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1. Introduction



Computational cost is still an important issue.
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1) M. J. Turner et al., Stiffness and deflection analysis of complex structures, J. Aero. Sci., 1956.
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Projection-based model reduction method

Derive the low-dimensional approximation.

Step 1 of 3. Extract a low-dimensional basis matrix T.

K |[U=R = T

Step 2 of 3. Project the original model onto the low-dimensional subspace.

TT TT

K T | =K R =R

Step 3 of 3. Compute the approximate solution.

U
K|U=R === U

U

T
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Problems of interest

= Projection procedure

T’ T’
K T|=|K R| =

el

1. Linear model reduction (topic 1)

How to perform the projection in parallel?

Task 1 CPU

T/ KT ™==p | Task2 | =) CPU ) I_(

2. Nonlinear model reduction (topic 2)
How to calculate the nonlinear term in each time step?
T'K(U)T="K('U) == ‘K('U)x'K(U)

Approximate
nonlinear term 6/44



Topic 1
2. Load balancing algorithm

for the parallel AMLS method

Automated multilevel substructuring (AMLS)

7/44
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AMLS method

Step 2 of 4. Recursively transform the substructures.
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constraint mode eigen mode I

2. Transform the substructures.

K=T'KT ,K M=T'"MT with T=T"T?®...T") o/44



AMLS method

Step 3 of 4. Solve the reduced eigenvalue problem.

1. Construct the reduced model.

_Wl _ - _
K=T'KT = \\/ , M=T'MT = 1 M,
Sym. .
L Wn_ | I_
I_( : Reduced stiffness matrix
1\_/I : Reduced mass matrix
T= Hn T® : AMLS transformation matrix
i=1
T(’) : Transformation matrix for the ith substructure

2. Solve the reduced eigenvalue problem.
Solve KQ =MQA

QQ : Reduced eigenvector matrix

A : Reduced eigenvalue matrix 10/44



AMLS method

Step 4 of 4. Compute approximate solution by back transformation.

Approximate eigensolutions: A x A, ®~®=TQ

: Eigenvalue matrix for the original model
. Eigenvector matrix for the original model

: Reduced eigenvalue matrix

S > e >

: Approximate eigenvalue matrix

(T) _ TQ _ T(l)T(2) L T(n)Q

Order of matrix multiplications is from right to left

11/44



Previous parallel AMLS method

= Parallel processing of AMLS method

u ® Being processed node 1 s < —
SIAN T D \° I
Thread 0 T A P —
sip4 T3 I
] time g
Thread 1 Thread 0
sAN /! To I
R T ED”,_<°
Thread 2 Thread 0 T2 A o— | Work |
sy T3 A | Wait
— Thread 2 time
Thread 3

Load imbalance decreases the parallel efficiency.

= Load imbalance is caused by

- Increase of idle threads

- Time imbalance in substructure transformations

12/44



Related studies

» Escaig et al. (1994)
- Multilevel domain decomposition method for parallel static condensation
- Large interface problem

= Kurc and Will (2007)
- lterative repartitioining algorithm for condensation of substructures
- Bottleneck caused by the interface problem

= Kaplan (2001) / Bennighof and Lehoucq (2004)

- Automated multilevel substructuring method (AMLS) Initial Substructures | Al Substructures w/
Scratch-Remap

=  Kim (2004)
- Parallel eigensolver for the reduced model obtained by the AMLS method
- No parallelization of the AMLS transformation

= Elssel and Voss (2004)
- Parallel version of the AMLS method
- Load balancing problem

* Yang et al. (2011)
- Multilevel approach for parallel implicit dynamic analysis
- The maximum allowed imbalance among substructures set by a static load balancer
- No significant improvement of scalability

* Yinetal. (2013)
- AMLS with the subspace iteration method & implicit back transformation algorithm

(T) — TQ — T(l)T(2) . T(n:Q (T) — TQ — I(I)T(z) . T(n)Q
Original Yin et al. 13/44




Proposed load balancing algorithm

= Proposed algorithm

Coarse-grained Fine-grained
ﬁ \ ® Being processed node 541 algorithm parallel algorithm
Thread 0
Thread 1 Thread 1
Thread 0
ﬁ / — Time ——» — Time ——»
Thread 2 \ Thread 0
Thread 1 - Tasks
ﬁ / Thread 2
Thread 3 Thread 2 Thread 3 — : Synchronization
Thread 3

Reduce the number of idle threads.

= Two-types of granularity
- Coarse-grained parallelism: transformation and back transformation procedures are split.

