Ph.D. dissertation examination presentation

이미지를 이용한 기계학습 기반 해상 상태 예측 Sea state prediction based on machine learning

using images

Yun-Ho Kim 14 June 2022

Computational Mechanics and Structural Systems Department of Mechanical Engineering Korea Advanced Institute of Science and Technology

Advisor: Prof. Phill-Seung Lee

Contents

- 1. Introduction
- 2. Learning architecture & data acquisition
- 3. Learning results
 - 1. Parametric tuning
 - 2. Snapshot-based learning
 - 3. Video-based learning
- 4. Applications in marine engineering
- 5. Concluding remarks

- 1. Introduction
- 2. Learning architecture & data acquisition
- 3. Learning results
 - **1.** Parametric tuning
 - 2. Snapshot-based learning
 - 3. Video-based learning
- 4. Applications in marine engineering
- 5. Concluding remarks

BACKGROUNDS

• Maritime accidents

[Major maritime accidents related to the enactment and revision of SOLAS]

MF: Motor Fishing ship

[Oryong-501 sinking (2014)]

Source: The impact of major maritime accidents on the development of international regulations concerning safety of navigation and protection of the environment(2017), Daniel Duda and Ryszard Wawruch, Scientific Journal of Polish Naval Academy, 4(211), 23-44.

Oryong 501 sinking incident in the Bering Sea-International DVI cooperation in the Aisa Pacific (2017), Nak-Eun Chung et al., Forensic Science International, 278, 367-373.

Ministry of Oceans and Fisheries/ Central Maritime Safety Tribunal Maritime/ Accident Statistical Yearbook https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do#a

CONVENTIONAL OCEAN ENV. MEASUREMENTS

[Radar-based system] Setup cost: 50,000~200,000 USD

[Image-based system] Setup cost: 10,000~50,000 USD

[Satellite wave measurement] Utilization cost: less than 10,000 USD per operation Resolution: over 500m

	ltem	U nit	Country	Insitituto	Tec	hnical characteris	stics
(using Y	X-band radar)	Um	Country	Institute	Range	Resolution	STD
	haight		Norman Danmark	MIROS	0.5 20	0.1	100/
	nergin	ris [iii]	Norway, Denmark	OceanWaves	0.5 ~ 20	0.1	10%
Waya	nariad		Norman Danmark	MIROS	3.0.20	0.1	50/
wave	period	1 p [8]	Norway, Denmark	OceanWaves	5.0 ~ 20	0.1	5%
	direction	[dog]	Norman Danmark	MIROS	0 360	1	100/
	unection	[ueg]	Norway, Denmark	OceanWaves	0~300	1	10%
Wind	direction	[deg]	Denmark	GKSS	Corr.	= 0.99	14.24°
w ma	speed	[m/s]	Denmark	GKSS	Corr.	= 0.97	0.85m/s
Cumant	direction	[deg]	Norway	MIROS	1 ~ 360	1	7%
Current	speed	[m/s]	Norway	MIROS	0.0 ~ 2.5	0.01	0.05m/s
Bil	staral flow	numbor	US Japan	Oregon univ.		in developing	
DII	aterar now	number	03, Japan	Tsukuba univ.		in developing	

Source: MIROS website (https://www.miros-group.com/)

Satellite wave measurements for coastal engineering applications(1999), Harald EK and Stephen FB, Coastal Engineering, 37(3-4), 283-307. Piepmeier et al., 2006. 2006-2364: A stereo vision-based wave surface measurement project. 2006 Annual Conference & Exposition, Chicago, USA.

SEA STATE CLASSIFICATION

Source: Principle of Naval Architecture Vol.III DNV-RP-C205. Environmental conditions and environmental loads Douglas sea scale(1921) → WMO sea state

- Initially heuristic classification
- Significant wave height(Hs) is positioned as main physical quantity specifying the sea condition

PROBLEM DEFINITION

PURPOSE OF RESEARCH

- Developing the practical ocean environment estimation system with data science
 - 1. Constructing the suitable **artificial network**
 - 2. Estimation of sea states through real ocean snapshot images
 - 3. Evaluating the applicability and coverage of the network's estimation performance

STATE OF THE ART

Applications of artificial intelligence in marine engineering

- Review articles: Deo(2010), Kutz(2017), Sclavounos and Ma(2018), Ahmad(2019)
- Performance predictions and fault detections on ships and offshore structures
 - Ramirez et al.(2020), Gheliotis et al.(2020), Berghout et al.(2021), etc.
- Predictions on wave characteristics
 - Zamani et al.(2008), Mahjoobi et al.(2009), Wei(2017), James et al.(2018), Sarkar et al.(2018), Stringari et al.(2019), etc.

Wave classification using machine learning

- Liu et al.(2019): Wave height and period classification for 2D waves
- Buscombe and Carini(2019): Classifying wave breaking phenomena in infrared imagery
- Masoumi(2021): Ocean data classification in US using unsupervised machine learning for planning hybrid wave-wind offshore energy devices
- Kim et al.(2021): Transformation to nearshore wave from global wave data using ANN and Group Method of Data Handling(GMDH)
- Demetriou et al.(2021): Coastal zone significant wave height prediction by ANN and decision tree model
- <u>Ravuri et al.(2021): Nowcasting using generative models of radar</u>

- 1. Introduction
- 2. <u>Learning architecture & data acquisition</u>
- 3. Machine learning results
 - 1. Parametric tuning
 - 2. Snapshot-based learning
 - 3. Video-based learning
- 4. Applications in marine engineering
- 5. Concluding remarks

DEEP LEARNING NETWORKS

Convolutional Neural Network(CNN)

- A network widely used in **image classification** by convolution layers and pooling layers
- **Convolution layer**: Extract the characteristics contrast structure indicated by the filter from the image
- Pooling layer: After convolution, the maximum in the target square domain represent the dominant characteristics

Long Short-Term Memory(LSTM)

- A special kind of RNN, capable of learning long-term dependencies
- Remembering information for long periods of time is practically their default behavior, not something they struggle to learn.
- Forget, input, output gates & cell state per 1 hidden layer

Source:

Alex, K., Ilya, S., and Geoffrey, E.H., 2017, "ImageNet classification with deep convolutional neutral networks," Communications of the ACM, 60(6), 84-90. Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation. 9(8), 1735-1780. http://www.bioinf.jku.at/publications/older/2604.pdf.

CNN STRUCTURE(PRELIMINARY)

COMBINED STRUCTURE: CNN & LSTM

[LSTM network(1997)]

DATA ACQUISITION

• Southwestern region of Jeju Island(Cha-Gui-Do)

- Fixed-type Wave Energy Converter / KRISO
- with ADCP type measuring instrument

AWAC - 600 kHz

- Maximum operating depth: 60m
- Installed depth: 18m
- Wave measuring range: -15.0 ~ +15.0m
- Period range: 1-50s

NON-PREPROCEEDED DATA

- Non-prescreened data (Sep., 2021)
 - Selecting 5 representative time durations
 - All data without any restrictions

