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초 록 

본 논문에서는 효율적인 선형 및 비선형 유한 요소 구조 해석을 위한 투영기반 모델 축소 

방법들을 제안한다. 선형 동적 해석에서는 저차 모드들이 구조의 응답을 지배하는 특성이 있기 

때문에 모드 중첩 방법이 널리 쓰인다. 그러나 대규모 시스템의 경우 모드 중첩 방법을 위한 

고유치 해석은 엄청난 계산 비용을 초래한다. 또한, 비선형 모델 축소에서는 축소 모델이 

생성되더라도 원래 시스템의 차원에서 비선형항을 계산해야 한다. 이러한 계산 비용은 축소 

차원이 아닌 원래 차원에 비례하기 때문에, 축소 모델의 해를 계산할 때 상당한 속도 향상은 

기대할 수 없다. 이러한 문제들은 병렬 다중 레벨 부구조법과 성긴 격자 투영으로 해결된다. 먼저, 

효율적인 고유치 해석을 위한 병렬 자동 다중 레벨 부구조법의 부하 분산 알고리즘을 제시한다. 

스레드 간의 작업 부하 균형을 위해 제안된 알고리즘은 두 가지의 세분성으로 구성된다. 제안된 

알고리즘은 격자 재분할없이 자동 다중 레벨 부구조화법의 병렬 효율성을 크게 향상시킨다. 또한, 

효율적인 비선형 모델 축소를 위한 성긴 격자 투영 방법을 제시한다. 제안된 방법은 시스템 

영역을 나타내는 성긴 격자에서 비선형 항을 계산하므로 계산 비용이 크게 절감된다. 

 

핵심낱말 구조 해석, 유한요소법, 모델 축소, 고유치 해석, 병렬 컴퓨팅, 비선형 해석 

 

Abstract 

This dissertation proposes projection-based model reduction methods for efficient linear and nonlinear finite 

element analysis of structures. In linear dynamic analysis, the mode superposition method is widely used because 

the lowest modes dominate the response of a structure. However, in the mode superposition method for large-

scale systems, solving the generalized eigenvalue problem incurs a huge computation time. In addition, in 

nonlinear model reduction, computing nonlinear terms still requires operations with the original dimension even 

though the reduced model is obtained. Since such computations are proportional to the original dimension, no 

significant speedup can be expected. These challenges are addressed by parallel multilevel substructuring and 

coarse mesh projection. A load balancing algorithm for the parallel automated multilevel substructuring (PAMLS) 

method is first presented to solve the generalized eigenvalue problem efficiently. To balance the workload among 

threads, the proposed algorithm consists of two types of granularity. Without repartitioning, the proposed 

algorithm significantly improves the efficiency of the PAMLS method. A coarse mesh projection method is also 

presented for efficient nonlinear model reduction. The proposed method computes the nonlinear terms on the 

coarse mesh representing the domain of the system, which considerably reduces the computational cost. 

 
Keywords Structural analysis, Finite element method, Model reduction, Eigenvalue problem, Parallel computing, 

Nonlinear analysis 
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Chapter 1.  Introduction 

 

The finite element method plays an important role in static and dynamic analyses of structures [1,2]. Despite 

tremendous improvement in computer performance, large-scale finite element analysis in today’s engineering 

practice requires considerable computational cost. Model reduction aims to decrease such computational cost, 

which is achieved by generating a reduced model that represents the original system behaviors. In particular, 

projection-based model reduction methods have been widely used because of the rigorous framework that 

preserves the underlying structure of the original model [3]. The framework projects the original model onto a 

suitably defined low-dimensional subspace. 

 

The finite element analysis only approximates the lowest frequencies and the corresponding mode shapes, and the 

error increases for the higher frequencies. Moreover, the lowest normal modes dominate responses in linear 

dynamic analysis of structures. Therefore, the standard reduction approach is the mode superposition method that 

reduces the number of degrees of freedom (DOFs) using partial eigensolutions. However, this eigenvalue problem 

in the large-scale system leads to a huge computational cost, and such cost increases even more with high modal 

density. It is valuable to develop an effective solution method for the eigenvalue problem accordingly. Although 

the automated multilevel substructuring (AMLS) method [4–7] is an effective approach to address such difficulties, 

workload imbalances decrease the efficiency in the parallel AMLS (PAMLS) method [8]. 

 

In nonlinear model reduction, the two-phase offline-online strategy is commonly adopted. In the offline phase, 

snapshots of the original model are collected, and the low-dimensional basis vectors are then computed from the 

snapshot data. The reduced model is constructed using the low-dimensional basis vectors. Since the frequencies 

and corresponding mode shapes of the original model are no longer preserved, the proper orthogonal 

decomposition (POD) has been widely employed to generate such low-dimensional basis vectors. In the online 

phase, the reduced model is solved, and the approximate solutions are obtained. However, nonlinear terms are still 

computed in the dimension of the original system although the reduced model is generated. Sparse sampling 

methods [9,10] derive the approximate nonlinear terms from some sampling points. It has been observed that 

numerical inaccuracies of sampling points can induce unstable solutions [11,12]. In addition, the efficiency of the 

sparse sampling methods deteriorates in the finite element method because nonlinear terms are vector-valued 

functions [13]. 

 

The goal of this dissertation is to present novel methods that overcome the drawbacks mentioned above. In order 

to balance the workload for the PAMLS method, a load balancing algorithm is firstly proposed. For nonlinear 

finite element analysis, a novel nonlinear model reduction method to compute nonlinear terms in the low-

dimensional subspace is proposed. 

 

In Chapter 2, a load balancing algorithm that improves the parallel efficiency of the PAMLS method is presented. 

In the PAMLS method, load balancing is highly dependent on the computation time for the transformation and 



2 

 

back transformation procedures corresponding to substructures. To balance the workload among threads, the 

proposed algorithm consists of two types of granularity: coarse-grained and fine-grained parallel algorithms. 

According to the level of substructures, the coarse-grained parallel algorithm splits both the transformation and 

back transformation procedures and assigns them to threads. Through fine-grained parallelism, more threads are 

exploited for the transformation of each substructure compared to threads used in the original PAMLS method. 

Without repartitioning, the proposed algorithm significantly improves the efficiency of the PAMLS method. This 

work has been published in Ref. [14], and the material given in this chapter is only slightly modified. 

 

In Chapter 3, we present a nonlinear model reduction method using a coarse mesh, named coarse mesh projection.  

To compute nonlinear terms efficiently, the coarse mesh model representing the domain of the original model is 

constructed. Then, the reduced basis vectors for the coarse mesh model are computed by finite element 

interpolation of the POD basis vectors for the original model. Here, the reduced basis vectors for the coarse mesh 

model are referred to as the coarsened POD basis vectors. The coarse mesh model is then projected onto the 

subspace spanned by the coarsened POD basis vectors, and corrected at each load or time step by using the 

approximate solution for the original model. In this way, only displacement POD basis vectors are extracted, and 

there is no need to store snapshots for nonlinear terms. Whereas sparse sampling methods approximate the 

nonlinear terms from some sampling points, the proposed method computes the nonlinear terms on the low-

dimensional coarse mesh model. By leveraging the rigor of the finite element framework, the proposed method 

provides reliable solutions efficiently. 

 

In Chapter 4, conclusions and future works are provided. 
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Chapter 2.  A load balancing algorithm for the parallel automated 

multilevel substructuring method 

 

Component mode synthesis (CMS) methods [15–20] have been widely used to solve frequencies and mode shapes 

of large and complex structures [21–30]. In conventional CMS methods, a structural finite element (FE) model is 

divided into small substructures with an interface among them, and each substructure is individually reduced via 

truncation of its eigensolutions. Since this approach is suitable for parallel implementation that carries out many 

calculations simultaneously, there have been various studies to parallelize CMS methods [31–34]. 

 

Among CMS methods, the automated multilevel substructuring (AMLS) [4–7] is a successful method to reduce 

the large interface DOFs efficiently and robustly. The AMLS method partitions an FE model into many levels of 

substructures by using the nested dissection algorithm [35]. Then the FE model is transformed by synthesizing 

substructure eigensolutions and constraint modes. The approximate solutions are computed through the back 

transformation of solutions obtained by the reduced model. The AMLS method can serve as an alternative to the 

Lanczos method [36,37] when computing a large number of eigensolutions [38,39] and has been applied to various 

engineering problems [40–42]. 

 

After Kaplan [5] proposed the directions in parallelism for the AMLS method, Elssel and Voss [8] developed the 

parallel AMLS (PAMLS) method. Each thread first performs the AMLS transformation of a subtree consisting of 

substructures. The rest of the substructures (i.e. partitioned interfaces) are then transformed in parallel. Yang et al. 

[43] applied a multilevel approach to nonlinear implicit dynamics, where the maximum allowed imbalance among 

substructures is set by a static load balancer [44,45]. Both methods [8,43] successfully parallelize the computation 

associated with substructures, including interfaces. 

 

The objective of this chapter is to present a novel load balancing algorithm that improves the parallel efficiency 

of the PAMLS method. Since the transformation and back transformation procedures spend most of the 

computation time in the AMLS method, we focus on improving the parallel efficiency of those procedures. In 

general, a load imbalance among the transformations of substructures would occur even if the number of 

substructures assigned to each thread is the same and the number of their degrees of freedom (DOFs) is well 

balanced. As a result, there is an idle time at the synchronization point before the transformation of a parent 

substructure. To reduce this idle time, the proposed algorithm consists of two types of granularity: coarse-grained 

parallelism and fine-grained parallelism. 

 

In coarse-grained parallelism, the transformation and back transformation procedures are split into tasks 

corresponding to the predefined subtrees and the rest of the substructures. To balance the computational load in 

each task, we employ the approach of Escaig et al., in which the number of assigned tasks (i.e. substructures) is 

set to be larger than the number of threads [46]. We determine the number of subtrees by using a given cutoff level 

instead of the number of threads. Moreover, for the back transformation procedure, both the explicit [5] and 
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implicit [47] strategies are parallelized. In fine-grained parallelism, the transformation procedure of each 

substructure is split into several tasks. In the parallel regions, tasks are processed by available threads. Through 

the approaches in the proposed method, the efficiency of the original PAMLS method is significantly improved 

without repartitioning. 

 

In Section 2.1, the solution methods for large sparse eigenvalue problems are briefly reviewed and the key 

concepts of CMS are introduced. In Section 2.2, the AMLS method is briefly reviewed. Section 2.3 presents the 

proposed algorithm in detail. In Sections 2.4 and 2.5, the performance of the proposed algorithm is investigated 

through numerical examples. Conclusions are given in Section 2.6. 
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2.1.  Solution methods for the generalized eigenvalue problem 

 

We consider the generalized eigenvalue problem 

Kφ Mφ  (2.1) 

where K  and M  are the stiffness and mass matrices of an original (i.e. non-reduced) finite element (FE) model, 

respectively,   is the eigenvalue, and φ  is the corresponding eigenvector. 

 

In general, K   and M   are large and sparse matrices, and a small subset of eigenvalues and corresponding 

eigenvectors is required. The evn  eigensolutions are written as 

KΦ MΦΛ , (2.2) 

where columns of Φ  are the eigenvectors and Λ  is a diagonal matrix consisting of eigenvalues. 

 

 

2.1.1.  Subspace iteration 

 

The subspace iteration method, originally proposed by Bathe and Wilson [48], is an efficient solution method for 

frequencies and mode shapes of structures. The equations in the subspace iteration method include the 

establishment of starting vectors, Ritz analysis, error measure, and Sturm sequence check. 

 

For each iteration 1,2,k    the following equations are used: 

1k k KX MX , (2.3) 

1 1 1
T

k k k  K X KX , (2.4) 

1 1 1k k k  M X MX , (2.5) 

1 1 1 1 1k k k k k    K Q M Q Λ , (2.6) 

1 1 1k k k  X X Q , (2.7) 

where kX  is a mass orthonormalized vector, and 1k Q  and 1kΛ  are eigenvector and eigenvalue matrices for 

1kK  and 1kM . When 1X  is not orthogonal to Φ , we have 

1k Λ Λ  and 1k X Φ  as k  . (2.8) 

 

In practice, there are three steps of the subspace iteration. First, the number of iteration vectors in 1X  is should 

be larger than the number of eigenvalues required. Bathe [49] suggested the following formula 

max{ 8, 2 }i ev evn n n  , (2.9) 

where in  denotes the number of iteration vectors. 

