유한요소 구조동역학 모델의 차수감소기법 On the finite element model reduction methods in computational dynamics

Presenter: Jin-Gyun Kim 2014. 5. 16.

Contents

Introduction of FE model reduction

Topic 1. Enhanced CMS methods

Topic 2. Error estimator for model reduction

Topic 3. Mode selection method for CMS methods

Introduction of FE model reduction

Computational efficiency

Supercomputing cluster

Parallel algorithm

<u>Computing power</u> Hardware ↑ Algorithm ↑

<u>Finite element model</u> Model size ↑ Complexity ↑

Reducing the computational cost is still important issue.

✤ What is model reduction?

Goal: Smaller model size with less loss of accuracy

Key concepts of model reduction

1. DOFs based reduction

- 2. Mode based reduction (with substructuring)
- = Component mode synthesis
- = Dynamic substructuring
- = Domain decomposition method

Usages of model reduction

(c) Trimmed body

Eigenvalue solver and structural analysis

6 measurement locations chosen by Guyan reduction.

Health monitoring and measurement positioning

Usages of model reduction

FEM / X-FEM coupled modeling

Elastic network modeling for Nanomechanics and Biomechanics

Related major journals

A keyword: component mode synthesis

	Publication	h5-index	h5-media
1.	Computer Methods in Applied Mechanics and Engineering	53	66
2.	International Journal for Numerical Methods in Engineering	44	57
3.	Composite Structures	41	54
4.	Engineering Structures	37	45
5.	Computers & Structures	34	45
6.	Computational Mechanics	31	49
7.	Structural and Multidisciplinary Optimization	30	46
8.	Earthquake Engineering & Structural Dynamics	28	36
9.	Journal of Structural Engineering	27	36
0.	Journal of Constructional Steel Research	26	33
1.	Structural Safety	25	36
2.	Thin-Walled Structures	24	28
4	ISI Journal Citation Reports © Ranking: 2012 (Engineering Multidisciplinary); 14/93 (Mathe Interdisciplinary Applications)	2: 8/90 ematics	34
6.	Journal of Engineering Mechanics	20	29
6. 7.			

- Major issues of FE model reduction
 - 1. Model reduction for more precise reduced-order modeling
 - 2. How do we evaluate the solution accuracy of the reduced problem?

Today, we will handle these three issues.

Topic 1. Enhanced CMS methods

General description of CMS methods

4. Approximation of the global eigenvector using dominant substructural modes

$$(\mathbf{\phi}_g)_i \approx (\overline{\mathbf{\phi}}_g)_i = \overline{\mathbf{T}}_0 (\overline{\mathbf{\phi}}_p)_i$$

✓ Formulation details of T_0 differ depending on methodologies.

5. Reduced model

$$\bar{\mathbf{M}}_p = \bar{\mathbf{T}}_0^T \mathbf{M}_g \bar{\mathbf{T}}_0, \quad \bar{\mathbf{K}}_p = \bar{\mathbf{T}}_0^T \mathbf{K}_g \bar{\mathbf{T}}_0$$

6. Reduced eigenvalue problem

$$\overline{\mathbf{K}}_{p}(\overline{\mathbf{\phi}}_{p})_{i} = \lambda_{i} \overline{\mathbf{M}}_{p}(\overline{\mathbf{\phi}}_{p})_{i} \quad \overline{N}_{p} \ll N_{g} \quad \text{Computational cost}$$

Key of the improved model reduction method is the more precise approximation of the global eigenvector!

✤ Related researches

1) Craig-Bampton (CB) method: Craig and Bampton (1968) Most popular

2) Hybrid method: MacNeal (1971)

3) Dual CB method: Rixen (2004)

4) Flexibility based CMS (F-CMS) method: KC Park and YH Park (2004) Improved accuracy

5) AMLS method: Bennighof (2004) Computer-aid formulation of the CB method

6) Enhanced CB method: JG Kim and PS Lee (2014)

7) Enhanced AMLS method: JG Kim, SH Boo and PS Lee (2014)

Derivation procedure will be presented by the CB method.

Transformation matrix

Reduced model

$$ar{\mathbf{M}}_p = ar{\mathbf{T}}_0^T \mathbf{M}_g ar{\mathbf{T}}_0, \quad ar{\mathbf{K}}_p = ar{\mathbf{T}}_0^T \mathbf{K}_g ar{\mathbf{T}}_0$$

For better approximation of the global eigenvector, we have focused on the residual modal effect.