Sep	. 2021	Weather	Wind Dir.	Wind speed[m/s]	Ave. wave	e height [m]	Sig, wave	height [m]	Labeling	Remarks
01	Morning	Cloudy	S-SW	8-12	1.0	2.0	1.6	3.2	Sea state 4	
01	Afternoon	Cloudy and occasional rain	S-SW	9-13	1.5	2.5	2.4	4.0	Sea state 4	
02	Morning	Cloudy	NW-N	8-12	1.0	2.0	1.6	3.2	Sea state 4	
02	Afternoon	Cloudy and rain	NW-N	s-12	1.0	2.0	1.6	3.2	Sea state 4	
	Morning	Cloudy and occasional rain	N-NE	8-13	1.0	2.5	1.6	4.0	Sea state 5	
03	Afternoon	Cloudy	NE-E	9-14	1.5	3.0	2.4	4.8	Sea state 5	
	Morning	Cloudy	NE-E	10-14	2.0	3.0	3.2	4.8	Sea state 5	
04	Afternoon	Cloudy	NE-E	9-13	1.5	2.5	2.4	4.0	Sea state 5	
	Morning	Cloudy	NE-E	8-12	1.0	2.0	1.6	3.2	Sea state 4	
05	Afternoon	Cloudy and occasional rain	NE-E	8-12	1.0	2.0	1.6	3.2	Sea state 4	
	Morning	Cloudy and occasional rain	E-SE	8-12	1.0	2.0	1.6	3.2	Sea state 4	
06	Afternoon	Cloudy and occasional rain	SE-S	8-12	1.0	2.0	1.6	3.2	Sea state 4	
	Morning	Cloudy and occasional rain	NWN	8-12	1.0	2.0	1.6	3.2	Sea state 4	
07	Aftemoon	Cloudy	W-NW	8-12	1.0	2.0	1.6	3.2	Sea state 4	
	Morning	Too cloudy	W-NW	8-12	1.0	2.0	1.6	3.2	Sea state 4	
08	Afternoon	Sumy	NW-N	7-11	1.0	1.5	1.6	2.4	Sea state 4	
	Morning	Too cloudy	NW-N	6-11	0.5	1.5	0.8	2.4	Sea state 4	
09	Afternoon	Too cloudy	NW-N	6-9	0.5	1.0	0.8	1.6	Sea state 3	16:00 recording
	Morning	Cloudy and rain	NW-N	6-11	0.5	1.5	0.8	2.4	Sea state 4	*
10	Afternoon	Cloudy and rain	NW-N	6-11	0.5	1.5	0.8	2.4	Sea state 4	
	Moming	Cloudy and sometimes rain	E-SE	6-11	0.5	15	0.8	2.4	Sea state 4	
11	Afternoon	Too cloudy	E-SE	6-11	0.5	1.5	0.8	2.4	Sea state 4	
-	Morning	Tee cloudy	NE-E	8-12	1.0	2.0	1.6	3.2	Sea state 4	
12	Afternoon	Cloudy and sometimes rain	E-SE	8-13	1.0	2.5	1.6	4.0	Sea state 5	
	Morning	Cloudy and rain	E-SE	10-16	2.0	4.0	3.2	6.4	Sea state 6	Hurricane 'Chan-thu'
13	Afternoon	Cloudy and rain	E-SE	10 16	2.0	4.0	3.2	64	Sea state 6	Hurricane 'Chan-thu'
	Moming	Cloudy and rain	E-SE	12-18	2.0	5.0	3.2	8.0	Sea state 6	Hurricane 'Chan-thu'
14	Aftermore	Cloudy and rain	E-SE	12 - 18	2.0	5.0	3.2	8.0	San state 6	Hurrigana (Chan, thu)
	Morring	Cloudy and rain	E-SE	10-18	2.0	5.0	3.2	80	San otata 6	Humicana 'Chanuthu'
15	Afternoon	Cloudy and occasional rain	NEE	10 - 18	2.0	5.0	3.2	8.0	Sea state 6	Hurricane 'Chan-thu'
•	Moming	Cloudy and rain	R-SR	14-20	3.0	5.0	4.8	80	Sas stata 7	TeuSite icoma
16	Aftermore	Cloudy and rain	E.9E	16 22	40	6.0	6.4	0.6	San state 7	Te. Site issue
	Morring	Cloudy and rain	WINW	18-26	50	8.0	8.0	12.8	San ofeta S	Humir ana 'Chanuthu'
17	Aftermore	The clearly	NWM	10 16	2.0	4.0	3.2	64	San state 6	Horricana (Chan the)
-	Moming	Cloudy	NWN	0 - 13	15	2.5	2.4	40	San state 5	No fishing
18	Aframor	Tao slowfr	NATE	0 - 12	1.5	2.5	2.4	40	San state 5	Fores holidare
-	Marries	Teo cloudy	NP P	2-11	0.5	1.6	0.9	24	Sea state 5	No Gobies
19	Aframor	Teo cloudy	E.9E	7-11	0.5	1.5	0.8	2.4	Sea state 4	Voras bolidare
	Marries	Teo cloudy	2.02	2 - 11	0.5	1.5	0.8	24	Sea state 4	No Gobies
20	Aframor	Teo cloudy	62.6	0-12	10	2.0	1.6	2.7	Sea state 4	Voras holidare
-	Marrian	Clouds and sain	0.017	0 - 12	1.0	2.0	2.4	40	Sea state 4	No Gobies
21	Aftermore	Sugar	SWW W	0-12	10	2.5	1.6	4.0	Sea state 5	Voras holidare
	Marrian	Summe	91111	e - 10	1.0	2.0	1.0	3.2	Sea state 5	No Gobies
22	Aftermore	Success	W NW	2 - 11	10	1.5	1.6	24	Sea state 4	Voras holidare
	Anemoon	Suny			1.0	1.5	1.0	2.7	Jea state 4	Notes notice ys
23	Aftermore	Success	NWN	6-0	0.5	1.0	1.0	16	Sea state 4	Voras holidare
-	Marrian	The slaude	21.002	6-0	0.5	1.0	0.8	1.0	Sea state 3	Abi es nonbays
24	Atoming	Too cloudy	N-NE	6 y	0.5	1.0	0.8	1.0	Sea state 3	
	Attempon	Teo cloudy	NE-E	0 11	10	2.6	0.8	2.4	Sea state 4	
25	Abarrang	Teo cloudy	IND-D	a — 13	1.0	2.5	1.0	4.0	Sea state 5	
-	Attempon	100 cloudy	INE-E	a 13	1.0	4.5	1.0	4.0	bea state 5	
26	Noming	100 cloudy	NE-E	10 14	2.0	3.0	3.2	4.5	Sea state 5	
-	Attempon	100 cloudy	NE-E	10 - 14	2.0	3.0	3.2	4.6	cea state 5	
27	Noming	Too cloudy	NE-E	8 13	1.0	2.0	1.0	3.2	Sea state 4	
	Attempon	Too cloudy	NE-E	8-13	1.0	2.5	1.6	4.0	Sea state 5	
28	Noming	Cioudy	E-SE	9 13	1.5	2.5	2.4	4.0	Sea state 5	
-	Afternoon	Cloudy	SE-S	10-14	2.0	3.0	3.2	4.8	Sea state 5	
29	Morning	Cloudy and occasional rain	S-SW	10-14	2.0	3.0	3.2	4.8	Sea state 5	
-	Attempon	Cloudy and occasional rain	SE-S	10 - 14	2.0	3.0	3.2	4.8	Sea state 5	
30	Morning	Cloudy and occasional rain	N-NE	10-14	2.0	3.0	3.2	4.8	Sea state 5	No data at 03:00,06:00
	Attempon	Cloudy and occasional rain	N-NE	9-13	1.5	2.5	2.4	4.0	Sea state 5	

(c) Sep. 17, 2021, 03:00 ~ 03:05

(d) Sep. 12, 2021, 15:00 ~ 15:10

(e) Sep. 26, 2021, 15:00 ~ 15:10 (f) Se

(f) Sep. 17, 2021, 10:00 ~ 10:10

PRESCREENED DATA

- Well-conditioned data (May~Jul., 2020)
 - Minimized diffuse reflection of light
 - Eliminating ill-conditioned data

