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1. Introduction



FEM in engineering fields

Offshore Engineering Aerospace Engineering

&

Impact Engineering BIO Engineering

Today, FEM is closely related with the human safety and health in real life !
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Motivations of model reduction

Finite element model

Complexity 1
Model size (M, K/) 1

Computing time

Reducing the computational cost has been an
important issue.

Ballasting tanks

N

1

™

(¢) Trimmed body

Separate into many pieces and reduce every pieces: “Divide and Conquer” paradigm

Model reduction methods have been studied for more than 50 years.

Still important research field.
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Model reduction concepts

¢ There are 2 ways to make the reduced model.

T -

1. DOFs based reduction methods:
Ex) Guyan reduction, IRS method, Super-element etc..

o—o—¢  —— 0
® ® ¢ L 4 L ®
F—o oo ¢ |:> 9 reduced = Tq original
» —o—0 00—
" —o—0—0—0—0—9

2. Modes based reduction methods:
Ex) CB method, AMLS method etc..




The Craig-Bampton method

Step 1. Partitioning and interface handling

Fixed interface

, AMLS method)

(e.g. CB method

Partitioned structure

Step 2. Construct transformation matrix

Y : Interface constraint mode

interface normal mode

® : Fixed

(@ Y]

T, =




The Craig-Bampton method

v" Fixed interface normal modes

K®Op® :A(i)M(i)(I)(i)’ e :[(I)f' @] s:.s-ubstructural
b : interface boundary
D, | r d : dominant
:> D = E O =[O, O] r : residual
b

Step 3. Reduced transformation matrix

= |

| 0 i1
Truncated : : Reduced transformation matrix
Large amount of global modes

| Note |

More accurate method - Depend on transformation matrix.



The Craig-Bampton method

Step 4. Rayleigh-Ritz procedure

M, K is much smaller than M, K, .
_ T T Y 7T T -
M—TOMQTO’K—TKT M, K : 100x100
TO _

. IT : 10000100

M, K :10000x10000

TT 100x10000
10000x100

Step 5. Reduced eigenvalue problem

K(6). :/Ti M(5), ‘ Approximated eigenvalue 1.

Step 6. Back transformation procedure

_ — T, is a key factor in model reduction.
((Pg)i z((Pg)i :TO((Pp)i °
Our Aims = Accurate & Fast.



Applications

Multi-Scale Mesh |

Shock response & damage prediction Multi-scale model analysis

o: Selected measurement locations

Structural dynamic analysis Health monitoring
and “Eigenvalue solver” and sensor positioning Experimental dynamic analysis

(Especially AMLS method)
10



Applications

'=4+=—=28 hrs

0 2000 m[h ll:hll“lmo BOO0 1 -llﬂ‘

—— NASTHAN
* MCA+PROM
« =« MCA+PROM+Kriging

Design optimization through re-analysis

Physical DoF

Bending Only

Bending & Membrane

Coupled Bending & Companion
Uncoupled Bending & Companion

Notch stress (non-linear stress peak)

Hot spot stress

Structural Nominal
stress region ‘ stress region
f

Stress Range Probability Density (1/ksi)

T
[T
[
Dy

Stress Range (ksi)

Spectral fatigue analysis

11

Transient analysis
(Alternative for implicit / explicit solvers)

Crack propagation analysis



2. History & Issues



History of the model reduction method

1965 1984

> Hurty
: A pioneer of CMS method
» Use ‘component modes’ and ‘synthesis’.

1971

» MacNeal
: Hybrid method
» Fixed-Free interface normal

» Ookuma & Nagamatsu
: Developed multiple CMS
» Multiple partitioning (Efficiency 1)

» Fixed interface CMS modes -
> Rigid body +Constraint 2, 1987
+ Fixed interface normal modes 1975 )
acNeal > J.K. Bennighof
1968 > Rubin > ‘Component mode iteration’

» Craig-Bampton (CB) method
» Modified Hurt’s approach.
:Constraint + Fixed interface

(Approximating Free interface :Using subspace iteration method
normal modes ) at the substructure level

normal modes » Considering the residual effects Bennighof
» Simple & Accurate 1976 1988
> Most popular Craig » Craig-Chang » Craig & Hale
1969 : Modified Rubin’s idea : Used Block Krylov Ritz vectors instead of
(Eree interface normal modes ) component normal modes
» Goldman

» Considering residual flexibility
(Accuracy 1)

