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• Maritime accidents

BACKGROUNDS

Source: The impact of major maritime accidents on the development of international regulations concerning safety of navigation and 

protection of the environment(2017), Daniel Duda and Ryszard Wawruch, Scientific Journal of Polish Naval Academy, 4(211), 

23-44.

Oryong 501 sinking incident in the Bering Sea-International DVI cooperation in the Aisa Pacific(2017), Nak-Eun Chung et al., 

Forensic Science International, 278, 367-373.

Ministry of Oceans and Fisheries/ Central Maritime Safety Tribunal Maritime/ Accident Statistical Yearbook 

https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do#a

Total: 13,687

https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do#a
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CONVENTIONAL OCEAN ENV. MEASUREMENTS

Source: MIROS website (https://www.miros-group.com/) 

Satellite wave measurements for coastal engineering applications(1999), Harald EK and Stephen FB, Coastal Engineering, 37(3-4), 283-307.

Piepmeier et al., 2006. 2006-2364: A stereo vision-based wave surface measurement project. 2006 Annual Conference & Exposition, Chicago, USA.

[Radar-based system]
Setup cost: 50,000~200,000 USD

Item

(using X-band radar)
Unit Country Insititute

Technical characteristics

Range Resolution STD

Wave

height Hs [m] Norway, Denmark
MIROS

OceanWaves
0.5 ~ 20 0.1 10%

period Tp [s] Norway, Denmark
MIROS

OceanWaves
3.0 ~ 20 0.1 5%

direction [deg] Norway, Denmark
MIROS

OceanWaves
0 ~360 1 10%

Wind
direction [deg] Denmark GKSS Corr. = 0.99 14.24°

speed [m/s] Denmark GKSS Corr. = 0.97 0.85m/s

Current
direction [deg] Norway  MIROS 1 ~ 360 1 7%

speed [m/s] Norway  MIROS 0.0 ~ 2.5 0.01 0.05m/s

Bilateral flow number US, Japan
Oregon univ.

Tsukuba univ.
in developing

[Satellite wave measurement]
Utilization cost: less than 10,000 USD per operation

Resolution: over 500m

[Image-based system]
Setup cost: 10,000~50,000 USD

https://www.miros-group.com/
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• Sea state classification by significant wave height

SEA STATE CLASSIFICATION Source: Principle of Naval Architecture Vol.III

DNV-RP-C205. Environmental conditions and environmental loads

Douglas sea scale(1921)  WMO sea state

[PDF of wave amplitude]

 Initially heuristic classification

 Significant wave height(Hs) is  positioned as main physical quantity specifying the sea condition

2020-06-01 2020-06-09 2020-06-17 2020-06-25

[Time series of wave]

Roll resonance region 

for small ships(<50m)

Roll resonance region 

for middle-sized ships(<150m)
Roll resonance region 

for middle-sized ships(>200m)
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PROBLEM DEFINITION

Limitations of ocean 

measurement 

in cost, hardness

Conservative control system

Old conventional 

small and medium sized vessels 

Continuous capsize accidents

of small sized vessels 
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PURPOSE OF RESEARCH 

• Developing the practical ocean environment estimation system with data science

1. Constructing the suitable artificial network

2. Estimation of sea states through real ocean snapshot images

3. Evaluating the applicability and coverage of the network’s estimation performance

Condition2: Overcoming previous 

short-comings in ML

Condition1: Significant development in computing 

H/W  Big data
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STATE OF THE ART

 Applications of artificial intelligence in marine engineering

 Review articles: Deo(2010), Kutz(2017), Sclavounos and Ma(2018), Ahmad(2019)

 Performance predictions and fault detections on ships and offshore structures

 Ramirez et al.(2020), Gheliotis et al.(2020),  Berghout et al.(2021), etc.

 Predictions on wave characteristics 

 Zamani et al.(2008), Mahjoobi et al.(2009), Wei(2017), James et al.(2018), Sarkar et al.(2018), Stringari et al.(2019), etc.

 Wave classification using machine learning

 Liu et al.(2019): Wave height and period classification for 2D waves

 Buscombe and Carini(2019): Classifying wave breaking phenomena in infrared imagery

 Masoumi(2021): Ocean data classification in US using unsupervised machine learning for planning hybrid wave-wind offshore energy devices

 Kim et al.(2021): Transformation to nearshore wave from global wave data using ANN and Group Method of Data Handling(GMDH)

 Demetriou et al.(2021): Coastal zone significant wave height prediction by ANN and decision tree model

 Ravuri et al.(2021): Nowcasting using generative models of radar
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DEEP LEARNING NETWORKS

Source: 

Alex, K., Ilya, S., and Geoffrey, E.H., 2017, “ImageNet classification with deep convolutional neutral networks,” Communications of the ACM, 60(6), 84-90.

Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation. 9(8), 1735-1780. http://www.bioinf.jku.at/publications/older/2604.pdf.

 Convolutional Neural Network(CNN)

 A network widely used in image classification by convolution layers and pooling layers

 Convolution layer: Extract the characteristics contrast structure indicated by the filter from the image

 Pooling layer: After convolution, the maximum in the target square domain represent the dominant characteristics

Ⅹ

 Long Short-Term Memory(LSTM)

 A special kind of RNN, capable of learning long-term dependencies

 Remembering information for long periods of time is practically their default behavior, not something they struggle to learn.

