

Ph.D. dissertation

부유식 구조물의 유탄성 해석에 관한연구 : 정적/동적 통합해석 및 응력 전달함수의 직접계산 방법

Hydroelastic analysis of floating structures: integrated static and dynamic analysis and direct calculation of stress RAO

> Moonsu Park June. 14, 2023

> > 심 사 위 원 이필승 교수님 김진환 교수님 김대겸 교수님 김병완 박사님 김태영 박사님

1. Introduction

2. Integrated hydro-static and -dynamic analysis

3. Direct calculation of stress RAOs in hydroelastic analysis

4. Conclusions & future works

1. Introduction

Introduction

- Various loads effected on a floating structure
- Static loads
- Hydrodynamic loads(Wave induced loads)
- Impact loads (bottom slamming, bow flare impacts, sloshing)
- Cyclic loads (main engine, propeller)
- Ice loads
- Others

Introduction

Importance of the hydroelastic behavior

Effect of hydro elasticity becomes more important.

Brief history

19

19

20

Methods for hydroelastic analysis

Rigid-body motion analysis

Hydroelastic analysis

80s	 Pioneering works on the motion of floating rigid bodies in frequency and time domain Dealing with various problems of potential flows and hydrodynamics Lamb(1945), John (1950), Stoker(1956), Wehausen (1960), Cummins(1962), Newman(1977), 	• 2 d	2D hydroelastic analysis of ships in frequency domain leveloped by Bishop (1979)
	 Development of numerical methods for rigid body - wave interactions in frequency domain WAMIT - WaveAnalayisMIT(MIT, 1987) 	• 3	3D hydroelastic analysis of ships extended by Wu (1984)
90s	 Development of numerical methods for rigid body - wave interactions in time domain TiMIT(MIT,1999) 	• F • N • N	Research projects for very large floating structures(VLFS) Mega-float(Japan, 1995-2001) MOB - Mobile Offshore Base(USA, 1997-2000)
00s	• Improve numerical algorithms for complex structure – nonlinear wave interactions	 II a k V 3 d H P 	Development of numerical methods for hydro-elastic analysis in frequency and time domain Kashiwagi(2000), Khabakhpasheva(2002), Taylor(2007), WISH(Kim, 2008), BD floating structures – wave interactions in frequency domain HYDRAN(Riggs, 2003) PADO(Kim, 2013)

In this work

An effective numerical method to Hydroelastic analysis of floating structures

2. Direct calculation of stress RAOs in hydroelastic analysis

2. Integrated hydro-static and -dynamic analysis

Problem description

Fixed Cartesian coordinate system (x_1, x_2, x_3)

Floating structures

- V_S : Volume of structure
- S_w : Wet surface
- S_d : Dry surface

External fluid

- V_F : volume of external fluid
- S_{∞} : infinite boundary surface
- S_G : flat bottom surface
- S_F : free surface
- S_W : wet surface

Others

- h: Water depth
- θ : Incident wave angle

Formulation of the floating structure

Solution procedure of the integrated analysis

- S_s : the surface of floating structure
- V_S : the volume occupied by the structure
- f_i^s : the surface force
- ${}^{0}P$: hydrostatic pressure(${}^{0}P = -\rho_{w}gx_{3}$)
- ^tP : total pressure(^tP = $-\rho_w g x_3 + {}^t P_D$)

Formulation of the floating structure

Assumption

Homogeneous, isotropic, and linear elastic material

Strong form

The equilibrium equations at time $\tau + \Delta \tau$ (updated Lagrangian formulation employed)

$$\begin{aligned} \frac{\partial^{\tau+\Delta\tau} \sigma_{ij}}{\partial^{\tau+\Delta\tau} x_{j}} &- \rho_{S} \,^{\tau+\Delta\tau} \ddot{x}_{i} - \rho_{S} g \,\delta_{i3} + {}^{\tau+\Delta\tau} f_{i}^{B} = 0 & \text{in} \quad {}^{\tau+\Delta\tau} V_{S} \\ \frac{\partial^{\tau+\Delta\tau} \sigma_{ij}}{\partial^{\tau+\Delta\tau} r_{j}} &= {}^{\tau+\Delta\tau} f_{i}^{S} & \text{on} \quad {}^{\tau+\Delta\tau} S_{S} \\ \frac{\partial^{\tau+\Delta\tau} \sigma_{ij}}{\partial^{\tau+\Delta\tau} r_{j}} &= {}^{-\tau+\Delta\tau} P^{\tau+\Delta\tau} n_{i} & \text{on} \quad {}^{\tau+\Delta\tau} S_{W} & {}^{\tau+\Delta\tau} P = -\rho_{W} g^{\tau+\Delta\tau} x_{3} + {}^{\tau+\Delta\tau} P_{D} \\ \sigma_{ij} &: \text{Cauchy stress tensor} & \rho_{s} &: \text{density of the floating structure} \end{aligned}$$

