대형 유한요소 모델의 동적 해석을 위한 모델축소기법에 관한 연구

On the model reduction methods for dynamic analysis

of large finite element models

Seung-Hwan, Boo

2016.05.18

Contents

1. Introduction

2. History & Issues

3. Research topics

- ✓ Topic 1 : Error estimators for the CB / AMLS methods
- ✓ Topic 2 : Enhanced AMLS method
- ✓ Topic 3 : Algebraic dynamic condensation method

4. Future works

1. Introduction

FEM in engineering fields

Offshore Engineering

Aerospace Engineering

Earthquake Engineering

BIO Engineering

Today, FEM is closely related with the <u>human safety</u> and <u>health</u> in real life !

Motivations of model reduction

Separate into many pieces and reduce every pieces: "Divide and Conquer" paradigm

Model reduction methods have been studied for more than 50 years. Still important research field.

Model reduction concepts

***** There are **2** ways to make the reduced model.

The Craig-Bampton method

Step 2. Construct transformation matrix

The Craig-Bampton method

✓ Fixed interface normal modes

$$\mathbf{K}^{(i)} \mathbf{\Phi}^{(i)} = \mathbf{\Lambda}^{(i)} \mathbf{M}^{(i)} \mathbf{\Phi}^{(i)}, \ \mathbf{\Phi}^{(i)} = [\mathbf{\Phi}_i^d \quad \mathbf{\Phi}_i^r]$$
$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi}_s \\ \mathbf{0}_b \end{bmatrix}, \ \mathbf{\Phi}_s = [\mathbf{\Phi}_s^d \quad \mathbf{\Phi}_s^r]$$

- s : substructuralb : interface boundaryd : dominant
- *r* : residual

Step 3. Reduced transformation matrix

The Craig-Bampton method

Step 5. Reduced eigenvalue problem

 $\overline{\mathbf{K}}(\overline{\mathbf{\phi}})_i = \overline{\lambda}_i \, \overline{\mathbf{M}}(\overline{\mathbf{\phi}})_i \quad \blacksquare \quad \mathbf{Approximated eigenvalue} \, \overline{\lambda}_i$

Step 6. Back transformation procedure

$$(\mathbf{\phi}_g)_i \approx (\overline{\mathbf{\phi}}_g)_i = \overline{\mathbf{T}}_0 (\overline{\mathbf{\phi}}_p)_i$$

 $\overline{\mathbf{T}}_0$ is a key factor in model reduction. Our Aims \rightarrow Accurate & Fast.

Applications

Shock response & damage prediction

Multi-scale model analysis

Experimental dynamic analysis

Structural dynamic analysis and "Eigenvalue solver" (Especially AMLS method)

Health monitoring and sensor positioning

Applications

Transient analysis (Alternative for implicit / explicit solvers)

Crack propagation analysis

2. History & Issues

History of the model reduction method

1965

<section-header> 1965 9 Hurty 9 Apione of CMS method 9 Use 'component modes' and 'synthesis'. 9 Fixed interface of the synthesis'. 9 Fixed interface normal modes 9 Apidified Hurt's approach. 9 Apidified Accurate 9 Apidifi</section-header>	 1971 AnacNeal Hybrid method Fried-Free interface normal modes Fried State interface normal modes 1975 FaceNeal Agrots FaceNeal Agrots AcacNeal State interface normal modes Considering residual flexibility (Accuracy f) 	 1984 Ookuma & Nagamatsu Developed <i>multiple</i> CMS Multiple partitioning (Efficiency \) Multiple partitioning (Efficiency \) 1987 J.K. Bennighof 'Component mode iteration' method the substructure level Winder State Sta
60s (197	70s	280s

[1960s ~ 1980s]

- ✓ Various <u>interface handling</u> techniques. (Fixed \rightarrow Free \rightarrow Fixed + Free)
- ✓ To calculate more accurate <u>substructural normal modes.</u> (SIM, Block Krylov)

History of the model reduction method

1990

 El-Sayed & Hsiung
 Employing parallel processing (Efficiency [↑])

2002

Dual CB method

> Assembly using interface force

D. Rixen

> Experimental substructuring

14

Primal issues for half a century

***** We can identify that, there have been "<u>Three Primal Issues</u>" in the research field.

Issue 1. Solution "<u>Reliability</u>"

• Error bound (= Error estimation): 1. For <u>CB</u> method 2. For <u>AMLS</u> method

Topic 1 : Error estimators for the CB/AMLS methods

Issue 2. Solution "<u>Accuracy</u>"

- ✤ Interface handling techniques
 - 1. **<u>Fixed</u>** interface 2. <u>Free</u> interface
 - 3. Hybrid interface

Topic 2 : Enhanced AMLS method

Issue 3. Solution "Efficiency"

- Improving solution efficiency
 - 1. Parallel techniques
- 2. Automated multi-level substructuring
- 3. Using sparsity pattern

Topic 3 : Algebraic dynamic condensation method

- Substructural modes calculation
 - 1. SIM 2. Block Krylov Ritz vectors
 - 3. Quasi-static mode

3. Research topics

Topic 1-1. Simplified error estimator for the CB method

Motivation

***** To verify the <u>solution reliability</u> of the reduced model,

Generally, we use "Relative eigenvalue errors"

$$\xi_{i} = \frac{\overline{\lambda}_{i} - \lambda_{i}}{\lambda_{i}} = \frac{\overline{\lambda}_{i}}{\lambda_{i}} - 1$$

 10^{9} 10^{10} 10^{1

< Relative eigenvalue errors >

However, to obtain the exact eigenvalue λ_i , we should solve the **global eigenvalue problem** $\mathbf{K}_g(\mathbf{\varphi}_g)_i = \lambda_i \mathbf{M}_g(\mathbf{\varphi}_g)_i$.

Since 2000s...

Finite element model Complexity ↑

Model size (M_g, K_g) \uparrow

K_g(**φ**_g)_i = λ_i**M**_g(**φ**_g)_i :**Requires large computational cost.**✓ What about 1,000,000 DOFs or more DOFs problem ?→ It is not easy to get λ_i.

***** For the reduced model of the large FE model: Interest for "Solution Reliability **^**"

Previous error estimation method

***** Several meaningful error estimators were developed.

1. Yang et al. (2005), "priori" error bound for AMLS method

$$\rho(\omega) = \frac{\lambda_1}{\omega - \lambda_1} < \tau$$
: Only for single level substructuring

- : ω is the approximated eigenvalue, λ_1 is the smallest eigenvalue under consideration
 - au is the given tolerance
- 2. Elssel and Voss (2006), "priori" error bound for CB and AMLS methods

CB:
$$\hat{\mu}_i = \frac{\lambda_i}{\left|\lambda_r - \overline{\lambda}_i\right|}$$
, **AMLS:** $\hat{\mu}_i = \prod_{k=0}^p (1 + \frac{\overline{\lambda}_i}{\lambda_k - \overline{\lambda}_i}) - 1$

: λ_r is the smallest residual eigenvalue of substructures.