 

The starting vectors are often established in such a way that unit vectors excite the corresponding DOFs of the 
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smallest ratios ii iiK M  and the last column is a random vector. 

 

Second, in each iteration (k), convergence is measured as follows: 

1 2( 1) 2
2

( 1) ( 1)

( )
1 10

( )

k
si

k T k
i i

 


 

 
  

 q q
 for 1,2, , ei n  , 2k   (2.10) 

where ( 1)k
i

   is the ith approximate eigenvalue in iteration (k), ( 1)k
i
q   is the ith column of 1k Q  , and the 

tolerance 210 s  is used for the eigenvalues to be accurate to about 2s digits. 

 

Third, after convergence of the iteration, the Sturm sequence check is performed to verify that all required 

eigenvalues have been calculated. The larger number of iteration vectors is used when the Sturm sequence check 

is not passed. 

 

Recently, Kim and Bathe [50] proposed the enriched subspace iteration method, which is also be parallelized in 

shared and distributed memory processing. In the subspace iteration method, the subspace spanned by iteration 

vectors is turned towards the evn  -dimensional least dominant subspace. Using the amount of turning of the 

iteration vectors significantly improves the computational efficiency of the basic subspace iteration method. 

 

 

2.1.2.  Lanczos method 

 

The Lanczos method [36] is one of the most important algorithms among the Krylov methods that approximates 

the eigensolutions on the Krylov subspace. The order-m Krylov subspace   is generated by a matrix A  and 

a vector x  as 

2 1( , , ) span{ , , , , }mm A x x Ax A x A x . (2.11) 

 

The Lanczos method produces an orthonormal basis for Krylov subspace as 

1 1 2 1 1span{ ,( ) , ( ) , , ( ) }m    x K M x K M x K M x , (2.12) 

where x   is an arbitrary starting vector. The generalized eigenvalue problem is transformed into a low-

dimensional standard eigenvalue problem with a tridiagonal coefficient matrix. For 1,2, ,i m  , the basic steps 

of the Lanczos method are 

1 


x
x  with 1/2( )T  x Mx , (2.13) 

i iKx Mx , (2.14) 

T
i i i  x Mx , (2.15) 

1 1i i i i i i     x x x x , (2.16) 

1/ 2( )T
i i i  x Mx  , (2.17) 
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1
i

i
i

 
x

x


, (2.18) 

where the vectors ix  are mass orthonormal and satisfy the following relationship 

1( )T
m m m

 X MK M X T  (2.19) 

with 

1 2[ ]mX x x x , (2.20) 

1 1

1 2 2

2

1 1

1

q

m m

m m

 
  


 
 

 



 
 
 
 
 
 
  

T  


. (2.21) 

 

The generalized eigenvalue problem Kφ Mφ  can be rewritten in the form 

1 1
( )


 MK M φ Mφ , (2.22) 

and finally, we obtain 

1
m 

T φ φ   with mφ X φ . (2.23) 

Note that the eigenvalues and eigenvectors of Kφ Mφ  are the reciprocals of the eigenvalues of mT  and 

mφ X φ , respectively. 

 

Lanczos recognized the numerical instability due to loss of orthogonality and suggested the full 

reorthogonalization. Since the computational cost for the full reorthogonalization is expensive in practice, 

considerable efforts have been made to address this problem [51,52]. In addition, Lehoucq, Sorensen, and Yang 

developed ARPACK [53], which is an open-source package based on the Arnoldi/Lanczos process. They use the 

implicitly restarted Arnoldi method, which is closely related to the implicitly shifted QR algorithm. 

 

 

2.1.3.  Dynamic condensation 

 

In 1965, Guyan [54] proposed a static condensation method, which is an application of Gauss elimination and 

referred to as Guyan reduction. The model reduction in static condensation is achieved by eliminating some DOFs 

assumed to be quasi-static. In other words, the inertia effect is simply ignored. 

 

We partition the stiffness matrix and corresponding displacement and force vector into the form 

ss sm s s

ms mm m m

     
     

     

K K x f

K K x f
, (2.24) 
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Fig. 2.1. Selection of master and slave nodes: (a) original finite element model and (b) possible selection, where 

the red dots are master nodes and the unselected nodes are slave nodes. 

 

where the subscripts s  and m  denote the DOFs to be condensed and retained, respectively. The terms slave 

and master DOFs are coined by Irons [55], and a possible selection of master and slave nodes is described in Fig. 

2.1. Note that the accuracy of frequency response is greatly affected by the choice of master DOFs. 

 

Suppose the force vector sf  is zero, and then the displacement vector for slave DOFs sx  depends on mx . The 

resulting equation is 

s
m

m

   
   
  

x Ψ
x

x I
 with 1

sm mm
 Ψ K K , (2.25) 

where I  is the identity matrix. 

 

Then, the stiffness and mass matrices can be transformed as 

T
s s sK T KT , T

s s sM T MT  (2.26) 

with 

s

 
  
 

Ψ
T

I
, (2.27) 

where sK  and sM  are the reduced stiffness and mass matrices, respectively.  

 

In the case of s f 0 , static condensation solves a static problem exactly in the reduced subspace. However, the 

solution accuracy decreases as the frequency increases. To increase the accuracy, one prefers dynamic 

condensation methods, which apply the static condensation to the matrix ( )K M  rather than K , viz.  

1( ) ( )s ss ss sm sm
m

m

      
   

   

x K M K M
x

x I
. (2.28) 
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Miller [56] and O’Callahan [57] employ Taylor series expansion of 1( )ss ss K M , which includes the inertia 

effect. We briefly review the improved reduced system method proposed by O’Callahan [57].  

 

Taylor series expansion of sx  in Eq. (2.28) is written by 

1 1 1 2 3[ ( ) ( ) ( ) ]s ss sm ss sm ss ss sm mO O          x K K K M M K K x , (2.29) 

and sx  is approximated by neglecting the high-order terms of   as 

1 1 1[ ( )]s ss sm ss sm ss ss sm m     x K K K M M K K x . (2.30) 

 

Using Eq. (2.26), the unknown   in Eq. (2.30) can be handled by 

m m x Hx  with 1
s s
H M K , 

and then 

1 1 1[ ( ) ]s ss sm ss sm ss ss sm m
     x K K K M M K K H x . (2.31) 

 

The reduced stiffness and mass matrices ( dK  and dM ) are obtained as 

T T T T T
d s s c c s c s   K K T KT H H T KT H T KT H , (2.32) 

T T T T T
d s s c c s c s   M M T MT H H T MT H T MT H , (2.33) 

with 

1( )ss sm ss
c

 
  
 

K M M Ψ
T

0
, (2.34) 

where cT  is an additional transformation matrix that includes the inertia effect. Note that the reduced matrices 

in Eqs (2.32) and (2.33) are fully populated. Therefore, the solution of the reduced matrices would be expensive 

than the original large sparse matrices.  

 

 

2.1.4.  Component mode synthesis 

 

Component mode synthesis (CMS) methods are widely used to solve frequencies and mode shapes of large FE 

models efficiently. The solution approach, originally proposed by Hurty [15], employs a divide-and-conquer 

paradigm. An attractive feature of the CMS methods is that the computational cost is significantly reduced by 

analyzing smaller substructures instead of the large-scale original structure. The solution of the original structure 

is defined on its substructures (i.e. components). The frequencies and mode shapes for substructures are solved, 

and the dimension of each substructure is reduced by truncation of high-frequency modes. Then, the reduced 

model is obtained as an assemblage of the reduced substructures. CMS methods can be classified according to 

interface handling [58]: fixed interface, free interface, and hybrid interface methods. We briefly review the Craig-

Bampton (CB) method [16], which is the most popular method among CMS methods. 
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Fig. 2.2. A generic finite element model: (a) original finite element model, and (b) two substructures with the 

interface. 

 

For convenience to present CB method, without loss of generality, two substructures and their interface are 

considered as shown in Fig. 2.2. Note that the interface is referred to as the substructure 3 in this section. We 

represent DOFs for substructures 1, 2, and 3 as 1x , 2x , and 3x , respectively. The stiffness and mass matrices 

for substructure 1 have the form 

11 13(1)
(1)

31 33

 
  
 

K K
K

K K
, 11 13(1)

(1)
31 33

 
  
 

M M
M

M M
, (2.35) 

where the superscript (1) denotes the substructure 1, and (1)
33K  and (1)

33M  are the stiffness and mass matrices for 

substructure 3 associated with the substructure 1. 

 

Then, 1x  and 3x  is expressed as 

1 1 11 13
1

3 3 3

      
       
      

x q qΦ Ψ
T

x x x0 I
, (2.36) 

where 1T  is the transformation matrix for substructure 1, I  is the identity matrix, and 1q  is the generalized 

coordinate vector associated with the substructure eigenvector matrix 1Φ  . The substructure eigenvector is 

obtained by solving the substructure eigenvalue problem 

11 1 11 11 1K Φ M Φ Λ , (2.37) 

where 1Λ  is a diagonal matrix consisting of eigenvalues. Note that the eigensolutions are truncated by a given 

cutoff frequency. 

 

The constraint modes matrix 13Ψ  is calculated by 

1
13 11 13

 Ψ K K , (2.38) 

where 13Ψ  represents the static deformation of substructure 1 by imposing the unit displacement on substructure 
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3 (i.e. interface boundary). 

 

Employing 1T , the stiffness and mass matrices for substructure 1 are 

(1) (1)
1 1
TK T K T , (1) (1)

1 1
TM T M T , (2.39) 

with 

1(1)
(1)
33 13 13

T

 
   

Λ 0
K

0 K K Ψ
, (2.40) 

(1) 1 13 11 13
(1)
33 13 13 13 13 13 11 13

( )

.

T

T T Tsym

 
     

I Φ M M Ψ
M

M Ψ M M Ψ Ψ M Ψ
. (2.41) 

 

After the transformation of substructure 2 in a similar fashion, the reduced matrices are assembled as 

1

2

2 ( )
33 3 31

i T
i ii

 
 

  
 

  

Λ

K Λ

K K Ψ

, (2.42) 

1 13 11 13

2 23 22 23

2 ( )
33 3 3 3 3 3 31

( )

( )

.

T

T

i T T T
i i i i i ii ii

sym


  
  
 

    

I Φ M M Ψ

M I Φ M M Ψ

M Ψ M M Ψ Ψ M Ψ

. (2.43) 

 

Then, the reduced eigenvalue problem is defined by 

Kx Mx , (2.44) 

and the approximate eigensolutions are obtained by 

  , φ Tx  (2.45) 

with 

1 13

2 23

 
   
  

Φ Ψ

T Φ Ψ

I

. (2.46) 
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2.2.  AMLS method 

 

In this section, we briefly review the formulation of the AMLS method. The detailed derivation and its 

implementation are well described in Refs. [5,6,59]. 

 

The mass and stiffness matrices in Eq. (2.1) are reordered and partitioned into substructures using the nested 

dissection algorithm [35]. The process is called substructuring and provides a hierarchy of substructures 

represented by a substructure tree. In the substructure tree, a substructure directly connected above (below) to the 

ith substructure is a parent (child) substructure of the ith substructure. From the parent-child relationship, an 

ancestor (descendant) substructure is defined by any substructure connected above (below) the substructure tree. 

As an example, a two-level substructuring of a generic FE model is given in Fig. 2.3. The set of the entire 

substructures is defined by {1, 2,3,4,5,6,7}  , and the ith substructure ( i  ) has ancestor and descendant 

sets, iA  and iD , respectively (e.g. 3 {7}A   and 3 {1, 2}D  ). Note that, in our implementation, the sequence 

of the substructure numbers follows the sequence of a postorder traversal [60] of the substructure tree. 

 

After substructuring, the stiffness matrix with n  substructures is reordered as 

11

.
ii ij

nn

sym

 
 
 
 
 
 
  

K

K K K

K




 for i  , ij A   (2.47) 

where the diagonal matrix iiK  denotes the stiffness matrix of the ith substructure, and the off-diagonal matrix 

ijK  denotes the stiffness matrix of the ith substructure coupled with the jth substructure. Note that the consistent 

mass matrix M  is reordered in the same form as K  in Eq. (2.47). 

