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1. Introduction



Earthquake EngineeringOffshore Engineering

FEM in engineering fields

BIO Engineering

Aerospace Engineering

Impact Engineering

Today, FEM is closely related with the human safety and health in real life !
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Motivations of model reduction

Ballasting tanks

Model reduction methods have been studied for more than 50 years.
Still important research field.

Finite element model

Complexity ↑

Model size (             ) ↑

Computing time ↑ Reducing the computational cost has been an 
important issue.

gg KM   ,
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Separate into many pieces and reduce every pieces: “Divide and Conquer” paradigm



Model reduction concepts

 There are 2 ways to make the reduced model. 

1. DOFs based reduction methods: 
Ex) Guyan reduction, IRS method, Super-element etc..

2. Modes based reduction methods:
Ex) CB method, AMLS method etc..

originalreduced Τqq 
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The Craig-Bampton method

Step 1. Partitioning and interface handling

Partitioned structure
Fixed interface

(e.g. CB method, AMLS method)

Step 2. Construct transformation matrix
][0 ΨΦT  : Fixed interface normal mode : Interface constraint modeΦ Ψ,
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Step 3. Reduced transformation matrix

Truncated :
Large amount of global modes

: Reduced transformation matrix
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More accurate method  Depend on transformation matrix. 
[ Note ]
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d
i

i ΦΦΦ , s : substructural 
b : interface boundary
d : dominant
r : residual
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The Craig-Bampton method



Step 6. Back transformation procedure

ipigig )()()( 0 φTφφ 

Step 5. Reduced eigenvalue problem

iii )()( φΜφΚ 

Step 4. Rayleigh-Ritz procedure

00 TMTΜ g
T 00 TKTK g

T,

10000100:0 TT

1000010000:, gg KM
10010000:0 T

100100:, KM

  

is much smaller than               .KM, gg KM ,

is a key factor in model reduction.

Our Aims Accurate & Fast.
0T

Approximated eigenvalue i

10010000

0T ,
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The Craig-Bampton method



Shock response & damage prediction Multi-scale model analysis

Structural dynamic analysis
and “Eigenvalue solver”

(Especially AMLS method)

Health monitoring
and sensor positioning   

Applications

Experimental dynamic analysis
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Applications

11

Design optimization through re-analysis

Spectral fatigue analysis 

Transient analysis 
(Alternative for implicit / explicit solvers)

Crack propagation analysis



2. History & Issues



History of the model reduction method

1968

Craig

 Craig-Bampton (CB) method
 Modified Hurt’s approach.
:Constraint + Fixed interface  

normal modes
 Simple & Accurate
 Most popular

1965
 Hurty
: A pioneer of CMS method
 Use ‘component modes’ and ‘synthesis’.
 Fixed interface CMS
 Rigid body +Constraint 

+ Fixed interface normal modes

1971
 MacNeal 
: Hybrid method
 Fixed-Free interface normal 

modes

 Rubin 
: Extended MacNeal’s approach
(Approximating Free interface

normal modes )
 Considering  the residual effects 

1976
 Craig-Chang 
: Modified Rubin’s idea

(Free interface normal modes )
 Considering  residual flexibility 

(Accuracy ↑)

1984
 Ookuma & Nagamatsu
: Developed multiple CMS
 Multiple partitioning (Efficiency ↑)

1988
 Craig & Hale 
: Used Block Krylov Ritz vectors instead of 

component normal modes
 Less computational effort

1987
 J.K. Bennighof
 ‘Component mode iteration’ 

method
:Using subspace iteration method

at the substructure level

MacNeal 

1970s 1980s

[ 1960s ~ 1980s ]

 Various interface handling techniques. ( Fixed  Free  Fixed + Free )

 To calculate more accurate substructural normal modes. (SIM, Block Krylov)

1960s

1969
 Goldman
: Free interface normal modes

1975

Bennighof
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History of the model reduction method

1990s

 Dual CB method
 Assembly using interface force
 Experimental substructuring

D. Rixen

Bennighof

 J.K. Bennighof
 AMLS method
 Automated multi-level substructuring
 Computer-aid formulation: Extremely fast, eigensolver

