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1. Introduction



1950s Today

1)

Motivation

1) M. J. Turner et al., Stiffness and deflection analysis of complex structures, J. Aero. Sci., 1956.

Computational cost is still an important issue.
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Projection-based model reduction method

Step 2 of 3. Project the original model onto the low-dimensional subspace.

Step 1 of 3. Extract a low-dimensional basis matrix     .

≈

Step 3 of 3. Compute the approximate solution.

TK U R=

=

R

U

K T

TT TT
RK= =

K R U
U

T

T

Derive the low-dimensional approximation.
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Problems of interest

 Projection procedure

K T

TT
K= R

TT
R =

How to perform the projection in parallel?
1. Linear model reduction (topic 1) 

2. Nonlinear model reduction (topic 2)

How to calculate the nonlinear term in each time step?

TT KT
Task 1

Task 2

…

( ) ( )T t t t t=T K U T K U ( ) ( )t t t t≈K U K U

Approximate 
nonlinear term

CPU

CPU

… K
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2. Load balancing algorithm 
for the parallel AMLS method

Topic 1

Automated multilevel substructuring (AMLS)
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AMLS method

…

Step 1 of 4. Decompose the structure into substructures on multilevel.

=KΦ MΦΛSolve
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AMLS method

Step 2 of 4. Recursively transform the substructures.

11 13

22 23

13 23 33
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 
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K K K

K K K

3

1
2

1. Determine the modes of the substructures.

ii i ii i i=K V M V W1
ij ii ij

−= −Ψ K K
eigen modeconstraint mode

1 13
(1)

 
 =  
  

V Ψ
T I

I

(2)
2 23

 
 =  
  

I
T V Ψ

I

unit displacement
11

2. Transform the substructures.
T=M T MTT=K T KT ( )(1) (2) sn=T T T T, with

33

1 2

3
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AMLS method

Step 3 of 4. Solve the reduced eigenvalue problem.

=KQ MQΛ
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

,

1. Construct the reduced model.

K
M

( )
1

sn i
i=

=∏T T

: Reduced stiffness matrix

( )iT

: Reduced mass matrix

: AMLS transformation matrix

: Transformation matrix for the ith substructure

2. Solve the reduced eigenvalue problem.

Q
Λ

: Reduced eigenvector matrix

: Reduced eigenvalue matrix

Solve
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AMLS method

Step 4 of 4. Compute approximate solution by back transformation.

Approximate eigensolutions: ≈Λ Λ ≈ =Φ Φ TQ,

(1) (2) ( )n= =Φ TQ T T T Q

Order of matrix multiplications is from right to left

Λ
Φ
Λ

: Eigenvalue matrix for the original model

Φ

: Eigenvector matrix for the original model

: Reduced eigenvalue matrix

: Approximate eigenvalue matrix
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Previous parallel AMLS method

- Increase of idle threads

- Time imbalance in substructure transformations

Being processed node

 Load imbalance is caused by

 Parallel processing of AMLS method

Wait
Work

time

T0
T1
T2
T3

time

T0
T1
T2
T3

Load imbalance decreases the parallel efficiency.

12/44



Related studies

 Kim (2004)
- Parallel eigensolver for the reduced model obtained by the AMLS method
- No parallelization of the AMLS transformation

 Yin et al. (2013)
- AMLS with the subspace iteration method & implicit back transformation algorithm

 Escaig et al. (1994)
- Multilevel domain decomposition method for parallel static condensation
- Large interface problem

(1) (2) ( )n= =Φ TQ T T T Q

Original

(1) (2) ( )n= =Φ TQ T T T Q

Yin et al.

 Yang et al. (2011)
- Multilevel approach for parallel implicit dynamic analysis
- The maximum allowed imbalance among substructures set by a static load balancer
- No significant improvement of scalability

 Elssel and Voss (2004)
- Parallel version of the AMLS method
- Load balancing problem

 Kurc and Will (2007)
- Iterative repartitioining algorithm for condensation of substructures
- Bottleneck caused by the interface problem

 Kaplan (2001) / Bennighof and Lehoucq (2004)
- Automated multilevel substructuring method (AMLS)
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Proposed load balancing algorithm

Coarse-grained
parallel algorithm

Fine-grained
parallel algorithm

 Two-types of granularity
- Coarse-grained parallelism: transformation and back transformation procedures are split.

- Fine-grained parallelism: transformation of each substructure is split.

: Synchronization

: Tasks

Reduce the number of idle threads.

Time Time

 Proposed algorithm

Being processed node
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Proposed load balancing algorithm

 Coarse-grained parallel algorithm
- Each thread transforms a substructure cluster or a shared substructure.