✓ Scalar operation: Very fast. But, poor accuracy.

Previous error estimation method

3. Kim and Lee (2015), "posteriori" error estimator for the CB method

✓ Derive the "<u>enhanced transformation matrix</u>" using residual flexibility matrix \mathbf{F}_{rs} .

$$\overline{\mathbf{T}}_{1} \text{ with } \overline{\mathbf{T}}_{1} = \overline{\mathbf{T}}_{0} + \overline{\mathbf{T}}_{a}$$

$$\mu_{i} = 2(\overline{\mathbf{\phi}}_{p})_{i}^{T} \overline{\mathbf{T}}_{0}^{T} \left[\mathbf{M}_{g} - \frac{1}{\overline{\lambda}_{i}} \mathbf{K}_{g} \right] \overline{\mathbf{T}}_{a}(\overline{\mathbf{\phi}}_{p})_{i} + (\overline{\mathbf{\phi}}_{p})_{i}^{T} \overline{\mathbf{T}}_{a}^{T} \left[\mathbf{M}_{g} - \frac{1}{\overline{\lambda}_{i}} \mathbf{K}_{g} \right] \overline{\mathbf{T}}_{a}(\overline{\mathbf{\phi}}_{p})_{i}$$

$$\checkmark \text{ Very accurate.}$$

$$\checkmark \text{ Global matrix operations, complicated.}$$

What is the <u>drawback / limitation?</u>

- ✓ Yang, Elssel and Voss's : Accuracy .
- ✓ Kim and Lee's : Accurate, but efficiency .

Global matrix computing, Requiring large memory

 \rightarrow Cannot apply to large FE models (over 100,000 DOFs).

Design focus

- 1. <u>Requirements</u> for a new error estimator ?
 - ✓ <u>Accuracy & Efficiency</u>. Adoptable for real engineering problems.
- 2. Key ideas ?
 - ✓ <u>Way to see in a part</u>: <u>Submatrix level</u> formulation and computing.
 - ✓ Using matrix property: **<u>Sparsity</u>** (Compact computing),

Symmetry (Half calculation), **Orthogonality** (Give zero matrix).

- **3.** What is the "<u>Strengths</u>", which is expected ?
 - ✓ Formulations would be expressed in submatrix form: <u>Computationally efficient</u>.
 - \checkmark Then, the <u>substructural error contributions</u> for global mode can be calculated.

Derivation procedure

1. Original formulation of error estimator

 $\therefore \overline{\mathbf{T}}_0^T \mathbf{K}_g \mathbf{T}_a = \mathbf{0}$

$$\eta_{i} = 2(\overline{\mathbf{\varphi}}_{p})_{i}^{T} \overline{\mathbf{T}}_{0}^{T} \left[\mathbf{M}_{g} - \frac{1}{\overline{\lambda}_{i}} \mathbf{K}_{g} \right] \overline{\mathbf{T}}_{r} (\overline{\mathbf{\varphi}}_{p})_{i} + (\overline{\mathbf{\varphi}}_{p})_{i}^{T} \overline{\mathbf{T}}_{r}^{T} \left[\mathbf{M}_{g} - \frac{1}{\overline{\lambda}_{i}} \mathbf{K}_{g} \right] \overline{\mathbf{T}}_{r} (\overline{\mathbf{\varphi}}_{p})_{i}$$

$$\eta_{i} = \overline{\mathbf{\varphi}}_{i}^{T} \left[2 \overline{\lambda}_{i} \overline{\mathbf{T}}_{0}^{T} \mathbf{M}_{g} \mathbf{T}_{a} - 2 \overline{\mathbf{T}}_{0}^{T} \mathbf{K}_{g} \mathbf{T}_{a} + \overline{\lambda}_{i}^{2} \mathbf{T}_{a}^{T} \mathbf{M}_{g} \mathbf{T}_{a} - \overline{\lambda}_{i} \mathbf{T}_{a}^{T} \mathbf{K}_{g} \mathbf{T}_{a} \right] \overline{\mathbf{\varphi}}_{i}$$

$$\checkmark \text{ Submatrix form : } \mathbf{M}_{g} = \begin{bmatrix} \mathbf{M}_{s} & \mathbf{M}_{c} \\ \mathbf{M}_{c}^{\mathrm{T}} & \mathbf{M}_{b} \end{bmatrix}, \ \mathbf{K}_{g} = \begin{bmatrix} \mathbf{K}_{s} & \mathbf{K}_{c} \\ \mathbf{K}_{c}^{\mathrm{T}} & \mathbf{K}_{b} \end{bmatrix}, \ \overline{\mathbf{T}}_{0} = \begin{bmatrix} \mathbf{\Phi}_{s}^{d} & \mathbf{\Psi}_{c} \\ \mathbf{0} & \mathbf{I}_{b} \end{bmatrix}, \ \mathbf{T}_{a} = \begin{bmatrix} \mathbf{0} & \mathbf{F}_{rs} \hat{\mathbf{M}}_{c} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

2
$$\overline{\mathbf{T}}_{0}^{T}\mathbf{K}_{g}\mathbf{T}_{a} = \begin{bmatrix} \mathbf{0} & \mathbf{B}_{c} \\ \mathbf{0} & \mathbf{B}_{b} \end{bmatrix}$$
 with $\mathbf{B}_{c} = (\mathbf{\Phi}_{s}^{d})^{T}\mathbf{K}_{s}\mathbf{F}_{rs}\hat{\mathbf{M}}_{c}, \ \mathbf{B}_{b} = (\mathbf{\Psi}_{c}^{T}\mathbf{K}_{s} + \mathbf{K}_{c}^{T})\mathbf{F}_{rs}\hat{\mathbf{M}}_{c}$

"
Orthogonal" property
$$(\mathbf{\Phi}_{s}^{d})^{T} \mathbf{K}_{s} \mathbf{F}_{rs} = \mathbf{0}$$

$$\boldsymbol{\Psi}_{c} = -\mathbf{K}_{s}^{-1}\mathbf{K}_{c}, \quad \boldsymbol{\Psi}_{c}^{T}\mathbf{K}_{s} + \mathbf{K}_{c}^{T} = \mathbf{0}$$