 Forget, input, output gates & cell state per 1 hidden layer
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ling size

C: Number of channels of the input image

N: Number of Kernels

Per each RGB channel

Original CONV_01 Pool_01 CONV_02 Pool_02 CONV_03 Pool_03 CONV_04

Height(I)
656 654 164 162 41 39 10 8 

Width(I)
875 873 219 217 55 53 14 12 

Depth
1 16 16 512 512 32,768 32,768 2,097,152 

Number of 

weight 144 41,472 23,887,872 13,759,414,272 

Number of 

biases 16 512 32,768 2,097,152 

CNN STRUCTURE(PRELIMINARY)
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COMBINED STRUCTURE: CNN & LSTM

Image input Sequence input
LSTM: 

2000 hidden layer

Classification

Convolutional layers:

GoogLeNet

224 X 224 X 3 X frame

Movie clips

1024 X sequences

Feature extracted sequence

Categories

[GoogLeNet architecture, Simonyan and Zisserman(2014)] [LSTM network(1997)]

Hyper-parameter

Input Size: 'auto'

Num Hidden Units: 2000

Output Mode: 'last'

State Activation Function: 'tanh'

Gate Activation Function: 'sigmoid'

Sequence length: 1024

Input size: auto

Output size: Number of categories

Loss function: Cross entropy loss

Dropout probability: 0.5
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DATA ACQUISITION

• Southwestern region of Jeju Island(Cha-Gui-Do)

 Fixed-type Wave Energy Converter / KRISO

 with ADCP type measuring instrument

 Maximum operating depth: 60m

 Installed depth: 18m

 Wave measuring range: -15.0 ~ +15.0m

 Period range: 1-50s
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NON-PREPROCEEDED DATA

• Non-prescreened data (Sep., 2021)

• Selecting 5 representative time durations

• All data without any restrictions 



Sea state prediction based on machine learning using images

PRESCREENED DATA

• Well-conditioned data (May~Jul., 2020)

• Minimized diffuse reflection of light

• Eliminating ill-conditioned data

 Smallest number of data: 20,802

Date 
Start 

time 

End 

time 
Condition 

Average wave 

height[m] 

Significant wave 

height[m] 
Sea state 

May 17 10:30 11:30 Strongly cloudy 1.25 2.00 4 
 19 10:00 11:00 Strongly cloudy 3.00 4.79 6 
 20 8:00 9:00 Fine 1.50 2.39 4 
 24 10:00 11:00 Strongly cloudy 1.00 1.60 4 
 25 10:00 11:00 Cloudy 1.00 1.60 4 
 26 10:00 11:00 Cloudy 1.00 1.60 4 
 28 10:00 11:00 Cloudy 1.00 1.60 4 
 29 10:00 11:00 Strongly cloudy 1.00 1.60 4 
 31 10:00 11:00 Cloudy & rainy 1.25 2.00 4 

June 2 10:00 11:00 Fine 1.25 2.00 4 
 3 10:00 11:00 Cloudy & weakly rainy 1.00 1.60 4 
 4 9:00 10:00 Strongly cloudy 1.50 2.39 4 
 6 10:00 11:00 Strongly cloudy 1.50 2.39 4 
 7 10:00 11:00 Fine 1.25 2.00 4 
 8 10:00 11:00 Fine 1.25 2.00 4 
 9 10:00 11:00 Cloudy 1.50 2.39 4 
 14 10:00 11:00 Cloudy 2.50 3.99 5 
 15 10:00 11:00 cloudy & weakly rainy 1.50 2.39 4 
 16 10:00 11:00 Cloudy 1.25 2.00 4 
 19 10:00 11:00 Cloudy 2.00 3.19 5 
 20 10:00 11:00 Strongly cloudy 1.50 2.39 4 
 21 10:00 11:00 Fine 1.50 2.39 4 
 22 8:00 9:00 Fine 1.50 2.39 4 
 26 8:00 9:00 Fine 1.50 2.39 4 
 28 10:00 11:00 Strongly cloudy 1.50 2.39 4 

July 1 8:00 9:00 Fine 1.50 2.39 4 
 4 8:00 9:00 Cloudy 1.50 2.39 4 
 5 9:00 10:00 Cloudy 2.00 3.19 5 
 6 8:00 9:00 Cloudy & rainy 2.00 3.19 5 
 7 7:00 8:00 Cloudy & rainy 2.00 3.19 5 
 8 8:00 9:00 Strongly cloudy 2.00 3.19 5 
 12 8:00 9:00 Cloudy & rainy 1.50 2.39 4 
 13 8:00 9:00 Cloudy & rainy 3.00 4.79 6 
 14 8:00 9:00 Cloudy 3.00 4.79 6 
 15 8:00 9:00 Cloudy 1.50 2.39 4 
 16 8:00 9:00 Cloudy 1.00 1.60 4 
 17 7:30 8:30 Fine 1.25 2.00 4 
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LEARNING RESURTS - Tuning

• Initial prediction for numerically generated short-crested waves

• 3 hours simulation data(0.1s sampling)  Training: 1500, Validating: 300, Testing: 300 per category

• Only 4 hidden layers CNN

Computational Time

Image generation(CPU) 24h 26m 25s

Image classification(CPU) 33.3s

Data training(GPU) 6hr 30m 42s

Answer: 1.25 / Estimation: -4.50

[Training accuracy]

[Cross entropy loss]

4.5 3 2.25 1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75 -2.25 -3 -4.5

90~100 4.5 87.67 10.67 1.00 0.33 0.33

80~90 3 4.00 67.00 21.33 5.33 2.33

70~80 2.25 0.67 8.67 64.00 21.33 3.67 0.67 0.67 0.33

60~70 1.75 0.33 26.33 48.33 16.67 4.67 1.33 1.33 0.67 0.33

50~60 1.25 1.00 6.33 22.00 44.33 16.00 5.00 3.33 0.67 1.00 0.33

40~50 0.75 0.33 2.00 8.33 20.67 39.67 20.00 5.00 1.67 2.00 0.33

30~40 0.25 0.33 2.33 5.00 12.00 47.00 25.00 4.00 3.33 0.67 0.33

20~30 -0.25 0.33 3.67 3.33 22.00 45.67 13.67 9.33 1.00 0.67 0.33

10~20 -0.75 1.67 7.00 16.00 43.67 26.00 2.67 1.33 1.33 0.33

0~10 -1.25 0.33 0.67 3.00 4.67 17.00 56.33 13.33 3.33 1.00 0.33

-1.75 1.00 2.33 3.67 24.67 41.67 21.33 3.67 1.67

-2.25 1.67 9.00 13.00 60.67 13.00 2.67

-3 2.33 1.67 17.33 63.00 15.67

-4.5 0.33 2.33 7.00 90.33

ESTIMATED DATA

R

A

W

D

A

T

A

[Correlation matrix]