Date		Start	End	Condition	Average wave	Significant wave	C t-t
Da	le	time	time	Condition	height[m]	height[m]	Sea state
May	17	10:30	11:30	Strongly cloudy	1.25	2.00	4
	19	10:00	11:00	Strongly cloudy	3.00	4.79	6
	20	8:00	9:00	Fine	1.50	2.39	4
	24	10:00	11:00	Strongly cloudy	1.00	1.60	4
	25	10:00	11:00	Cloudy	1.00	1.60	4
	26	10:00	11:00	Cloudy	1.00	1.60	4
	28	10:00	11:00	Cloudy	1.00	1.60	4
	29	10:00	11:00	Strongly cloudy	1.00	1.60	4
	31	10:00	11:00	Cloudy & rainy	1.25	2.00	4
June	2	10:00	11:00	Fine	1.25	2.00	4
	3	10:00	11:00	Cloudy & weakly rainy	1.00	1.60	4
	4	9:00	10:00	Strongly cloudy	1.50	2.39	4
	6	10:00	11:00	Strongly cloudy	1.50	2.39	4
	7	10:00	11:00	Fine	1.25	2.00	4
	8	10:00	11:00	Fine	1.25	2.00	4
	9	10:00	11:00	Cloudy	1.50	2.39	4
	14	10:00	11:00	Cloudy	2.50	3.99	5
	15	10:00	11:00	cloudy & weakly rainy	1.50	2.39	4
	16	10:00	11:00	Cloudy	1.25	2.00	4
	19	10:00	11:00	Cloudy	2.00	3.19	5
	20	10:00	11:00	Strongly cloudy	1.50	2.39	4
	21	10:00	11:00	Fine	1.50	2.39	4
	22	8:00	9:00	Fine	1.50	2.39	4
	26	8:00	9:00	Fine	1.50	2.39	4
	28	10:00	11:00	Strongly cloudy	1.50	2.39	4
July	1	8:00	9:00	Fine	1.50	2.39	4
	4	8:00	9:00	Cloudy	1.50	2.39	4
	5	9:00	10:00	Cloudy	2.00	3.19	5
	6	8:00	9:00	Cloudy & rainy	2.00	3.19	5
	7	7:00	8:00	Cloudy & rainy	2.00	3.19	5
	8	8:00	9:00	Strongly cloudy	2.00	3.19	5
	12	8:00	9:00	Cloudy & rainy	1.50	2.39	4
	13	8:00	9:00	Cloudy & rainy	3.00	4.79	6
	14	8:00	9:00	Cloudy	3.00	4.79	6
	15	8:00	9:00	Cloudy	1.50	2.39	4
	16	8:00	9:00	Cloudy	1.00	1.60	4
	17	7:30	8:30	Fine	1.25	2.00	4

Sea state Categories

• Smallest number of data: 20,802

- 1. Introduction
- 2. Learning architecture & data acquisition
- 3. <u>Learning results</u>
 - 1. Parametric tuning
 - 2. Snapshot-based learning
 - 3. Video-based learning
- 4. Applications in marine engineering
- 5. Concluding remarks

LEARNING RESURTS - Tuning

- Initial prediction for numerically generated short-crested waves
 - 3 hours simulation data(0.1s sampling) \rightarrow Training: 1500, Validating: 300, Testing: 300 per category

6hr 30m 42s

Data training(GPU)

LEARNING RESURTS - Tuning

• Hyper-parameter tuning & Data dependency check

- Training parameters were adjusted in terms of such as max pooling size, number of convolution layers, number of trainees per category, and so on.
- Generally, accuracies per each category was not evenly high, while high accuracy was obtained for the highest and lowest categories that characterize the ocean environment.

LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Prediction on sea state

	SS3 (predicted)	SS4 (predicted)	SS5 (predicted)	SS6 (predicted)	SS8 (predicted)
SS3 (observed)	99.996%	0.004%	0.000%	0.000%	0.000%
SS4 (observed)	36.953%	11.416%	51.607%	0.024%	0.000%
SS5 (observed)	0.661%	21.785%	76.239%	0.000%	1.315%
SS6 (observed)	0.000%	34.719%	4.066%	0.016%	61.198%
SS8 (observed)	0.000%	0.000%	0.000%	0.001%	99.999%

[Correlation matrix]

LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Applicability evaluation with deformed images

					Original	10% zoom-in	20% zoom-in	30% zoom-in
				SS3	1.000	0.861	0.284	0.166
				SS5	0.762	0.674	0.573	0.481
(a.1) Original	(a 2) Zoom-in: 10%	(a.3) Zoom-in: 20%	(a 4) Zoom-in: 30%	SS8	1.000	0.998	0.880	0.651

[Image distortion: focusing- considering surge motion]

		-	J III		Original	10% rotating	20% rotating	30% rotating
			and they	SS3	1.000	0.327	0.248	0.126
			a shi fa	SS5	0.762	0.341	0.229	0.184
(b.1) Original	(b.2) Rotating: 10deg	(b.3) Rotating: 20deg	(b.4) Rotating: 30deg	SS8	1.000	0.550	0.493	0.479

[Image distortion: rotating - considering roll motion]

	Original	10% tilting	20% tilting	30% tilting
SS3	1.000	0.099	0.009	0.000
SS5	0.762	0.497	0.382	0.286
SS8	1.000	0.740	0.674	0.483

(c.1) Original

(c.2) Tilting: 10deg (c.3) Tilting: 20deg

the w

(c.4) Tilting: 30deg

[Image distortion: tilting - considering roll & pitch motion]

Sea state prediction based on machine learning using images

LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Trial for increasing prediction performance: angle detection and re-rotation

[Harris (Harris C. and M. Stephens, 1988)] [Minimum Eigenvalue (Shi J. and C. Tomasi, 1994)]

LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Prediction results for the trial with angle detection and re-rotation

[Estimated angle with Harris method with 10deg rotated images]

[Estimated angle with Harris method with 20deg rotated images]

[Estimated angle with Harris method with 30deg rotated images]

[Comparison between predictions with rotated and re-rotated images]

- Relatively well estimation on angles
- Prediction performance is generally increased in small rotated angles
- In harsh environment, estimation performance is rather poor at large angle.
- Image loss due to continuous rotations is considered as the main cause

Sea state 4

LEARNING RESURTS – Snapshot-based learning

• Learning results with prescreened data

• Initial learning of sea state prediction

[Global training accuracy of validating data]

[Cross entropy loss of validating data]

			(observed)	(observed)	(observed)
-		fold 1	0.989	0.011	0.000
	e 4 ed)	fold 2	0.715	0.285	0.000
	stat	fold 3	1.000	0.000	0.000
	Sea (pre	fold 4	0.997	0.003	0.000
		fold 5	1.000	0.000	0.000
-		fold 1	0.998	0.002	0.000
	te 5 ted)	fold 2	0.734	0.266	0.000
	stat	fold 3	0.533	0.467	0.000
	Sea (pre	fold 4	0.648	0.352	0.000
		fold 5	0.949	0.051	0.000
-		fold 1	0.000	0.000	1.000
	e 6 ed)	fold 2	0.000	0.000	1.000
	stat	fold 3	0.000	0.000	1.000
	Sea (pre	fold 4	0.000	0.000	1.000
		fold 5	0.000	0.001	0.999