Derivation procedure

$$(1) = (4) \quad \therefore \overline{\mathbf{T}}_0^T \mathbf{M}_g \mathbf{T}_a = \mathbf{T}_a^T \mathbf{K}_g \mathbf{T}_a$$

3. The error estimator is approximated

 $\eta_i \approx \mu_i = \overline{\lambda}_i (\overline{\mathbf{\varphi}}_b)_i^T \mathbf{A}_b (\overline{\mathbf{\varphi}}_b)_i \text{ with } \mathbf{A}_b = \hat{\mathbf{M}}_c^T \mathbf{F}_{rs} \hat{\mathbf{M}}_c.$

Submatrix form

$$\hat{\mathbf{M}}_{c} = \begin{bmatrix} \hat{\mathbf{M}}_{c}^{(1)} \\ \hat{\mathbf{M}}_{c}^{(2)} \\ \vdots \\ \hat{\mathbf{M}}_{c}^{(k)} \end{bmatrix}, \quad \mathbf{F}_{rs} = \begin{bmatrix} \mathbf{F}_{rs}^{(1)} & \mathbf{0} \\ \mathbf{F}_{rs}^{(2)} & \\ & \ddots & \\ \mathbf{0} & \mathbf{F}_{rs}^{(k)} \end{bmatrix}$$

4. A new error estimator

$$\boldsymbol{\mu}_{i} = \sum_{k=1}^{n} \overline{\lambda}_{i} (\overline{\boldsymbol{\varphi}}_{b})_{i}^{T} \, \hat{\mathbf{M}}_{c}^{(k)T} \mathbf{F}_{rs}^{(k)} \, \hat{\mathbf{M}}_{c}^{(k)} (\overline{\boldsymbol{\varphi}}_{b})_{i}$$

 $\mathbf{F}_{rs}^{(k)}$: Symmetric, fully populated matrix. $\mathbf{F}_{rs}^{(k)} = \mathbf{F}_{d}^{(k)} + \mathbf{F}_{u}^{(k)} + \mathbf{F}_{u}^{(k)T}$

Derivation procedure

5. Finally, the simplified error estimator is defined as

$$\mu_{i} = \sum_{k=1}^{n} \mu_{i}^{(k)} \text{ with } \mu_{i}^{(k)} = e_{1}^{(k)} + 2e_{2}^{(k)}, \ e_{1}^{(k)} = \overline{\lambda}_{i}(\overline{\varphi}_{b})_{i}^{T} \hat{\mathbf{M}}_{c}^{(k)T} \mathbf{F}_{d}^{(k)} \hat{\mathbf{M}}_{c}^{(k)}(\overline{\varphi}_{b})_{i}, \ e_{2}^{(k)} = \overline{\lambda}_{i}(\overline{\varphi}_{b})_{i}^{T} \hat{\mathbf{M}}_{c}^{(k)T} \mathbf{F}_{u}^{(k)} \hat{\mathbf{M}}_{c}^{(k)}(\overline{\varphi}_{b})_{i}$$

✓ Represented by <u>a simple summation of the substructural errors estimated</u>.

<u>Attractive feature</u> of the proposed method.

Previous vs New error estimator: Operation counts

Previous error estimator

$$\eta_i = 2(\overline{\mathbf{\varphi}}_p)_i^T \overline{\mathbf{T}}_0^T \left[\mathbf{M}_g - \frac{1}{\overline{\lambda}_i} \mathbf{K}_g \right] \overline{\mathbf{T}}_r (\overline{\mathbf{\varphi}}_p)_i + (\overline{\mathbf{\varphi}}_p)_i^T \overline{\mathbf{T}}_r^T \left[\mathbf{M}_g - \frac{1}{\overline{\lambda}_i} \mathbf{K}_g \right] \overline{\mathbf{T}}_r (\overline{\mathbf{\varphi}}_p)_i \quad \text{with} \quad \overline{\mathbf{T}}_r = \begin{bmatrix} \mathbf{0} & \mathbf{F}_{rs} \hat{\mathbf{M}}_c \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Step	Items	Counts
1	$\mathbf{F}_{rs} = (\mathbf{K}_s)^{-1} - (\mathbf{\Phi}_d)(\mathbf{\Lambda}_d)^{-1}(\mathbf{\Phi}_d)^T$	ns^2
2	$\overline{\mathbf{T}}_{r}$	s(2s-1)bn
3	$\mathbf{M}_{g} - \frac{1}{\overline{\lambda_{i}}} \mathbf{K}_{g}$	$2N^2$
4	η_i	(2N-1)(N+d) + (2d-1)(N+1) + 1
Total counts	$ns^2 + s(2s-1)bn + 2N^2 + (2N)bn$	$\frac{-1}{N+d} + (2d-1)(N+1) + 1$ Polynomials of total DOFs. N
Number of tota	I DOFs : N Size of the in	terface : b

Number of substructures : n

Size of the reduced model : d

Number of each substructural DOFs : s

Previous vs New error estimator: Operation counts

✤ New error estimator

$$\mu_{i} = \sum_{k=1}^{n} \mu_{i}^{(k)} \quad \text{with} \quad \mu_{i}^{(k)} = e_{1}^{(k)} + 2e_{2}^{(k)}, \ e_{1}^{(k)} = \overline{\lambda}_{i}(\overline{\varphi}_{b})_{i}^{T} \hat{\mathbf{M}}_{c}^{(k)T} \mathbf{F}_{d}^{(k)} \hat{\mathbf{M}}_{c}^{(k)}(\overline{\varphi}_{b})_{i}, \ e_{2}^{(k)} = \overline{\lambda}_{i}(\overline{\varphi}_{b})_{i}^{T} \hat{\mathbf{M}}_{c}^{(k)T} \mathbf{F}_{u}^{(k)} \hat{\mathbf{M}}_{c}^{(k)}(\overline{\varphi}_{b})_{i}$$

Step	Items	Counts	
1	$\mathbf{F}_{rs}^{(k)} = (\mathbf{K}^{(k)})^{-1} - (\mathbf{\Phi}_d^{(k)})(\mathbf{\Lambda}_d^{(k)})^{-1} (\mathbf{\Phi}_d^{(k)})^T$	ns^2	
2	$e_1^{(k)}$ and $e_2^{(k)}$	2n[(s+1)(2b-1)+(b+s)(2s-1)+1]	
3	$\mu_i^{(k)}$	2 <i>n</i> -1	
Total counts	$ns^2 + 2n[(s+1)(2b-1) +$	(b+s)(2s-1)+1]+2n-1 : Polynomials of "s"	
Number of total DOFs : N Size of the interface : b			
Number of subs	er of substructures : n Size of the reduced model : d		
Number of each substructural DOFs : s			

Previous vs New error estimator: Operation counts

***** Operation counts

EEM	Operation counts
Previous	$ns^{2} + s(2s-1)bn + 2N^{2} + (2N-1)(N+d) + (2d-1)(N+1) + 1$
New	$ns^{2} + 2n[(s+1)(2b-1) + (b+s)(2s-1) + 1] + 2n-1$

✓ For stiffened plate problem

Number of total DOFs, N=52662 Number of substructures : n=18 Number of each substructural DOFs : s=2730 Size of the interface : b=3522 Size of the reduced model : d=3582

Operation counts :

Previous vs New $9.63 \times 10^{11} > 1.09 \times 10^{9}$

New error estimator only requires <u>0.22</u> % operation counts of that of previous error estimator.