: Number of threads used tN

 sL : Maximum level of substructures



: Set of all integers

cutoff level
min{ 5, }c t sL L L= +

 2min{ : log }t tL k N k= ∈ ≤

Normalized parallel performance:

 Effect of the cutoff level

i

N
or
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min{ ( )} [0 1]
( )
t j

t i
∈

: elapsed time with  ( )t i min{ , }c t sL L i L= +

,i j∈for
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Proposed load balancing algorithm

 Fine-grained parallel algorithm
- Threads transform a shared substructure in parallel.

Serial algorithm Fine-grained parallel algorithm 16/44



Numerical examples

 min{ 5, }c t sL L L= +

 Evaluation
- Speed-up factor for the fixed problem size (strong scaling):
- : wall clock time when using i threads
- Number of threads used: 2, 4, 8, 16, 32

 Previous method
- Only coarse-grained parallel algorithm
- Number of substructure clusters = number of threads used

 Proposed method
- An algorithm combining coarse-grained and fined-grained parallel algorithms
- Number of substructure clusters set by the cutoff level

1 it t
it
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Numerical example (1)

 Structured meshes (            )

Four-node shell finite elements

 Boundary condition

Four-edges are simply supported.

 150 eigensolutions sought

 Mesh A

 Mesh B

 Mesh C

2 m
1 

m

5 mm

Effect of the number of DOFs of the original model

: 256×128 mesh, 196614 DOFs

: 512×256 mesh, 786483 DOFs

: 1024×512 mesh, 3145734 DOFs

2N N×

→ 1999 DOFs using 511 substructures

→ 3406 DOFs using 2047 substructures

→ 14706 DOFs using 8191 substructures
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Numerical example (1)

Back transformationTransformation

Total

More threads

More efficient

Previous (N = 128, 196614 DOFs)

Previous (N = 256, 786438 DOFs)

Previous (N = 512, 3145734 DOFs)

Proposed (N = 128, 196614 DOFs)

Proposed (N = 256, 786438 DOFs)

Proposed (N = 512, 3145734 DOFs)
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Numerical example (2)

 Mesh constructed by ANSYS

three-node shell finite elements

& four-node shell finite elements

& four-node tetrahedral elements

 No boundary condition

 300 eigensolutions sought

Effect of the number of substructures

 Partition A: 3688653 DOFs → 6696 DOFs using 2047 substructures

 Partition B: 3688653 DOFs → 20096 DOFs using 15747 substructures
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Numerical example (2)

Previous (2047 substructures)

Previous (15747 substructures)

Proposed (2047 substructures)
Proposed (15747 substructures)

Back transformationTransformation

Total

21/44



Numerical example (3)

 Mesh constructed by ANSYS

Three-node shell finite elements

& four-node shell finite elements

 No boundary condition

 Two cases of reduced models 

 600 eigensolutions sought

Effect of the number of DOFs of the reduced model

 Case A: 8462700 DOFs → 38489 DOFs using 32767 substructures

 Case B: 8462700 DOFs → 45449 DOFs using 32767 substructures
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Numerical example (3)

- 32 substructure clusters have the same number of distributed substructures.

- Each substructure cluster has approximately the same number of DOFs: 262k–264k.

- The relative difference between the min. and max. DOFs for each cluster is 0.7%.

In the previous method using 32 threads,

In the proposed algorithm,

- Significant improvement of the parallel performance is achieved without repartitioning.

TotalBack transformationTransformation

Previous (Case A)

Previous (Case B)
Proposed (Case A)
Proposed (Case B)
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Closure (topic 1)

1. A load balancing algorithm consisting of two types of granularity for the parallel AMLS

(PAMLS) method has been proposed.

2. In coarse-grained parallelism, the transformation and back transformation procedures

are split into tasks using a given cutoff level.

3. Fine-grained parallelism is used to reduce the idle time for the transformation of shared

substructures.

4. The proposed algorithm significantly improved the efficiency of the previous PAMLS

method without repartitioning.
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3. Coarse mesh projection
for nonlinear model reduction

Topic 2
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Proper orthogonal decomposition (POD)

Step 1 of 4. Collect snapshots of parametric configurations.

Step 2 of 4. Compute the low-dimensional basis vectors.

=

Choose        basis vectors

1 2[ ] r

r

n n
n

×= ⊂T Φ Φ Φ 

T

Singular value decomposition of 

=X 1Φ
dnΦ…

1σ

dnσ

… 1
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T
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dn n×⊂X 
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f D
O

Fs

Snapshot
matrix

( )rn n

- (implicit) static analysis

- Implicit dynamic analysis

- Explicit dynamic analysis

t t t t t t+∆ +∆+ = −M U KU R F

t t t= −M U R F

t t t t+∆= −KU R F
( ) =N U 0

t n∈R 

t n∈F 

: internal force vector (nonlinear term)

: stiffness matrix (nonlinear term)

: time-independent mass matrixn n×∈M 

t n n×∈K 

: external load vector at time t

snapshotsdn

1U
dnU…

rn
2

1
2

1

r

d

n
ii

n
ii

tol
σ

σ
=

=

≥∑
∑

Solve
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Proper orthogonal decomposition (POD)

Step 3 of 4. Generate the reduced model.