[An example of wrong prediction]
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[Training accuracy]

[Max-pooling size variation]
[Number of convolutional layers variation]

[Training accuracy]

LEARNING RESURTS - Tuning

• Hyper-parameter tuning & Data dependency check

1.625 0.625 0.375 0.125 -0.125 -0.375 -0.625 -1.625

1.625 80.33 19.67

0.625 9.33 68.33 22.00 0.33

0.375 17.00 66.00 17.00

0.125 1.33 26.00 55.67 14.33 2.67

-0.125 3.00 21.67 46.67 27.67 1.00

-0.375 1.67 9.00 71.33 18.00

-0.625 17.67 79.00 3.33

-1.625 0.67 23.67 75.67

ESTIMATED DATA

R

A

W

D

A

T

A

90~100

80~90

70~80

60~70

50~60

40~50

30~40

20~30

10~20

0~10

90~100

80~90

70~80

60~70

50~60

40~50

30~40

20~30

10~20

0~10

90~100

80~90

70~80

60~70

50~60

40~50

30~40

20~30

10~20

0~10

2.25 1.25 0.75 0.25 -0.25 -0.75 -1.25 -2.25

2.25 82.00 17.00 1.00

1.25 9.67 76.67 12.00 1.67

0.75 25.67 51.33 20.67 2.33

0.25 3.33 20.00 53.00 22.00 1.67

-0.25 0.67 18.00 57.67 22.67 1.00

-0.75 2.00 20.00 58.33 18.67 1.00

-1.25 2.33 19.00 56.00 22.67

-2.25 0.33 6.00 93.67

ESTIMATED DATA

R

A

W

D

A

T

A

4.5 3 2.25 1.75 1.25 0.75 0.25 -0.25 -0.75 -1.25 -1.75 -2.25 -3 -4.5

4.5 91.67 8.00 0.33

3 8.33 80.00 9.00 2.00 0.67

2.25 32.67 34.67 22.00 8.00 2.67

1.75 5.00 10.33 47.67 29.00 7.00 1.00

1.25 1.00 0.67 13.67 54.00 28.00 2.00 0.33 0.33

0.75 1.33 21.00 60.33 14.33 2.67 0.33

0.25 0.33 4.67 29.33 34.67 21.67 6.33 2.33 0.67

-0.25 0.33 10.33 14.00 43.67 18.00 11.33 1.67 0.67

-0.75 0.33 3.33 4.67 15.00 43.33 28.33 5.00

-1.25 2.00 15.33 56.00 19.67 6.33 0.67

-1.75 0.67 3.33 19.33 46.67 26.67 3.33

-2.25 3.33 21.00 57.67 18.00

-3 0.33 0.33 3.00 18.67 66.00 11.67

-4.5 1.33 5.00 93.67

ESTIMATED DATA

R

A

W

D

A

T

A

Prediction on different dominant sea state: 

Sea state 3, 5, 7

• Training parameters were adjusted in terms of such as max pooling size, number of convolution layers, number of trainees per category, and so on.

• Generally, accuracies per each category was not evenly high, while high accuracy was obtained for the highest and lowest categories that characterize the 

ocean environment.



Sea state prediction based on machine learning using images

LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Prediction on sea state

SS3

(predicted)

SS4

(predicted)

SS5

(predicted)

SS6

(predicted)

SS8

(predicted)

SS3

(observed)
99.996% 0.004% 0.000% 0.000% 0.000%

SS4

(observed)
36.953% 11.416% 51.607% 0.024% 0.000%

SS5

(observed)
0.661% 21.785% 76.239% 0.000% 1.315%

SS6

(observed)
0.000% 34.719% 4.066% 0.016% 61.198%

SS8

(observed)
0.000% 0.000% 0.000% 0.001% 99.999%

[Training accuracy]
[Cross entropy loss]

[Correlation matrix]
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LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Applicability evaluation with deformed images

[Image distortion: focusing- considering surge motion]

[Image distortion: rotating - considering roll motion]

[Image distortion: tilting - considering roll & pitch motion]

Original 10% zoom-in 20% zoom-in 30% zoom-in

SS3 1.000 0.861 0.284 0.166

SS5 0.762 0.674 0.573 0.481

SS8 1.000 0.998 0.880 0.651

Original 10% rotating 20% rotating 30% rotating

SS3 1.000 0.327 0.248 0.126

SS5 0.762 0.341 0.229 0.184

SS8 1.000 0.550 0.493 0.479

Original 10% tilting 20% tilting 30% tilting

SS3 1.000 0.099 0.009 0.000

SS5 0.762 0.497 0.382 0.286

SS8 1.000 0.740 0.674 0.483
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LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Trial for increasing prediction performance: angle detection and re-rotation

[Image re-rotation process]

[Harris (Harris C. and M. Stephens, 1988)] [Minimum Eigenvalue (Shi J. and C. Tomasi, 1994)]

[Detected angles for 10deg pre-rotated data in sea state 03]

• Applying feature tracking algorithm

• Harris method: Classical method with auto-

correlation detector
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LEARNING RESURTS – Snapshot-based learning

• Learning results with non-prescreened data

• Prediction results for the trial with angle detection and re-rotation

[Estimated angle with Harris method with 10deg rotated images]

[Comparison between predictions with rotated and re-rotated images]

• Relatively well estimation on angles

• Prediction performance is generally increased in small rotated angles

• In harsh environment, estimation performance is rather poor at large angle.