Enhanced CB method

Enhanced transformation matrix

$$\mathbf{T}_{0} = \begin{bmatrix} \Phi_{d} & \Phi_{r} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \xrightarrow{-\mathbf{K}_{s}^{-1}\mathbf{K}_{c}} \rightarrow \overline{\mathbf{T}}_{1} = \overline{\mathbf{T}}_{0} + \overline{\mathbf{T}}_{r},$$
Substructural eigenvector matrix
Interface constraint mode
$$\overline{\mathbf{T}}_{r} = \begin{bmatrix} \mathbf{0} & \lambda \mathbf{F}_{rs} \begin{bmatrix} -\mathbf{M}_{s}\mathbf{K}_{s}^{-1}\mathbf{K}_{c} + \mathbf{M}_{c} \end{bmatrix} \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

$$\mathbf{F}_{rs} = \mathbf{K}_{s}^{-1} - \Phi_{d}\mathbf{\Lambda}_{d}^{-1}\Phi_{d}^{T}$$

$$\checkmark \text{ No calculation of residual modes}$$

 \checkmark More precisely approximated global eigenvector

Since λ is unknown, it might be handle to employ it for the model reduction method.

Enhanced CB method

\succ Handling technique of λ

$$\begin{split} \lambda \bar{\mathbf{u}}_p &= \bar{\mathbf{M}}_p^{-1} \bar{\mathbf{K}}_p \bar{\mathbf{u}}_p \\ \bar{\mathbf{T}}_r &= \begin{bmatrix} \mathbf{0} & \mathbf{F}_{rs} \begin{bmatrix} -\mathbf{M}_s \mathbf{K}_s^{-1} \mathbf{K}_c + \mathbf{M}_c \end{bmatrix} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \bar{\mathbf{M}}_p^{-1} \bar{\mathbf{K}}_p \quad \frac{\text{redefined without unknown}}{\mathbf{0}} \end{split}$$

Reduced model

$$\begin{split} \tilde{\mathbf{M}}_p &= \bar{\mathbf{T}}_1^T \mathbf{M}_g \bar{\mathbf{T}}_1 = \begin{bmatrix} \bar{\mathbf{T}}_0^T \mathbf{M}_g \bar{\mathbf{T}}_0 \\ \bar{\mathbf{K}}_p &= \bar{\mathbf{T}}_1^T \mathbf{K}_g \bar{\mathbf{T}}_1 = \begin{bmatrix} \bar{\mathbf{T}}_0^T \mathbf{M}_g \bar{\mathbf{T}}_0 \\ \bar{\mathbf{K}}_p &= \bar{\mathbf{T}}_1^T \mathbf{K}_g \bar{\mathbf{T}}_1 = \begin{bmatrix} \bar{\mathbf{T}}_0^T \mathbf{K}_g \bar{\mathbf{T}}_0 \\ \bar{\mathbf{T}}_p \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{M}_g \bar{\mathbf{T}}_0 \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_0 \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r^T \mathbf{K}_g \bar{\mathbf{T}}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \mathbf{T}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \mathbf{T}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \mathbf{T}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \mathbf{T}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \\ \bar{\mathbf{T}}_r \end{bmatrix} \end{bmatrix} + \begin{bmatrix} \bar{\mathbf{T}}_r \mathbf{T}_r \mathbf{T}_r \\ \bar$$

Better approximation. Same matrix size.

Numerical result

The present formulation generally shows 1,000 times better solution accuracy in this example.

✤ Numerical result

<Solid bearing problem>

$$\xi_j = \frac{\bar{\lambda}_i}{\lambda_i} - 1$$

Enhanced AMLS method

Automated multi-level substructuring (AMLS) method (*Bennighof, 2004*)

: Computer-aid formulation based on the CB method, Hierarchical partitioning, Interface reduction, Much more complex formulation

✤ Numerical result

Computational cost

Comparison of computational cost

	DOFs		Computation time (sec)		
	N_g	\overline{N}_p	AMLS	Enhanced AMLS	
Rectangular plate (Freq. cut-off, $N_d = 30$)	1365	135	2.685E-01	2.711E-01	
Cylindrical solid (Freq. cut-off, $N_d = 70$)	1740	250	2.862E-01	2.950E-01	
Bench corner structure (Freq. cut-off, $N_d = 50$)	3508	147	7.992E-01	8.155E-01	

Verification of computational efficiency

- 1. We proposed two enhanced CMS method: the enhanced CB and AMLS methods.
- 2. This concept can be applied for other model reduction methods such as the dual CB method and the F-CMS method.
- **3.** Using the proposed enhanced method, most existing related techniques may be upgraded.