- *g* : Gravitational acceleration
- n_i : unit normal vector

- *P* : pressure affected on wet surface
- δ_{ij} : Kronecker delta

Formulation of the fluid

Assumption

 \checkmark Incompressible, inviscid and irrotational flow

SF **Governing equations** $\phi(t) = \operatorname{Re}\{\hat{\phi}({}^{0}x_{i})e^{\hat{j}\omega t}\}\$ ${}^{0}V_{F}$ $\nabla^2 \hat{\phi} = 0$ in $^{0}V_{F}$ h $\frac{\partial \hat{\phi}}{\partial x_3} = \frac{\omega^2}{g} \hat{\phi}$ S_ on $S_F(x_3 = 0)$ S_{G} $\frac{\partial \hat{\phi}}{\partial x_3} = 0$ on $S_G(x_3 = -h)$ $\sqrt{R}(\frac{\partial}{\partial R} + \hat{j}\hat{k})(\hat{\phi} - \hat{\phi}^I) = 0 \text{ on } S_{\infty}(R \to \infty)$ ϕ : Velocity potential ∇^2 : Laplace operator $\frac{\partial \hat{\phi}}{\partial^0 n} = \hat{j} \omega \hat{u}_i^0 n_i$ on ${}^{0}S_{W}$ ϕ^{I} : Incident wave potential k : wave number

Incident wave

Element discretization

Element discretization for hydrostatic analysis

Element discretization for hydrodynamic analysis

Integrated hydro –static and -dynamic analysis procedure

Research purpose

Integrated hydro-static and dynamic analysis

• We propose the integrated hydro –static and –dynamic analysis using a single integrated mesh model

Non-matching mesh after hydrostatic analysis

A non-matching with free surface problem occurs in the initial mesh model at the hydrostatic equilibrium.

Non-matching mesh problem

In the case of a floating structure model that includes internal members, it is very difficult to modify the mesh or create a new mesh model.

outer shell mesh change \rightarrow internal mesh change

Remeshing process increases structural DOFs and computational cost.

Non-matching mesh problem

Mesh adjustment

Mesh model modification according to wet surface at the hydrostatic equilibrium state.

Remeshing algorithm

✓ Ko KH, et al. (2011)

- Development of panel generation system for seakeeping analysis.

✓ Rodrigues JM, Guedes Soares C(2017)

- Froude-Krylov forces from exact pressure integrations on adaptive panel meshes in a time domain partially nonlinear model for ship motions.

- Numerical integration method
 - ✓ Lee et al. (2016)
 - Nonlinear hydrostatic analysis of flexible floating structures
 - ✓ Hoareau C, Deü JF. (2019)
 - Nonlinear equilibrium of partially liquid-filled tanks: A finite element/level-set method to handle hydrostatic follower forces.
 - ✓ Narayanan NK, et al. (2020)
 - Monolithic and partitioned approaches to determine static deformation of membrane structures due to ponding.
- These studies are focused only hydrostatic equilibrium state

Non-matching mesh treatment

 \mathcal{D}

Non-matching mesh treatment without remeshing process

 \bigcirc

Non-matching mesh treatment terms

$$\begin{bmatrix} -\omega^{2} {}^{0}\mathbf{S}_{M} + {}^{0}\mathbf{S}_{K} + {}^{0}\mathbf{S}_{CH} & \hat{j}\omega^{0}\mathbf{S}_{D} \\ \hat{j}\omega^{0}\mathbf{F}_{G} & {}^{0}\mathbf{F}_{M} - {}^{0}\mathbf{F}_{Gn} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{U}} \\ \hat{\mathbf{\Phi}} \end{bmatrix} = \begin{bmatrix} {}^{t}\mathbf{R}_{B} + {}^{t}\mathbf{R}_{S} \\ 4\pi^{t}\mathbf{R}_{I} \end{bmatrix}$$

