 2 3( ) ( )

2 3

1
ˆ ˆ( )m m

m m
A A

A A
 


ε ε ε   for Gauss point 3, (3.14)
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( ) (3) ( ) (4)
4 3 4( ) ( )

3 4

1
ˆ ˆ( )m m

m m
A A

A A
 


ε ε ε   for Gauss point 4, (3.15)

in which jε  is the strain value assigned to the Gauss point j . 

 

It is interesting to note that the bilinear strain field of the target element m  is represented in a form of assumed 

strain as follows 

4
( )

1

( , )m
i i

i

h r s


ε ε  with 
3 1 1

( , )
4 3 3

i i ih r s r r       
  

, (3.16)

and 

   1 2 3 4 1 1 1 1       , (3.17)

   1 2 3 4 1 1 1 1       . (3.18)

 

Note that Eq. (3.16) is not utilized in the actual computation of the stiffness matrix and the assigned strains in Eqs. 

(3.12)-(3.15) are directly used in the 2 2  Gauss integration. The Jacobian determinant is constant for each sub-

triangle and the value at a Gauss point is obtained by averaging the values of two adjacent sub-triangles. For 

example, the average of the determinants in sub-triangles 1 and 4 is assigned to Gauss point 1, see Fig. 3.5. 

 

 

 

 

Fig. 3.3. Target element in a mesh and its four neighboring elements connected through element edges. 
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Fig. 3.4. Strain smoothing through the edges of the target element. Four colored sub-triangles belong to four 

neighboring elements, respectively. 

 

 

 

 

Fig. 3.5. Smoothed strains assigned to four Gauss points. 
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3.1.3.  Strain-displacement relation and stiffness matrix 

 

In vector and matrix forms, for the target element m, the relation between the nodal displacement vector and the 

smoothed strain field is expressed as 

( ) ( ) ( )m m mε Β u  (3.19)

with 

( )
1 2 3 4 5 12

m      B B B B B B B , (3.20)

 ( )
1 2 3 4 5 12

m  u u u u u u u , (3.21)

where ( )mB  is the smoothed strain-displacement matrix and ( )mu  is the corresponding displacement vector of 

the element. The number of components in the strain-displacement relation matrix and the nodal displacement 

vector is determined by the total number of nodes in neighboring elements through element edges as shown in 

Fig. 3.4. 

 

Finally, the stiffness matrix of the strain-smoothed 4-node quadrilateral finite element is obtained as 

( )

( ) ( ) ( ) ( ) ( )
m

m m T m m m

V
dV K B C B , (3.22)

in which ( )mV  is the element volume and ( )mC  is the material law matrix for the element m. 

 

 

 Basic numerical tests 

 

Three basic numerical tests (the isotropic element, zero energy mode and patch tests) [1] are performed for the 

proposed strain-smoothed 4-node quadrilateral element.  

 

The finite elements are required to be spatially isotropic, which means that the same response is obtained 

regardless of the element node numbering sequences. The proposed element satisfies this requirement. 

 

A single 2D solid finite element with no support should have only three zero energy modes corresponding to the 

rigid body modes. Through the zero energy mode test, it is verified that the proposed element correctly possesses 

three zero energy modes. 

 

The normal and shear patch tests are conducted using the mesh shown in Fig. 3.6. We can say that the patch tests 

are passed if a constant stress field is correctly formed within the elements under the minimum number of 

constraints in nodal DOFs to prevent rigid body motions. The proposed element passes the patch tests. 
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Fig. 3.6. Mesh used for the patch tests. 

 

 

 Numerical examples 

 

In this section, we demonstrate the performance of the strain-smoothed 4-node quadrilateral element by solving 

various numerical problems: Cook’s skew beam, a block under complex forces, an infinite plate with a central 

hole, an L-shaped structure, and a dam problem. 

 

The standard 4-node quadrilateral element (Q4), the edge-based smoothed 4-node quadrilateral element (ES-Q4) 

[12] and the incompatible modes 4-node quadrilateral element (ICM-Q4) [35-37] are considered for the 

performance comparison with the proposed 4-node element (SSE-Q4). It is well known that the edge-based S-

FEM performs better than cell and node-based S-FEMs. 

 

For the convergence studies, we evaluate displacements at specific locations, von Mises stress distributions and 

energy norms. The following relative error 2
eE  in an energy norm 

e
u is utilized 

2 2

2
2

ref h ee

e

ref e

E



u u

u
  with 

2 T

e Ω
dΩ u ε σ , (3.23)

where the reference and finite element solutions are denoted by the subscripts ‘ref’ and ‘h’, respectively. 

 

The optimal convergence behavior of linear elements for the relative error is expected to be 

2 2
eE ch , (3.24)

in which c  is a constant and h  represents the element size [1]. 
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To create distorted meshes for finite element models, we construct them for a square by repositioning the interior 

nodes of regular meshes randomly as follows:  

xx x h   , (3.25)

yy y h   , (3.26)

where ( , )x y  and ( , )x y   are the nodal coordinates in the regular and distorted meshes, respectively, xh  and 

yh   are the regular element sizes in the x  - and y  -directions, respectively, and , [0.3,0.4]     and   

(having a random value of 1 or -1) are random constants, see Fig. 3.7. The distorted meshes in the square domain 

in Fig. 3.7 are linearly mapped to obtain distorted meshes in domains of different shapes. 

 

The reference solutions are either analytical solutions or well-converged numerical solutions calculated using 9-

node quadrilateral finite elements. 

 

 

 

 

Fig. 3.7. Regular and distorted meshes when 4.N   
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3.3.1.  Cook’s skew beam 

 

We solve the well-known Cook’s skew beam problem as shown in Fig. 3.8 [3]. The left edge of the beam structure 

is clamped, and a distributed shearing force 1/16Sf   (force per length) is acting on the right edge. The plane 

stress condition is considered with Young’s modulus 73 10E    and Poisson’s ratio 0.3  . The solutions are 

obtained for both regular and distorted N N  meshes ( N  2, 4, 8 and 16). The distorted meshes used for the 

problem are depicted in Fig. 3.9. 

 

Convergences in the normalized horizontal and vertical displacements at point A  are depicted in Figs. 3.10 and 

3.11, respectively. The relative errors in the horizontal and vertical displacements are given in Tables 3.1 and 3.2, 

respectively. The convergence curves obtained using the energy norm in Eq. (3.23) are presented in Fig. 3.12. A 

256 256  mesh of 9-node quadrilateral elements is used to calculate the reference solutions. The proposed strain-

smoothed element shows the best convergence behavior among the compared elements in both regular and 

distorted meshes. 

 

In addition, we compare the computational efficiency of the considered elements by plotting the relations between 

computation times versus solution accuracies (relative errors in the energy norm) as shown in Fig. 3.13. The 

regular meshes with N  32, 64 and 128 are used for the assessment. Computations are performed in a personal 

computer (PC) with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM. The compressed sparse row format is 

used for storing matrices and Intel MKL PARDISO is used for solving a linear system of equations [38]. 

Computation times taken from obtaining the stiffness matrices to solving the linear equations are measured. At 

similar accuracy levels, the proposed element gives less computation times compared with other elements. That 

is, the proposed element provides the best computational efficiency among the elements considered. 

 

 

3.3.2.  Block under complex forces 

 

A square block is subjected to a compressive body force 2( 1)Bf y   (force per area) and an eccentric tensile 

traction 3.2Sf   (force per length) in the y -direction as shown in Fig. 3.14. The block is supported along its 

bottom, and the plane stress condition is employed with Young’s modulus 73 10E     and Poisson’s ratio 

0.25  . We use both regular and distorted meshes of N N  elements ( N  2, 4, 8 and 16) to obtain solutions. 

The configurations of the distorted meshes used for the problem are given in Fig. 3.15. 

 

The von Mises stress distributions calculated for the entire model and along the line 1x     (left edge) are 

depicted in Figs. 3.16 and 3.17, respectively, for the regular meshes. The proposed strain-smoothed element 

provides the most converged stress fields to the reference for all the meshes considered. In Fig. 3.18, the 

convergence curves obtained using the energy norm in Eq. (3.23) are presented. The reference solutions are 
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obtained using a 64 64   mesh of 9-node quadrilateral elements. The proposed element gives much better 

convergence behaviors compared with the standard, edge-based smoothed and incompatible modes 4-node 

elements, especially for the distorted meshes. 

 

 

3.3.3.  Infinite plate with a central hole  

 

The problem of an infinite plate with a central hole of radius 1a   shown in Fig. 3.19(a) is solved [4,22]. A far 

field traction 1p   acts only in the x -direction on the infinite plate. The plane strain condition is adopted with 

73 10E    and 0.3  . Only one-quarter of the plate is modeled due to symmetry as shown in Fig. 3.19(b), and 

the corresponding boundary conditions are imposed as: 0u   along AC  and 0v   along BD . 

 

The traction boundary conditions are given along CE  and DE  using the following analytical solutions [33]: 

2 4

2 4

3 3
( , ) cos2 cos4 cos4

2 2xx

a p a p
r p

r r
          

, (3.27)

2 4

2 4

1 3
( , ) cos2 cos4 cos4

2 2yy

a p a p
r

r r
          

, (3.28)

2 4

2 4

1 3
( , ) sin 2 sin 4 sin 4

2 2xy

a p a p
r

r r
          

, (3.29)

where r  and   are the distance from the origin ( 0x y  ) and the counterclockwise angle from the positive 

x -axis, respectively. 

 

The modeled region of dimensions 5 5  is divided into two areas, and each area is meshed with N N  finite 

elements ( N  2, 4, 8 and 16) as shown in Fig. 3.19(b). 

 

Table 3.3 and Fig. 3.20 show relative errors in the horizontal displacement at point B  and the convergence 

curves obtained using the energy norm in Eq. (3.23), respectively. A 64 64   mesh of 9-node quadrilateral 

elements is used to obtain the reference solutions. Compared with the standard, edge-based smoothed and 

incompatible modes quadrilateral elements, the proposed element shows a significantly improved solution 

accuracy. 

 

 

3.3.4.  L-shaped structure 

 

An L-shaped structure under a distributed load 1Sf   (force per length) is considered as shown in Fig. 3.21 [39]. 

The plane stress condition is used with material properties 1E   and 0.22  , and the boundary conditions 

are imposed as: 0v   along AB  and 0u   along CD . The structure is divided into three square parts, and 



32 

 

each part is modeled with N N  element meshes ( N  2, 4, 8 and 16) to obtain the solutions. 

 

Table 3.4 and Fig. 3.22 give relative errors in the horizontal displacement at point B  and convergence curves 

calculated using the energy norm in Eq. (3.23), respectively. The reference solutions are calculated using a 

64 64  mesh of 9-node quadrilateral elements. The strain-smoothed quadrilateral element produces much more 

accurate solutions than using the standard, edge-based smoothed and incompatible modes quadrilateral elements. 

 

 

3.3.5.  Dam problem 

 

Finally, we consider the dam problem as shown in Fig. 3.23. The structure is subjected to a varying surface force 

along its left edge given by  

1/5

5 0 5

( 5) 5 10S

y y
f

y y

  
    

. (3.30)

 

The bottom of the structure is clamped. The plane strain condition is employed and the material properties are 

given as 103 10E     and 0.2   . The finite element models are constructed using meshes of 2N N  

elements with N  2, 4, 8 and 16. 

 

Figs. 3.24 and 3.25 present distributions of the strain component xx  and the convergence curves obtained using 

the energy norm in Eq. (3.23), respectively. A mesh of 9-node quadrilateral elements with 64N   is used for 

calculating the reference solutions. It is again observed that the strain-smoothed 4-node element gives highly 

accurate solutions compared with the other elements considered. 

 

 

Table 3.1. Relative errors in the horizontal displacement ( / 100ref h refu u u  ) at point A  in Cook’s skew beam. 

 N Q4 ES-Q4 ICM-Q4 SSE-Q4 

Regular 
mesh 

2 61.421 49.332 48.012 24.177 

4 25.730 11.832 11.242 1.210 

8 8.058 2.941 3.150 0.042 

16 2.378 1.018 0.901 0.076 

Distorted 
mesh 

2 50.316 47.323 44.635 23.230 

4 23.050 12.964 6.079 1.845 

8 7.833 3.694 4.680 0.173 

16 1.866 1.114 0.776 0.223 

Reference solution: 71.535 10refu     

 

 



33 

 

Table 3.2. Relative errors in the vertical displacement ( / 100ref h refv v v  ) at point A  in Cook’s skew beam. 

 N Q4 ES-Q4 ICM-Q4 SSE-Q4 

Regular 
mesh 

2 50.095 42.784 13.102 16.987 

4 22.986 10.724 3.612 0.627 

8 7.705 2.233 1.225 0.012 

16 2.337 0.709 0.447 0.114 

Distorted 
mesh 

2 52.121 50.214 28.423 30.899 

4 31.221 19.855 8.983 4.957 

8 9.784 4.083 2.228 0.603 

16 2.992 1.205 0.754 0.385 

Reference solution: 77.721 10refv    

 

 

 

Table 3.3. Relative errors in the horizontal displacement ( / 100ref h refu u u  ) at point B  in the infinite plate 

with a central hole. 

N Q4 ES-Q4 ICM-Q4 SSE-Q4 

2 18.965 25.120 11.922 9.334 

4 10.568 11.485 7.176 3.240 

8 4.313 3.892 3.170 0.413 

16 1.339 0.859 1.009 0.371 

Analytical solution: 89.100 10refu    

 

 

 

Table 3.4. Relative errors in the horizontal displacement ( / 100ref h refu u u   ) at point B   in the L-shaped 

structure. 

N Q4 ES-Q4 ICM-Q4 SSE-Q4 

2 15.816  15.668  9.465  0.872  

4 5.517  4.287  3.358  1.485  

8 1.874  1.251  1.206  0.530  

16 0.657  0.415  0.448  0.165  

Reference solution: 24.539 10refu     
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Fig. 3.8. Cook's skew beam ( 73 10E   , 0.3   and regular 4 4  mesh). 

 

 

 

 

 

 

Fig. 3.9. Distorted meshes used for Cook's skew beam. 
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Fig. 3.10. Normalized horizontal displacements ( /h refu u ) at point A  in Cook’s skew beam. 
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Fig. 3.11. Normalized vertical displacements ( /h refv v ) at point A  in Cook’s skew beam. 