JG Kim, PS Lee, An enhanced Craig-Bampton method, International Journal for Numerical Methods in Engineering, submitted.

JG Kim, SH Boo, PS Lee. A new automated multi-level substructuring method, Computer Methods in Applied Mechanics and Engineering, in preparation (in May).

JG Kim, PS Lee, KC Park. An enhanced flexibility based component mode synthesis, ongoing research.

Topic 2. Error estimator for model reduction KAIST 24 120

Major difficulty

$$\xi_j = \frac{\bar{\lambda}_i}{\bar{\lambda}_i} - 1$$

Unless we have the reference solution...?

Problem: How do we estimate the solution accuracy and reliability of the reduced problem efficiently? *This is major difficulty of model reduction techniques!*

A disadvantage of reduction techniques such as the Iron-Guyan procedure and component mode synthesis is that there is **no guarantee** that the eigenvalues and eigenvectors of the reduced problem will be good approximations of those of the original problem..... T.J.R. Hughes

✤ Related researches

- ➢ Mode based reduction method, Elssel and Voss (2007)
 - : an upper bound of relative eigenvalue error, CB and AMLS methods

 \succ DOFs based reduction method: No error estimator \rightarrow iterative method

To overcome this difficulty, we here propose an accurate error estimator for model reduction. It employed CB, AMLS, F-CMS and Guyan reduction!

Enhanced transformation matrix

In the CB method

This is pre-requisite to develop an accurate error estimator.

Brief derivation procedure of error estimator

Step 1. Start from global eigenvalue problem.

Step 2. Decompose the original eigenvector.

Step 3. Represent the approximated original eigenvector using T₁.

Step 4. submit and rearrange.

$$\frac{1}{\lambda_i} (\mathbf{\varphi}_g)_i^T \mathbf{K}_g (\mathbf{\varphi}_g)_i = (\mathbf{\varphi}_g)_i^T \mathbf{M}_g (\mathbf{\varphi}_g)_i$$

$$(\mathbf{\varphi}_g)_i = (\overline{\mathbf{\varphi}}_g)_i + (\delta \mathbf{\varphi})_i$$

$$(\overline{\mathbf{\phi}}_g)_i = \overline{\mathbf{T}}_1 (\overline{\mathbf{\phi}}_p)_i, \quad \overline{\mathbf{T}}_1 = \overline{\mathbf{T}}_0 + \overline{\mathbf{T}}_r$$

$$\frac{\overline{\lambda_i}}{\lambda_i} - 1 \approx 2(\overline{\boldsymbol{\varphi}}_p)_i^T \mathbf{T}_0^T \left[\mathbf{M}_g - \frac{1}{\lambda_i} \mathbf{K}_g \right] \mathbf{T}_r (\overline{\boldsymbol{\varphi}}_p)_i + (\overline{\boldsymbol{\varphi}}_p)_i^T \mathbf{T}_r^T \left[\mathbf{M}_g - \frac{1}{\lambda_i} \mathbf{K}_g \right] \mathbf{T}_r (\overline{\boldsymbol{\varphi}}_p)_i$$

Relative eigenvalue error can be directly approximated by **matrix and vector operations.**

Specific derivation

From the global eigenvalue problem

$$= \frac{1}{\lambda_i} (\mathbf{\varphi}_g)_i^T \mathbf{K}_g (\mathbf{\varphi}_g)_i = (\mathbf{\varphi}_g)_i^T \mathbf{M}_g (\mathbf{\varphi}_g)_i$$
$$(\mathbf{\varphi}_g)_i = (\mathbf{\overline{\varphi}}_g)_i + (\delta \mathbf{\varphi})_i$$

Then,

$$= \frac{1}{\lambda_i} (\overline{\mathbf{\varphi}}_g)_i^T \mathbf{K}_g (\overline{\mathbf{\varphi}}_g)_i - (\overline{\mathbf{\varphi}}_g)_i^T \mathbf{M}_g (\overline{\mathbf{\varphi}}_g)_i - \frac{1}{\lambda_i} (\delta \mathbf{\varphi})_i^T \mathbf{K}_g (\delta \mathbf{\varphi})_i + (\delta \mathbf{\varphi})_i^T \mathbf{M}_g (\delta \mathbf{\varphi})_i = 0$$