$${}^{0}\mathbf{S}_{M} = \mathbf{A}_{e=1}^{N} \int_{{}^{0}V_{S}^{(e)}} {}^{0}\boldsymbol{\rho}_{S} \mathbf{H}_{i}^{(e)T} \mathbf{H}_{i}^{(e)} d {}^{0}V_{S} \qquad {}^{0}\mathbf{S}_{CH} = {}^{0}\mathbf{S}_{KN} - {}^{0}\mathbf{S}_{HD} - {}^{0}\mathbf{S}_{HN}$$

$${}^{0}\mathbf{S}_{D} = \mathbf{A}_{e=1}^{M} \int_{{}^{0}S_{W}^{(e)}} \boldsymbol{\rho}_{W} \mathbf{H}_{i}^{(e)T 0} n_{i}^{(e)} \mathbf{P}^{(e)} d {}^{0}S_{W} \qquad {}^{0}\mathbf{F}_{M} = \mathbf{A}_{e=1}^{M} \int_{{}^{0}S_{W}^{(e)}} \boldsymbol{\alpha}^{(e)} \mathbf{P}^{(e)T} \mathbf{P}^{(e)} d {}^{0}S_{W}$$

$${}^{0}\mathbf{F}_{G} = \mathbf{A}_{e=1}^{M} \int_{{}^{0}S_{W}^{(e)}} \mathbf{P}^{(e)T} \left\{ \mathbf{A}_{\overline{e}=1}^{M} \int_{{}^{0}S_{W}^{(\overline{e})}} G(x_{i};\xi_{i})^{0} n_{i} \mathbf{H}_{i}^{(\overline{e})} d {}^{0}S_{\xi} \right\} d {}^{0}S_{x}$$

$${}^{0}\mathbf{F}_{Gn} = \mathbf{A}_{e=1}^{M} \int_{{}^{0}S_{W}^{(e)}} \mathbf{P}^{(e)T} \left\{ \mathbf{A}_{\overline{e}=1}^{M} \int_{{}^{0}S_{W}^{(\overline{e})}} \nabla_{\xi} G(x_{i};\xi_{i}) \mathbf{P}^{(\overline{e})} d {}^{0}S_{\xi} \right\} d {}^{0}S_{x}$$

$${}^{t}\mathbf{R}_{B} = \mathbf{A}_{e=1}^{N} \int_{{}^{0}V_{S}^{(e)}} \mathbf{H}_{i}^{(e)T t} \hat{\mathbf{f}}_{i}^{B(e)} d {}^{0}V_{S} \qquad {}^{t}\mathbf{R}_{S} = \mathbf{A}_{e=1}^{N} \int_{{}^{\tau}S_{S}^{(e)}} \mathbf{H}_{i}^{(e)T t} \hat{\mathbf{f}}_{i}^{S(e)} d {}^{0}S_{x}$$

$${}^{t}\mathbf{R}_{I} = \mathbf{A}_{e=1}^{M} \int_{{}^{0}S_{W}^{(e)}} \mathbf{P}^{(e)T} \hat{\phi}^{I} d {}^{0}S_{W}$$

Numerical integration method applied the terms related wet surface.

Non-matching mesh treatment(4 node)

- Numerical integration is performed considering four different cases according to the number of wet nodes.
- In the case of CASE 4-1, numerical integration was performed on the triangular area.
- CASE 4-3 is the 3 nodes are below the free surface, the pentagon-shape wetted part is divided into two rectangular subparts.

Non-matching mesh treatment(3 node)

• CASE 3-2 shows a partially wet element with 2 wet nodes. The wet surface part of the element is divided into two subtriangles. Three-point Gaussian quadrature is performed in each subtriangular areas.

- Simple barge problem : Rigid body
 - ✓ Numerical model

Length [m]		150.0		
Breadth [m]		50		
Draft [m]		10		
Displacement [m ³]		73,750		
KG [m]		10		
	Roll	20		
Radius of gyration [m]	Pitch	39		
	Yaw	39		

- Simple barge problem : Rigid body
 - ✓ Numerical model

<Numerical model for AQWA>

of nodes : 3,675 # of elements : 3,578

<Numerical model for proposed method>

- The wet surface was discretized for the AQWA analysis.
- Non-matching mesh condition was intended to verified the proposed method.
- One angle of incident wave ($\theta = 0^{\circ}$), and wave periods T from 7 to 20 s ($\Delta T = 1$ s) are considered.