= =

original model reduced model

reduction

( )T
a =T N U 0

a≈ =U U TU

Computing the nonlinear terms depends on the original dimension

1. Lift                  back to the original high-dimensional space              .  

2. Evaluate nonlinear terms such as                    and              .

3. Left-multiply by        as                     .

rn⊂U 

n
a ⊂U 

( )T
a =T N U 0TT

t n n×⊂K 

t n⊂F 

( ) =N U 0
n n× r rn n×
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Step 4 of 4. Solve the reduced model                       .( )T
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Related studies

 Everson and Sirovich (1995)
- A first sparse sampling scheme with POD modes called gappy POD
- Random sampling points

≈ Ξ
F

F

n∈F 

nn n×∈Ξ 

nn∈F 

: Face vector

: POD coefficient vector

: POD basis vectors

( )T T+≈F P Ξ P FT T=P F P ΞF ( )T T+≈F Ξ P Ξ P F

sn nT ×⊂P 

: Selection matrix

 Chaturantabut and Sorensen (2010)
- Nonlinear model reduction vis discrete empirical interpolation method (DEIM)
- Sampling point selection algorithm with a greedy approach
- Instability in certain situations

2Ξ 3Ξ1Ξ

Current pointSelected points

Error Error

Sampling 
points

ReconstructionOriginal

a b c
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Related studies

 Baiges et al. (2019)
- A coarse mesh based reduced-order modeling via artificial neural networks

 Peherstorfer et al. (2020)
- QDEIM with a deterministic oversampling algorithm (GappyPOD+E)
- Additional sampling points that minimize                    in 

 Radermacher and Reese (2014) / Corigliano et al. (2015)
- Selective POD method by adaptive substructuring. 
- Limited application of local nonlinear problems

( )T T+≈F Ξ P Ξ P F2|| ( ) ||T +P Ξ

1 2[ ]
n

T T T T
n=P P P P=

Pivoting matrix

1
TP … T

nP2
TP

Selection matrix

TΞ
Q R

 Drmac and Gugercin (2016)
- DEIM using QR factorization with column pivoting (QDEIM)
- Sharper error bound for the DEIM projection error
- Instability in certain situations

 Peherstorfer et al. (2014)
- Localized variant of the DEIM (LDEIM)
- Partitioned snapshots
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Proposed nonlinear model reduction

Step 1 of 4. Compute a low-dimensional basis.

1. Extract the POD basis vectors from the original model.

2. Compute the coarsened POD basis vectors using finite element interpolation.

Finite element interpolation for a q-node element

1 2 3
1

ˆ ( , , )
q

i j j
j

h ξ ξ ξ
=

=∑φ φ 1 2 3( , , )jh ξ ξ ξ

jφ

ˆ iφ

: corresponding nodal value of

: shape functions with the natural coordinates

: ith nodal value of T̂

T
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POD basis vectors for the original model

1 2[ ] r

r

n n
n

×= ⊂T Φ Φ Φ 

dn n×= ⊂X ΦΣΩ 

rn n×⊂T 

ˆˆ rn n×⊂T 

POD basis vectors for the original model Coarsened POD basis vectors



Proposed nonlinear model reduction

= =

coarse mesh model reduced system

reduction

ˆ ˆ ˆ( , )T
a a =T N U U 0ˆ ˆ( ) =N U 0

ˆ ˆn n× r rn n×

ˆ ˆ ˆ
a≈ =U U TU

Step 3 of 4. Reduce the coarse mesh model using the coarsened POD bases     .

ˆ
aU : Approximate solution for the coarse mesh model

aU : Approximate solution for the original model

T̂

Fine elements Coarse element

Quadrature point

Step 2 of 4. Find the map between the coarse mesh model and the original model.
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Proposed nonlinear model reduction

For the mth element,

: Quantities computed on the original model

 0 ( )

( ) ( ) ( ) 0 ( )
ˆ

ˆ ˆ ˆ( )
m

t m t m T t m m
ij ijV

S d V= ∫F B

 0 ( )

( ) ( ) ( ) ( ) ( ) ( ) 0 ( )
0ˆ

ˆ ˆ ˆ ˆ ˆ( )
m

t m t m T m t m t m t m m
ij ijkl kl ij ijV

C S d V= +∫K B B N

U : Reduced solution for the original model

U : Reduced solution for the coarse mesh model

Fine elements Coarse element

Quadrature point

≈U U

≈U U ≈U TU

1. Calculate the approximate solution for the original model by assuming             .

U : Solution for the original model

T : POD basis vectors for the original model

2. Correct the coarse mesh model.
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Correction

Step 4 of 4. Solve the reduced model.