Four scalar terms

The approximated global eigenvector using the enhanced transformation matrix

$$(\overline{\mathbf{\phi}}_g)_i = \overline{\mathbf{T}}_1 (\overline{\mathbf{\phi}}_p)_i, \quad \overline{\mathbf{T}}_1 = \overline{\mathbf{T}}_0 + \overline{\mathbf{T}}_r$$

Specific derivation

$$\Rightarrow \frac{1}{\lambda_{i}} (\overline{\mathbf{\varphi}}_{p})_{i}^{T} [\mathbf{T}_{0} + \mathbf{T}_{r}]^{T} \mathbf{K}_{g} [\mathbf{T}_{0} + \mathbf{T}_{r}] (\overline{\mathbf{\varphi}}_{p})_{i} - (\overline{\mathbf{\varphi}}_{p})_{i}^{T} [\mathbf{T}_{0} + \mathbf{T}_{r}]^{T} \mathbf{M}_{g} [\mathbf{T}_{0} + \mathbf{T}_{r}] (\overline{\mathbf{\varphi}}_{p})_{i} - \frac{1}{\lambda_{i}} (\delta \mathbf{\varphi})_{i}^{T} [\mathbf{K}_{g} - \lambda_{i} \mathbf{M}_{g}] (\delta \mathbf{\varphi})_{i} = 0$$

$$(\overline{\mathbf{\varphi}}_{p})_{i}^{T} \mathbf{T}_{0}^{T} \mathbf{M}_{g} \mathbf{T}_{0} (\overline{\mathbf{\varphi}}_{p})_{i} = (\overline{\mathbf{\varphi}}_{p})_{i}^{T} \overline{\mathbf{M}}_{p} (\overline{\mathbf{\varphi}}_{p})_{i} = \delta_{ij}$$

$$(\overline{\mathbf{\varphi}}_{p})_{i}^{T} \mathbf{T}_{0}^{T} \mathbf{K}_{g} \mathbf{T}_{0} (\overline{\mathbf{\varphi}}_{p})_{i} = (\overline{\mathbf{\varphi}}_{p})_{i}^{T} \overline{\mathbf{K}}_{p} (\overline{\mathbf{\varphi}}_{p})_{i} = \overline{\lambda}_{j} \delta_{ij}$$

Using mass-orthonormality and stiffness-orthogonality conditions

$$\stackrel{\overline{\lambda}_{i}}{\lambda_{i}} - 1 = 2(\overline{\varphi}_{p})_{i}^{T} \mathbf{T}_{0}^{T} \left[\mathbf{M}_{g} - \frac{1}{\lambda_{i}} \mathbf{K}_{g} \right] \mathbf{T}_{r} (\overline{\varphi}_{p})_{i} + (\overline{\varphi}_{p})_{i}^{T} \mathbf{T}_{r}^{T} \left[\mathbf{M}_{g} - \frac{1}{\lambda_{i}} \mathbf{K}_{g} \right] \mathbf{T}_{r} (\overline{\varphi}_{p})_{i}$$
Relative eigenvalue error
$$+ \frac{1}{\lambda_{i}} (\delta \varphi)_{i}^{T} \left[\mathbf{K}_{g} - \lambda_{i} \mathbf{M}_{g} \right] (\delta \varphi)_{i}$$

This equation has two unknowns: λ_i , $(\delta \varphi)_i$

Specific derivation

Using assumptions:
$$(\boldsymbol{\varphi}_g)_i \approx (\overline{\boldsymbol{\varphi}}_g)_i$$

 $\frac{1}{\lambda_i} (\overline{\boldsymbol{\varphi}}_g)_i^T \mathbf{K}_g (\overline{\boldsymbol{\varphi}}_g)_i \approx 1 \text{ and } \frac{1}{\lambda_i} (\overline{\boldsymbol{\varphi}}_g)_i^T \mathbf{K}_g (\overline{\boldsymbol{\varphi}}_g)_i \gg \frac{1}{\lambda_i} (\delta \boldsymbol{\varphi})_i^T \mathbf{K}_g (\delta \boldsymbol{\varphi})_i$
 $(\overline{\boldsymbol{\varphi}}_g)_i^T \mathbf{M}_g (\overline{\boldsymbol{\varphi}}_g)_i \approx 1 \text{ and } (\overline{\boldsymbol{\varphi}}_g)_i^T \mathbf{M}_g (\overline{\boldsymbol{\varphi}}_g)_i \gg (\delta \boldsymbol{\varphi})_i^T \mathbf{M}_g (\delta \boldsymbol{\varphi})_i$