 

With a postorder traversal of the substructure tree, the AMLS method performs the following transformation for 

each substructure, which is composed of a block Gaussian elimination with projection onto substructure 

eigenspace as 

( ) ( ) ( 1) ( )( )i i T i iM T M T , ( ) ( ) ( 1) ( )( )i i T i iK T K T  

with ( )
i ij

i

 
 
 
 
 
 
  

I

V Ψ

T I

I


 for 1,2, ,i n  , ij A  , (2.48) 

where ( )iM  and ( )iK  denote the mass and stiffness matrices after the transformation of the ith substructure, 

respectively, ( )iT   is the transformation matrix for the ith substructure, I   is the identity matrix, iV   is the 

eigenvector matrix for the ith substructure, and ijΨ  is the constraint mode matrix for the ith substructure coupled  
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Fig. 2.3. Two-level substructuring of a generic finite element model: (a) partitioned structure, (b) partitioned finite 

element model, and (c) substructure tree. 

 

with jth substructure. Since the sequence of the substructure numbers follows a postorder traversal sequence in 

our implementation, the substructure transformations are performed in ascending order; therefore, (0)M   and 

(0)K  represent the non-transformed M  and K , respectively. 

 

Algorithm 2.1 [5,59] shows the transformation procedure of the ith substructure in detail. In line 2, the matrix 

iW   is a diagonal matrix composed of the eigenvalues, and the columns of the matrix iV   consist of the 

corresponding eigenvectors. Note that the substructure eigensolutions are truncated by using a given cutoff 

frequency c . After solving the substructure eigenvalue problem and constructing the constraint mode matrices 

(lines 2-4), the updates of the ancestor mass and ancestor stiffness matrices (lines 5-9) and of descendant mass 

matrices (lines 10-13) are performed. In line 6, the set iA  is defined as ({ } )i iA i A  . 

 

After all of the substructures are transformed, the AMLS transformation matrix T  is written as 

( )

1

n i

i
T T , (2.49) 

and the reduced mass and stiffness matrices ( M  and K ) have the following forms 

.

T
ij

sym

 
 
 
  
 
 
  

I

M T MT I M

I




, 

1

T
i

n

 
 
 
  
 
 
  

W

K T KT W

W




 

for i  , ij A  . (2.50) 

 

Through the Rayleigh-Ritz procedure [1], the reduced eigenvalue problem is defined by 

Kq Mq , (2.51) 

and the approximate solutions of Eq. (2.1) are obtained by 
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Algorithm 2.1. Transformation of a substructure 

procedure TransformSubs ( )i  

input: substructure number i  

1: factorize iiK  

2: compute eigensolutions iW  and iV  such that ii i ii i iK V M V W  

3: for ij A  

4: 1
ij ii ij

 Ψ K K  

5: for ij A  

6:     for jk A   

7: 
T T T

jk jk ij ik ij ik ij ii ik   M M Ψ M M Ψ Ψ M Ψ  

8: 
T

jk jk ij ik K K Ψ K  

9: ( )T
ij i ii ij ij M V M Ψ M  

10: for ij D  

11:     for ik A  

12: jk jk ji ik M M M Ψ  

13: ji ji iM M V  

 

  ,  φ φ Tq  (2.52) 

with 

1 2[ ]T
nφ φ φ φ , 1 2[ ]T

nq q q q , (2.53) 

where iφ   is the approximate eigenvector corresponding to the DOFs of the ith substructure, and iq   is the 

reduced eigenvector corresponding to the DOFs of the ith reduced substructure. 

 

There are two ways to compute the approximate eigenvectors: the explicit [5] and implicit [47] strategies. In the 

explicit strategy, the AMLS transformation matrix is obtained in advance as follows: 

1

ji

i

n

 
 
 
 
 
 
  

V

T

T V

V




 with ji ji i jk kik

 T Ψ V Ψ T  

for 1,2, ,i n  , ij D  , ( )i jk D A   , (2.54) 

where the subscript j  in the computation of jiT  is in descending order. 

 

Then the back transformation in Eq. (2.52) is performed by 

i i i ij jj
 φ V q T q  for i  , ij A  . (2.55) 

Note that the cost of computing T  in Eq. (2.54) is relatively large [5,47]. 
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In order to reduce the computational cost, the implicit way is commonly adopted as follows: 

(1) (2) ( )n φ Tq T T T q , (2.56) 

where the order of the matrix multiplications is from right to left, and the submatrix component iφ  is calculated 

by 

i i i ij jj
 φ V q Ψ φ  for , 1, ,1i n n   , ij A  . (2.57) 

 

Ref. [47] reports that the implicit back transformation is much more efficient than the explicit regarding 

computation time and required memory. Thus, the implicit back transformation is set as the default option in our 

implementation and is used to investigate the parallel performance explained in Sections 2.4 and 2.5. 
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2.3.  Load balancing algorithm 

 

In this section, we propose an algorithm consisting of two types of granularity. Employing coarse-grained 

parallelism, both the transformation and back transformation procedures are parallelized according to the level of 

the substructures. Fine-grained parallelism is exploited for reducing bottlenecks in the transformation of each 

substructure. In the parallel regions, tasks are enqueued into the task queue. Then, on a first in, first out basis [60], 

each task is dequeued and executed on an available thread in the team of threads. Fig. 2.4 illustrates the serial and 

parallel computation strategies in our implementation. 

 

First, an FE model is partitioned into disjoint subdomains. The disjoint subdomains are then further partitioned 

into substructures. In other words, a disjoint subdomain is a subtree composed of substructures. Hereinafter, the 

disjoint subdomains and their substructures are referred to as the substructure clusters and distributed substructures, 

respectively. We define interfaces between the substructure clusters as shared substructures. As an example, Fig. 

2.5 shows a substructure tree consisting of the shared substructures and substructure clusters, including the 

distributed substructures. 

 

In parallelism for the AMLS method, a determinacy race [60] occurs when a thread updates a substructure while 

another thread is accessing the substructure. For example, a substructure having descendant substructures could 

be concurrently processed by more than one thread (see lines 7 and 8 in Algorithm 2.1). To avoid the determinacy 

race, threads individually store the intermediate results of substructures to be processed concurrently. We confine 

such substructures to shared substructures.  

 

The transformation is formulated in two parts corresponding to the distributed and shared substructures. Algorithm 

2.2 gives the transformation procedure of distributed substructures, in which the set iD   is defined by 

( { })i iD D i  . To store intermediate results of the shared substructures, we initialize the local system matrices 

as follows: 

( ) ( )ˆ ˆk k
ij ij M K 0  for si  , ij A   , ik D  , (2.58) 

where s  is the set of all shared substructures. 

 

Unlike Algorithm 2.1, the updates of the ancestor mass and ancestor stiffness matrices are performed depending 

on whether the ancestor is a shared substructure or not (see lines 8-13 in Algorithm 2.2). In addition, if the 

transformation matrix T  is explicitly needed, Eq. (2.54) is calculated in the transformation procedure (lines 19 

and 20 in Algorithm 2.2). To calculate line 20, please refer to Algorithm 2.3. The transformation of the shared 

substructures will be discussed in the following section. 
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Fig. 2.4. Illustration of computation strategies: (a) serial computation and (b) parallel computation with a task 

queue. 

 

 

Fig. 2.5. Substructure tree consisting of shared and distributed substructures and substructure clusters. 
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Algorithm 2.2. Transformation of distributed substructures 

procedure TransformDistSubs ( )p  

input: substructure number p  

1: for pi D   in ascending order 

2: factorize iiK  

3: compute eigensolutions iW  and iV  such that ii i ii i iK V M V W  

4: for ij A  

5: 1
ij ii ij

 Ψ K K  

6: for ij A  

7: for jk A   

8: if sj  then 

9: ( ) ( )ˆ ˆp p T T T
jk jk ij ik ij ik ij ii ik   M M Ψ M M Ψ Ψ M Ψ  

10: ( ) ( )ˆ ˆp p T
jk jk ij ik K K Ψ K  

11: else 

12: T T T
jk jk ij ik ij ik ij ii ik   M M Ψ M M Ψ Ψ M Ψ  

13: T
jk jk ij ik K K Ψ K  

14: ( )T
ij i ii ij ij M V M Ψ M  

15: for ij D  

16: for ik A  

17: jk jk ji ik M M M Ψ  

18: ji ji iM M V  

19: if the transformation matrix T  is explicitly needed then 

20: ComputeTransformMat ( )i  Algorithm 2.3 

 

Algorithm 2.3. Construct the AMLS transformation matrix 

procedure ComputeTransformMat ( )i  

input: substructure number i  

1: for ij D  in descending order 

2: ji ji i jk kik
 T Ψ V Ψ T , ( )i jk D A    
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2.3.1.  Fine-grained parallelism 

 

In the PAMLS method, more threads become idle as more substructures are transformed. For example, the final 

substructure is processed by a single thread because all other substructures are already transformed [5]. 

Furthermore, the transformation of a shared substructure is likely to be more expensive than the transformation 

of a distributed substructure. Therefore, fine-grained parallelism for the transformation of shared substructures is 

needed for optimal performance. 

 

The transformation procedure consists of three parts: solving the eigenvalue problem, constructing the constraint 

mode matrices, and block Gaussian eliminations with projection onto the substructure eigenspace. In addition, the 

block Gaussian eliminations with the projection can be separated into several independent tasks: the updates of 

the ancestor mass, ancestor stiffness, and descendant mass matrices. Note that the updates can be performed with 

more fine-grained parallelism. The transformation procedure consists of three parts: solving the eigenvalue 

problem, constructing the constraint mode matrices, and block Gaussian eliminations with projection onto the 

substructure eigenspace. In addition, the block Gaussian eliminations with the projection can be separated into 

several independent tasks: the updates of the ancestor mass, ancestor stiffness, and descendant mass matrices. 

Note that the updates can be performed with more fine-grained parallelism. 

 

Fig. 2.6(a) shows the serial transformation of a substructure in the AMLS method. Fig. 2.6(b) illustrates the fine-

grained parallelism for the transformation of a shared substructure, in which separable tasks are executed by the 

team of threads. In fine-grained parallelism, we can solve the substructure eigensolutions and construct the 

constraint mode matrices simultaneously after factorizing the substructure stiffness matrix. Then, the rest of the 

transformation is performed in parallel. If the transformation matrix T   is explicitly needed, Eq. (2.54) is 

computed simultaneously during the updates of the mass and stiffness matrices.  

 

The detailed procedure of the fine-grained parallelism for the transformation is given in Algorithm 2.4. The task 

is created and enqueued by the statement spawn [60] and executed on the team of threads. The statement sync 

[60] indicates a wait for the completion of all direct child tasks created by spawn. As shown in Fig. 2.6(b), solving 

the eigenvalue problem and constructing the constraint mode matrices are performed simultaneously after the 

factorization of the substructure stiffness matrix (see lines 1-4 in Algorithm 2.4). Then, the synchronization of the 

eigensolutions and constraint modes occurs on line 5. The updates of mass and stiffness matrices and the 

computation of the transformation matrix are performed in parallel (lines 6-15).  

 

Note that the update of ancestor mass matrices is the most time-consuming task in each transformation of a shared 

substructure (line 6 in Algorithm 2.4). Therefore, this computation takes advantage of the more fine-grained 

parallelism, which is detailed in Algorithm 2.5. 
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Fig. 2.6. Substructure transformation: (a) serial algorithm and (b) fine-grained parallel algorithm. 
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Algorithm 2.4. Transformation of a shared substructure 

procedure TransformSharedSubs ( )i  

input: substructure number i  

1: factorize iiK  

2: spawn compute eigensolutions iW  and iV  such that ii i ii i iK V M V W   

3: for ij A   

4: spawn 1
ij ii ij

 Ψ K K  

5: sync 

6: spawn update ancestor mass matrices: UpdateAncMass ( )i  Algorithm 2.5 

7: for ij A  

8: for jk A   

9: spawn ( ) ( )ˆ ˆi i T
jk jk ij ik K K Ψ K   

10: for ij D  

11:     for ik A  

12: spawn jk jk ji ik M M M Ψ  

13: spawn ji ji iM M V  

14: if the transformation matrix T  is explicitly needed then 

15:     spawn ComputeTransformMat ( )i  Algorithm 2.3 

16: sync 

 

Algorithm 2.5. Update of ancestor mass matrices for a shared substructure 

procedure UpdateAncMass ( )i  

input: substructure number i  

1: for ij A  

2: for jk A   

3: spawn T
jk ij ikA M Ψ  

4: spawn T
jk ij ikB Ψ M  

5: spawn ij ii ijC M Ψ  

6: sync 
7: for ij A  

8: for jk A   

9: spawn ( ) ( )ˆ ˆi i T
jk jk jk jk ij ik   M M A B Ψ C  

10: spawn ( )T
ij i ij ij M V C M  
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2.3.2.  Coarse-grained parallelism 

 

In coarse-grained parallelism, each thread transforms the assigned distributed substructures and shared 

substructure based on the postorder traversal. Fig. 2.7 shows a scheduling example of coarse-grained parallelism 

for the transformation of substructures, including fine-grained parallelism. Note that each shared substructure can 

be transformed by at least one thread in consequence of the fine-grained parallelism, while each substructure 

cluster is transformed by a single thread. 