E. Balmes

1990
 El-Sayed & Hsiung
: Employing  parallel processing
(Efficiency ↑)

1992
 CMS  + Guyan   

reduction
 Substructuring 
for solution efficiency 

1996
 Singh & Suarez
: A new Free interface CMS
 Using higher order modal 

combination technique 
(Accuracy ↑)

Bouhaddi

 Parametric model 
reduction

 Model updating

2002

2004

1997
 Greg Hulbert
 Using the quasi-

static mode instead 
of constraint mode

G. Hulbert

2006
 H. Voss : Modified Yang’s approach 
 ‘Priori’ error bound for CB/AMLS methods
 Check the reliability of the reduced model

H. Voss

[ 1990s ~ 2000s ]

 First try for ‘Parallel’ computing.   

 New interface handling techniques.

 More accurate reduced model.

2000s

1992

[ 2010s ~ ]

 Expansion to Experiment.

 New paradigm: Eigensolver, Interest for ‘Efficiency’ 

 Studies on “Error estimator”: Interest for ‘Reliability’

 C. Yang & NG Esmond
 ‘Priori’ error bound for AMLS method (Only for single level)

2005
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Primal issues for half a century

Issue 2. Solution “Accuracy”
 Substructural modes calculation

1. SIM 2. Block Krylov Ritz vectors

3. Quasi-static mode

Issue 3. Solution “Efficiency”
 Improving solution efficiency

1. Parallel techniques                2. Automated multi-level substructuring

3. Using sparsity pattern

Issue 1. Solution “Reliability”
 Error bound (= Error estimation):       1. For CB method         2. For AMLS method 

 We can identify that, there have been “Three Primal Issues” in the research field.

 Interface handling techniques

1. Fixed interface   2. Free interface

3. Hybrid interface
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Topic 1 : Error estimators for the CB/AMLS methods

Topic 2 : Enhanced AMLS method

Topic 3 : Algebraic dynamic condensation method



3. Research topics



Topic 1-1. Simplified error estimator for the CB method



Motivation

1



i

i

i

ii
i 







Generally, we use “Relative eigenvalue errors”

However, to obtain the exact eigenvalue , we should 

solve the global eigenvalue problem .
i

iggiigg )()( φΜφΚ 

 To verify the solution reliability of the reduced model,
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< Relative eigenvalue errors >

Finite element model

Complexity ↑

Model size (             ) ↑gg KM   ,

: Requires large computational cost.

 What about 1,000,000 DOFs or more DOFs problem ?

 It is not easy to get       . 

iggiigg )()( φΜφΚ 

Since 2000s…

i

 For the reduced model of the large FE model: Interest for “Solution Reliability ↑”



1. Yang et al. (2005),  “priori” error bound for AMLS method

1:       is the approximated eigenvalue

 Several meaningful error estimators were developed. 

Previous error estimation method

: Only for single level substructuring


 



1

1)(

, is the smallest eigenvalue under consideration
 is the given tolerance

2. Elssel and Voss (2006),  “priori” error bound for CB and AMLS methods

ir

i
i





ˆ

r:       is the smallest residual eigenvalue of substructures.

 Scalar operation: Very fast. But, poor accuracy.


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
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
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k ik

i
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1)1(ˆ
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,CB: AMLS:
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3. Kim and Lee (2015), “posteriori” error estimator for the CB method

1Τ aΤΤΤ  01with
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 Derive the “enhanced transformation matrix” using residual flexibility matrix      .

 Very accurate.
 Global matrix operations, complicated. 

rsF

 What is the drawback / limitation?

 Yang, Elssel and Voss’s : Accuracy   .   

 Kim and Lee’s : Accurate, but efficiency   .

Global matrix computing, Requiring large memory 

 Cannot apply to large FE models (over 100,000 DOFs). 

Previous error estimation method
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Design focus

1. Requirements for a new error estimator ?

 Accuracy & Efficiency. Adoptable for real engineering problems.

2. Key ideas ?

Way to see in a part: Submatrix level formulation and computing.

 Using matrix  property: Sparsity (Compact computing),

Symmetry (Half calculation), Orthogonality (Give zero matrix). 

3. What is the “Strengths”, which is expected ?

 Formulations would be expressed in submatrix form: Computationally efficient.