$$\rightarrow \frac{\overline{\lambda}_i}{\lambda_i} - 1 = 2(\overline{\mathbf{\varphi}}_p)_i^T \mathbf{T}_0^T \left[\mathbf{M}_g - \frac{1}{\lambda_i} \mathbf{K}_g \right] \mathbf{T}_r (\overline{\mathbf{\varphi}}_p)_i + (\overline{\mathbf{\varphi}}_p)_i^T \mathbf{T}_r^T \left[\mathbf{M}_g - \frac{1}{\lambda_i} \mathbf{K}_g \right] \mathbf{T}_r (\overline{\mathbf{\varphi}}_p)_i \\ + \frac{1}{\lambda_i} (\delta \mathbf{\varphi})_i^T \left[\mathbf{K}_g - \lambda_i \mathbf{M}_g \right] (\delta \mathbf{\varphi})_i$$

$$\therefore \quad \frac{\overline{\lambda_i}}{\lambda_i} - 1 \approx 2(\overline{\boldsymbol{\varphi}}_p)_i^T \mathbf{T}_0^T \left[\mathbf{M}_g - \frac{1}{\lambda_i} \mathbf{K}_g \right] \mathbf{T}_r (\overline{\boldsymbol{\varphi}}_p)_i + (\overline{\boldsymbol{\varphi}}_p)_i^T \mathbf{T}_r^T \left[\mathbf{M}_g - \frac{1}{\lambda_i} \mathbf{K}_g \right] \mathbf{T}_r (\overline{\boldsymbol{\varphi}}_p)_i$$

Another specific derivation

The approximated global eigenvector can be represented by a linear combination of the exact global eigenvectors:

$$(\overline{\mathbf{\phi}}_g)_i = \sum_{k=1}^{N_g} \alpha_k (\mathbf{\phi}_g)_k$$

Using assumptions: $(\mathbf{\phi}_g)_i \approx (\overline{\mathbf{\phi}}_g)_i$

$$\alpha_i \approx 1 \quad |\alpha_i| \gg |\alpha_i - 1|, \ |\alpha_1|, \ |\alpha_2| \cdots |\alpha_{i-1}|, \ |\alpha_{i+1}|, \cdots, |\alpha_{N_g}|$$

This assumption can be numerically proved.

$$\widehat{\boldsymbol{\lambda}}_{i} - 1 = 2(\overline{\boldsymbol{\varphi}}_{p})_{i}^{T} \overline{\mathbf{T}}_{0}^{T} \left[\mathbf{M}_{g} - \frac{1}{\lambda_{i}} \mathbf{K}_{g} \right] \overline{\mathbf{T}}_{r} (\overline{\boldsymbol{\varphi}}_{p})_{i} \\ + (\overline{\boldsymbol{\varphi}}_{p})_{i}^{T} \overline{\mathbf{T}}_{r}^{T} \left[\mathbf{M}_{g} - \frac{1}{\lambda_{i}} \mathbf{K}_{g} \right] \overline{\mathbf{T}}_{r} (\overline{\boldsymbol{\varphi}}_{p})_{i} + \left[\sum_{\substack{k=1\\k\neq i}}^{N_{g}} \alpha_{k}^{2} \left(\frac{\lambda_{k}}{\lambda_{i}} - 1 \right) \right]$$

$$\frac{\overline{\lambda}_{i}}{\lambda_{i}} - 1 \approx 2(\overline{\mathbf{\varphi}}_{p})_{i}^{T} \mathbf{T}_{0}^{T} \left[\mathbf{M}_{g} - \frac{1}{\langle \overline{\lambda}_{i} \rangle} \mathbf{K}_{g} \right] \mathbf{T}_{r} (\overline{\mathbf{\varphi}}_{p})_{i} + (\overline{\mathbf{\varphi}}_{p})_{i}^{T} \mathbf{T}_{r}^{T} \left[\mathbf{M}_{g} - \frac{1}{\langle \overline{\lambda}_{i} \rangle} \mathbf{K}_{g} \right] \mathbf{T}_{r} (\overline{\mathbf{\varphi}}_{p})_{i}$$