• Image loss due to continuous rotations is considered as the main cause

[Estimated angle with Harris method with 20deg rotated images]

[Estimated angle with Harris method with 30deg rotated images]
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LEARNING RESURTS – Snapshot-based learning

• Learning results with prescreened data

• Initial learning of sea state prediction

• Only CNN applied

[Prediction probability of testing data]

• Relatively good prediction performance

• Remarkably high prediction in sea state 6

• Prediction confusion between sea state 4 and sea state 5

[Global training accuracy of validating data]

[Cross entropy loss of validating data]

Sea state 4

(observed)

Sea state 5

(observed)

Sea state 6

(observed)

S
ea

 s
ta

te
 4

(p
re

d
ic

te
d
)

fold 1 0.989 0.011 0.000

fold 2 0.715 0.285 0.000

fold 3 1.000 0.000 0.000

fold 4 0.997 0.003 0.000

fold 5 1.000 0.000 0.000

S
ea

 s
ta

te
 5

(p
re

d
ic

te
d
)

fold 1 0.998 0.002 0.000

fold 2 0.734 0.266 0.000

fold 3 0.533 0.467 0.000

fold 4 0.648 0.352 0.000

fold 5 0.949 0.051 0.000

S
ea

 s
ta

te
 6

(p
re

d
ic

te
d

)

fold 1 0.000 0.000 1.000

fold 2 0.000 0.000 1.000

fold 3 0.000 0.000 1.000

fold 4 0.000 0.000 1.000

fold 5 0.000 0.001 0.999
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LEARNING RESURTS – Snapshot-based learning

• Learning results with prescreened data

• Initial learning of average wave height prediction

• Only CNN applied

[Prediction probability of testing data]
[Global training accuracy of validating data]

[Cross entropy loss of validating data]

H,ave=1.00m

(predicted)

H,ave=1.25m

(predicted)

H,ave=1.50m

(predicted)

H,ave=2.00m

(predicted)

H,ave=2.50m

(predicted)

H,ave=3.00m

(predicted)

H,ave=1.00m

(observed)
0.04% 3.73% 96.23% 0.00% 0.00% 0.00%

H,ave=1.25m

(observed)
0.88% 77.64% 4.15% 17.33% 0.00% 0.00%

H,ave=1.50m

(observed)
14.11% 0.00% 65.89% 15.34% 4.50% 0.15%

H,ave=2.00m

(observed)
0.00% 0.29% 55.40% 44.30% 0.02% 0.00%

H,ave=2.50m

(observed)
0.00% 0.00% 1.02% 0.00% 98.98% 0.00%

H,ave=3.00m

(observed)
0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

TRUE FALSE

TRUE 64.474% 30.741%

FALSE 35.525% 69.259%C
la

ss
if

ic
at

io
n

 r
es

u
lt

Actual answer

[Confusion matrix for average wave height classification with snapshots]

( ) 67.714%
TP

precision
TP FP

 


( ) 64.475%
TP

Recall
TP FN

 


( ) 66.867%
TP TN

Accuracy
TP FN FP TN


 

  

TP FP

FN TN
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• Training parameters were adjusted in terms of such as max pooling size, number of

convolution layers, number of trainees per category, and so on.

• Generally, accuracies per each category was not evenly high, while high accuracy was

obtained for the highest and lowest categories that characterize the ocean environment.

• When performing prediction on the non-prescreened data of the real sea, the accuracy did

not exceed 80% and was stagnant.

• With the present network and simple image processing techniques, it is difficult to apply to

the problem of deformed images.

• In predictions with prescreened snapshots, the prediction was made relatively well, but there

was some confusion among small wave regions.

INTERIM REMARKS
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LEARNING RESURTS – Video-based learning

• Preparation of videos

• 2Hz for videos

• Average wave height prediction

• Combined learning scheme

(GoogLeNet & bi-LSTM) 

H,ave=1.00m 2596 81.00% 288 9.00% 320 10.00%

H,ave=1.25m 3229 81.00% 359 9.00% 398 10.00%

H,ave=1.50m 6431 81.00% 715 9.00% 794 10.00%

H,ave=2.00m 2320 81.00% 258 9.00% 286 10.00%

H,ave=2.50m 485 81.10% 54 9.00% 59 9.90%

H,ave=3.00m 1404 81.00% 156 9.00% 173 10.00%

H,ave=1.00m 518 81.00% 58 9.00% 64 10.00%

H,ave=1.25m 646 81.10% 72 9.00% 79 9.90%

H,ave=1.50m 1287 81.00% 143 9.00% 158 9.90%

H,ave=2.00m 464 81.00% 52 9.00% 57 10.00%

H,ave=2.50m 97 81.70% 11 9.10% 11 9.20%

H,ave=3.00m 281 81.20% 31 9.00% 34 9.80%

H,ave=1.00m 259 81.00% 29 9.00% 32 10.00%

H,ave=1.25m 323 81.20% 36 9.00% 39 9.80%

H,ave=1.50m 644 81.00% 72 9.00% 79 9.90%

H,ave=2.00m 232 81.20% 26 9.00% 28 9.80%

H,ave=2.50m 49 82.40% 5 9.20% 5 8.50%

H,ave=3.00m 140 81.20% 16 9.00% 17 9.80%

H,ave=1.00m 86 81.50% 10 9.10% 10 9.40%

H,ave=1.25m 107 81.10% 12 9.00% 13 9.80%

H,ave=1.50m 214 81.10% 24 9.00% 26 9.80%

H,ave=2.00m 77 81.50% 9 9.10% 9 9.50%

H,ave=2.50m 16 85.30% 2 9.50% 1 5.30%

H,ave=3.00m 47 82.10% 5 9.10% 5 8.80%

H,ave=1.00m 52 81.60% 6 9.10% 6 9.40%

H,ave=1.25m 64 80.90% 7 9.00% 8 10.10%

H,ave=1.50m 129 81.50% 14 9.10% 15 9.50%

H,ave=2.00m 47 82.10% 5 9.10% 5 8.80%

H,ave=2.50m 8 73.60% 1 8.20% 2 18.20%

H,ave=3.00m 27 79.40% 3 8.80% 4 11.80%

Movie clip IV

(Length=180s)