Sea state 5

Sea state 6

[Prediction probability of testing data]

- Relatively good prediction performance
 - Remarkably high prediction in sea state 6
 - Prediction confusion between sea state 4 and sea state 5

LEARNING RESURTS – Snapshot-based learning

H.ave=1.00m

H,ave=1.25m

Learning results with prescreened data

- Initial learning of average wave height prediction ٠
- Only CNN applied ٠

[Global training accuracy of validating data]

[Cross entropy loss of validating data]

	,	,	,	,	,	,
	(predicted)	(predicted)	(predicted)	(predicted)	(predicted)	(predicted)
H,ave=1.00m (observed)	0.04%	3.73%	96.23%	0.00%	0.00%	0.00%
H,ave=1.25m (observed)	0.88%	77.64%	4.15%	17.33%	0.00%	0.00%
H,ave=1.50m (observed)	14.11%	0.00%	65.89%	15.34%	4.50%	0.15%
H,ave=2.00m (observed)	0.00%	0.29%	55.40%	44.30%	0.02%	0.00%
H,ave=2.50m (observed)	0.00%	0.00%	1.02%	0.00%	98.98%	0.00%
H,ave=3.00m (observed)	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%

H.ave=1.50m

H.ave=2.00m

H.ave=2.50m

H.ave=3.00m

[Prediction probability of testing data]

[Confusion matrix for average wave height classification with snapshots]

INTERIM REMARKS

- Training parameters were adjusted in terms of such as max pooling size, number of convolution layers, number of trainees per category, and so on.
- Generally, accuracies per each category was not evenly high, while high accuracy was obtained for the highest and lowest categories that characterize the ocean environment.
- When performing prediction on the non-prescreened data of the real sea, the accuracy did not exceed 80% and was stagnant.
- With the present network and simple image processing techniques, it is difficult to apply to the problem of deformed images.
- In predictions with prescreened snapshots, the prediction was made relatively well, but there was some confusion among small wave regions.

Preparation of videos •

- 2Hz for videos ٠
- Average wave height prediction ٠
- Combined learning scheme ٠

(GoogLeNet & bi-LSTM)

		# of trai	ining data	# of vali	dating data	# of testing data	
	H,ave=1.00m	2596	81.00%	288	9.00%	320	10.00%
	H,ave=1.25m	3229	81.00%	359	9.00%	398	10.00%
Movie clip I	H,ave=1.50m	6431	81.00%	715	9.00%	794	10.00%
(Length=6s)	H,ave=2.00m	2320	81.00%	258	9.00%	286	10.00%
	H,ave=2.50m	485	81.10%	54	9.00%	59	9.90%
	H,ave=3.00m	1404	81.00%	156	9.00%	173	10.00%
	H,ave=1.00m	518	81.00%	58	9.00%	64	10.00%
	H,ave=1.25m	646	81.10%	72	9.00%	79	9.90%
Movie clip II	H,ave=1.50m	1287	81.00%	143	9.00%	158	9.90%
(Length=30s)	H,ave=2.00m	464	81.00%	52	9.00%	57	10.00%
	H,ave=2.50m	97	81.70%	11	9.10%	11	9.20%
	H,ave=3.00m	281	81.20%	31	9.00%	34	9.80%
	H,ave=1.00m	259	81.00%	29	9.00%	32	10.00%
	H,ave=1.25m	323	81.20%	36	9.00%	39	9.80%
Movie clip III	H,ave=1.50m	644	81.00%	72	9.00%	79	9.90%
(Length=60s)	H,ave=2.00m	232	81.20%	26	9.00%	28	9.80%
	H,ave=2.50m	49	82.40%	5	9.20%	5	8.50%
	H,ave=3.00m	140	81.20%	16	9.00%	17	9.80%
	H,ave=1.00m	86	81.50%	10	9.10%	10	9.40%
	H,ave=1.25m	107	81.10%	12	9.00%	13	9.80%
Movie clip IV	H,ave=1.50m	214	81.10%	24	9.00%	26	9.80%
(Length=180s)	H,ave=2.00m	77	81.50%	9	9.10%	9	9.50%
	H,ave=2.50m	16	85.30%	2	9.50%	1	5.30%
	H,ave=3.00m	47	82.10%	5	9.10%	5	8.80%
	H,ave=1.00m	52	81.60%	6	9.10%	6	9.40%
	H,ave=1.25m	64	80.90%	7	9.00%	8	10.10%
Movie clip V	H,ave=1.50m	129	81.50%	14	9.10%	15	9.50%
(Length=300s)	H,ave=2.00m	47	82.10%	5	9.10%	5	8.80%
	H,ave=2.50m	8	73.60%	1	8.20%	2	18.20%
	H,ave=3.00m	27	79.40%	3	8.80%	4	11.80%

KAIST [Video clip conversion]

[H,ave=1.25m]

[H,ave=1.50m]

[H,ave=3.00m]

- Learning results with prescreened data
 - Prediction results

• Learning results with prescreened data

	H,ave 1.00m (predicted)	H,ave 1.25m (predicted)	H,ave 1.50m (predicted)	H,ave 2.00m (predicted)	H,ave 2.50m (predicted)	H,ave 3.00m (predicted)
H,ave 1.00m (observed)	21.01%	0.80%	78.10%	0.08%	0.00%	0.00%
H,ave 1.25m (observed)	0.00%	3.62%	95.84%	0.53%	0.00%	0.00%
H,ave 1.50m (observed)	0.83%	3.85%	75.62%	17.35%	2.24%	0.11%
H,ave 2.00m (observed)	0.00%	0.01%	4.75%	95.23%	0.01%	0.00%
H,ave 2.50m (observed)	0.00%	0.00%	0.03%	0.00%	99.96%	0.00%
H,ave 3.00m (observed)	0.00%	0.00%	2.02%	0.00%	0.00%	97.97%

[Correlation matrix with 6s videos]

	H,ave 1.00m (predicted)	H,ave 1.25m (predicted)	H,ave 1.50m (predicted)	H,ave 2.00m (predicted)	H,ave 2.50m (predicted)	H,ave 3.00m (predicted)
H,ave 1.00m (observed)	1.62%	79.39%	18.98%	0.01%	0.00%	0.00%
H,ave 1.25m (observed)	0.00%	1.32%	98.66%	0.01%	0.00%	0.00%
H,ave 1.50m (observed)	0.01%	3.68%	88.26%	1.02%	7.01%	0.01%
H,ave 2.00m (observed)	0.00%	0.19%	70.38%	26.52%	2.90%	0.00%
H,ave 2.50m (observed)	0.00%	0.16%	0.47%	0.01%	99.35%	0.01%
H,ave 3.00m (observed)	0.00%	0.00%	0.01%	0.00%	0.00%	99.99%

[Correlation matrix with 30s videos]

	H,ave 1.00m (predicted)	H,ave 1.25m (predicted)	H,ave 1.50m (predicted)	H,ave 2.00m (predicted)	H,ave 2.50m (predicted)	H,ave 3.00m (predicted)
H,ave 1.00m (observed)	0.95%	93.46%	5.49%	0.05%	0.05%	0.01%
H,ave 1.25m (observed)	0.00%	0.31%	99.55%	0.12%	0.01%	0.00%
H,ave 1.50m (observed)	0.16%	20.01%	79.44%	0.31%	0.05%	0.03%
H,ave 2.00m (observed)	0.01%	1.03%	31.82%	66.91%	0.22%	0.00%
H,ave 2.50m (observed)	0.00%	0.01%	57.27%	0.04%	42.65%	0.03%
H,ave 3.00m (observed)	0.00%	0.00%	0.02%	0.00%	0.00%	99.98%