- Fine-grained parallelism: transformation of each substructure is split.

14/44



Proposed load balancing algorithm

= Coarse-grained parallel algorithm
- Each thread transforms a substructure cluster or a shared substructure.

cutoff level
------------- L. =min{L +5,L }
e @ Shared substructure
g\ ;R ;R ;A ;A ;R . /2. @ Distributed substructure
/':"' V// y// ‘_‘\“‘ /"‘,' y// /// ‘_““‘ /’/' y// V// ‘_““‘ ""/' V// y// \“‘\ ""/' % /// “““‘ /",' /// /// “‘.“‘ ""',' /// /// “““‘ ""',' /// /// ‘\““ 'l'.“‘ S u bstru Ctu re CI uste r

= Effect of the cutoff level

minfG)} 1o

for i,j e N
Q) /

100 - Normalized parallel performance:

s t(7) : elapsed time with L, =min{L +i,L }
L, =min{k eZ:log, N, <k}
0.90
N, : Number of threads used

0.85 .
LS : Maximum level of substructures

Normalized parallel performance

080 4+—7—— 7, - Set of all integers
i 15/44




Proposed load balancing algorithm

= Fine-grained parallel algorithm
- Threads transform a shared substructure in parallel.

Factorize the stiffness matrix Factorize the stiffness matrix
Solve the eigenvalue problem Parallel

Solve the eigenvalue problem

region

‘_

Construct the constraint mode matrices
Construct the constraint mode matrices

¢ ] Task Team of
queue threads

Update the ancestor mass matrices Enqueue Dequeue
Update the ancestor stiffness matrices Update the ancestor mass matrices Para.llel
¢ region

Update the ancestor stiffness matrices

Update the descendant mass matrices

¢ Update the descendant mass matrices
IsT
necessary? Be ves Compute the
IsT transformation matrix
*Yes necessary?
Do nothing
No

Compute the transformation matrix

- ] Task Team of
v queue threads

End Enqueue Dequeue

v

Serial algorithm Fine-grained parallel algorithm 16/44




Numerical examples

= Evaluation
- Speed-up factor for the fixed problem size (strong scaling): Z, / .
- 1. : wall clock time when using i threads
- Number of threads used: 2, 4, 8, 16, 32

= Previous method
- Only coarse-grained parallel algorithm
- Number of substructure clusters = number of threads used

= Proposed method
- An algorithm combining coarse-grained and fined-grained parallel algorithms
- Number of substructure clusters set by the cutoff level L, =min{L +5,L }

17/44



Numerical example (1)

Effect of the number of DOFs of the original model

J = Structured meshes (2N x N)

X
1m

Z+—]

Four-node shell finite elements

» Boundary condition

2m ) Four-edges are simply supported.

z = 150 eigensolutions sought

Mesh A : 256x128 mesh, 196614 DOFs  — 1999 DOFs using 511 substructures
Mesh B : 512x256 mesh, 786483 DOFs — 3406 DOFs using 2047 substructures
Mesh C : 1024x512 mesh, 3145734 DOFs — 14706 DOFs using 8191 substructures

18/44



Numerical example (1)

32

32 +

16 16

Speed-up factor
[o:]

Speed-up factor
(o]

21 Transformation 2 Back transformation
2 4 8 16 32 2 4 8 16 32
Number of threads Number of threads

32

—{ — Previous (N = 128, 196614 DOFs)

—)— Previous (N = 256, 786438 DOFs)

16

—>— Previous (N = 512, 3145734 DOFs)

1

More efficient ad

—J}— Proposed (N = 128, 196614 DOFs)

Speed-up factor
oo
1

—&@)— Proposed (N = 256, 786438 DOFs)

—@— Proposed (N = 512, 3145734 DOFs)

Number of threads

—)

More threads 19/44




Numerical example (2)

Effect of the number of substructures

= Mesh constructed by ANSYS
three-node shell finite elements
& four-node shell finite elements
& four-node tetrahedral elements
* No boundary condition

= 300 eigensolutions sought

= Partition A: 3688653 DOFs — 6696 DOFs using 2047 substructures
= Partition B: 3688653 DOFs — 20096 DOFs using 15747 substructures

20/44



Numerical example (2)

32

32

16 16

Speed-up factor
o]
Speed-up factor
o]

24 Transformation 2 Back transformation
2 4 8 16 32 2 4 8 16 32
Number of threads Number of threads

32 4
—{}=— Previous (2047 substructures)
(= Previous (15747 substructures)