Movie clip V

(Length=300s)

# of training data # of validating data # of testing data

Movie clip I

(Length=6s)

Movie clip II

(Length=30s)

Movie clip III

(Length=60s)

[Video clip conversion]

[H,ave=1.00m] [H,ave=2.00m]

[H,ave=1.25m] [H,ave=2.50m]

[H,ave=1.50m] [H,ave=3.00m]
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LEARNING RESURTS – Video-based learning

• Learning results with prescreened data

• Prediction results

[Global accuracy]

[Cross entropy loss]
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LEARNING RESURTS – Video-based learning

• Learning results with prescreened data

[Correlation matrix with 6s videos]

H,ave 1.00m

(predicted)

H,ave 1.25m

(predicted)

H,ave 1.50m

(predicted)

H,ave 2.00m

(predicted)

H,ave 2.50m

(predicted)

H,ave 3.00m

(predicted)

H,ave 1.00m

(observed)
21.01% 0.80% 78.10% 0.08% 0.00% 0.00%

H,ave 1.25m

(observed)
0.00% 3.62% 95.84% 0.53% 0.00% 0.00%

H,ave 1.50m

(observed)
0.83% 3.85% 75.62% 17.35% 2.24% 0.11%

H,ave 2.00m

(observed)
0.00% 0.01% 4.75% 95.23% 0.01% 0.00%

H,ave 2.50m

(observed)
0.00% 0.00% 0.03% 0.00% 99.96% 0.00%

H,ave 3.00m

(observed)
0.00% 0.00% 2.02% 0.00% 0.00% 97.97%

H,ave 1.00m

(predicted)

H,ave 1.25m

(predicted)

H,ave 1.50m

(predicted)

H,ave 2.00m

(predicted)

H,ave 2.50m

(predicted)

H,ave 3.00m

(predicted)

H,ave 1.00m

(observed)
1.62% 79.39% 18.98% 0.01% 0.00% 0.00%

H,ave 1.25m

(observed)
0.00% 1.32% 98.66% 0.01% 0.00% 0.00%

H,ave 1.50m

(observed)
0.01% 3.68% 88.26% 1.02% 7.01% 0.01%

H,ave 2.00m

(observed)
0.00% 0.19% 70.38% 26.52% 2.90% 0.00%

H,ave 2.50m

(observed)
0.00% 0.16% 0.47% 0.01% 99.35% 0.01%

H,ave 3.00m

(observed)
0.00% 0.00% 0.01% 0.00% 0.00% 99.99%

[Correlation matrix with 30s videos]

H,ave 1.00m

(predicted)

H,ave 1.25m

(predicted)

H,ave 1.50m

(predicted)

H,ave 2.00m

(predicted)

H,ave 2.50m

(predicted)

H,ave 3.00m

(predicted)

H,ave 1.00m

(observed)
0.95% 93.46% 5.49% 0.05% 0.05% 0.01%

H,ave 1.25m

(observed)
0.00% 0.31% 99.55% 0.12% 0.01% 0.00%

H,ave 1.50m

(observed)
0.16% 20.01% 79.44% 0.31% 0.05% 0.03%

H,ave 2.00m

(observed)
0.01% 1.03% 31.82% 66.91% 0.22% 0.00%

H,ave 2.50m

(observed)
0.00% 0.01% 57.27% 0.04% 42.65% 0.03%

H,ave 3.00m

(observed)
0.00% 0.00% 0.02% 0.00% 0.00% 99.98%

H,ave 1.00m

(predicted)

H,ave 1.25m

(predicted)

H,ave 1.50m

(predicted)

H,ave 2.00m

(predicted)

H,ave 2.50m

(predicted)

H,ave 3.00m

(predicted)

H,ave 1.00m

(observed)
77.69% 14.34% 0.88% 7.03% 0.06% 0.00%

H,ave 1.25m

(observed)
1.50% 75.33% 3.43% 18.71% 1.03% 0.00%

H,ave 1.50m

(observed)
0.45% 15.62% 58.54% 23.00% 2.12% 0.27%

H,ave 2.00m

(observed)
0.19% 1.59% 1.86% 84.67% 11.69% 0.00%

H,ave 2.50m

(observed)
0.00% 0.00% 0.07% 0.08% 99.84% 0.00%

H,ave 3.00m

(observed)
0.00% 0.00% 0.11% 0.00% 0.00% 99.89%

H,ave 1.00m

(predicted)

H,ave 1.25m

(predicted)

H,ave 1.50m

(predicted)

H,ave 2.00m

(predicted)

H,ave 2.50m

(predicted)

H,ave 3.00m

(predicted)

H,ave 1.00m

(observed)
73.80% 18.18% 6.76% 0.43% 0.81% 0.02%

H,ave 1.25m

(observed)
0.91% 60.63% 29.74% 8.34% 0.36% 0.01%

H,ave 1.50m

(observed)
1.00% 20.02% 66.35% 7.90% 1.13% 3.60%

H,ave 2.00m

(observed)
1.08% 36.58% 15.68% 45.87% 0.77% 0.02%

H,ave 2.50m

(observed)
0.87% 9.87% 39.95% 23.60% 25.55% 0.16%

H,ave 3.00m

(observed)
0.00% 0.00% 7.85% 0.03% 0.01% 92.11%

[Correlation matrix with 60s videos]