 

 

 

 

Fig. 3.12. Convergence curves for Cook’s skew beam. The bold line represents the optimal convergence rate. 
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Fig. 3.13. Computational efficiency curves for Cook’s skew beam. The computation times are measured in 

seconds. 
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Fig. 3.14. Block under complex forces ( 73 10E   , 0.25   and regular 4 4  mesh). 

 

 

 

 

 

 

Fig. 3.15. Distorted meshes used for the block under complex forces. 
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Fig. 3.16. von Mises stress distributions of the block under complex forces when using regular meshes. The 

reference stress distribution is obtained using a 32 32  mesh of 9-node quadrilateral elements. 
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Fig. 3.17. von Mises stress distributions along the line 1x    of the block under complex forces for (a) 4 4 , 

(b) 8 8  and (c) 16 16  regular meshes used. 
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Fig. 3.18. Convergence curves for the block under complex forces. The bold line represents the optimal 

convergence rate. 
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Fig. 3.19. Infinite plate with a central hole of radius 1a  : (a) Problem description ( 73 10E    and 0.3  ). (b) 

4 4  element mesh for the shaded domain in (a). 

 

 

 

 

 

 

Fig. 3.20. Convergence curves for the infinite plate with a central hole. The bold line represents the optimal 

convergence rate. 
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Fig. 3.21. L-shaped structure ( 1E  , 0.22   and 4 4  mesh). 

 

 

 

 

 

 

Fig. 3.22. Convergence curves for the L-shaped structure. The bold line represents the optimal convergence rate. 

 

 



44 

 

 

Fig. 3.23. Dam problem ( 103 10E   , 0.2   and 4 8  mesh). 

 

 

 

 

 

 

Fig. 3.24. Strain distributions ( xx ) for the dam problem. The reference strain distribution is obtained using a 

32 64  mesh of 9-node quadrilateral elements. 
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Fig. 3.25. Convergence curves for the dam problem. The bold line represents the optimal convergence rate. 
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Chapter 4.  The strain-smoothed MITC3+ shell element 

 

Shell structures have been widely used for manufacturing automobiles, airplanes and ships due to their excellent 

strength to weight ratio. Finite element method is the main tool for such analysis of shell structures, in which it is 

important to develop ideal shell finite elements. Among various shell finite elements, 3-node triangular shell 

elements have the obvious advantages of being simple and efficient.  

 

Shell finite elements inherently have locking problems which happen when the finite element discretization cannot 

accurately represent pure bending displacement fields. Locking seriously deteriorates solution accuracy as the 

shell thickness decreases in bending-dominated shell problems. There are various methods to alleviate locking 

such as reduced integration and assumed strain methods [40-62]. Among those methods, the mixed interpolation 

of tensorial components (MITC) method was significantly successful [50-62]. 

 

Recently, the 3-node MITC3+ triangular shell element was developed based on the MITC method to reduce shear 

locking for out of plane bending behaviors. The shell element shows almost optimal convergence behavior in 

bending-dominated shell problems. However, shear locking for in-plane bending behaviors was not treated and 

thus its membrane performance is the same as that of displacement-based 3-node triangular shell element.  

 

In this chapter, a strain-smoothed MITC3+ shell element is proposed by adopting the strain-smoothed element 

(SSE) method to the MITC3+ shell element. After reviewing the formulations of the displacement-based 3-node 

triangular shell elements and the MITC3+ shell finite element, the formulation of the strain-smoothed MITC3+ 

shell finite element is presented [25]. 

 

 

 The displacement-based 3-node triangular shell finite element  

 

The geometry of the 3-node triangular displacement-based shell finite element is interpolated by [54] 

3 3

1 1

( , , ) ( , ) ( , )
2

i
i i i i n

i i

t
x r s t h r s x a h r s V

 

  
 

 with 1 1h r s   , 2h r , 3h s ,   

where ih  is the 2D interpolation function of the standard isoparametric procedure corresponding to node i , ix


 

is the position vector at node i  in the global Cartesian coordinate system, and ia  and i
nV


 denote the shell 

thickness and the director vector at the node i , respectively, see Fig 4.1. Note that the vector i
nV


 does not have 

to be normal to the shell midsurface in this description.   
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The corresponding displacement interpolation of the element is given by  

 
3 3

2 1
1 1

( , , ) ( , ) ( , )
2

i i
i i i i i i

i i

t
u r s t h r s u a h r s V V 

 

    
  

,  

where iu


  is the nodal displacement vector in the global Cartesian coordinate system, 1
iV


  and 2
iV


  are unit 

vectors orthogonal to i
nV


 and to each other, and i  and i  are the rotations of the director vector i
nV


 about 

1
iV


 and 2
iV


 at node i . 

 

The linear part of the displacement-based covariant strains is calculated by  

, ,

1
( )

2ij i j j ie g u g u   
   

,  

where   

i
i

x
g

r






, ,i

i

u
u

r






 with 1r r , 2r s , 3r t . 

 

The 3-node triangular displacement-based shell finite element passes all basic numerical tests: zero energy mode 

test, isotropic test and patch tests. However, this shell finite element strongly has the shear locking problem and 

therefore, it exhibits extremely stiff behaviors in bending-dominated problems. 

 

 

 The MITC3+ shell finite element 

 

In the geometry and displacement interpolations, the MITC3+ shell finite element has an internal bubble node at 

element center ( 1/ 3r s  ) that only has two rotational degrees of freedom with a cubic bubble function. 

 

The geometry of the MITC3+ shell finite element, shown in Fig. 4.1, is interpolated by [24] 

3 4

1 1

( , , ) ( , ) ( , )
2

i
i i i i n

i i

t
r s t h r s a f r s

 

  x x V , (4.1)

with 1 1h r s   , 2h r , 3h s ,  4 1 2 3
4 1 2 3

1

3n n n na a a a  V V V V , (4.2)

where ( , )ih r s  is the 2D interpolation function of the standard isoparametric procedure  corresponding to node 

i  , ix   is the position vector of node i   in the global Cartesian coordinate system, ia   and i
nV   are the shell 

thickness and the director vector at node i , respectively, and ( , )if r s  is the 2D interpolation function with the 

cubic bubble function 4f  corresponding to internal node 4: 

1 1 4

1

3
f h f  , 2 2 4

1

3
f h f  , 3 3 4

1

3
f h f  , 4 27 (1 )f rs r s   . (4.3)
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The displacement interpolation of the element is given by  

 
3 4

2 1
1 1

( , , ) ( , ) ( , )
2

i i
i i i i i i

i i

t
r s t h r s a f r s  

 

    u u V V , (4.4)

in which iu  is the nodal displacement vector in the global Cartesian coordinate system, 1
iV  and 2

iV  are unit 

vectors orthogonal to i
nV  and to each other, and i  and i  are the rotations of the director vector i

nV  about 

1
iV  and 2

iV , respectively, at node i . Note that the displacement interpolation has a linear variation along its 

edges. 

 

The linear part of the displacement-based covariant strain components is obtained by 

, ,

1
( )

2ij i j j ie    g u g u , (4.5)

with i
ir





x
g , ,i

ir




u

u  with 1r r , 2r s , 3r t , (4.6)

where ig  and ,iu  are the covariant base vectors and the displacement derivatives, respectively. 

 

To alleviate transverse shear locking, the following assumed covariant transverse shear strain fields with six tying 

points are employed for the MITC3+ shell element [24]  

 3 ( ) ( ) ( ) ( )
13 13 23 13 23

2 1 1 1
ˆ(3 1)

3 2 3 3
MITC B B A Ae e e e e c s        

 
, (4.7)

 3 ( ) ( ) ( ) ( )
23 23 13 13 23

2 1 1 1
ˆ(1 3 )

3 2 3 3
MITC C C A Ae e e e e c r        

 
, (4.8)

where ( ) ( ) ( ) ( )
13 13 23 23ˆ F D F Ec e e e e     and the tying points (A)-(F) are given in Fig. 4.2 and Table 4.1.  

 

In order to calculate the stiffness matrix, in principle, the 7-point Gauss integration should be used in the r s  

plane, but the 3-point Gauss integration also gives similar results. For this study, the 3-point Gauss integration is 

adopted. Note that in the MITC3+ shell element, membrane locking is not treated due to its flat geometry. 

 

The MITC3+ shell finite element passes all the basic tests; zero energy mode, isotropy and patch tests, and shows 

excellent convergence behaviors in both linear and nonlinear analyses of various shell problems [24,57]. 
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Table 4.1. Tying points (A)-(F) for the assumed transverse shear strain fields of the MITC3+ shell element. The 

distance d is defined in Fig. 4.2, and d = 1/10000 is recommended [24].  

  Tying points r s 

Fig. 4.2(a) 

(A) 1/6 1/6 

(B) 2/3 1/6 

(C) 1/6 2/3 

Fig. 4.2(b) 

(D) 1/3 + d 1/3 - 2d 

(E) 1/3 - 2d 1/3 + d 

(F) 1/3 + d 1/3 + d 

 

 

 

 

 

Fig. 4.1. Geometry of the MITC3+ shell finite element. 

 

 

 

 

Fig. 4.2. Tying points (A)-(F) for the assumed transverse shear strain fields of the MITC3+ shell element. The 

points (A)-(C) also correspond to Gauss integration points. 
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 The strain-smoothed MITC3+ shell finite element 

 

The covariant in-plane strain components in Eq. (4.5) can be decomposed as follows 

1 22b bm
ij ij ij ije e t e t e     with i , j  1, 2, (4.9)

1

2
m m m m m

ij
i j j i

e
r r r r

    
         
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with 

3

1

( , ) ( , )m i i
i

r s h r s


 x x , 
4

1

1
( , ) ( , )

2
i

b i i n
i

r s a f r s


 x V , (4.13)

3

1

( , ) ( , )m i i
i

r s h r s


 u u , 
4

2 1
1

1
( , ) ( , )( )

2
i i

b i i i i
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r s a f r s  


  u V V , (4.14)

in which m
ije  is the covariant membrane strain, and 1b

ije  and 2b
ije  are the covariant bending strains [60,61]. 

 

A triangular element can have up to three neighboring elements through its edges. In order to employ the strain-

smoothed element (SSE) method, a target element and its three neighboring elements as shown in Fig. 4.3(a) are 

considered. In shell finite element models, the target and neighboring elements are not placed in the same plane 

in general. For additive operations in the strain smoothing procedure, the base coordinate systems of strains of the 

target and neighboring elements must be matched.  

 

The covariant membrane strains of the target element ( ( )m e
lne ) and of the k th neighboring element ( ( )m k

lne ) are 

calculated at element centers ( 1/ 3r s   and 0t  ) using Eq. (4.10). The covariant membrane strain of the 

neighboring element is then transformed into the convected coordinates defined at the center of the target element 

using the following relation: 

( ) ( ) ( ) ( ) ( ) ( )( )( )m k m k e k l e k n
ij ln i je e  g g g g  with , , ,i j l n  1, 2, (4.15)

where ( )e
ig  and ( )k lg  are the covariant base vectors of the target element and the contravariant base vectors of 

the k th neighboring element, respectively, as seen in Fig. 4.3(b). In Eq. (4.15), the contravariant base vectors are 

calculated using the covariant base vectors in Eq. (4.6) and ( ) ( )k k j j
i i g g  . Note that, in this strain 

transformation, the effect of out-of-plane strains is simply neglected. 
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The smoothed membrane strain between the target element and the k th neighboring element is calculated by [22] 

( ) ( ) ( ) ( ) ( )
( ) ( )

1
ˆ ( )m k m e e m k k
ij ij ije k

e e A e A
A A

 


 with ,i j  1, 2, (4.16)

( ) ( ) ( ) ( )( )k e k kA A n n , ( ) ( ) ( )
3 3/e e en g g , ( ) ( ) ( )

3 3/k k kn g g , (4.17)

where ( )eA   and ( )kA   are the mid-surface areas ( 0t   ) of the target and the k  th neighboring elements, 

respectively, ( )en   and ( )kn   are the unit normal vectors defined at the centers of the target and neighboring 

elements, respectively, and ( )kA  is the area obtained by projecting ( )kA  into the mid-surface plane of the target 

element, see Fig. 4.3(c). Note that we use ( ) ( )ˆm k m e
ij ije e  if the k th edge of the target element is located along 

boundary. 

 

Then, the membrane strains obtained through Eq. (4.16) are assigned at three Gauss points using the following 

equations, shown in Fig. 4.3(d) 

( ) (3) (1)1
ˆ ˆ( )

2
m A m m

ij ij ije e e  , ( ) (1) (2)1
ˆ ˆ( )

2
m B m m

ij ij ije e e  , ( ) (2) (3)1
ˆ ˆ( )

2
m C m m

ij ij ije e e   

with ,i j  1, 2. 

(4.18)

 

 

 

 

Fig. 4.3. Application of the strain-smoothed element method to the MITC3+ shell element: (a) Finite element 

discretization of a shell. A target element and its neighboring elements are colored. (b) Coordinate systems for 

strain smoothing in shell elements. (c) Strain smoothing between the target element and each neighboring element. 

(d) Construction of the smoothed strain field through three Gauss points. 
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It is very interesting that the covariant membrane strain field within the element can be explicitly expressed in a 

form of assumed strain 

( ) ( ) ( )1
1 ( 2 )m smoothed m A m B m C

ij ij ij ij

r p s p
e r s p e e e

q p q p q p

   
         

 with ,i j  1, 2, (4.19)

where 1 / 6p   and 2 / 3q   are constants indicating the positions of the Gauss points. Note that Eq. (4.19) is 

not utilized in actual computation of the stiffness matrix. The assigned strains in Eq. (4.18) are used directly in 

the 3-point Gauss integration. 

 

The smoothed covariant membrane strain m smoothed
ije  in Eq. (4.19) replaces the covariant membrane strain m

ije  in 

Eq. (4.10). The originally defined 1b
ije  and 2b

ije  in Eqs. (4.11) and (4.12) are used for the covariant bending 

strains. For the covariant transverse shear strains, the assumed strains of the MITC3+ shell element, 3
3
MITC
ie   in 

Eqs. (4.7) and (4.8) are adopted. 

 

In Eqs. (4.16) and (4.17), the projected element areas are used and thus the effect of membrane strain smoothing 

depends on the angle between the target and neighboring elements (marked with   in Fig. 4.3b). As the angle 

approached 90 degrees, the smoothing effect gradually vanishes. This is a desirable feature. 