 Then, the substructural error contributions for global mode can be calculated. 
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1. Original formulation of error estimator 

Derivation procedure
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 Zero matrices: Give cost saving !



ag
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T TKTTMT  0

2. The following equations are obtained 
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3. The error estimator is approximated
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4. A new error estimator

Derivation procedure

Higher order term neglected
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5. Finally, the simplified error estimator is defined as

Derivation procedure

 Represented by a simple summation of the substructural errors estimated. 

Attractive feature of the proposed method.
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Step Items Counts

1

2

3

4

Total counts

2ns

1)1)(12())(12(  NddNN

22N

 Previous error estimator 

g
i

g KΜ

1



i

T
dddsrs )())((( 11 ΦΛΦ)ΚF  

Previous vs New error estimator: Operation counts
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Number of substructures : n
Size of the interface : bNumber of total DOFs : N

Number of each substructural DOFs : s
Size of the reduced model : d
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Step Items Counts
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Previous vs New error estimator: Operation counts
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Number of substructures : n
Size of the interface : bNumber of total DOFs : N

Number of each substructural DOFs : s
Size of the reduced model : d
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Previous vs New error estimator: Operation counts

EEM Operation counts

Previous

New

 For stiffened plate problem
Number of total DOFs,  N=52662

Number of substructures : n=18

Number of each substructural DOFs : s=2730

Size of the interface : b=3522

Size of the reduced model : d=3582

 Operation counts

 New error estimator only requires 0.22 % operation counts of that of previous 
error estimator.

1)1)(12())(12(2)12( 22  NddNNNbnssns

12]1)12)(()12)(1[(22  nssbbsnns

911 1009.11063.9 
Previous vs New

Operation counts :
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Numerical examples

Computer spec. : Intel core (TM) i7-3770, 3.40 GHz CPU, 32GB RAM.

FE Model: 4-node MITC shell element. 

Material: Mild steel. (E=206 GPa, v = 0.3, density = 7,850 kg/m3)

Implementation: Code implementations are done using MATLAB.

 Compared with the exact relative eigenvalue errors.

 Also, compared with the previous error estimation methods 



 Stiffened Plate structure

Dimension (L=26 m, B=6 m, S=2 m), 18 substructures.  No B.C. 

Total DOFs = 52,662  Retain modes = 200. Reduced system size = 3,582 (6.8%). 

< Relative eigenvalue errors >
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Only requires 2.27 % of 

additional computation time.

15 times faster

 Stiffened Plate structure
 Breakdowns of the computational cost
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 Semi-submerged rig structure

Dimension (L=110 m, B=80 m, C=20 m, H1=50, H2=15), 28 substructures. No B.C.

Total DOFs = 102,504  Retain modes = 160. Reduced system size = 8,806 (8.6 %). 

31

Original error estimator : Cost is not small.

New error estimator : 15 times faster



Error control strategy

)(k
i

We can suggest an error control strategy to improve the accuracy of the 

global modes having relatively large errors.

: Provides the contribution of the         substructure to the       relative eigenvalue error.   thk thi





n

k

k
ii

1

)( “Attractive form” of the new error estimator : Simple summations of        ,)(k
i

The detailed errors estimated for a certain substructure. 

Full model

Which substructures?

Reduced model Updated model

Level of 
reduction

Level of 
reduction
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Error control strategy

33

 Using         ,  we can control the error out of the tolerance !)(k
i

[%]100
)(

)( 
i

k
ik

i 
 : Substructural contribution

)(k
i From         ,  we can define the “substructural contribution” 

< Flow chart for error control >



Error control strategy

: 28th ~32th modes
 Out of the tolerance

Define the error tolerance

Contributions analyze by 

< Substructural contributions plot > 

)(k
i

 Calculate the estimated 
substructural error )(k

i

 Define “Target substructures” having high contributions

 Target substructures : 2 (16), 4 (18), 5 (19), 13 (27), 14 (28)

210
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Error control strategy

 Also, we can use this error control strategy for “Model refinement”.

Add substructural modes

 Target substructures 2, 5, 16, 19

: 2 additional modes 

 The other target substructures

: 1 additional mode

 Not adding substructural modes, but ‘Re-meshing’ the target substructures crucial for the interested global 
mode.

Re-mesh
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1. We proposed a simplified error estimator for the CB method.