Numerical examples

Computer spec. : Intel core (TM) i7-3770, 3.40 GHz CPU, 32GB RAM.

FE Model: 4-node MITC shell element.

Material: Mild steel. (E=206 GPa, v = 0.3, density = 7,850 kg/m³)

Implementation: Code implementations are done using MATLAB.

 \checkmark Compared with the exact relative eigenvalue errors.

 \checkmark Also, compared with the previous error estimation methods

Stiffened Plate structure

Dimension (L=26 m, B=6 m, S=2 m), **18 substructures**. No B.C.

Total DOFs = $52,662 \rightarrow \text{Retain modes} = 200$. Reduced system size = 3,582 (6.8%).

Stiffened Plate structure

Breakdowns of the computational cost

Items -		Computation times	
		[sec]	Ratio [%]
CB method		165.24	100.00
	Calculation of the residual flexibility matrix \mathbf{F}_{rs}	1.89	1.14
Previous error estimator in	Calculation of \mathbf{T}_a matrix	41.12	24.89
Eq. (29)	Calculation error estimator η_i	16.23	9.82
	Total	59.24	35.85
Present error estimator in Eq. (40)	Calculation of the residual flexibility matrix \mathbf{F}_{n}	1.89	1.14
	Calculation error estimator μ_i	1.87	1.13
	Total	3.76	2.27
Present error estimator considering symmetric partitioning	Calculation of the residual flexibility matrix \mathbf{F}_{n}	0.79	0.48
	Calculation error estimator μ_i	0.40	0.24
	Total	1.19	0.72
Elssel and Voss's error estim	nator in Eq. (41)	0.000011	0.0000066

Only requires 2.27 % of additional computation time. 15 times faster

Semi-submerged rig structure

Dimension (L=110 m, B=80 m, C=20 m, H₁=50, H₂=15), **28 substructures**. No B.C.

Total DOFs = $102,504 \rightarrow \text{Retain modes} = 160$. Reduced system size = 8,806 (8.6 %).

Original error estimator : Cost is not small.

New error estimator : <u>15 times faster</u>

***** "Attractive form" of the new error estimator : Simple summations of $\mu_i^{(k)}$, $\mu_i = \sum_{k=1}^n \mu_i^{(k)}$

 $\mu_i^{(k)}$: Provides the contribution of the k^{th} substructure to the i^{th} relative eigenvalue error.

The detailed errors estimated for a certain substructure.

We can suggest <u>an error control strategy</u> to improve the accuracy of the global modes having relatively large errors.

- From $\mu_i^{(k)}$, we can define the "<u>substructural contribution</u>"
 - $\psi_i^{(k)} = \frac{\mu_i^{(k)}}{\mu_i} \times 100 \,[\%]$: Substructural contribution
- Using $\psi_i^{(k)}$, we can <u>control the error</u> out of the tolerance !

- ★ Also, we can use this error control strategy for "<u>Model refinement</u>".
- ✓ Not adding substructural modes, but '<u>Re-meshing</u>' the target substructures crucial for the interested global mode.

Closure

- 1. We proposed a **<u>simplified error estimator</u>** for the CB method.
- The estimated relative eigenvalue error is simple to calculate using <u>summation of</u> <u>the substructural errors estimated</u>.
- 3. We proposed <u>an error control strategy</u> to improve the accuracy of reduced models efficiently.
- 4. It would be valuable to develop the <u>iterative mode selection algorithms</u> to construct accurate reduced-order models.

Topic 1-2. Error estimator for the AMLS method

Brief introduction of the AMLS method

* Component Mode Synthesis (CMS) methods

Well known methods. Used for many years in structural engineering.

But, it too suffers from limitations due to FE model size.

- Automated Multi-Level Substructuring (AMLS) method (J.K. Bennighof et al , 2004)
 - ✓ **Automatically** partitioning.
 - ✓ <u>**Recursively transformed</u>** strategies, but much <u>more complex formulation</u>.</u>

<Automated substructuring>

< Transformation tree >

Successful in computing <u>thousands of eigenvalues in a few hours on PC</u>.
 <u>AMLS</u> is a promising <u>alternative to "Lanczos"</u> for very large DOFs problem.

Enhanced transformation matrix

- ✤ To develop the error estimator of the AMLS method
 - \rightarrow Define the "<u>enhanced transformation matrix</u>" of the AMLS method.

1. Original AMLS transformation matrix

$$\mathbf{T}_{0} = \mathbf{T}^{(1)} \mathbf{T}^{(2)} \cdots \mathbf{T}^{(N_{s})} = \prod_{i=1}^{N_{s}} \mathbf{T}^{(i)} \qquad \qquad \mathbf{T}_{0} = \hat{\mathbf{\Psi}} \mathbf{\Phi} , \quad \mathbf{\Phi} = [\mathbf{\Phi}_{d} \quad \mathbf{\Phi}_{r}]$$

2. Therefore, the transformation matrix is also divided into two parts, dominant and residual parts.

$$\mathbf{T}_{0} = [\mathbf{T}_{0}^{d} \quad \mathbf{T}_{0}^{r}] \quad \text{with} \quad \frac{\mathbf{T}_{0}^{d} = \hat{\boldsymbol{\Psi}} \boldsymbol{\Phi}_{d}}{\mathbf{T} \text{ matrix of AMLS method}}, \quad \mathbf{T}_{0}^{r} = \hat{\boldsymbol{\Psi}} \boldsymbol{\Phi}_{r}$$

3. The global displacement vector is divided into the dominant and residual parts.

$$\mathbf{u}_{g} = \mathbf{T}_{0} \mathbf{\eta}_{p} = \begin{bmatrix} \mathbf{T}_{0}^{d} & \mathbf{T}_{0}^{r} \end{bmatrix} \begin{bmatrix} \mathbf{\eta}_{p}^{d} \\ \mathbf{\eta}_{p}^{r} \end{bmatrix} \longrightarrow \mathbf{M}_{g} \ddot{\mathbf{u}}_{g} + \mathbf{K}_{g} \mathbf{u}_{g} = \mathbf{0} \longrightarrow \begin{bmatrix} \mathbf{\Lambda}_{d} - \lambda \mathbf{M}_{dd} & -\lambda \mathbf{M}_{dr} \\ -\lambda \mathbf{M}_{dr}^{T} & \mathbf{\Lambda}_{r} - \lambda \mathbf{M}_{rr} \end{bmatrix} \begin{bmatrix} \mathbf{\eta}_{p}^{d} \\ \mathbf{\eta}_{p}^{r} \end{bmatrix} = \mathbf{0}$$

Exact transformed form.