Proposed nonlinear model reduction

Discrete empirical interpolation Coarse mesh projection

( )T
a =T N U 02.                          is solved.

3. Nonlinear terms are evaluated on
some elements of the original model.

ˆ ˆ ˆ( , )T
a a =T N U U 02.                                is solved.

3. Nonlinear terms are evaluated on the
coarse mesh model.

4. Coarse mesh model is corrected
using the approximate solution.

1.      and      are generated. T Ξ 1.      and      are generated. T T̂

4. Nonlinear terms are approximated.

T
Ξ

T̂: POD basis vectors for the displacement : Coarsened POD basis vectors

: POD basis vectors for the internal force 33/44



Numerical example (1)

Original model: 10240 elements

 2D column problem (geometrically nonlinear static analysis)

DEIM ProposedDEIM Proposed

Mesh A Mesh B

Mesh A: 10

Mesh B: 42

 Number of snapshots: 84

 DOFs: 21120 DOFs → 5 DOFs (i.e. 5 POD basis vectors are used.)

 Number of elements used for evaluating nonlinear terms:
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Numerical example (1)

Lo
ad

Lo
ad

Horizontal displacement Vertical displacement

Lo
ad

Lo
ad

Horizontal displacement Vertical displacement

Mesh A

Mesh B

 Load-displacement curves (evaluation parameter = snapshot parameter) 
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(42 elements)

(10 elements)



Numerical example (2)

 3D column problem (geometrically nonlinear dynamic analysis)

 Number of snapshots: 710 (2 cases of  P = 0.25 & P = 1)

 DOFs: 29700 DOFs → 22 DOFs (i.e. 22 POD basis vectors are used.)

 Number of elements used for evaluating nonlinear terms: 48

 Evaluation: Case of P = 0.625

Time
Ve

rti
ca

l d
is

pl
ac

em
en

t

Reference
Coarse
DEIM
Proposed

Not converged

Original model: 8019 elements

Loading profile

Time
0.2 1.0

P
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Numerical example (3)

 Heterogeneous structure problem (elastic-plastic static analysis)

Void
Fiber
Matrix  Input parameters

- Young’s modulus

- Initial yield stress

- Hardening modulus

 Material property (isotropic linear hardening)

- Matrix:

- Fiber: 1200E GPaµ= 2200yv MPaσ µ= 350H GPaµ=

170E GPaµ= 270yv MPaσ µ= 314H GPaµ=

 Number of snapshots: 553 (8 cases; red dots)

 DOFs: 53323 DOFs → 37 DOFs

 Number of elements used

- Mesh A: 826 (GappyPOD+E) & 805 (proposed)

- Mesh B: 1644 (GappyPOD+E) & 1629 (proposed)

 Evaluation: 20 random cases (blue dots)

,
,

,
,

Original model: 25825 elements

2
b 2f = sin (2πx )

2µ

3µ

1µ
Parameter space

E

yvσ

H

Evaluation
Snapshot
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Numerical example (3)

 Relative displacement error

Mesh A

Mesh B

2 2

t t t
approximation−U U U

GappyPOD+E Proposed

ProposedGappyPOD+E

39/44



Closure (topic 2)

1. The coarse mesh projection method for nonlinear model reduction has been proposed.

2. A structure is modeled by a coarse mesh model, where its nodes do not need to

coincide with those of the original model.

3. Nonlinear terms are only computed on the quadrature points of the coarse mesh model.

4. The proposed method provided more accurate solution than the DEIM and

GappyPOD+E.
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4. Conclusions & future works



Conclusions

1. Effective methods were developed in the projection procedure of linear and

nonlinear model reduction.

2. For linear model reduction, a load balancing algorithm for the parallel AMLS

(PAMLS) method has been proposed.

3. The load balancing algorithm significantly improved the efficiency of the

previous PAMLS method without mesh repartitioning.

4. For nonlinear model reduction, the coarse mesh projection method has been

proposed.

5. The proposed method provided more accurate solutions than the DEIM and

GappyPOD+E.
42/44



Future works

- Distributed memory system

 Linear model reduction (topic 1)

- Online adaptive model reduction

 Nonlinear model reduction (topic 2)

- Mesh partitioning algorithm

https://fesom.de/technology/libraries/metis/

- Error bound & estimation
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