2. The estimated relative eigenvalue error is simple to calculate using summation of 

the substructural errors estimated. 

3. We proposed an error control strategy to improve the accuracy of reduced

models efficiently.

4. It would be valuable to develop the iterative mode selection algorithms to

construct accurate reduced-order models.

36
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Topic 1-2. Error estimator for the AMLS method



Brief introduction of the AMLS method

 Automated Multi-Level Substructuring (AMLS) method (J.K. Bennighof et al , 2004)

 Automatically partitioning.

 Recursively transformed strategies, but much more complex formulation.

 Successful in computing thousands of eigenvalues in a few hours on PC. 

AMLS is a promising alternative to “Lanczos” for very large DOFs problem.

 Component Mode Synthesis (CMS) methods

Well known methods. Used for many years in structural engineering. 

But, it too suffers from limitations due to FE model size.

< Transformation tree >< Automated substructuring>
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2. Therefore, the transformation matrix is also divided into two parts, dominant and residual parts.

3. The global displacement vector is divided into the dominant and residual parts.


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
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1. Original AMLS transformation matrix 

T  matrix of AMLS method

 To develop the error estimator of the AMLS method

 Define the “enhanced transformation matrix” of the AMLS method.
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Exact transformed form.

,
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 The residual term can be substituted into only dominant term.

r
p

rd
p

d
g ηTηTu 00 

5. Therefore,        can be described with only dominant term.gu

Enhanced transformation matrix 

4. Expanding the second row linear equation.

d
p

d
g

T
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d
p

d
g ηTΜΨFΨηTu 00
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6. For approximation, using      instead of      in      , the following equation is obtained 

:Residual flexibility matrixT
rrrrrr ΦΜΛΦF 1)(ˆ  
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  rF̂

T
rrrrrr Φ)M(ΛΦF -1

with

 We cannot calculate this term in direct. Need approximation.



Enhanced transformation matrix 

  )( 2111-1  T
rrrrr

T
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T
rrrrrr ΦΛΜΛΦΛΦΦ)M(ΛΦF

7. The residual flexibility matrix        is expanded and approximatedrF

: Residual modes are expressed with the dominants term.
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8. The global displacement vector is approximated as  

d
p1ηTu g rTTT  01

d
g

T
rsr 0

ˆˆ TΜΨFΨT with ,

Enhanced transformation: Same size with 

d
p

d
g

T
rs

d
p

d
g ηTΜΨFΨηTu 00

ˆˆ

9. Enhanced transformation matrix is defined

0T

:  Unknown        is another issue.

: Known as Neuman series of matrix

rs
T

ddd
T
rrr FΦΛΦΚΦΛΦ   )())((ˆ 111

Considering…



T
uudrs FFFF 

2. Symmetry of matrix 

3. Finally, we can define an error estimator 

ip
T
ipii )()( φEφ  T

2EEEE  21with

“E” matrix is simply computed with submatrix 
additions and multiplications.

pp NN 

Therefore, we do not need to handle 

the matrices of global DOF size.

rsF

matrix 

T
d AFAE 1

T
u AFAE 2





SN
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T
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d
kkiji,

1
,,

1 AFAE





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k

T
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u
kkiji,

1
,,

2 AFAE

,

,

Error estimator for the AMLS method

igg
T
igigg

T
ig

i

)()()()(1 φMφφKφ 


1. Mass orthonormality and stiffness orthogonality

ipripigg ))(()()()( 01 φTTφTφφ 

ip
T

rs
T
ipii )()( φAFAφ 

Calculated during the recursive transformation

procedure of the mass matrix:

iprg
T

rirgi
T
ipi )]([)( 2T

0 φTΜTTΜTφ  

[ Note ]

dg
T
d ΦΜΦΜ ~

T
rs AFA g

T
dΜΦA ~with
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 Stiffened plate structure

Dimension (L=78 m, B=44 m), 1,023 substructures (Using METIS). Free BC is imposed.

Total DOFs = 1,004,088  Retain modes = 2,200. Reduced system size = 5,450 (0.5 %). 