$$\cdot \quad \mu_i = 2(\overline{\mathbf{\varphi}}_p)_i^T \overline{\mathbf{T}}_0^T \left[\mathbf{M}_g - \frac{1}{\overline{\lambda}_i} \mathbf{K}_g \right] \overline{\mathbf{T}}_r (\overline{\mathbf{\varphi}}_p)_i + (\overline{\mathbf{\varphi}}_p)_i^T \overline{\mathbf{T}}_r^T \left[\mathbf{M}_g - \frac{1}{\overline{\lambda}_i} \mathbf{K}_g \right] \overline{\mathbf{T}}_r (\overline{\mathbf{\varphi}}_p)_i$$

General form of error estimator

Note : Application key of this error estimator is how to derive the enhanced transformation matrix!

Numerical test in the CB method

Numerical test in the CB method

<Shaft-shaft interaction

problem>

Verification of performance

Computational cost

Table 6: Computation times for the exact and estimated relative eigenvalue errors.										
	DO	Fs	Computation time (sec)							
				Estimated	Estimated					
	N_{g}	\bar{N}_p	Exact	using Eq. 43	using Eq. 41					
-		5		(Elssel and Voss)	(Present)					
Rectangular plate	973	36	2 160F 01	1 548E 05	1.036F.03					
(Freq. cut-off, $N_d = 15$)	210	0 00	2.10012-01	1.0401-00	1.55012-05					
Shaft-shaft interaction	2,775	90	3.735E+00	1.897 E-05	2.186E-02					
(Freq. cut-off, $N_d = 20$)										
Hemisphere shell	4,200 425	$1.799 \mathbf{F} + 01$	2 507E 05	4 799E 09						
(Freq. cut-off, $N_d = 25$)		420	1.722E+01	5.597E-05	4.722E-02					
Stiffened plate	2 251	192	5141E+00	0.121F 06	2 412E 02					
(Freq. cut-off, $N_d = 25$)	5,551	423	0.141L+00	9.151E-00	2.415E-02					

$\xi_j = \frac{\bar{\lambda}_i}{\lambda_i} - 1$

Verification of computational efficiency

✤ Numerical example in Guyan reduction

✤ Numerical example in Guyan reduction

> Shift and invert spectral transform

✤ Numerical example in Guyan reduction

Distorted mesh

- 1. We developed the general error estimator, and it employed in CB, AMLS, F-CMS methods and Guyan reduction.
- 2. This concept can be applied for other model reduction methods.
- **3.** Error estimators of enhanced methods might be developed.

JG Kim, GH Lee, PS Lee. Estimating relative eigenvalue errors in the Craig-Bampton method, Computers and Structures, 139 (2014) 54-64.

JG Kim, PS Lee. An accurate error estimator for Guyan reduction, Computer Methods in Applied Mechanics and Engineering, in press.

JG Kim, PS Lee. An error estimation method for the flexibility-based component mode synthesis method, AIAA journal, submitted.

SH Boo, JG Kim and PS Lee. An error estimator for the automated multi-level substructuring method, International Journal for Numerical Methods in Engineering, in preparation (in May).

Topic 3. Mode selection method for CMS methods

Problem and key idea

Problem : What kinds of substructural modes / DOFs might be selected?

Related researches

- ➢ Frequency cut-off
 - : Hurty (1967), Collins et al. (1972), Craig and Chang (1977), Yang et al. (2005)
- Interface modal contribution based method
 - : Kammer and Triller (1994, 1996), Barbone et al. (2003), Givoli et al. (2004),

Park and Park (2004), Liao et al. (2007)

Limitation of interface mode based selection

Still, frequency cut-off is selected .

Limitation of frequency cut-off

Lower global mode: Lower substructural modes are important.

Limitation of frequency cut-off

Sometimes, higher substructural modes are more significant.

Key idea: using eigenvector relation between substructural and global structure!