[ 1960s ~ 1980s |

> Less computational effort
: Free interface normal modes P

1 | |
: | |
: : :
: : :
I | |
1 | |
1 1 |
: ' : Extended MacNeal’s approach | method
: | |
I | X
1 | 1
I | |
1 | |
I | |
1 | |
I | X
1 | 1

v’ Various interface handling techniques. ( Fixed 2 Free 2 Fixed + Free )

v To calculate more accurate substructural normal modes. (SIM, Block Krylov)
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History of the model reduction method

1990

» El-Sayed & Hsiung
: Employing parallel processing
(Efficiency 1)

2002

» Dual CB method

» Assembly using interface force
» Experimental substructuring

I

I

|

I

|

I

|

:

I

' 2004

E > J.K. Bennighof
! » AMLS method
| » Automated multi-level substructuring

' » Computer-aid formulation: Extremely fast, eigensolver
I

I

I

|

I

|

I

|

I

|

I

|

I

l

I

D. Rixen
1992 1996
» Singh & Suarez

: A new Free interface CMS

» Parametric model

reduction
» Using higher order modal > Model updating

|
I
|
I
|
I
|
I
I
|
I
|
I
|
I
|
I
|
I
|
I i
: combination technique
|
I
|
I
|
I
|
I
|
I
I
|
I
|
I
|
I
|
I
|

Bennighof

E. Balmes

(Accuracy 1) 2005

» C.Yang & NG Esmond
» ‘Priori’ error bound for AMLS method (Only for single level)

1992

» CMS + Guyan
reduction

1997

» Greg Hulbert
» > Using the quasi-

2006

> Substructuring static mode instead . , H. Voss
for solufion efficiency ot constraint mode [ 7 O and Tor CH/AMLS methods
Bouhaddi G. Hulbert ! » Check the reliability of the reduced model
o) (o
[ 1990s ~ 2000s ] [ 2010s ~ ]
v First try for ‘Parallel’ computing. v Expansion to Experiment.
v New interface handling techniques. v New paradigm: Eigensolver, Interest for ‘Efficiency’
v More accurate reduced model. v’ Studies on “Error estimator”: Interest for ‘Reliability’

14



Primal issues for half a century

R/

** We can identify that, there have been “Three Primal Issues” in the research field.

Issue 1. Solution “Reliability”
¢+ Error bound (= Error estimation): 1. For CB method 2. For AMLS method

|:> Topic 1 : Error estimators for the CB/AMLS methods

Issue 2. Solution “Accuracy”
¢ Interface handling techniques

+¢» Substructural modes calculation

1. SIM 2. Block Krvlov Ritz vectors

3. Quasi-static mode

3. Hybrid interface

|:> Topic 2 : Enhanced AMLS method

Issue 3. Solution “Efficiency”
¢ Improving solution efficiency

1. Parallel techniques 2. Automated multi-level substructuring

3. Using sparsity pattern

|:> Topic 3 : Algebraic dynamic condensation method
15




3. Research topics



Topic 1-1. Simplified error estimator for the CB method




Motivation

¢ To verify the solution reliability of the reduced model,

Generally, we use “Relative eigenvalue errors” 1 T T M,
_Aih A M
Gi = 2 = E;‘“
%10‘“ e
However, to obtain the exact eigenvalue 4., we should Pel
solve the global eigenvalue problem K (¢,), =4 M (o). ! 5 . 1f5 sz:-ms‘?m“il
< Relative eigenvalue errors >
Since 2000s...

Finite element model

Complexity 1
Model size (Mg, Kg) 1

K, (9,); =4 M,(0,); : Requires large computational cost.
v" What about 1,000,000 DOFs or more DOFs problem ?
- It is not easy to get A. .

¢ For the reduced model of the large FE model: Interest for “Solution Reliability 1”

18



Previous error estimation method

¢ Several meaningful error estimators were developed.

1. Yang et al. (2005), “priori” error bound for AMLS method
A

o(w) = <7 :Only for single level substructuring

. @ is the approximated eigenvalue, A, is the smallest eigenvalue under consideration
7 is the given tolerance

2. Elssel and Voss (2006), “priori” error bound for CB and AMLS methods

3 T T T T T T T T p——
i ﬂ, f T it |
. _— E T mereSeeeEs
L A, —, AMLS: /i = Ta+ )— e |
. /1 F /; s sl S 3
1075 A7 T a - =
r k O i : I/:}:; W ,v,/-':\\/ B SUES
E (o s =AY o -
F b '-»K;_._A = -
107k II.' -’*"/-;i,,,” = /
J
b

: A, is the smallest residual eigenvalue of substructures. ' //57

v" Scalar operation: Very fast. But, poor accuracy.