 

Algorithm 2.6 presents a detailed procedure with recursion. The statement parallel for [60] indicates that a loop 

runs in parallel. Note that, at the end of the loop, there is an implicit barrier that forces threads in the parallel for 

region to wait until all threads encounter the barrier. On line 8 in Algorithm 2.6, sync denotes the synchronization 

point between threads associated with the left and right children of a shared substructure. After this, the 

synchronization of the mass and stiffness matrices for the shared substructure occurs (lines 9-15), where iC  is 

the set of direct child substructures for the ith substructure. However, the synchronization could give rise to 

bottlenecks because of the transformation time imbalance among substructures. To reduce these bottlenecks, we 

adopt the approach of Escaig et al. [46], which was proposed to improve the parallel efficiency of the static 

condensation method [54,55]. The number of assigned tasks (i.e. substructures) is set to be larger than the number 

of threads. This balances the workload among threads, although the size of the interface grows.  

 

Instead of using the number of threads, a given cutoff level is used to determine the number of substructure clusters. 

In other words, the level of distributed substructures is larger than the cutoff level, and the rest of the substructures 

are defined as shared substructures, as seen in Fig. 2.7. In our implementation, the following cutoff level cL  has 

been found to be effective: 

min{ 5, }c t sL L L   with 2min{ : log }t tL k N k   , (2.59) 

where tN  and sL  are the number of threads used and the maximum level of substructures, respectively, and 

  is the set of all integers. The effect of the cutoff level on the performance is discussed further in Appendix A.  

 

Finally, the whole procedure of the proposed algorithm is given in Algorithm 2.7. After the transformation of the 

entire substructures is completed, the reduced solutions are obtained in line 3. Then, the approximate eigenvectors 

are computed in parallel using the implicit (line 8) or explicit (lines 5 and 6) strategies. 

 

For the parallelization of the implicit back transformation, the detailed procedure based on the preorder traversal 

[60] is given in Algorithm 2.8. Similar to the coarse-grained parallelism for the transformation procedure, parallel 

tasks are created depending on whether the processed substructure is a shared substructure or not (lines 1 and 4 in 

Algorithm 2.8). Then, the approximate responses corresponding to the substructures are computed on lines 3 and 

5 as Eq. (2.57). Note that there is no explicit synchronization point in the parallel implicit back transformation 

procedure. 
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Fig. 2.7. Scheduling example for parallelization of the transformation of substructures: (a) substructure tree with 

15 substructures and (b) scheduling with 4 threads, where the number indicates the substructure number. 

 

Algorithm 2.6. Parallel transformation 

procedure Postorder ( )i  

input: substructure number i  

1: if si  then 

2: TransformDistSubs( i ) Algorithm 2.2 

3: else 

4: l  left child of the ith substructure 

5: r  right child of the ith substructure 

6: spawn Postorder ( )l  

7: spawn Postorder ( )r  

8: sync 

9: parallel for ij A   

10: 
( )ˆ p

ij ij ijp
 M M M , ip C   

11:     ( )ˆ p
ij ij ijp
 K K K , ip C   

12: if j i  then 

13: parallel for jk A   

14:             ( ) ( )ˆ ˆi p
jk jkp
M M , ip C   

15:  ( ) ( )ˆ ˆi p
jk jkp
K K , ip C   

16: TransformSharedSubs( i )                                   Algorithm 2.4 
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Algorithm 2.7. Proposed parallel AMLS method 

procedure PAMLS 

1: partition the finite element model into n  substructures as Eq. (2.47) 

2: Postorder ( )n  Algorithm 2.6 

3: solve the reduced eigenvalue problem Kq Mq  

4: if there exists the pre-computed T  then 

5: parallel for i  

6: i i i ij jj
 Φ V q T q  

7: else 

8: Preorder ( )n  Algorithm 2.8 

 

Algorithm 2.8. Parallel algorithm for the implicit back transformation 

procedure Preorder ( )p  

input: substructure number p  

1: if sp  then 

2: for pi D   in descending order ij A   

3: i i i ij jj
 φ V q Ψ φ , ij A   

4: else 

5: p p p pq qq
 φ V q Ψ φ , pq A   

6: l  left child of the pth substructure 

7: r  right child of the pth substructure 

8: spawn Preorder ( )l  

9: spawn Preorder ( )r  

 

If the explicit strategy is used, the AMLS transformation matrix is calculated during the transformation of 

substructures (lines 19 and 20 in Algorithm 2.2 and lines 14 and 15 in Algorithm 2.4). Then, approximate 

eigenvectors are computed in parallel, as seen in lines 5 and 6 in Algorithm 2.7 [5]. Here, there is no dependency 

between the computations of iφ  and jφ  for i j . 
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2.4.  Numerical examples 

 

To investigate the performance, the generalized eigenvalue problems for three structural FE models are solved on 

2, 4, 8, 16, and 32 threads: a rectangular plate, an automotive wheel, and an airplane. Table 2.1 lists the numbers 

of DOFs and nonzero entries for the FE models. The structures are modeled by shell finite elements [1,61–66] 

and/or tetrahedral solid finite elements [1,61,67]. In each FE model, we set the cutoff frequency 8.4c h   [5] 

as the default option for every substructure, where h  is the highest excitation frequency. 

 

The performance is evaluated by wall clock time required for the transformation and back transformation 

procedures, which spend a majority of the elapsed time in the AMLS method. To investigate the parallel efficiency 

of the transformation procedure, the proposed algorithm is compared to the original parallel AMLS (PAMLS) 

method proposed by Elssel and Voss [8]. The original PAMLS method is implemented in such a way that only 

coarse-grained parallelism is applied without fine-grained parallelism, where the number of substructure clusters 

is set to be the number of threads. Without the fine-grained parallelism, Algorithms 2.4 and 2.5 are serialized by 

deleting the parallel statements spawn and sync.  

 

We also demonstrate the parallel performance of the implicit back transformation procedure. To the best of our 

knowledge, the parallelization of the implicit back transformation has not yet been reported. Hence, for 

comparison with the original PAMLS method, we implemented the parallel implicit back transformation 

procedure based on the parallelization concept of the transformation procedure. Only coarse-grained parallelism 

is applied without fine-grained parallelism, where the number of substructure clusters is set to be the number of 

threads. 

 

The serial and parallel algorithms in this chapter are implemented in Fortran, where Intel Fortran Compiler 19.0.4 

with OpenMP is used. The mesh partitioning is achieved by METIS [68], an open-source package for unstructured 

graph partitioning, and the eigenvalue problems are solved using ARPACK [53], an open-source package based 

on the Arnoldi/Lanczos process. All numerical examples are tested on CentOS 7.4 with two 20-core Intel Xeon 

Gold 6148 processors (2.4 GHz) and with 192 GB of memory. 

 

Table 2.1. Finite element models for numerical examples. 

Example DOFs 
Number of nonzero entries in the upper triangular part 

Mass matrix Stiffness matrix 

Rectangular plate 196614 976170 2094701 

 786438 3918378 8442289 

 3145734 15701034 33885811 

Automotive wheel 3688653 31712934 91545737 

Airplane 8462700 76458759 220916587 
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2.4.1.  Rectangular plate 

 

We consider a simply supported rectangular plate, as shown in Fig. 2.8. The length L, width W, and thickness t of 

the plate are 2 m, 1 m, and 5 mm, respectively. The plate is modeled using four-node shell elements with three 

different meshes of 2N N , where 2N elements are assigned along the plate length. The FE models of N  128, 

256, and 512 are partitioned into 511 substructures on 8 levels, 2047 substructures on 10 levels, and 8191 

substructures on 12 levels, respectively. The reduced models with 1999, 3406, and 14706 DOFs are obtained from 

the original FE models with 196614, 786438, and 3145734 DOFs, respectively. The number of eigensolutions 

sought in this example is 150. 

 

Fig. 2.9 presents the speed-up factors for the three FE models. The normalized wall clock times required for the 

1024 512 mesh (3145734 DOFs) are shown in Fig. 2.10, and their details are listed in Table 2.2. The results 

show that the proposed algorithm significantly improves the parallel efficiency of the original PAMLS method. 

The speed-up factor of the proposed algorithm is almost three times that of the original PAMLS method when 

adopting 32 threads. 

 

In the PAMLS method, the parallelism for the implicit back transformation procedure performs well compared to 

that for the transformation procedure. This is because the parallel implicit back transformation procedure has no 

explicit synchronization point; thus, the number of substructure clusters has less effect on the parallel performance. 

Nonetheless, the parallel performance of the implicit back transformation procedure is also enhanced through the 

proposed algorithm. Furthermore, as shown in Fig. 2.9 and Table 2.2, it is observed that the computation time for 

the transformation procedure accounts for most of the elapsed time provided that the parallelism for the implicit 

back transformation performs well. 

 

To demonstrate that the proposed algorithm gives the same accuracy as the serial AMLS method, the relative 

eigenvalue error and relative residual [59] are respectively measured as 

ve
 




 , (2.60) 

2
re








Kφ Mφ
, (2.61) 

where the overbar ( )  denotes the approximate quantities obtained by the reduced models. 

 

The solution accuracy of the serial and proposed algorithms is shown in Fig. 2.11, where, for brevity, only the 

results for 32 threads are considered. The same solution accuracy is obtained from the serial and proposed 

algorithms regardless of the number of threads used. 
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Fig. 2.8. Simply supported rectangular plate. 

 

 

 

Fig. 2.9. Speed-up factors for the rectangular plate problem: (a) transformation, (b) implicit back transformation, 

and (c) whole procedures. 
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Fig. 2.10. Normalized wall clock times for the rectangular plate model of the 1024 512 mesh. The wall clock 

times are normalized by the total computation time required for the serial AMLS method. 

 

 

Table 2.2. Normalized wall clock times for the rectangular plate model of the 1024  512 mesh, where tN  

denotes the number of threads used and ‘total’ denotes the time elapsed for the whole procedure of the original 

PAMLS and proposed methods. The wall clock times are normalized by the total computation time required for 

the serial AMLS method. 

tN  
PAMLS (%) Proposed (%) 

Total Transformation 
Back 
transformation 

Total Transformation 
Back 
transformation 

2 50.931 50.595 0.283 50.114 49.779 0.281 

4 31.076 30.881 0.161 26.597 26.411 0.153 

8 21.951 21.834 0.085 14.566 14.455 0.078 

16 17.287 17.200 0.053 8.111 8.030 0.049 

32 15.785 15.714 0.039 5.586 5.523 0.032 
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Fig. 2.11. Accuracy of the serial and proposed algorithms for the rectangular plate problem ( N  512, 3145734 

DOFs): (a) relative eigenvalue errors and (b) relative residuals. Markers are placed at 5-eigenvalue intervals. 

 

 

2.4.2.  Automotive wheel 

 

In this section, the automotive wheel described in Fig. 2.12 is considered. The wheel is modeled by 765348 three- 

and four-node shell elements and 266898 four-node tetrahedral elements (3688653 DOFs). Two different 

partitions are considered: partition A (2047 substructures on 10 levels) and partition B (15747 substructures on 13 

levels). The reduced models with the 6696 and 20096 DOFs are obtained from partitions A and B, respectively, 

and the number of eigensolutions sought in this example is 300. 

 

Fig. 2.13 shows the speed-up factors for the transformation, implicit back transformation, and whole procedures. 

The normalized wall clock times for partition B and their details are shown in Fig. 2.14 and Table 2.3, respectively. 

For the transformation procedure, the proposed algorithm is almost three times faster than the original PAMLS 

method when 32 threads are used. The parallelism for the implicit back transformation procedure also performs 

well regardless of the number of substructures. 
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Fig. 2.12. Automotive wheel. 



31 

 

 

Fig. 2.13. Speed-up factors for the automotive wheel problem: (a) transformation and (b) implicit back 

transformation, and (c) whole procedures. 
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Fig. 2.14. Normalized wall clock times for the automotive wheel model with 15747 substructures. The wall clock 

times are normalized by the total computation time required for the serial AMLS method. 