[Correlation matrix with 60s videos]

	H,ave 1.00m (predicted)	H,ave 1.25m (predicted)	H,ave 1.50m (predicted)	H,ave 2.00m (predicted)	H,ave 2.50m (predicted)	H,ave 3.00m (predicted)
H,ave 1.00m (observed)	77.69%	14.34%	0.88%	7.03%	0.06%	0.00%
H,ave 1.25m (observed)	1.50%	75.33%	3.43%	18.71%	1.03%	0.00%
H,ave 1.50m (observed)	0.45%	15.62%	58.54%	23.00%	2.12%	0.27%
H,ave 2.00m (observed)	0.19%	1.59%	1.86%	84.67%	11.69%	0.00%
H,ave 2.50m (observed)	0.00%	0.00%	0.07%	0.08%	99.84%	0.00%
H,ave 3.00m (observed)	0.00%	0.00%	0.11%	0.00%	0.00%	99.89%

[Correlation matrix with 180s videos]

	H,ave 1.00m (predicted)	H,ave 1.25m (predicted)	H,ave 1.50m (predicted)	H,ave 2.00m (predicted)	H,ave 2.50m (predicted)	H,ave 3.00m (predicted)
H,ave 1.00m (observed)	73.80%	18.18%	6.76%	0.43%	0.81%	0.02%
H,ave 1.25m (observed)	0.91%	60.63%	29.74%	8.34%	0.36%	0.01%
H,ave 1.50m (observed)	1.00%	20.02%	66.35%	7.90%	1.13%	3.60%
H,ave 2.00m (observed)	1.08%	36.58%	15.68%	45.87%	0.77%	0.02%
H,ave 2.50m (observed)	0.87%	9.87%	39.95%	23.60%	25.55%	0.16%
H,ave 3.00m (observed)	0.00%	0.00%	7.85%	0.03%	0.01%	92.11%

[Correlation matrix with 300s videos]

• Prescreened data preparation

- Prediction with 180s videos
- Data augmentation for 'Have=2.50m'
 - Splitting the screen
- Height interval = 0.5m

KAIS1

• Eliminating of 'Have=1.25m'

[Data augmentation for 'Have=2.50m' category]

		# of trair	ning data	# of validating data		# of testing data	
	H,ave=1.00m	86	81.1%	10	9.4%	10	9.4%
	H,ave=1.50m	214	81.1%	24	9.1%	26	9.8%
Movie clip (180s, 360frames)	H,ave=2.00m	77	81.1%	9	9.5%	9	9.5%
	H,ave=2.50m	62(+46)	81.6%	7(+5)	9.2%	7(+6)	9.2%
	H,ave=3.00m	47	82.1%	5	8.8%	5	8.8%

[Data classification with augmentation in 'Have=2.50m' category]

[Cross entropy loss]

			in matt ixj		
	H,ave 1.00m (predicted)	H,ave 1.50m (predicted)	H,ave 2.00m (predicted)	H,ave 2.50m (predicted)	H,ave 3.00m (predicted)
H,ave 1.00m (observed)	99.95%	0.00%	0.04%	0.00%	0.00%
H,ave 1.50m (observed)	4.24%	80.11%	15.32%	0.04%	0.29%
H,ave 2.00m (observed)	11.02%	0.29%	88.65%	0.05%	0.00%
H,ave 2.50m (observed)	0.00%	0.47%	0.09%	99.44%	0.00%
H,ave 3.00m (observed)	0.00%	1.93%	0.00%	0.00%	98.07%

ΚΔ

[Correlation matrix]

Comprehensive comparisons

	Precision	Recall	Accuracy
Snapshot-based learning	0.677	0.645	0.669
Video-based learning	0.769	0.846	0.917
Video-based learning (0.5 intervals and augmentation)	0.932	0.969	0.972

[Comparison in machine learning methods]

	Operation difficulty	Equipment expense	O/M expense	Preparation time to measure	accuracy	Coverage area	Ease of access	
Non-contact measurement (LiDAR, radar)	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup		\bigtriangleup	$\triangle / \bigtriangledown$	
In-situ measurement (resistance, capacitance, ultrasonic)	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup		$\bigtriangleup / \bigtriangledown$	\bigtriangledown	
Satellite measurement					\bigtriangleup		\bigtriangleup	
Optical image based measurement (by vision analysis)	\bigtriangledown	\bigtriangledown	▼	\bigtriangledown	\bigtriangleup	\bigtriangledown	\bigtriangledown	High/long Intermediate
Optical image based measurement (by machine learning)	\bigtriangledown	\bigtriangledown	▼		\bigtriangleup	\bigtriangledown		Low/short
								negligible

KAIST

[Comparison in machine learning methods]

INTERIM REMARKS

- The combined deep learning model with CNN and LSTM was applied to the average wave height classification based on video-type data.
- The suitable video length was evaluated.
- In the small wave area, classification at 0.25m intervals was difficult, and the accuracy was also poor in the category with a small number of data.
- Setting the equal height interval of 0.5m and augmentation of insufficient data increased the prediction performance significantly.

- 1. Introduction
- 2. Learning architecture & data acquisition
- 3. Learning results
 - 1. Parametric tuning
 - 2. Snapshot-based learning
 - 3. Video-based learning
- 4. <u>Applications in marine engineering</u>
- 5. Concluding remarks

Estimation sea states of Korea's representative oceans with snapshots

- Evaluating of possibility of establishing a national marine now-casting map using the developed system
 - 1. Initially, data acquisition by research infrastructures
 - 2. Constructing the train network with advanced deep learning technology
 - 3. Application of the developed system to major ports and beaches

Research infrastructures

Feasibility study on ship application

- 1. Development of a camera using gimbal to compensate the ship rotational motions
- 2. Coupled supervising ship motions and optical images
- 3. Long-term data acquisition
- Snapshot images from ship-mounted camera(3rd Aug. 2021)
 - Mokpo coastal car-ferry: DreamIsland
 - 449G/T, 11 knots, 14 miles(1hr 50m)

Shin-An		Wind	l	Ambient	Humidity	Temperature	Temperature			Wave		
Weather casting buoy	Dir.	Speed [m/s]	Gust [m/s]	pressure [hPa]	[%]	air [°C]	water [°C]	Max. height[m]	Sig. height [m]	Ave. height [m]	Period[s]	Dir.
13:30 3rd Aug. 2021	SE	5	6.9	1007.3	77	27.8	25.3	0.2	0.1	0.1	2.7	NS
14:00 3rd Aug. 2021	SSE	3.4	5.6	1007.4	77	27.9	25.3	0.2	0.1	0.1	2.3	SSE
14:30 3rd Aug. 2021	S	1.6	3.9	1007.7	79	27.6	25.5	0.3	0.1	0.1	3	WNW
15:00 3rd Aug. 2021	SSW	2.7	3.9	1007.8	85	26.7	25.8	0.4	0.2	0.1	2.3	NE
15:30 3rd Aug. 2021	SSW	3.6	4.8	1007.5	80	27.3	25.9	0.4	0.1	0	2.3	NNW