Enhanced transformation matrix

4. Expanding the second row linear equation.

$$\begin{bmatrix} \Lambda_d - \lambda \mathbf{M}_{dd} & -\lambda \mathbf{M}_{dr} \\ - \lambda \mathbf{M}_{dr}^T & \Lambda_r - \lambda \mathbf{M}_{rr} \end{bmatrix} = \mathbf{0} \quad \blacksquare \quad \mathbf{n}_p^r = \lambda (\Lambda_r - \lambda \mathbf{M}_{rr})^{-1} \mathbf{M}_{dr}^T \mathbf{\eta}_p^d$$

$$\checkmark \text{ The residual term can be substituted into only dominant term.}$$

5. Therefore, \mathbf{u}_{g} can be described with only dominant term.

6. For approximation, using $\overline{\lambda}$ instead of λ in $\hat{\mathbf{F}}_r$, the following equation is obtained

$$\overline{\mathbf{F}}_{r} = \mathbf{\Phi}_{r} (\mathbf{\Lambda}_{r} - \overline{\lambda} \mathbf{M}_{rr})^{-1} \mathbf{\Phi}_{r}^{T}$$

Enhanced transformation matrix

7. The residual flexibility matrix $\overline{\mathbf{F}}_r$ is expanded and approximated $\overline{\mathbf{F}}_r = \mathbf{\Phi}_r (\mathbf{\Lambda}_r - \overline{\lambda} \mathbf{M}_{rr})^{-1} \mathbf{\Phi}_r^T = \mathbf{\Phi}_r \mathbf{\Lambda}_r^{-1} \mathbf{\Phi}_r^T + \overline{\lambda} \mathbf{\Lambda}_r^{-1} \mathbf{M}_{rr} \mathbf{\Lambda}_r^{-1} \mathbf{\Phi}_r^T + \mathcal{O}(\overline{\lambda}^2) + \cdots$: Known as *Neuman series* of matrix **Considering...** $\mathbf{\Phi}_r \mathbf{\Lambda}_r^{-1} \mathbf{\Phi}_r^T = \mathbf{\hat{K}}^{-1} - (\mathbf{\Phi}_d) (\mathbf{\Lambda}_d)^{-1} (\mathbf{\Phi}_d)^T = \mathbf{F}_{rs}$

: Residual modes are expressed with the dominants term.

8. The global displacement vector is approximated as

 $\overline{\mathbf{u}}_{g} = \mathbf{T}_{0}^{d} \mathbf{\eta}_{p}^{d} + \lambda \, \hat{\mathbf{\Psi}} \, \mathbf{F}_{rs} \, \hat{\mathbf{\Psi}}^{T} \, \mathbf{M}_{g} \, \mathbf{T}_{0}^{d} \, \mathbf{\eta}_{p}^{d}$

9. Enhanced transformation matrix is defined

 $\overline{\mathbf{u}}_{g} = \overline{\mathbf{T}}_{1} \mathbf{\eta}_{p}^{d} \text{ with } \overline{\mathbf{T}}_{1} = \overline{\mathbf{T}}_{0} + \lambda \overline{\mathbf{T}}_{r}, \ \overline{\mathbf{T}}_{r} = \hat{\mathbf{\Psi}} \mathbf{F}_{rs} \hat{\mathbf{\Psi}}^{T} \mathbf{M}_{g} \mathbf{T}_{0}^{d} : \text{Unknown } \lambda \text{ is another issue.}$ Enhanced transformation: Same size with $\overline{\mathbf{T}}_{0}$

Error estimator for the AMLS method

1. Mass orthonormality and stiffness orthogonality

$$\frac{1}{\lambda_{i}}(\boldsymbol{\varphi}_{g})_{i}^{T}\mathbf{K}_{g}(\boldsymbol{\varphi}_{g})_{i} = (\boldsymbol{\varphi}_{g})_{i}^{T}\mathbf{M}_{g}(\boldsymbol{\varphi}_{g})_{i} \qquad (\boldsymbol{\varphi}_{g}) \approx (\overline{\boldsymbol{\varphi}}_{g})_{i} = \overline{\mathbf{T}}_{1}(\overline{\boldsymbol{\varphi}}_{p})_{i} = (\overline{\mathbf{T}}_{0} + \lambda\overline{\mathbf{T}}_{r})(\overline{\boldsymbol{\varphi}}_{p})_{i}$$

$$\xi_{i} \approx (\overline{\boldsymbol{\varphi}}_{p})_{i}^{T}[\overline{\lambda}_{i}\overline{\mathbf{T}}_{0}^{T}\mathbf{M}_{g}\overline{\mathbf{T}}_{r} + \overline{\lambda}_{i}^{2}\overline{\mathbf{T}}_{r}^{T}\mathbf{M}_{g}\overline{\mathbf{T}}_{r}](\overline{\boldsymbol{\varphi}}_{p})_{i} \qquad \mu_{i} = \overline{\lambda}_{i}(\overline{\boldsymbol{\varphi}}_{p})_{i}^{T}\mathbf{A}\mathbf{F}_{rs}\mathbf{A}^{T}(\overline{\boldsymbol{\varphi}}_{p})_{i}$$

$$= \mathbf{A}\mathbf{F}_{rs}\mathbf{A}^{T} \text{ with } \mathbf{A} = \mathbf{\Phi}_{d}^{T}\widetilde{\mathbf{M}}_{g} \qquad [\text{Note }]$$

$$\text{Calculated during the recursive transformation}$$

2. Symmetry of matrix \mathbf{F}_{rs}

 $\mathbf{F}_{rs} = \mathbf{F}_{d} + \mathbf{F}_{u} + \mathbf{F}_{u}^{T}$

procedure of the mass matrix: $\overline{\mathbf{M}} = \mathbf{\Phi}_d^T \widetilde{\mathbf{M}}_{e} \mathbf{\Phi}_d$