- Simple barge problem : Rigid body
 - ✓ Results

- The results from proposed method, AQWA results, and calculation and experiment of Pinkster(1977)* are compared.
- The surge and heave results from various methods are in good agreement.
- In the case of pitch motion, there was a slight difference in low frequency.
 - ✓ Joe et al.** inferred the difference between the test result of the pitching motion and the calculation as an error in the radius of gyration for the model test.
- Pinkster JA, Oortmerssen G van. Computation of the First and Second Order Wave Forces on Oscillating Bodies in Regular Waves. *Proc* 2nd Int Conf Numer Sh Hydrodyn. Published online 1977:136-159.

**Jo, H.J., et al., 1997. A study on the steady drift forces on barge. Bulletin of the Korean Society of Fisheries Technology, 33(1), pp. 38-4527 /58

• A floating hull : Rigid and flexible body

Length [m]	100.0		Thickness	Density	Young's	Poisson's
Breadth [m]	10		[m]	$[kg/m^3]$	modulus [Pa]	ratio
Depth [m]	4	Side	0.03	5.0e+5	2e+12	0.3
Displacement [m ³]	73,750	Bottom	0.03	6.3585e+4	2e+12	0.3

- To verify the proposed method in flexible structure, simple floating structure model* is used in this example.
- The initial configuration as the hydrostatic equilibrium state of the rigid body case and use this configuration for the reference configuration of hydrodynamic analysis.
- One angle of incident wave ($\theta = 0^{\circ}$), and wave periods *T* from 3 to 12 s are considered.

- A floating hull : Matching mesh model vs. Non-matching mesh model
 - ✓ Numerical model

<Matching mesh model>

of wet nodes : 1,611(1,971) # of wet elements : 1,520(1,880) <Non-matching mesh model>

of wet nodes : 1,431(1,971) # of wet elements : 1,520(1,880)

A floating hull: Rigid and flexible body

- Rigid results are calculated from the matching mesh model.
- Results are indicated at 3 points(stern, center, bow) on the bottom of the floating hull.
- It can be seen that the results for flexible body obtained from the proposed(non matching mesh model) and previous(matching mesh model) methods are similar.

Whole ship model

- In order to confirm the applicability of the proposed method in the whole ship model, it was applied to the whole ship model.
- The total number of elements used is 17,029 and the total degree of freedom is 57,585.
- All the RAO results of rigid body case obtained from the proposed method and AQWA .
- 3 loading case are considered.
- One angle of incident wave ($\theta = 45^\circ$), and wave periods T from 8 to 26 s ($\Delta T = 1$ s) are considered.

 \mathcal{D}

Whole ship model : 3 Loading cases

Whole ship model : Hydrostatic equilibrium state

 \mathcal{D}

• Whole ship model : rigid body results (LC01, $\theta = 45^{\circ}$)

Whole ship model : flexible body results ($\theta = 45^{\circ}$)

- For the flexible case, elastic modulus E=210GPa, and Poisson's ratio v=0.3 are used.
- Results are indicated at two points on the bottom of the ship.

Bow

26

26

Center

- Whole ship model : flexible body results (LC01, $\theta = 45^{\circ}$)
- The von-Mises stress distribution are represented.
- The stresses normalized by the yield stress (355 MPa) are represented.

Whole ship model

 \mathcal{O}

\checkmark Time required for each process

Conventional method (ORCA3D/AQWA/ANSYS)	Kim et. al., 2013	Proposed method
Hydrostatic panel modeling:	Hydrostatic mesh modeling:	Integrated mesh modeling:
30 min *	20 min *	20 min *
Hydrostatic analysis	Hydrostatic analysis:	Hydrostatic analysis:
$3 \times 3 \min$	3×15 min	3×15 min
Hydrodynamic panel modeling:	Hydroelastic mesh modeling:	
3×30 min *	3×60 min *	
Hydrodynamic analysis:	Hydroelastic analysis:	Hydroelastic analysis:
$3 \times 4 \min$	3×12 min	3×12 min
Structural mesh modeling:		
3×60 min*		
Structural FE analysis:		
3×2 min		
Total time: 327 min (100 %)	Total time: 281 min (85.9 %)	Total time: 101 min (30.9 %)

* Manual operations are involved.

• The total time required is reduced by 30% compared to the conventional method.