	(n=5350)		(n=3	(n=37)		100)	(n=16)	
	Mean	STD	Mean	STD	Mean	STD	Mean	STD
Sea-state 4	94.99%	0.098	6.22%	0.121	14.52%	0.153	35.38%	0.104
Sea-state 5	0.10%	0.012	83.38%	0.157	1.26%	0.049	25.86%	0.153
Sea-state 6	4.91%	0.097	10.40%	0.120	84.23%	0.155	38.76%	0.102

sea-state 4 estimated

sea-state 6 estimated

ill-estimated

- 1. Introduction
- 2. Learning architecture & data acquisition
- 3. Learning results
 - 1. Parametric tuning
 - 2. Snapshot-based learning
 - 3. Video-based learning
- 4. Applications in marine engineering
- 5. <u>Concluding remarks</u>

CONCLUDING REMARKS

- Deep learning technology was adopted to estimate the sea conditions through optical image and the constructed method was applied to a real problem.
- Suitability of this approach was checked with numerical wave snapshots.
- Using non-prescreened data, we confirmed that the CNN-based deep learning with snapshots has a certain limitation in classifying the sea conditions.
- Some image processing techniques were applied to increase the prediction accuracy, but the effect is insignificant.
- The combined deep learning model(CNN and LSTM) was then applied. It showed a good prediction performance with data augmentation and data rearrangement.
- Few scenarios were suggested in marine engineering for utilizing these machine learning technology.
- Further studies should be conducted for training and predicting with longer-term data, applied to navigating ships.

Sea state prediction based on machine learning using images

Thank you for your attention!

REFERENCES

- [01] van Rijn, L.C., 2007. Manual sediment transport measurements in rivers, estuaries and coastal seas Chapter 12, in: Measuring Instruments for Fluid Velocity, Pressure and Wave Height. Aquapublications, Netherlands.
- [02] Korea Meteorological Administrator, 2020, KMA business introduction on marine observation, https://web.kma.go.kr/eng/biz/observation_07.jsp.
- [03] Korea Hydrographic and Oceanographic Agency, 2020. Ocean data in grid framework (Korean website), http://www.khoa.go.kr/oceangrid/khoa/koofs.do.
- [04] Jahne, B., Klinke, J., Waas, S., 1994. Imaging of short ocean wind waves: A critical theoretical review. J. Opt. Soc. Am. A: Opt., Image Sci., and Vis. 11(8), 2197–2209. https://doi.org/10.1364/JOSAA.11.002197.
- [05] Chou, C.R., Yim, J.Z., Huang, W.P., 2004. Determining the hydrographic parameters of the surface of water from the image sequences of a CCD camera. Exp. Fluids. 36, 515–527. https://doi.org/10.1007/s00348-003-0664-3.
- [06] Viriyakijja, K., Chinnarasri, C., 2015. Wave flume measurement using image analysis. Acquat. Proced. 4, 522–531. https://doi.org/10.1016/j.aqpro.2015.02.068.
- [07] Piepmeier, J., Waters, J., Broussard, R., 2006. 2006-2364: A stereo vision-based wave surface measurement project. 2006 Annual Conference & Exposition, Chicago, USA. DOI: 10.18260/1-2-1332.
- [08] McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133.
- [09] Rosenblatt, F., 1958. The perception: A probabilistic model for information storage and organization in the brain. Psychol. 386.
- [10] Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating errors. Nature. 323, 533-536.
- [11] Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554.
- [12] Alex, K., Ilya, S., Geoffrey, E.H., 2012. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 1097–1105.
- [13] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016. Mastering the game of Go with deep neural networks and tree search. Nature. 529, 484.
- [14] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van den Driessche, G., Graepel, T., Hassabis, D., 2017. Mastering the game of Go without human knowledge. Nature. 550, 354.
- [15] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature. 521, 436-444.
- [16] Deo, M.C., 2010. Artificial neural networks in coastal and ocean engineering. Ind. J. of Geo-Mar. Sci. 39(4), 589–596. http://nopr.niscair.res.in/handle/123456789/10807.
- [17] Kutz, J.N., 2017. Deep learning in fluid dynamics. J. Fluid Mech. 814, 1-4. https://doi.org/10.1017/jfm.2016.803.
- [18] Sclavounos, P.D., Ma, Y., 2018. Artificial intelligence machine learning in marine hydrodynamics. Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, OMAE2018-77599. https://doi.org/10.1115/OMAE2018-77599.
- [19] Ahmad, H., 2019. Machine learning applications in oceanography. Aquat. Res. 2(3), 161–169. https://doi.org/10.3153/AR19014.
- [20] Ramirez, W.A., Leong, Z.Q., Nguyen, H.D., Jayasinghe, S.G., 2020. Machine learning post processing of underwater vehicle pressure sensor array for speed measurement. Ocean Eng. 213, 107771, 1–6. https://doi.org/10.1016/j.oceaneng.2020.107771.
- [21] Gheliotis, M., Lazakis, I., Theotokatos, G., 2020. Machine learning and data-driven fault detection for ship systems operations. Ocean Eng. 216, 107968, 1–17. https://doi.org/10.1016/j.oceaneng.2020.107968.
- [22] Berghout, T., Mouss, L.H., Bentrcia, T., Elbouchikhi, E., 2021. A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Eng. 221, 108525, 1–11. https://doi.org/10.1016/j.oceaneng.2020.108525.
- [23] Zamani, A., Solomatine, D., Azimian, A., Heemink, A., 2008. Learning from data for wind-wave forecasting. Ocean Eng. 35, 953–962. https://doi.org/10.1016/j.oceaneng. 2008.03.007.
- [24] Mahjoobi, J., Mosabbel, E.A., 2009. Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36, 339–347. https://doi.org/10.1016/j.oceaneng.2009.01.001.
- [25] Wei, C.C., 2017. Nearshore wave prediction using data mining techniques during typhoons: A case study near Taiwan's northeastern coast. Energ. 11(1), 11. https://doi.org/10.3390/en11010011.
- [26] James, S.C., Zhang, Y., O'Donncha, F., 2018. A machine learning framework to forecast wave conditions. Coast. Eng. 137, 1–10. https://doi.org/10.1016/j.coastaleng. 2018.03.004.
- [27] Sarkar, D., Osborne, M.A., Adcock, T.A.A., 2018. Prediction of tidal currents using Bayesian machine learning. Ocean Eng. 158, 221–231. https://doi.org/10.1016/j.oceaneng.2018.03.007.
- [28] Stringari, G.E., Harris, D.L., Power, H.E., 2019. A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. Coast. Eng. 147, 149–158.
 - https://doi.org/10.1016/j.coastaleng.2019.02.002.
- [29] Kim, S., Tom, T.H.A., Takeda, M., Mase, H., 2021. A framework for transformation to nearshore wave from global wave data using machine learning techniques: Validation at the Port of Hitachinaka, Japan. Ocean Eng. 221, 108516, 1–13. https://doi.org/10.1016/j.oceaneng.2020.108516.
- [30] Demetriou, D., Michailides, C., Papanastasiou, G., Onoufriou, T., 2021. Coastal zone significant wave height prediction by supervised machine learning classification algorithms. Ocean Eng. 221, 108592, 1– 15. https://doi.org/10.1016/j.oceaneng.2021.108592.
- [31] Zhong, G., Liu, B., Guo, Y., and Miao, H., 2018. Sea State Bias Estimation with Least Absolute Shrinkage and Selection Operator (LASSO). J. Ocean Univ. China. 17(5), 1019–1025. https://doi.org/10.1017/s11802-018-3572-0.