< Relative eigenvalue errors >
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 Breakdowns of the computational cost

 “Lanczos (eigs in MATLAB)” : 1,400 global modes (9,500 sec). 1,500 global modes (N/A)

The additional computation cost is about 7% compared to that of AMLS method 

to calculate the relative eigenvalue errors in 1,400 global modes.

 Stiffened plate structure
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Closure

1. To develop the error estimation method for the AMLS method, an enhanced 

transformation matrix was newly developed which considered the residual mode

effect. 

2. Using the enhanced transformation matrix, we proposed an error estimator for the 

AMLS method.

 Error estimators for CB / AMLS methods were introduced in the above. 

 The success to develop the error estimator comes from “Construction of the  

enhanced transformation matrix”. 

 Therefore, it is possible to develop the error estimators for any other CMS methods.

[ Note ]
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Topic 2. Enhanced AMLS method



Issue

1,000,000 DOFs 2,000,000 DOFs 3,000,000 DOFs

47

Demands for more accurate method / large structural analyses:

 LANCZOS algorithm has a limitation to solve large DOFs problem. 

AMLS method was developed (Alternative of LANCZOS). 

 Necessary to develop a powerful method outperforming the AMLS method.



Enhanced AMLS method

0ηΚηΜ  pppp
 0ηΚηΜ  pppp

rg
T
rrg

T
g

T
rpg

T
p ΤΜΤΤΜΤΤΜΤΜΤΜΤM  0011

~

rg
T
rrg

T
g

T
rpg

T
p ΤKΤΤKΤΤKΤKΤKΤK  0011

~

d
pgg ηTuu 1

rTTT  01
d

g
T

rsr 0
ˆˆ TΜΨFΨT with ,

3. Reduced mass and stiffness matrices

2. Employing O’Callahan’s technique

1. The enhanced transformation matrix

Unknown
How can we handle
the unknown     ?

0T

pp
d

g
T

rsr ΚΜTΜΨFΨTTTT 1
0001

ˆˆ  
Reduced model of original 

AMLS method

New transformation matrix.

ipigig )()()( 1 φTφφ 

4. Reduced eigenvalue problem

ipiip )(~)(~ φΜφΚ 

pppp ηΚΜη 1
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 Reduced matrices of original AMLS method



 Turbine blade structure

Dimension (L=35 m, Thickness=0.05 m), 28 substructures. Fixed BC at        .

Total DOFs 51,308  Retain modes 60. Reduced system size 1,260 (2.45 %). 

0x
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Accurate 105 times for 1st mode. 



 However, there are limitations to use as an eigenvalue solver.

pp
d

g
T

rs ΚΜTΜΨFΨTT 1
001

ˆˆ 

 Very complicated formulation of the enhanced transformation matrix
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Closure

1. The enhanced transformation matrix considering the residual mode effect is 

derived. 

2. Using the enhanced transformation matrix, the enhanced AMLS method was 

presented. 

 Need to improve its computational efficiency.

1) Formulation modification in the submatrix computing level.

2) An optimized algorithm for computer programming.

 Global matrix computation.

 Fully populated matrix.

 Induce lack of memory and huge costs.   

 Does not have capacity to solve large DOFs problems over 50,000 DOFs.



Topic 3. Algebraic dynamic condensation method



Introduction

Improved Reduced System (IRS) method (O’Callahan, 1989)

1. Master / Slave DOFs selection, and reduction.

2. Considering inertial effect of slave DOFs 

 Good accuracy.

3. Very simple formulation. 

4. No need to sub- eigenvalue analyses.

mg
m

s
g uTu

u
u

u 1





















m

sms
G I
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T
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






 




0
KKMMK

T
)( 11

smsssms
a

with

,

GaG HTTT 1

Guyan’s transformation matrix

111 TMTM g
T 111 TKTK g

T,

GGG KΜH 1

)( aG TT 

,
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Issue

What is the drawback / limitation?

 Cannot apply to large FE model (over 100,000 DOFs).

: IRS transformation matrix

 “Domain based partitioning” is not suitable

 Rayleigh-Ritz procedure using transformation matrix

Fully populated part

 Induce large costs. 

Require large memory.

1T

11 TMTΜ g
T 11 TKTK g

T,

Substructures: Still large DOFs

 Large matrix inversion 1
sΚ

: Expensive global matrix operations.