19



Previous error estimation method

3. Kim and Lee (2015), “posteriori” error estimator for the CB method

v" Derive the “enhanced transformation matrix” using residual flexibility matrix F,

g "

Tl with Tl = TO + Ta . ‘ g_*%___/f F4
N e I N

H = 2((Pp)| T(; Mg _ng ’]:a ((pp)i +((pp)i ’]; Mg _EKQ ’I;((Pp)| %10’2- r\/’\‘@’”‘?/\f’%ﬂ

v Very accurate. D

v" Global matrix operations, complicated. o Coimae (Frosn)

0 5 10 15 20
Mode number

** What is the drawback / limitation?

v’ Yang, Elssel and Voss’s : Accuracy | .
v Kim and Lee’s : Accurate, but efficiency | .
Global matrix computing, Requiring large memory
—> Cannot apply to large FE models (over 100,000 DOFs).

20



Design focus

1. Requirements for a new error estimator ?

v Accuracy & Efficiency. Adoptable for real engineering problems.

2. Key ideas ?

v' Way to see in a part: Submatrix level formulation and computing.

v" Using matrix property: Sparsity (Compact computing),

Symmetry (Half calculation), Orthogonality (Give zero matrix).

3. What is the “Strengths”, which is expected ?

v" Formulations would be expressed in submatrix form: Computationally efficient.

v Then, the substructural error contributions for global mode can be calculated.

21



Derivation procedure

1. Original formulation of error estimator
1

m=29,) TT{M -~ K, }T (@, +(®@,) TT{M T.Kg}

® @

@

mm) =9 [2A4T,M,T,-2T/K, T, +1/T,M T, -AT,K,T,]19,

v Submatrix form : M, = { } {

_ 0 A,
@ TO MgTa - 0 A

b

_ 0 0
mm) T/MT, =
0 A

:| With AC - (QS)TMSFFSMC1 A

) TK,T, :B
) . T,K,T,=0

b

22

“Orthogonal” property

(q)g )T MSFI’S: 0

J v' Zero matrices: Give cost saving !

Bl . . .
C} with B, =(®!)'K.F M_, B, = (Y. K, +K_)F . M_ | “Orthogonal” property

(®)'K.F =0

v =-K/'K,, YK, +K =0




Derivation procedure

(1) =G ~T/MT,=TK,T,

2. The following equations are obtained _ Ps}
- ab i

_ 0O 0
nlz/ll(pl-r|:0 A @ ;Ll(pTTTM Ta(Pl
b

Higher order term neglected

3. The error estimator is approximated Submatrix form
o B _ . . e - ;
ni =1 =4,(9,); Ay(9,); with A, =MF M, 1\7[((:1) FO 0
R [ (2 F®
\ MC = M.C ’ Frs — rs
M(k) 0 F(k)

4. A new error estimator

Zﬂ (@) M(k)TF(k)Mgk)(@))i -

23

FY : Symmetric, fully populated matrix.

)
FO =F" + F9 + FY



Derivation procedure

5. Finally, the simplified error estimator is defined as

= i [ with 4% =e® +2e9 e = 7.(5,)T MO EPMEP (3,), e = 7 (3,) MO FOMY (g, )
k=1 ’

v Represented by a simple summation of the substructural errors estimated.

‘ Attractive feature of the proposed method.
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Previous vs New error estimator: Operation counts

** Previous error estimator

n=2@,) | M, - =K, T(@)w(@)?i{Mg —%Kg}i@p)i with i{" FrsMc}
-

1 Frs =(I<s)_1 - ((I)d)(Ad)_l((I)d)T n32
2 T s(2s—Dbn
1 2
3 Mg _TKg 2N
4 7 2N-D)(N+d)+(2d -D(N+1)+1
Total counts ns® +s(2s—1)bn+2N? +(2N —1)(N +d) +(2d —1)(N +1)+1
Polynomials of total DOFs, N

Number of total DOFs : N Size of the interface : b
Number of substructures : n Size of the reduced model : d

Number of each substructural DOFs : s

25



Previous vs New error estimator: Operation counts

+* New error estimator

n
o (k) - k k k - = i e — e ~ = .
n —kZ:;.ui with 24" =g +26,9 e =1, (@, MY F'MY(g,), e = 1, (g, MY FOMY (¢,),

1 FY =(K©) " = (@()(AY) (@) ns’
2 el(k) and eék) 2n[(s+D(2b—-1) +(b+s)(2s-1) +1]
3 i 2n-1
Total counts ns’ +2n[(s+1)(2b-1) +(b+s)(2s—1) +1]+2n—1 : Polynomials of “s”
Number of total DOFs : N Size of the interface : b
Number of substructures : n Size of the reduced model : d