Closure

✓ Conclusions

- An integrated hydro–static and dynamic analysis has been proposed
 - ➤ An integrated hydro-static and dynamic formulation has been proposed.
 - Hydrostatic analysis : Incremental nonlinear analysis
 - Hydrodynamic analysis : Frequency domain
 - An effective non-matching mesh treatment method for hydrodynamic analysis of flexible floating structures were developed.
 - Hydro static and dynamic analysis are performed using a single mesh model.
- Compared to conventional procedures, similar solution accuracy was obtained but total analysis time was significantly reduced.

3. Direct calculation of stress RAOs in hydroelastic analysis

 Hydroelastic analysis is performed for the strength evaluation of ships and floating structures

- Wave spectrum : $S(\omega)$
 - The waves at sea are irregular, but irregular waves can be represented as the linear superposition of regular waves.
 - Pierson-Moskowitz, JONSWAP, etc.
- **RAO** (**Response Amplitude Operator**) : $H(\omega, \theta)$
 - The magnitude of the response to regular waves with unit amplitude.
- **Response spectrum** : $R(\omega, \theta)$
 - $R(\omega, \theta) = H(\omega, \theta)^2 \times S(\omega)$

 \mathcal{D}

Displacement RAO

$$[-\omega^{2}({}^{0}\mathbf{S}_{M} + {}^{0}\mathbf{S}_{MA}) + j\omega^{0}\mathbf{S}_{CW} + {}^{0}\mathbf{S}_{K} + {}^{0}\mathbf{S}_{CH}]\hat{\mathbf{U}} = {}^{0}\mathbf{R}_{W}$$
$$\hat{\mathbf{U}} = \hat{\mathbf{U}}^{\text{Re}} + \hat{j}\hat{\mathbf{U}}^{\text{Im}}$$
$$H(\omega, \theta) = \frac{|\hat{\mathbf{U}}|}{A} \quad \text{A: wave amplitude}$$

Stress(component) RAO

$$\hat{\boldsymbol{\sigma}} = \hat{\boldsymbol{\sigma}}^{\text{Re}} + \hat{j}\hat{\boldsymbol{\sigma}}^{\text{Im}} \qquad \hat{\boldsymbol{\varepsilon}} = [\hat{\varepsilon}_{11} \quad \hat{\varepsilon}_{22} \quad \hat{\varepsilon}_{33} \quad \hat{\varepsilon}_{12} \quad \hat{\varepsilon}_{23} \quad \hat{\varepsilon}_{31}]^{\text{T}} \quad \hat{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial \hat{u}_i}{\partial x_j} + \frac{\partial \hat{u}_j}{\partial x_i} \right)$$
$$\hat{\boldsymbol{\sigma}}^{\text{Re}} = \mathbf{C}\hat{\boldsymbol{\varepsilon}}^{\text{Re}}, \quad \hat{\boldsymbol{\sigma}}^{\text{Im}} = \mathbf{C}\hat{\boldsymbol{\varepsilon}}^{\text{Im}} \qquad \mathbf{C} \quad \text{: stress-strain relation(material) tensor}$$

C : stress-strain relation(material) tensor

$$H_{\sigma}(\omega,\theta) = \frac{|\hat{\mathbf{\sigma}}|}{A}$$
 A: wave amplitude

Combined stress RAO

- Component stresses are harmonic responses : $\sigma_{ij}(t) = \hat{\sigma}_{ij}^{\text{Re}} \cos \omega t \hat{j} \hat{\sigma}_{ij}^{\text{Im}} \sin \omega t$
- Various types of stress are used to evaluate the strength of structures.

$$\sigma_{vM}(t) = \sqrt{\sigma_{11}^2(t) + \sigma_{11}(t)\sigma_{22}(t) + \sigma_{22}^2(t) + 3\sigma_{12}^2(t)}$$
$$P_{1,2}(t) = \frac{\sigma_{11}(t) + \sigma_{22}(t)}{2} \pm \frac{1}{2}\sqrt{\left(\sigma_{11}(t) - \sigma_{22}(t)\right)^2 + 4\sigma_{12}^2(t)}$$

- It is no longer a harmonic response. (non-harmonic function)
 - \rightarrow It is not easy to find the maximum value for design.