—— Proposed (2047 substructures)
4 —@— Proposed (15747 substructures)

16

Speed-up factor
[eo]
1

2 Total

T T T T

2 4 8 16 32
Number of threads

21/44



Numerical example (3)

Effect of the number of DOFs of the reduced model

» Mesh constructed by ANSYS
Three-node shell finite elements
& four-node shell finite elements

= No boundary condition

= Two cases of reduced models

= 600 eigensolutions sought

= Case A: 8462700 DOFs — 38489 DOFs using 32767 substructures
= Case B: 8462700 DOFs — 45449 DOFs using 32767 substructures

22/44



Speed-up factor

324

Numerical example (3)

32 4 32 4

16 16

Speed-up factor
Speed-up factor

Transformation _ Back transformation Total

N -

T T T T T T T T T T T T T
2 4 8 16 32 1 4 8 16 32 1 2 4 8 16 32
Number of threads Number of threads Number of threads

—{}— Previous (Case A) —— Proposed (Case A)
—QO=— Previous (Case B)  —@— Proposed (Case B)

In the previous method using 32 threads,

- 32 substructure clusters have the same number of distributed substructures.
- Each substructure cluster has approximately the same number of DOFs: 262k—264Kk.

- The relative difference between the min. and max. DOFs for each cluster is 0.7%.

In the proposed algorithm,

- Significant improvement of the parallel performance is achieved without repartitioning.

23/44



Closure (topic 1)

1. Aload balancing algorithm consisting of two types of granularity for the parallel AMLS
(PAMLS) method has been proposed.

2. In coarse-grained parallelism, the transformation and back transformation procedures

are split into tasks using a given cutoff level.

3. Fine-grained parallelism is used to reduce the idle time for the transformation of shared

substructures.

4. The proposed algorithm significantly improved the efficiency of the previous PAMLS

method without repartitioning.

24/44



Topic 2

3. Coarse mesh projection

for nonlinear model reduction

25/44



Proper orthogonal decomposition (POD)

Step 1 of 4. Collect snapshots of parametric configurations.

- (implicit) static analysis ‘KU = "R -'F
- Implicit dynamic analysis MU + ‘KU = "R —'F ﬁ Solve N(U)=0
- Explicit dynamic analysis MU = ‘R—'F

M e R™ : time-independent mass matrix ‘F e R” :internal force vector (nonlinear term)

'"ReR"” :external load vector at time ¢ 'K e R™" : stiffness matrix (nonlinear term)

Step 2 of 4. Compute the low-dimensional basis vectors.

Choose 71, basis vectors

A T n, 2
i ) —ol—| 2.9 > tol (n, < n)
3 ¥ = Xhet
Snapshot - '\ . ~
=|(U U o = |® ()]
mav, X= U Ul 1B = oo | N —or — q T
0
IS
=}
v €
—
n, snapshots Singular value decomposition of X — R T=[®, &, - d)nr]c]R”X”’



Proper orthogonal decomposition (POD)

Step 3 of 4. Generate the reduced model.

U~U, =TU

N(U)=0 T'N(U,)=0

n X 1N original model n.Xn, reduced model

Step 4 of 4. Solve the reduced model T'N(U,)=0.

Computing the nonlinear terms depends on the original dimension

1. Lift Uc R™ back to the original high-dimensional space U, c R".
2. Evaluate nonlinear terms such as ‘K <« R™ and ‘'F c R".

3. Left-multiply by T" as T'N(U,)=0.

27/44



Related studies

= Everson and Sirovich (1995)
- Afirst sparse sampling scheme with POD modes called gappy POD
- Random sampling points

F F eR” : Face vector
_ =EcR™™ : POD basis vectors
F == FecR™ : POD coefficient vector
P’ —«R"™™ : Selection matrix

Original Sapllng Reconstruction
points

P'F=P'=EF # F~(P'Z)'P'F # F~Z(P'E) P'F

» Chaturantabut and Sorensen (2010)
- Nonlinear model reduction vis discrete empirical interpolation method (DEIM)
- Sampling point selection algorithm with a greedy approach
- Instability in certain situations

KN
= = SN =
: —E, . — =, 25l . . — =,
081 Bl 06 4 Ir \\
ol |
o7l ] 0l --= Error | --- Error
; '

06 g 02
05+ g # 0

04+ g 02
03} g 04

02r b -06

01r 1 -08r

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

O Selected points ® Current point 2g/44



Related studies

= Peherstorfer et al. (2014)
- Localized variant of the DEIM (LDEIM)
- Partitioned snapshots