Number of each substructural DOFs : s

26



Previous vs New error estimator: Operation counts

¢ Operation counts

EEM Operation counts

Previous ns® +s(2s—Dbn+2N* +(2N —1)(N +d)+(2d —1)(N +1) +1

New ns’ +2n[(s+1)(2b—1) + (b+s)(2s -1 +1]+2n-1

v" For stiffened plate problem
A Number of total DOFs, N=52662

Number of substructures : n=18

Number of each substructural DOFs : s=2730

Size of the interface : b=3522
Size of the reduced model : d=3582

Previous vs New

Operation counts :
peration cou 9.63x10" >1.09x1C°

» New error estimator only requires 0.22 % operation counts of that of previous
error estimator.

27



Numerical examples

Computer spec. : Intel core (TM) 17-3770, 3.40 GHz CPU, 32GB RAM.
FE Model: 4-node MITC shell element.

Material: Mild steel. (E=206 GPa, v = 0.3, density = 7,850 kg/m?)
Implementation: Code implementations are done using MATLAB.

v Compared with the exact relative eigenvalue errors.

v Also, compared with the previous error estimation methods



¢+ Stiffened Plate structure

Dimension (L=26 m, B=6 m, S=2 m), 18 substructures. No B.C.
Total DOFs = 52,662 = Retain modes = 200. Reduced system size = 3,582 (6.8%).

i 0.02

=

A
0.019 T

0019

e

0 Q, QL0 0,
i i T T T
1= i A HH il S A 5 man
Q4 Q- Qri I 915 QB
i il i3 wiaia) i
S HER T SRRl SRR
[ IIl I Ih> S-Ill3l ¢ g\‘\g-ll%l gl\l[lj\

Y |t

[
T ..}X L

29

16”7

10

. | —— Estimated (Eleesl and Voes) |
. | —=— Estimated {KIm st al.)
. | —¥— Estimated {Present)

L=
na
f -9
I, 7 TR
o
a

12 14 18 18 2

Mode number

< Relative eigenvalue errors >




¢+ Stiffened Plate structure

» Breakdowns of the computational cost

Computation times

Items
[see] Ratio [%a]
CB method 100.00
Caleulation of the residual flexibility
) 1.89 1.14
matnx F
Previous error estimator in - Calculation of T, matrix 41.12 24.89
Eq. (29)
Calculation error estimator | 16.23 982
Total
Calculation of the residual flexibility
P 1.89 1.14
matrx o
Present error estimator in " Only reqU|reS 2.27 0/0 Of
Eq. (40) Calculation error estimator ., 187 1.13
— additional computation time.
Caleulation of the residual flexibility 15 times faster
0.79 0.48
Present error estimator  matrix F
considering symmetric Calculation error estimator 0.40

partitioning

Total 1.19

Elssel and Voss’s error estimator in Eq. (41) 0.000011  0.0000066
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s Semi-submerged rig structure

Dimension (L=110 m, B=80 m, C=20 m, H,=50, H,=15), 28 substructures. No B.C.
Total DOFs = 102,504 - Retain modes = 160. Reduced system size = 8,806 (8.6 %).

Original error estimator : Cost is not small.

New error estimator : 15 times faster

31

Relative elgenvalue error

: —EI—IEmct
. | —=— Estimated (KIm et al.)

: | —¥— Estimated (Present)

15 20
Mode number

25 30 35

Items

Computation times

[sec] Ratio [%0]

CB method

57577 100.00

Previous error estimator in Eq. (29)

176.69

Present error estimator in Eq. (40)

11.95




Error control strategy

n
o (] Ld L k
s “Attractive form” of the new error estimator : Simple summations of ,u§ ), )7z =Z ﬂ?k)
k=1

ﬂi(k) - Provides the contribution of the k™ substructure to the i relative eigenvalue error.

m) The detailed errors estimated for a certain substructure.

We can suggest an error control strategy to improve the accuracy of the

global modes having relatively large errors.

Full model Reduced model Updated model

D Level of i Level of
reduction reduction

—

Which substructures?

32



Error control strategy

< From ,ui(k) . we can define the “substructural contribution”

Vi

(k)
(k) _ Hi

x100 [%] : Substructural contribution
H;

< Using ¥, we can control the error out of the tolerance !