 

When the angle is smaller than 90 degrees or more than two shell elements are connected through shared edges, 

the use of strain smoothing is not recommended. The strain smoothing is also not suitable along the boundary 

where material properties changes rapidly. In other words, the strain smoothing is effective, when shell geometry 

or material properties vary smoothly. These are also the limitations of most strain smoothing techniques. 

 

Note that there is an alternative approach to obtain smoothed membrane strains between the target and neighboring 

shell elements, see Ref. [63]. It is also valuable to note that there is an interesting approach to improving stress 

solutions with the help of adjacent elements, see Ref. [64]. 
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 Convergence studies 

 

In the following sections, we investigate the performance of the proposed strain-smoothed MITC3+ shell element 

using several appropriate benchmark problems: Cook’s skew beam, partially clamped hyperbolic paraboloid shell, 

Scordelis-Lo roof shell, and clamped/free hyperboloid shell problems. The proposed element passes all the basic 

tests: patch, isotropy and zero energy mode tests [1]. A list of previously developed shell elements used for 

comparison is given in Table 4.2 with brief descriptions. 

 

 

Table 4.2. List of the shell elements used for comparison. 

Element Description 

Allman A flat shell element that combines a triangular membrane element with Allman’s drilling 
DOFs and the discrete Kirchhoff-Mindlin triangular (DKMT) plate element. It requires 18 
DOFs for an element [63,65,66].  

ANDES (OPT) A flat shell element that combines the assumed natural deviatoric strain (ANDES) triangular 
membrane element with 3 drilling DOFs and optimal parameters and the DKMT plate 
element. It has 18 DOFs for an element [63,66-68]. 

Shin and 
Lee 

As a flat shell element, the edge-based strain smoothing method is applied to the ANDES 
formulation-based membrane element with 3 drilling DOFs, and the DKMT plate element 
is combined. New values of the free parameters in the ANDES formulation are introduced. 
It requires 18 DOFs for an element [63]. 

MITC3+ A continuum mechanics based 3-node shell element with a bubble node. The bubble node 
has 2 rotational DOFs which can be condensed out on the element level. It has 15 DOFs for 
an element [24,59]. 

Enriched 
MITC3+ 

The MITC3+ shell element enriched in membrane displacements by interpolation covers. 4 
DOFs per node are added and thus the element has 27 DOFs for an element in total [58]. 

MITC4+ The continuum mechanics based 4-node MITC shell element with membrane locking 
treatment. It has 20 DOFs for an element [59,61]. 

 

 

For convergence studies, we use displacement or stress values at a specific location. We also use the s-norm 

defined by [52,55] 

2 T
ref h s

d


    u u ε τ  with ref h  ε ε ε , ref h  τ τ τ , (4.20)

where refu   is the reference solution, hu   is the solution of the finite element discretization, ε   is the strain 

vector and τ  is the stress vector. 
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To consider various shell thicknesses, we use the relative error hE  

2

2

ref h s
h

ref s

E



u u

u
.  (4.21)

 

The optimal convergence behavior of the 3-node triangular shell finite elements with linear interpolation is given 

by  

2
hE ch ,  (4.22)

where h  is the element size, and c  is a constant [1]. 

 

In this study, the MITC9 shell element is used to obtain reference solutions. The MITC9 shell element satisfies 

the consistency and ellipticity conditions, and gives well-converged solutions [51]. 

 

 

4.4.1.  Cook’s skew beam problem 

 

Let us consider the Cook’s skew beam problem [3] shown in Fig. 4.4. The skew cantilever beam with unit 

thickness is subjected to a distributed shearing force 1 /16p   per unit length at its right end, and the clamped 

boundary condition is given at the left end. Plane stress condition is assumed, Young’s modulus is 1E  , and 

Poisson’s ratio is 1/ 3  . We use N N  meshes with N  2, 4, 8, 16 and 32. Two patterns of meshes (Mesh 

I and Mesh II) are used as shown in Fig. 4.4. 

 

Normalized vertical displacements at point A are given in Table 4.3 and Fig. 4.5 for both mesh patterns. The s-

norm convergence curves of the MITC3+ shell element, the enriched MITC3+ shell element and the strain-

smoothed MITC3+ shell element for Mesh II are given in Fig. 4.6. The reference solutions used for s-norm are 

obtained using a 64 64  mesh of MITC9 shell finite elements, and the element size is 1/h N . This example 

is purely for comparing membrane performance, and the strain-smoothed MITC3+ shell element offers very 

accurate solutions comparable to the enriched MITC3+ shell element. 

 

 

4.4.2.  Partially clamped hyperbolic paraboloid shell problem 

 

The hyperbolic paraboloid shell problem [50] shown in Fig. 4.7 is also considered. The mid-surface of the shell 

is given by  

2 2z y x  ; , [ 1/ 2,1 / 2]x y  .  (4.23)

 

It has a uniform thickness 1/1000t  , and a self-weight loading 8zf   per unit area is acting on the shell. 
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Material properties given are 112 10E    and 0.3  . One end of the shell is clamped, and due to its symmetry, 

we model only one-half of the structure with the following boundary conditions: 0xu     along CD and 

0x y zu u u        along AC. We use 2N N  meshes with N  2, 4, 8, 16 and 24. 

 

Table 4.4 and Fig. 4.8 show normalized vertical displacements at point D. The reference solutions are obtained 

using a 32 64  mesh of MITC9 shell finite elements. Among the various shell elements considered, the proposed 

element shows the best solution accuracy. 

 

 

4.4.3.  Scordelis-Lo roof shell problem 

 

The third example is the Scordelis-Lo roof shell problem [53,56] shown in Fig. 4.9. The shell is a part of a cylinder 

with length 25L  , radius 25R  , and uniform thickness t . It is subjected to a self-weight loading 90zf   

per unit area. Young’s modulus is 84.32 10E    and Poisson ratio is 0  . 

 

The shell structure is supported by rigid diaphragms at both ends. Due to symmetry, one-quarter of the structure 

is considered with the following boundary conditions: 0x zu u    along AC, 0yu     along BD and 

0xu    along CD. Under these conditions, a mixed bending-membrane behavior occurs in the structure. Two 

mesh patterns (Mesh I and Mesh II) are used, as shown in Fig. 4.9. The solutions are obtained with N N  

element meshes ( N  4, 8, 16 and 32). 

 

Table 4.5 gives relative errors in von-Mises stress at point B (for both mesh patterns with / 1/100t L  ), and Fig. 

4.10 shows the von-Mises stress distributions (for Mesh I with / 1/100t L  ). Table 4.6 and Fig. 4.11 show 

convergences in the vertical displacement at point B (for both mesh patterns with / 1/100t L  ). Fig. 4.12 shows 

the s-norm convergence curves of the MITC3+ shell element, the enriched MITC3+ shell element and the strain-

smoothed MITC3+ shell element (for Mesh II with three different thickness to length ratios: /t L  1/100, 1/1000 

and 1/10000). The reference solutions are obtained using a 64 64  mesh of MITC9 shell finite elements. The 

element size is 1/h N  . The strain-smoothed MITC3+ shell finite element gives significantly improved 

solutions comparable to the enriched MITC3+ shell element. 

 

Fig. 4.13 shows how the total number of DOFs increases when increasing the number of element layers N. Table 

4.7 shows the measured computation time for the MITC3+, enriched MITC3+ and smoothed MITC3+ shell 

elements. It includes all the time from constructing stiffness matrices to solving linear equations. We use a 

symmetric skyline solver, and the computations are performed using a PC with Intel Core i7-6700, 3.40GHz CPU 

and 64GB RAM. The strain-smoothed MITC3+ shell element requires less computation time than the enriched 

MITC3+ shell element, providing similarly accurate solutions. 



56 

 

4.4.4.  Hyperboloid shell problems 

 

We lastly consider the hyperboloid shell problems [24] shown in Fig. 4.14. The mid-surface geometry of the shell 

structure with uniform thickness t is given by 

2 2 21x z y   , [ 1,1]y  .  (4.24)

 

The structure is subjected to a varying pressure ( ) cos(2 )p   . Material properties given are 73 10E    and 

0.3  . 

 

The shell structure shows different asymptotic behaviors depending on the boundary conditions. It shows a 

membrane-dominated behavior when both ends are clamped, and shows a bending-dominated behavior when both 

ends are free. Due to symmetry, only one-eighth of the shell structure is modeled. The clamped boundary condition 

is given as 0xu     along BD, 0zu     along AC, 0yu     along AB and 0x y zu u u        

along CD. The free boundary condition is given as 0xu    along BD, 0zu    along AC and 0yu    

along AB. Finite element solutions are obtained using N N  element meshes ( N  4, 8, 16 and 32). 

 

Fig. 4.15 and Fig. 4.16 show the s-norm convergence curves of the MITC3+ shell element, the enriched MITC3+ 

shell element and the strain-smoothed MITC3+ shell element for the clamped and free boundary conditions, 

respectively. A 64 64   mesh of MITC9 shell finite elements is used to obtain the reference solutions. The 

thickness to length ratios ( /t L  ) considered are 1/100, 1/1000 and 1/10000 with 1L   . The element size is 

1/h N . In the membrane-dominated case (with the clamped boundary condition), the strain-smoothed MITC3+ 

shell finite element shows improved solution accuracy comparable to the enriched MITC3+ shell finite element. 

The three shell finite elements give good convergence behaviors in the bending-dominated case (with the free 

boundary condition). 
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Table 4.3. Normalized vertical displacements ( / refv v ) at point A in the Cook’s skew beam problem. 

 Element 
DOFs 
per 
element 

Mesh 

2×2 4×4 8×8 16×16 

Mesh 
I 

Allman 18 0.8212 0.9358 0.9792 0.9939 

ANDES (OPT) 18 0.8584 0.9373 0.9782 0.9937 

Shin and Lee 18 0.7945 0.9640 0.9946 0.9992 

MITC3+ 15 0.5007 0.7634 0.9195 0.9775 

Enriched MITC3+ 27 0.9531 0.9871 0.9962   

Smoothed MITC3+ 15 0.8828 1.0048 1.0057 1.0021 

Mesh 
II 

MITC3+ 15 0.2815 0.4698 0.7236 0.9016 

Enriched MITC3+ 27 0.8393 0.9611 0.9916   

Smoothed MITC3+ 15 0.5154 0.8873 0.9830 0.9968 

 MITC4+ 20 0.7271 0.9106 0.9744 0.9933 

Reference solution: refv  23.95 [3] 

 

 

Table 4.4. Normalized vertical displacements ( / refw w ) at point D in the partially clamped hyperbolic paraboloid 

shell problem. 

Element 
DOFs 
per 
element 

Mesh 

2×4 4×8 8×16 16×32 24×48 

Allman 18 0.1364 0.0656 0.2866 0.7729 0.8899 

ANDES (OPT) 18 0.0067 0.0598 0.4150 0.8521 0.9111 

Shin and Lee 18 1.1512 1.0093 0.9457 0.9310 0.9315 

MITC3+ 15 1.0552 0.9541 0.9597 0.9736 0.9823 

Smoothed MITC3+ 15 1.0581 0.9856 0.9858 0.9909 0.9943 

Reference solution: refw  36.3905 10   

 

 

Table 4.5. Relative errors (%) in von Mises stress obtained by / 100ref h ref     at point B in the Scordelis-

Lo roof shell problem when / 1/100t L  . 

 Element 
DOFs 
per 
element 

Mesh 

8×8 16×16 32×32 

Mesh I 
MITC3+ 15 45.56 22.52 10.66 

Smoothed MITC3+ 15 24.76 13.30 6.99 

Mesh II 
MITC3+ 15 13.94 3.51 0.96 

Smoothed MITC3+ 15 0.96 1.16 0.85 

Reference solution: ref  53.0306 10  
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Table 4.6. Normalized vertical displacements ( / refw w ) at point B in the Scordelis-Lo roof shell problem when 

/ 1/100t L  . 

 Element 
DOFs 
per 
element 

Mesh 

4×4 8×8 16×16 

Mesh I 

Allman 18 1.0046 0.9874    

ANDES (OPT) 18 1.0830 1.0139   

Shin and Lee 18 1.0231 1.0043   

MITC3+ 15 0.7409 0.8793 0.9618 

Enriched MITC3+ 27 0.9610 0.9931 0.9983 

Smoothed MITC3+ 15 1.1017 1.0323 1.0075 

Mesh II 

MITC3+ 15 0.6744 0.8606 0.9566 

Enriched MITC3+ 27 0.8922 0.9762 0.9950 

Smoothed MITC3+ 15 0.9649 0.9986 0.9998 

 MITC4+ 20 1.0476 1.0053 0.9977 

Reference solution: refw  0.3024  [53,56] 

 

 

 

 

 

Table 4.7. Computation time (in seconds) for the Scordelis-Lo roof shell problem. 

Mesh Element 
Computation time (s) 

Constructing stiffness 
matrices 

Solving linear 
equations 

Total 

16×16 

MITC3+ 0.022  0.003  0.025  

Enriched MITC3+ 0.060  0.013  0.073  

Smoothed MITC3+ 0.024  0.007  0.031  

32×32 

MITC3+ 0.087  0.033  0.120  

Enriched MITC3+ 0.244  0.174  0.418  

Smoothed MITC3+ 0.103  0.105  0.207  

64×64 

MITC3+ 0.369  0.449  0.818  

Enriched MITC3+ 1.005  2.244  3.249  

Smoothed MITC3+ 0.437  1.333  1.770  
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Fig. 4.4. Cook’s skew beam problem and two 4 4  mesh patterns. 

 

 

 

 

Fig. 4.5. Normalized vertical displacements at point A in the Cook’s skew beam problem: (a) and (b) are the results 

for Mesh I and Mesh II, respectively. 
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Fig. 4.6. Convergence curves for the Cook’s skew beam problem when Mesh II is used. The bold line represents 

the optimal convergence rate. 
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Fig. 4.7. Partially clamped hyperbolic paraboloid shell problem ( 4 8  mesh). 