3. Finally, we can define an error estimator

$$\mu_{i} = \overline{\lambda}_{i} (\overline{\boldsymbol{\varphi}}_{p})_{i}^{T} \mathbf{E} (\overline{\boldsymbol{\varphi}}_{p})_{i} \text{ with } \mathbf{E} = \mathbf{E}_{1} + \mathbf{E}_{2} + \mathbf{E}_{2}^{T}$$

 $N_p \times N_p$ matrix

Therefore, we do not need to handle the matrices of global DOF size.

$$\mathbf{E}_{1} = \mathbf{A} \mathbf{F}_{d} \mathbf{A}^{T}, \ \mathbf{E}_{i,j}^{1} = \sum_{k=1}^{N_{s}} \mathbf{A}_{i,k} \mathbf{F}_{k}^{d} \mathbf{A}_{k,j}^{T}$$
$$\mathbf{E}_{2} = \mathbf{A} \mathbf{F}_{u} \mathbf{A}^{T}, \ \mathbf{E}_{i,j}^{2} = \sum_{k=1}^{N_{s}} \mathbf{A}_{i,k} \mathbf{F}_{k}^{u} \mathbf{A}_{k,j}^{T}$$

"E" matrix is simply computed with submatrix additions and multiplications.

Stiffened plate structure

Dimension (L=78 m, B=44 m), <u>1,023</u> substructures (Using METIS). Free BC is imposed. Total DOFs = 1,004,088 \rightarrow Retain modes = 2,200. Reduced system size = 5,450 (0.5 %).

< Relative eigenvalue errors >

Stiffened plate structure

Breakdowns of the computational cost

	Therese	Related Equations	Computation times	
	nems		[sec]	Ratio [%]
AMLS	Transformation procedures	13	3355.02	96.74
	Solution of the reduced eigenvalue problem	14	113.21	3.26
	Total	-	3468.23	100.00
Error estimation	Calculation of the residual flexibility matrix \mathbf{F}_{rs}	36	36.37	1.05
	Construction of A and E matrices	48, 51	227.31	6.55
	Calculation error estimator μ_i	50	5.83	0.17
	Total	-	269.51	7.77

The additional computation cost is about 7% compared to that of AMLS method

to calculate the relative eigenvalue errors in 1,400 global modes.

* "Lanczos (*eigs* in MATLAB)" : 1,400 global modes (9,500 sec). 1,500 global modes (N/A)

Closure

- To develop the error estimation method for the AMLS method, <u>an enhanced</u> <u>transformation matrix</u> was newly developed which considered the residual mode effect.
- Using the enhanced transformation matrix, we proposed <u>an error estimator for the</u>
 <u>AMLS method</u>.

[Note]

- ✤ Error estimators for CB / AMLS methods were introduced in the above.
- The success to develop the error estimator comes from "<u>Construction of the</u> <u>enhanced transformation matrix</u>".
- Therefore, it is possible to develop <u>the error estimators for any other CMS methods</u>.

Topic 2. Enhanced AMLS method

Issue

Demands for more accurate method / large structural analyses:

- ✓ **LANCZOS algorithm has a limitation** to solve large DOFs problem.
- ✓ <u>AMLS</u> method was developed (Alternative of LANCZOS).
- ✓ Necessary to develop a powerful method <u>outperforming the AMLS method</u>.

Enhanced AMLS method

1. The enhanced transformation matrix

$$\mathbf{u}_{g} \approx \overline{\mathbf{u}}_{g} = \overline{\mathbf{T}}_{1} \mathbf{\eta}_{p}^{d}$$
 with $\overline{\mathbf{T}}_{1} = \overline{\mathbf{T}}_{0} + \mathcal{N} \overline{\mathbf{T}}_{r}, \quad \overline{\mathbf{T}}_{r} = \hat{\mathbf{\Psi}} \mathbf{F}_{rs} \hat{\mathbf{\Psi}}^{T} \mathbf{M}_{g} \mathbf{T}_{0}^{d}$
Unknown

2. Employing O'Callahan's technique

$$\overline{\mathbf{T}}_{0} \longrightarrow \overline{\mathbf{M}}_{p} \stackrel{\text{```}}{\overline{\mathbf{\eta}}}_{p} + \overline{\mathbf{K}}_{p} \overline{\mathbf{\eta}}_{p} = \mathbf{0} \longrightarrow -\lambda \overline{\mathbf{M}}_{p} \overline{\mathbf{\eta}}_{p} + \overline{\mathbf{K}}_{p} \overline{\mathbf{\eta}}_{p} = \mathbf{0} \longrightarrow \lambda \overline{\mathbf{\eta}}_{p} = \overline{\mathbf{M}}_{p}^{-1} \overline{\mathbf{K}}_{p} \overline{\mathbf{\eta}}_{p}$$
Reduced model of original
AMLS method
$$\overline{\mathbf{T}}_{1} = \overline{\mathbf{T}}_{0} + \lambda \overline{\mathbf{T}}_{r} = \overline{\mathbf{T}}_{0} + \hat{\mathbf{\Psi}} \mathbf{F}_{rs} \hat{\mathbf{\Psi}}^{T} \mathbf{M}_{g} \mathbf{T}_{0}^{d} \overline{\mathbf{M}}_{p}^{-1} \overline{\mathbf{K}}_{p}$$

3. Reduced mass and stiffness matrices

$$\widetilde{\mathbf{M}}_{p} = \overline{\mathbf{T}}_{1}^{T} \mathbf{M}_{g} \overline{\mathbf{T}}_{1} = \overline{\mathbf{M}}_{p} + \overline{\mathbf{T}}_{r}^{T} \mathbf{M}_{g} \overline{\mathbf{T}}_{0} + \overline{\mathbf{T}}_{0}^{T} \mathbf{M}_{g} \overline{\mathbf{T}}_{r} + \overline{\mathbf{T}}_{r}^{T} \mathbf{M}_{g} \overline{\mathbf{T}}_{r}$$
$$\widetilde{\mathbf{K}}_{p} = \overline{\mathbf{T}}_{1}^{T} \mathbf{K}_{g} \overline{\mathbf{T}}_{1} = \overline{\mathbf{K}}_{p} + \overline{\mathbf{T}}_{r}^{T} \mathbf{K}_{g} \overline{\mathbf{T}}_{0} + \overline{\mathbf{T}}_{0}^{T} \mathbf{K}_{g} \overline{\mathbf{T}}_{r} + \overline{\mathbf{T}}_{r}^{T} \mathbf{K}_{g} \overline{\mathbf{T}}_{r}$$
$$\stackrel{\checkmark}{\checkmark} \text{Reduced matrices of original AMLS method}$$

4. Reduced eigenvalue problem

 $\widetilde{\mathbf{K}}_{p}(\overline{\mathbf{\phi}})_{i} = \overline{\lambda}_{i} \widetilde{\mathbf{M}}_{p}(\overline{\mathbf{\phi}})_{i} \quad \blacksquare \qquad (\mathbf{\phi}_{g})_{i} \approx (\overline{\mathbf{\phi}}_{g})_{i} = \overline{\mathbf{T}}_{1}(\overline{\mathbf{\phi}}_{p})_{i}$

New transformation matrix.