Relative elgenvalue emror

—F+— Freq. cut-off (54 modes) |

O 5 10 15 20 25 a0 a5
Mode number

33

Start

Datarmina
the error tolerance &

¥
Identity the global modes

out of the error tolarance & *

Calculate p*
for each mode

v

Calculatse tha substructural
cantribution IFE*]'

v

Find tha target substructuras
having high contributions

v

Salect additlonal subzstructural
modes In tha targst substructures

¥
Solve the nawly
constructed reduced model

Error chack Mo

B, =&

< Flow chart for error control >



Error control strategy

| v/ Out of the tolerance 102
: : 28th ~32th modes
Define the error tolerance ]
Pl v" Calculate the estimated
3 : : k
& ol " ] substructural error ,ui( )
e : : SRS SIS 3
. | —5— Freq. cut-off (54 modes) |
w0 o é 16 1‘5 2ID é5 EID C;S
Mods number
Contributions analyze b W-(k)
\ Y ¥i
. o - ubstructural contributions ¥4 (2
< Substructural contributions plot> Substructural Substructural contributions 4 ¢4
L numbers ;g;:. yég) yéé:) yé!f) yégll
1,15 3.41 3.57 0.04 2.05 1.93
2.16 222 2.24 0.16
— 3,17 0.92 0.93 0.10
s, 50
5 w0 4,18 36.84 3733 0.09 4.61 432
é 30 5.19 2.40 2.42 0.16 1518
é 20 5,20 3.57 3.73 0.04 2.03 1.91
.}Z; 10 7,21 0.10 0.08 0.02 0.16 0.15
3;’_’ 0 8,22 0.00 0.00 0.00 0.01 0.01
(5]
9,23 0.00 0.00 0.01 0.01 0.01
4 10,24 0.12 0.10 0.02 0.15 0.15
(o)
% 11,325 0.00 0.00 0.00 0.01 0.01
12,26 0.00 0.00 0.01 0.01 0.01
] . . . M
v Define “Target substructures” having high contributions 0.00 0.00 = I %0
14,38 0.00 0.00 1927 0.14 0.49
v Target substructures : 2 (16), 4 (18), 5 (19), 13 (27), 14 (28) Total 10000 10000 10000 10000 100.00
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Error control strategy

10 ! ! ! ! ! ! !
Add substructural modes R i eriantolorimes. L.
| > A R
v' Target substructures 2, 5, 16, 19 B ol o 000008 oou BedPR | 8 B
% I' \ ] * W\
oy 2 /
: 2 additional modes g
2
v" The other target substructures )
: 1 additional mode L R > Enror control (14 additonal modes)||
. | : | —C— Freq. out-off (86 addtional modes)
10 0 5 10 15 20 25 30 35

Mode number

¢ Also, we can use this error control strategy for “Model refinement”.

v Not adding substructural modes, but ‘Re-meshing’ the target substructures crucial for the interested global
mode.

Re-mesh




Closure

1. We proposed a simplified error estimator for the CB method.

2. The estimated relative eigenvalue error is simple to calculate using summation of

the substructural errors estimated.

3. We proposed an error control strategy to improve the accuracy of reduced

models efficiently.

4. It would be valuable to develop the iterative mode selection algorithms to

construct accurate reduced-order models.
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Topic 1-2. Error estimator for the AMLS method




Brief introduction of the AMLS method

«» Component Mode Synthesis (CMS) methods

Well known methods. Used for many years in structural engineering.

But, it too suffers from limitations due to FE model size.

v Automatically partitioning.

% Automated Multi-Level Substructuring (AMLS) method (J.K. Bennighof et al , 2004)

v Recursively transformed strategies, but much more complex formulation.

< Automated substructuring> < Transformation tree >

Number of eigenvalucs

Direct

Lanczos

mesh refinement fine

¥

Number of DOFs

v" Successful in computing thousands of eigenvalues in a few hours on PC.

AMLS Is a promising alternative to “Lanczos” for very large DOFs problem.

38




Enhanced transformation matrix

¢ To develop the error estimator of the AMLS method

- Define the “enhanced transformation matrix” of the AMLS method.

1. Original AMLS transformation matrix

N, _ .
T=TT?..T%=[[1T° =) T,=Yo,K o=[0, @]
i=1

2. Therefore, the transformation matrix is also divided into two parts, dominant and residual parts.

T, :[Tod Tor] with T(;j :\AP(I)d, T, =‘i‘(1)r
T matrix of AMLS method

3. The global displacement vector is divided into the dominant and residual parts.

Exact transformed form.

39



Enhanced transformation matrix

4. Expanding the second row linear equation.

~0 mmm) AA, —zMrr)—lMg

v" The residual term can be substituted into only dominant term.

5. Therefore, u, can be described with only dominant term.

ug =Tom, +Tom, mEp u, =T n}+1¥

With F.=® (A, —AM, ) ® :Residual flexibility matrix

¥ M g T! 1](:) :Exact form

v" We cannot calculate this term in direct. Need approximation.