[Correlation matrix with 180s videos]

[Correlation matrix with 300s videos]
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LEARNING RESURTS – Video-based learning

• Prescreened data preparation

• Prediction with 180s videos

• Data augmentation for ‘Have=2.50m’

• Splitting the screen

• Height interval = 0.5m

• Eliminating of ‘Have=1.25m’

[Data augmentation for ‘Have=2.50m’ category]

[Data classification with augmentation in ‘Have=2.50m’ category]

# of training data # of validating data # of testing data

Movie clip

(180s, 360frames)

H,ave=1.00m 86 81.1% 10 9.4% 10 9.4%

H,ave=1.50m 214 81.1% 24 9.1% 26 9.8%

H,ave=2.00m 77 81.1% 9 9.5% 9 9.5%

H,ave=2.50m 62(+46) 81.6% 7(+5) 9.2% 7(+6) 9.2%

H,ave=3.00m 47 82.1% 5 8.8% 5 8.8%
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LEARNING RESURTS – Video-based learning

• Learning results with prescreened data

[Global accuracy]
[Cross entropy loss]

H,ave 1.00m

(predicted)

H,ave 1.50m

(predicted)

H,ave 2.00m

(predicted)

H,ave 2.50m

(predicted)

H,ave 3.00m

(predicted)

H,ave 1.00m

(observed)
99.95% 0.00% 0.04% 0.00% 0.00%

H,ave 1.50m

(observed)
4.24% 80.11% 15.32% 0.04% 0.29%

H,ave 2.00m

(observed)
11.02% 0.29% 88.65% 0.05% 0.00%

H,ave 2.50m

(observed)
0.00% 0.47% 0.09% 99.44% 0.00%

H,ave 3.00m

(observed)
0.00% 1.93% 0.00% 0.00% 98.07%

[Correlation matrix]
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LEARNING RESURTS – Video-based learning

• Comprehensive comparisons

[Comparison in machine learning methods]

Operation 

difficulty

Equipment

expense

O/M

expense

Preparation 

time to 

measure

accuracy
Coverage

area

Ease of 

access

Non-contact measurement

(LiDAR, radar) △ △ △ △ ▲ △ △/▽

In-situ measurement

(resistance, capacitance, ultrasonic) △ △ △ △ ▲ △/▽ ▽

Satellite measurement ▲ ▲ ▲ ▲ △ ▲ △

Optical image based measurement

(by vision analysis)
▽ ▽ ▼ ▽ △ ▽ ▽

Optical image based measurement

(by machine learning) ▽ ▽ ▼ ▲ △ ▽ ▲

[Comparison in machine learning methods]

High/long

Intermediate

Low/short

negligible

 Precision Recall Accuracy 

Snapshot-based learning 0.677 0.645 0.669 

Video-based learning 0.769 0.846 0.917 

Video-based learning 

(0.5 intervals and augmentation) 

0.932 0.969 0.972 

 



Sea state prediction based on machine learning using images

• The combined deep learning model with CNN and LSTM was applied to the average wave

height classification based on video-type data.

• The suitable video length was evaluated.

• In the small wave area, classification at 0.25m intervals was difficult, and the accuracy was

also poor in the category with a small number of data.

• Setting the equal height interval of 0.5m and augmentation of insufficient data increased the

prediction performance significantly.

INTERIM REMARKS
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1. Introduction

2. Learning architecture & data acquisition

3. Learning results

1. Parametric tuning

2. Snapshot-based learning

3. Video-based learning

4. Applications in marine engineering

5. Concluding remarks
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• Estimation sea states of Korea’s representative oceans with snapshots

• Evaluating of possibility of establishing a national marine now-casting map using the developed system

1. Initially, data acquisition by research infrastructures 

2. Constructing the train network with advanced deep learning technology

3. Application of the developed system to major ports and beaches

APPLICATIONS IN MARINE ENGINEERING

https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2855

https://coast.mof.go.kr/coastScene/coastMediaService.do

http://www.kcg.go.kr/

https://coast.mof.go.kr/coastScene/coastMediaService.do
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APPLICATIONS IN MARINE ENGINEERING

• Research infrastructures
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APPLICATIONS IN MARINE ENGINEERING

• Snapshot images from ship-mounted camera(3rd Aug. 2021)

• Mokpo coastal car-ferry: DreamIsland

• 449G/T, 11 knots, 14 miles(1hr 50m)

• Sea state: 2 (Hs=0.1~0.2m)

Shin-An Wind Ambient 

pressure

[hPa]

Humidity

[%]

Temperature,

air [°C]

Temperature,

water [°C]

Wave

Weather casting buoy Dir.
Speed 

[m/s]

Gust

[m/s]

Max. height[

m]

Sig. height

[m]

Ave. height

[m]
Period[s] Dir.