 

 

Table 2.3. Normalized wall clock times for the automotive wheel model with 15747 substructures, where tN  

denotes the number of threads used and ‘total’ denotes the time elapsed for the whole procedure of the original 

PAMLS and proposed methods. The wall clock times are normalized by the total computation time required for 

the serial AMLS method. 

tN  
PAMLS (%) Proposed (%) 

Total Transformation 
Back 
transformation 

Total Transformation 
Back 
transformation 

2 52.332 51.880 0.398 50.216 49.764 0.397 

4 29.818 29.550 0.214 26.841 26.579 0.208 

8 24.001 23.823 0.124 15.230 15.056 0.115 

16 19.962 19.830 0.078 8.702 8.577 0.072 

32 18.385 18.258 0.058 6.156 6.051 0.052 
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2.4.3.  Airplane 

 

Here, we consider an airplane structure as shown in Fig. 2.15. For modeling the structure, 1731466 three- and 

four-node shell elements are used, and the number of DOFs is 8462700. The FE model is partitioned into 32767 

substructures on 14 levels. Two cutoff frequencies 4.8c h   and 8.4c h   are considered for finding the 

600 smallest eigensolutions. The reduced models with 38489 and 45449 DOFs are obtained from the cutoff 

frequencies 4.8c h   and 8.4c h  , respectively. 

 

Fig. 2.16 shows the speed-up factors for the transformation, implicit back transformation, and whole procedures 

with respect to the cutoff frequencies. Fig. 2.17 and Table 2.4 show the normalized wall clock times for 

8.4c h    and their details, respectively. The results show that the proposed algorithm achieves better load 

balancing than the PAMLS method. In the original PAMLS method using 32 threads, 32 substructure clusters have 

the same number of distributed substructures and each substructure cluster has approximately the same number 

of DOFs: 262086–263886. Although the relative difference between the minimum and maximum DOFs for each 

substructure cluster is 0.7%, an enormous transformation time imbalance occurs in the original PAMLS method. 

In addition, we again observe that the parallelism for the implicit back transformation also performs well 

regardless of the cutoff frequencies. 
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Fig. 2.15. Airplane. 

 

 

 

Fig. 2.16. Speed-up factors for the airplane problem: (a) transformation and (b) implicit back transformation 

procedures. 
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Fig. 2.17. Normalized wall clock times for the airplane model with 8.4c h   . The wall clock times are 

normalized by the total computation time required for the serial AMLS method. 

 

 

Table 2.4. Wall clock times for the airplane model with 8.4c h  , where tN  denotes the number of threads 

used and ‘total’ denotes the time elapsed for the whole procedure of the original PAMLS and proposed methods. 

The wall clock times are normalized by the total computation time required for the serial AMLS method. 

tN  
PAMLS (%) Proposed (%) 

Total Transformation 
Back 
transformation 

Total Transformation 
Back 
transformation 

2 78.155 76.593 1.324 50.250 48.848 1.183 

4 49.595 48.651 0.724 27.009 26.202 0.590 

8 33.629 33.034 0.390 15.182 14.642 0.304 

16 28.304 27.848 0.237 8.634 8.245 0.160 

32 23.514 23.141 0.147 5.790 5.477 0.090 
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2.5.  Weak scaling 

 

In this section, we investigate weak scaling performance which is typically measured by increasing the number 

of threads used while the workload per thread remains constant. Instead of the fixed problem size (i.e. a fixed 

number of DOFs for an FE model) as in Section 2.4, the problem size grows as the number of threads increases. 

In the AMLS method, it is difficult to assign the same workload per thread when the problem size changes. 

Assigning the same workload per thread is not simply achieved by assigning the same substructure sizes to each 

thread. 

 

The rectangular plate problem described in Section 2.4.1 is considered again, where the number of eigensolutions 

sought is 150. The plate is modeled using six different meshes ( 2N N ) of four-node shell elements, where 2N 

elements are assigned along the plate length. We generate the meshes for the plate model so that the computation 

time for the serial AMLS method approximately doubles as the problem size increases by one step. Information 

about each FE model is listed in Table 2.5. 

 

Table 2.6 and Fig. 2.18 show the average substructure sizes at each level when partitioning the FE models by 

using METIS [51]. It is observed that the average substructure sizes at each level become larger as the problem 

size grows, except for the lowest level substructures that do not have any child substructure. As mentioned in 

Section 2.3.1, the large number of DOFs for a shared substructure (i.e. interface substructure) incurs more idle 

time at the synchronization points. In other words, for 1024 512 mesh, the parallel efficiency of both the original 

PAMLS method and the proposed algorithm would decrease. 

 

The normalized wall clock times for the whole procedure are shown in Fig. 2.19 and Table 2.7, where the wall 

clock times are normalized by the total computation time required for 332 166 mesh in the serial AMLS method. 

As expected, for 1024 512 mesh, the parallel performance of both the original PAMLS method and the proposed 

algorithm decreases. However, with the proposed algorithm, the parallel performance is consistently improved. 

The effect of the mesh partitioning on the performance is discussed further in Appendix B. 
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Table 2.5. Finite element models for a weak scaling analysis of the rectangular plate problem, where tN  denotes 

the number of threads used. 

tN  Number of elements 
(length width) 

Number of substructures 
(levels) 

DOFs 

1 55112 (332 166) 1023 (9) 330678 

2 88200 (420 210) 2047 (10) 529206 

4 138338 (526 263) 2047 (10) 830034 

8 215168 (656 328) 4095 (11) 1291014 

16 336200 (820 410) 8191 (12) 2017206 

32 524288 (1024 512) 8191 (12) 3145734 

 

 

Table 2.6. Mean substructure sizes of each level for the rectangular plate models of 332 166 and 1024 512 

meshes. 

Level 
Number of 
substructures 

Average substructure size (DOFs) 

332   166 
mesh 

420   210 
mesh 

526   263 
mesh 

656   328 
mesh 

820   410 
mesh 

1024   512 
mesh 

0 1 1002 1428  1626 2166 2772 3306 

1 2 1233 1479  1788 2214 2571 3579 

2 4 543 758  951 1097 1427 1799 

3 8 534 614  899 1086 1466 1672 

4 16 319 387  492 609 771 953 

5 32 242 331  416 523 634 819 

6 64 157 199  251 301 389 505 

7 128 110 143  187 240 309 394 

8 256 72 94  123 150 194 252 

9 512 524 65  84 110 140 178 

10 1024 - 405 667 71 92 121 

11 2048 - - - 505 62 80 

12 4096 - - - - 381 624 
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Fig. 2.18. Mean substructure sizes of each level for the rectangular plate models of 332 166 and 1024 512 

meshes. 

 

 

 

Fig. 2.19. Normalized wall clock times for a weak scaling analysis of the rectangular plate problem. The wall 

clock times are normalized by the total computation time required for N  166 mesh in the serial AMLS method. 
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Table 2.7. Normalized wall clock times for a weak scaling analysis of the rectangular plate problem, where tN  

denotes the number of threads used. The wall clock times are normalized by the total computation time required 

for N  166 mesh in the serial AMLS method. 

tN  Ideal PAMLS Proposed 

2 1.012 1.020 1.014 

4 1.052 1.153 1.111 

8 0.969 1.710 1.141 

16 1.006 3.165 1.453 

32 1.003 5.070 1.789 
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2.6.  Concluding remarks 

 

We proposed a load balancing algorithm for the parallel AMLS (PAMLS) method, which consisted of two types 

of granularity. To avoid determinacy races, we defined a shared substructure and a substructure cluster that is a 

subtree composed of distributed substructures. In coarse-grained parallelism, the transformation procedure was 

split into tasks corresponding to the substructure clusters and shared substructures, in which the number of 

substructure clusters was determined by using a given cutoff level instead of the number of threads. Both the 

explicit and implicit back transformation procedures were also split in a similar fashion. Fine-grained parallelism 

was used to reduce the idle time for the transformation of shared substructures. The performance of the proposed 

algorithm was demonstrated through numerical examples. It was observed that the proposed algorithm 

significantly improved the efficiency of the original PAMLS method without repartitioning. 
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Chapter 3.  A nonlinear model reduction method using a coarse mesh 

model 

 

As the demand for improved accuracy of numerical simulations increases, more complex models are required. 

Performing multiple simulations on such complex models induces an unmanageably large computational burden. 

Projection-based model reduction methods [3] reduce this computational burden by projecting the high-

dimensional original model into a low-dimensional subspace. It implies that the suitably defined low-dimensional 

subspace well approximates the solution space. 

 

In the field of projection-based model reduction, the offline-online strategy is commonly employed. In the offline 

phase, snapshot data is collected from the original model, and suitable low-dimensional basis vectors are 

computed from snapshots. Then, the reduced model is constructed in such a way that the original model is 

projected onto the low-dimensional subspace. Finally, in the online phase, approximate solutions are computed in 

the reduced model. The proper orthogonal decomposition (POD) [69–71] with Galerkin projection has been 

widely used to compute the low-dimensional basis vectors and applied in various engineering fields such as 

structural dynamics, fluid mechanics, signal processing, and image processing. An attractive feature of the POD 

is that the dominant components of the original model are captured by a low-dimensional subspace, which is 

established in optimal. 

 

Although the POD successfully provides the reduced model for nonlinear problems, no significant speedup is 

achieved during the online phase because the nonlinear terms are computed on the high-dimensional original 

model. Sparse sampling methods [9,72–76], also known as hyper-reduction [77], are widely used to overcome 

this computational inefficiency. They compute nonlinear terms at a few sampling points and then approximate the 

nonlinear terms of the original model. The discrete empirical interpolation method (DEIM) [10] selects 

interpolation points (i.e. sampling points) through a greedy approach and provides the approximate nonlinear 

terms via interpolation in a low-dimensional subspace. However, some unstable results are observed in the DEIM 

approximations [11]. Many variants of the DEIM were developed to improve the efficiency and accuracy, such as 

the unassembled [13], localized [11,78], and adaptive [79] methods. Recently, the GappyPOD+E [12], a 

deterministic oversampling algorithm, has been proposed to avoid the stability issue. 

 

Instead of the approximation from a few sampling points, some reduction methods [80,81] for elastoplastic 

problems were developed using POD with domain decomposition. In these works, POD is applied to only elastic 

subdomains, not plastic regions. Another approach for the efficient online phase is the use of machine learning 

methods. The works in [82,83] proposed non-intrusive reduced basis methods using artificial neural networks 

(ANN), which approximates the map between inputs and POD coefficients for the reduced model. In Ref. [84], 

constitutive models for coarse meshes are learned, and a coarsened mesh model is used during the online phase. 

At variance with this work, in Ref. [85], ANN provides the correction vector for a coarse mesh model at a given 

configuration. It resulted in improved solution accuracy compared to that of a standard coarse mesh model. 
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Despite these considerable efforts, there is still room for more effective nonlinear model reduction. In this chapter, 

we propose a novel nonlinear model reduction method using a coarse mesh, named coarse mesh projection. The 

key concept is to compute nonlinear terms on the coarse mesh model corresponding to the domain considered in 

the original finite element model. This is achieved by establishing reduced basis vectors for the coarse mesh model 

through the finite element interpolation of POD basis vectors for the original model. Herein, the reduced basis 

vectors for the coarse mesh model are referred to as the coarsened POD basis vectors. The coarse mesh model is 

then projected onto a space spanned by the coarsened POD basis vectors, and the approximate solution for the 

original model is computed from the reduced solution for the coarse mesh model. The approximate solution 

corrects the nonlinear terms at the quadrature points of the coarse mesh model. By leveraging the rigor of the 

finite element framework, the proposed method reliably provides the approximate solution without snapshots for 

nonlinear terms.  

 

In Section 3.1, we briefly review the total Lagrangian formulation for a general three-dimensional element and 

the standard POD with Galerkin projection. In Section 3.2, sparse sampling methods such as the DEIM and 

GappyPOD+E are introduced. Then, the proposed method is presented in Section 3.3, and its performance is 

demonstrated through numerical examples in Section 3.4. Finally, conclusions are given in Section 3.5. 
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3.1.  Problem statement 

 

 

3.1.1.  Total Lagrangian formulation 

 

In this section, without loss of generality, the total Lagrangian formulation for the isoparametric finite element 

discretization is reviewed. Note that the left superscript represents the configuration in which quantities occur, 

and the quantities are measured in the initial configuration. 

 

Let us consider the position interpolation of a general q-node three-dimensional finite element at time t 

1 2 3 1 2 3
1

( , , ) ( , , )
q

t t
i i

i

h     


 x x , (3.1) 

where t x  is the position vector, t
ix  is the position vector of node i, and 1 2 3( , , )ih     are the standard finite 

element shape functions with the natural coordinates 1 , 2 , and 3 . 