REFERENCES

- [32] Zhong, G., Qu, J., Wang, H., Liu, B., Jiao, W., Fan, Z., Miao, H., and Hedjam, R., 2020. Trace-Norm Regularized Multi-Task Learning for Sea State Bias Estimation. J. Ocean Univ. China. 19(6), 1292-1298. https://doi.org/10.1017/s11802-020-4267-x.
- [33] Liu, T., Zhang, Y., Qi, L., Dong, J., Lv, M., Wen, Q., 2019. WaveNet: learning to predict wave height and period from accelerometer data using convolutional neural network. Proceedings of International Conference on Environment and Ocean Engineering, Xiamen, China. https://doi.org/10.1088/1755-1315/369/1/012001.
- [34] Buscombe, D., Carini, R.J., 2019. A data-driven approach to classifying wave breaking in infrared imagery. Remote Sens. 11(7), 859. https://doi.org/10.3390/rs11070859.
- [35] Masoumi, M., 2021. Ocean data classification using unsupervised machine learning: Planning for hybrid wave-wind offshore energy devices. Ocean Eng. 219, 108387, 1–15. https://doi.org/10.1016/j.oceaneng.2020.108387.
- [36] Demetriou, D., Michailides, C., Papanastasiou, G., Onoufriouu, T., 2021. Coastal zone significant wave height prediction by supervised machine learning classification algorithms. Ocean Eng. 221, 108592, 1-15.
- [37] Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clandy, E., Arribas, A., Mohamed, S., 2021. Skilful precipitation nowcasting using deep generative models of radar. Nature. 597, 672-677.
- [38] Ewans, K., Feld, G., Jonathan, P., 2014. On wave radar measurement. Ocean Dynamics. 64(9), 1281–303.
- [39] Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv, arXiv:1409.1556.
- [40] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770–778.
- [41] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich., 2014. Going Deeper with Convolutions. arXiv, arXiv:1409.4842v1.
- [42] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2818–2826.
- [43] Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 1251– 1258.
- [44] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4278–4284.
- [45] Sandler, M., Howard, A., Zhu, M., Zhuoginov, A., Chen, L.C., 2018. MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520.
- [46] Beale, M.H., Hagan, M.T., Demuth, H.B., 2020. Deep Learning ToolboxTM User's Guide. MathWorks, Natick, MA, USA, https://kr.mathworks.com/help/deeplearning/.
- [47] Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation. 9(8), 1735-1780. http://www.bioinf.jku.at/publications/older/2604.pdf.
- [48] Gers, F.A., Schmidhuber, J., 2000. Recurrent nets that time and cost. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, 6697377. DOI: 10.1109/IJCNN.2000.861302.
- [49] Cho, K., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv, arXiv:1406.1078v3.
- [50] Yao, K., Cohn, T., Vylomova, K., Duh, K., Dyer, C., 2015. Depth-Gated Recurrent Neural Networks. arXiv, arXiv:1508.03790v2.
- [51] Koutnik, J., Greff, K., Gomez, F., Schmidhuber, J., 2014. A Clockwork RNN. arXiv, arXiv:1402.3511v1.
- [52] DNVGL, 2019. DNVGL Recommended Practice: Environmental Conditions and Environmental Loads. DNVGL-RP-C205, Oslo, Norway, https://oilgas.standards.dnvgl.com/download/dnvgl-rp-c205environmental-conditions-and-environmental-loads.
- [53] International Towing Tank Conference, 2012. ITTC Recommended Procedures and Guidelines: Speed and Power Trials, Part 1 Preparation and Conduct. 7.5-04-01-01.1, https://ittc.info/media/4208/75-04-01-011.pdf.
- [54] Johnson, J.M. and Khoshgoftaar, T.M., 2019. Survey on deep learning with class imbalance. Journal of Big Data. 6:27, 1-54. https://doi.org/10/1186/s40537-019-0192-5.
- [55] Leutenegger, S., Chli, M., Siegwart, R.Y., 2011. BRISK: Binary Robust invariant scalagle keypoints. Proceedings of the 2011 International Conference on Computer Vison, Barcelona, Spain, https://doi.org/10.1109/ICCV.2011.6126542.
- [56] Rosten, F. and Drummond, T., 2005. Fusing points and lines for high performance tracking. The 10th IEEE International Conference on Computer Vision. 2. 1508-1515.
- [57] Harris, C. and Stephens, M., 1988. A Combined Corner and Edge Detector. Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 147-151.
- [58] Alcantarilla, P.F., Bartoli, A., Davison, A.J., 2012. KAZE Features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33783-3_16.
- [59] Shi, J. and Tomasi, C., 1994. Good Features to Track. IEEE Conference on Computer Vision and Pattern Recognition(CVPR94), Seattle, Washington, USA, 593-600.
- [60] Rublee, E., Rabaud, V., Konolige, K., Bradski, G. 2011. ORB: An Efficient Alternative to SIFT or SURF. Proceedings of the 2011 International Conference on Computer Vison, Barcelona, Spain, 2564-2571.
- [61] Bay, H., ESS, H., Tuytelaars, T., van Gool, L. 2008. SURF: Speeded Up Robust Features. Computer Vision and Image Understanding(CVIU). 110(3). 346-359.

Sea state prediction based on machine learning using images

Appendix. Ocean env. measuring in Korea

Source: Korea Hydrographic and Oceanographic Agency <u>http://www.khoa.go.kr/oceangrid/khoa/koofs.do</u> Korea Meteorological Administration

Ocean Environment Observation Methodologies and Status of South Korea

- 48 tidal observations
- 3 ocean observations
- 37 observation buoys
- 10 current observations
 - **3** ocean scientific stations

- Easily accessible and relatively high accuracy
- However, numerous accidents of coastal ship are exist.
 - Inaccurate forecasting, Unpredictable radical change
- More high resolution marine map and rigorous ship operation management have been still important.

Appendix. History of neural network

1940s - The beginning of Neural Networks (Electronic Brain)

1950s and 1960s - The first golden age of Neural Networks (Perceptron)

1970s - The winter of Neural Networks (XOR problem)

1980s - Renewed enthusiasm (Multilayered Perceptron, backpropagation)

1990s - Subfield of Radial Basis Function Networks was developed

2000s - The power of Neural Networks Ensembles & Support Vector Machines is apparent

- 2006 Hinton presents the Deep Belief Network (DBN)
- 2009 Deep Recurrent Neural Network
- 2010 Convolutional Deep Belief Network (CDBN)

2011 - Max-Pooling CDBN

2012 - ILSVRC(ImageNet Large Scale Visual Recognition Challenge) winner using CNN

ReLU, dropout, overlapping pooling, local response normalization, data augmentation

<section-header><section-header><section-header><section-header><section-header><text><text><image><image><image><image>

2016 - AlphaG0 issue

Appendix. Sea scale

• Douglas Sea Scale

Degree	Hs [m]	Description
0	-	Calm (Glassy)
1	0~0.10	Calm (rippled)
2	0.10~0.50	Smooth
3	0.50~1.25	Slight
4	1.25~2.50	Moderate
5	2.50~4.00	Rough
6	4.00~6.00	Very rough
7	6.00~9.00	High
8	9.00~14.00	Very high
9	14.00~	Phenomenal

[Douglas sea scale(from World Meteorological Organization) with Beaufort Scale]

Appendix. Related works(~2020)

Tong Liu, Yougle Zhang, Lin Qi, Junyu Dong, Mingdong Lv, and Qi Wen. 2019, WaveNet: learning to predict wave height and period from accelerometer data using convolutional neutral network, International Conference on Environment and Ocean Engineering, IOP Conf. Series: Earth and Environmental Science 369, 1-8. Daniel Buscombe and Roxanne J. Carini. 2019, A Data-Driven Approach to Classifying Wave Breaking in Infrared Imagery, Remote sensing, 11, 859.