13:30 3rd Aug. 2021 SE 5 6.9 1007.3 77 27.8 25.3 0.2 0.1 0.1 2.7 NS

14:00 3rd Aug. 2021 SSE 3.4 5.6 1007.4 77 27.9 25.3 0.2 0.1 0.1 2.3 SSE

14:30 3rd Aug. 2021 S 1.6 3.9 1007.7 79 27.6 25.5 0.3 0.1 0.1 3 WNW

15:00 3rd Aug. 2021 SSW 2.7 3.9 1007.8 85 26.7 25.8 0.4 0.2 0.1 2.3 NE

15:30 3rd Aug. 2021 SSW 3.6 4.8 1007.5 80 27.3 25.9 0.4 0.1 0 2.3 NNW

• Feasibility study on ship application

1. Development of a camera using gimbal to compensate the ship rotational motions

2. Coupled supervising ship motions and optical images

3. Long-term data acquisition



Sea state prediction based on machine learning using images

Sea-state 4

(n=5350)

Sea-state 5

(n=37)

Sea-state 6

(n=1100)

ill-predicted

(n=16)

Mean STD Mean STD Mean STD Mean STD

Sea-state 4 94.99% 0.098 6.22% 0.121 14.52% 0.153 35.38% 0.104

Sea-state 5 0.10% 0.012 83.38% 0.157 1.26% 0.049 25.86% 0.153

Sea-state 6 4.91% 0.097 10.40% 0.120 84.23% 0.155 38.76% 0.102

sea-state 4 estimated sea-state 6 estimated ill-estimated

APPLICATIONS IN MARINE ENGINEERING
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1. Introduction

2. Learning architecture & data acquisition

3. Learning results

1. Parametric tuning

2. Snapshot-based learning

3. Video-based learning

4. Applications in marine engineering

5. Concluding remarks
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• Deep learning technology was adopted to estimate the sea conditions through

optical image and the constructed method was applied to a real problem.

• Suitability of this approach was checked with numerical wave snapshots.

• Using non-prescreened data, we confirmed that the CNN-based deep learning with

snapshots has a certain limitation in classifying the sea conditions.

• Some image processing techniques were applied to increase the prediction accuracy,

but the effect is insignificant.

• The combined deep learning model(CNN and LSTM) was then applied. It showed a

good prediction performance with data augmentation and data rearrangement.

• Few scenarios were suggested in marine engineering for utilizing these machine

learning technology.

• Further studies should be conducted for training and predicting with longer-term

data, applied to navigating ships.

CONCLUDING REMARKS
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Thank you

for 

your attention!
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• Ocean Environment Observation Methodologies and Status of South Korea

Appendix. Ocean env. measuring in Korea
Source: Korea Hydrographic and Oceanographic Agency

http://www.khoa.go.kr/oceangrid/khoa/koofs.do

Korea Meteorological Administration

Type Figures

Ocean Data Buoy

Light House AWS

Wave Radar

Coastal Wave Buoy

Drifting Buoy

Coastal Long Wave 

Monitoring System

Port Weather 

Monitoring System

Ship Weather

Monitoring System

• 48 tidal observations

• 3 ocean observations

• 37 observation buoys

• 10 current observations

• 3 ocean scientific stations

 Easily accessible and relatively high accuracy

 However, numerous accidents of coastal ship are exist.

 Inaccurate forecasting, Unpredictable radical 

change

 More high resolution marine map and rigorous ship 

operation management have been still important.

http://www.khoa.go.kr/oceangrid/khoa/koofs.do
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AlexNet

2012

Appendix. History of neural network

Source: Deepkapha.ai

1940s - The beginning of Neural Networks (Electronic Brain)

1950s and 1960s - The first golden age of Neural Networks (Perceptron)

1970s - The winter of Neural Networks (XOR problem)

1980s - Renewed enthusiasm (Multilayered Perceptron, backpropagation)

1990s - Subfield of Radial Basis Function Networks was developed

2000s - The power of Neural Networks Ensembles & Support Vector Machines is apparent

2006 - Hinton presents the Deep Belief Network (DBN)

2009 - Deep Recurrent Neural Network

2010 - Convolutional Deep Belief Network (CDBN)

2011 - Max-Pooling CDBN

2012 - ILSVRC(ImageNet Large Scale Visual Recognition Challenge) winner using CNN

ReLU, dropout, overlapping pooling, local response normalization, data augmentation

2016 – AlphaG0 issue

Source: MathWorks ‘MATLAB for AI’
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• Douglas Sea Scale

Appendix. Sea scale

Degree Hs [m] Description

0 - Calm (Glassy)

1 0~0.10 Calm (rippled)

2 0.10~0.50 Smooth

3 0.50~1.25 Slight

4 1.25~2.50 Moderate

5 2.50~4.00 Rough

6 4.00~6.00 Very rough

7 6.00~9.00 High

8 9.00~14.00 Very high

9 14.00~ Phenomenal

[Douglas sea scale(from World Meteorological Organization) with Beaufort Scale]

Source: Principle of Naval Architecture Vol.III

Douglas sea scale(1921)
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Appendix. Related works(~2020)

• Tong Liu, Yougle Zhang, Lin Qi, Junyu Dong, Mingdong Lv, and Qi Wen. 2019, WaveNet: learning to predict wave height and period from accelerometer data using 

convolutional neutral network, International Conference on Environment and Ocean Engineering, IOP Conf. Series: Earth and Environmental Science 369, 1-8.

• Daniel Buscombe and Roxanne J. Carini. 2019, A Data-Driven Approach to Classifying Wave Breaking in Infrared Imagery, Remote sensing, 11, 859.

• Scott C. James, Yushan Zhang and Fearghal O’Donncha. 2018, A machine learning framework to forecast wave conditions, Coastal Engineering, 137, 1-10.
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 Structural data for significant wave 

height prediction

 ANN and Decision tree model

 Hindcasting of 

wave height, period at the nearshore

 ANN and Group method of data 

handling(GMDH)

 Data by National Data Buoy 

Center(NDBC), USA

 K-mean clustering

Appendix. Related works(2021)
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Source: Suman Ravuri et al.(2021). Skilful precipitation nowcasting using deep generative models of radar. NATURE. 597. 672-677.

• Deep generative model for the probabilistic nowcasting of 

precipitation form radar

• Improved forecast quality

• 1,536km Ⅹ 1,280km, 5-90min forecasting

Appendix. Related works(2021)
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Appendix. Layers of CNN

Batch normalization layer

Convolution layer

Activation function

Max Pooling

Fully connected layer

Classification layer

Softmax

The layer convolves the input by moving the filters along the input vertically and 

horizontally and computing the dot product of the weights and the input, and then adding 

a bias term

It normalizes each input channel across a mini-batch for speeding up training of 

convolutional neural networks and reducing the sensitivity to network initialization.