 

From the configuration at times t  to t t  , the incremental displacement vector is defined by 

1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )t t t         u x x , (3.2) 

and the displacement interpolant u  is given by 

1 2 3 1 2 3
1

( , , ) ( , , )
q

i i
i

h     


 u u , (3.3) 

where iu  is the displacement vector of node i. 

 

The Green-Lagrange strain tensor is written as 

0 0t t i j
ij ε g g  with 0

0
i i


g

x
 (3.4) 

where the covariant component 0
t

ij  is defined by 

0 01
( )

2
t t t

ij i j i j    g g g g  (3.5) 

with 

t
t

i
i





x
g , 

0
0

i
i





x
g . (3.6) 

Note that ig  and ig  denote the covariant and contravariant basis vectors, respectively. 

 

From the configuration at times t  to t t  , the incremental Green-Lagrange strain tensor ij  is given by 

t t t
ij ij ij ij ije       , (3.7) 

where ije  and ij  are the linear and nonlinear parts of ij , respectively. 
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Using the strain-displacement matrices, ije  and ij  are obtained by 

t
ij ije  B d , 

1

2
T t

ij ij  d N d  (3.8) 

with 

1 2[ ]T T T T
qd u u u , (3.9) 

where t
ijB  and t

ijN  denote the strain-displacement matrices, and d  is the nodal displacement vector. 

 

Then, the time-independent mass matrix n nM   , tangential stiffness matrix t n nK   , and internal force 

vector t nF   are given by 

( )

1

( )
en

m

m

M MA  with 
0 ( )

( ) 0 ( ) ( ) ( ) 0 ( )( )
m

m m m T m m

V
d V M H H , (3.10) 

( )

1

( )
en

t t m

m

K KA  with 
0 ( )

( ) ( ) ( ) ( ) ( ) ( ) 0 ( )( )
m

t m t m T m t m t m t m m
ij ijkl kl ij ijV

C S d V K B B N , (3.11) 

( )

1

( )
en

t t m

m

F FA  with 
0 ( )

( ) ( ) ( ) 0 ( )( )
m

t m t m T t m m
ij ijV

S d V F B , (3.12) 

where A   is an assembly operator [2], en   is the number of elements, and the superscript (m) denotes the 

quantity for the element m. The matrix ( )mH  is a matrix of the geometry interpolation function, ( )m
ijklC  is the 

constitutive law tensor, and ( )t m
ijS  is the second Piola-Kirchhoff (PK) stress tensor. Note that 0 ( )mV  denotes the 

volume of the element m at the initial configuration. 

 

The integration of finite element matrices in Eqs. (3.10)-(3.12) is numerically performed by the Gauss quadrature. 

As an example, ( )t mF  is calculated by 

0 ( )

( ) ( ) ( ) 0 ( ) ( ) ( ) ( )( ) ( )
m

t m t m T t m m t m T t m t m
ij ij p q r ij ijV

p q r

S d V S   F B B J , (3.13) 

where   denotes the weight factor for the one-dimensional integration and ( )t mJ  is the determinant of the 

Jacobian matrix of the element m at time t. Note that the quantities ( )t m
ijB , ( )t m

ijS , and ( )t mJ  are computed on the 

corresponding quadrature point. 

 

After an assemblage of all finite elements, the following equations for static analysis and explicit and implicit 

dynamic analyses are respectively obtained: 

t t t t KU R F , (3.14) 

t t t M U R F , (3.15) 

t t t t t t   M U KU R F  (3.16) 

where nU    is the incremental displacement vector, t nU    and t t n U    are acceleration vectors at 
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times t  and t t  , respectively, and t nR   and t t n R  are the external load vectors at times t  and 

t t  , respectively. 

 

 

3.1.2.  Proper orthogonal decomposition with Galerkin projection 

 

Suppose that the displacement vector can be approximated by a linear combination of arbitrary basis vectors 

rn nΦ   (3.17) 

with 

1 2 rn
   Φ Φ Φ Φ ,  (3.18) 

where rn  is the number of basis vectors and much smaller than the dimension of the original model n. 

 

The incremental displacement vector is then written as 

U ΦU , (3.19) 

where rnU   is the coefficient vector associated with Φ , viz the reduced solution vector. 

 

Enforcing the Galerkin projection with Φ , the reduced equations of r rn n  are obtained by 

t t t t KU R F , (3.20) 

0
t t t M U R F , (3.21) 

t t t t t t   M U KU R F  (3.22) 

with 

t T tK Φ KΦ , TM Φ MΦ , t T tF Φ F , t T tR Φ R , t t T t t R Φ R , (3.23) 

where the overbar ( )  denotes the reduced quantities. Since the accuracy in the approximate solutions of Eqs. 

(3.20)-(3.22) depends on the basis vectors Φ , we should establish the appropriate basis vectors.  

 

The proper orthogonal decomposition (POD) is to construct the subspace that minimizes the mean square error of 

approximation of a given space. In order to compute the POD basis matrix Φ , we first consider the following 

snapshot matrix 

1 2[ ] d

d

n n
d n

 S U U U  , (3.24) 

where the columns of dS  are the displacement vectors of the original model in the configuration at certain times, 

and dn  is the number of displacement snapshots. Note that the snapshots should be representative samples of 

solutions. 

 

The approximation by using the POD basis matrix Φ  minimizes the mean square error of approximate solutions 
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2
1

dn
T

i i
i

 U ΦΦ U . (3.25) 

 

To find Φ  that minimizes Eq. (3.25), the low-rank approximation of dS  from the singular value decomposition 

(SVD) provides 

T
d d d dS Φ Σ Ω  (3.26) 

with 

1 2 dd n
   Φ Φ Φ Φ , (3.27) 

where columns of dn n
d

Φ   and d dn n
d

Ω   consist of the left and right singular vectors, respectively, and 

d dn n
d

Σ   is a diagonal matrix composed of the singular values in descending order. 

 

The number of POD basis vectors is typically selected through the following criterion 

2

1

2

1

r

d

n

ii
n

ii











 , (3.28) 

where i  is the ith singular value, and [0 1]  is a given tolerance, and the mean square error becomes 

smaller as   approaches one. This criterion is often referred to as the energy captured by rn  POD basis vectors. 
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3.2.  Sparse sampling methods 

 

The POD with Galerkin projection permits that the solution is approximated by solving the reduced equation 

whose dimension of r rn n . In the reduced equation, the tangential stiffness matrix t K  and/or the internal force 

vector t F   should be computed at each iteration in a load step or time step because of the configuration 

dependence. Such computation requires lifting U  back to U , computing the nonlinear terms on the original 

dimension n, and projecting the nonlinear terms onto a subspace spanned by Φ . Although the original model is 

reduced, it leads to no significant improvement in efficiency and is referred to as the lifting bottleneck. In order 

to address this inefficiency, sparse sampling methods are commonly used. In this section, we briefly review the 

DEIM [10] and the GappyPOD+E sampling algorithm [12]. 

 

The internal force vector is decomposed into the linear and nonlinear parts t
lF  and t

nF  as 

t t t
l n F F F  (3.29) 

with 

0t t
l F K U , (3.30) 

where 0K  is the stiffness matrix at the first iteration of the initial configuration, and t U  is the displacement 

vector at time t. 

 

Suppose that t
nF  can be also approximated by the POD basis vectors  

nn nΞ  , (3.31) 

where Ξ  is computed by the SVD of nonlinear force snapshots, and nn  is the number of POD basis vectors for 

the nonlinear internal force vector. Note that nn  is much smaller than the dimension of the original model n. 

 

Employing Ξ , the nonlinear force vector t
nF  is then approximated as 

t t
n nF Ξ F , (3.32) 

where nnt
n F   is the POD coefficient associated with Ξ . 

 

In general, Eq. (3.32) is highly overdetermined because of nn n . To find the POD coefficient t
nF , a selection 

matrix sn nP   is defined by 

1 2 ns
  

   P e e e  (3.33) 

with 

 0 0 1 0 0
i

T

 e   , (3.34) 

where the i th row of 
ie  is the value of unity and other entries are zero. 
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Using the selection matrix P  in Eq. (3.33), t
nF  is defined in 

T t T t
n nP F P Ξ F , (3.35) 

and t
nF  is then solved by 

( )t T T t
n n

F P Ξ P F , (3.36) 

where ( )  denotes a generalized inverse. 

 

Finally, the approximation of t
nF  is obtained by 

( )t T T t
n n

F Ξ P Ξ P F , (3.37) 

where snT t
n P F   composed of sn  entries in t

nF . Therefore, the nonlinear part of the internal force vector 

can be computed by sn  entries. Note that ( )T Ξ P Ξ  is precomputed in the offline phase. 

 

There are several sampling point selection algorithms to reduce the following error 

2|| ( ) ||t T T t
n n

F Ξ P Ξ P F , (3.38) 

and the error is bounded [86] according to 

2 2 2|| ( ) || || ( ) || || ( ) ||t T T t T T t
n n n

   F Ξ P Ξ P F P Ξ I ΞΞ F , (3.39) 

where 2|| ( ) ||T P Ξ  and 2|| ( ) ||T t
nI ΞΞ F  are the errors due to the selection of sampling points and orthogonal 

projection by POD, respectively. 

 

The DEIM generates P  by Algorithm 3.1 [10]. In this work, because of n sn n , Eq. (3.36) becomes  

1( )t T T t
n n

F P Ξ P F , (3.40) 

and, in a similar fashion, the derivative of t
nF  with respect to t U  is computed by 

1( )
t t

T Tn n
t t

 


 
F F

Ξ P Ξ P
U U

. (3.41) 

 

Using Eq. (3.41), the tangential stiffness matrix is then calculated by 

0 1( )
t t t

t T Tl n n
t t t

  
   
  

F F F
K K Ξ P Ξ P

U U U
 (3.42) 

with 

0
t

t tn
nt


  


F

K K K
U

, (3.43) 

where t
nK  is the nonlinear part of the tangential stiffness matrix t K . 

 

In Ref. [12], a deterministic oversampling algorithm has been proposed to avoid the unstable behavior in the 

DEIM approximation. The algorithm first selects the DEIM interpolation points using the QR decomposition with 
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column pivoting [76]. Then, additional sampling points are selected in a greedy fashion that 2|| ( ) ||T P Ξ   is 

minimized, which is equivalent to maximize the smallest singular value of TP Ξ . The GappyPOD+E sampling 

algorithm is summarized in Algorithm 3.2. 

 

In line 4 in Algorithm 3.2, the SVD of TP Ξ  is performed by  

T T
nP Ξ VΣ W  (3.44) 

with 

1

2

n

n

n






 
 
   
 
  

Σ


, (3.45) 

where i  denotes the ith singular value of TP Ξ  in descending order, viz. 1 2 nn     .  

 

Using the result of Eq. (3.44), a new sampling point is iteratively selected in each iteration of the GappyPOD+E 

sampling algorithm.  
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Algorithm 3.1. DEIM sampling points selection 

input: POD basis vectors 1{ } nn
i iΞ  

output: Selection matrix P  

1: find the jth row corresponding to the maximum entry of 1| |Ξ  

2: jP e , 1Γ Ξ  

3: for 2i   to nn  

4: solve ( )T T
iP Γ c P Ξ  for c  

5:     i r Ξ Γc  

6: find the jth row corresponding to the maximum entry of r  

7: [ ]jP P e , [ ]iΓ Γ Ξ  

 

Algorithm 3.2. GappyPOD+E sampling points selection 

input: POD basis vectors 1{ } nn
i iΞ , the number of additional sampling points an  

output: Selection matrix P  

1: perform the QR decomposition with column pivoting T Ξ Z QR , where 
1 2 n     Z e e e  

2: 
1 2 nn

  
   P e e e  

3: for 1ni n   to n an n  

4: perform the singular value decomposition T T
nP Ξ VΣ W  

5:     2 2
1n nn ng     

6: T TX W Ξ  with 1 2[ ]nX X X X  

7:     compute the jth entry of 
2 2 2 2

2 2
arg max ( ) 4 ( )

n

T
j j n j

j
g g g     

 
X X e X  such that j e P  

8: [ ]jP P e  
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3.3.  Coarse mesh projection method 

 

Let us consider a coarse mesh for the body represented by the original model as shown in Fig. 3.1. From the 

configuration at time t, the time-independent mass matrix ˆ ˆˆ n nM  , tangential stiffness matrix ˆ ˆˆt n nK  , and 

internal force vector ˆˆt nF   for the coarse mesh model are given by 

ˆ
( )

1

ˆ ˆ( )
en

m

m

M MA  with 
0 ( )

( ) 0 ( ) ( ) ( ) 0 ( )

ˆ
ˆ ˆ ˆ ˆˆ ( )

m

m m m T m m

V
d V M H H , (3.46) 

ˆ
( )

1

ˆ ˆ( )
en

t t m

m

K KA  with 
0 ( )

( ) ( ) ( ) ( ) ( ) ( ) 0 ( )

ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ( )

m

t m t m T m t m t m t m m
ij ijkl kl ij ijV

C S d V K B B N , (3.47) 

ˆ
( )

1

ˆ ˆ( )
en

t t m

m

F FA  with 
0 ( )

( ) ( ) ( ) 0 ( )

ˆ
ˆˆ ˆ( )

m

t m t m T t m m
ij ijV

S d V F B , (3.48) 

where ( )  denotes the quantity for the coarse mesh model. 