6. For approximation, using 4 instead of A iIn 131 , the following equation is obtained

‘ Fr :(I)r(Ar _zMrr)-lq)I

40



Enhanced transformation matrix

7. The residual flexibility matrix Fr Is expanded and approximated
Fr =@ (A, _,TMrr)'lq)I =@, A;lq)I +ZA;1 M, A;lq)I +O(A?)+--- : Known as Neuman series of matrix

Considering...

) O A0 =K' - (@,)(A,) " (®,)" =F,

: Residual modes are expressed with the dominants term.

8. The global displacement vector is approximated as
I I Tod'](:)

9. Enhanced transformation matrix is defined

ﬁg :Tlng with Tl :TO +2'Tr ’ Tr :‘IA’ | O ‘i’T MgTOOI : Unknown /| is another issue.

Enhanced transformation: Same size with To

41



Error estimator for the AMLS method

1. Mass orthonormality and stiffness orthogonality

%(wg)TKg(%)i =@M (0,) (@ (9,)~ (@) =T(@,) =(T, +AT)(@,);

£~ @) ATTM T+ PTM T 1(0,), mmp u, =41,
= AF,A" with A=<I>El\~flg [ Note |

Calculated during the recursive transformation

. e M — TV
2. Symmetry of matrix F, procedure of the mass matrix: M _(I)dMg(I)d

F_=F, +F,+F/

3. Finally, we can define an error estimator

— Ns
#=24(9,) E(9,); with E=E,+E,+E] mm) |E=AFA" E =>A FA]
k=1

Ns
_ T 2 uasT
N, x N, matrix E,=AF A" E —;Ai,ka Ay

LIRS B WG G0 I O DI TR 1 “E” matrix is simply computed with submatrix

the matrices of global DOF size. additions and multiplications.
42
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¢ Stiffened plate structure

» Breakdowns of the computational cost

Related Computation times
Items _
Equations [sec] Ratio [%]
Transformation procedures 13 3355.02 96.74
AMLS Solution of the reduced eigenvalue problem 14 113.21 3.26
Total - 100.00
Calculation of the residual flexibility matrix
36 36.37 1.05
F?'S
“onstructi > qces 5 227 55
Error Constructionof A and E matrices 48, 51 227.31 6.5°
estimation
Calculation error estimator 4 | 50 5.83 0.17
Total -

The additional computation cost is about 7% compared to that of AMLS method

to calculate the relative eigenvalue errors in 1,400 global modes.

% “Lanczos (eigs in MATLAB)” : 1,400 global modes (9,500 sec). 1,500 global modes (N/A)
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Closure

1. To develop the error estimation method for the AMLS method, an enhanced

transformation matrix was newly developed which considered the residual mode

effect.

2. Using the enhanced transformation matrix, we proposed an error estimator for the

AMLS method.

| Note |

» Error estimators for CB / AMLS methods were introduced in the above.

¢ The success to develop the error estimator comes from “Construction of the

enhanced transformation matrix’’.

¢ Therefore, it is possible to develop the error estimators for any other CMS methods.
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Topic 2. Enhanced AMLS method




Issue

1,000,000 DOFs 2,000,000 DOF's 3,000,000 DOFs

Demands for more accurate method / large structural analyses:
v LANCZOS algorithm has a limitation to solve large DOFs problem.
v' AMLS method was developed (Alternative of LANCZOS).

v’ Necessary to develop a powerful method outperforming the AMLS method.
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Enhanced AMLS method

1. The enhanced transformation matrix

u, ~ T“ with T, =T, +AT, T =\ F. ¥ M TOI How can we handle

Unknown the unknown 4 ?

2. Employing O’Callahan’s technique

T, BBy M, q,+K,ij,=0 EE) -IM, 7, +K,q,=0 EE) 2

Reduced model of original

AMLS method ‘

3. Reduced mass and stiffness matrices New transformation matrix.

~

_mT T _N\I T T T T T [
M, =T,M,T, =M, +T,M T, +T{M T, + T, M_T,

~

_ 7T T™ _ 17 T T T , 7T T 7T T
K,=T,K,T, =K, +T,K, T, + T, K, T, + T, KT,
v" Reduced matrices of original AMLS method

4. Reduced eigenvalue problem
I“('p(ﬁ)i :ﬂ_“il{'/[p(ﬁ)i ‘ ((Pg)i z(@g)i :Tl(ﬁp)i
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blade structure
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Closure

1. The enhanced transformation matrix considering the residual mode effect is

derived.