 

 

 

 

 

 

Fig. 4.8. Normalized vertical displacements at point D in the partially clamped hyperbolic paraboloid shell 

problem. 
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Fig. 4.9. Scordelis-Lo roof shell problem and two 4 4  mesh patterns. 
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Fig. 4.10. von-Mises stress distributions for the Scordelis-Lo roof shell problem when / 1/100t L   and Mesh I 

is used for the MITC3+ shell element and the strain-smoothed MITC3+ shell element. 
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Fig. 4.11. Convergence curves for the Scordelis-Lo roof shell problem when Mesh II is used. The bold line 

represents the optimal convergence rate. 
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Fig. 4.12. Normalized vertical displacements at point B in the Scordelis-Lo roof shell problem when / 1/100t L  : 

(a) and (b) are the results for Mesh I and Mesh II, respectively. 
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Fig. 4.13. Hyperboloid shell problem ( 4 4  mesh). 

 

 

 

 

 

 

Fig. 4.14. Convergence curves for the clamped hyperboloid shell problem. The bold line represents the optimal 

convergence rate. 
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Fig. 4.15. Convergence curves for the free hyperboloid shell problem. The bold line represents the optimal 

convergence rate. 
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Chapter 5.  Geometric nonlinear formulation of the strain-smoothed 

MITC3+ shell element 

 

Linear and nonlinear analyses are essential for the strength evaluation of structures. In particular, nonlinear 

analysis is becoming more and more popular. In this chapter, the total Lagrangian formulation is employed to 

represent large displacements and rotations for geometric nonlinear extension of the strain-smoothed MITC3+ 

shell element.  

 

The geometric nonlinear formulation of the MITC3+ shell finite element is reviewed, and then the geometric 

nonlinear formulation of the strain-smoothed MITC3+ shell element is presented. In the total Lagrangian 

formulation, the left superscript t , which usually denotes time for general analysis, represents load step for static 

analysis [1,57].   

 

 

 Formulation 

 

5.1.1.  Geometry and displacement interpolations  

 

The geometry interpolation of the MITC3+ shell finite element in the configuration at time t, seen in Fig. 5.1, is 

given by [24,57] 

( , , )t t t
m br s   x x x  with 

3

1

( , )t t
m i i

i

h r s


 x x , 
4

1

1
( , )

2
t t i

b i i n
i

a f r s


 x V , (5.1) 

where t
ix  is the position vector of node i  in the configuration at time t , ia  is the shell thickness at node i , 

t i
nV  is the director vector at node i  in the configuration at time t , and  ( , )ih r s  are the standard finite element 

shape functions and ( , )if r s  are the shape functions involving the cubic bubble function 4f  corresponding to 

the internal node 4:  

1 1h r s   , 2h r , 3h s , (5.2) 

1 1 4

1

3
f h f  , 2 2 4

1

3
f h f  , 3 3 4

1

3
f h f  , 4 27 (1 )f rs r s   . (5.3) 

 

In Eq. (5.1), the director vector of the internal node is obtained by 

 4 1 2 3
4 1 2 3

1

3
t t t t

n n n na a a a  V V V V . (5.4) 
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Fig. 5.1. Geometry of the MITC3+ shell finite element. 

 

 

 

The incremental displacement vector u  from the configuration at time t  to the configuration at time t t   is 

( , , ) ( , , ) ( , , )t t tr s r s r s   u x x , (5.5) 

and thus 

 
3 4

1 1

( , , ) ( , ) ( , )
2

t t i t i
i i i i n n

i i

r s h r s a f r s
 

 

   u u V V , (5.6) 

in which iu  is the vector of incremental nodal displacements at node i . 

 

The difference between two director vectors in successive times in Eq. (5.6) is defined as follows by considering 

up to quadratic order [57] 

1
( )

2
t t i t i t i t i

n n i n i i n
      V V θ V θ θ V  with 1 2

t i t i
i i i  θ V V , (5.7) 

and it can be rewritten as   

2 2
2 1

1
( )

2
t t i t i t i t i t i

n n i i i i n         V V V V V ,  (5.8) 

where 1
t iV   and 2

t iV   are the unit vectors orthogonal to t i
nV   and to each other, and i   and i   are the 

incremental rotations of the director vector t i
nV  about 1

t iV  and 2
t iV , respectively, at node i . 

 

Substituting Eq. (5.8) into Eq. (5.6), the incremental displacement vector can be expressed as 

1 2( , , ) ( )m b br s    u u u u , (5.9a)

with  
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3

1

( , )m i i
i

h r s


 u u , (5.9b)

 
4

1 2 1
1

1
( , )

2
t i t i

b i i i i
i

a f r s  


  u V V , (5.9c)

 
4

2 2
2

1

1
( , )

4
t i

b i i i i n
i

a f r s  


    u V . (5.9d)

 

The incremental displacement vector in Eq. (5.9a) could be grouped as  

1l m b u u u , 2q bu u , (5.10)

in which lu  and qu  are the linear and quadratic parts of the incremental displacement vector u , respectively. 

 

 

5.1.2.  Green-Lagrange strain 

 

The covariant base vectors at time t  is given by 

t
t

i
ir





x
g  with 1r r , 2r s , 3r  , (5.11)

and the covariant base vectors at time t  and time 0 has the following relation: 

0
,

t t
i i i g g u  with ,

t
t

i
ir





u
u , 0t t u x x . (5.12)

 

The covariant Green-Lagrange strain components in the configuration at time t  with respect to the reference 

configuration at time 0 are given by 

 0 0
0

1

2
t t t

ij i j i j    g g g g  with i , j  1, 2, 3, (5.13)

and its in-plane strain components ( i , j  1, 2) are expressed as [62] 

1 2 2
0 0 0 0
t t m t b t b

ij ij ij ij         with i , j  1, 2, (5.14a)

in which 

 0 0
0 , , , ,

1

2
t m t t

ij m i m j m i m j    x x x x , (5.14b)

   1 0 0 0 0
0 , , , , , , , ,

1

2
t b t t t t

ij m i b j m j b i m i b j m j b i          x x x x x x x x , (5.14c)

 2 0 0
0 , , , ,

1

2
t b t t

ij b i b j b i b j    x x x x  with ,

t
t m

m i
ir





x

x , ,

t
t b

b i
ir





x

x . (5.14d)
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The incremental covariant Green-Lagrange strain components are defined by 

0 0 0 , , , ,

1
( )

2
t t t t t

ij ij ij i j i j i j         u g g u u u  with  ,i
ir




u

u .  (5.15)

 

By retaining the strain terms up to the second order of unknowns, the incremental covariant strain components 

are approximated as 

0 0 0ij ij ije    with i , j  1, 2, 3, (5.16a)

and  

0

1
( )

2
t tl l

ij j i
i j

e
r r

 
 

 
u u

g g , (5.16b)

0

1 1

2 2
q qt tl l

ij j i
i j i jr r r r


     

               

u uu u
g g ,  (5.16c)

in which 0 ije  and 0 ij  are the linear and nonlinear parts of the incremental strain, respectively [57]. 

 

The in-plane components ( i , j  1, 2) of the incremental covariant strain in Eq. (5.16a) can be decomposed as 

follows. For the linear part, 

1 2 2
0 0 0 0

m b b
ij ij ij ije e e e     with i , j  1, 2, (5.17a)

with 

 0 , , , ,

1

2
m t t
ij m i m j m j m ie    x u x u , (5.17b)

 1
0 , 1, , 1, , , , ,

1

2
b t t t t
ij m i b j m j b i b i m j b j m ie        x u x u x u x u , (5.17c)

 2
0 , 1, , 1,

1

2
b t t
ij b i b j b j b ie    x u x u , (5.17d)

and, for the nonlinear part, 

1 2 2
0 0 0 0

m b b
ij ij ij ij         with i , j  1, 2, (5.18a)

with 

0 , ,

1

2
m
ij m i m j  u u , (5.18b)

 1
0 , 1, , 1, , 2, , 2,

1

2
b t t
ij m i b j m j b i m i b j m j b i        u u u u x u x u , (5.18c)

 2
0 1, 1, , 2, , 2,

1

2
b t t
ij b i b j b i b j b j b i      u u x u x u .  (5.18d)
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The in-plane components ( i , j  1, 2) of the incremental covariant Green-Lagrange strain in Eqs. (5.17a)-( 5.18d) 

can be grouped as  

1 2 2
0 0 0 0

m b b
ij ij ij ij         (5.19a)

and 

0 0 0
m m m
ij ij ije   , (5.19b)

1 1 1
0 0 0

b b b
ij ij ije   , (5.19c)

2 2 2
0 0 0

b b b
ij ij ije   . (5.19d)

where 0
m
ij   denotes the incremental covariant membrane strain, and 1

0
b
ij   and 2

0
b
ij   denote the incremental 

covariant bending strains. 

 

 

5.1.3.  Assumed transverse shear strain 

 

The assumed transverse shear strain fields of the MITC3+ shell element are employed to alleviate shear locking 

[24,57]. The transverse shear strain components in Eq. (5.16a) are substituted by 

3 3 3
0 3 0 3 0 3

MITC MITC MITC
i i ie      with i , j  1, 2, (5.20a)

and 

 3
0 13 0 13 0 23 0 13 0 23 0

2 1 1 1
ˆ(3 1)

3 2 3 3
MITC B B A A c s            

 
, (5.20b)

 3
0 23 0 23 0 13 0 13 0 23 0

2 1 1 1
ˆ(1 3 )

3 2 3 3
MITC C C A A c r            

 
, (5.20c)

where 0 0 13 0 13 0 23 0 23ˆ F D F Ec         and the tying points (A)-(F) are given in Fig. 5.2 and Table 5.1. 

 

For the MITC3+ shell element, the two rotational DOFs of the internal node can be statically condensed out in 

the element level [24]. We use the 3-point Gauss integration in the r s  plane and the 2-point Gauss integration 

in the  -direction to evaluate the stiffness matrix and internal force vector. 
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Table 5.1. Tying points for the assumed transverse shear strain fields of the MITC3+ shell finite element, seen in 

Fig. 5.2.  

Tying points r s 

(A) 1/6 1/6 

(B) 2/3 1/6 

(C) 1/6 2/3 

(D) 1/3 + 1/10000 1/3 – 1/5000 

(E) 1/3 - 1/5000 1/3 + 1/10000 

(F) 1/3 + 1/10000 1/3 + 1/10000 

 

 

 

 

 

 

Fig. 5.2. Tying points for the assumed transverse shear strain fields of the MITC3+ shell finite element. The points 

(A)-(C) are also Gauss integration points. 
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5.1.4.  Smoothed membrane strain  

 

For triangular elements, there can be up to three adjacent elements through its edges. The strains of all adjacent 

elements are fully used for the SSE method [22,23,25]. Fig. 5.3 depicts a target element e  and its three adjacent 

elements k  ( k  1, 2, 3). Considering that the shell elements do not lie on the same plane in general, we match 

the base coordinate systems of strains of the target and neighboring elements before strain smoothing.  

 

The incremental covariant membrane strains of the target element ,( )
0

m e
ln   and of the k  th adjacent element 

,( )
0

m k
ln  at element centers ( 1/ 3r s   and 0  ) are obtained using Eq. (5.19b). Then, we transform the strains 

of the adjacent elements into the convected coordinates of the target element as follows 

,( ) ,( ) ( ) ( ) ( ) ( )
0 0 ( )( )m k m k e k l e k n

ij ln i j   g g g g  with , , ,i j l n  1, 2,  (5.21)

where ( )e
ig  and ( )k lg  are the covariant base vectors of the target element and the contravariant base vectors of 

the k th adjacent element, respectively, in the configuration at time t , as shown in Fig. 5.4. The contravariant 

base vectors are obtained using the covariant base vectors and the relation ( ) ( )k k j j
i i g g . Note that we neglect 

the influence of out-of-plane strains in the transformation [25].  

 

Then, we calculate the smoothed incremental membrane strains ( ,i j  1, 2) between the target element e  and the 

adjacent elements k  ( k  1, 2, 3) as follows 

,( ) ,( ) ( ) ,( ) ( )
0 0 0( ) ( )

1
ˆ ( )m k m e e m k k

ij ij ije k
A A

A A
   


 with ( ) ( ) ( ) ( )( )k e k kA A n n  (5.22)

where ( ) ( ) ( )
3 3/e e en g g   and ( ) ( ) ( )

3 3/k k kn g g   are the unit normal vectors of the target and the k  th 

adjacent elements calculated at element centers, respectively, ( )eA  and ( )kA  are the mid-surface areas ( 0  ) 

of the target and the k th adjacent elements, respectively, and ( )kA  is the area obtained by projecting ( )kA  onto 

the mid-surface plane of the target element, as shown in Fig. 5.5(a). Note that, if there is no adjacent element to 

the k th edge of the target element, we use ,( ) ,( )
0 0

ˆm k m e
ij ij   instead. 

 

Then, the smoothed incremental membrane strains in Eq. (5.22) are assigned at three Gauss integration points as 

follows, as shown in Fig. 5.5(b), 

,( ) ,(3) ,(1)
0 0 0

1
ˆ ˆ( )

2
m A m m
ij ij ij    , ,( ) ,(1) ,(2)

0 0 0

1
ˆ ˆ( )

2
m B m m
ij ij ij    ,  

,( ) ,(2) ,(3)
0 0 0

1
ˆ ˆ( )

2
m C m m
ij ij ij     with ,i j  1, 2.  

(5.23)

Note that the smoothed strains in Eq. (5.23) are used directly at the Gauss integration points to compute the tangent 

stiffness matrix and internal force vector.   
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The incremental covariant membrane strain in Eq. (5.19b) is substituted by the smoothed membrane strain in Eq. 

(23) obtained using the SSE method. The incremental covariant transverse shear strain in Eq. (16a) is replaced 

with the assumed transverse shear strain in Eq. (5.20a) obtained using the MITC method. 

 

Due to the strain transformation in Eq. (5.21) and area projection in Eq. (5.22), the effect of strain smoothing is 

affected by the angle between the target and adjacent elements (  in Fig. 5.5a). The smoothing effect is designed 

to gradually vanish as the angle approaches 90 degrees.  

 

 

 

 

Fig. 5.3. Finite element discretization of a shell structure. A target element and its neighboring elements are colored. 

 

 

 

 

 

Fig. 5.4. Coordinate systems for strain smoothing in shell elements. 
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Fig. 5.5. Strain smoothing in shell elements: (a) Strain smoothing between the target element and each neighboring 

element. (b) Strain smoothing within elements and construction of the smoothed strain field through three Gauss 

points. 