 

The reduced basis matrix associated with the coarse mesh model is written as 

ˆ rn nΨ  . (3.49) 

Note that rn  is the number of POD basis vectors for the original model. 

 

We coarsen the POD basis vectors for the original model Φ  to obtain Ψ . In other words, Ψ  is not computed 

by the SVD of the snapshot matrix for the coarse mesh model. Since a POD basis vector can be considered as a 

displacement vector, it can be interpolated using nodal values for a q-node element.  

 

Employing the finite element interpolation, the ith nodal values of Ψ  are defined by 

1 2 3
1

( , , )
q

i j j
j

h   


 ψ φ , (3.50) 

where iψ  denotes the ith nodal values of Ψ , 1 2 3( , , )jh     are the shape functions for a q-node element that 

includes the ith node of the coarse mesh model, and jφ  are corresponding nodal values for Φ . In this way, Ψ  

can be calculated for all DOFs corresponding to the coarse mesh model, and hereinafter, it is referred to as the 

coarsened POD basis matrix. Note that, in this step, the map between the coarse mesh model and the original 

model is found. 

 

Projecting the coarse mesh model onto the subspace spanned by Ψ , the reduced static equilibrium equation has 

the form as 

t t t t KU R F    . (3.51) 

with 

ˆt T tK Ψ KΨ , ˆt t T t t R Ψ R , ˆt T tF Ψ F  (3.52) 

where rnU   is the coefficient vector associated with Ψ , viz. the reduced solution vector for the coarse mesh  
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Fig. 3.1. Finite element modeling of a generic structure: (a) geometry of a body, (b) original model, and (c) coarse 

model. 

 

model, and the dimension of the reduced equation is the same as Eq. (3.20). 

 

To decrease the error between the reduced solutions U   in Eq. (3.20) and U   in Eq. (3.51), the tangential 

stiffness matrix and internal force vector ( ˆt K  and ˆt F ) should be corrected. Assuming that the coefficient vector 

U  is close to U , the approximate solution for the original model is calculated by using the reduced solution for 

the coarse mesh model as 

U ΦU . (3.53) 

 

Then, ( )ˆt mK  and ( )ˆt mF  are corrected using the approximate solution for the original model as follows: 

0 ( )

( ) ( ) ( ) ( ) ( ) ( ) 0 ( )
0ˆ

ˆ ˆ ˆ ˆ ˆ( )
m

t m t m T m t m t m t m m
ij ijkl kl ij ijV

C S d V K B B N , (3.54) 

0 ( )

( ) ( ) ( ) 0 ( )

ˆ
ˆ ˆ ˆ( )

m

t m t m T t m m
ij ijV

S d V F B . (3.55) 

To construct Eq. (3.51), ( )ˆt mK  and ( )ˆt mF  are obtained by Eqs. (3.54) and (3.55) instead of (3.47) and (3.48).  

 

Note that the integration of ( )ˆt mK  and ( )ˆt mF  is numerically performed by the Gauss quadrature. Namely, the 

material law and second PK stress tensors ( )m
ijklC  and ( )t m

ijS  are computed from the original model corresponding 

to quadrature points in a coarse element. For example, the correction of a four-node two-dimensional solid finite 

element is shown in Fig. 3.2.  

 

In dynamics, the same procedure is adopted, and the reduced equations are obtained by 

t t t M U R F    , (3.56) 

t t t t t t   M U KU R F       (3.57) 

with 
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Fig. 3.2. Correction of a coarse finite element: (a) fine elements and (b) coarse element, where the red dots in the 

coarse element represent quadrature points. 

 

 

Fig. 3.3. Flowcharts of the proposed method: (a) offline and (b) online phases. 

 

ˆTM Ψ MΨ , ˆt T tR Ψ R . (3.58) 

 

The whole procedure of the proposed method is summarized in Fig. 3.3.  
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3.4.  Numerical examples 

 

We investigate the performance of the proposed method by means of several numerical examples of geometrically 

nonlinear and elastoplastic analyses. To solve nonlinear equations, the Newton-Raphson method is used at each 

load or time step. In addition, the implicit return mapping algorithm is used for the elastoplastic analysis at each 

quadrature point. For modeling the numerical examples, two-dimensional or three-dimensional solid finite 

elements are used. 

 

The accuracy of the proposed method is compared to that of the corresponding standard coarse mesh model and 

the reduced models obtained by the POD-DEIM and POD-GappyPOD+E. The number of POD basis vectors is 

determined based on the criterion in Eq. (3.28) with 99.999999% . In the finite element method, to compute 

a quantity corresponding to a nodal value, numerical integration should be performed on adjacent elements. 

Namely, the number of elements used in sparse sampling methods is typically greater than the number of sampling 

points. Therefore, we compare the proposed method to the DEIM and GappyPOD+E in the case of the 

approximately same number of elements used. 

 

 

3.4.1.  Two-dimensional column under a compressive load 

 

A two-dimensional column subjected to a compressive load is considered as shown in Fig. 3.4. The length, width, 

and height of the column are 1l  , 1w  , and 10h  , respectively, Young’s modulus and Poisson’s ratio are 

610E   and 0.3  , respectively, the plane stress condition is employed, and a compressive load maxP  applied 

at point A is 4500. The column is modeled by four-node two-dimensional solid finite elements with a distorted 

mesh of 32 320  (10240 elements), where 32 elements are assigned along the column length. 

 

To construct the reduced models, 84 snapshots of the displacement are collected, and the first 5 POD basis vectors 

are then selected. For the comparison with the DEIM, additional 84 snapshots of the internal force are collected. 

In this example, two cases of meshes are considered: mesh A (10 elements) and mesh B (42 elements). Fig. 3.5 

shows the elements used to compute nonlinear terms in meshes A and B. 

 

The load-displacement curves at point A for mesh A are described in Fig. 3.6. Although the proposed method uses 

0.09% of the number of elements used in the original model, the deflection agrees very well with the reference 

solution. On the other hand, the DEIM fails to obtain the solution.  

 

Fig. 3.7 presents the load-displacement curves at point A for mesh B. The relative errors in the displacement at 

each load step are listed in Table 3.1, and their minimum, maximum, and mean values are shown in Fig. 3.8. Here, 

the relative error in the displacement is defined by 
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Fig. 3.4. Column subjected to a compressive load. 

 

 

Fig. 3.5. Finite elements used to compute nonlinear terms for the two-dimensional column problem: (a) mesh A 

and (b) mesh B. 



56 

 

 

Fig. 3.6. Load-displacement curves at point A for the two-dimensional column problem with mesh A: (a) 

horizontal displacement and (b) vertical displacement. 

 

 

Fig. 3.7. Load-displacement curves at point A for the two-dimensional column problem with mesh B: (a) 

horizontal displacement and (b) vertical displacement. 

 

2

2

100
t t
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


U U

U
, (3.59) 

where t
aU  denotes the approximate displacement at time t obtained by each method. The results also present 

that the proposed method outperforms the DEIM. 

 

In addition, we compare the von Mises stress distributions at the final configuration of the proposed method to 

that of the standard coarse mesh models, see Fig. 3.9. The proposed method significantly improves the accuracy 

compared to that of the standard coarse mesh models. 
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Table 3.1. Relative errors in the displacement of each load step for the two-dimensional column problem with 

mesh B. 

Load step 
Relative error (%) 

DEIM Proposed 

1 2.08 1.86 

2 1.76 1.80 

3 1.14 1.65 

4 0.46 1.51 

5 0.26 1.36 

6 1.31 1.18 

7 3.51 0.98 

8 0.90 0.63 

9 5.15 0.28 

10 3.29 0.02 

11 0.04 0.02 

12 0.06 0.02 

13 0.22 0.02 

14 0.22 0.01 

15 0.06 0.03 

16 0.08 0.05 

17 0.13 0.07 

18 0.09 0.09 

19 0.01 0.09 

20 0.07 0.05 
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Fig. 3.8. Relative errors in the displacement for the two-dimensional column problem with mesh B. 

 

 

Fig. 3.9. Von Mises stress distribution of the two-dimensional column problem at the final configuration. 
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3.4.2.  Three-dimensional column under a compressive load 

 

We consider the column described in Section 3.4.1 again and now use three-dimensional hexahedral elements, see 

Fig. 3.10. For modeling the three-dimensional column, 81 99  (column cross section column height) mesh is 

considered, and a compressive load max 4500P   is applied at the blue edge. 

 

We first collect the 81 snapshots of the displacement and extract the first 5 POD basis. In this example, two meshes 

A and B are used. The DEIM uses 16 and 48 elements for meshes A and B, respectively, and the proposed method 

uses 1 16  and 4 12  for meshes A and B, respectively. 

 

The load-displacement curves at point A for mesh A are described in Fig. 3.11. As in section 3.4.1, the DEIM fails 

to obtain the converged solutions, while the proposed method successfully obtains the approximate solution. Fig. 

3.12 presents the load-displacement curves at point A for mesh B, and Fig. 3.13 shows maximum, minimum, and 

mean values of the relative errors in the displacement at each load step. The results also present that the proposed 

method outperforms the DEIM for the three-dimensional problem. 

 

In addition, we perform the geometrically nonlinear transient analysis using the Newmark time integration method. 

The design parameter of the column is the magnitude of the compressive load ( )P p t   with 

[1125 4500]  , where ( )p t  is shown in Fig. 3.14. 

 

 

Fig. 3.10. Three-dimensional column subjected to a compressive load. 
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Fig. 3.11. Load-displacement curves at point A for the three-dimensional column problem with mesh A: (a) 

horizontal displacement and (b) vertical displacement. 

 

 

Fig. 3.12. Load-displacement curves at point A for the three-dimensional column problem with mesh B: (a) 

horizontal displacement and (b) vertical displacement. 

 

We collect 710 snapshots of the displacement from two loading conditions 0.25   and 1   and extract the 

first 22 POD basis vectors. For evaluating nonlinear terms, the DEIM and proposed method use mesh B. 

 

With a compressive load of 2812.5  , the displacement in 3x  direction at point A is described in Fig. 3.15. 

Note that 2812.5   is not included in the snapshot parameters. While the DEIM fails to obtain the converged 

solution, the proposed method successfully provides the approximate solution. 
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Fig. 3.13. Relative errors in the displacement for the three-dimensional column problem with mesh B. 

 

 

Fig. 3.14. Time history of a compressive load ( )p t  for the three-dimensional column problem. 
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Fig. 3.15. Time history of the displacement in 3x  direction at point A for the three-dimensional column problem. 

 

 

3.4.3.  Rectangular plate with a hole 

 

In this section, we investigate the performance of the proposed method in materially nonlinear analysis, especially 

elastic-plastic analysis. The von Mises plasticity with isotropic hardening and associated flow rule are employed. 

The length l, width w, radius r, and thickness of the plate are 10 mm, 2 mm, 1 mm, and 0.5 mm respectively, and 

only one-fourth of the plate is solved owing to symmetry, see Fig. 3.16. The plate is modeled by 1775 four-node 

two-dimensional solid finite elements. Young’s modulus and Poisson’s ratio of the plate are 200E GPa  , 

0.3  , respectively, and the loading profile is shown in Fig. 3.17. 

 

We consider the initial yield stress 1yv MPa    with 1 [200 300]    and the linear hardening modulus 

2H GPa  with 2 [40 60]   as input parameters. Snapshots are collected from the four cases of the upper 

and lower bounds of the parameters, and the first 29 POD basis vectors are then extracted by the 733 snapshots 

of the displacement. 