Eigenvector relation in the CB method

> Approximated global eigenvector matrix in the CB method

$$\overline{\mathbf{\Phi}}_{g} = \overline{\mathbf{T}}_{0} \overline{\mathbf{\Phi}}_{p}, \quad \overline{\mathbf{T}}_{0} = \begin{bmatrix} \mathbf{\Phi}_{d} & -\mathbf{K}_{s}^{-1} \mathbf{K}_{c} \\ \mathbf{0} & \mathbf{I}_{b} \end{bmatrix}, \quad \overline{\mathbf{\Phi}}_{p} = \begin{bmatrix} \overline{\mathbf{\Phi}}_{g_{d}} \\ \overline{\mathbf{\Phi}}_{u_{b}} \end{bmatrix}$$

Substructural eigenvector matrix (dominant mode only) Interface constraint mode

$$\mathbf{\Phi}_{g} \approx \underline{\bar{\mathbf{\Phi}}_{g}} = \left[\begin{array}{c} \mathbf{\Phi}_{d} \bar{\mathbf{\Phi}}_{q_{d}} - \mathbf{K}_{s}^{-1} \mathbf{K}_{c} \bar{\mathbf{\Phi}}_{u_{b}} \\ \bar{\mathbf{\Phi}}_{u_{b}} \end{array} \right]$$

$$\bar{\mathbf{\Phi}}_g \xleftarrow{\bar{\mathbf{\Phi}}_{q_d}}{\overleftarrow{\mathbf{\Phi}}_d} \rightarrow \mathbf{\Phi}_d$$

: $\overline{\Phi}_{q_d}$ shows the relation between the global and substructural modes.

Calculating modal contributions

$$C_i^{(k)} = \sqrt{\sum_{j=1}^{\bar{N}_p} \left[(\bar{\phi}_{q_d}^{(k)})_{ij} \right]^2},$$

 $i = 1, 2, ..., N_d^{(k)}, j = 1, 2, ..., \bar{N}_p \text{ and } k = 1, 2, ..., N_s$

It is a solution of the reduced eigenvalue problem using CMS. Therefore, the proposed error estimation method requires the intermediate model.

New mode selection method

> The proposed mode selection method

$$C_{i}^{(k)} = \sqrt{\sum_{j=1}^{\tilde{N}_{p}} \left[\kappa_{j}(\tilde{\phi}_{qd}^{(k)})_{ij}\right]^{2}},$$

 $i = 1, 2, ..., \tilde{N}_{d}^{(k)}, \ j = 1, 2, ..., \tilde{N}_{p} \text{ and } k = 1, 2, ..., N_{s}.$
 $\kappa_{j} = 1 \text{ for } N_{t}^{\mathrm{L}} \leq j \leq N_{t}^{\mathrm{U}}, \text{ otherwise } \kappa_{j} = 0$

 κ_{j} : weighting factor, N_{t}^{L} : lower limit of number of the target global mode, N_{t}^{U} : Upper limit of number of the target global mode

Mode selection procedure

Step 1. Initial preparation

- (a) \mathbf{M}_a and \mathbf{K}_a are given.
- (b) The range of the target global modes is determined by $\omega_t^{\rm L} \sim \omega_t^{\rm U}$: $N_t^{\rm L} \sim N_t^{\rm U}$.
- (c) \tilde{N}_d and \bar{N}_d are determined by $\tilde{\omega}_d$ and $\bar{\omega}_d$, respectively: $\tilde{\omega}_d = \gamma \beta \omega_t^{\mathrm{U}}, \, \bar{\omega}_d = \beta \omega_t^{\mathrm{U}},$
- Step 2. Construction of the intermediate reduced model
 - (a) The substructural eigenvalue problems are solved

- $[\mathbf{K}_{s}^{(k)} \lambda_{j}^{(k)} \mathbf{M}_{s}^{(k)}](\boldsymbol{\phi}^{(k)})_{j} = \mathbf{0}, \text{ for } k = 1, 2, ..., N_{s}.$ (b) The dominant substructural modes are selected by the frequency cut-off mode selection method.
- (c) The intermediate reduced model is constructed with \mathbf{M}_p and \mathbf{K}_p .
- Step 3. Construction of the final reduced model
 - (a) The intermediate eigenvalue problem is solved and $\tilde{\Phi}_{q_d}$ is found: $\tilde{\mathbf{K}}_p(\tilde{\boldsymbol{\phi}})_j = \tilde{\lambda}_j \tilde{\mathbf{M}}_p(\tilde{\boldsymbol{\phi}})_j, \quad j = 1, 2, ..., \tilde{N}_p.$
 - (b) The contributions of the substructural modes to the target global modes are calculated: $C_i^{(k)}$ in Equation 21.
 - (c) The dominant substructural modes are selected in order of $C_i^{(k)}$.
 - (d) The final reduced model is constructed with $\bar{\mathbf{M}}_p$ and $\bar{\mathbf{K}}_p$.