= Drmac and Gugercin (2016)
- DEIM using QR factorization with column pivoting (QDEIM)
- Sharper error bound for the DEIM projection error
- Instability in certain situations

T
1|)1T PlzT I!,,T =1Q R ma)p P=[P' P, - P;;]T
| | | Selection matrix

[x]

Pivoting matrix

= Peherstorfer et al. (2020)
- QDEIM with a deterministic oversampling algorithm (GappyPOD+E)
- Additional sampling points that minimize ||(P'E)* |, in F~Z(P'E)"P’F

= Radermacher and Reese (2014) / Corigliano et al. (2015)
- Selective POD method by adaptive substructuring.
- Limited application of local nonlinear problems

= Baiges et al. (2019)

- A coarse mesh based reduced-order modeling via artificial neural networks
29/44



Proposed nonlinear model reduction

Step 1 of 4. Compute a low-dimensional basis.

1. Extract the POD basis vectors from the original model.

e r———— q

T
|EEREEEEE

T=[® ®, - ® JcR™

POD basis vectors for the original model

2. Compute the coarsened POD basis vectors using finite element interpolation.

= |

— ol

POD basis vectors for the original model Coarsened POD basis vectors

Finite element interpolation for a g-node element

WA

h,(&,,5,,6;) : shape functions with the natural coordinates

@, : corresponding nodal value of T

N

¢, : ith nodal value of T 30/44



Proposed nonlinear model reduction

Step 2 of 4. Find the map between the coarse mesh model and the original model

&
_ - l

&
, i

[ ]
a \
> X,

~L \

® Quadrature point
Fine elements Coarse element

N ey

Step 3 of 4. Reduce the coarse mesh model using the coarsened POD bases T.

U~U,=TU
N(U)=0 T'N(U,_,U,)=0
71X 1 coarse mesh model n.XxXn. reduced system
Ua : Approximate solution for the original model

Ua

: Approximate solution for the coarse mesh model

31/44



Proposed nonlinear model reduction

Step 4 of 4. Solve the reduced model

1. Calculate the approximate solution for the original model by assuming U~U
U~U — U=TU
U : Reduced solution for the coarse mesh model
[_J .

T : POD basis vectors for the original model
Reduced solution for the original model

U : Solution for the original model

2. Correct the coarse mesh model

&,
_.~ Correction
R ek s ‘ For the mth element,
. WY ° * tfa(m) t 9 (m)NT t o(m) 7077 (m)
F =, (B Smd Y
/
& A
X, , X g (m) _ 1R (m) (m) ty(m) (m) t q(m) (m)
: .‘ e/ K _J‘OI}(M(BU.)CUHOB + NI 8md Y
/
> X T X, ’
= - \
] |

Quantities computed on the original model
® Quadrature point

Fine elements Coarse element

32/44



Proposed nonlinear model reduction

Discrete empirical interpolation Coarse mesh projection

1. T and = are generated. 1. T and ’f are generated.

2. T'N(U,) =0 is solved. 2. TTﬁ(Ua, ﬁa) =0 is solved.

3. Nonlinear terms are evaluated on 3. Nonlinear terms are evaluated on the

some elements of the original model. coarse mesh model.

S

||
||

|

|

L1
-\ P
\\\\\\r:ﬁ

!
4. Nonlinear terms are approximated. 4. Coarse mesh model is corrected
using the approximate solution.
T : POD basis vectors for the displacement ’i‘ : Coarsened POD basis vectors

= : POD basis vectors for the internal force 33/44



Numerical example (1)

= 2D column problem (geometrically nonlinear static analysis)
T Mesh A Mesh B

- A ‘ ‘

Z

NN DEIM Proposed DEIM Proposed
Original model: 10240 elements

VAN

= Number of snapshots: 84
= DOFs: 21120 DOFs — 5 DOFs (i.e. 5 POD basis vectors are used.)
= Number of elements used for evaluating nonlinear terms: Mesh A: 10

Mesh B: 42 34/44



Numerical example (1)

= Load-displacement curves (evaluation parameter = snapshot parameter)

Mesh A

(10 elements)

Mesh B

(42 elements)

0.0 1

0.0

—5— I?ropqsed | | |

-12

-10 -8 6 -4 2 0

Vertical displacement

0 1 2 3 4 5 6 7

Horizontal displacement

Load

1.0 1

0.8

0.6

0.4

0.2 1

0.0 +

| —— Reference

1 —e— DEIM

————— Coarse

—&— Propqsed | |

-12

-10 -8 -6 -4 -2 0
Vertical displacement
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Numerical example (2)