 

 

 Numerical examples 

 

In this section, we evaluate the performance of the strain-smoothed MITC3+ shell element using several proper 

numerical examples in geometric nonlinear range. The Newton-Raphson method is used to solve the nonlinear 

equations in every load step with a convergence tolerance of 0.1 percent of the relative incremental energy [1].  

 

Through our previous work in geometric linear range, we verified that the strain-smoothed MITC3+ shell element 

has superior performance compared with other competitive elements [25]. In this study, we demonstrate that the 

strain-smoothed element originally proposed for linear analysis also exhibits high performance in nonlinear 

analysis. The results of the linear analysis are also introduced briefly in the first problem.  

 

The performance of the proposed strain-smoothed MITC3+ shell element (15 element DOFs) is compared with 

those of the MITC3+ shell element (15 element DOFs) and the enriched MITC3+ shell element (27 element 

DOFs). The MITC3+ shell element shows excellent bending behaviors by alleviating the locking [24,57], but 

shows insufficient membrane behaviors. The enriched MITC3+ shell element shows successful membrane 

performance by enriching the membrane displacement field with interpolation covers, but it requires 12 additional 

DOFs for an element [58]. 
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For comparison purposes, displacements at specific locations, von Mises distributions and deformed 

configurations are measured at several load steps for various mesh patterns. We also use the s-norm defined below 

for the study in geometric linear range [52,55] 

2
( ) ( )T

ref h ref h ref hs
d


    u u ε ε τ τ , (5.24)

and its relative error is given by 

2

2

ref h s
h

ref s

E



u u

u
, (5.25)

where refu  is the reference solution, hu  is the solution of the finite element discretization, ε  is the strain vector 

and τ  is the stress vector. 

 

The reference solutions are obtained using the MITC9 shell element, which satisfies the consistency and ellipticity 

conditions and gives well-converged solutions in both linear and nonlinear analyses [51].  

 

 

5.2.1.  Scordelis-Lo roof   

 

We consider the Scordelis-Lo roof shell problem [53,58] shown in Fig. 5.6. The shell is an arc of length 25L  , 

radius 25R   , and uniform thickness t  . It is subjected to a self-weight loading f  . Young’s modulus is 

84.32 10E    and Poisson’s ratio is 0  . Both ends of the structure are supported by rigid diaphragms, and 

due to the symmetry of the problem, we only consider one-quarter of the model. Detailed boundary conditions are 

as follows: 0u w   along BD , 0v    along AC  and 0u    along AB . In this problem, the shell 

shows a mixed bending-membrane behavior.  

 

The geometric linear analysis is performed first with a loading 90f   per unit area. The solutions are obtained 

with N N   element meshes ( N   8, 16 and 32) for three different thickness to length ratios ( /t L   1/100, 

1/1000 and 1/10000). The s-norm convergence curves of the MITC3+, enriched MITC3+ and smoothed MITC3+ 

shell elements are depicted in Fig. 5.7. The reference solutions are obtained using a 64 64  mesh of MITC9 shell 

finite elements. The element size is 1/h N . The strain-smoothed MITC3+ shell element (15 element DOFs) 

provides very accurate solutions, which is even better than those of the enriched MITC3+ shell element (27 

element DOFs) [25]. 

 

Then, the computational efficiency of the considered elements are compared for the case when /t L  1/1000. 

Fig. 5.8 shows the relations between computation times versus solution accuracies (relative errors in the s-norm). 

The computation times involve all the time from constructing stiffness matrices to solving linear equations. We 

use a symmetric skyline solver, and the computations are performed using a PC with Intel Core i7-6700, 3.40GHz 

CPU and 64GB RAM. The strain-smoothed MITC3+ shell element gives the best computational efficiency among 
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the elements considered.  

 

Now, we perform the geometric nonlinear analysis with an increased loading max 50 90f    per unit area. The 

solutions are obtained with a 14 14  mesh of the MITC3+, enriched MITC3+ and strain-smoothed MITC3+ 

shell elements. The reference solutions are calculated using a 32 32  mesh of the MITC9 shell elements. Fig. 

5.9 shows the load–displacement curves measured at points C  and D . Tables 5.2 and 5.3 present the relative 

errors in the displacements at point C   and D  , respectively, for each load step. Fig. 5.10 depicts the final 

deformed configurations (at load level maxf f ) obtained using the strain-smoothed MITC3+ shell element. The 

strain-smoothed MITC3+ shell element gives the best solution among the shell elements considered. 

 

 

5.2.2.  Cantilever beam subjected to a tip moment 

 

We consider a cantilever beam subjected to a tip moment max 10M   as shown in Fig. 5.11 [58]. The cantilever 

beam has unit thickness, and the Young’s modulus and Poisson’s ratio are given as 31.2 10E    and 0.2  , 

respectively. The conditions are given so that the beam is sufficiently rolled up into a circular ring. The beam is 

modeled using regular and distorted 20 2   meshes of the MITC3+, enriched MITC3+ and strain-smoothed 

MITC3+ shell elements as shown in Fig. 5.11. The reference solutions are obtained using a regular 40 4  mesh 

of the MITC9 shell elements.  

 

Figs. 5.12 and 5.13 present the resulting load–displacement curves measured at point A  for the regular and 

distorted mesh, respectively. The deformed shapes of the beam at load levels max0.25M M  , max0.5M  , 

max0.75M  and maxM  for the regular mesh are depicted in Fig. 5.14. The strain-smoothed MITC3+ shell element 

provides the solutions closest to the reference. Also, in Table 5.4 and Fig. 5.15, we compare the number of 

iterations that the Newton-Raphson method to converge for each load step. The number of iterations for the strain-

smoothed MITC3+ element is almost the same as that of the reference.  

 

 

5.2.3.  Cantilever plate subjected to an end shear force 

 

A cantilever plate is subjected to a distributed shearing force max 4p   at its free end as shown in Fig. 5.16 [57]. 

The plate has a uniform thickness 0.1h  , and material properties are given as Young’s modulus 61.2 10E    

and Poisson’s ratio 0   . The plate is modeled using 16 1   meshes of the MITC3+ and strain-smoothed 

MITC3+ shell elements. The reference solutions are calculated using a 32 2  element mesh of the MITC9 shell 

elements.  

 

The load–displacement curves evaluated at the loaded point A   are given in Fig. 5.17, and the deformed 
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configurations obtained using the strain-smoothed MITC3+ shell element at load steps max0.25p p , max0.5p , 

max0.75p  and maxp  are depicted in Fig. 5.18. The cumulative number of iterations that the Newton-Raphson 

method to converge for each load step are given in Fig. 5.19. The strain-smoothed MITC3+ shell element retains 

the excellent bending behavior of the MIT3+ shell element, and there is no increase in the iteration number in this 

example.  

 

 

5.2.4.  Slit annular plate subjected to a lifting line force  

 

We solve a slit annular plate problem as shown in Fig. 5.20 [58,69]. The shell thickness is 0.03h  , and material 

properties are 72.1 10E    and 0  . A shearing force max 0.8p   per unit length is incrementally acting on 

one end of the plate while the other end is clamped. The plate is modeled using a 6 30  mesh of the MITC3+, 

enriched MITC3+ and strain-smoothed MITC3+ shell elements. We obtain the reference solutions using a 12 60  

mesh of the MITC9 shell elements.  

 

The load–displacement curves evaluated at two distinct points B  and C  are presented in Fig. 5.21. The final 

deformed shapes obtained using the MITC3+ and strain-smoothed MITC3+ shell elements are compared with the 

reference in Fig. 5.22. The strain-smoothed MITC3+ shell element gives much better response prediction than the 

MITC3+ and enriched MITC3+ shell elements.   

 

 

5.2.5.  Column under a compressive load 

 

A compressive load 3
max 4.5 10P    is incrementally acting on point A  of the column as shown in Fig. 5.23 

[58]. The column has unit thickness, and material properties are taken as 610E   and 0  . The column is 

modeled with 5N N  meshes ( N  2, 4, 8 and 16) of the MITC3+ and strain-smoothed MITC3+ shell elements, 

and a 20 100  mesh of the MITC9 shell elements to obtain the reference solutions.  

 

In Figs. 5.24 and 5.25, we depict the load-displacement curves measured at point A with increasing the number 

of element layers N  ( N  2, 4, 8 and 16). In Fig. 5.26, we compare the final displacements at point A for the 

various N  . The deformed configurations at load levels max0.5P P   and maxP   obtained using the MITC3+, 

strain-smoothed MITC3+ and MITC9 shell elements are shown in Fig. 5.27. The von-Mises distributions for the 

element considered are depicted in Fig. 5.28. The solutions calculated using the strain-smoothed MITC3+ shell 

element agree very well with the reference solutions. In Fig. 5.29, we compare the total number of iterations to 

obtain the converged solutions for the MITC3+ and strain-smoothed MITC3+ shell elements for the various N . 

Both shell elements have similar iteration numbers.  
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5.2.6.  Pull out of a free cylindrical shell  

 

We last consider a free cylindrical shell pulled out by a pair of point loads 4
max 4 10P    at its center points as 

shown in Fig. 5.30 [62,70]. The shell has a thickness of 0.094h  , and the Young’s modulus and Poisson’s ratio 

are taken as 71.05 10E    and 0.3125  , respectively. We only model one-eighth of the shell considering its 

symmetry, and the corresponding boundary conditions are given as: 0w     along AB  , 0v     along 

AC  and 0u    along CD . The solutions are obtained using a 12 12  mesh of the MITC3+ and strain-

smoothed MITC3+ shell elements. The reference solutions are obtained using a 32 32  mesh of the MITC9 shell 

elements.  

 

The load–displacement curves of the shell evaluated at points C  and D  are given in Fig. 5.31, and the deformed 

configurations at load levels max / 3P P  and maxP  obtained using the strain-smoothed MITC3+ shell element 

are shown in Fig. 5.32. The strain-smoothed MITC3+ gives much accurate solutions compared with the MITC3+ 

shell element. 
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Table 5.2. Relative errors in the displacement ( / 100ref h refw w w   ) at point C   for each load step for the 

Scordelis-Lo roof problem. 

Load step 
Relative error (%) Reference 

solution MITC3+ Smoothed MITC3+  

1  3.647  1.414  -0.845  

2  2.974  1.233  -1.292  

3  2.401  1.009  -1.657  

4  10.183  0.615  -2.464  

5  9.461  1.679  -3.393  

6  9.657  1.655  -4.223  

7  9.233  1.216  -4.910  

8  8.646  0.763  -5.440  

9  8.225  0.454  -5.846  

10  7.774  0.290  -6.169  

 

 

 

 

Table 5.3. Relative errors in the displacement ( / 100ref h refv v v   ) at point D   for each load step for the 

Scordelis-Lo roof problem. 

Load step 
Relative error (%) Reference 

solution MITC3+ Smoothed MITC3+  

1  5.534  2.743  -0.845  

2  4.625  5.172  -1.292  

3  6.098  9.000  -1.657  

4  47.175  2.587  -2.464  

5  27.392  5.398  -3.393  

6  25.779  4.829  -4.223  

7  25.078  3.484  -4.910  

8  23.257  2.341  -5.440  

9  21.874  1.542  -5.846  

10  21.190  1.081  -6.169  
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Table 5.4. The number of iterations that the Newton-Raphson method to converge for each load step for the 

cantilever beam subjected to a tip moment.  

Load 
step 

MITC3+ 
Smoothed  
MITC3+ 

MITC9 
Load 
step 

MITC3+ 
Smoothed  
MITC3+ 

MITC9 

1 3 4 4 11 4 7 7 

2 3 5 5 12 4 7 7 

3 3 5 5 13 4 7 7 

4 3 6 6 14 4 7 7 

5 3 6 6 15 4 7 7 

6 3 6 6 16 4 7 7 

7 3 6 6 17 4 7 7 

8 4 6 6 18 4 7 6 

9 4 7 7 19 4 7 6 

10 4 7 7 20 4 7 7 

Total iteration number 73 128 126 

 

 

 

 

Table 5.5. Relative errors in the final displacement ( / 100ref h refv v v  ) at point A  for the column under a 

compressive load. 

N MITC3+ Smoothed MITC3+ 

2 96.607 6.077 

4 34.498 0.829 

8 8.649 0.105 

16 2.202 0.033 

Reference solution: 10.773refv    
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Fig. 5.6. Scordelis-Lo roof problem. 

 

 

 

 

 

 

Fig. 5.7. Convergence curves for the Scordelis-Lo roof problem. The bold line represents the optimal convergence 

rate. 
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Fig. 5.8. Computational efficiency curves for the Scordelis-Lo roof problem. The computation times are measured 

in seconds. 
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Fig. 5.9. Load-displacement curves ( Cw  and Dv ) for the Scordelis-Lo roof problem. 
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Fig. 5.10. Final deformed configuration of the Scordelis-Lo roof obtained using the strain-smoothed MITC3+ 

shell element. 

 

 

 

 

 

 

Fig. 5.11. Cantilever beam subjected to a tip moment, and regular and distorted 20 2  meshes. 
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Fig. 5.12. Load-displacement curves ( Au  and Av ) for the cantilever beam subjected to a tip moment when the 

regular mesh is used. 
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Fig. 5.13. Load-displacement curves ( Au  and Av ) for the cantilever beam subjected to a tip moment when the 

distorted mesh is used. 
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Fig. 5.14. Deformed configurations of the cantilever beam subjected to a tip moment at several load levels 

obtained using (a) regular 20 2   mesh of the MITC3+ elements, (b) regular 20 2   mesh of the strain-

smoothed MITC3+ elements and (c) regular 40 4  mesh of the MITC9 shell elements (reference). 
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Fig. 5.15. The cumulative number of iterations that the Newton-Raphson method to converge for the cantilever 

beam subjected to a tip moment. 

 

 

 

 

 

 

Fig. 5.16. Cantilever plate subjected to an end shear force. 
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Fig. 5.17. Load-displacement curves ( Aw ) for the cantilever plate subjected to an end shear force. 

 

 

 

 

 

 

Fig. 5.18. Deformed configurations of the cantilever plate subjected to an end shear force at several load levels 

obtained using the strain-smoothed MITC3+ shell element. 
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Fig. 5.19. The cumulative number of iterations that the Newton-Raphson method to converge for the cantilever 

plate subjected to an end shear force. 