Combined stress RAO calculation method

- \checkmark Calculate stress RAO using the maximum stress for each component($\tilde{\sigma}_{_{VM}}$)
 - A. Preumont, V. Pie'fort, 1994. Predicting random high-cycle fatigue life with finite elements, Journal of Vibration and Acoustics 116, 245–248.
 - T. Lagoda, E. Macha, A. Nieslony, 2005. Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading, Fatigue & Fracture of Engineering Materials & Structures 28, 409–420.
 - HEXAGON, 2021. MSC Apex User Manual.

$$\sigma_{ij}(t) = \hat{\sigma}_{ij}^{\text{Re}} \cos \omega t - \hat{j} \hat{\sigma}_{ij}^{\text{Im}} \sin \omega t$$
$$\tilde{\sigma}_{vM} = \sqrt{\hat{\sigma}_{11}^2 - \hat{\sigma}_{11} \hat{\sigma}_{22} + \hat{\sigma}_{22}^2 + 3\hat{\sigma}_{12}^2}$$
where $\hat{\sigma}_{ij} = \sqrt{\hat{\sigma}_{ij}^{\text{Re}} + \hat{\sigma}_{ij}^{\text{Im}}}$

✓ Phase differences between component stresses are not considered. ✓ The obtained $\tilde{\sigma}_{_{VM}}$ may differ from the $\sigma_{_{VM}_True}$.

Related works

Combined stress RAO calculation method

- ✓ The maximum stress found by stepping through the whole cycle $H_{\sigma_{vM}}(\omega, \theta) = \max(\sigma_{vM}(t))$
 - DNV, 2021. Sesam User Manual Xtract.
 - ANSYS, 2009. Theory reference for the Mechanical APDL and Mechanical applications.

- The stress at a given time (t) of the incoming wave is expressed as a harmonic function. $\sigma_{ij}(t) = \hat{\sigma}_{ij}^{\text{Re}} \cos \omega t - \hat{j} \hat{\sigma}_{ij}^{\text{Im}} \sin \omega t$
- The stresses are calculated by stepping through the whole cycle (t = $\frac{T}{36}, \frac{2T}{36}, \dots, T$). $\sigma_{vM}(t) = \sqrt{\sigma_{11}^2(t) + \sigma_{11}(t)\sigma_{22}(t) + \sigma_{22}^2(t) + 3\sigma_{12}^2(t)}$ $\sigma_P(t) = \frac{\sigma_{11}(t) + \sigma_{22}(t)}{2} + \frac{1}{2}\sqrt{(\sigma_{11}(t) - \sigma_{22}(t))^2 + 4\sigma_{12}^2(t)}$
- RAO is determined as the maximum value obtained by calculating the above equation. $H_{\sigma_{vM}}(\omega,\theta) = \max(\sigma_{vM}(t)) \qquad H_{\sigma_{P}}(\omega,\theta) = \max(\sigma_{P}(t))$

Research purpose(proposed)

Direct calculation method of stress RAO in hydroelastic analysis

The maximum stress is found by direct calculation without stepping through the whole cycle.

Direct calculation of stress RAOs(proposed)

von-Mises stress

 \checkmark von-Mises stress in time-domain

$$\sigma_{vM}(t) = \sqrt{\frac{3}{2} \left(\sigma_{ij}(t) - \frac{1}{3} \delta_{ij} \sigma_{kk}(t)\right)^2} \qquad \sigma_{ij}(t) = \hat{\sigma}_{ij}^{\text{Re}} \cos \omega t - \hat{\sigma}_{ij}^{\text{Im}} \sin \omega t$$

$$\sigma_{vM}(t) = \sqrt{\frac{\sqrt{(A-B)^{2}+C^{2}}}{2}} \sin(2\omega t + \phi_{1}) + \frac{A+B}{2}}$$

$$A = \frac{3}{2} \left(\hat{\sigma}_{ij}^{\text{Re}} - \frac{1}{3} \delta_{ij} \hat{\sigma}_{kk}^{\text{Re}}\right) \left(\hat{\sigma}_{ij}^{\text{Re}} - \frac{1}{3} \delta_{ij} \hat{\sigma}_{kk}^{\text{Re}}\right) \quad B = \frac{3}{2} \left(\hat{\sigma}_{ij}^{\text{Im}} - \frac{1}{3} \delta_{ij} \hat{\sigma}_{kk}^{\text{Im}}\right) \left(\hat{\sigma}_{ij}^{\text{Im}} - \frac{1}{3} \delta_{ij} \hat{\sigma}_{kk}^{\text{Im}}\right)$$

$$C = 3 \left(\hat{\sigma}_{ij}^{\text{Re}} - \frac{1}{3} \delta_{ij} \hat{\sigma}_{kk}^{\text{Re}}\right) \left(\hat{\sigma}_{ij}^{\text{Im}} - \frac{1}{3} \delta_{ij} \hat{\sigma}_{kk}^{\text{Im}}\right) \quad \sin \phi_{1} = \frac{(A-B)}{\sqrt{(A-B)^{2}+C^{2}}}, \\ \cos \phi_{1} = \frac{-C}{\sqrt{(A-B)^{2}+C^{2}}}$$