= 3D column problem (geometrically nonlinear dynamic analysis)

P 02 T T T T

<§ - Not converged
A A 0 AL
pl— S 02f
: =
3
: » Time &
0.2 1.0 2
Loading profile S .06t
IS Reference
E 08) ---- Coarse
. | — DEIM
2 ; g _1 L
)\ ~ Proposed
X4 %§ 12 I L ! |
X 0 0.2 0.4 0.6 0.8 1

Original model: 8019 elements Time

= Number of snapshots: 710 (2 cases of P=0.25& P =1)
= DOFs: 29700 DOFs — 22 DOFs (i.e. 22 POD basis vectors are used.)
= Number of elements used for evaluating nonlinear terms: 48

= Evaluation: Case of P = 0.625

37/44



Numerical example (3)

= Heterogeneous structure problem (elastic-plastic static analysis)

Matrix = Input parameters
‘ Q () @ Fiber
Q Q Q (O) Void - Young’'s modulus E
‘ ST - Initial yield stress o,

sm 21'rx2) o . - Hardening modulus g
( > Q i U = Material property (isotropic linear hardening)
) Q oo - Matrix: £=704GPa , o, =70 u,MPa  H =14 1,GPa
- Fiber: E=2004GPa, o, =200u4,MPa, H =50uGPa

Orlglnal model: 25825 elements
e  ® Snapshot
= Number of snapshots: 553 (8 cases; red dots) - ® Evaluation
= DOFs: 53323 DOFs — 37 DOFs
= Number of elements used
- Mesh A: 826 (GappyPOD+E) & 805 (proposed)
- Mesh B: 1644 (GappyPOD+E) & 1629 (proposed)

= Evaluation: 20 random cases (blue dots) 08 gg

Lo
Parameter space 38/44



Numerical example (3)

= Relative displacement error ||tU = "U provimation

Mesh A

Mesh B

./

v,

35
50 GappyPOD+E Proposed
- 3.0
40 4 __|_ Min ~ Max
—_ 25+
S m Average <
G 30 - S 20-
5 5
]
= 20 §1.5—
T ©
S =
< I l 1 l Z o]
[ ] [ ] [ ] I
HHOININY N
0- ]
T T T T T T T T T T T T T T T T T T 1 oo‘—T+—"T"T"T"T"TTTTTTTT T
1234567 8 91011121314 151617 181920 1234567 8 91011121314151617 181920
Case number Case number
20
2]
GappyPOD+E 5] Proposed
10 I Min ~ Max 16
< ;] m Average 2"
5 = 1.2
5 2
6 ® 1,0+
2 e
© s T 0.8
« 1 2 6.
2 ] } 0418 [ ] I s T I | ! ! [ ] 1 I
0- 024"+ -
T T T T 0.0

I

T
23

- =

1 I I 1 I 1 1 1 1 I I
56 7 8 91011121314151617 1819 20
Case number

T T T T T T T T T T T T

T T T T T T T
234567 8 91011121314151617181920

Case number
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Closure (topic 2)

2.

The coarse mesh projection method for nonlinear model reduction has been proposed.

A structure is modeled by a coarse mesh model, where its nodes do not need to

coincide with those of the original model.

Nonlinear terms are only computed on the quadrature points of the coarse mesh model.

The proposed method provided more accurate solution than the DEIM and
GappyPOD+E.

40/44



4. Conclusions & future works




1. Effective methods were developed in the projection procedure of linear and

nonlinear model reduction.

2. For linear model reduction, a load balancing algorithm for the parallel AMLS
(PAMLS) method has been proposed.

3. The load balancing algorithm significantly improved the efficiency of the

previous PAMLS method without mesh repartitioning.

4. For nonlinear model reduction, the coarse mesh projection method has been

proposed.

5. The proposed method provided more accurate solutions than the DEIM and

GappyPOD+E.
42/44



= Linear model reduction (topic 1)

- Distributed memory system - Mesh partitioning algorithm

CPU CPU .

CPU CPU ry

. % » Network
CPU CPU .

CPU CPU y

https://fesom.de/technology/libraries/metis/

= Nonlinear model reduction (topic 2)

- Online adaptive model reduction - Error bound & estimation
Initial New
parameters parameters .
Solution Projection error
i Assemble
Original
model
} Reduce Reduced solution
Reduced |Update Adaptive
model reduced Low-dimensional subspace
model P 43/44
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