 

 

 

 

 

 

Fig. 5.20. Slit annular plate subjected to a lifting line force. 
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Fig. 5.21. Load-displacement curves ( Bw  and Cw ) for the slit annular plate subjected to a lifting line force. 
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Fig. 5.22. Final deformed configurations of the slit annular plate subjected to a lifting line force obtained using (a) 

6 30   mesh of the MITC3+ elements, (b) 6 30   mesh of the strain-smoothed MITC3+ elements and (c) 

12 60  mesh of the MITC9 shell elements (reference). 
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Fig. 5.23. Column under a compressive load. 
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Fig. 5.24. Load-displacement curves ( Au ) for the column under a compressive load with increasing the number 

of element layers N  ( N  2, 4, 8 and 16). 
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Fig. 5.25. Load-displacement curves ( Av ) for the column under a compressive load with increasing the number 

of element layers N  ( N  2, 4, 8 and 16). 
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Fig. 5.26. Normalized final displacements ( /h refv v ) at point A for the column under a compressive load for the 

various number of element layers N  ( N  2, 4, 8 and 16). 

 

 

 

 

 

 

Fig. 5.27. Deformed configurations of the column under a compressive load at several load levels obtained using 

(a) 2 10  mesh of the MITC3+ elements, (b) 2 10  mesh of the strain-smoothed MITC3+ elements and (c) 

20 100  mesh of the MITC9 elements (reference). 
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Fig. 5.28. von Mises stress distributions of the column under a compressive load at the final load level obtained 

using 5N N   meshes ( N   4, 8 and 16) of the MITC3+ and strain-smoothed MITC3+ shell elements. The 

reference distribution is obtained using a 20 100  mesh of the MITC9 elements. 
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Fig. 5.29. The total number of iterations to obtain converged solutions for the column under a compressive load 

for the various number of element layers N  ( N  2, 4, 8 and 16). 

 

 

 

 

 

Fig. 5.30. Pull-out of a free cylindrical shell. 
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Fig. 5.31. Load-displacement curves ( Cw  and Dw ) for the pull-out of a free cylindrical shell. 

 

 

Fig. 5.32. Deformed configurations of the pull-out of a free cylindrical shell at several load levels obtained using 

the strain-smoothed MITC3+ shell element. 
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Chapter 6.  A variational framework for the strain-smoothed element 

method 

 

 Introduction   

 

For several decades, substantial efforts have been made to the development of low-order finite elements which 

exhibit high accuracy in coarse meshes. One major attempt is the assumed strain methods in which the standard 

discrete gradient operator is replaced with an assumed form [42,44,48]. The assumed strain methods effectively 

alleviate locking in finite elements and can be formulated within the framework of the Hu-Washizu variational 

principle [45]. The smoothed finite element methods (S-FEMs) are also good examples. The S-FEMs construct 

smoothing domains based on edges, nodes, or cells, and piecewise constant strain fields are constructed for the 

smoothing domains. They improve the performance of finite elements without using additional DOFs through 

strain smoothing. Theoretical studies on the S-FEMs were conducted, and a variational framework was established 

based on the Hellinger-Reissner principle [71,72].  

 

In the previous chapters, the properties of the strain-smoothed element (SSE) method have been verified by 

numerical means. In this chapter, a theoretical framework for the SSE method is established. A variational 

principle for the SSE method is constructed and convergence and stability analyses are performed based on the 

defined variational principle.  

 

The displacement variational formulation for linear elasticity is reviewed in Sect. 6.2. In Sect. 6.3, we introduce 

the SSE method and show that the method can be interpreted using projection operators. The variational 

framework for the SSE method is established in Sect. 6.4. In Sect. 6.5, the convergence theory for the SSE method 

based on the variational principle established in Sect. 6.4 is presented.  

 

 

6.1.1.  Contribution 

 

Research to establish a variational framework for the strain-smoothed method has been conducted with Dr. Jongho 

Park, a postdoctoral researcher at the Department of Mathematical Sciences, KAIST.     

 

 

 Linear elasticity  

 

Let 2    be a bounded and polygonal domain representing a two-dimensional linear elastic solid. The 

boundary   of   consists of two parts D   and N D    . The displacement field u  and the 

stress field σ  satisfy the Dirichlet boundary condition 
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u u  on D  (6.2.1)

and the Neumann boundary condition 

Aσ t  on N  (6.2.2)

for some prescribed displacement u  and traction t , respectively. In (6.2.2), the matrix A  is given by 

1 2

2 1

0

0

n n

n n

 
  
 

A , 

where  1 2

T
n nn  is the unit outward normal to N . 

 

In the following, we summarize three governing equations for linear elasticity. Let ε  denote the strain field. The 

compatibility relation between the displacement u  and the strain ε  reads as  

ε = Bu  in  , (6.2.3)

Where B  is a matrix of differential operators given by 

0

0

x

y

y x

 
 
 
 

   
  
   

B . 

 

The stress-strain constitutive equation is written as follows: 

σ Dε  in  , (6.2.4)

where D  is a 3 3  symmetric and positive definite matrix which relies on a material composing the elastic 

solid. We assume that the material is uniform, i.e., D  is constant in  . 

 

The equilibrium equation is stated as 

div  σ b 0  in  , (6.2.5)

where b  is a body force. 

 

Combining (6.2.3), (6.2.4), and (6.2.5) with the boundary conditions (6.2.1) and (6.2.2), we have the following 

displacement formulation for linear elasticity: 

div( ) DBu b  in  , 

u u  on D , Aσ t  on N . 
(6.2.6)

In what follows, we set  u 0  in (6.2.6) for the sake of convenience. 

 

Next, we consider the weak formulation of (6.2.6), i.e., the displacement variational formulation for linear 

elasticity. Let V  be a space of kinematically admissible displacement fields defined as 

 1 2( ( )) :  on DV H    u u 0 . 
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A space W  of strain and stress fields is given by 

2 3( ( ))W L  . 

 

A bilinear form ( , )a    on V  is defined by 

( , ) [ ] : [ ]a d


 u v Dε u ε v , , Vu v , (6.2.7)

where [ ]ε u = Bu  and the symbol : denotes the Euclidean inner product in 3 . Note that for Vu , we have 

[ ] Wε u . Clearly, ( , )a    is symmetric, continuous, and coercive. 

 

Let f  denote a continuous linear functional on V  given by 

( )
N

f d d
 

      u b u t u , Vu . 

 

It is well-known that (see, e.g., [73]) a solution of (6.2.6) is characterized by the following variational problem: 

find Vu  such that 

( , ) ( )a fu v v , V v . (6.2.8)

 

By the Lax-Milgram theorem (see, e.g., [73, Theorem 2.7.7]), the problem (6.2.8) has a unique solution and it 

solves the following quadratic optimization problem: 

1
min ( , ) ( )

2V
a f



  
 u

u u u . (6.2.9)

 

 

 The strain-smoothed element method  

 

This section is devoted to a brief introduction to the SSE method for solving (6.2.8). We closely follow the 

explanation presented in [22] for the method. In addition, we present an alternative view to the SSE method that 

the method can be described in terms of orthogonal projection operators defined on particular meshes. We note 

that similar discussions were made in [72] for the S-FEMs. 

 

For a subregion K  of   and a nonnegative integer n , let ( )nP K  denote the collection of all polynomials of 

degree less than or equal to n  on K . Let h  be a triangulation of   with the maximum element diameter 

0h  .  

 

We set the discrete displacement space hV V  as the collection of the continuous and piecewise linear functions 

on h  satisfying the homogeneous Dirichlet boundary condition on D , i.e., 

 2
1: ( ( ))  h hT

V V P T T    u u  . 
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We define the discrete strain/stress space hW  associated to the subdivision h  by 

 2
0: ( ( ))  h hT

W W P T T    ε ε  . 

It is clear that [ ]ε u = Bu  and [ ]σ u = DBu  belong to hW  when hVu . 

 

The standard FEM for linear elasticity in (6.2.8) solves the Galerkin approximation of (6.2.8) defined on hV : find 

h hVu  such that 

( , ) ( )ha fu v v , hV v , 

where the bilinear form ( , ) :  h ha V V     was given in (6.2.7). In the strain-smoothing approach [22], we use 

an alternative bilinear form ( , ) :  h ha V V     made by replacing [ ]ε u  in (6.2.7) by an appropriate smoothed 

strain field [ ]ε u , i.e., 

( , ) [ ] : [ ]a d


 u v Dε u ε v , , hVu v . (6.3.1)

 

In the following, we present how to construct the SSE smoothing operator :  h h hS W W   which maps a given 

strain field hWε  to the corresponding smoothed strain field hWε , where 

 3
1: ( ( ))  h hT

W W P T T    ε ε  . 

 

That is, the resulting hSε ε  shall be piecewise linear. Take any element hT  . We assume for simplicity that 

T  is an interior element, i.e., there exist three elements 1T , 2T , and 3T  in h  adjacent to T  as shown in Fig. 

6.1(a); for the case of exterior elements, see [22]. 

 

Intermediate smoothed strains ( ) 3ˆ i ε  , i  1, 2, 3, are defined by 

( ) 1
ˆ

i

i

T T
i

d
T T

 ε ε


. (6.3.2)

 

Using the intermediate smoothed strains in (6.3.2), we assign the pointwise values of ε   at three Gauss 

integration points ( 1G , 2G  and 3G  in Fig. 6.2) of T  in the following manner: 

( ) ( )1
ˆ ˆ( ) ( )

2
j kGi  ε ε ε , (6.3.3)

where i   1, 2, 3 and { , , } {1,2,3}i j k   . From (6.3.3), the smoothed strain field ε   in (6.3.1) is uniquely 

determined on T  by linear interpolation. 

 

  



106 

 

Finally, we have 

( , ) [ ] : [ ]h ha S S d


 u v D ε u ε v , , hVu v  (6.3.4)

and solve the following problem: find h hVu  such that 

( , ) ( )ha fu v v , hV v . (6.3.5)

 

 

6.3.1.  An alternative view: twice-projected strain 

 

We present an alternative derivation of the SSE method which will be useful in the convergence analysis of the 

method. An alternative smoothed strain field ε  defined in the following is different from the one explained above, 

but eventually give an equivalent formulation to (6.3.5). 

 

We construct two subdivisions 1,h  and 2,h  of   other than h  as follows. For two neighboring elements 

1T  and 2T , let e  be the edge shared by them. Then we consider the quadrilateral whose vertices are the endpoints 

of e  and the centroids of 1T , 2T . We define 1,h  as the collection of such quadrilaterals. In order to construct 

2,h , we partition each element of h  into three pieces by joining the centroid and the midpoints of element 

edges. Then 2,h  is defined as the collection of such pieces. Fig. 6.3 displays h , 1,h , and 2,h . For k  1, 2, 

let ,k hW W   be the collection of piecewise constant functions on ,k h  , i.e., 

 3
, 0 ,: ( ( ))  k h k hT

W W P T T    ε ε  . 

 

The piecewise smoothing operator , ,:  k h k hP W W  is defined by 

,

1
( )( )k h T
P x d

T
 ε ε , Wε , ,k hT  , x T . (6.3.6)

 

It was observed in [72] that piecewise smoothing operators of the form (6.3.6) are in fact orthogonal projectors; 

rigorous statements are given in the following lemmas. 

 

Lemma 3.1. Let A  be a 3 3  matrix. For k  1, 2, the piecewise smoothing operator ,k hP  commutes with A , 

i.e., 

, ,( )k h k hP PAε A ε , Wε . 

Proof. It is elementary.  
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Lemma 3.2. For k  1, 2, the piecewise smoothing operator ,k hP  is the 2 3( ( ))L  -orthogonal projection onto 

,k hW , i.e., 2
, ,k h k hP P  and  

, ,: :k h k hP d P d
 

   ε δ ε δ , , Wε δ . 

Proof. See [72, Remarks 2 and 4]. 

 

Now, we set 2, 1,h hP Pε ε  in (6.3.1). That is, we have 

2, 1, 2, 1,( , ) [ ] : [ ]h h h ha P P P P d


 u v D ε u ε v , , hVu v . (6.3.7)

 

We note that 2, 1, 2,h h hP P W ε ε  in (6.3.7) while its counterpart hSε ε  belongs to hW . Even though (6.3.4) and 

(6.3.7) use different smoothed strain fields to each other, one can prove that they result the same bilinear form 

( , )a   .   

 

Theorem 3.3. Two bilinear forms in (6.3.4) and (6.3.7) are identical, i.e., it satisfies that 

2, 1, 2, 1,[ ] : [ ] [ ] : [ ]h h h h h hS S d P P P P d
 

   D ε u ε v D ε u ε v , , hVu v . 

Proof. Thanks to the polarization identity [74, Theorem 0.19], it suffices to show that 

2, 1, 2, 1,[ ] : [ ] [ ] : [ ]h h h h h hT T
S S d P P P P d   D ε u ε u D ε u ε u , 

for hVu   and hT   . We take any hVu   and write [ ]ε ε u  . Assume that T   is an interior element; the 

exterior case can be treated in similarly. Let iT , i  1, 2, 3 be neighboring elements of T  in h ; see Fig. 6.1(a). 

We denote the values of ε  on the elements T  and iT  by Tε  and 
iTε , respectively. 

Since three-point Gaussian integration is exact for linear functions, we have 

3

1

: ( )( ) : ( )( )
3h h h hT

i

T
S S d S Gi S Gi



   D ε ε D ε ε , 

where Gaussian points 1G , 2G  and 3G  are given in Fig. 6.2. By (6.3.2) and (6.3.3), ( )( )hS Giε  is computed 

as follows: 

( ) ( )1
ˆ ˆ( )( ) ( )

2

1 1 1

2

1
,

2

( )( )

( )( 1)

j k

j k

j k
h

Th T T T
kj

T j T T k T

kj

h

S Gi

d d
T TT T

T T T T

TT

S Gi

G
T

S
T

 

 
   
 
 
  
  
  

 

ε ε ε

ε ε

ε ε ε ε

ε

ε

 
 

where { , , } {1,2,3}i j k  . 

On the other hand, let 1,iT  and 2,iT , i  1, 2, 3 be the subregions in 1,h  and 2,h  that overlap with T ; see Fig. 