It performs a threshold operation to each element of the input,

where any value less than zero is set to zero.

𝑓 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

It performs down-sampling by dividing the input into rectangular pooling regions, and 

computing the maximum of each region.

It multiplies the input by a weight matrix and then adds a bias vector. 

It applies a softmax function to the input. Softmax function 

converts a vector of numbers into a vector of possibilities.

𝑆 𝑦𝑖 =
𝑒𝑦𝑖

σ𝑗=1
𝑖 𝑒𝑦𝑗

Adam (adaptive moment estimation): An element-wise 

moving average of both the parameter gradients and their 

squared values.

Error function: ADAM 1 1 1
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2 1 2
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It computes the cross entropy loss for multi-class classification problems with mutually 

exclusive classes. The layer infers the number of classes from the output size of the 

previous layer.
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Appendix. Initial CNN numerical setup & computing environment

Base model AlexNet

Learning method CNN(Convolution Neutral Network)

Number of convolution layer 4

Solver ADAM(Adaptive Moment Estimation)

Activation function ReLU(Rectified Linear Unit)

Number of filters per each 

convolution layer

16 / 32 / 64 / 64

4X4 with same padding

Max pooling 1st, 2nd, 3rd: 4X4 with 4 stride 

Gradient Decay Factor 0.9

Squared Gradient Decay Factor 0.999

Gradient Threshold Method L2 norm

Epoch 8

Mini-batch size 3 times of number of categories

Characteristics of Graphics Processing Unit(GPU)

Name GeForce RTX 2080 SUPER

Max Grid Size [2.1475e09  65535  65535]

Total Memory [bytes] 8.5899e09

Available Memory [bytes] 6.8783e09

Multiprocessor Count 48

Clock Rate [kHz] 1.8300e06

General Information of Personal Computer(PC) 

Operating System(OS) Windows 10 Enterprise

Processor
AMD Ryzen 9 3900X 12-Core Processor / 

3.80GHz

RAM [GB] 63.9

System Type 64 bit OS / x64 based Processor

1 1 1
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ADAM ReLU 𝑓 𝑥 = ቊ
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0
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Appendix. GoogLeNet

• GoogLeNet(2014)

 2014 ILSVRC winning algorithm

 22-layer deep model

 Features

 1Ⅹ1 convolution for reducing feature map

 Inception module for feature extraction

 Global  average pooling for flattening with lower computing(compared to FC)

 Auxiliary classifier for avoiding vanishing gradient

auxiliary classifier

inception module

global

averaging

pooling

1X1 convolution

[GoogLeNet network(2015)]

[GoogLeNet incarnation of the inception architecture(2015)]
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Appendix. Long Short-Term Memory(LSTM) 

• Long Short-Term Memory(LSTM)

 RNN based deep learning

 3 additional inner gates, 1 cell state in each hidden layer

 Forget gate

 Input gate

 Output gate

 (cell) state

[LSTM network]

[Hochreiter & Schmidhuber(1997)]

Sequence input layer

Bi-LSTM layer

Fully connected layer

Softmax layer

Classification Output layer

Hyper-parameter

Input Size: 'auto'

Num Hidden Units: 2000

Output Mode: 'last'

State Activation Function: 'tanh'

Gate Activation Function: 'sigmoid'

Sequence length: 1024

Input size: auto

Output size: Number of categories

Loss function: Cross entropy loss

Dropout layer Dropout probability: 0.5
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Appendix. Training options of LSTM

Item Option

Learning method LSTM(Long Short-Term Memory)

Optimizer ADAM(Adaptive Moment Estimation)

Gradient Decay Factor 0.9000

Squared Gradient Decay Factor 0.9990

Epsilon 1.0000e-08

Initial Learn Rate 1.0000e-04

Learn Rate Schedule None

Learn Rate Drop Factor 0.1000

Learn Rate Drop Period 10

L2 Regularization 1.0000e-04

Gradient Threshold Method L2 norm

Gradient Threshold 2

Max Epochs 200

Mini Batch Size 4

Verbose 1

Verbose Frequency 20

Validation Data {{37X1 cell} [37X1 categorical]}

Validation Frequency 81

Validation Patience Inf

Shuffle ‘every-epoch’

Execution Environment ‘auto’

Plots ‘training-progress’

Sequence Length ‘longest’

Sequence Padding Value 0

Sequence Padding Direction ‘right’

Dispatch in Background 0

Reset Input Normalization 1
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• Wave field generation

𝑆 𝜔 =
5

16
ሻ1 − 0.287l n( 𝛾 𝐻𝑆

2𝜔𝑃
−4𝜔−5𝑒

−1.25
𝜔
𝜔𝑃

−4

𝛾𝑒

− 𝜔−𝜔𝑃
2

2𝜎2𝜔𝑃
2

𝐴 𝜔𝑖 = 2𝑆(𝜔𝑖ሻΔ𝜔

𝜃 𝜔𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑

η t =

𝑖=1

𝑁

𝐴 𝜔𝑖 co s(𝜔𝑖𝑡 + 𝜃 𝜔𝑖 ሻ

Source: DNVGL-RP-C205 “Environmental Conditions and Environmental Loads

Hs=2.4m, Tp=6.6s, Gamma=2.5

Appendix. Numerical wave by Airy waves
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• Short-crested waves prediction
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Hs [m] Tp [s] Gamma Dir. [°]

Wave train 1 2.4 8.0 2.5 90

Wave train 2 1.8 12.0 2.5 130

Wave train 3 7.7 17.0 3.3 45

Appendix. Numerical wave by Airy waves
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Appendix. Pattern tracking algorithm