Scott C. James, Yushan Zhang and Fearghal O'Donncha. 2018, A machine learning framework to forecast wave conditions, Coastal Engineering, 137, 1-10.

Appendix. Related works(2021)

Appendix. Related works(2021)

Article

Skilful precipitation nowcasting using deep generative models of radar

https://doi.org/10.1038/s41586-021-03854-z

Received: 17 February 2021

Accepted: 27 July 2021

Trained DL module N generated samples Suman Ravuri¹⁵, Karel Lenc¹³, Matthew Willson¹⁵, Dmitry Kangin²³, Remi Lam¹, Piotr Mirowski¹, Megan Fitzsimons², Maria Athanassiadou², Sheleem Kashen¹, Sam Madge², Rachel Prudden²³, Amol Mandhane¹, Aidan Clark¹, Andrew Brock¹, Karen Simonyan¹, Raia Hadsell¹, Niall Robinson¹³, Ellen Clancy¹, Alberto Arribas¹⁴ & Shakir Mohamed¹¹⁸

Published online: 29 September 2021

> b. Geographic context for the predictions. c.A single prediction at 7 + 30. 7 + 60 and 7 + 90 min lead time for different models. Critical success index (CS) at thresholds are the 'shad R mm' hand a mm' hand a continuous ranked probability score (CRPS) for an ensemble of four samples shown in the bottom left corner. For axial attention we show the mode prediction. Images are 256 km \times 256 km. Maps produced with Cartopy and SKI Melevation data⁶.

- **Deep generative model** for the probabilistic nowcasting of precipitation form radar Improved forecast quality
- 1,536km X 1,280km, 5-90min forecasting

10

recipitation (mm h⁻¹

ective cells over eastern Scotland. DGMR is better able to predict th

Fig. 1 Model overview and case study of performance on a challenging

spatial coverage and convection compared to other methods over a longer

preferred by meteorologists (93% first choice, n = 56, $P < 10^{-4}$). **a**, Schematic of

the model architecture showing the generator with spatial latent vectors Z

time period, while not over-estimating the intensities, and is significantly

precipitation event starting on = 24 June 2019 at 16:15 UK, showing

Appendix. Layers of CNN

Appendix. Initial CNN numerical setup & computing environment

Base model	AlexNet	Characteristics of	f Graphics Processing Unit(GPU)
		Name	GeForce RTX 2080 SUPER
Learning method	CNN(Convolution Neutral Network)	Max Grid Size	[2.1475e09 65535 65535]
Number of convolution layer	4	Total Memory [bytes]	8.5899e09
		Available Memory [bytes]	6.8783e09
Solver	ADAM(Adaptive Moment Estimation)	Multiprocessor Count	48
Activation function	Dol U(Doctified Linear Unit)	Clock Rate [kHz]	1.8300e06
Activation function	Kell(Kecuneu Linear Unit)	General Inform	ation of Personal Computer(PC)
Number of filters per each	16 / 32 / 64 / 64	Operating System(OS)	Windows 10 Enterprise
convolution layer	4X4 with same padding		AMD Ryzen 9 3900X 12-Core Processor /
Max pooling	1 st , 2 nd , 3 rd : 4X4 with 4 stride	Processor	3.80GHz
		RAM [GB]	63.9
Gradient Decay Factor	0.9	System Type	64 bit OS / x64 based Processor
Squared Gradient Decay Factor	0.999		
Gradient Threshold Method	L ₂ norm		
Epoch	8	$\mathbf{ADAM} \qquad \begin{array}{l} m_i = \beta_1 m_{i-1} + \\ v_i = \beta_2 v_{i-1} + \end{array}$	$-(1-\beta_1)\nabla E(\theta_i) \\ (1-\beta_2)[\nabla E(\theta_i)]^2 \mathbf{ReLU} f(x) = \begin{cases} x, x \ge 0 \\ 0, x < 0 \end{cases}$
Mini-batch size	3 times of number of categories	$\theta_{i+1} = \theta_i - \frac{\theta_i}{\sqrt{1}}$	$\frac{\alpha m_i}{w_i + \varepsilon}$

Appendix. GoogLeNet

- GoogLeNet(2014)
 - 2014 ILSVRC winning algorithm
 - 22-layer deep model
 - Features
 - 1 X 1 convolution for reducing feature map
 - Inception module for feature extraction
 - Global average pooling for flattening with lower computing(compared to FC)
 - Auxiliary classifier for avoiding vanishing gradient

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	$\#5 \times 5$	pool proj	params	ops
convolution	7×7/2	$112 \times 112 \times 64$	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	$3 \times 3/1$	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3 \times 3/2$	$14 \times 14 \times 480$	0								
inception (4a)		$14{\times}14{\times}512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3 \times 3/2$	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Appendix. Long Short-Term Memory(LSTM)

Appendix. Training options of LSTM

Item	Option
Learning method	LSTM(Long Short-Term Memory)
Optimizer	ADAM(Adaptive Moment Estimation)
Gradient Decay Factor	0.9000
Squared Gradient Decay Factor	0.9990
Epsilon	1.0000e-08
Initial Learn Rate	1.0000e-04
Learn Rate Schedule	None
Learn Rate Drop Factor	0.1000
Learn Rate Drop Period	10
L2 Regularization	1.0000e-04
Gradient Threshold Method	L2 norm
Gradient Threshold	2
Max Epochs	200
Mini Batch Size	4
Verbose	1
Verbose Frequency	20
Validation Data	{{37X1 cell} [37X1 categorical]}
Validation Frequency	81
Validation Patience	Inf
Shuffle	'every-epoch'
Execution Environment	'auto'
Plots	'training-progress'
Sequence Length	'longest'
Sequence Padding Value	0
Sequence Padding Direction	'right'
Dispatch in Background	0

Sea state prediction based on machine learning using images

Appendix. Numerical wave by Airy waves

Source: DNVGL-RP-C205 "Environmental Conditions and Environmental Loads

• Wave field generation

$$S(\omega) = \frac{5}{16} (1 - 0.287 \ln(\gamma)) H_S^2 \omega_P^{-4} \omega^{-5} e^{\left[-1.25 \left(\frac{\omega}{\omega_P}\right)^{-4}\right]} \gamma^e e^{\left[\frac{-(\omega-\omega_P)^2}{2\sigma^2 \omega_P^2}\right]}$$

$$A(\omega_i) = \sqrt{2S(\omega_i)\Delta\omega}$$

$$\theta(\omega_i) = Randomly \ distributed$$

$$\eta(t) = \sum_{i=1}^{N} A(\omega_i) \cos(\omega_i t + \theta(\omega_i))$$

$$we weight \ dassification$$

$$(1 - \sum_{i=1}^{N} A(\omega_i) \cos(\omega_i t + \theta(\omega_i)))$$

$$(1 - \sum_{i=1}^{N} A(\omega_i) \cos(\omega_i t + \theta(\omega_i)))$$

$$H_S^2 \omega_P^{-4} \omega^{-5} e^{\left[-1.25 \left(\frac{\omega}{\omega_P}\right)^{-4}\right]} \gamma^e e^{\left[\frac{-(\omega-\omega_P)^2}{2\sigma^2 \omega_P^2}\right]}$$

$$(1 - 2S(\omega_i)\Delta\omega$$

$$(1 - 2S(\omega_i)\Delta\omega)$$

Sea state prediction based on machine learning using images

Appendix. Numerical wave by Airy waves

Short-crested waves prediction

Appendix. Pattern tracking algorithm

KAIST