How can we handle

the unknown λ ?

Turbine blade structure

Dimension (L=35 m, Thickness=0.05 m), 28 substructures. Fixed BC at x=0.

Total DOFs 51,308 → Retain modes 60. Reduced system size 1,260 (2.45 %).

Closure

- The <u>enhanced transformation matrix</u> considering the residual mode effect is derived.
- Using the enhanced transformation matrix, <u>the enhanced AMLS method</u> was presented.
- ✤ However, <u>there are limitations</u> to use as an eigenvalue solver.
 - ✓ Does not have capacity to solve large DOFs problems <u>over 50,000 DOFs</u>.
 - ✓ Very complicated formulation of the enhanced transformation matrix
 - $\overline{\mathbf{T}}_{1} = \overline{\mathbf{T}}_{0} + \underline{\hat{\mathbf{\Psi}}} \mathbf{F}_{rs} \, \widehat{\mathbf{\Psi}}^{T} \, \mathbf{M}_{g} \mathbf{T}_{0}^{d} \overline{\mathbf{M}}_{p}^{-1} \overline{\mathbf{K}}_{p}$
- Global matrix computation.
- Fully populated matrix.
- Induce lack of memory and huge costs.
- \checkmark Need to improve its <u>computational efficiency</u>.
 - 1) Formulation modification in the **<u>submatrix computing level</u>**.
 - 2) <u>An optimized algorithm</u> for computer programming.

Topic 3. Algebraic dynamic condensation method

Introduction

u

Improved Reduced System (IRS) method (O'Callahan, 1989)

1. Master / Slave DOFs selection, and reduction.

$$\mathbf{u}_{g} = \begin{bmatrix} \mathbf{u}_{s} \\ \mathbf{u}_{m} \end{bmatrix} \approx \overline{\mathbf{u}}_{g} = \mathbf{T}_{1} \mathbf{u}_{m} \quad \text{with} \quad \mathbf{T}_{1} = \mathbf{T}_{G} + \mathbf{T}_{a} \mathbf{H}_{G} \quad (= \mathbf{T}_{G} + \lambda \mathbf{T}_{a})$$

$$\mathbf{T}_{G} = \begin{bmatrix} -\mathbf{K}_{s}^{-1} \mathbf{K}_{sm} \\ \mathbf{I}_{m} \end{bmatrix}, \quad \mathbf{T}_{a} = \begin{bmatrix} \mathbf{K}_{s}^{-1} \left(\mathbf{M}_{sm} - \mathbf{M}_{s} \mathbf{K}_{s}^{-1} \mathbf{K}_{sm} \right) \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{H}_{G} = \overline{\mathbf{M}}_{G}^{-1} \overline{\mathbf{K}}_{G}$$

Guyan's transformation matrix

- 2. Considering inertial effect of slave DOFs
 → Good accuracy.
- 3. Very simple formulation.

 $\overline{\mathbf{M}}_1 = \mathbf{T}_1^T \mathbf{M}_g \mathbf{T}_1 , \quad \overline{\mathbf{K}}_1 = \mathbf{T}_1^T \mathbf{K}_g \mathbf{T}_1$

4. No need to sub- eigenvalue analyses.

Issue

Design focus

- ✤ How do we improve the <u>reduction efficiency</u> of the IRS method ?
- 1. Design focus ?
 - ✓ Improving "<u>computational efficiency</u>" of the IRS method.
 - → Avoiding expensive global matrix operations and matrix populations.
- 2. Key ideas ?
 - ✓ Employing "<u>algebraic substructuring</u>" algorithm.
 - :Using "<u>METIS</u>" adopted in the AMLS method.
 - ✓ <u>Submatrix</u> operations.
 - ✓ Transformation <u>without the global transformation matrix</u>.
- **3.** What is the "**Strengths**", which is expected ?
 - ✓ Formulations would be <u>expressed in submatrix form</u>: Computationally efficient.
 - ✓ We can handle practical engineering problems with large DOFs in PC.

Step 1. Algebraic substructuring

Matrix permutation = Renumbering nodes in FE model.

→ Does not alter the physical characteristic of original FE model.

Step 2. Substructural stiffness condensation

- 1. Equations of motion
 - $\begin{bmatrix} \mathbf{K}_{s} & \mathbf{K}_{c} \\ \mathbf{K}_{c}^{T} & \mathbf{K}_{b} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{s} \\ \mathbf{u}_{b} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{M}_{s} & \mathbf{M}_{c} \\ \mathbf{M}_{c}^{T} & \mathbf{M}_{b} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{s} \\ \mathbf{u}_{b} \end{bmatrix}$
- 2. Expanding the 1st row linear equation $\mathbf{u}_{s} = (\mathbf{K}_{s} - \lambda \mathbf{M}_{s})^{-1} (\mathbf{K}_{c} - \lambda \mathbf{M}_{c}) \mathbf{u}_{b} = [\underline{\Psi}_{c} + \lambda \mathbf{K}_{s}^{-1} \hat{\mathbf{M}}_{c} + o(\lambda^{2}) + \cdots] \mathbf{u}_{b},$ Considering...
 Considering...
- 3. Static condensation procedure

1. Eigenvalue problem for interface boundary

2. Reduce interface boundary

$$\overline{\mathbf{M}}_{b} = (\mathbf{\Phi}_{b}^{d})^{T} \hat{\mathbf{M}}_{b} (\mathbf{\Phi}_{b}^{d}), \quad \overline{\mathbf{K}}_{b} = (\mathbf{\Phi}_{b}^{d})^{T} \hat{\mathbf{K}}_{b} (\mathbf{\Phi}_{b}^{d})$$