2. Using the enhanced transformation matrix, the enhanced AMLS method was

presented.

s However, there are limitations to use as an eigenvalue solver.

v" Does not have capacity to solve large DOFs problems over 50,000 DOFs.

v Very complicated formulation of the enhanced transformation matrix

T _T L\ il SV ' 7 = Global matrix computation.
T-T,+¥YF ¥ M, T'M,K, HE) P
= Fully populated matrix.

" Induce lack of memory and huge costs.

v" Need to improve its computational efficiency.

1) Formulation modification in the submatrix computing level.

2) An optimized algorithm for computer programming.
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Topic 3. Algebraic dynamic condensation method




Introduction

Master / Slave DOFs selection, and reduction.

Improved Reduced System (IRS) method (O’Callahan, 1989)
1.

U, . .
“g{ }ug =Tu, with T, =T, +T,H, (=T, +AT,)

m

_Kglem
TG = I ] Ta_ =

Guyan’s transformation matrix

Considering inertial effect of slave DOF's

-> Good accuracy.

Very simple formulation.

1\_/11:’1‘1TN19’I‘1 , Kl :TlTKng

No need to sub- eigenvalue analyses.

K;1 (Msm o MsKglem)
0

| n
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Issue

What is the drawback / limitation?

v Cannot apply to large FE model (over 100,000 DOFs).

: IRS transformation matrix

1 4 1 _—" Fully populated part
_Ks Ksm +Ks (Msm _MsKs Ksm)

T, = I T, = -> Induce large costs.
" Require large memory.
[
v' “Domain based partitioning” is not suitable
Fixed bqu'n dary Sub-domain 2 :
sencibon Sub-domain 1 Sub-domain 4 SubStrUCtureS: Still large DOFS

Sub-structuring

-> Large matrix inversion K;l
Sub-domain § < Kim and Cho’ IJNME, 2007 >

v Rayleigh-Ritz procedure using transformation matrix

M= TlTMgT1 , K = TlTKgT1 : Expensive global matrix operations.
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Design focus

“ How do we improve the reduction efficiency of the IRS method ?

1. Design focus ?

v Improving “computational efficiency” of the IRS method.

—> Avoiding expensive global matrix operations and matrix populations.
2. Key ideas ?
v Employing “algebraic substructuring” algorithm.
:Using “METIS” adopted in the AMLS method.

v Submatrix operations.

v" Transformation without the global transformation matrix.

3. What is the “Strengths”, which is expected ?

v Formulations would be expressed in submatrix form: Computationally efficient.

v We can handle practical engineering problems with large DOFs in PC.
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Algebraic dynamic condensation

Step 1. Algebraic substructuring

(1) A sparse matrix (2) Matrix permutation (3) Partitioned into submatrices
DX1D4 T T T T T DX1.D4 T T : T : DX1:J‘ [
o5t ] 05t 2 ; 05f - EH
1 | b ; ' [
15} ] 15 i ; ‘j 15} _H
2t ] sl P % . 51 L&
G ] ‘ 25} N ? , ‘ 25} _.f,
3l 1 i 4 1] 3t _;_
35} 1 35} - i : 8 g :
a5 ] a5 Ay o il -
5t 1 D8 o mom wmes e O R -::..;:.‘ R o -."-... h.
u 1I 2' 3I ‘Il 5I 0 1I - 5 3I tllu = 5 SU = '1 1"|: i J-. -"-l-..‘. 3‘| = -.‘I‘;'.:i-;‘ s o] ;‘
nz = 1149026 it nz = 1143026 x10° 'nz = 1149026 «10*

| Note |
Matrix permutation = Renumbering nodes in FE model.

-> Does not alter the physical characteristic of original FE model.
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Algebraic dynamic condensation

Step 2. Substructural stiffness condensation

Inertial
effects

1. Equations of motion

KS KC uS MS MC uS
T =A T
K. K, ]u, M, M, |u,

Static condensation matrix

2. Expanding the 15t row linear equation

~ u _ b 4
u, = (K, —AM,) (K, - AM,)u, =[¥, + AK'M, +0(2)+---]u, , |u, =1, {“s}:‘rub with ‘I’:{ I C}
_ u, b

Considering...

3. Static condensation procedure
1{/Ib =‘I’TM9‘I’ ) IA<b :TTKgT ‘ 1\A/[b =M, "‘Z(M.C)T v +Z(TiC)T Muc1 IA(b =K, +Z(Kic)T ¥

i=1 i=1 i=1
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Algebraic dynamic condensation

Step 3. Interface boundary reduction

N, x N, matrix N, x N, matrix

: Still large size N, is the number of the dominant interface normal modes.