Eigenvector relation in the F-CMS method

Note that, when we define the eigenvector relation between the global and reduced models, the proposed mode selection method can be also employed for other CMS methods.

> Approximated global eigenvector matrix in the F-CMS method

$$\mathbf{\Phi}_{g} \approx \mathbf{\bar{\Phi}}_{g} = \mathbf{L}\mathbf{\bar{\Phi}}_{u_{b}} = \mathbf{\Phi}_{d}\mathbf{\bar{\Phi}}_{q_{d}} + \mathbf{R}_{s}\mathbf{\bar{\Phi}}_{\alpha_{s}} - \mathbf{\hat{F}}_{r}\mathbf{B}\mathbf{\bar{\Phi}}_{\lambda_{\ell}}$$

Numerical examples

✤ Numerical examples

Ocean Systems Engineering

✤ Numerical examples

Accuracy control strategy

$$C_{i}^{(k)} = \sqrt{\sum_{j=1}^{\tilde{N}_{p}} \left[\kappa_{j}(\tilde{\phi}_{q_{d}}^{(k)})_{ij}\right]^{2}},$$

 $i = 1, 2, ..., \tilde{N}_{d}^{(k)}, \ j = 1, 2, ..., \tilde{N}_{p} \text{ and } k = 1, 2, ..., N_{s}.$
 $\kappa_{j} = 1 \text{ for } N_{t}^{\mathrm{L}} \leq j \leq N_{t}^{\mathrm{U}}, \text{ otherwise } \kappa_{j} = 0$

- 1. A general mode selection method for CMS methods was proposed using eigenvector relation between global and substructural modes.
- 2. Error control strategy for locally fluctuated eigenvalue error was also proposed.
- **3.** Efficient model reduction algorithm could be developed by combinations of the proposed error estimator and the existing mode/DOFs selection methods.

KC Park, JG Kim, PS Lee. A mode selection criterion based on flexibility approach in component mode synthesis, Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, 2012.

JG Kim, PS Lee, KC Park. A mode selection method for structural component mode synthesis, International Journal for Numerical Methods in Engineering, submitted.

Conclusions

- 1. We proposed two enhanced CMS method: the enhanced CB and AMLS method.
- 2. We developed the error estimator, and it employed in CB, AMLS, F-CMS methods and Guyan reduction.
- **3.** A mode selection method for CMS methods was proposed using eigenvector relation between global and substructural modes.
- 4. Interface reduction method for the F-CMS method was also developed (not presented here).

Extension of model reduction

✤ 1. Reduced order modeling

- \succ Research trend
 - Crack, multi-scale, multi-physics (FSI), transient analysis....etc.

✤ 2. Eigenvalue problem solver

- Representative solution method of the eigenvalue problem
 - QR algorithm
 - Householder transformation
 - Subspace iteration
 - Lanczos algorithm
- ➢ Recently research
 - CMS + subspace iteration : Yin, Voss and Chen (2013), ADINA letter (2013)
- ≻ Idea
 - CMS + error estimation method = Iterative CMS method

Let us develop more efficient method of eigenvalue problem than previous methods.

✤ 3. Protein dynamics

1. Elastic network model (Jeong et al. 2006)

2. Finite element model (M. Bathe 2007)

 ✓ Objective: reducing the computational cost

Normal mode analysis (= Eigenvalue problem)

Next step?

✤ 3. Protein dynamics: related researches

나성수 교수, 고려대학교 기계공학과 엄길호 교수, 성균관대학교 체육학과 (전 KIST, Microsystem Research Center)

✤ 3. Protein dynamics: error estimation

Figure 4. Overlap between normal modes obtained from ENM and CMS for hemoglobin in (a) close form (pdb: 1a3n) and (b) open form (pdb: 1bbb). Spanning coefficient between normal modes computed from ENM and CMS for hemoglobin in (c) close form and (d) open form. It is shown that low-frequency normal modes estimated from CMS are highly correlated with those from ENM.

$$\mathbf{v}_i^{ENM} \cdot \mathbf{v}_j^{CMS}$$

Figure 4

Correlated fluctuations of α-carbon atoms computed for T4 hysozyme using (a) ATM-NMA; (b) the RTB procedure; (c) the FEM; and for G-actin using (d) ATM-NMA, (e) the RTB procedure; and (f) the FEM. Figures are rendered using DPLOT version 2.1.1.9. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