1. Expanded the 1st row linear equation

$$\mathbf{u}_{s} = (\mathbf{K}_{s} - \lambda \mathbf{M}_{s})^{-1} (\mathbf{K}_{c} - \lambda \mathbf{M}_{c}) \mathbf{u}_{b} = [\underline{\Psi}_{c} + \lambda \mathbf{K}_{s}^{-1} \hat{\mathbf{M}}_{c} + o(\lambda^{2}) + \cdots] \mathbf{u}_{b}$$
Inertial effect condensation
matrix
$$\overline{\mathbf{u}}_{s} = (\Psi_{c} + \lambda \mathbf{K}_{s}^{-1} \hat{\mathbf{M}}_{c}) \mathbf{u}_{b}$$

$$\overline{\mathbf{u}}_{s} = (\Psi_{c} + \lambda \mathbf{K}_{s}^{-1} \hat{\mathbf{M}}_{c}) \mathbf{u}_{b}$$

$$\overline{\mathbf{u}}_{g} = \left[\overline{\mathbf{u}}_{s} \\ \overline{\mathbf{u}}_{b} \right] = \Psi_{1} \mathbf{q}_{b}^{d} \quad \text{with} \quad \Psi_{1} = \overline{\Psi} + \lambda \Psi_{a}$$

2. Handling unknown λ

 $\hat{\mathbf{K}}_{b} \mathbf{u}_{b} = \overline{\lambda} \, \hat{\mathbf{M}}_{b} \mathbf{u}_{b} \implies \overline{\lambda} \, \mathbf{q}_{b}^{d} = \mathbf{H}_{b} \mathbf{q}_{b}^{d} \text{ with } \mathbf{H}_{b} = \overline{\mathbf{M}}_{b}^{-1} \, \overline{\mathbf{K}}_{b}$ 58

3. Inertial effect condensation procedure

→ No transformation matrix.

$$\widetilde{\mathbf{M}}_{b} = \mathbf{\Psi}_{1}^{T} \mathbf{M}_{g} \mathbf{\Psi}_{1}$$
$$\widetilde{\mathbf{K}}_{b} = \mathbf{\Psi}_{1}^{T} \mathbf{K}_{g} \mathbf{\Psi}_{1}$$

$$\widetilde{\mathbf{M}}_{b} = \overline{\mathbf{M}}_{b} + \mathbf{R}_{1} + \mathbf{R}_{1}^{T} + \mathbf{R}_{2}, \quad \widetilde{\mathbf{K}}_{b} = \overline{\mathbf{K}}_{b} + \mathbf{H}_{b}^{T}\mathbf{R}_{1}$$
with
$$\mathbf{R}_{1} = \sum_{i=1}^{n} (\mathbf{\Phi}_{b}^{d})^{T} (\hat{\mathbf{M}}_{i}^{c})^{T} \mathbf{A}_{i}\mathbf{H}_{b} , \quad \mathbf{R}_{2} = \sum_{i=1}^{n} \mathbf{H}_{b}^{T}\mathbf{A}_{i}^{T}\mathbf{M}_{i}\mathbf{A}_{i}\mathbf{H}_{b} , \quad \mathbf{A}_{i} = \mathbf{K}_{i}^{-1}\hat{\mathbf{M}}_{i}^{c} (\mathbf{\Phi}_{b}^{d})$$

✓ Reduced system : Simple matrix summation and multiplications at a submatrix level.

Similar with "FEM degeneration" :

Step 5. Approximated global eigenvectors

Transformation matrix:
$$\Psi_1 = \begin{bmatrix} \Psi_1^1 \\ \Psi_2^1 \\ \vdots \\ \vdots \\ \frac{\Psi_1^n}{\Phi_b^d} \end{bmatrix}$$
 with $\Psi_i^1 = \Psi_i^c \Phi_b^d + K_i^{-1} \hat{M}_i^c \Phi_b^d H_b$ $(\overline{\varphi}_g)_i = \Psi_1 \overline{\varphi}_i$

Rectangular plate problem

Dimension (L=20 m, B=12 m, Thickness=0.025 m), 16 substructures. No B.C.

Total DOFs = $11,285 \rightarrow$ Retain interface modes = 100. Reduced system size = 100 (0.88 %).

	Tt om a	Related	Computation times	
	nems	Equations	[sec]	Ratio [%]
IRS	Transformation procedure	8,13	205.70	99.95
	Reduced eigenvalue problem	14	0.10	0.05
	Total	-	205.80	100.00
Proposed	Algebraic substructuring	16	0.05	0.02
	Calculation of $\hat{\mathbf{M}}_b$ and $\hat{\mathbf{K}}_b$ matrices	25	0.61	0.30
	Eigenvalue problem for the interface boundary	22	0.49	0.24
	Calculation of $\overline{\mathbf{M}}_b$, $\overline{\mathbf{K}}_b$ and \mathbf{H}_b matrices	28, 33	0.03	0.01
	Calculation of $\widetilde{\mathbf{M}}_b$ and $\widetilde{\mathbf{K}}_b$ matrices	36	0.70	0.34
	Reduced eigenvalue problem	37	0.10	0.05
	Total	- (1.98	0.96

Compared to the computation time required for the IRS

method: 100 times faster

Truss structure

Dimension (L=98 m, B₁=45 m, B₂=48 m), No B.C.

Total DOFs = 155,766 → Retain interface modes = 150. Reduced system size = 150 (0.09 %).

✓ As the number of substructures increases,both accuracy and computation cost improve.

Closure

- We develop a new efficient reduced-order modeling technique, named <u>algebraic</u> <u>dynamic condensation</u>.
- The formulation can be simply <u>expressed using multiplications and summations</u> of submatrices, and thus it presents <u>excellent computational efficiency</u>.
- 3. The proposed method also provides <u>better accuracy</u> than the IRS method, and it can <u>handle relatively large FE models</u>, for which the IRS method fails to work.

4. Future works

Future works

Issue 1. Solution "Reliability"

- ✓ Error estimator applicable to the CB method <u>using the interface reduction technique</u>.
- ✓ **Iterative mode selection algorithms** to construct accurate reduced-order models.
- ✓ More simplified error estimator considering FE models with more than several millions of DOFs.

Issue 2. Solution "Accuracy"

- ✓ <u>A new eigenvalue solver</u> using the enhanced AMLS method
 - \rightarrow Increasing computational efficiency. Optimized algorithm for implementation.

Issue 3. Solution "Efficiency"

- ✓ <u>An effective iterative scheme</u> could also be developed.
- ✓ Employing the <u>multi-level algebraic substructuring</u> to solve FE models with more than several millions of DOFs.