 

The load-displacement curve at point A is described in Fig. 3.18, where two parameters are chosen as 1 250   

and 2 50  . Here, the finite elements used in this example are shown in Fig. 3.19. First, the DEIM and the 

proposed method respectively use 74 and 70 elements for computing nonlinear terms. The DEIM fails to obtain 

the converged solution, while the proposed method provides the approximate solution that agrees well with the 

reference solution. We use the GappyPOD+E algorithm to select additional sampling points and compare them to 

the proposed method with the same number of elements used. The result shows that the proposed method provides 

better accuracy compared to the DEIM and GappyPOD+E algorithm. 
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Fig. 3.16. Rectangular plate with a hole. 

 

 

Fig. 3.17. Loading profile for the rectangular plate with a hole problem. 

 

 

Fig. 3.18. Load-displacement curves at point A for the rectangular plate with a hole problem. 
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Fig. 3.19. Finite elements used to compute nonlinear terms for the rectangular plate with a hole problem. The 

numbers in the parenthesis denote the number of elements used. 

 

 

Fig. 3.20. Parametric variation: (a) chosen parameter cases and (b) relative errors in the displacement of each case. 

 

We now generate the reduced models that provide approximate solutions over a range of parameters to conduct 

elastoplastic analysis. Ten cases of input parameters are used as shown in Fig. 3.20(a), where the number below a 

data point denotes the case number. Fig. 3.20(b) shows the relative errors in the displacement of each case. The 

result shows that the proposed method performs well with parametric variations. 

 

 

3.4.4.  Heterogeneous structure 

 

A heterogeneous structure in Fig. 3.21 is considered and modeled by 25825 two-dimensional solid finite elements, 

where von Mises plasticity with isotropic hardening and associated flow rule are employed. The white circles 
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Fig. 3.21. Heterogeneous structure. 

 

denote the void, and the hatched circles denote the stiff fiber with Young’s modulus 1200E GPa , Poisson’s 

ratio 0.3  , initial yield stress 2200yv MPa  , and linear hardening modulus 350H GPa . The rest of 

the structure is the soft matrix with 170E GPa  , 0.33   , 270yv MPa   , and 214H GPa  . The 

structure is subjected to a body force 2sin (2 )bf y GPa   in 2x   direction and simply supported along its 

bottom.  

 

In this problem, only the GappyPOD+E algorithm with 826 and 1644 elements is used to compare with the 

proposed method because DEIM fails to obtain the converged solution. In the proposed method, 805 and 1629 

elements are used, see Fig. 3.22. Three input parameters 1 [0.8 1.4]  , 2 [0.8 1.4]  , and 3 [0.8 1.4]   

are considered, and the first 37 POD basis vectors are obtained by the 553 snapshots of the displacement, where 

the snapshots are collected from the eight cases of the upper and lower bounds of the parameters. 

 

Table 3.2 lists the twenty cases of the input parameters, and Fig. 3.23 shows the relative errors in the displacement 

of each case. Note that vertical scales are different in Fig. 3.23. The result shows that the proposed method 

performs well with parametric variations and outperforms the GappyPOD+E algorithm. 

 

 

 



66 

 

 

Fig. 3.22. Finite elements used to compute nonlinear terms for the heterogeneous structure problem. The numbers 

in the parenthesis denote the number of elements used. 
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Table 3.2. Parameter cases of the heterogeneous structure problem. 

Parameter case 1  2  3  

1 1.24  1.03  0.91  

2 1.31  0.88  1.08  

3 1.09  1.19  1.14  

4 1.03  0.89  0.94  

5 1.36  1.06  1.01  

6 0.93  1.01  1.27  

7 0.97  1.12  1.11  

8 0.87  1.08  0.86  

9 1.32  1.27  1.02  

10 1.06  1.30  1.07  

11 0.92  1.24  1.17  

12 1.28  1.39  0.80  

13 0.84  0.94  1.21  

14 0.82  1.36  1.34  

15 1.13  0.85  0.85  

16 1.21  0.98  1.31  

17 1.13  0.81  1.37  

18 1.38  1.19  1.23  

19 1.16  1.32  1.30  

20 0.99  1.15  0.95  
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Fig. 3.23. Relative errors in the displacement of each case. The number in the parenthesis denotes the number of 

elements used. 
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3.5.  Concluding remarks 

 

We proposed the coarse mesh projection method for nonlinear model reduction. The nonlinear terms were 

computed on a coarse mesh model corresponding to the domain considered in the original model. Except for 

snapshots of nonlinear terms, only snapshots of displacement vectors were employed to extract POD basis vectors. 

The reduction of the coarse mesh model was performed by the Galerkin projection using the coarsened POD basis 

vectors. In order to evaluate the performance of the proposed method, geometrically and materially nonlinear 

problems were solved in comparison with the DEIM and GappyPOD+E. The proposed method outperformed 

these two methods when the approximately same number of elements were used for computing nonlinear terms. 
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Chapter 4.  Conclusions 

 

The objective of this dissertation was to present novel model reduction methods for linear and nonlinear analyses 

of structures. The projection-based model reductions have been widely used for solving engineering problems 

efficiently. They have a rigorous framework that projects the original model onto a low-dimensional subspace. 

However, for large-scale problems, the improvement in the efficiency of the reduction methods is still required.  

 

In Chapter 2, a load balancing algorithm for the parallel automated multilevel substructuring (PAMLS) for 

efficient linear model reduction in structural dynamics has been proposed. Improving the computational efficiency 

of the original PAMLS has been achieved by consisting of two types of granularity: coarse- and fine-grained 

parallel algorithms. Without mesh repartitioning, the proposed method speeds up the original PAMLS, regardless 

of the DOFs of the original model, the number of substructures, and cutoff frequencies. 

 

The concept of the proposed algorithm could easily extend to the parallelization of other multilevel CMS methods 

[47,87–89]. Note that, in this dissertation, the proposed algorithm was implemented on a shared memory computer. 

Future efforts to develop a parallel algorithm for hybrid distributed-shared memory systems would be valuable. 

Hybrid systems have many computation nodes which are shared memory computers; the computation nodes 

communicate with each other by sending and receiving messages. As with the shared memory parallel algorithm, 

it is desirable to maximize the local computation and minimize the communication between computation nodes 

because parallel performance is primarily affected by the idle time at the synchronization points. One possible 

approach is to use the two types of granularity in the proposed algorithm. In coarse-grained parallelism, the 

computational load of tasks is typically greater than in fine-grained parallelism. Therefore, the coarse-grained and 

fine-grained parallel algorithms would be suitable for distributed and shared memory parallel strategies, 

respectively. 

 

Furthermore, research on the model reduction of nonlinear problems is still going on, although the model reduction 

of linear problems is quite mature. Chapter 3 was devoted to developing an efficient nonlinear model reduction 

method using a coarse mesh, named coarse mesh projection. The proposed method provided more accurate 

solutions compared to the DEIM and GappyPOD+E in geometrically nonlinear and elastoplastic analyses. The 

concept of the proposed method could easily extend to apply other standard finite elements. In particular, future 

efforts to establish a theoretical foundation of the proposed method would be valuable. For example, a priori and 

posterior error bounds are useful to guarantee reliable solutions. 
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Appendix A. Effect of a cutoff level on the parallel automated multilevel 

substructuring method 

 

We investigate the effect of the following cutoff level 

min{ , }c t sL L i L   with 2min{ : log }t tL k N k    for i , (A.1) 

where tN  and sL  are the number of threads used and the maximum level of substructures, respectively, and 

  and   are the sets of all natural numbers and integers, respectively.  

 

The serial and parallel algorithms are implemented in Fortran, where Intel Fortran Compiler 19.1.0.166 with 

OpenMP is used. The mesh partitioning is achieved by METIS [68], an open-source package for unstructured 

graph partitioning, and the eigenvalue problems are solved using ARPACK [53], an open-source package based 

on the Arnoldi/Lanczos process. All numerical examples are tested on CentOS 7 with two 8-core Intel Xeon CPUs 

(E5-2667 v4 at 3.2 GHz) and with 128 GB of memory. For evaluating the performance, generalized eigenvalue 

problems for three finite element models are solved on 2 to 16 threads in the original PAMLS method and the 

proposed algorithm. Table A.1 lists the finite element models used. 

 

The performance is evaluated by the wall clock time required for the transformation procedure, which spends a 

majority of the elapsed time in the AMLS method. The set of wall clock times is defined by  

( ) { : ( )}iT j i t j  , (A.2) 

where the subscript i   in ( )it j   denotes the additional level of min{ , }c t sL L i L    in Eq. (A.1), and the 

number in the parenthesis of ( )it   is the number of threads used. 

 

The normalized wall clock time for the additional level i is defined by 

2

1
( )

1

tN

i i
jt

T t j
N 


   with 

min{ ( )}
( ) [0 1]

( )i
i

T j
t j

t j
  , (A.3) 

and iT  is then defined by the mean of iT  for the finite element models in Table A.1. Note that iT  represents 

the normalized parallel performance for the additional level. 

 

The normalized parallel performance for the additional level iT  is shown in Table. A.2 and Fig. A.1. Based on 

the result, we employ the following cutoff level cL : 

min{ 5, }c t sL L L  . (A.4) 
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Table A.1. Finite element models used to investigate the effect of the cutoff level. 

Model DOFs 
Number of nonzero entries in the upper triangular part 

Mass matrix Stiffness matrix 

A 209118 1655714 3093933 

B 1054866 8147602 23386865 

C 4244496 15124689 43345801 

 

Table A.2. Normalized parallel performance for the additional level. 

Additional level Normalized parallel performance 

0 0.8234 

1 0.9036 

2 0.9542 

3 0.9792 

4 0.9718 

5 0.9989 

6 0.9733 

7 0.9622 

8 0.9826 

9 0.9954 

10 0.9980 

 

 

Fig. A.1. Normalized parallel performance for the additional level. 
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Appendix B. Effect of mesh partitioning on the parallel automated 

multilevel substructuring method 

 

In the parallel AMLS method, more threads become idle as more substructures are transformed. In addition, the 

computational cost for the transformation of an interface substructure is typically greater than that of its 

descendant substructure, even if their DOFs are the same. The reason is that matrices for updated substructures 

generally have more nonzero entries. In other words, the computational cost for the transformation of a shared 

substructure is typically greater than that of a distributed substructure. Therefore, the smaller number of DOFs for 

interface substructures (i.e. shared substructures) provides better parallel scalability. 

 

For example, a clamped-clamped beam described in Fig. B.1 is considered, which is taken from Ref. [49]. The 

beam is modeled by three-dimensional hexahedral elements with three different meshes, where the number of 

elements in each mesh is the same. Table B.1 lists the information about each of the meshes that are partitioned 

into 2047 substructures on 10 levels. Table B.2 and Fig B.2 show the mean substructure sizes of each level for the 

finite element models when partitioning the meshes by using METIS [68]. It is observed that the number of DOFs 

for interface substructures (i.e. shared substructures) is greater as the number of elements in the cross section 

increases. 

 

The parallel performance of the original PAMLS method is consistently improved through the proposed algorithm 

although the parallel scalability is affected by the number of DOFs for shared substructures, see Fig. B.3. This 

partitioning issue is not addressed in this dissertation because we have focused on the load balancing for the 

PAMLS method in a given mesh partitioning. 
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Fig. B.1. Clamped-clamped beam problem. 

 

 

Table B.1. Finite element models for the beam problem. 

Number of elements 
(cross section length) 

DOFs 
Number of nonzero entries in the upper triangular part 

Mass matrix Stiffness matrix 

163840 (16 16 640) 554013 7173879 13639251 

163840 (32 32 160) 519453 6963639 13078803 

163840 (64 64 40) 494325 6672615 12429795 

 

 

Table B.2. Mean substructure sizes of each level for the beam problem. 

level Number of substructures 
Mean substructure sizes (DOFs) 

16 16 640 mesh 32 32 160 mesh 64 64 40 mesh 

0 1 867 3267 7995 

1 2 867 3267 3936 

2 4 867 3341 3072 

3 8 867 1940 1920 

4 16 867 923 939 

5 32 867 771 721 

6 64 462 428 439 

7 128 217 210 208 

8 256 193 168 158 

9 512 96 88 90 

10 1024 337 298 290 
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Fig. B.2. Mean substructure sizes of each level for the beam problem. 

 
 

 
Fig. B.3. Speed-up factors for the beam problem: (a) transformation procedure and (b) implicit back 

transformation procedure. 
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