✓ The RAO of von-Mises stress

$$H_{\sigma_{vM}}(\omega,\theta) = \sqrt{\frac{\sqrt{(A-B)^2 + C^2}}{2}} + \frac{A+B}{2}$$
$$0 \le \omega t = n\pi + \frac{\pi}{4} - \frac{\phi_1}{2} \le 2\pi$$

Direct calculation of stress RAOs(proposed)

- Principal stress
 - ✓ Principal stresses are represent using stress invariants(I_1, I_2, I_3).

$$P_{1} = \frac{I_{1}(t)}{3} + \frac{2}{3} \left(\sqrt{I_{1}^{2}(t) - 3I_{2}(t)} \right) \cos \phi \qquad P_{2} = \frac{I_{1}(t)}{3} + \frac{2}{3} \left(\sqrt{I_{1}^{2}(t) - 3I_{2}(t)} \right) \cos \left(\phi(t) - \frac{2\pi}{3} \right)$$
$$P_{3}(t) = \frac{I_{1}(t)}{3} + \frac{2}{3} \left(\sqrt{I_{1}^{2}(t) - 3I_{2}(t)} \right) \cos \left(\phi(t) - \frac{4\pi}{3} \right)$$

$$\begin{split} I_{1}(t) &= \sigma_{ii}(t) = \hat{\sigma}_{ii}^{\text{Re}} \cos \omega t - \hat{\sigma}_{ii}^{\text{Im}} \sin \omega t \\ I_{2}(t) &= \frac{1}{2} \Big\{ \Big(\hat{\sigma}_{ii}^{\text{Re}} \hat{\sigma}_{jj}^{\text{Re}} - \hat{\sigma}_{ij}^{\text{Re}} \hat{\sigma}_{jj}^{\text{Re}} \Big) \cos^{2} \omega t + \Big(\hat{\sigma}_{ii}^{\text{Im}} \hat{\sigma}_{jj}^{\text{Im}} - \hat{\sigma}_{ij}^{\text{Im}} \hat{\sigma}_{ij}^{\text{Im}} \Big) \sin^{2} \omega t \Big\} - \frac{1}{2} \Big\{ \Big(\hat{\sigma}_{ii}^{\text{Re}} \hat{\sigma}_{jj}^{\text{Im}} + \hat{\sigma}_{ji}^{\text{Re}} \hat{\sigma}_{ii}^{\text{Im}} - \hat{\sigma}_{ij}^{\text{Im}} \hat{\sigma}_{ij}^{\text{Re}} - \hat{\sigma}_{ij}^{\text{Re}} \hat{\sigma}_{ij}^{\text{Im}} \Big) \sin \omega t \cos \omega t \Big\} \\ I_{3}(t) &= \varepsilon_{ijk} \Big\{ \hat{\sigma}_{1i}^{\text{Re}} \hat{\sigma}_{2j}^{\text{Re}} \hat{\sigma}_{3k}^{\text{Re}} \cos^{3} \omega t - \Big(\hat{\sigma}_{1i}^{\text{Re}} \hat{\sigma}_{2j}^{\text{Im}} \hat{\sigma}_{3k}^{\text{Re}} + \hat{\sigma}_{1i}^{\text{Re}} \hat{\sigma}_{2j}^{\text{Re}} \hat{\sigma}_{3k}^{\text{Re}} \Big\} \sin \omega t \cos^{2} \omega t \\ &+ \varepsilon_{ijk} \Big\{ \Big(\hat{\sigma}_{1i}^{\text{Im}} \hat{\sigma}_{2j}^{\text{Im}} \hat{\sigma}_{3k}^{\text{Re}} + \hat{\sigma}_{1i}^{\text{Re}} \hat{\sigma}_{2j}^{\text{Re}} \hat{\sigma}_{3k}^{\text{Im}} \Big\} \sin^{2} \omega t \cos \omega t - \hat{\sigma}_{1i}^{\text{Im}} \hat{\sigma}_{2j}^{\text{Im}} \hat{\sigma}_{3k}^{\text{Im}} \sin^{3} \omega t \Big\} \\ \phi(t) &= \frac{1}{3} \cos^{-1} \Bigg(\frac{2I_{1}^{3}(t) - 9I_{1}(t)I_{2}(t) + 27I_{3}(t)}{2(I_{1}^{2}(t) - 3I_{2}(t))} \Big)^{3/2} \Bigg) \end{split}$$