1. Eigenvalue problem for interface boundary

K,u,=4M,u, ‘ u, =@, q, =[P, (I)tr)]|: } ‘ u, ~ 0, = @, q,

Cons1der1ng

2. Reduce interface boundary

=(@)'M, (@) | K,=(@)'K,(®)
57



Algebraic dynamic condensation

Step 4. Substructural inertial effect condensation

Inertial effect
[ () [ o [ o

Final reduced model :
N, x N, matrix

1. Expanded the 1% row linear equation
u, =(K, —AM,)™ (K, —AM,)u, =[¥, + AK;' M, +0(£)+--]u,

Considering...

Inertial effect condensation
matrix

u =(¥ +AKM u . u ] _
‘ S ( c s c) b ‘ ug:|:_5:|:‘l’1qg with T1=T+Z‘I"a
= d _d u

u, =@, q,

2. Handling unknown 2

K,u, =AM, u, ‘ Aqp =H,q; with H, =M,'K,
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Algebraic dynamic condensation

. . No transformation matrix.
3. Inertial effect condensation procedure /

M, =¥]M, ¥, M, =M, +R, +R] +R,, K, =K, +H[R,

> wT with
I(b _‘PlKg‘Pl n GoT Aot n A
R, =) (®))'M{)’AH, R,=Y HHAIM,(AH, A =K;'M{(®})

i=1 i=1

v" Reduced system : Simple matrix summation and multiplications at a submatrix level.

Transformation matrix: ¥, =| : | with ¥} =¥ @} +K,'"M/ @] H, ‘ (9,); =¥,
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¢ Rectangular plate problem

Dimension (L=20 m, B=12 m, Thickness=0.025 m), 16 substructures. No B.C.
Total DOFs = 11,285 > Retain interface modes = 100. Reduced system size = 100 (0.88 %).

T
Related Computation times
Items ]
Equations [sec] Ratio [%6]
Transformation procedure 8,13 205.70 99.95
B IRS Reduced eigenvalue problem 14 0.05
Total 100.00
Algebraic substructuring 16 0.02
Calculation of M, and K, matrices 15 0.61 0.30
+* Eigenvalue problem for the interface
Y < N 22 0.49 0.24
T—» L boundary
X — —
: : : : : Calculation of M, , K, ad H
1 ; ! ; ; ; Proposed b b b 28,33 0.03 0.01
. matrices
10
- Calculation of M, and ﬁb matrices 36 0.70 0.34
o .2
E 10
§ Reduced eigenvalue problem 37 0.05
B 4
g 10 Total 0.96
3
g 10
=
€ 10°
_ _ Compared to the computation time required for the IRS
10‘"‘".. _
—E_[rs method: 100 times faster
12 i i i 1 mpose.d
10 0 5 10 18 20 25

Mode numbsr
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¢ Truss structure

Dimension (L=98 m, B;=45 m, B,=48 m), No B.C.
Total DOFs = 155,766 > Retain interface modes = 150. Reduced system size = 150 (0.09 %).

0

10 T T

Relative eigenvalue error

& Q’}“
DO

&
0 SN
Y

"
‘,‘,‘o\, AN OO
o 0000, 1 e
’}v“’\‘/@f‘é’;}) XKL

8
%

v

—&— N-subs=32 ]
—k— N-subs=64 |
—(— N-subs=128

30 40 50 60
Mode number

70 80 90 100

Faster

Number of Computation times
Ttems
substructures [sec]
RS -
32 339.3
Proposed 64 168.6
128 101.9

v As the number of substructures increases,

both accuracy and computation cost improve.
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Closure

1. We develop a new efficient reduced-order modeling technique, named algebraic

dynamic condensation.

2. The formulation can be simply expressed using multiplications and summations

of submatrices, and thus it presents excellent computational efficiency.

3. The proposed method also provides better accuracy than the IRS method, and it can

handle relatively large FE models, for which the IRS method fails to work.

62



4. Future works



Future works

Issue 1. Solution “Reliability”
v" Error estimator applicable to the CB method using the interface reduction technique.

v' Iterative mode selection algorithms to construct accurate reduced-order models.

v' More simplified error estimator considering FE models with more than several millions

of DOFs.

Issue 2. Solution “Accuracy”

v A new eigenvalue solver using the enhanced AMLS method

—> Increasing computational efficiency. Optimized algorithm for implementation.

Issue 3. Solution “Efficiency”
v An effective iterative scheme could also be developed.

v' Employing the multi-level algebraic substructuring to solve FE models with more than

several millions of DOFs.
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