 




m

smsssmssms

I
KKMMKKK

T
)( 111

1 ,
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< Kim and Cho, IJNME, 2007 >



Design focus

1. Design focus ?

 Improving “computational efficiency” of the IRS method.

 Avoiding expensive global matrix operations and matrix populations.

2. Key ideas ?

 Employing “algebraic substructuring” algorithm. 

:Using “METIS” adopted in the AMLS method.

 Submatrix operations.

 Transformation without the global transformation matrix.

3. What is the “Strengths”, which is expected ?

 Formulations would be expressed in submatrix form: Computationally efficient.

We can handle practical engineering problems with large DOFs in PC. 

 How do we improve the reduction efficiency of the IRS method ?
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Matrix permutation = Renumbering nodes in FE model. 

 Does not alter the physical characteristic of original FE model.

(1) A sparse matrix (2) Matrix permutation (3) Partitioned into submatrices

[ Note ]

Algebraic dynamic condensation

Step 1. Algebraic substructuring

,
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Algebraic dynamic condensation

Step 2. Substructural stiffness condensation

Inertial 
effects


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

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
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
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T
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b ˆ

1. Equations of motion

2. Expanding the 1st row linear equation

3. Static condensation procedure

,
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Static condensation matrix
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Algebraic dynamic condensation

Step 3. Interface boundary reduction

)Φ(Μ)ΦΜ d
bb

Td
bb

ˆ( )Φ(K)ΦK d
bb

Td
bb

ˆ(

d
b

d
bbb qΦuu bbbb uΜuK ˆˆ  








 r

b

d
br

b
d
bbbb q

q
ΦΦqΦu ][

1. Eigenvalue problem for interface boundary

2. Reduce interface boundary

,

Considering…

bb NN  bb NN matrix matrix 

is the number of the dominant interface normal modes.bN: Still large size
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Algebraic dynamic condensation

Step 4. Substructural inertial effect condensation
Inertial effect

bb NN  matrix 
Final reduced model : 

bcscbccsss o uMKΨuMKMKu ])(ˆ[)()( 211   

bcscs uMKΨu )ˆ( 1 
d
b

d
bb qΦu 

Considering…
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b
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u
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u 1
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




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d
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d
b qHq bbbb uΜuK ˆˆ 

bbb KΜH 1

1. Expanded the 1st row linear equation

2. Handling unknown 

Inertial effect condensation 
matrix



with
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Algebraic dynamic condensation
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Step 5. Approximated global eigenvectors

iig φΨφ 1)( with

 Similar with “FEM degeneration” :

Transformation matrix:
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3. Inertial effect condensation procedure
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 Reduced system : Simple matrix summation and multiplications at a submatrix level.

No transformation matrix.

, ,

,
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 Rectangular plate problem

Dimension (L=20 m, B=12 m, Thickness=0.025 m), 16 substructures. No B.C.

Total DOFs = 11,285  Retain interface modes = 100. Reduced system size = 100 (0.88 %). 

Compared to the computation time required for the IRS 

method: 100 times faster
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 Truss structure

61

Faster

 As the number of substructures increases, 

both accuracy and computation cost improve.

Dimension (L=98 m, B1=45 m, B2=48 m), No B.C.

Total DOFs = 155,766  Retain interface modes = 150. Reduced system size = 150 (0.09 %). 



Closure

62

1. We develop a new efficient reduced-order modeling technique, named algebraic 

dynamic condensation. 

2. The formulation can be simply expressed using multiplications and summations 

of submatrices, and thus it presents excellent computational efficiency. 

3. The proposed method also provides better accuracy than the IRS method, and it can 

handle relatively large FE models, for which the IRS method fails to work.



4. Future works



Issue 2. Solution “Accuracy”

Issue 3. Solution “Efficiency”

Issue 1. Solution “Reliability”
 Error estimator applicable to the CB method using the interface reduction technique.

 Iterative mode selection algorithms to construct accurate reduced-order models.

 More simplified error estimator considering FE models with more than several millions

of DOFs.

 A new eigenvalue solver using the enhanced AMLS method

 Increasing computational efficiency. Optimized algorithm for implementation.

 An effective iterative scheme could also be developed.

 Employing the multi-level algebraic substructuring to solve FE models with more than

several millions of DOFs.

Future works
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