 \checkmark To find a maximum value in one cycle, the Newton-Raphson method is used.

von-Mises stress calculation

✓ Results

$H_{_{\sigma_{_{V\!M}}}}ig(\omega, hetaig)$		Time [sec]	# of calculations	
Proposed	65.0880 (100%)	0.5001 T (179.07/360)	1	
Previous	65.0545 (99.95%)	0.5 T (180/360)	36	

Principal stress calculation

- ✓ Max. value of P_1 using Newton-Raphson method(# of iteration : 2)
- ✓ Results

$H_{_{\sigma_{P1}}}ig(arnothinspace, hetaig)$		Time [sec]	# of calculations	
Proposed	69.4301(100%)	0.4841 T (174.27/360)	2	
Previous	69.2376(99.72%)	0.4722 T (170/360)	36	

 \mathcal{O}

 \checkmark

Floating barge problem

		blue hun	Duik neau
ss [m] 0.005	0.02	0.02	0.005
$[kg/m^3]$ 1.0 x 10 ³	3 3.3389 x 10 ⁴	3.3389 x 10 ⁴	3.3389 x 10 ⁴
ulus [GPa] 100	100	100	100
s ratio 0.3	0.3	0.3	0.3
x_2 100 m			
	ess [m] 0.005 [kg/m ³] 1.0 x 10 hulus [GPa] 100 x_2 100 m x_1	ess [m] 0.005 0.02 [kg/m ³] 1.0×10^3 3.3389×10^4 hulus [GPa] 100 100 x^2 ratio 0.3 0.3	ess [m] 0.005 0.02 0.02 [kg/m ³] 1.0 x 10 ³ 3.3389 x 10 ⁴ 3.3389 x 10 ⁴ hulus [GPa] 100 100 100 1° s ratio 0.3 0.3 0.3 x_2 100 m x_1 x_2 100 m x_2 100 m

• One angle of incident wave ($\theta = 0^{\circ}$), and wave periods *T* are 4-16 sec considered.

- Floating barge problem: results
 - ✓ von-Mises stress RAO(T=4.0 ~16.0 sec)

✓ von-Mises stress RAO distribution(T=4.0 sec)

- Floating barge problem: results
 - ✓ Principal stress RAO(T=4.0 ~16.0 sec)

✓ Principal stress RAO distribution(T=4.0 sec)

Closure

✓ Conclusions

- Direct Calculation Method of Stress RAO in Frequency Domain were developed.
 - ➤ A direct calculation method was developed using the periodic function relationship.
 - Method for von-Mises stress and Principal stress were developed.
 - ➤ A more accurate solution can be obtained with less calculation.
 - \blacktriangleright Calculation time can be reduced up to 7.6%.

4. Conclusions & future works

Conclusions & future works

✓ Conclusions

- An integrated hydro–static and dynamic analysis has been proposed
 - ➤ An integrated hydro-static and dynamic formulation has been proposed.
 - An effective non-matching mesh treatment method for hydrodynamic analysis of flexible floating structures were developed.
 - Hydro static and dynamic analysis are performed using a single mesh model.
 - Compared to conventional procedures, similar solution accuracy was obtained but total analysis time was significantly reduced.
- Direct Calculation Method of Stress RAO in Frequency Domain were developed.
 - ➤ A direct calculation method was developed using the periodic function relationship.
 - Method for von-Mises stress and Principal stress were developed.
 - \blacktriangleright Calculation time can be reduced up to 7.6%.
- The proposed method will contribute to practical applications in the field of structural design.

Conclusions & future works

✓ Future works

- It will be valuable to extend the present direct coupled formulation to nonlinear hydroelastic analyses (large motions of floating structures and fluid).
- The present formulation can be extended to the transient analysis of flexible floating structures.
- Hydrodynamic analysis considering loading information application method.
- Internal fluid, cargo loading(container, oar, grains, etc)

Thank you for your attention