6.1(b). 
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Since 2, 1,h hP P ε  is piecewise constant on 2,h , we have 

2,

2, 2,

3

2, 1, 2, 1, 2, 1, 2, 1,
1

3

2, 12, 1, 2 , 2, 1,, 1,
1

: : ,

( ) : ( ) ,:
3

i

i ih h h hT

hh h h h h h hT T
i

h h T h h T
i

P P P P d P P

PP P P

P P d

T
d P P PP





 



 

 

D

D ε ε

ε ε D ε ε

D ε ε

 

where 
2,2, 1,( )

ih h TP P ε   denotes the value of 2, 1,h hP P ε   on 2,iT  . Noting that 1,hP   and 2,hP   are piecewise averaging 

operators, it follows that 

,

2

2, 1, 1

,

2, 1, 1, 1, 1, 2 2

2, 1,

, 1, ,

1, 1,

1
( ) (( ) ( ) ), ( )

2

1
, ( : : )( )

2

i j k

j k

i

h h T h T h T j i k i

T j T T k T
i i i i

kj

h h TP P

P P P P T T T T

T T T T
T T T T T T

T TT T

  

  
   
  

ε ε ε

ε
ε

ε ε ε





 

 
 

where { , , } {1,2,3}i j k   and 
1,1,( )

ih TP ε  is the value of 1,hP ε  on 1,iT . This completes the proof. 

 

As a direct consequence of Theorem 3.3, two bilinear forms (6.3.4) and (6.3.7) provide the same displacement 

solution h hVu   when they are adopted for (6.3.5). On the other hand, they have different distributions for 

smoothed strain fields; (6.3.7) has piecewise constant fields within an element while (6.3.4) has linear field. We 

close this section by presenting the uniqueness theorem for the solution of the SSE method. 

 

Proposition 3.4. The SSE method (6.3.5) has a unique solution. 

Proof. The coercivity of the bilinear form ( , )a    in (6.3.7) can be proven by the same argument as [75, Sect. 3.9]. 

Then the uniqueness of a solution of (6.3.5) is straightforward by Theorem 3.3 and the Lax-Milgram theorem [73, 

Theorem 2.7.7]. 

 

 

 A variational principle for the strain-smoothed element method 

 

In this section, we construct a variational principle for linear elasticity with respect to a single displacement field, 

two stress fields, and two strain fields. Then we show that the SSE method interpreted by the bilinear form in 

(6.3.7) is a Galerkin approximation of the constructed variational principle. It resembles the fact that S-FEM 

satisfies a modified Hellinger-Reissner variational principle [72, Sect. 4]. Throughout this section, let the index 

k  denote either 1 or 2. 

 

The starting point is the minimization problem (6.2.9). We set kW W . Consider two independent strain fields 

1 1Wε  and 2 2Wε . It is obvious that (6.2.9) is equivalent to the following constrained minimization problem: 

1 1 2 2
2 2, ,

1
min : ( )

2V W W
d f

  

  
 u ε ε

Dε ε u  subject to 1 ε Bu  and 1 2ε ε . (6.4.1)
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In (6.4.1), we use the method of Lagrange multipliers in order to deal with the constraints 1 ε Bu  and 1 2ε ε . 

Then we obtain the following saddle point problem: 

1 1 2 2 1 1 2 2
2 2 1 1 2 1 2

, , ,

1
min max : ( ) : ( ) : ( )

2V W W W W
d f d d

      

       
   u ε ε σ σ

Dε ε u σ Bu ε σ ε ε ,  (6.4.2)

where 1 1Wσ  and 2 2Wσ  are the Lagrange multipliers corresponding to the constraints 1 ε Bu  and 1 2ε ε , 

respectively.  

 

Equivalently, we have the following variational problem: find 1 2 1 2 1 2 1 2( , , , , ) V W W W W    u ε ε σ σ  such that 

1 1 2 1 2 2 2: ( ): ( ) : ( )d d d f
  

         σ Bv σ σ δ Dε σ δ v , V v , 1 1Wδ , 2 2Wδ , 

1 1 2 1 2: ( ) : ( ) 0d d
 

     τ Bu ε τ ε ε , 1 1W τ , 2 2Wτ . 

 

(6.4.3)

 

The existence and the uniqueness of a solution of the variational principle (6.4.3) is summarized in Proposition 

4.1. We postpone the proof of Proposition 4.1 until Sect. 6.5; a more general statement will be given in Proposition 

5.1. 

 

Proposition 4.1. The variational problem (6.4.3) has a unique solution 1 2 1 2 1 2 1 2( , , , , ) V W W W W    u ε ε σ σ . 

Moreover, u  solves (6.2.8) and the following relations hold: 

1 2 ε ε Bu , 1 2 σ σ DBu . 

 

Remark 4.2. From Proposition 4.1, we observe that the Lagrange multipliers 1σ  and 2σ  introduced in (6.4.2) in 

fact play a role of the strain field. 

 

Remark 4.3. Elimination of two variables 2ε  and 2σ  in (6.4.2) yields 

1 1 1 1
1 1 1 1,

1
min max : ( ) : ( )

2V W W
d f d

   

     
  u ε σ

Dε ε u σ Bu ε , 

which is the Hu-Washizu variational principle. In this sense, we can say that (6.4.3) generalizes the Hu–Washizu 

variational principle. 

 

 

6.4.1.  Galerkin approximation  

 

Now, we consider a Galerkin approximation of (6.4.3) made by replacing the spaces V  and kW  by their finite-

dimensional subspaces hV V  and ,k h kW W , respectively (see Sect. 6.3 for the definitions of hV  and ,k hW ): 

find 1, 2, 1, 2, 1, 2, 1, 2,( , , , , )h h h h h h h h h hV W W W W    u ε ε σ σ  such that 

  



110 

 

1, 1, 2, 1 2, 2, 2: ( ) : ( ) : ( )h h h h hd d d f
  

         σ Bv σ σ δ Dε σ δ v ,  

hV v , 1 1,hWδ , 2 2,hWδ , 
 (6.4.4a)

1 1, 2 1, 2,: ( ) : ( ) 0h h h hd d
 

      τ Bu ε τ ε ε , 1 1,hW τ , 2 2,hWτ .  (6.4.4b)

 

We take v 0  and 2 δ 0  in (6.4.4a). Then we have 

1, 2, 1( ) : 0h h d

    σ σ δ , 1 1,hW δ , 

which implies that 1,hσ  is the 2 3( ( ))L  -orthogonal projection of 2,hσ  onto 1,hW . It follows by Lemma 3.2 that 

1, 1, 2,h h hPσ σ . 

 

Similarly, it is straightforward to verify that 

2, 2,h hσ Dε   

from (6.4.4a) and that  

1, 1, ( )h h hPε Bu , 2, 2, 1,h h hPε ε  

from (6.4.4b). 

 

Using the above relations and Lemmas 3.1 and 3.2, we readily get 

1, 1, 2, 1, 1, 2, 2, 1,( ) ( ( ))h h h h h h h h h hP P P P P P P σ D Bu D Bu . 

 

Substituting 1 δ 0  and 2 δ 0  in (6.4.4a) yields  

2, 1, 2, 1,( ) : ( ) ( )h h h h hP P P P d f


  D Bu Bv v , hV v ,  

which is equivalent to (6.3.5) with the bilinear form ( , )a    given in (6.3.7). Therefore, the SSE method can be 

derived from the variational principle (6.4.3).  

 

We summarize the above discussion in the following theorem. Note that the uniqueness of the solution of the SSE 

method was presented in Proposition 3.4. 

 

Theorem 4.3. The variational problem (6.4.4) has a unique solution 1, 2, 1, 2,( , , , )h h h h hu ε ε σ σ

1, 2, 1, 2,h h h h hV W W W W      which satisfies that 

1, 1, ( )h h hPε Bu , 2, 2, 1, ( )h h h hP Pε Bu , 1, 1, 2, 2, 1,( ( ))h h h h h hP P P Pσ D Bu , 2, 2, 1, ( )h h h hP Pσ D Bu , 

and that hu  is a unique solution of (6.3.5) with the bilinear form ( , )a    given in (6.3.7). 
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 Convergence analysis 

 

In this section, we present a convergence theory for the SSE method based on the variational formulation (6.4.3). 

For the sake of presenting a unified convergence analysis for the standard FEM, S-FEM, and SSE method, the 

convergence theory established in this section is built upon an abstract mixed problem which generalizes (6.4.3). 

 

Let X , Y  be two Hilbert spaces equipped with inner products ,
X

  , ,
Y

   and their induced norms 
X

 , 

Y
  , respectively. We set X Y Y      and Y Y    . Let :D Y Y   be a continuous and symmetric 

positive definite linear operator so that 

1/2
,

Y Y
D   , Y  , 

becomes a norm on Y .  

 

In this case, the dual norm *Y
  of 

Y
  is given as follows: 

*

1/21

{0}

,
sup ,Y

Y YY
Y

D


 
  





 



, Y  . 

 

We additionally assume that there is a continuous linear operator :B X Y  such that 

X Y
u Bu , u X  

becomes a norm on X . 

 

The following norms on the spaces   and   are defined: 

2 2 2 2

1 2X Y Y
U u  


   , 1 2( , , )U u    , 

2 2 2

1 2Y Y
P  


  , 1 2( , )P    ,         

* * *

2 2 2

1 2Y Y
Q  


  , 1 2( , )Q    . 

         

We also define a seminorm 


  on   as follows: 

2 Y
U 


 , 1 2( , , )U u    . 

 

Let D:  be a linear operator given by 

1 1 2( , )U DBu     D , 1 2( , , )U u    . 

 

In terms of the operator D , we define a bilinear form ( , ) :B   :  as follows: 

1 1 2 1 2( , ) , , ,
Y Y

B V Q V Q Bv    


    D , 1 2( , , )V v    , 1 2( , )Q    . 
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It is straightforward to check that the kernel Z  of ( , )B    defined by 

 : ( , ) 0,  Z V B V Q Q    ,  (6.5.1)

is characterized as follows: 

 ( , , ) :  Z v Bv Bv v X   .  (6.5.2)

 

The seminorm 


  is positive definite on Z  since 

2 2 21

3Y
U Bu U

 
  , ( , , )U U u Bu Bu Z   .  (6.5.3)

In other words, 


  becomes a norm on Z . 

 

If we define a bilinear form ( , ) :A     by  

2 2( , ) ,
Y

A U V D  , 1 2( , , )U u   , 1 2( , , )V v    , 

then it is continuous and coercive with respect to 


  since 

2 2 2 2( , ) ,
Y Y Y

A U V D U V   
 

     (6.5.4)

and 

2 2

2( , )
Y

A U U U


    (6.5.5)

for any 1 2( , , )U u   , 1 2( , , )V v    .  

 

Now, we are ready to state the following abstract variational problem to find U   and P  such that  

( , ) ( , ) ( )A U V B V P F V  , V  ,  (6.5.6a)

0( ), ,) (BA UV QU   ,    Q  ,  (6.5.6b)

where *F   satisfies 

( ) ( )F V f v , 1 2( , , )V v    , 

for some *f X . The existence and uniqueness of a solution of (6.5.6) can be shown as follows. 

 

Proposition 5.1. The variational problem (6.5.6) has a unique solution ( , )U P  . Moreover, the unique 

solution ( , )U P  is characterized by 

( , , )U u Bu Bu , ( , )P DBu DBu , 

where u X  is a unique solution of the variational problem 

, ( )
Y

DBu Bv f v , v X  .  (6.5.7)

Proof. Note that the existence and uniqueness of a solution of (6.5.7) are direct consequences of the Lax-Milgram 

theorem [73, Theorem 2.7.7]. The equation (6.5.6b) implies that U Z . By (6.5.6a), U  can be determined by 

the following variational problem: find U Z  such that 



113 

 

( , ) ( )A U V F V , V Z  .  (6.5.8)

Since 


  is a norm on Z  (see (6.5.3)), the existence and uniqueness of U  are guaranteed by (6.5.4), (6.5.5), 

and the Lax-Milgram theorem applied to (6.5.8). By (6.5.2), we have ( , , )U u Bu Bu  for some u X . Writing 

( , , )V v Bv Bv  for v X , the problem (6.5.8) reduces to (6.5.7). Therefore, u  is a unique solution of (6.5.7). 

 

Next, we characterize the dual solution P . We write 1 2( , , )V v    and 1 2( , )P    in (6.5.6a). Substituting 

0v   and 2 0   in (6.5.6a) yields 

1 2 1, 0
Y

    , 1 Y  ,  

which is equivalent to 1 2   . On the other hand, by substituting ( , , )U u Bu Bu  , 0v   , and 1 0    in 

(6.5.6a), we have 

2 2, 0
Y

DBu    , 2 Y  . 

That is, we get 2 DBu  . Therefore, we conclude that 1 2 DBu   .  

 

The abstract problem (6.5.6) generalizes several important elliptic partial differential equations. If we set 

 1( ) : 0 on DX u H u     , 2 ( )Y L  , D I , B    

in (6.5.6), then (6.5.7) becomes  

( )u v d f v

    , v X  , 

which is the weak formulation for the Poisson's equation with a mixed boundary condition. On the other hand, if 

we set 

X V , Y W , D  D , B  B ,  (6.5.9)

where V  , W  , D  , and B   were defined in Sect. 6.2, then (6.5.6) and (6.5.7) reduce to (6.4.3) and (6.2.8), 

respectively. Therefore, linear elasticity is an instance of (6.5.6). In this sense, Proposition 5.1 generalizes 

Proposition 4.1. 

 

Now, we present a Galerkin approximation of (6.5.6) which generalizes (6.4.4). Let hX X  , 1,hY Y  , and 

2,hY Y . For 1, 2,h h h hX Y Y     and 1, 2,h h hY Y   , we consider a variational problem to find h hU   and 

h hP   such that 

( , ) ( , ) ( )h hA U V B V P F V  , hV  ,  (6.5.10a)

( , ) 0( , )h hB UA V QU   ,    hQ  .  (6.5.10b)

 

Similarly to (6.5.1), we define 

 : ( , ) 0,  h h hZ V B V Q Q    .  (6.5.11)

Note that hZ Z  in general.  
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We state an assumption on hZ  which is necessary to obtain a bound for the error hU U . 

 

Assumption 5.2. The seminorm 


  is positive definite on hZ Z , i.e., there exists a positive constant   such 

that 

U U
 
 , hU Z Z  . 

 

Thanks to (6.5.3), it is enough to prove the positive definiteness of 


  on hZ  in order to verify Assumption 5.2 

in applications. Under Assumption 5.2, the primal solution hU  of (6.5.10) is uniquely determined since it solves 

( , ) ( )hA U V F V , hV Z  .  (6.5.12)

 

Moreover, one can prove the following continuity condition of the bilinear form ( , )B    with respect to 


 . 

 

Lemma 5.3. Suppose that Assumption 5.2 holds. Then there exist a positive constant BC  such that 

*( , ) BB V Q C V Q
 

 , V  , P . 

Proof. First, we show that the operator D  is bounded. For any 1 2( , , )U u    , it follows that 

2

2

2 2 2

1 1 2

2 2 2 2

1 1

2 2 2

1 2

2

2

2

2( ) 2( )

2 4 2

4 .

Y Y

Y Y Y Y

X Y Y

U Bu

Bu

u

U

U

U U

  

  

 










   

   

  



D

D

D

D

  (6.5.13)

Using (6.5.13), one can obtain the desired result with 2 /BC   as follows: for V   and Q , we have 

*

*

*

(5.13)

( , )

( ,

( , ) ,

2

2
,

)

( , )

B V Q

B V Q

B

B

V Q V Q

Vv Q

Q

V Q

QV V




 

 

 









D

D

 

where we used Assumption 5.2 in the last inequality. 

 

Motivated by [73, Theorem 12.3.7], we have the following result on a relation between primal solutions of the 

variational problem (6.5.6) and its Galerkin approximation (6.5.10). 

 

Theorem 5.4. Suppose that Assumption 5.2 holds. Let ( , )U P   be a unique solution of (6.5.6), and let 

h hU   be a unique primal solution of (6.5.10). Then we have 
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*2 inf inf
h h

h B
V Z Q

U U U V C P Q
   

     , 

where BC  was defined in Lemma 5.3. 

Proof. Note that U  and hU  solve (6.5.8) and (6.5.12), respectively. Thanks to (6.5.4), (6.5.5), and Assumption 

5.2, one can apply Theorem Appendix A.1 to obtain 

{0}

( , )
2 inf sup

h h

h
h V Z W Z

A U U W
U U U V

W  



   



.  (6.5.14)

On the other hand, for any hW Z  and hQ , we have 

*

(5.12)

(5.6 )

(5.11)

( , ) ( , ) ( )

( , )

( , )

,

( , )

( , )

( , )

h

a

h

B

h

h

A

Q

A U U W

A

U U W A U W F W

B W P

B W P

C W P Q

U U W

A U U W
 

 







 





 

  (6.5.15)

where the last inequality is due to Lemma 5.3. Combining (6.5.14) and (6.5.15) yields the desired result. 

 

Like that linear elasticity is an instance of the continuous problem (6.5.6), various FEMs such as the standard 

FEM, S-FEM, and SSE method for linear elasticity can be written in the form of (6.5.10). We present how the 

convergence results of those methods can be obtained in a unified fashion from Theorem 5.4. In what follows, we 

assume the setting (6.5.9). Then the norms 
Y

  and *Y
  become the energy norms for strain and stress fields, 

respectively, i.e.,  

2
:

Y
d


 ε Dε ε , Wε , 

and 

*

2 1:
Y

d


 σ σ D σ , Wσ . 

 

 

6.5.1.  Standard finite element method  

 

First, we set h hX V  and 1, 2,h h hY Y W   in (6.5.10), where the spaces hV  and hW  were defined in Sect. 6.3. 

Since the meshes associated to hV  and hW  agree, it satisfies that hWBv  for all hVv . Accordingly, the set 

hZ  defined in (6.5.11) is characterized by 

 ( , , ) :h h h h hZ V W W V    v Bv Bv v . 

 

In addition, the variational problem (6.5.12) reduces to the standard FEM formulation 

[ ] : [ ] ( )h d f


  Dε u ε v v , hV v ,  (6.5.16)

where [ ] ε v Bv . 



116 

 

For ( , , ) hZ V v Bv Bv , one can easily verify that 

2 2 2
3 [ ] 3

Y 
 V ε v V , 

which implies that Assumption 5.2 holds. Therefore, one can obtain an error estimate for (6.5.16) as a corollary 

of Theorem 5.4 as follows. 

 

Corollary 5.5. Let Vu  and h hVu  solve (6.2.8) and (6.5.16), respectively. Then we have 

*[ ] [ ] 2inf [ ] [ ] 2 inf [ ]
h h

h BY Y YV W
C

 
    

v τ
ε u ε u ε u ε v σ u τ , 

where [ ] ε v Bv , [ ] σ v DBv  for hVv  and BC  was defined in Assumption 5.2.  

 

 

6.5.2.  Edge-based smoothed finite element method  

 

Next, let h hX V , 1, 2, 1,h h hY Y W   in (6.5.10), where the spaces 1,hW  was defined in Sect. 6.3.1. By a similar 

argument as Sect. 6.4.1, we get 

 1, 1, 1, 1,( , ( ), ( )) :h h h h h h hZ P P V W W V    v Bv Bv v . 

 

In this case, the variational problem (6.5.12) becomes the following: find ˆ h hVu  such that 

ˆ ˆ ˆ[ ] : [ ] ( )h d f


  Dε u ε v v , hV v ,  (6.5.17)

where 1,ˆ[ ] ( )hPε v Bv . It was shown in [72] that (6.5.17) is a formulation for the edge-based S-FEM [10]. 

 

In order to verify Assumption 5.2 for (6.5.17), we first observe that 

2 2 2ˆ[ ] 2 [ ]
Y Y

 V ε v ε v , 
2 2ˆ[ ]

Y
V ε v  

for 1, 1,( , ( ), ( ))h h hP P Z V v Bv Bv .  

 

Since it was shown in [75, Sect. 3.9] that there exists a positive constant C  such that 

ˆ[ ] [ ]
Y Y

Cε v ε v , hVv , 

it is clear that Assumption 5.2 holds.  

 

The following corollary summarizes the convergence property of (6.5.17) (cf. [72, Theorem~1]). 

 

Corollary 5.6. Let Vu  and ˆ h hVu  solve (6.2.8) and (6.5.17), respectively. Then we have 

*

1,ˆ
ˆ ˆ ˆ ˆ[ ] [ ] 2inf [ ] [ ] 2 inf [ ]

h h
h BY Y YV W

C
 

    
v τ

ε u ε u ε u ε v σ u τ , 

where [ ] ε v Bv , [ ] σ v DBv , 1,ˆ[ ] ( )hPε v Bv  for hVv , and BC  was defined in Assumption 5.2.  



117 

 

6.5.3.  Strain-smoothed finite element method  

 

In order to derive the SSE (6.3.5) from the abstract problem (6.5.10), we set h hX V , 1, 1,h hY W , and 2, 2,h hY W , 

where the space 2,hW  was defined in Sect. 6.3.1. Then the set hZ  is characterized by 

 1, 2, 1, 1, 2,( , ( ), ( )) :h h h h h h h hZ P P P V W W V    v Bv Bv v , 

and (6.5.12) is reduced to (6.3.5): find h hVu  such that 

[ ] : [ ] ( )h d f


  Dε u ε v v , hV v ,  (6.5.18)

where 2, 1,[ ] ( )h hP Pε v Bv .   

 

Similarly to the case of S-FEM, we have 

2 2 2 2
ˆ[ ] [ ] [ ]

Y Y Y
  V ε v ε v ε v , 

2 2
[ ]

Y
V ε v  

for 1, 2, 1,( , ( ), ( ))h h h hP P P Z V v Bv Bv .  

 

With the same argument as [75, Sect. 3.9], one can show without major difficulty that there exists a positive 

constant C  such that 

ˆ[ ] [ ]
Y Y

Cε v ε v , hVv . 

Hence, Assumption 5.2 holds for (6.5.18).  

 

Finally, we have the following convergence theorem for the SSE method.  

 

Corollary 5.8. Let Vu  and h hVu  solve (6.2.8) and (6.5.18), respectively. Then we have 

* *

1, 2,ˆ
ˆ[ ] [ ] 2inf [ ] [ ] inf [ ] inf [ ]

h h h
h B BY Y Y YV W W

C C
  

      
v τ τ

ε u ε u ε u ε v σ u τ σ u τ , 

where [ ] ε v Bv  , [ ] σ v DBv  , 1,ˆ[ ] ( )hPε v Bv  , 2, 1,[ ] ( )h hP Pε v Bv   for hVv  , and BC   was defined in 

Assumption 5.2.  
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Appendix A. Abstract convergence theory of nonconforming finite element methods 

 

In this appendix, we present an abstract convergence theory of nonconforming Galerkin methods. Let H  be a 

Hilbert space and let V , hV  be subspaces of H  such that hV V . Assume that 
H

  is a seminorm on H  

such that 
H

  is positive definite on hV V , i.e., 

0
H

u  , ( ) {0}hu V V  . 

 

Let ( , ) :a H H     be a bilinear form on H  which is continuous and coercive with respect to 
H

 , i.e., 

there exist two positive constants C  and   satisfying 

( , )
H H

a u v C u v ,  (A.1)

2
( , )

H
a u u u   (A.2)

for ,u v H . 

 

In Theorem Appendix A.1, we present an error estimate for the variational problem 

( , ) ( )a u v f v , v V   (A.3)

with respect to its nonconforming Galerkin approximation 

( , ) ( )ha u v f v , hv V ,  (A.4

where *f H . 

 

Theorem Appendix A.1. Let u V  and h hu V  solve (A.3) and (A.4), respectively. Then we have 

{0}

( , )1
1 inf sup

h h

h
h H Hv V w V

H

a u u wC
u u u v

w  

      
  

. 

Proof. One can easily obtain the desired result by following the argument in [73, Lemma 10.1.1]. 

 

Note that Theorem Appendix A.1 is written in terms of seminorm 
H

  while the existing standard results (see, 

e.g., [73,76]) are written in terms of norm. In this sense, Theorem Appendix A.1 is a generalization of the standard 

results. 
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Fig. 6.1. (a) Three neighboring elements 1T  , 2T   and 3T   of an interior element hT   . (b) 1,iT   and 2,iT  , 

1, 2, 3i   are the subregions in 1,h  and 2,h  that overlap with T , respectively. 

 

 

 

Fig. 6.2. Coordinate systems for the reference 3-node triangular element. Three Gauss integration points of the 

element are depicted by G1, G2, and G3. 

 

 

 

 

Fig. 6.3. Three subdivisions of the domain  : (a) h , (b) 1,h , and (c) 2,h . 
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Chapter 7.  Conclusions 

 

The objectives in this work were to develop a new finite element method (FEM) to improve low-order solid and 

shell finite elements. The FEM has been widely used for solving problems in various engineering fields over the 

past several decades. The low-order finite elements are very attractive due to their simplicity and efficiency. They 

have high modeling capabilities and are particularly preferred for large deformation analysis requiring automatic 

remeshing. Also, they often provide a relatively easy way to solve complicated engineering problems such as 

contact analysis. However, in general, the predictive capability of low-order elements is not good enough to be 

used in engineering practice. Further development of low-order finite elements with improved accuracy is still 

required while maintaining its advantages.  

 

In Chapter 2, a new strain smoothing method (the strain-smoothed element method) was proposed for 3-node 

triangular and 4-node tetrahedral finite elements. To construct a smoothed strain field of a target element, the 

strains of neighboring elements were utilized. The smoothed strain values were directly assigned to the Gauss 

integration points of the element. Consequently, strain-smoothed triangular and tetrahedral elements were 

developed. Unlike with previous S-FEM methods, special smoothing domains are not created in the strain-

smoothed element (SSE) method. That is, the domain discretization is the same as with the standard finite element 

method. The strain-smoothed triangular and tetrahedral elements give linear strain fields within elements. The 

proposed elements passed patch, isotropy, and zero energy mode tests, and showed improved convergence 

behavior, when compared to standard and edge-based smoothed elements in 2D, and the standard, face-based and 

edge-based smoothed elements in 3D solid mechanics problems [22].  

 

In Chapter 3, the strain-smoothed 4-node quadrilateral finite element was proposed using the SSE method. The 

proposed element has the smoothed strain field within an element by utilizing the strains of neighboring elements. 

The piecewise linear shape functions are employed for the quadrilateral element. No special smoothing domains 

are created and thus the standard FEM framework is maintained. The proposed strain-smoothed element passed 

the basic tests (the isotropic element, zero energy mode and patch tests), and provided highly accurate solutions 

compared with the standard, edge-based smoothed and incompatible modes quadrilateral elements in various 

numerical examples [23]. It is still necessary to extend the SSE method for improving other finite elements in the 

consistent manner presented in this paper.  

 

In Chapter 4, the strain-smoothed MITC3+ shell finite element was developed, in which the membrane behavior 

of the MITC3+ shell finite element was significantly improved without additional degrees of freedom (DOFs). 

We obtained the covariant membrane strain of the MITC3+ shell element by decomposing its strains, and applied 

the SSE method to the membrane strain. With the SSE method, special smoothing domains are not necessary. The 

strain-smoothed MITC3+ shell element passed the patch, isotropy and zero energy mode tests. Through the 

numerical examples, it was observed that the strain-smoothed MITC3+ shell element retains excellent bending 

behavior while showing significantly improved membrane behavior. The strain-smoothed MITC3+ shell element 
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showed solution accuracy comparable to other shell elements with more DOFs [25].  

 

In Chapter 5, the formulation of the strain-smoothed MITC3+ shell finite element was extended to geometric 

nonlinear analysis. The total Lagrangian formulation was employed to describe large displacements and rotations. 

The SSE method was adopted for the membrane strain fields of the shell element, leading to the tangent stiffness 

matrix and internal force vector. The strain-smoothed MITC3+ shell element also showed the same superior 

performance in geometric nonlinear analysis, and thus we can conclude that the strain-smoothed MITC3+ shell 

element can be used very powerfully for the analysis of general shell structures.  

 

In Chapter 6, the theoretical foundation for the SSE method was presented. A variational framework for the SSE 

method was established, and the convergence and stability analyses were performed based on the defined 

variational principle. The smoothed strains in the SSE method can be obtained by applying a sequence of 

orthogonal projection operators among assumed strain spaces. Invoking this observation, the mixed variational 

principle for the SSE method was established. The SSE method can be derived as a conforming Galerkin 

approximation of the defined variational principle. Then, a unifying convergence analysis of the standard FEM, 

the S-FEM, and the SSE method was performed to verify faster convergence of the SSE method compared with 

others. Note that, while the argument dealt with the triangular element, it can be generalized straightforwardly to 

other elements. 
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